WO2016185959A1 - 熱交換器及びその製造方法 - Google Patents

熱交換器及びその製造方法 Download PDF

Info

Publication number
WO2016185959A1
WO2016185959A1 PCT/JP2016/063970 JP2016063970W WO2016185959A1 WO 2016185959 A1 WO2016185959 A1 WO 2016185959A1 JP 2016063970 W JP2016063970 W JP 2016063970W WO 2016185959 A1 WO2016185959 A1 WO 2016185959A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
header
heat exchanger
groove
tubular member
Prior art date
Application number
PCT/JP2016/063970
Other languages
English (en)
French (fr)
Inventor
祐介 飯野
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57320041&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016185959(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to DE112016002244.1T priority Critical patent/DE112016002244B4/de
Publication of WO2016185959A1 publication Critical patent/WO2016185959A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • F28F2275/045Fastening; Joining by brazing with particular processing steps, e.g. by allowing displacement of parts during brazing or by using a reservoir for storing brazing material

Definitions

  • the present invention relates to a heat exchanger used as, for example, an evaporator, a radiator, or a heater of a vehicle air conditioner and a method for manufacturing the same.
  • each tube When manufacturing this heat exchanger, insert the end of each tube into the inside of the header into multiple connection holes provided on the side of the header, and place heat transfer fins between the tubes to The header, each tube, and the fin are joined by brazing in a furnace.
  • a tube with a small heat medium flow hole and a large wall thickness is used.
  • the opening of the heat medium circulation hole was easily clogged with the brazing material.
  • the amount of brazing material used is increased, and excessive brazing material causes It was easy to cause a brazing material flow on the outer peripheral surface.
  • the tube is formed by extrusion molding
  • a die line by extrusion molding strip line attached in the extrusion direction (longitudinal direction of the tube) generated by friction between the die and the material at the time of molding) is formed on the surface of the tube.
  • the flow of the brazing material in the longitudinal direction of the tube is promoted by the die line, and the brazing material is easily guided to the end surface of the tube.
  • the tube after extrusion is subjected to surface treatment by spraying zinc to prevent corrosion, but the die line is difficult to visually recognize due to the coating of the surface treatment, and the brazing material flow is promoted by the die line. Sometimes I did not notice that.
  • the flux usage is reduced to reduce the fluidity of the brazing material, the brazing material usage is reduced, the gap between the header and the tube is managed, and the tube insertion length into the header is increased.
  • the brazing material flow to the end face of the tube is suppressed, it is difficult to completely suppress the brazing material flow by such measures, and the brazing material clogging of the heat medium flow hole is effectively prevented. It could not be prevented.
  • the present invention has been made in view of the above problems, and its object is to effectively prevent clogging of the brazing material in the heat medium flow hole even when brazing material flow occurs on the outer peripheral surface of the tube.
  • An object of the present invention is to provide a heat exchanger and a method for manufacturing the same.
  • the present invention has a header for circulating a heat medium formed in a cylindrical shape and is spaced from each other in the axial direction of the header, and a plurality of heat medium flow holes are opened at both ends in the longitudinal direction.
  • a plurality of flat tubes for heat medium distribution and insert the end of each tube into the plurality of connection holes provided on the side of the header to the inside of the header, and brazing the header and each tube
  • a groove extending in the width direction of the tube is provided on the outer peripheral surface on the end side of each tube, and the groove is located closer to the distal end side of the tube than the edge of the connection hole on the inner surface of the header. It is formed to be located.
  • the present invention provides a heat medium distribution header formed in a cylindrical shape and a plurality of heat medium distribution holes arranged at both ends in the longitudinal direction, spaced apart from each other in the axial direction of the header.
  • a plurality of flat tubes for heat medium distribution that open, and insert the end of each tube into the plurality of connection holes provided on the side of the header to the inside of the header, and braze the header and each tube
  • a groove extending in the width direction of the tube is provided on the outer peripheral surface on the end side of each tube, and the groove is more than the edge of the connection hole on the inner surface of the header.
  • the end of each tube is inserted into the connection hole of the header so as to be positioned on the distal end side, and the header and each tube are joined by brazing.
  • a groove extending in the width direction of the tube is provided on the outer peripheral surface on the end side of each tube, so that the brazing material flows into the header from the connection hole and the brazing material flows on the outer peripheral surface of the tube.
  • the flow of the brazing material to the distal end side of the tube is prevented or suppressed by the groove.
  • the groove since the groove is positioned closer to the distal end side of the tube than the edge of the connection hole on the inner surface of the header, the groove is not buried in the fillet formed on the inner surface side of the header.
  • the groove provided on the outer peripheral surface of the tube can prevent or suppress the flow of the brazing material toward the distal end side of the tube.
  • the material does not flow to the end surface of the tube and does not block the heat medium circulation hole, and the brazing filler material clogging of the heat medium circulation hole can be effectively prevented.
  • the groove since the groove is not buried in the fillet formed on the inner surface side of the header, the function of the groove can be reliably maintained.
  • the perspective view of the heat exchanger which shows the 1st Embodiment of this invention Partial side view of header Top view of the main part of the tube AA cross-sectional view taken along line AA in FIG. 2 of the tube Partial cross-sectional perspective view of header and tube Partial cross-sectional partial exploded perspective view of header and tube Plan view showing the tube insertion process to the header Top view showing the tube inserted into the header Plan view showing header and tube during brazing Plan view showing header and tube during brazing
  • the perspective view which shows the manufacturing process of a tube The perspective view which shows the manufacturing process of a tube
  • the perspective view which shows the manufacturing process of a tube The perspective view which shows the manufacturing process of a tube
  • the perspective view which shows the manufacturing process of a tube The perspective view which shows the manufacturing process of a tube
  • the perspective view which shows the manufacturing process of a tube The perspective view which shows the manufacturing process of a tube
  • the perspective view which shows the manufacturing process of a tube The perspective view which shows the manufacturing process of a tube Partial section
  • FIG. 1 Top view showing the tube inserted into the header
  • FIG. 1 The perspective view of the tube in the 3rd Embodiment of this invention.
  • Front sectional view showing the manufacturing process of the tube Front sectional view showing the manufacturing process of the tube
  • Front sectional view showing the manufacturing process of the tube Partial sectional plan view showing the manufacturing process of the tube Partial sectional plan view showing the manufacturing process of the tube Partial sectional plan view showing the manufacturing process of the tube Partial sectional plan view showing the manufacturing process of the tube
  • the perspective view which shows the manufacturing process of a tube The perspective view which shows the manufacturing process of a tube
  • the perspective view which shows the manufacturing process of a tube The perspective view which shows the manufacturing process of a tube
  • FIGS. 1 to 23 show a first embodiment of the present invention.
  • the heat exchanger is used as an evaporator, a radiator or a heater of a vehicle air conditioner and circulates a carbon dioxide refrigerant as a heat medium. Is shown.
  • This heat exchanger has three heat medium distribution headers 10 arranged on both sides in the width direction of the heat exchanger body and a plurality of heat medium distributions arranged at intervals in the axial direction of each header 10.
  • Tube 20 and heat transfer fins 30 arranged between the tubes 20, and each tube 20 is connected to the side surface of each header 10 at both ends in the longitudinal direction.
  • Each header 10 is formed of a member formed of a metal such as aluminum in a cylindrical shape extending in the vertical direction, and a plurality of connection holes 11 to which the end portions of the respective tubes 20 are respectively connected are formed on the side surfaces (circumferential wall surfaces). It is provided at equal intervals in the vertical direction.
  • the connection hole 11 is formed in a long hole shape extending in the circumferential direction of the header 10, and is formed so as to penetrate the peripheral wall portion of the header 10.
  • Three headers 10 are arranged close to each other in the front-rear direction of the heat exchanger body, and the upper end and the lower end thereof are respectively closed by the lid member 12.
  • the lid member 12 has three lid portions 12a that respectively close upper and lower end openings of the three headers 10 arranged in the front-rear direction of the heat exchanger body, and the lid portions 12a are formed integrally with each other. Yes.
  • Each tube 20 is made of an extruded product of a metal such as aluminum, and is formed in a flat shape in which the vertical dimension is smaller than the width dimension. Moreover, the width direction both ends of the tube 20 are formed in the semicircle curved surface shape.
  • a plurality of heat medium flow holes 21 are provided at equal intervals in the width direction, and each heat medium flow hole 21 is formed in an elliptical cross section that is long in the vertical direction.
  • the heat medium flow hole 21 is formed such that the minimum value of the width W passing through the center thereof is less than 1.6 mm (for example, 0.5 mm), and the height H passing through the center is formed, for example, 0.7 mm. .
  • a tube having a width of 1.6 mm passing through the center of the heat medium flow hole is mainly used.
  • the minimum value of the width passing through the center of the heat medium flow hole 21 is set to less than 1.6 mm.
  • the end portion side of the tube 20 forms an insertion portion 22 to be inserted into the connection hole 11 of the header 10, and the insertion portion 22 is narrower than the other portion (the longitudinal center side of the tube 20). ing.
  • a step portion 23 is formed between the insertion portion 22 and another portion to be engaged with the edge portion of the connection hole 11 when the tube is inserted.
  • the insertion portion 22 includes a tapered portion 22a extending so that the width gradually decreases from the step portion 23 toward the distal end side of the tube 20, and a straight portion 22b extending from the tapered portion 22a to the distal end of the tube 20 with the same width.
  • the base end side (stepped portion 23 side) of the tapered portion 22 a is formed to have a width dimension equivalent to that of the connection hole 11.
  • grooves 24 extending in the width direction of the tube 20 are respectively provided on both sides in the thickness direction (upper surface and lower surface in the drawing) of the insertion portion 22, and each groove 24 is disposed in the straight portion 22b.
  • the groove 24 is formed in a substantially semicircular cross section, and is formed in a straight line from one end side to the other end side in the width direction of the straight portion 22b.
  • Each heat transfer fin 30 is made of a member in which a metal plate such as aluminum is formed in a corrugated shape, and is disposed between the tubes 20 and is also disposed outside the tubes 20 disposed at the uppermost and lowermost positions. Has been.
  • both ends of the tube 20 are connected to a pair of headers 10 that are spaced from each other, and heat transfer fins 30 are disposed between the tubes 20 before and after the heat exchanger.
  • Three sets are arranged in the direction.
  • the heat transfer fins 30 disposed outside the uppermost and lowermost tubes 20 are respectively covered by end plates 31 extending along the tubes 20.
  • Each end plate 31 is formed to have a width that covers both of the three rows of heat transfer fins 30 while bending both ends in the longitudinal direction to the tube 20 side.
  • a heat medium inflow pipe 13 and a heat medium outflow pipe 14 extend outward at the lower ends of the headers 10 in the front row and the last row, respectively. It is provided as follows.
  • the insertion portion 22 of the tube 20 When connecting the end portion of the tube 20 to the header 10, the insertion portion 22 of the tube 20 is inserted into the connection hole 11 of the header 10, and the step portion 23 of the tube 20 is locked to the edge portion of the connection hole 11.
  • the tube 20 is positioned in the insertion direction with respect to the header 10.
  • the straight portion 2b on the distal end side of the insertion portion 22 has a width dimension smaller than that of the connection hole 11 by the taper portion 22a, the insertion portion 22 can be easily inserted into the connection hole 11.
  • the groove 24 of the tube 20 is positioned on the distal end side of the tube 20 with respect to the opening edge of the connection hole 11 on the inner surface of the header 10.
  • the groove 24 is closer to the distal end side of the tube 20 than the position P of a straight line (dashed line in the figure) passing through both ends of the connection hole 11 curved along the inner peripheral surface of the header 10. Be placed.
  • Each member is joined to the heat exchanger by brazing in a high-temperature furnace in a temporarily assembled state.
  • the molten brazing material flows between the connection hole 11 and the tube 20 from the outside of the header 10, and on the outer surface side and the inner surface side of the header 10 as shown in FIG. 9.
  • a fillet F made of a brazing material is formed between the peripheral edge of the connection hole 11 and the outer peripheral surface of the tube 20.
  • the brazing material R does not flow into the end surface of the tube 20 and clog the heat medium flow hole 21. Further, since the groove 24 is located on the distal end side of the tube 20 with respect to the edge of the connection hole 11 on the inner surface of the header 10, the groove 24 is not buried in the fillet F on the inner surface side of the header 10.
  • a method for manufacturing the tube 20 will be described with reference to FIGS.
  • a flat tube-shaped member 20 ′ in which a plurality of tube portions are continuously integrated in the longitudinal direction of the tube is formed by extrusion, and then the tube-shaped member 20 ′ as shown in FIGS. 11 and 12.
  • a pair of molds 40 is pressed from both sides in the width direction.
  • each die 40 is provided with a recess 40a for forming the insertion portion 22, the taper portion 22a, the straight portion 22b, and the step portion 23 of the tube 20 as a pair, as shown in FIGS. Yes.
  • the insertion portion 22 and the stepped portion 24 having the tapered portion 22a and the straight portion 22b are formed in the tubular member 20 ′.
  • the tube-shaped member 20 ′ is formed with a notch-shaped breakable portion 25 for breaking the tube-shaped member 20 ′, and a pair of grooves with the breakable portion 25 interposed therebetween. 24 is formed. In this case, as shown in FIG.
  • the second roller 42 for forming the groove 24 is coaxially arranged on both sides in the axial direction of the first roller 41 for forming the breakable portion 25, and These are arranged in pairs so as to face each other in the vertical direction with an interval smaller than the thickness dimension of the tubular member 20 '.
  • the tubular member 20 ' is sandwiched between the rollers 41 and 42, and the rollers 41 and 42 are moved from one end side to the other end side in the width direction of the tubular member 20' as shown in FIG. Press contact with the tubular member 20 '.
  • the breakable portion 25 and the pair of grooves 24 are simultaneously formed on both sides in the thickness direction of the tubular member 20 ′. In this case, as shown in FIG.
  • the first roller 41 has a pointed periphery
  • the second roller 42 has a periphery having a semicircular periphery.
  • the groove 24 extending in the width direction of the tube 20 is provided on the outer peripheral surface on the end side of each tube 20, the brazing material flows into the header 10 from the connection hole 11, Even when a brazing material flow occurs on the outer peripheral surface of the tube 20, the flow of the brazing material toward the distal end side of the tube 20 can be prevented or suppressed by the groove 24. As a result, the brazing material does not flow into the end surface of the tube 20 to block the heat medium circulation hole 21, and the brazing material clogging of the heat medium circulation hole 21 can be effectively prevented.
  • the groove 24 is positioned closer to the distal end side of the tube 20 than the edge of the connection hole 11 on the inner surface of the header 10, the groove 24 is buried in the fillet F formed on the inner surface side of the header 10.
  • the function of the groove 24 can be reliably maintained. Note that the pressure resistance of the tube 20 is required for a portion disposed outside the header 10, but the groove 24 of the tube 20 is disposed inside the header 10. The pressure resistance of 20 is not affected.
  • the extruded tube 20 has a die line formed on the surface of the tube 20 by extrusion. Even when the flow of the brazing material in the longitudinal direction of the tube 20 is promoted by the die line, the groove 24 is used. Since the flow of the brazing material to the distal end side of the tube 20 can be prevented or suppressed, it is extremely advantageous when the tube 20 by extrusion molding is used.
  • the minimum value of the width passing through the center of the heat medium flow hole 21 is less than 1.6 mm in order to increase the wall thickness of the tube 20 and ensure pressure resistance.
  • the tube 20 since the flow of the brazing material to the tip side of the tube 20 can be prevented or suppressed as described above, the heat medium circulation hole 21 is small, and the carbon dioxide refrigerant is likely to be clogged with the brazing material. It is extremely advantageous for heat exchangers.
  • the tube 20 is formed from a flat tube-shaped member 20 ′ in which a plurality of portions to be the tube 20 are continuously integrated in the longitudinal direction of the tube
  • the tube-shaped member 20 ′ is cut using, for example, a cutting blade.
  • the heat medium flow hole 21 may be clogged with chips from cutting, or the heat medium flow hole 21 may be crushed by the pressure in the thickness direction of the tube 20 by the cutting blade.
  • breakable portions 25 extending in the width direction are formed on both sides in the thickness direction of the tubular member 20 ′, and the tubular member 20 ′ can be broken by applying a tensile force in the longitudinal direction to the tubular member 20 ′.
  • the tube-shaped member Since the tube 20 is formed by breaking from the portion 25, the tube-shaped member does not generate chips such as cutting or pressure in the thickness direction of the tube 20. 0 'it is very effective in preventing clogging of the heat medium flow hole 21 at the time of forming the tube 20.
  • the groove 24 is formed at the same time as the breakable portion 25 in the tubular member 20 ', a separate process for forming the groove 24 is not required, and the productivity can be improved.
  • the first roller 41 for forming the cutable breakable portion 25 and the second roller 42 for forming the groove 24 are formed in a tube shape on both surfaces in the thickness direction of the tube-shaped member 20 ′.
  • the breakable portion 25 and the groove 24 are simultaneously formed in the tubular member 20 'by being pressed while moving in the width direction of the member 20'. Therefore, the breakable portion 25 and the groove 24 are efficiently formed. This is extremely advantageous for improving productivity.
  • the groove 20 is provided at one place in the longitudinal direction of the tube 20.
  • a plurality of grooves 24 are formed on the tube 20. If it is provided at intervals in the longitudinal direction, the plurality of grooves 24 can more effectively prevent clogging of the brazing material in the heat medium flow hole 21.
  • each groove 24 has a distal end of the tube 20 rather than a position P of a straight line (dashed line in the drawing) passing through both ends of the connection hole 11 curved along the inner peripheral surface of the header 10. Placed on the side.
  • both the grooves 24 are arranged on the distal end side of the tube 20 with respect to the position P. However, at least one entire groove 24 is located on the distal end side of the tube 20 with respect to the position P. In other words, the other grooves 24 do not necessarily have to be located entirely on the distal end side of the tube 20 with respect to the position P.
  • channel 24 which was not mutually continuous in the width direction both ends of the tube 20 was shown on each both surfaces of the thickness direction of the tube 20, respectively, like 3rd Embodiment shown in FIG. If the grooves 24 are formed so as to be continuous in the circumferential direction of the tube 20, it is possible to prevent the heat medium flow holes 21 from being clogged by the grooves 24 at both ends in the width direction of the tube 20.
  • a plurality of grooves 24 that are continuous in the circumferential direction of the tube 20 may be provided at intervals in the longitudinal direction of the tube 20 as described above.
  • a protrusion 40b is provided in the recess 40a of the mold 40, and the mold 40 is connected to the tube.
  • a continuous portion 24 a is formed by which the end portions of the grooves 24 on both sides in the thickness direction of the tube 20 are continuous by the convex portion 40 b.
  • the convex portions 40b are respectively provided at positions corresponding to the grooves 24 formed at two locations of the tubular member 20 ′, and are formed in an arc shape along the end in the width direction of the tubular member 20 ′. Yes.
  • the convex part 40b is provided in the recessed part 40a of the metal mold
  • a continuous portion 24 a is formed by connecting the end portions of the grooves 24 on both sides in the thickness direction of the tube 20 by the convex portions 40 b, thereby forming the grooves 24 continuous in the circumferential direction of the tube 20. Since it did so, the separate process for forming the continuous part 24a is not required, but the groove

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】チューブの外周面におけるろう材流れが生じた場合でも、熱媒体流通孔のろう材詰まりを効果的に防止することのできる熱交換器及びその製造方法を提供する。 【解決手段】各チューブ20の端部側の外周面にチューブ20の幅方向に延びる溝24を設けたので、接続孔11からヘッダー10内にろう材が流入し、チューブ20の外周面にろう材流れが生じた場合でも、溝24によってチューブ20の先端側へのろう材の流れを阻止することができる。これにより、ろう材がチューブ20の端面まで流れ込んで熱媒体流通孔21を閉塞させることがない。この場合、溝24をヘッダー10の内面における接続孔11の縁部よりもチューブ20の先端側に位置させるようにしたので、ヘッダー10の内面側に形成されるフィレットFに溝24が埋没することがない。

Description

熱交換器及びその製造方法



 本発明は、例えば車両用空気調和装置の蒸発器、放熱器またはヒータ等として用いられる熱交換器及びその製造方法に関するものである。





 従来、この種の熱交換器としては、円筒状に形成された熱媒体流通用のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置され、それぞれの端部をヘッダーに接続された熱媒体流通用の複数の扁平状チューブと、各チューブの間に設けられた伝熱フィンとを備えたものが知られている(例えば、特許文献1参照)。





 この熱交換器を製造する場合は、ヘッダーの側面に設けられた複数の接続孔に各チューブの端部をそれぞれヘッダーの内側まで挿入し、各チューブの間に伝熱フィンを配置して高温の炉中にてろう付けすることにより、ヘッダー、各チューブ及びフィンを接合するようにしている。





特開平09-273883



 しかしながら、前記熱交換器をろう付けにより接合する際、溶融したろう材がヘッダーの外部から接続孔とチューブの外周面との間を通じてヘッダー内に流入すると、ろう材がチューブの外周面からチューブの端面まで流れ込み、チューブの端面に開口する熱媒体流通孔がろう材によって閉塞されるという問題点があった。





 特に、熱媒体として二酸化炭素冷媒を使用する熱交換器では、フロン冷媒の約10倍の耐圧性を得るために、熱媒体流通孔を小さくして壁厚を大きくしたチューブが用いられることから、熱媒体流通孔の開口部がろう材によって詰まりやすかった。また、耐圧性確保のためにチューブと接合孔の縁部との間に十分なろう付けフィレットを形成する必要があることから、ろう材の使用量が多くなり、過剰なろう材によってもチューブの外周面にろう材流れを生じさせやすくなっていた。





 更に、チューブは押出成形によって成形されるため、チューブの表面に押出成形によるダイスライン(成形時にダイスと材料との摩擦によって生ずる押出方向(チューブの長手方向)に付く条線)が形成される。このため、ダイスラインによってチューブの長手方向へのろう材の流れが促進され、チューブの端面にろう材が誘導されやすくなっていた。特に、押出成形後のチューブには、防食のために亜鉛の溶射による表面処理が施されるが、表面処理のコーティングによってダイスラインが視認しずらくなり、ダイスラインによるろう材流れの促進が生じていることに気付かない場合もあった。





 そこで、従来では、フラックスの使用量を低減してろう材の流動性を低下させたり、ろう材の使用量削減、ヘッダーとチューブとの隙間管理、ヘッダーへのチューブ挿入長さを大きくするなど、チューブの端面へのろう材流れを抑制するようにしているが、このような対策によってもろう材の流れを完全に抑制することは困難であり、熱媒体流通孔のろう材詰まりを効果的に防止することはできなかった。





 本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、チューブの外周面におけるろう材流れが生じた場合でも、熱媒体流通孔のろう材詰まりを効果的に防止することのできる熱交換器及びその製造方法を提供することにある。





 本発明は前記目的を達成するために、筒状に形成された熱媒体流通用のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置され、長手方向両端に複数の熱媒体流通孔が開口する熱媒体流通用の複数の扁平状チューブとを備え、ヘッダーの側面に設けられた複数の接続孔に各チューブの端部をそれぞれヘッダーの内側まで挿入し、ヘッダーと各チューブとをろう付けにより接合するようにした熱交換器において、前記各チューブの端部側の外周面にチューブの幅方向に延びる溝を設け、前記溝をヘッダーの内面における接続孔の縁部よりもチューブの先端側に位置するように形成している。





 また、本発明は前記目的を達成するために、筒状に形成された熱媒体流通用のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置され、長手方向両端に複数の熱媒体流通孔が開口する熱媒体流通用の複数の扁平状チューブとを備え、ヘッダーの側面に設けられた複数の接続孔に各チューブの端部をそれぞれヘッダーの内側まで挿入し、ヘッダーと各チューブとをろう付けにより接合する熱交換器の製造方法において、前記各チューブの端部側の外周面にチューブの幅方向に延びる溝を設けるとともに、前記溝がヘッダーの内面における接続孔の縁部よりもチューブの先端側に位置するように各チューブの端部をヘッダーの接続孔に挿入し、ヘッダーと各チューブとをろう付けにより接合するようにしている。





 これにより、各チューブの端部側の外周面にチューブの幅方向に延びる溝が設けられることから、接続孔からヘッダー内にろう材が流入し、チューブの外周面にろう材流れが生じた場合でも、溝によってチューブの先端側へのろう材の流れが阻止または抑制される。この場合、溝がヘッダーの内面における接続孔の縁部よりもチューブの先端側に位置することから、ヘッダーの内面側に形成されるフィレットに溝が埋没することがない。





 本発明によれば、チューブの外周面にろう材流れが生じた場合でも、チューブの外周面に設けた溝によってチューブの先端側へのろう材の流れを阻止または抑制することができるので、ろう材がチューブの端面まで流れ込んで熱媒体流通孔を閉塞させることがなく、熱媒体流通孔のろう材詰まりを効果的に防止することができる。この場合、ヘッダーの内面側に形成されるフィレットに溝が埋没することがないので、溝の機能を確実に維持することができる。





本発明の第1の実施形態を示す熱交換器の斜視図 ヘッダーの部分側面図 チューブの要部平面図 チューブの図2におけるA-A線矢視方向断面図 ヘッダー及びチューブの一部断面部分斜視図 ヘッダー及びチューブの一部断面部分分解斜視図 ヘッダーへのチューブ挿入工程を示す平面図 ヘッダーへのチューブ挿入状態を示す平面図 ろう付け時のヘッダー及びチューブを示す平面図 ろう付け時のヘッダー及びチューブを示す平面図 チューブの製造工程を示す斜視図 チューブの製造工程を示す斜視図 チューブの製造工程を示す斜視図 チューブの製造工程を示す斜視図 チューブの製造工程を示す斜視図 チューブの製造工程を示す斜視図 チューブの製造工程を示す一部断面平面図 チューブの製造工程を示す一部断面平面図 チューブの製造工程を示す一部断面平面図 チューブの製造工程を示す一部断面側面図 チューブの製造工程を示す側面図 チューブの製造工程を示す側面断面図 チューブの製造工程を示す側面断面図 本発明の第2の実施形態におけるチューブの斜視図 ヘッダーへのチューブ挿入状態を示す平面図 本発明の第3の実施形態におけるチューブの斜視図 チューブの製造工程を示す正面断面図 チューブの製造工程を示す正面断面図 チューブの製造工程を示す正面断面図 チューブの製造工程を示す一部断面平面図 チューブの製造工程を示す一部断面平面図 チューブの製造工程を示す一部断面平面図 チューブの製造工程を示す斜視図 チューブの製造工程を示す斜視図 チューブの製造工程を示す斜視図



 図1乃至図23は本発明の第1の実施形態を示すもので、例えば車両用空気調和装置の蒸発器、放熱器またはヒータとして用いられ、熱媒体としての二酸化炭素冷媒を流通する熱交換器を示すものである。





 この熱交換器は、熱交換器本体の幅方向両側に3本ずつ配置された熱媒体流通用のヘッダー10と、互いに各ヘッダー10の軸方向に間隔をおいて配置された複数の熱媒体流通用のチューブ20と、各チューブ20の間に配置された伝熱用のフィン30とから構成され、各チューブ20は長手方向の両端部をそれぞれ各ヘッダー10の側面に接続されている。





 各ヘッダー10は、アルミニウム等の金属を上下方向に延びる円筒状に形成した部材からなり、その側面(周壁面)には、各チューブ20の端部がそれぞれ接続される複数の接続孔11が互いに上下方向に等間隔で設けられている。接続孔11はヘッダー10の周方向に延びる長孔状に形成され、ヘッダー10の周壁部を貫通するように形成されている。各ヘッダー10は、熱交換器本体の前後方向に3本ずつ近接して配列され、その上端及び下端は蓋部材12によってそれぞれ閉塞されている。蓋部材12は熱交換器本体の前後方向に配列される3本のヘッダー10の上端または下端開口部をそれぞれ閉塞する3つの蓋部12aを有し、各蓋部12aは互いに一体に形成されている。





 各チューブ20は、アルミニウム等の金属の押出成形品からなり、上下方向の寸法が幅方向の寸法に対して小さい扁平状に形成されている。また、チューブ20の幅方向両端は半円形の曲面状に形成されている。チューブ20には、複数の熱媒体流通孔21が互いに幅方向に等間隔で設けられ、各熱媒体流通孔21は上下方向に長い断面長円形状に形成されている。熱媒体流通孔21は、その中心を通る幅Wの最小値が1.6mm未満(例えば、0.5mm)に形成され、その中心を通る高さHは、例えば0.7mmに形成されている。一般に、車両用空気調和装置にフロン冷媒(R-134a)を使用する場合は、熱媒体流通孔の中心を通る幅が1.6mmのチューブが主に用いられるが、二酸化炭素冷媒を使用する本実施形態では、チューブ20の壁厚を大きくして耐圧性を確保するために、熱媒体流通孔21の中心を通る幅の最小値を1.6mm未満としている。また、チューブ20の端部側はヘッダー10の接続孔11に挿入される挿入部22を形成しており、挿入部22は他の部分(チューブ20の長手方向中央側)よりも幅が狭くなっている。これにより、挿入部22と他の部分との間には、チューブ挿入時に接続孔11の縁部に係止する段差部23が形成されている。また、挿入部22は、段差部23からチューブ20の先端側に向かって徐々に幅が狭くなるように延びるテーパ部22aと、テーパ部22aからチューブ20の先端まで同一幅で延びるストレート部22bとからなり、テーパ部22aの基端側(段差部23側)は接続孔11と同等の幅寸法に形成されている。更に、挿入部22の厚さ方向両面(図中上面及び下面)には、チューブ20の幅方向に延びる溝24がそれぞれ設けられ、各溝24はストレート部22bに配置されている。溝24は断面略半円形状に形成され、ストレート部22bの幅方向一端側から他端側に亘って直線状に形成されている。





 各伝熱フィン30は、アルミニウム等の金属板を波形状に形成した部材からなり、それぞれ各チューブ20の間に配置されるとともに、最上位及び最下位に配置されるチューブ20の外側にも配置されている。





 前記熱交換器は、互いに間隔をおいて配置された一対のヘッダー10にチューブ20の両端部をそれぞれ接続するとともに、各チューブ20の間に伝熱フィン30を配置したものが熱交換器の前後方向に3組配列される。この場合、最上位及び最下位のチューブ20の外側に配置される伝熱フィン30は、チューブ20に沿って延びる端板31によってそれぞれ覆われる。各端板31は長手方向両端側をチューブ20側に屈曲するとともに、3列の伝熱フィン30を全て覆う幅に形成されている。更に、熱交換器の幅方向一端側に配置される各ヘッダー10のうち、最前列及び最後列のヘッダー10の下端には熱媒体流入パイプ13及び熱媒体流出パイプ14がそれぞれ外部に向かって延びるように設けられている。





 ヘッダー10にチューブ20の端部を接続する場合は、チューブ20の挿入部22をヘッダー10の接続孔11に挿入するとともに、チューブ20の段差部23を接続孔11の縁部に係止することにより、チューブ20がヘッダー10に対して挿入方向に位置決めされる。その際、挿入部22の先端側のストレート部2bがテーパ部22aによって接続孔11よりも幅寸法が小さくなっているので、挿入部22を接続孔11に容易に挿入することができる。チューブ20が接続孔11に段差部23で位置決めされるまで挿入されると、チューブ20の溝24はヘッダー10の内面における接続孔11の開口縁よりもチューブ20の先端側に位置する。即ち、溝24は、図8に示すように、ヘッダー10の内周面に沿って湾曲した接続孔11の両端をそれぞれ通る直線(図中一点鎖線)の位置Pよりもチューブ20の先端側に配置される。





 前記熱交換器は、仮組みされた状態で高温の炉中でろう付けすることにより各部材が接合される。ヘッダー10とチューブ20との接合では、溶融したろう材がヘッダー10の外側から接続孔11とチューブ20との間に流入し、図9に示すように、ヘッダー10の外面側と内面側においては、接続孔11の周縁とチューブ20の外周面との間にろう材によるフィレットFがそれぞれ形成される。その際、図10に示すように、ヘッダー10内に流入したろう材Rがチューブ20の外周面からチューブ20の先端に向かって流れると、チューブ20の溝24によってろう材Rの流れが阻止または抑制されることから、ろう材Rがチューブ20の端面まで流れ込んで熱媒体流通孔21を詰まらせることがない。また、溝24はヘッダー10の内面における接続孔11の縁部よりもチューブ20の先端側に位置していることから、ヘッダー10の内面側のフィレットFに溝24が埋没することがない。





 次に、前記チューブ20の製造方法について、図11乃至図23を参照して説明する。まず、チューブとなる部分がチューブの長手方向に複数連続して一体となった扁平状のチューブ状部材20′を押出成形によって成形した後、図11及び図12に示すようにチューブ状部材20′に一対の金型40を幅方向両側から押し付ける。この場合、各金型40には、図17乃至図19に示すようにチューブ20の挿入部22、テーパ部22a、ストレート部22b及び段差部23を一対ずつ成形するための凹部40aが設けられている。次に、図13に示すようにチューブ状部材20′から各金型40を分離すると、チューブ状部材20′にテーパ部22a及びストレート部22bを有する挿入部22と段差部24が形成される。この後、図21に示すように、チューブ状部材20′に、チューブ状部材20′を破断させるための切り込み状の破断可能部25を形成するとともに、破断可能部25を間にして一対の溝24を形成する。この場合、図14に示すように、破断可能部25を形成するための第1のローラ41の軸方向両側に、溝24を形成するための第2のローラ42を同軸状に配置するとともに、これらを一対ずつチューブ状部材20′の厚さ寸法よりも小さい間隔をおいて上下方向に対向して配置する。続いて、チューブ状部材20′を各ローラ41,42で挟み込むようにして、図15に示すようにチューブ状部材20′の幅方向一端側から他端側まで各ローラ41,42を移動させながらチューブ状部材20′に圧接する。これにより、チューブ状部材20′の厚さ方向両面に破断可能部25と一対の溝24が同時に形成される。この場合、図20に示すように、第1のローラ41には先の尖った周縁を有するものが用いられ、第2のローラ42には周縁が断面半円形の周縁を有するものが用いられる。この後、図16に示すように、チューブ状部材20′に長手方向への引張力を付与することにより、図23に示すようにチューブ状部材20′を破断可能部25から破断する。この場合、例えばチューブ状部材20′の長手方向二箇所を破断可能部25が間に位置するように図示しないクランプで挟持し、クランプにチューブ状部材20′の長手方向反対側への力を加えることにより、チューブ状部材20′に長手方向への引張力を付与する。そして、前記工程を繰り返すことにより、チューブ状部材20′から複数のチューブ20を形成する。





 このように、本実施形態によれば、各チューブ20の端部側の外周面にチューブ20の幅方向に延びる溝24を設けたので、接続孔11からヘッダー10内にろう材が流入し、チューブ20の外周面にろう材流れが生じた場合でも、溝24によってチューブ20の先端側へのろう材の流れを阻止または抑制することができる。これにより、ろう材がチューブ20の端面まで流れ込んで熱媒体流通孔21を閉塞させることがなく、熱媒体流通孔21のろう材詰まりを効果的に防止することができる。この場合、溝24をヘッダー10の内面における接続孔11の縁部よりもチューブ20の先端側に位置させるようにしたので、ヘッダー10の内面側に形成されるフィレットFに溝24が埋没することがなく、溝24の機能を確実に維持することができる。尚、チューブ20の耐圧性はヘッダー10の外部に配置される部分に要求されるが、チューブ20の溝24はヘッダー10の内部に配置されるので、溝24を設けた部分の強度低下はチューブ20の耐圧性に影響を与えることはない。





 また、押出成形されるチューブ20は、チューブ20の表面に押出成形によるダイスラインが形成されるが、ダイスラインによってチューブ20の長手方向へのろう材の流れが促進された場合でも、溝24によってチューブ20の先端側へのろう材の流れを阻止または抑制することができるので、押出成形によるチューブ20を用いる場合に極めて有利である。





 更に、熱媒体として二酸化炭素冷媒を使用する場合は、チューブ20の壁厚を大きくして耐圧性を確保するために、熱媒体流通孔21の中心を通る幅の最小値が1.6mm未満のチューブ20が用いられるが、前述のようにチューブ20の先端側へのろう材の流れを阻止または抑制することができるので、熱媒体流通孔21が小さくろう材詰まりを生じやすい二酸化炭素冷媒用の熱交換器には極めて有利である。





 また、チューブ20となる部分がチューブの長手方向に複数連続して一体となった扁平状のチューブ状部材20′からチューブ20を形成する際、例えば切断刃を用いてチューブ状部材20′を切断する場合では、切断による切粉で熱媒体流通孔21に目詰まりを生じたり、或いは切断刃によるチューブ20の厚さ方向への圧力により熱媒体流通孔21が圧潰することがあるが、本実施形態では、チューブ状部材20′の厚さ方向両面に幅方向に延びる破断可能部25を形成し、チューブ状部材20′に長手方向への引張力を付与してチューブ状部材20′を破断可能部25から破断させることによりチューブ20を形成するようにしているので、切断のような切粉やチューブ20の厚さ方向への圧力が発生することがなく、チューブ状部材20′からチューブ20を形成する際における熱媒体流通孔21の閉塞防止に極めて効果的である。





 更に、チューブ状部材20′に破断可能部25と同時に溝24を形成するようにしたので、溝24を形成するための別工程を必要とせず、生産性の向上を図ることができる。





 この場合、チューブ状部材20′の厚さ方向両面に、切り込み状の破断可能部25を形成するための第1のローラ41と、溝24を形成するための第2のローラ42とをチューブ状部材20′の幅方向に移動させながら圧接させることにより、チューブ状部材20′に破断可能部25と溝24とを同時に形成するようにしたので、破断可能部25及び溝24を効率よく形成することができ、生産性の向上に極めて有利である。





 尚、前記実施形態では、チューブ20の長手方向一箇所に溝24を設けたものを示したが、図24及び図25に示す第2の実施形態のように、複数の溝24をチューブ20の長手方向に間隔をおいて設けるようにすれば、複数の溝24によって熱媒体流通孔21のろう材詰まりをより効果的に防止することができる。この場合、各溝24は、図25に示すように、ヘッダー10の内周面に沿って湾曲した接続孔11の両端をそれぞれ通る直線(図中一点鎖線)の位置Pよりもチューブ20の先端側に配置される。尚、図25では、各溝24の両方を位置Pよりもチューブ20の先端側に配置したものを示したが、少なくとも一つの溝24の全体が位置Pよりもチューブ20の先端側に位置していれば、他の溝24は必ずしも全体が位置Pよりもチューブ20の先端側に位置していなくてもよい。





 また、前記実施形態では、互いにチューブ20の幅方向両端において連続していない溝24をチューブ20の厚さ方向両面にそれぞれ設けたものを示したが、図26に示す第3の実施形態のように溝24をチューブ20の周方向に連続するように形成すれば、チューブ20の幅方向両端側においても溝24によって熱媒体流通孔21のろう材詰まりを防止することができる。尚、このようにチューブ20の周方向に連続する溝24をチューブ20の長手方向に間隔をおいて複数設けるようにしてもよい。





 前述のようにチューブ20の周方向に連続する溝24を形成する場合は、図27乃至図32に示すように、前記金型40の凹部40a内に凸部40bを設け、金型40をチューブ状部材20′に押し付ける際、凸部40bによってチューブ20の厚さ方向両面の溝24の端部同士を連続させる連続部24aを形成する。この場合、凸部40bは、チューブ状部材20′の二箇所に形成される溝24に対応する位置にそれぞれ設けられ、チューブ状部材20′の幅方向端部に沿った円弧状に形成されている。





 これにより、各金型40をチューブ状部材20′に押し付けると、図33に示すようにチューブ状部材20′の幅方向両端側に溝24と同一の断面形状の連続部24aがそれぞれ形成され、図34及び図35に示すように第1及び第2のローラ41,42をチューブ状部材20′の幅方向一端側から他端側まで移動させながらチューブ状部材20′に圧接することにより、チューブ状部材20′の厚さ方向両面にそれぞれ溝24を形成すると、各連続部24aによってチューブ状部材20′の周方向に連続した溝24が形成される。





 このように、本実施形態では、チューブ状部材20′にチューブ20の挿入部22及び段差部24を形成するための金型40の凹部40a内に凸部40bを設け、金型40をチューブ状部材20′に押し付ける際に、凸部40bによってチューブ20の厚さ方向両面の溝24の端部同士を連続させる連続部24aを形成することにより、チューブ20の周方向に連続した溝24を形成するようにしたので、連続部24aを形成するための別工程を必要とせず、チューブ20の周方向に連続した溝24を効率よく形成することができる。





 10…ヘッダー、11…接続孔、20…チューブ、20′…チューブ状部材、21…熱媒体流通孔、24…溝、24a…連続部、25…破断可能部、41…第1のローラ、42…第2のローラ。

Claims (14)




  1.  筒状に形成された熱媒体流通用のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置され、長手方向両端に複数の熱媒体流通孔が開口する熱媒体流通用の複数の扁平状チューブとを備え、ヘッダーの側面に設けられた複数の接続孔に各チューブの端部をそれぞれヘッダーの内側まで挿入し、ヘッダーと各チューブとをろう付けにより接合するようにした熱交換器において、



     前記各チューブの端部側の外周面にチューブの幅方向に延びる溝を設け、



     前記溝をヘッダーの内面における接続孔の縁部よりもチューブの先端側に位置するように形成した



     ことを特徴とする熱交換器。





  2.  前記チューブを押出成形によって成形した



     ことを特徴とする請求項1記載の熱交換器。





  3.  前記チューブは、熱媒体流通孔の中心を通る幅の最小値が1.6mm未満である



     ことを特徴とする請求項1または2記載の熱交換器。





  4.  前記溝をチューブの周方向に連続するように形成した



     ことを特徴とする請求項1、2または3記載の熱交換器。





  5.  前記各チューブに前記溝をチューブの長手方向に間隔をおいて複数ずつ設けた



     ことを特徴とする請求項1、2、3または4記載の熱交換器。





  6.  筒状に形成された熱媒体流通用のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置され、長手方向両端に複数の熱媒体流通孔が開口する熱媒体流通用の複数の扁平状チューブとを備え、ヘッダーの側面に設けられた複数の接続孔に各チューブの端部をそれぞれヘッダーの内側まで挿入し、ヘッダーと各チューブとをろう付けにより接合する熱交換器の製造方法において、



     前記各チューブの端部側の外周面にチューブの幅方向に延びる溝を設けるとともに、



     前記溝がヘッダーの内面における接続孔の縁部よりもチューブの先端側に位置するように各チューブの端部をヘッダーの接続孔に挿入し、ヘッダーと各チューブとをろう付けにより接合する



     ことを特徴とする熱交換器の製造方法。





  7.  前記チューブには押出成形により成形されたチューブが用いられる



     ことを特徴とする請求項6記載の熱交換器の製造方法。





  8.  前記チューブには、熱媒体流通孔の中心を通る幅の最小値が1.6mm未満のチューブが用いられる



     ことを特徴とする請求項6または7記載の熱交換器の製造方法。





  9.  前記溝がチューブの周方向に連続するように形成されたチューブを用いる



     ことを特徴とする請求項6、7または8記載の熱交換器の製造方法。





  10.  前記各チューブに前記溝をチューブの長手方向に間隔をおいて複数ずつ設ける



     ことを特徴とする請求項6、7、8または9記載の熱交換器の製造方法。





  11.  前記チューブとなる部分がチューブの長手方向に複数連続して一体となった扁平状のチューブ状部材の厚さ方向両面に幅方向に延びる破断可能部を形成し、



     チューブ状部材に長手方向への引張力を付与してチューブ状部材を破断可能部から破断させることによりチューブを形成する



     ことを特徴とする請求項6、7、8、9または10記載の熱交換器の製造方法。





  12.  前記チューブ状部材に破断可能部と同時に前記溝を形成する



     ことを特徴とする請求項11記載の熱交換器の製造方法。





  13.  前記チューブ状部材の厚さ方向両面に、前記破断可能部を切り込み状に形成するための第1のローラと、前記溝を形成するための第2のローラとをチューブ状部材の幅方向に移動させながら圧接させることにより、チューブ状部材に破断可能部と前記溝とを同時に形成する



     ことを特徴とする請求項12記載の熱交換器の製造方法。





  14.  前記チューブ状部材の幅方向両端側にチューブ状部材の厚さ方向両面の溝の端部同士を連続させる連続部を形成することにより、チューブの周方向に連続した溝を形成する



     ことを特徴とする請求項13記載の熱交換器の製造方法。
PCT/JP2016/063970 2015-05-19 2016-05-11 熱交換器及びその製造方法 WO2016185959A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016002244.1T DE112016002244B4 (de) 2015-05-19 2016-05-11 Wärmetauscher und Herstellungsverfahren hierfür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015101577A JP6530235B2 (ja) 2015-05-19 2015-05-19 熱交換器及びその製造方法
JP2015-101577 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016185959A1 true WO2016185959A1 (ja) 2016-11-24

Family

ID=57320041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063970 WO2016185959A1 (ja) 2015-05-19 2016-05-11 熱交換器及びその製造方法

Country Status (3)

Country Link
JP (1) JP6530235B2 (ja)
DE (1) DE112016002244B4 (ja)
WO (1) WO2016185959A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6632868B2 (ja) * 2015-11-05 2020-01-22 日軽熱交株式会社 アルミニウム製熱交換器
DE102018213124A1 (de) * 2018-08-06 2020-02-06 Mahle Lnternational Gmbh Verfahren zur Herstellung eines Wärmeübertragerrohrs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433370U (ja) * 1987-08-18 1989-03-01
US20050067142A1 (en) * 2003-09-26 2005-03-31 Lg Cable Ltd. Heat exchanger
JP2007533466A (ja) * 2004-04-22 2007-11-22 グロパッロ・フランセスコ 炉内ろう付け工程

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048602A (en) 1989-05-22 1991-09-17 Showa Aluminum Kabushiki Kaisha Heat exchangers
US5185925A (en) 1992-01-29 1993-02-16 General Motors Corporation Method of manufacturing a tube for a heat exchanger
JP3580942B2 (ja) 1996-04-05 2004-10-27 昭和電工株式会社 熱交換器用扁平チューブおよび同チューブを備えた熱交換器
JPH10206079A (ja) 1997-01-14 1998-08-07 Zexel Corp 熱交換器
DE19845336A1 (de) 1998-10-01 2000-04-06 Behr Gmbh & Co Mehrkanal-Flachrohr
DE19922673C1 (de) 1999-05-18 2000-08-31 Erbsloeh Ag Wärmeaustauscher sowie Verfahren zur Herstellung eines Wärmeaustauschers
WO2002045896A1 (en) 2000-12-05 2002-06-13 Norsk Hydro Asa Process of connecting a heat exchanger tube to a manifold and tube especially made therefor
DE102007004993A1 (de) 2007-02-01 2008-08-07 Modine Manufacturing Co., Racine Herstellungsverfahren für Flachrohre und Walzenstraße

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433370U (ja) * 1987-08-18 1989-03-01
US20050067142A1 (en) * 2003-09-26 2005-03-31 Lg Cable Ltd. Heat exchanger
JP2007533466A (ja) * 2004-04-22 2007-11-22 グロパッロ・フランセスコ 炉内ろう付け工程

Also Published As

Publication number Publication date
DE112016002244B4 (de) 2023-11-02
DE112016002244T5 (de) 2018-02-15
JP2016217587A (ja) 2016-12-22
JP6530235B2 (ja) 2019-06-12

Similar Documents

Publication Publication Date Title
US5622220A (en) Heat exchanger for automobile air conditioning system
DE60313477T2 (de) Rohr für wärmetauscher
EP0696718B2 (en) Heat transfer tube
US6357520B1 (en) Heat exchanger
KR100478961B1 (ko) 열 교환기 및 열 교환기의 제조 방법
TWI628405B (zh) 一種熱交換器板、一種板式熱交換器及一種製造板式熱交換器之方法
EP3355020B1 (en) Heat exchange tube for heat exchanger, heat exchanger and assembly method thereof
US20050067156A1 (en) Pressure containing heat transfer tube and method of making thereof
WO2016185959A1 (ja) 熱交換器及びその製造方法
JP6384723B2 (ja) フィン・アンド・チューブ型熱交換器の製造方法
JP5007267B2 (ja) 熱交換器
US10888910B2 (en) Machining method for burred flat holes in metal plates
KR101061825B1 (ko) 헤더탱크 일체형 자동차용 열교환기 및 그의 제작방법
EP2390609B1 (en) A cooling device
JP2007010296A (ja) 熱交換器
KR20050030490A (ko) 열교환기
JP2001133078A (ja) 管状部材の接続構造及びその管接続部形成方法並びにその接続構造を用いた流体分流器
WO2003052337A1 (en) Tube and method for manufacturing tube, tube for heat exchanger and method for manufacturing tube for heat exchanger, and heat exchanger and mehod for manufacturing heat exchanger
KR101538346B1 (ko) 열교환기의 제작 방법
JP7209825B2 (ja) 熱交換器、管継手および管の接続方法
JPH07305992A (ja) 熱交換器のヘッダタンク
JP2005114199A (ja) 熱交換器のヘッダおよびその製造方法
WO2021199458A1 (ja) 熱交換器用ヘッダ、熱交換器、熱交換器用ヘッダの製造方法、及び熱交換器の製造方法
JPH09303988A (ja) ヘッダタンクの製造方法
JP2014001902A (ja) 熱交換器用チューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016002244

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796353

Country of ref document: EP

Kind code of ref document: A1