WO2016186365A1 - Low-resistance silicon carbide ceramic material using atmospheric sintering scheme and method for manufacturing same - Google Patents

Low-resistance silicon carbide ceramic material using atmospheric sintering scheme and method for manufacturing same Download PDF

Info

Publication number
WO2016186365A1
WO2016186365A1 PCT/KR2016/004921 KR2016004921W WO2016186365A1 WO 2016186365 A1 WO2016186365 A1 WO 2016186365A1 KR 2016004921 W KR2016004921 W KR 2016004921W WO 2016186365 A1 WO2016186365 A1 WO 2016186365A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
raw material
powder
sintering
ceramic material
Prior art date
Application number
PCT/KR2016/004921
Other languages
French (fr)
Korean (ko)
Inventor
임성준
곽대현
전형우
김범섭
Original Assignee
주식회사 원익큐엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 원익큐엔씨 filed Critical 주식회사 원익큐엔씨
Publication of WO2016186365A1 publication Critical patent/WO2016186365A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Definitions

  • the present invention relates to a low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method and a method of manufacturing the same. More particularly, the present invention relates to a compact, excellent corrosion resistance and chemical resistance to plasma, low thermal conductivity, and low coefficient of thermal expansion. The present invention relates to a low-resistance silicon carbide ceramic material using an atmospheric pressure sintering method which can be manufactured at low cost, is economical, and can be employed in a jig for semiconductor equipment, and a method of manufacturing the same.
  • Silicon carbide has excellent oxidation resistance and chemical stability, excellent mechanical properties such as mechanical strength, hardness, and wear resistance, high thermal conductivity, and electrically semiconductor characteristics, so it is a high temperature structural material, a part of semiconductor process equipment, heater, and gas dust. It is widely used in a wide range of fields such as wear-resistant parts such as filters, mechanical seals, heat sinks of LED equipment, and is also partially used as power semiconductors and thermoelectric elements by controlling electrical and thermal characteristics.
  • boron (B) and carbon (C) are added to the silicon carbide powder as a sintering aid, and after general mixing and molding of ceramics, the pressure is sintered at 2050 ° C or higher. Sintering at temperature produces a silicon carbide sintered body having a sintered density of at least 95%.
  • the silicon carbide material added with boron and carbon has a disadvantage in that volume resistivity is about 10 3 to 10 5 ⁇ cm, and electrical conductivity is too low, so that it is difficult to perform electric discharge machining to manufacture a complicated shape or a large part.
  • the liquid phase sintering method of silicon carbide is shown in US Patent No. 4,829,027 and US Patent No. 5,580,510.
  • the manufacturing method proposed in these patents the liquid phase at a high temperature as a sintering aid to the silicon carbide powder Oxides, mixtures of oxides or oxides and aluminum nitrides are added at the same time to undergo general mixing and molding of ceramics, followed by sintering at 1750 ° C or higher by atmospheric sintering or pressure sintering, resulting in melting of the sintering aid during the sintering process.
  • the liquid phase formed promotes densification with a liquid phase sintering mechanism to produce a silicon carbide sintered body having a sintered density of 3.0 g / cm 3 or more. Since the silicon carbide material thus prepared contains an excess of liquid phase, the volume resistivity is about 10 3 to 10 7 ⁇ cm, which is not a good electrical conductor, causing unwanted arcs in the plasma atmosphere of the etching equipment for semiconductor manufacturing.
  • An object of the present invention is to provide a low-resistance silicon carbide ceramic material using a pressureless sintering method that can be employed in a jig, and a method of manufacturing the same.
  • preparing a raw material for preparing a raw material powder by mixing a predetermined ratio of alpha silicon carbide ( ⁇ -SiC) powder or beta silicon carbide ( ⁇ -SiC) powder and liquid sintering aid step; Slurry step of slurrying the raw material powder prepared in the raw material preparation step; Dry granulation step of drying and granulating the raw material powder of the slurry in the slurry step; A molding step of molding the raw powder granulated in the dry granulation step into a predetermined form; A degreasing step of vacuum degreasing the molded body formed in the forming step; And a sintering step of sintering the molded body subjected to the degreasing step.
  • a method of manufacturing a low resistance silicon carbide ceramic material using an atmospheric pressure sintering method is provided.
  • the mixing ratio of the alpha silicon carbide ( ⁇ -SiC) powder or beta silicon carbide ( ⁇ -SiC) powder and liquid sintering aid is alpha silicon carbide ( ⁇ -SiC ) Powder or beta silicon carbide ( ⁇ -SiC) powder is preferably 79.0% to 99.0% by weight, 1.0% to 21.0% by weight of the liquid sintering aid.
  • the liquid sintering aid is preferably made of a mixture of aluminum nitride (AlN) and yttria (Y 2 O 3 ).
  • the mixing ratio of the aluminum nitride and yttria is preferably 0.5 to 10.0% by weight aluminum nitride, 0.5 to 20.5% by weight yttria.
  • the slurry step is added to 200 parts by weight of ethanol solvent with respect to 100 parts by weight of the raw material prepared in the raw material preparation step, 0.5 to 1.5 parts by weight of dispersant and 1 to 3 parts by weight of binder and oxidation It is preferable to include zirconium ball (ZrO 2 Ball) to put together ball milling for 4 to 24 hours.
  • zirconium ball ZrO 2 Ball
  • the dry granulation step includes withdrawing the raw material slurried in the ball mill of the raw material preparation step to dry and granulate using a spray dryer (Spray Dryer) equipment, the molding
  • the step preferably includes molding at a pressure of 300 to 1,500 kgf / cm 2 using a molding die.
  • a secondary molding step of performing cold isostatic pressing (CIP: Cold Isostatic Press) at a pressure of 2,000kgf / cm 2 .
  • the degreasing step includes the step of heating up to 800 °C in a vacuum atmosphere to remove the binder contained in the molded body, the sintering step is a graphite work box in the atmospheric pressure sintering furnace It is preferable to include sintering at a temperature of 1,850 to 2,050 ° C for 1 to 8 hours while flowing nitrogen (N 2 ) gas or argon (Ar) gas using a graphite work box.
  • the volume resistivity value of 1.7 ⁇ 10 -2 ⁇ 6.5 ⁇ 10 2 ⁇ ⁇ Cm manufactured by the method of manufacturing a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the above aspect A silicon carbide ceramic material having is provided.
  • the low-resistance silicon carbide ceramic material and its manufacturing method using the atmospheric pressure sintering method according to the present invention there is an effect that can provide a ceramic material that is dense, excellent in corrosion resistance and chemical resistance to plasma, and good thermal conductivity.
  • the present invention can be suitably employed in the jig of the semiconductor etching equipment, and the thermal expansion rate is low, there is little risk of damage even in the long-term use, it is possible to manufacture at a low cost there is an effect that can be economical advantages.
  • the low-resistance silicon carbide ceramic material of the present invention is low-resistance, it is possible to suppress the generation of arc in the plasma atmosphere of the etching equipment, which is suitable for long-term use.
  • FIG. 1 is a flow chart showing a method of manufacturing a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention
  • FIG. 2 is a SEM (scanning electron microscope) ⁇ 300 photograph of a sintered body fracture surface of a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention
  • FIG. 3 is a SEM (scanning electron microscope) ⁇ 3000 photograph of the sintered body fracture surface of the low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention
  • Example 4 is a scanning electron micrograph showing the surface of the specimen of Example 5 according to the plasma etching test.
  • 5 to 7 are scanning electron micrographs showing the surfaces of the specimens of the comparative examples according to the plasma etching test.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a low resistance silicon carbide ceramic material using an atmospheric pressure sintering method according to the present invention.
  • alpha silicon carbide ( ⁇ -SiC) powder or beta silicon carbide ( ⁇ -SiC) powder and liquid phase sintering Raw material preparation step of preparing a raw material powder by mixing a predetermined ratio (S100); Slurry step (S200) for slurrying the raw material powder prepared in the raw material preparation step; Dry granulation step (S300) for drying and granulating the raw material powder of the slurry in the slurry step; A molding step of molding the raw material granulated in the dry granulation step into a predetermined form (S400); Degreasing step (S500) of vacuum degreasing the molded body formed in the molding step; And a sintering step (S600) for sintering the molded body subjected to the degreasing step.
  • S100 predetermined ratio
  • S200 for slurrying the raw material powder prepared in the raw material preparation step
  • Dry granulation step (S300) for drying and granulating the raw material powder of the s
  • the mixing ratio of the powder or beta silicon carbide ( ⁇ -SiC) powder and the liquid sintering aid is 79.0 wt% to 99.0 wt% of the alpha silicon carbide ( ⁇ -SiC) powder or beta silicon carbide ( ⁇ -SiC) powder, and the liquid sintering aid 1.0 It is provided as the weight%-21.0 weight%.
  • the liquid sintering aid is provided as a liquid sintering aid composed of aluminum nitride (AlN) and yttria (Y 2 O 3 ) by a predetermined ratio.
  • AlN aluminum nitride
  • Y 2 O 3 yttria
  • the mixing ratio of aluminum nitride and yttria is 0.5 to 10.0 wt% of aluminum nitride and 0.5 to 20.5 wt% of yttria.
  • the volume resistivity can be adjusted by changing its content in the composition range of the liquid sintering aid, in which the volume resistivity can be adjusted in the range of 10 ⁇ 3 to 10 +4 ⁇ ⁇ Cm, more than this. If larger, the properties of the non-conductor becomes larger, and arc generation becomes larger. If smaller, the properties of the conductor become large and the high-frequency beam is scattered.
  • the mixing ratio is not provided above, the desired resistance value cannot be obtained. If the mixing ratio is out of the upper limit, it is difficult to realize corrosion resistance, chemical resistance, strength, thermal conductivity, etc., which are inherent in silicon carbide, Outside of this, the fine microstructure cannot be obtained and the density is significantly lowered, so it cannot be used as a ceramic material.
  • 50% of the ball mill vessel volume means 50% of the space volume inside the ball mill vessel, and the total volume of the plurality of zirconium oxide balls is 50% of the ball mill vessel volume.
  • Dry granulation step (S300) for drying and granulating the raw material powder made of the slurry in the slurry step, drying equipment such as a spray dryer by drawing the raw material slurried in the ball mill of the raw material preparation step Dry and granulate with.
  • the molding step (S400) of molding the raw material powder granulated in the dry granulation step into a predetermined form is performed at a pressure of 300 to 1,500 kgf / cm 2 using a molding die (primary molding).
  • the present invention further includes a secondary forming step (S700) of performing cold isostatic pressing (CIP: Cold Isostatic Press) at a pressure of 2,000 kgf / cm 2 after the forming step (S400).
  • CIP Cold Isostatic Press
  • the execution of the hydrostatic press makes the molded body more compact by secondary molding.
  • the degreasing step (S500) of vacuum degreasing the molded body formed in the molding step includes removing the binder contained in the molded body while gradually warming up to 800 ° C. in a vacuum atmosphere.
  • the sintering step (S600) for sintering the formed body after the degreasing step is embedded in a normal pressure furnace, using a graphite work box (Graphite work box), or (N-embedding) in the nitrogen (N-embedding) state (N) 2 ) Sinter at 1,850 to 2,050 ° C for 1 to 8 hours while flowing gas or argon (Ar) gas (preferably, 3 to 5 ml / min).
  • alpha, beta SiC powder, yttria, aluminum nitride powder was mixed to prepare a composition for producing low-resistance silicon carbide ceramics.
  • the composition was put into a polypropylene ball mill, and zirconia balls were subjected to ball milling for 12 hours using 200 parts by weight of ethanol as a solvent based on 100 parts by weight of the raw material.
  • the mixture was molded, degreased, and sintered to prepare specimens, and measured density and volume resistivity.
  • sintering was carried out in nitrogen atmosphere and argon atmosphere.
  • FIGS. 2 and 3 are scanning electron micrographs of the low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention as described above
  • Figure 2 is a low-resistance silicon carbide ceramic using the atmospheric pressure sintering method according to the present invention
  • Sintered body fracture surface SEM scanning electron microscope
  • Figure 3 is a sintered body fracture surface SEM (scanning electron microscope) x 3000 photograph of the low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention.
  • Example 5 is 86.57 wt% SiC ( ⁇ ), 2.88 wt% AlN and Y 2 O 3 10.55 wt%.
  • the plasma source is ICP (Inductively Coupled Plasma)
  • the specimen size is ⁇ 30 mm x 1 mm (T)
  • the gas is CF 4 60 sccm and O 2 10 sccm
  • the pressure is 13 mTorr
  • the power (ICP / bias) is 2000 W / 300 W.
  • runtime is 12h.
  • Example 5 One 7.3 Comparative Example 1 CVD SiC 4.7 33.6 Comparative Example 2 RB SiC 4.9 33 Comparative Example 3 SSC 5.3 37.9 Comparative Example 4 Si 9.3 49.4
  • the plasma source is Capacitively Coupled Plasma (CCP)
  • the specimen size is ⁇ 30 mm ⁇ 1 mm (T)
  • the gas is CF 4 25 sccm and O 2 25 sccm
  • the pressure is 13 mTorr
  • the power is 1000 W
  • the runtime is 1 h. to be.
  • FIGS. 5 to 7 are scanning electron micrographs showing the surfaces of the specimens of the comparative examples according to the plasma etching test.
  • the measuring equipment is a laser scattering ISPM, specimen size is ⁇ 76 mm ⁇ 3 mm (circular), gas is CF 4 25sccm and O 2 25sccm, pressure is 160mTorr, RF power is 100W and temperature is 30 ⁇ 60 °C.
  • Psalter Contamination particle size 1 ⁇ m or more 0.45 to 1 ⁇ m 0.2 ⁇ 0.45 ⁇ m
  • Example 5 5 19 2059 Comparative Example 1 (CVD SiC) 6 22 22014
  • Psalter cycle Contamination particle size 1 ⁇ m or more 0.45 to 1 ⁇ m 0.2 ⁇ 0.45 ⁇ m
  • Example 5 One 2 2 1611 2 0 3 136 3 3 14 312 Comparative Example 1 (CVD SiC) One 5 3 5917 2 0 0 11202 3 One 19 4895
  • the silicon carbide ceramic material using the atmospheric pressure sintering method and the manufacturing method thereof according to the present invention it is possible to provide a ceramic material that is dense, excellent in corrosion resistance and chemical resistance to plasma, and good thermal conductivity There is an advantage.
  • the present invention can be suitably employed in the jig of the semiconductor etching equipment, low thermal expansion rate, low resistance, excellent performance that can suppress the generation of arc in the plasma atmosphere, there is little risk of damage even during long-term use, It can be manufactured at low cost, and there is an advantage that can achieve economic advantages.

Abstract

The present invention relates to a silicon carbide ceramic material using an atmospheric sintering scheme, which is dense, which has excellent corrosion resistance and chemical resistance against plasma, which has an excellent thermal conductivity and a low thermal expansion ratio such that there is little concern of fracturing even when used for a long period of time, which has a low resistance such that arc generation can be suppressed inside a plasma atmosphere of etching equipment, which can be manufactured at a low cost and thus is economical, and which can be employed for a jig of semiconductor equipment, and a method for manufacturing the same. The present invention provides a method for manufacturing a silicon carbide ceramic material using an atmospheric sintering scheme, the method comprising: a material/raw material providing step for mixing alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder and a liquid sintering agent at a predetermined ratio, thereby providing raw material powder; a slurry step for processing the raw material powder, which has been provided in the material/raw material providing step, into slurry; a drying/granulation step for drying and granulating the raw material powder, which has been processed into slurry in the slurry step; a molding step for molding the raw material powder, which has been granulated in the drying/granulating step, in a predetermined shape; a degreasing step for vacuum-degreasing the molded body, which has been molded in the molding step; and a sintering step for sintering the molded body, which has undergone the degreasing step.

Description

상압소결방식을 이용한 저저항 탄화규소 세라믹 소재 및 그의 제조 방법Low resistance silicon carbide ceramic material using atmospheric pressure sintering method and its manufacturing method
본 발명은 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 치밀하고 플라즈마에 대한 내식성과 내화학성이 우수하고, 열전도성이 좋고 열팽창률이 낮아 장기간 사용 시에도 파손의 우려가 적고, 저비용으로 제조 가능하여 경제적이며, 반도체 장비의 지그에 채용할 수 있는 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재 및 그의 제조 방법에 관한 것이다.The present invention relates to a low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method and a method of manufacturing the same. More particularly, the present invention relates to a compact, excellent corrosion resistance and chemical resistance to plasma, low thermal conductivity, and low coefficient of thermal expansion. The present invention relates to a low-resistance silicon carbide ceramic material using an atmospheric pressure sintering method which can be manufactured at low cost, is economical, and can be employed in a jig for semiconductor equipment, and a method of manufacturing the same.
탄화규소는 내산화성과 화학적 안정성이 우수하고, 기계적 강도, 경도, 내마모성 등 기계적 성질이 뛰어나며, 열전도율이 높고, 전기적으로는 반도체 성질을 나타내므로 고온구조재료, 반도체 공정장비의 부품, 히터, 가스 분진필터, 메커니컬 씰(mechanical seal) 등과 같은 내마모 부품, LED 장비의 방열판 등 폭넓은 분야에서 널리 사용되고 있고, 전기적 및 열적 특성을 제어하여 전력반도체 및 열전소자 등으로도 일부 활용되고 있다.Silicon carbide has excellent oxidation resistance and chemical stability, excellent mechanical properties such as mechanical strength, hardness, and wear resistance, high thermal conductivity, and electrically semiconductor characteristics, so it is a high temperature structural material, a part of semiconductor process equipment, heater, and gas dust. It is widely used in a wide range of fields such as wear-resistant parts such as filters, mechanical seals, heat sinks of LED equipment, and is also partially used as power semiconductors and thermoelectric elements by controlling electrical and thermal characteristics.
이와 같은 탄화규소에 있어서, 벌크 소재의 소결방법으로는 통상의 탄화규소 분말을 원료로 사용하는 고상소결 및 액상소결 방법이 알려져 있다.In such silicon carbide, solid phase sintering and liquid phase sintering methods using ordinary silicon carbide powder as a raw material are known as a sintering method of a bulk material.
이 중, 탄화규소의 고상소결 방법으로는 탄화규소 분말에 보론(B)과 카본(C)을 소결조제로 첨가하여, 세라믹스의 일반적인 혼합 및 성형공정을 거친 후, 상압소결공정에 의해 2050℃ 이상의 온도에서 소결하여 95% 이상의 소결밀도를 갖는 탄화규소 소결체를 제조한다. 이렇게 제조된 붕소와 탄소를 첨가한 탄화규소 소재는 체적비저항이 103~ 105Ωcm 정도로서 전기전도성이 너무 낮아서 복잡형상 또는 대형 부품을 제조하기 위해 방전가공을 하기가 어렵다는 단점을 갖고 있다.Among them, as a solid-phase sintering method of silicon carbide, boron (B) and carbon (C) are added to the silicon carbide powder as a sintering aid, and after general mixing and molding of ceramics, the pressure is sintered at 2050 ° C or higher. Sintering at temperature produces a silicon carbide sintered body having a sintered density of at least 95%. The silicon carbide material added with boron and carbon has a disadvantage in that volume resistivity is about 10 3 to 10 5 Ωcm, and electrical conductivity is too low, so that it is difficult to perform electric discharge machining to manufacture a complicated shape or a large part.
한편, 탄화규소의 액상소결 방법은 미국특허 제4,829,027호 및 미국특허 제5,580,510호에 제시되어 있는데, 이들 특허에 제시되어 있는 제조방법을 요약하면, 탄화규소 분말에 소결조제로 고온에서 액상을 형성하는 산화물, 산화물의 혼합물 또는 산화물과 질화알루미늄을 동시에 첨가하여, 세라믹스의 일반적인 혼합 및 성형공정을 거친 후, 상압소결 또는 가압소결 공정으로 1750℃ 이상에서 소결함으로써, 소결공정 동안에 소결조제의 용융에 기인하여 형성된 액상이 액상소결 기구로 치밀화를 촉진하여 3.0g/cm3이상의 소결밀도를 갖는 탄화규소 소결체를 제조한다. 이렇게 제조된 탄화규소 소재는 과량의 액상을 함유하므로 체적비저항이 103 ~ 107Ωcm 정도로서, 양호한 전기 도체가 아니므로 반도체 제조용 식각장비의 플라즈마 분위기 내에서 원치 않는 아크를 발생시킨다.On the other hand, the liquid phase sintering method of silicon carbide is shown in US Patent No. 4,829,027 and US Patent No. 5,580,510. In summary, the manufacturing method proposed in these patents, the liquid phase at a high temperature as a sintering aid to the silicon carbide powder Oxides, mixtures of oxides or oxides and aluminum nitrides are added at the same time to undergo general mixing and molding of ceramics, followed by sintering at 1750 ° C or higher by atmospheric sintering or pressure sintering, resulting in melting of the sintering aid during the sintering process. The liquid phase formed promotes densification with a liquid phase sintering mechanism to produce a silicon carbide sintered body having a sintered density of 3.0 g / cm 3 or more. Since the silicon carbide material thus prepared contains an excess of liquid phase, the volume resistivity is about 10 3 to 10 7 Ωcm, which is not a good electrical conductor, causing unwanted arcs in the plasma atmosphere of the etching equipment for semiconductor manufacturing.
따라서, 본 발명은 상기한 종래의 문제점을 해결하기 위하여 제안된 것으로서, 본 발명의 발명자는 거듭한 연구와 실험 결과로부터 도출한 것으로, 치밀하고 플라즈마에 대한 내식성과 내화학성이 우수하고, 열전도성이 좋고 열팽창률이 낮아 장기간 사용 시에도 파손의 우려가 적고, 저저항이므로 식각장비의 플라즈마 분위기 내에서 아크 발생을 억제할 수 있고, 저비용으로 제조 가능하여 경제적이며, 반도체 장비, 예컨대, 반도체 식각장비의 지그에 채용할 수 있는 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재 및 그의 제조 방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been proposed to solve the above-mentioned conventional problems, and the inventor of the present invention is derived from the results of repeated studies and experiments, and it is compact and has excellent corrosion resistance and chemical resistance to plasma, and high thermal conductivity. It has good thermal expansion rate, so there is little risk of breakage even in long-term use, and low resistance, it is possible to suppress the generation of arc in the plasma atmosphere of the etching equipment, and it is economical because it can be manufactured at low cost. An object of the present invention is to provide a low-resistance silicon carbide ceramic material using a pressureless sintering method that can be employed in a jig, and a method of manufacturing the same.
본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위한 본 발명의 일 관점에 따르면, 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말과 액상소결조제를 소정 비율 혼합하여 원료분말을 마련하는 소재원료 마련단계; 상기 소재원료 마련단계에서 마련된 원료분말을 슬러리화하는 슬러리 단계; 상기 슬러리 단계에서 슬러리로 된 원료분말을 건조 및 과립화하는 건조 과립화 단계; 상기 건조 과립화 단계에서 과립화된 원료분말을 소정 형태로 성형하는 성형 단계; 상기 성형 단계에서 성형된 성형체를 진공탈지하는 탈지 단계; 및 상기 탈지 단계를 거친 성형체를 소결하는 소결 단계;를 포함하는 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법이 제공된다.According to an aspect of the present invention for achieving the above object, preparing a raw material for preparing a raw material powder by mixing a predetermined ratio of alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder and liquid sintering aid step; Slurry step of slurrying the raw material powder prepared in the raw material preparation step; Dry granulation step of drying and granulating the raw material powder of the slurry in the slurry step; A molding step of molding the raw powder granulated in the dry granulation step into a predetermined form; A degreasing step of vacuum degreasing the molded body formed in the forming step; And a sintering step of sintering the molded body subjected to the degreasing step. A method of manufacturing a low resistance silicon carbide ceramic material using an atmospheric pressure sintering method is provided.
본 발명의 일 관점에 있어서, 상기 소재원료 마련단계에서, 상기 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말과 액상소결조제의 혼합 비율은 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말 79.0중량% ~ 99.0중량%, 액상소결조제 1.0중량% ~ 21.0중량%로 하여 마련되는 것이 바람직하다.In one aspect of the invention, in the raw material preparation step, the mixing ratio of the alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder and liquid sintering aid is alpha silicon carbide (α-SiC ) Powder or beta silicon carbide (β-SiC) powder is preferably 79.0% to 99.0% by weight, 1.0% to 21.0% by weight of the liquid sintering aid.
본 발명의 일 관점에 있어서, 상기 액상소결조제는 질화알루미늄(AlN)과 이트리아(Y2O3)의 혼합물로 이루어지는 것이 바람직하다.In one aspect of the invention, the liquid sintering aid is preferably made of a mixture of aluminum nitride (AlN) and yttria (Y 2 O 3 ).
본 발명의 일 관점에 있어서, 상기 질화알루미늄과 이트리아의 혼합 비율은 질화알루미늄 0.5 ~ 10.0중량%, 이트리아 0.5 ~ 20.5중량%인 것이 바람직하다.In one aspect of the invention, the mixing ratio of the aluminum nitride and yttria is preferably 0.5 to 10.0% by weight aluminum nitride, 0.5 to 20.5% by weight yttria.
본 발명의 일 관점에 있어서, 상기 슬러리 단계는 상기 소재원료 마련단계에서 마련된 소재원료 100 중량부에 대하여 200중량부의 에탄올 용매를 첨가하고, 0.5 내지 1.5 중량부의 분산제와 1 내지 3 중량부의 바인더 및 산화지르코늄볼(ZrO2 Ball)을 함께 넣어 4 ~ 24시간 볼밀링하는 것을 포함하는 것이 바람직하다.In one aspect of the invention, the slurry step is added to 200 parts by weight of ethanol solvent with respect to 100 parts by weight of the raw material prepared in the raw material preparation step, 0.5 to 1.5 parts by weight of dispersant and 1 to 3 parts by weight of binder and oxidation It is preferable to include zirconium ball (ZrO 2 Ball) to put together ball milling for 4 to 24 hours.
본 발명의 일 관점에 있어서, 상기 건조 과립화 단계는 상기 소재원료 마련단계의 볼밀에서 슬러리화된 소재원료를 인출하여 스프레이 드라이어(Spray Dryer) 장비를 이용하여 건조 및 과립화시키는 것을 포함하고, 상기 성형 단계는 성형 금형을 이용하여 300 ~ 1,500kgf/cm2 압력으로 성형하는 것을 포함하는 것이 바람직하다.In one aspect of the invention, the dry granulation step includes withdrawing the raw material slurried in the ball mill of the raw material preparation step to dry and granulate using a spray dryer (Spray Dryer) equipment, the molding The step preferably includes molding at a pressure of 300 to 1,500 kgf / cm 2 using a molding die.
본 발명의 일 관점에 있어서, 상기 성형 단계 이후, 2,000kgf/cm2압력으로 냉간등방가압성형(CIP: Cold Isostatic Press)를 실행하는 2차 성형 단계를 더 포함하는 것이 바람직하다.In one aspect of the invention, after the molding step, it is preferable to further include a secondary molding step of performing cold isostatic pressing (CIP: Cold Isostatic Press) at a pressure of 2,000kgf / cm 2 .
본 발명의 일 관점에 있어서, 상기 탈지 단계는 진공분위기로 800℃까지 승온시켜 성형체에 포함된 바인더를 제거해 주는 것을 포함하고, 상기 소결 단계는 탈지 단계를 거친 성형체를 상압소결로에서 그래파이트 워크박스(Graphite work box)를 사용하여 질소(N2) 가스 또는 아르곤(Ar) 가스를 흘려보내면서 1,850 ~ 2,050℃ 온도에서 1~8시간 소결하는 것을 포함하는 것이 바람직하다.In one aspect of the present invention, the degreasing step includes the step of heating up to 800 ℃ in a vacuum atmosphere to remove the binder contained in the molded body, the sintering step is a graphite work box in the atmospheric pressure sintering furnace It is preferable to include sintering at a temperature of 1,850 to 2,050 ° C for 1 to 8 hours while flowing nitrogen (N 2 ) gas or argon (Ar) gas using a graphite work box.
본 발명의 다른 관점에 따르면, 전술한 일 관점에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법에 의해 제조된 1.7×10-2 ~ 6.5×102Ω·Cm의 체적비저항값을 갖는 탄화규소 세라믹 소재가 제공된다.According to another aspect of the invention, the volume resistivity value of 1.7 × 10 -2 ~ 6.5 × 10 2 Ω · Cm manufactured by the method of manufacturing a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the above aspect A silicon carbide ceramic material having is provided.
본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재 및 그의 제조 방법에 따르면, 치밀하고 플라즈마에 대한 내식성과 내화학성이 우수하고, 열전도성이 좋은 세라믹 소재를 제공할 수 있는 효과가 있다.According to the low-resistance silicon carbide ceramic material and its manufacturing method using the atmospheric pressure sintering method according to the present invention, there is an effect that can provide a ceramic material that is dense, excellent in corrosion resistance and chemical resistance to plasma, and good thermal conductivity.
또한, 본 발명은 반도체 식각장비의 지그에 적합하게 채용될 수 있고 열팽창율이 낮아 장기간 사용 시에도 파손의 우려가 적고, 저비용으로 제조 가능하여 경제적인 장점을 도모할 수 있는 효과가 있다.In addition, the present invention can be suitably employed in the jig of the semiconductor etching equipment, and the thermal expansion rate is low, there is little risk of damage even in the long-term use, it is possible to manufacture at a low cost there is an effect that can be economical advantages.
또한, 본 발명의 저저항 탄화규소 세라믹 소재는 저저항이므로 식각장비의 플라즈마 분위기 내에서 아크 발생을 억제할 수 있어 장기간 사용에 적합한 효과가 있다.In addition, since the low-resistance silicon carbide ceramic material of the present invention is low-resistance, it is possible to suppress the generation of arc in the plasma atmosphere of the etching equipment, which is suitable for long-term use.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법을 도시한 플로우 차트,1 is a flow chart showing a method of manufacturing a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention;
도 2는 본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 소결체 파단면 SEM(주사전자현미경) ×300 사진,2 is a SEM (scanning electron microscope) × 300 photograph of a sintered body fracture surface of a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention;
도 3은 본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 소결체 파단면 SEM(주사전자현미경) ×3000 사진,3 is a SEM (scanning electron microscope) × 3000 photograph of the sintered body fracture surface of the low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention;
도 4는 플라즈마 식각 테스트에 따른 실시예5의 시편의 표면을 나타내는 주사전자현미경 사진, 및4 is a scanning electron micrograph showing the surface of the specimen of Example 5 according to the plasma etching test, and
도 5 내지 도 7은 플라즈마 식각 테스트에 따른 비교예들의 시편들의 표면을 나타내는 주사전자현미경 사진이다. 5 to 7 are scanning electron micrographs showing the surfaces of the specimens of the comparative examples according to the plasma etching test.
본 발명의 추가적인 목적들, 특징들 및 장점들은 다음의 상세한 설명 및 첨부도면으로부터 보다 명료하게 이해될 수 있다. Further objects, features and advantages of the present invention can be more clearly understood from the following detailed description and the accompanying drawings.
본 발명의 상세한 설명에 앞서, 본 발명은 다양한 변경을 도모할 수 있고, 여러 가지 실시 예를 가질 수 있는바, 아래에서 설명되고 도면에 도시된 예시들은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Prior to the detailed description of the present invention, the present invention may be variously modified and may have various embodiments, and the examples described below and illustrated in the drawings are intended to limit the present invention to specific embodiments. It is to be understood that the present invention includes all modifications, equivalents, and substitutes included in the spirit and technical scope of the present invention.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the description with reference to the accompanying drawings, the same components regardless of reference numerals will be given the same reference numerals and duplicate description thereof will be omitted. In the following description of the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
이하 본 발명의 바람직한 실시 예에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재 및 그의 제조 방법에 대하여 첨부 도면을 참조하여 상세히 설명한다.Hereinafter, a low-resistance silicon carbide ceramic material and a manufacturing method thereof using the atmospheric sintering method according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명의 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법에 대하여 도 1을 참조하여 설명한다. 도 1은 본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법을 도시한 플로차트이다.First, a method of manufacturing a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method of the present invention will be described with reference to FIG. 1. 1 is a flowchart illustrating a method of manufacturing a low resistance silicon carbide ceramic material using an atmospheric pressure sintering method according to the present invention.
본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법은, 도 1에 도시된 바와 같이, 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말과 액상소결조제를 소정 비율 혼합하여 원료분말을 마련하는 소재원료 마련단계(S100); 상기 소재원료 마련단계에서 마련된 원료분말을 슬러리화하는 슬러리 단계(S200); 상기 슬러리 단계에서 슬러리로 된 원료분말을 건조 및 과립화하는 건조 과립화 단계(S300); 상기 건조 과립화 단계에서 과립화된 원료분말을 소정 형태로 성형하는 성형 단계(S400); 상기 성형 단계에서 성형된 성형체를 진공탈지하는 탈지 단계(S500); 및 상기 탈지 단계를 거친 성형체를 소결하는 소결 단계(S600)를 포함한다.The method of manufacturing a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention, as shown in Figure 1, alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder and liquid phase sintering Raw material preparation step of preparing a raw material powder by mixing a predetermined ratio (S100); Slurry step (S200) for slurrying the raw material powder prepared in the raw material preparation step; Dry granulation step (S300) for drying and granulating the raw material powder of the slurry in the slurry step; A molding step of molding the raw material granulated in the dry granulation step into a predetermined form (S400); Degreasing step (S500) of vacuum degreasing the molded body formed in the molding step; And a sintering step (S600) for sintering the molded body subjected to the degreasing step.
상기 각 단계별 과정을 구체적으로 설명하면 다음과 같다.A detailed description of each step is as follows.
알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말과 액상소결조제를 소정 비율 혼합하여 원료분말을 마련하는 소재원료 마련단계(S100)에서, 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말과 액상소결조제의 혼합 비율은 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말 79.0중량% ~ 99.0중량%, 액상소결조제 1.0중량% ~ 21.0중량%로 하여 마련된다.Alpha silicon carbide (α-SiC) in a raw material preparation step (S100) of preparing a raw material powder by mixing a predetermined ratio of alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder and a liquid sintering aid. The mixing ratio of the powder or beta silicon carbide (β-SiC) powder and the liquid sintering aid is 79.0 wt% to 99.0 wt% of the alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder, and the liquid sintering aid 1.0 It is provided as the weight%-21.0 weight%.
여기에서, 상기 액상소결조제로는 질화알루미늄(AlN)과 이트리아(Y2O3)를 소정 비율 혼합하여 구성되는 액상소결조제로 마련된다. 이때, 질화알루미늄과 이트리아의 혼합 비율은 질화알루미늄 0.5 ~ 10.0중량%, 이트리아 0.5 ~ 20.5중량%로 혼합하는 것이 바람직하다. Here, the liquid sintering aid is provided as a liquid sintering aid composed of aluminum nitride (AlN) and yttria (Y 2 O 3 ) by a predetermined ratio. At this time, it is preferable that the mixing ratio of aluminum nitride and yttria is 0.5 to 10.0 wt% of aluminum nitride and 0.5 to 20.5 wt% of yttria.
여기에서, 액상소결조제의 조성 범위에 있어 그 함량을 변화시킴으로써 체적비저항값을 조절할 수 있는데, 이 조성 범위에서는 체적비저항값을 10-3~10+4Ω·Cm 범위로 조절 가능하며, 이보다 더 크면 부도체의 성질이 커져 아크 발생이 커지고, 이보다 작으면 도체의 성질이 커져 고주파 빔이 산란되는 등의 문제점이 있다.Here, the volume resistivity can be adjusted by changing its content in the composition range of the liquid sintering aid, in which the volume resistivity can be adjusted in the range of 10 −3 to 10 +4 Ω · Cm, more than this. If larger, the properties of the non-conductor becomes larger, and arc generation becomes larger. If smaller, the properties of the conductor become large and the high-frequency beam is scattered.
상세하게는, 상기 제시된 혼합비를 벗어나면, 원하는 저항값을 얻을 수 없는바, 상한 혼합비를 벗어나면 탄화규소 소재 고유의 특성인 내식성, 내화학성, 강도, 열전도성 등을 구현하기가 어렵고, 하한 혼합비를 벗어나면 치밀한 미세구조를 얻을 수 없고 밀도가 현저히 낮아져서 세라믹 소재로 사용할 수 없다.Specifically, if the mixing ratio is not provided above, the desired resistance value cannot be obtained. If the mixing ratio is out of the upper limit, it is difficult to realize corrosion resistance, chemical resistance, strength, thermal conductivity, etc., which are inherent in silicon carbide, Outside of this, the fine microstructure cannot be obtained and the density is significantly lowered, so it cannot be used as a ceramic material.
상기 소재원료 마련단계에서 마련된 원료분말을 슬러리화하는 슬러리 단계(S200)는, 상기 소재원료 마련단계에서 마련된 소재원료 100 중량부에 대하여 200중량부의 에탄올 용매를 첨가하고, 0.5 ~ 1.5 중량부의 분산제와 1 ~ 3중량부의 바인더 및 볼밀 용기 부피의 약 50%의 산화지르코늄볼(ZrO2 Ball)을 함께 넣어 소정 시간, 바람직하게는 4 ~ 24시간 볼밀링을 수행하는 것을 포함한다. 여기서 볼밀 용기 부피의 50%는 볼밀 용기 내부 공간 부피의 50%를 의미하며, 복수의 산화지르코늄볼의 총 부피가 볼밀 용기 부피의 50%인 것이다. Slurry step (S200) for slurrying the raw material powder prepared in the raw material preparation step, adding 200 parts by weight of ethanol solvent with respect to 100 parts by weight of the raw material prepared in the raw material preparation step, 0.5 to 1.5 parts by weight of a dispersant and 1 to 3 parts by weight of the binder and about 50% of the volume of the ball mill container zirconium oxide (ZrO 2 Ball) is put together to perform a ball milling for a predetermined time, preferably 4 to 24 hours. Here, 50% of the ball mill vessel volume means 50% of the space volume inside the ball mill vessel, and the total volume of the plurality of zirconium oxide balls is 50% of the ball mill vessel volume.
상기 슬러리 단계에서 슬러리로 된 원료분말을 건조 및 과립화하는 건조 과립화 단계(S300)는, 상기 소재원료 마련단계의 볼밀에서 슬러리화된 소재원료를 인출하여 스프레이 드라이어(Spray Dryer)와 같은 건조 장비를 이용하여 건조 및 과립화시킨다.Dry granulation step (S300) for drying and granulating the raw material powder made of the slurry in the slurry step, drying equipment such as a spray dryer by drawing the raw material slurried in the ball mill of the raw material preparation step Dry and granulate with.
계속해서, 상기 건조 과립화 단계에서 과립화된 원료분말을 소정 형태로 성형하는 성형 단계(S400)는, 성형 금형을 이용하여 300 ~ 1,500kgf/cm2 압력으로 성형을 한다(1차 성형).Subsequently, the molding step (S400) of molding the raw material powder granulated in the dry granulation step into a predetermined form is performed at a pressure of 300 to 1,500 kgf / cm 2 using a molding die (primary molding).
여기에서, 본 발명은 상기 성형 단계(S400) 이후 2,000kgf/cm2 압력으로 냉간등방가압성형(CIP: Cold Isostatic Press)를 실행하는 2차 성형 단계(S700)를 더 포함한다. 이러한 정수압프레스의 실행(2차 성형)은 2차 성형으로 성형체를 보다 더 치밀하게 만들어 주게 된다.Here, the present invention further includes a secondary forming step (S700) of performing cold isostatic pressing (CIP: Cold Isostatic Press) at a pressure of 2,000 kgf / cm 2 after the forming step (S400). The execution of the hydrostatic press (secondary molding) makes the molded body more compact by secondary molding.
다음으로, 상기 성형 단계에서 성형된 성형체를 진공탈지하는 탈지 단계(S500)는 진공분위기로 800℃까지 서서히 승온 하면서 성형체에 포함된 바인더를 제거해 주는 것을 포함한다.Next, the degreasing step (S500) of vacuum degreasing the molded body formed in the molding step includes removing the binder contained in the molded body while gradually warming up to 800 ° C. in a vacuum atmosphere.
상기 탈지 단계를 거친 성형체를 소결하는 소결 단계(S600)는, 상압소결로에서 그래파이트 워크박스(Graphite work box)를 사용하여 임베딩(embedding), 또는 노-임베딩(No-embedding) 상태에서 질소(N2) 가스 또는 아르곤(Ar) 가스를 흘려보내면서(바람직하게, 3~5ml/min) 1,850 ~ 2,050℃ 온도에서 1 ~ 8시간 소결한다.The sintering step (S600) for sintering the formed body after the degreasing step is embedded in a normal pressure furnace, using a graphite work box (Graphite work box), or (N-embedding) in the nitrogen (N-embedding) state (N) 2 ) Sinter at 1,850 to 2,050 ° C for 1 to 8 hours while flowing gas or argon (Ar) gas (preferably, 3 to 5 ml / min).
상기 소결온도 이하에서는 소결이 진행되지 않아 원하는 밀도의 구현이 어렵기 때문에 탄화규소 소재의 특성을 구현할 수 없고, 상기 소결온도 이상에서는 과소결로 인하여 탄화규소 소재의 특성을 구현할 수 없다.Since the sintering does not proceed below the sintering temperature, it is difficult to implement the desired density, and thus, the characteristics of the silicon carbide material cannot be realized, and the characteristics of the silicon carbide material cannot be realized due to oversintering above the sintering temperature.
실시예Example
본 발명의 실시예에 따르면, 알파, 베타 SiC 분말과, 이트리아, 알루미늄 나이트라이드 분말을 혼합하여 저저항 탄화규소 세라믹스 제조용 조성물을 준비하였다. 상기 조성물을 폴리프로필렌 볼밀에 지르코니아 볼을 넣고 소재 원료 100중량부에 대하여 200중량부의 에탄올을 용매로 하여 12시간 볼 밀링을 실시하였다.According to an embodiment of the present invention, alpha, beta SiC powder, yttria, aluminum nitride powder was mixed to prepare a composition for producing low-resistance silicon carbide ceramics. The composition was put into a polypropylene ball mill, and zirconia balls were subjected to ball milling for 12 hours using 200 parts by weight of ethanol as a solvent based on 100 parts by weight of the raw material.
NoNo SiC(α) wt%SiC (α) wt% SiC(β) wt%SiC (β) wt% AlN wt%AlN wt% Y2O3 wt%Y 2 O 3 wt%
1One 89.2689.26 -- 2.32.3 8.448.44
22 86.5786.57 -- 2.882.88 10.5510.55
33 83.8883.88 -- 3.463.46 12.6612.66
44 -- 89.2689.26 2.32.3 8.448.44
55 -- 86.5786.57 2.882.88 10.5510.55
66 -- 83.8883.88 3.463.46 12.6612.66
상기 혼합물을 성형, 탈지, 소결 공정을 거쳐 시편을 제조하여 밀도와 체적비저항을 측정하였다. 특히 소결은 질소 분위기와 아르곤 분위기 두 가지로 진행하였다.The mixture was molded, degreased, and sintered to prepare specimens, and measured density and volume resistivity. In particular, sintering was carried out in nitrogen atmosphere and argon atmosphere.
NoNo 밀도(g/cm3)Density (g / cm 3 ) 체적비저항(Ωcm)Volume resistivity (Ωcm)
N2 N 2 1One 3.06483.0648 2.2X102 2.2 X 10 2
22 3.18443.1844 6.1X102 6.1X10 2
33 3.18903.1890 6.5X102 6.5X10 2
44 3.01563.0156 1.0X10-1 1.0X10 -1
55 3.23243.2324 9.6X10-2 9.6X10 -2
66 3.27813.2781 1.7X10-2 1.7X10 -2
ArAr 1One 3.15123.1512 1.5X102 1.5X10 2
22 3.23143.2314 3.3X102 3.3 X 10 2
33 3.27233.2723 2.3X101 2.3 X 10 1
44 3.16433.1643 1.0X101 1.0X10 1
55 3.25843.2584 8.88.8
66 3.28513.2851 5.85.8
표 2의 결과에 따르면, 액상량과 가스 분위기에 따라 1.7×10-2 ~ 6.5×102Ω·Cm의 체적비저항값을 갖는 플라즈마 내식성이 우수한 저저항 탄화규소 소재를 제조할 수 있음을 알 수 있다. According to the results of Table 2, it can be seen that a low-resistance silicon carbide material having excellent plasma corrosion resistance having a volume resistivity value of 1.7 × 10 −2 to 6.5 × 10 2 Ω · Cm may be produced depending on the amount of liquid and the gas atmosphere. have.
도 2 및 도 3은 상기에서 설명한 바와 같은 본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재를 주사전자현미경 사진으로서, 도 2는 본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 소결체 파단면 SEM(주사전자현미경) ×300 사진이고, 도 3은 본 발명에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 소결체 파단면 SEM(주사전자현미경) ×3000 사진이다.2 and 3 are scanning electron micrographs of the low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention as described above, Figure 2 is a low-resistance silicon carbide ceramic using the atmospheric pressure sintering method according to the present invention Sintered body fracture surface SEM (scanning electron microscope) x 300 photograph of the material, Figure 3 is a sintered body fracture surface SEM (scanning electron microscope) x 3000 photograph of the low-resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to the present invention.
또한, 실시예5의 시편과 다른 소재들의 플라즈마 식각 테스트에 따른 결과는 표 3 및 표 4와 같으며, 실시예5의 조성물은 SiC(β) 86.57 wt%, AlN 2.88 wt% 및 Y2O3 10.55 wt%이다.In addition, the results of the plasma etching test of the specimen of Example 5 and other materials are shown in Table 3 and Table 4, the composition of Example 5 is 86.57 wt% SiC (β), 2.88 wt% AlN and Y 2 O 3 10.55 wt%.
표 3에서 플라즈마 소스는 ICP(Inductively Coupled Plasma)이고, 시편 사이즈는 Ø30㎜×1㎜(T), 가스는 CF4 60sccm 및 O2 10sccm, 압력은 13mTorr, 파워(ICP/bias)는 2000W/300W 및 런타임은 12h이다. In Table 3, the plasma source is ICP (Inductively Coupled Plasma), the specimen size is Ø30 mm x 1 mm (T), the gas is CF 4 60 sccm and O 2 10 sccm, the pressure is 13 mTorr, and the power (ICP / bias) is 2000 W / 300 W. And runtime is 12h.
시편Psalter 시편 대비 식각량(배수)Etch Amount Compared to Specimen 단위 시간당 식각량(㎍/h)Etch amount per unit time (㎍ / h)
실시예5Example 5 실시예5Example 5 1One 7.37.3
비교예1Comparative Example 1 CVD SiCCVD SiC 4.74.7 33.633.6
비교예2Comparative Example 2 RB SiCRB SiC 4.94.9 3333
비교예3Comparative Example 3 SSCSSC 5.35.3 37.937.9
비교예4Comparative Example 4 SiSi 9.39.3 49.449.4
표 4에서 플라즈마 소스는 CCP(Capacitively Coupled Plasma)이고, 시편 사이즈는 Ø30㎜×1㎜(T), 가스는 CF4 25sccm 및 O2 25sccm, 압력은 13mTorr, 파워(bias)는 1000W 및 런타임은 1h이다. In Table 4, the plasma source is Capacitively Coupled Plasma (CCP), the specimen size is Ø30 mm × 1 mm (T), the gas is CF 4 25 sccm and O 2 25 sccm, the pressure is 13 mTorr, the power is 1000 W, and the runtime is 1 h. to be.
시편Psalter 시편 대비 식각량(배수)Etch Amount Compared to Specimen 단위 시간당 식각량(㎍/h)Etch amount per unit time (㎍ / h)
실시예5Example 5 실시예5Example 5 1One 8.38.3
비교예1Comparative Example 1 CVD SiCCVD SiC 0.930.93 7.87.8
비교예4Comparative Example 4 SiSi 2.072.07 12.612.6
도 4는 플라즈마 식각 테스트에 따른 실시예5의 시편의 표면을 나타내는 주사전자현미경 사진이고, 도 5 내지 도 7은 플라즈마 식각 테스트에 따른 비교예들의 시편들의 표면을 나타내는 주사전자현미경 사진이다. 4 is a scanning electron micrograph showing the surface of the specimen of Example 5 according to the plasma etching test, and FIGS. 5 to 7 are scanning electron micrographs showing the surfaces of the specimens of the comparative examples according to the plasma etching test.
또한, 실시예5의 시편의 오염 입자 발생 테스트에 따른 결과는 표 5 및 표 6과 같으며, 플라즈마 공정 3 사이클을 실시하였고, 1 사이클은 한 시간, 사이클 사이의 휴식 시간은 15분이다.In addition, the results according to the test for the generation of contaminated particles of the specimen of Example 5 are shown in Table 5 and Table 6, three cycles plasma processing was performed, one cycle is one hour, the rest time between cycles is 15 minutes.
측정 장비는 레이저 산란 방식 ISPM이고, 시편 사이즈는 Ø76㎜×3㎜(원형), 가스는 CF4 25sccm 및 O2 25sccm, 압력은 160mTorr, RF 파워는 100W 및 온도는 30 ~ 60℃이다.The measuring equipment is a laser scattering ISPM, specimen size is Ø76 mm × 3 mm (circular), gas is CF 4 25sccm and O 2 25sccm, pressure is 160mTorr, RF power is 100W and temperature is 30 ~ 60 ℃.
시편Psalter 오염 입자 크기Contamination particle size
1 ㎛ 이상1 ㎛ or more 0.45 ~ 1 ㎛0.45 to 1 μm 0.2 ~ 0.45㎛0.2 ~ 0.45㎛
실시예5Example 5 55 1919 20592059
비교예1(CVD SiC)Comparative Example 1 (CVD SiC) 66 2222 2201422014
(단위: 개수)(Unit: number)
시편Psalter 사이클cycle 오염 입자 크기Contamination particle size
1 ㎛ 이상1 ㎛ or more 0.45 ~ 1 ㎛0.45 to 1 μm 0.2 ~ 0.45㎛0.2 ~ 0.45㎛
실시예5Example 5 1One 22 22 16111611
22 00 33 136136
33 33 1414 312312
비교예1(CVD SiC)Comparative Example 1 (CVD SiC) 1One 55 33 59175917
22 00 00 1120211202
33 1One 1919 48954895
(단위: 개수)(Unit: number)
이로부터 알 수 있듯이, 본 발명에 따른 상압소결방식을 이용한 탄화규소 세라믹 소재 및 그의 제조 방법에 따르면, 치밀하고 플라즈마에 대한 내식성과 내화학성이 우수하고, 열전도성이 좋은 세라믹 소재를 제공할 수 있는 이점이 있다.As can be seen from the above, according to the silicon carbide ceramic material using the atmospheric pressure sintering method and the manufacturing method thereof according to the present invention, it is possible to provide a ceramic material that is dense, excellent in corrosion resistance and chemical resistance to plasma, and good thermal conductivity There is an advantage.
또한, 본 발명은 반도체 식각 장비의 지그에 적합하게 채용될 수 있고 열팽창율이 낮고, 저저항이므로 플라즈마 분위기 내에서 아크 발생을 억제할 수 있는 성능이 우수하여 장기간 사용 시에도 파손의 우려가 적고, 저비용으로 제조 가능하여 경제적인 장점을 도모할 수 있는 이점이 있다. In addition, the present invention can be suitably employed in the jig of the semiconductor etching equipment, low thermal expansion rate, low resistance, excellent performance that can suppress the generation of arc in the plasma atmosphere, there is little risk of damage even during long-term use, It can be manufactured at low cost, and there is an advantage that can achieve economic advantages.
본 명세서에서 설명되는 실시 예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시 예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments and the accompanying drawings described herein are merely illustrative of some of the technical ideas included in the present invention. Therefore, since the embodiments disclosed herein are not intended to limit the technical spirit of the present invention, but to explain, it is obvious that the scope of the technical spirit of the present invention is not limited by these embodiments. Modifications and specific embodiments that can be easily inferred by those skilled in the art within the scope of the technical idea included in the specification and drawings of the present invention should be construed as being included in the scope of the present invention.

Claims (10)

  1. 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말과 액상소결조제를 소정 비율 혼합하여 원료분말을 마련하는 소재원료 마련단계;A raw material preparation step of preparing a raw material powder by mixing a predetermined ratio of alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder and a liquid sintering aid;
    상기 소재원료 마련단계에서 마련된 원료분말을 슬러리화하는 슬러리 단계;Slurry step of slurrying the raw material powder prepared in the raw material preparation step;
    상기 슬러리 단계에서 슬러리로 된 원료분말을 건조 및 과립화하는 건조 과립화 단계;Dry granulation step of drying and granulating the raw material powder of the slurry in the slurry step;
    상기 건조 과립화 단계에서 과립화된 원료분말을 소정 형태로 성형하는 성형 단계;A molding step of molding the raw powder granulated in the dry granulation step into a predetermined form;
    상기 성형 단계에서 성형된 성형체를 진공탈지하는 탈지 단계; 및A degreasing step of vacuum degreasing the molded body formed in the forming step; And
    상기 탈지 단계를 거친 성형체를 소결하는 소결 단계Sintering step of sintering the molded body after the degreasing step
    를 포함하는 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for producing a low resistance silicon carbide ceramic material using an atmospheric pressure sintering method comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 소재원료 마련단계에서, 상기 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말과 액상소결조제의 혼합 비율은 알파 탄화규소(α-SiC) 분말 또는 베타 탄화규소(β-SiC) 분말 79.0중량% ~ 99.0중량%, 액상소결조제 1.0중량% ~ 21.0중량%로 하여 마련되는In the raw material preparation step, the mixing ratio of the alpha silicon carbide (α-SiC) powder or beta silicon carbide (β-SiC) powder and the liquid sintering aid is alpha silicon carbide (α-SiC) powder or beta silicon carbide (β -SiC) 79.0% by weight to 99.0% by weight of powder, 1.0% by weight to 21.0% by weight of liquid sintering aid
    상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for manufacturing low resistance silicon carbide ceramic material using atmospheric pressure sintering method.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 액상소결조제는 질화알루미늄(AlN)과 이트리아(Y2O3)의 혼합물로 이루어지는The liquid sintering aid consists of a mixture of aluminum nitride (AlN) and yttria (Y 2 O 3 )
    상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for manufacturing low resistance silicon carbide ceramic material using atmospheric pressure sintering method.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 질화알루미늄과 이트리아의 혼합 비율은 질화알루미늄 0.5 ~ 10.0중량%, 이트리아 0.5 ~ 20.5중량%인The mixing ratio of the aluminum nitride and yttria is 0.5 to 10.0 wt% of aluminum nitride and 0.5 to 20.5 wt% of yttria
    상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for manufacturing low resistance silicon carbide ceramic material using atmospheric pressure sintering method.
  5. 청구항 1에 있어서, 상기 슬러리 단계는,The method of claim 1, wherein the slurry step,
    상기 소재원료 마련단계에서 마련된 소재원료 100 중량부에 대하여 200중량부의 에탄올 용매를 첨가하고, 0.5 내지 1.5 중량부의 분산제와 1 내지 3 중량부의 바인더 및 산화지르코늄볼(ZrO2 Ball)을 함께 넣어 4 ~ 24시간 볼밀링하는 것200 parts by weight of an ethanol solvent is added to 100 parts by weight of the raw material prepared in the raw material preparation step, and 0.5 to 1.5 parts by weight of a dispersant and 1 to 3 parts by weight of a binder and zirconium oxide (ZrO 2 Ball) are put together. Ball milling 24 hours
    을 포함하는 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for producing a low resistance silicon carbide ceramic material using an atmospheric pressure sintering method comprising a.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 건조 과립화 단계는 상기 소재원료 마련단계의 볼밀에서 슬러리화된 소재원료를 인출하여 스프레이 드라이어(Spray Dryer) 장비를 이용하여 건조 및 과립화시키는 것을 포함하고,The dry granulation step includes withdrawing the raw material slurried in the ball mill of the raw material preparation step to dry and granulate using a spray dryer equipment,
    상기 성형 단계는 성형 금형을 이용하여 300 ~ 1,500kgf/cm2 압력으로 성형하는 것을 포함하는The molding step includes molding at a pressure of 300 ~ 1,500kgf / cm 2 using a molding mold
    상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for manufacturing low resistance silicon carbide ceramic material using atmospheric pressure sintering method.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 성형 단계 이후, 2,000kgf/cm2압력으로 냉간등방가압성형(CIP: Cold Isostatic Press)를 실행하는 2차 성형 단계를 더 포함하는After the molding step, further comprises a secondary molding step for performing cold isostatic pressing (CIP: Cold Isostatic Press) at a pressure of 2,000kgf / cm 2
    상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for manufacturing low resistance silicon carbide ceramic material using atmospheric pressure sintering method.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 탈지 단계는 진공분위기로 800℃까지 승온시켜 성형체에 포함된 바인더를 제거해 주는 것을 포함하고,The degreasing step includes heating to 800 ° C. in a vacuum atmosphere to remove the binder contained in the molded article.
    상기 소결 단계는 탈지 단계를 거친 성형체를 상압소결로에서 그래파이트 워크박스(Graphite work box)를 사용하여 질소(N2) 가스 또는 아르곤(Ar) 가스를 흘려보내면서 1,850 ~ 2,050℃ 온도에서 1~8시간 소결하는 것을 포함하는The sintering step is a 1 ~ 8 at a temperature of 1,850 ~ 2,050 ℃ while flowing the nitrogen (N 2 ) gas or argon (Ar) gas using a graphite work box (Graphite work box) in the degassing step Involving sintering time
    상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.Method for manufacturing low resistance silicon carbide ceramic material using atmospheric pressure sintering method.
  9. 청구항 1 내지 청구항 8 중 어느 한 항의 상기 저저항 탄화규소 세라믹 소재는 1.7×10-2 ~ 6.5×102Ω·Cm의 체적비저항값을 갖는 것을 특징으로 하는 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법.The low-resistance silicon carbide ceramic material according to any one of claims 1 to 8 has a volume resistivity value of 1.7 × 10 −2 to 6.5 × 10 2 Pa · Cm. Method of manufacturing the material.
  10. 청구항 1 내지 청구항 8 중 어느 한 항에 따른 상압소결방식을 이용한 저저항 탄화규소 세라믹 소재의 제조 방법에 의해 제조된 1.7×10-2 ~ 6.5×102Ω·Cm의 체적비저항값을 갖는 저저항 탄화규소 세라믹 소재.A low resistance having a volume resistivity of 1.7 × 10 −2 to 6.5 × 10 2 Ω · Cm manufactured by the method of manufacturing a low resistance silicon carbide ceramic material using the atmospheric pressure sintering method according to any one of claims 1 to 8. Silicon carbide ceramic material.
PCT/KR2016/004921 2015-05-18 2016-05-11 Low-resistance silicon carbide ceramic material using atmospheric sintering scheme and method for manufacturing same WO2016186365A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150068624 2015-05-18
KR10-2015-0068624 2015-05-18
KR10-2016-0010495 2016-01-28
KR1020160010495A KR101652336B1 (en) 2015-05-18 2016-01-28 LOW RESISTIVITY SiC CERAMICS MATERIALS USING PRESSURELESS SINTERING AND MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
WO2016186365A1 true WO2016186365A1 (en) 2016-11-24

Family

ID=56942676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004921 WO2016186365A1 (en) 2015-05-18 2016-05-11 Low-resistance silicon carbide ceramic material using atmospheric sintering scheme and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101652336B1 (en)
WO (1) WO2016186365A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778014A (en) * 2021-01-12 2021-05-11 罗焕焕 High-performance silicon carbide ceramic material and preparation method thereof
CN114702317A (en) * 2022-03-24 2022-07-05 湖南太子新材料科技有限公司 Low-temperature sintering method of high-performance silicon carbide ceramic material
CN117088694A (en) * 2023-08-11 2023-11-21 昊石新材料科技南通有限公司 Low-temperature sintering method of high-performance silicon carbide ceramic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608158A (en) * 2020-12-31 2021-04-06 兆山科技(北京)有限公司 Low-temperature sintering method of high-performance silicon carbide ceramic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227233A (en) * 1996-02-16 1997-09-02 Nippon Cement Co Ltd Production of silicon carbide sintered compact
KR20040056561A (en) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 A method for preparing dense silicon carbide ceramics
KR100917038B1 (en) * 2008-04-17 2009-09-10 한국과학기술연구원 Ceramic compositions for sintered silicon carbide body, sintered body and its preparing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829027A (en) 1987-01-12 1989-05-09 Ceramatec, Inc. Liquid phase sintering of silicon carbide
US5580510A (en) 1992-03-06 1996-12-03 The Regents Of The University Of Michigan Method for improving the toughness of silicon carbide-based ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227233A (en) * 1996-02-16 1997-09-02 Nippon Cement Co Ltd Production of silicon carbide sintered compact
KR20040056561A (en) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 A method for preparing dense silicon carbide ceramics
KR100917038B1 (en) * 2008-04-17 2009-09-10 한국과학기술연구원 Ceramic compositions for sintered silicon carbide body, sintered body and its preparing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIM, KWANG - YOUNG ET AL.: "Effect of In Situ-Synthesized Nano-Size SiC Addition on Density and Electrical Resistivity of Liquid-Phase Sintered Silicon Carbide Ceramics", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 119, no. 1396, 2011, pages 965 - 967, XP055332590 *
RIXECKER, G. ET AL.: "High-Temperature Effects in the Fracture Mechanical Behaviour of Silicon Carbide Liquid-Phase Sintered with A1 N-Y 203 Additives", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 21, no. 8, 2001, pages 1013 - 1019, XP027368806 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778014A (en) * 2021-01-12 2021-05-11 罗焕焕 High-performance silicon carbide ceramic material and preparation method thereof
CN112778014B (en) * 2021-01-12 2023-06-13 东莞市康柏工业陶瓷有限公司 High-performance silicon carbide ceramic material and preparation method thereof
CN114702317A (en) * 2022-03-24 2022-07-05 湖南太子新材料科技有限公司 Low-temperature sintering method of high-performance silicon carbide ceramic material
CN117088694A (en) * 2023-08-11 2023-11-21 昊石新材料科技南通有限公司 Low-temperature sintering method of high-performance silicon carbide ceramic material

Also Published As

Publication number Publication date
KR101652336B1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2016186365A1 (en) Low-resistance silicon carbide ceramic material using atmospheric sintering scheme and method for manufacturing same
TWI540635B (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for making the same
JP5363132B2 (en) Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material
KR101794410B1 (en) Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
JP2009263187A (en) Yttria sintered compact and member for plasma processing device
KR101710203B1 (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
JP2023532002A (en) Ceramic sintered body containing magnesium aluminate spinel
KR101633035B1 (en) Yttria Based Conductive Plasma-resistant Member And Methods Thereof
JP4245125B2 (en) Aluminum nitride ceramics, semiconductor manufacturing members, corrosion resistant members, and conductive members
KR101178234B1 (en) Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compounds for silicon carbide ceramics, silicon carbide ceramics, and its preparation method
Kawano et al. Highly electroconductive TiN/Si 3 N 4 composite ceramics fabricated by spark plasma sintering of Si 3 N 4 particles with a nano-sized TiN coating
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
US11837488B2 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
JP4429742B2 (en) Sintered body and manufacturing method thereof
KR20160100110A (en) Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same
KR101723675B1 (en) Composition used for preparing electrically conductive SiC-BN composite ceramic and method for preparing electrically conductive SiC-BN composite ceramic using the same
WO2015025951A1 (en) Porous ceramic and method for producing same
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2009302518A (en) Electrostatic chuck
US11715661B2 (en) Composite sintered body and method of manufacturing composite sintered body
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
WO2012015258A2 (en) Method for manufacturing silicon carbide sintered material using ball

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796692

Country of ref document: EP

Kind code of ref document: A1