WO2016185570A1 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
WO2016185570A1
WO2016185570A1 PCT/JP2015/064374 JP2015064374W WO2016185570A1 WO 2016185570 A1 WO2016185570 A1 WO 2016185570A1 JP 2015064374 W JP2015064374 W JP 2015064374W WO 2016185570 A1 WO2016185570 A1 WO 2016185570A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
centrifugal compressor
hub
hole
blades
Prior art date
Application number
PCT/JP2015/064374
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 川口
澄賢 平舘
聖英 坂本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017518672A priority Critical patent/JPWO2016185570A1/en
Priority to PCT/JP2015/064374 priority patent/WO2016185570A1/en
Priority to US15/574,329 priority patent/US20180135643A1/en
Publication of WO2016185570A1 publication Critical patent/WO2016185570A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/289Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps having provision against erosion or for dust-separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/706Humidity separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage

Definitions

  • the present invention relates to a centrifugal compressor, and more particularly to a centrifugal compressor suitable for use in a gas field producing natural gas.
  • the working fluids of compressors used in gas fields that produce natural gas include not only natural gas but also liquids containing light liquid hydrocarbons called water and condensate. It is mentioned that it is in the operating environment which mixes. In particular, in the deep water and gas field described above, the liquid fraction is very high.
  • Patent Documents 1 and 2 can be cited as prior art documents of a compressor that copes with such a point.
  • Patent Document 2 describes that a plurality of grooves are extended from the inlet region to the outlet region so that fluid flows from the inlet region in the radially outward direction according to the rotation of the impeller disk.
  • the present invention has been made in view of the above points, and the object of the present invention is to operate without reducing the efficiency and operating range of the impeller even when operating in an operating environment in which liquid components are mixed. Is to provide a simple centrifugal compressor.
  • a centrifugal compressor has a rotating shaft that is driven to rotate, and a blade having a plurality of blades that are held by a hub fixed to the rotating shaft and provided at predetermined intervals in the circumferential direction.
  • a centrifugal compressor that compresses fluid by rotation of the impeller, wherein the hub is provided with a plurality of through-holes penetrating from the front side to the back side of the impeller.
  • centrifugal compressor of the present invention will be described based on the illustrated embodiment.
  • symbol is used for the same component.
  • FIG. 1 and 2 show a first embodiment of a centrifugal compressor 1 of the present invention.
  • the centrifugal compressor 1 of the present embodiment employs a turbo centrifugal compressor, and is held by a rotating shaft 11 that is rotationally driven and a hub 14 that is fixed to the rotating shaft 11 and is circumferentially driven. 1 and an impeller 10 having a plurality of blades 12 provided at substantially equal intervals (predetermined intervals). Further, in this embodiment, the hub 14 is connected to the surface side of the impeller 10 (in FIG. 1). A plurality of through holes 15 penetrating from the left side to the back side (left side in FIG. 1) are provided. In addition, as shown in FIG. 3, the through hole 15 is installed between the outer diameter R h of the hub 14 and the outer diameter R sh of the shroud 13 of the blade 12.
  • the through-hole 15 is formed on the hub 14 on the rotary shaft 11 side between the blades 12 from the front side of the impeller 10 to the back side (from the front side to the back side in FIG. 2). It is also provided through.
  • the working fluid sucked from the suction port (on the left side in FIG. 1) by the rotation of the impeller 10 is accelerated and boosted by the centrifugal action of the impeller 10 and is guided downstream. It is burned.
  • the liquid component that has flowed into the impeller 10 tries to adhere to the hub 14 once, but most of the liquid droplets are the outer diameter R h of the hub 14 and the shroud 13. Since the liquid is discharged to the rear side of the impeller 10 through the through-hole 15 installed between the outer diameters R sh of the nozzles, the liquid component can be prevented from adhering to the vanes 12 and the shaft power of the impeller 10 can be increased. Can be suppressed. Further, since the adhesion of the droplets to the blades 12 and the hub 14 is suppressed, it is possible to suppress the reduction of the operation range and the generation of unstable fluid force due to the blockage of the flow path.
  • the groove 17 extends from the rotary shaft 11 side to the through hole 15 along the inner surface of the hub 14. Are formed. Moreover, the groove 17 and the through hole 15, as shown in FIG. 6, is disposed between the outer diameter R sh of the shroud 13 of the outer diameter R h and blades 12 of the hub 14.
  • the working fluid sucked from the suction port (on the left side in FIG. 4) by the rotation of the impeller 10 is increased in speed and increased in pressure by the centrifugal action of the impeller 10, and is downstream.
  • the liquid component that has flowed into the impeller 10 tries to adhere to the hub 14 once, but the through hole is formed by the groove 17 disposed between the outer diameter R h of the hub 14 and the outer diameter R sh of the shroud 13. Since the liquid component is smoothly guided to 15 and efficiently discharged to the back side of the impeller 10 through the through-hole 15, the liquid component can be prevented from adhering to the blade 12, and the shaft power of the impeller 10 is increased. It is possible to suppress a decrease in efficiency due to.
  • FIG. 7 shows a third embodiment of the centrifugal compressor 1 of the present invention.
  • the configuration of the present embodiment shown in the figure is substantially the same as that of the first embodiment described above, but in this embodiment, the rear surface of the impeller 10 flows backward from the outlet of the impeller 10 to the through hole 15.
  • Leakage reducing means 16 for reducing the leakage flow is provided.
  • the leakage reducing means 16 may be provided in the configuration of the second embodiment.
  • the leakage reducing means 16 includes a protruding portion 14A protruding in the axial direction from the back side of the hub 14 (the right side in FIG. 7), and an uneven portion formed in a part of the casing 18 so as to face the protruding portion 14A.
  • the projecting portion 14A and the concavo-convex portion 18A form a seal portion.
  • the liquid component flowing into the impeller 10 is to adhere temporarily to the hub 14, most droplets of an outer diameter R h and shroud 13 of the hub 14 Since it is discharged to the back side of the impeller 10 through the through-hole 15 installed between the outer diameters R sh, the liquid component can be prevented from adhering to the blades 12, and the shaft power of the impeller 10 can be efficiently increased. The decrease can be suppressed. Moreover, since the leakage reduction means 16 installed on the back side of the impeller 10 can reduce the leakage flow that flows backward from the outlet of the impeller 10 to the through hole 15, the reduction in the efficiency of the impeller 10 is suppressed. Is possible.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

In order to enable operation with no reduction in the efficiency of the impeller and no reduction in the operating range, even when operating in an operating environment that includes liquids, this centrifugal compressor is equipped with a rotationally driven rotary shaft and an impeller having multiple blades retained on and provided at prescribed intervals in the circumferential direction of a hub affixed to the rotary shaft, and compresses a fluid by the rotation of the impeller, and is characterized in that multiple through-holes penetrating from the front side of the impeller to the back side thereof are provided on the hub.

Description

遠心圧縮機Centrifugal compressor
 本発明は遠心圧縮機に係り、特に、天然ガスを産出するガス田で使用されるものに好適な遠心圧縮機に関する。 The present invention relates to a centrifugal compressor, and more particularly to a centrifugal compressor suitable for use in a gas field producing natural gas.
 近年、化石燃料に対する需要の増加と採掘技術の発展に伴い、在来型ガス田から非在来型ガス田へ開発がシフトしつつあり、例えば、大深水やガス田直下といった苛酷環境に圧縮機を設置する必要が生じてきた。 In recent years, with the increase in demand for fossil fuels and the development of mining technology, development is shifting from conventional gas fields to non-conventional gas fields. For example, compressors can be used in harsh environments such as deep water and gas fields. It has become necessary to install.
 大深水においては、数百メートルの海底に圧縮機を設置し、地中の貯留層から天然ガスを圧送する方法(サブシー圧縮機)が検討されている。また、ガス田直下においては、地下数千メートルのガス井内部に圧縮機を投入し、井戸の底部でガスを圧縮して地上まで送り出す方法が提唱され、そのための圧縮機(ダウンホール圧縮機)の研究開発が行われている。 In large deep water, a method (sub-sea compressor) is being investigated in which a compressor is installed on the seabed of several hundred meters and natural gas is pumped from the underground reservoir. Also, just under the gas field, a method was proposed in which a compressor was introduced into a gas well that was several thousand meters underground, and the gas was compressed at the bottom of the well and sent to the ground. The compressor for that purpose (downhole compressor) R & D is underway.
 開発当初は地下の圧力は高いが、ガスを採取するにつれて内部の圧力が下がっていく。ガス田の地下の圧力が高い間は、天然ガスを地上まで自噴させることができるが、圧力が限界以下に低下するとガスを自噴させることができなくなるため、従来は、圧力が下がったガス井は枯渇したものとされていた。 At the beginning of development, the underground pressure is high, but the internal pressure decreases as the gas is collected. Natural gas can be self-injected to the ground while the pressure in the underground of the gas field is high, but if the pressure drops below the limit, gas cannot be self-injected. It was supposed to be depleted.
 しかし、地下の圧力がガスを自噴させるには不十分なレベルに低下した後でも、ガス田の内部にはまだ相当量の天然ガスが残っている。 However, even after the underground pressure has dropped to a level that is insufficient to cause gas to self-eject, there is still a substantial amount of natural gas inside the gas field.
 そこで、ダウンホール圧縮機を適用しガス田直下の圧力をブーストすることで、ガス田の生産能力を回復することが可能であると考えられている。 Therefore, it is considered possible to recover the production capacity of the gas field by applying a downhole compressor and boosting the pressure directly under the gas field.
 ところで、上記したサブシー圧縮機やダウンホール圧縮機は、ガス田の底部或いはガス田直下に設置されるため、作動環境が非常に厳しい。 By the way, since the above-mentioned subsea compressor and downhole compressor are installed at the bottom of the gas field or directly under the gas field, the operating environment is very severe.
 一般的に、天然ガスを産出するガス田で使用される圧縮機の作動流体には、天然ガスだけでなく、水やコンデンセートと呼ばれる軽質液状炭化水素が含まれた液分があり、この液分が混入する動作環境下にあることが特徴として挙げられる。特に、先に述べた大深水やガス田直下においては、液分率が非常に高い環境下にある。 In general, the working fluids of compressors used in gas fields that produce natural gas include not only natural gas but also liquids containing light liquid hydrocarbons called water and condensate. It is mentioned that it is in the operating environment which mixes. In particular, in the deep water and gas field described above, the liquid fraction is very high.
 そのような環境下において、圧縮機の内部に侵入した液分は、羽根車への衝突による効率の減少、ファウリングに起因する流路の閉塞による作動範囲の減少や不安定流体力の発生、壊食による羽根車の減肉をもたらすと考えられており、天然ガスを産出するガス田で使用される圧縮機には、液分が混入する動作環境下において性能低下させることなく圧縮機を運転する技術が必要となる。 Under such circumstances, the liquid component that has entered the inside of the compressor is reduced in efficiency due to collision with the impeller, reduced operating range due to blockage due to fouling, generation of unstable fluid force, The compressor used in the gas field that produces natural gas is thought to bring about thinning of the impeller due to erosion. Technology to do is necessary.
 このような点に対処した圧縮機の先行技術文献として、特許文献1及び2を挙げることができる。 Patent Documents 1 and 2 can be cited as prior art documents of a compressor that copes with such a point.
 上記特許文献1には、羽根車インペラの羽根部の表面に複数本の溝部を形成し、この溝部を利用して、回転軸方向から流入してきた粒体を径方向外側へ流すようにしたことが記載されている。 In the above-mentioned Patent Document 1, a plurality of grooves are formed on the surface of the blade portion of the impeller impeller, and the particles flowing in from the rotation axis direction are allowed to flow radially outward using the groove portion. Is described.
 一方、特許文献2には、羽根車ディスクの回転に従って入口領域から半径方向の外側方向に流体が流れるように、入口領域から出口領域まで複数の溝を伸ばしたことが記載されている。 On the other hand, Patent Document 2 describes that a plurality of grooves are extended from the inlet region to the outlet region so that fluid flows from the inlet region in the radially outward direction according to the rotation of the impeller disk.
特開2014-141909号公報JP 2014-141909 A 特表2003-511596号公報Special table 2003-511596 gazette
 しかしながら、特許文献1及び2に記載されている技術では、溝を設けることで流体が流れ易くはなるが、流体が内部に残り羽根車に付着する可能性があり、根本的な問題解決には至っていない。 However, in the techniques described in Patent Documents 1 and 2, it is easy to flow the fluid by providing the groove, but there is a possibility that the fluid may remain inside and adhere to the impeller. Not reached.
 本発明は上述の点に鑑みなされたもので、その目的とするところは、液分が混入する動作環境で稼動するものであっても、羽根車の効率や作動範囲を減少させることなく運転可能な遠心圧縮機を提供することにある。 The present invention has been made in view of the above points, and the object of the present invention is to operate without reducing the efficiency and operating range of the impeller even when operating in an operating environment in which liquid components are mixed. Is to provide a simple centrifugal compressor.
 本発明の遠心圧縮機は、上記目的を達成するために、回転駆動する回転軸と、該回転軸に固定されたハブに保持され周方向に所定の間隔で設けられた複数の羽根を持つ羽根車とを備え、前記羽根車の回転で流体を圧縮する遠心圧縮機であって、前記ハブに、前記羽根車の表面側から背面側に貫通する複数の貫通孔が設けられていることを特徴とする。 In order to achieve the above object, a centrifugal compressor according to the present invention has a rotating shaft that is driven to rotate, and a blade having a plurality of blades that are held by a hub fixed to the rotating shaft and provided at predetermined intervals in the circumferential direction. A centrifugal compressor that compresses fluid by rotation of the impeller, wherein the hub is provided with a plurality of through-holes penetrating from the front side to the back side of the impeller. And
 本発明によれば、液分が混入する動作環境で稼動するものであっても、羽根車の効率や作動範囲を減少させることなく運転可能となる効果を得ることができる。 According to the present invention, it is possible to obtain the effect of being able to operate without reducing the efficiency and the operating range of the impeller even if it operates in an operating environment in which liquid components are mixed.
本発明の遠心圧縮機の実施例1を示す上半分の断面図である。It is sectional drawing of the upper half which shows Example 1 of the centrifugal compressor of this invention. 本発明の遠心圧縮機の実施例1を示す上半分の斜視図である。It is a perspective view of the upper half which shows Example 1 of the centrifugal compressor of this invention. 本発明の遠心圧縮機の実施例1における貫通孔の位置を説明するための断面図である。It is sectional drawing for demonstrating the position of the through-hole in Example 1 of the centrifugal compressor of this invention. 本発明の遠心圧縮機の実施例2を示す上半分の断面図である。It is sectional drawing of the upper half which shows Example 2 of the centrifugal compressor of this invention. 本発明の遠心圧縮機の実施例2を示す上半分の斜視図である。It is a perspective view of the upper half which shows Example 2 of the centrifugal compressor of this invention. 本発明の遠心圧縮機の実施例2における貫通孔の位置を説明するための断面図である。It is sectional drawing for demonstrating the position of the through-hole in Example 2 of the centrifugal compressor of this invention. 本発明の遠心圧縮機の実施例3を示す上半分の断面図である。It is sectional drawing of the upper half which shows Example 3 of the centrifugal compressor of this invention. 従来の遠心圧縮機を示す上半分の断面図である。It is sectional drawing of the upper half which shows the conventional centrifugal compressor.
 以下、図示した実施例に基づいて本発明の遠心圧縮機を説明する。なお、各実施例において、同一構成部品には同符号を使用する。 Hereinafter, the centrifugal compressor of the present invention will be described based on the illustrated embodiment. In addition, in each Example, the same code | symbol is used for the same component.
 図1及び図2に、本発明の遠心圧縮機1の実施例1を示す。 1 and 2 show a first embodiment of a centrifugal compressor 1 of the present invention.
 該図に示すように、本実施例の遠心圧縮機1はターボ型遠心圧縮機が採用されており、回転駆動する回転軸11と、この回転軸11に固定されたハブ14に保持され周方向にほぼ等間隔(所定の間隔)で設けられた複数の羽根12を持つ羽根車10とを備えて構成され、更に、本実施例では、ハブ14に、羽根車10の表面側(図1の左側)から背面側(図1の左側)へと貫通する複数の貫通孔15が設けられている。しかも、この貫通孔15は、図3に示すように、ハブ14の外径Rと羽根12のシュラウド13の外径Rshの間に設置されている。 As shown in the figure, the centrifugal compressor 1 of the present embodiment employs a turbo centrifugal compressor, and is held by a rotating shaft 11 that is rotationally driven and a hub 14 that is fixed to the rotating shaft 11 and is circumferentially driven. 1 and an impeller 10 having a plurality of blades 12 provided at substantially equal intervals (predetermined intervals). Further, in this embodiment, the hub 14 is connected to the surface side of the impeller 10 (in FIG. 1). A plurality of through holes 15 penetrating from the left side to the back side (left side in FIG. 1) are provided. In addition, as shown in FIG. 3, the through hole 15 is installed between the outer diameter R h of the hub 14 and the outer diameter R sh of the shroud 13 of the blade 12.
 なお、上記貫通孔15は、図2に示すように、羽根12間の回転軸11側のハブ14に、羽根車10の表面側から背面側(図2の紙面手前側から奥側)へと貫通して設けられていることでもある。 As shown in FIG. 2, the through-hole 15 is formed on the hub 14 on the rotary shaft 11 side between the blades 12 from the front side of the impeller 10 to the back side (from the front side to the back side in FIG. 2). It is also provided through.
 このような本実施例の構成において、羽根車10の回転により吸込口(図1の左側にある)から吸入した作動流体は、羽根車10の遠心作用により増速、昇圧され下流側へと導かれる。 In such a configuration of the present embodiment, the working fluid sucked from the suction port (on the left side in FIG. 1) by the rotation of the impeller 10 is accelerated and boosted by the centrifugal action of the impeller 10 and is guided downstream. It is burned.
 通常、液分が混入する動作環境で稼動した場合、図8に示す従来の遠心圧縮機1においては、羽根車10へ混入した液分は一旦ハブ14へ付着する。更に、ハブ14を通じて羽根12に液分が付着すると、羽根車10の軸動力が増加するため、遠心圧縮機1の効率は低下する。また、羽根12並びにハブ14へ付着した液滴は、流路の閉塞させるため作動範囲の減少や不安定流体力の発生をもたらと共に、壊食による羽根車10の減肉をもたらしてしまう。 Normally, when operating in an operating environment in which liquid components are mixed, in the conventional centrifugal compressor 1 shown in FIG. 8, the liquid components mixed into the impeller 10 once adhere to the hub 14. Furthermore, if liquid components adhere to the blades 12 through the hub 14, the shaft power of the impeller 10 increases, and the efficiency of the centrifugal compressor 1 decreases. Further, the droplets adhering to the blades 12 and the hub 14 cause the flow path to be blocked, thereby reducing the operating range and generating unstable fluid force, and also causing the impeller 10 to be thinned by erosion.
 これに対して、上述した本実施例の構成では、羽根車10内へ流入した液分が一旦ハブ14へ付着しようとするが、ほとんどの液滴は、ハブ14の外径Rとシュラウド13の外径Rshの間に設置された貫通孔15を通じて羽根車10の背面側へ排出されるため、羽根12に対する液分の付着を防ぐことができ、羽根車10の軸動力が増加による効率の低下を抑制することが可能となる。また、羽根12並びにハブ14に対する液滴の付着が抑制されるため、流路の閉塞による作動範囲の減少や不安定流体力の発生を抑制することが可能となる。 In contrast, in the configuration of the present embodiment described above, the liquid component that has flowed into the impeller 10 tries to adhere to the hub 14 once, but most of the liquid droplets are the outer diameter R h of the hub 14 and the shroud 13. Since the liquid is discharged to the rear side of the impeller 10 through the through-hole 15 installed between the outer diameters R sh of the nozzles, the liquid component can be prevented from adhering to the vanes 12 and the shaft power of the impeller 10 can be increased. Can be suppressed. Further, since the adhesion of the droplets to the blades 12 and the hub 14 is suppressed, it is possible to suppress the reduction of the operation range and the generation of unstable fluid force due to the blockage of the flow path.
 従って、本実施例のように、羽根車10の表面側から背面側へと貫通する複数の貫通穴15を設置することで、液分が混入する動作環境で稼動するものであっても、羽根車10に混入した液滴を効率的に除去することが可能となり、羽根車10の効率や作動範囲を減少させることなく運転可能とすることができる。 Therefore, as in this embodiment, by installing a plurality of through holes 15 penetrating from the front surface side to the back surface side of the impeller 10, even if it operates in an operating environment in which liquid components are mixed, the blade It is possible to efficiently remove the droplets mixed in the wheel 10, and it is possible to operate without reducing the efficiency and the operating range of the impeller 10.
 図4及び図5に、本発明の遠心圧縮機1の実施例2を示す。 4 and 5 show a second embodiment of the centrifugal compressor 1 of the present invention.
 該図に示す本実施例の構成は、上述した実施例1と略同様な構成であるが、本実施例では、ハブ14の内面に沿って、回転軸11側から貫通孔15まで延びる溝17が複数個形成されている。しかも、この溝17と貫通孔15は、図6に示すように、ハブ14の外径Rと羽根12のシュラウド13の外径Rshの間に設置されている。 The configuration of this embodiment shown in the figure is substantially the same as that of the first embodiment described above, but in this embodiment, the groove 17 extends from the rotary shaft 11 side to the through hole 15 along the inner surface of the hub 14. Are formed. Moreover, the groove 17 and the through hole 15, as shown in FIG. 6, is disposed between the outer diameter R sh of the shroud 13 of the outer diameter R h and blades 12 of the hub 14.
 このような本実施例の構成とすることにより、羽根車10の回転により吸込口(図4の左側にある)から吸入した作動流体は、羽根車10の遠心作用により増速、昇圧され下流へと導かれ、羽根車10内へ流入した液分が一旦ハブ14へ付着しようとするが、ハブ14の外径Rとシュラウド13の外径Rshの間に設置された溝17により貫通孔15へスムーズに液分が導かれ、貫通孔15を通じて羽根車10の背面側へ効率的に排出されるため、羽根12に対する液分の付着を防ぐことができ、羽根車10の軸動力が増加による効率の低下を抑制することが可能となる。 With such a configuration of the present embodiment, the working fluid sucked from the suction port (on the left side in FIG. 4) by the rotation of the impeller 10 is increased in speed and increased in pressure by the centrifugal action of the impeller 10, and is downstream. The liquid component that has flowed into the impeller 10 tries to adhere to the hub 14 once, but the through hole is formed by the groove 17 disposed between the outer diameter R h of the hub 14 and the outer diameter R sh of the shroud 13. Since the liquid component is smoothly guided to 15 and efficiently discharged to the back side of the impeller 10 through the through-hole 15, the liquid component can be prevented from adhering to the blade 12, and the shaft power of the impeller 10 is increased. It is possible to suppress a decrease in efficiency due to.
 従って、本実施例のように、羽根車10の表面側から背面側へと貫通する複数の貫通穴15と回転軸11側から貫通孔15まで延びる溝17を設置することで、液分が混入する動作環境で稼動するものであっても、羽根車10に混入した液滴を効率的に除去することが可能となり、羽根車10の効率や作動範囲を減少させることなく運転可能とすることができる。 Therefore, as in the present embodiment, by installing a plurality of through holes 15 penetrating from the front surface side to the back surface side of the impeller 10 and a groove 17 extending from the rotary shaft 11 side to the through hole 15, liquid components are mixed. Even in an operating environment, it is possible to efficiently remove droplets mixed in the impeller 10 and to enable operation without reducing the efficiency and operating range of the impeller 10. it can.
 図7に、本発明の遠心圧縮機1の実施例3を示す。 FIG. 7 shows a third embodiment of the centrifugal compressor 1 of the present invention.
 該図に示す本実施例の構成は、上述した実施例1と略同様な構成であるが、本実施例では、羽根車10の背面側に、羽根車10の出口から貫通孔15に逆流する漏れ流れを低減する漏れ低減手段16を備えている。なお、この漏れ低減手段16は、実施例2の構成に設けてもよい。 The configuration of the present embodiment shown in the figure is substantially the same as that of the first embodiment described above, but in this embodiment, the rear surface of the impeller 10 flows backward from the outlet of the impeller 10 to the through hole 15. Leakage reducing means 16 for reducing the leakage flow is provided. The leakage reducing means 16 may be provided in the configuration of the second embodiment.
 上記した漏れ低減手段16は、ハブ14の背面側(図7の右側)から軸方向に突出する突出部14Aと、この突出部14Aと対向するようにケーシング18の一部に形成された凹凸部18Aとから成り、突出部14Aと凹凸部18Aでシール部を形成しているものである。 The leakage reducing means 16 includes a protruding portion 14A protruding in the axial direction from the back side of the hub 14 (the right side in FIG. 7), and an uneven portion formed in a part of the casing 18 so as to face the protruding portion 14A. The projecting portion 14A and the concavo-convex portion 18A form a seal portion.
 このような本実施例の構成とすることにより、羽根車10内へ流入した液分が一旦ハブ14へ付着しようとするが、ほとんどの液滴は、ハブ14の外径Rとシュラウド13の外径Rshの間に設置された貫通孔15を通じて羽根車10の背面側へ排出されるため、羽根12に対する液分の付着を防ぐことができ、羽根車10の軸動力が増加による効率の低下を抑制可能となる。また、羽根車10の背面側に設置した漏れ低減手段16により、羽根車10の出口から貫通孔15へ逆流する漏れ流れを低減することができるため、羽根車10の効率の低下を抑制することが可能となる。 With such a configuration of the present embodiment, the liquid component flowing into the impeller 10 is to adhere temporarily to the hub 14, most droplets of an outer diameter R h and shroud 13 of the hub 14 Since it is discharged to the back side of the impeller 10 through the through-hole 15 installed between the outer diameters R sh, the liquid component can be prevented from adhering to the blades 12, and the shaft power of the impeller 10 can be efficiently increased. The decrease can be suppressed. Moreover, since the leakage reduction means 16 installed on the back side of the impeller 10 can reduce the leakage flow that flows backward from the outlet of the impeller 10 to the through hole 15, the reduction in the efficiency of the impeller 10 is suppressed. Is possible.
 従って、本実施例のように、羽根車10の表面側から背面側へと貫通する複数の貫通穴15と羽根車10の出口から貫通孔15に逆流する漏れ流れを低減する漏れ低減手段16を設置することで、液分が混入する動作環境で稼動するものであっても、羽根車10に混入した液滴を効率的に除去することが可能となり、羽根車10の効率や作動範囲を減少させることなく運転可能とすることができる。 Therefore, as in the present embodiment, there are provided a plurality of through holes 15 penetrating from the front surface side to the rear surface side of the impeller 10 and leakage reducing means 16 for reducing the leakage flow flowing backward from the outlet of the impeller 10 to the through hole 15. By installing, even if it operates in an operating environment in which liquid components are mixed, it is possible to efficiently remove droplets mixed in the impeller 10 and reduce the efficiency and operating range of the impeller 10 It is possible to drive without making it happen.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…遠心圧縮機、10…羽根車、11…回転軸、12…羽根、13…シュラウド、14…ハブ、14A…突出部、15…貫通孔、16…漏れ低減手段、17…溝、18…ケーシング、18A…凹凸部。 DESCRIPTION OF SYMBOLS 1 ... Centrifugal compressor, 10 ... Impeller, 11 ... Rotating shaft, 12 ... Blade, 13 ... Shroud, 14 ... Hub, 14A ... Protruding part, 15 ... Through-hole, 16 ... Leak reduction means, 17 ... Groove, 18 ... Casing, 18A ... Uneven portion.

Claims (7)

  1.  回転駆動する回転軸と、該回転軸に固定されたハブに保持され周方向に所定の間隔で設けられた複数の羽根を持つ羽根車とを備え、前記羽根車の回転で流体を圧縮する遠心圧縮機であって、
     前記ハブに、前記羽根車の表面側から背面側に貫通する複数の貫通孔が設けられていることを特徴とする遠心圧縮機。
    A centrifuge that compresses fluid by rotation of the impeller, and a rotating shaft that rotates and an impeller that is held by a hub fixed to the rotating shaft and has a plurality of blades provided at predetermined intervals in the circumferential direction. A compressor,
    A centrifugal compressor, wherein the hub is provided with a plurality of through holes penetrating from the front side to the back side of the impeller.
  2.  請求項1に記載の遠心圧縮機において、
     前記貫通孔は、前記羽根間の前記回転軸側の前記ハブに設けられていることを特徴とする遠心圧縮機。
    The centrifugal compressor according to claim 1,
    The through-hole is provided in the hub on the rotary shaft side between the blades.
  3.  請求項1又は2記載の遠心圧縮機において、
     前記貫通孔は、前記ハブの入口半径Rと前記羽根のシュラウド入口半径Rshとの間に設置されていることを特徴とする遠心圧縮機。
    The centrifugal compressor according to claim 1 or 2,
    The through hole is a centrifugal compressor, characterized in that it is disposed between the shroud inlet radius R sh inlet radius R h and the blades of the hub.
  4.  請求項1又は2記載の遠心圧縮機において、
     前記ハブの内面に沿って、前記貫通孔まで延びる溝が複数個形成されていることを特徴とする遠心圧縮機。
    The centrifugal compressor according to claim 1 or 2,
    A plurality of grooves extending to the through hole are formed along the inner surface of the hub.
  5.  請求項4に記載の遠心圧縮機において、
     前記溝と貫通孔は、前記ハブの入口半径Rと前記羽根のシュラウド入口半径Rshとの間に設置されることを特徴とする遠心圧縮機。
    The centrifugal compressor according to claim 4,
    The groove and the through hole, a centrifugal compressor, characterized in that installed between the shroud inlet radius R sh inlet radius R h and the blades of the hub.
  6.  請求項1乃至5のいずれか1項に記載の遠心圧縮機において、
     前記羽根車の背面側に、前記羽根車出口から前記貫通孔に逆流する漏れ流れを低減する漏れ低減手段を備えていることを特徴とする遠心圧縮機。
    The centrifugal compressor according to any one of claims 1 to 5,
    A centrifugal compressor comprising a leakage reduction means for reducing a leakage flow that flows backward from the impeller outlet to the through hole on the back side of the impeller.
  7.  請求項6に記載の遠心圧縮機において、
     前記漏れ低減手段は、前記ハブの背面側から軸方向に突出する突出部と、該突出部と対向するようにケーシングの一部に形成された凹凸部とから成り、前記突出部と凹凸部でシール部を形成していることを特徴とする遠心圧縮機。
    The centrifugal compressor according to claim 6, wherein
    The leakage reducing means includes a protruding portion that protrudes in the axial direction from the back side of the hub, and an uneven portion that is formed on a part of the casing so as to face the protruding portion. A centrifugal compressor characterized by forming a seal portion.
PCT/JP2015/064374 2015-05-19 2015-05-19 Centrifugal compressor WO2016185570A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017518672A JPWO2016185570A1 (en) 2015-05-19 2015-05-19 Centrifugal compressor
PCT/JP2015/064374 WO2016185570A1 (en) 2015-05-19 2015-05-19 Centrifugal compressor
US15/574,329 US20180135643A1 (en) 2015-05-19 2015-05-19 Centrifugal Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064374 WO2016185570A1 (en) 2015-05-19 2015-05-19 Centrifugal compressor

Publications (1)

Publication Number Publication Date
WO2016185570A1 true WO2016185570A1 (en) 2016-11-24

Family

ID=57319618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064374 WO2016185570A1 (en) 2015-05-19 2015-05-19 Centrifugal compressor

Country Status (3)

Country Link
US (1) US20180135643A1 (en)
JP (1) JPWO2016185570A1 (en)
WO (1) WO2016185570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022020249A (en) * 2020-07-20 2022-02-01 株式会社豊田自動織機 Centrifugal compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375694B2 (en) * 2020-07-15 2023-11-08 株式会社豊田自動織機 centrifugal compressor
JP2022056948A (en) * 2020-09-30 2022-04-11 株式会社豊田自動織機 Centrifugal compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113101U (en) * 1980-02-01 1981-09-01
US5628616A (en) * 1994-12-19 1997-05-13 Camco International Inc. Downhole pumping system for recovering liquids and gas
JP2009133267A (en) * 2007-11-30 2009-06-18 Mitsubishi Heavy Ind Ltd Impeller of compressor
JP5299727B2 (en) * 2010-06-30 2013-09-25 アイシン精機株式会社 Impeller

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276077A (en) * 1941-05-09 1942-03-10 Duriron Co Pump impeller
US2658455A (en) * 1948-02-26 1953-11-10 Laval Steam Turbine Co Impeller with center intake
US3213794A (en) * 1962-02-02 1965-10-26 Nash Engineering Co Centrifugal pump with gas separation means
US3481531A (en) * 1968-03-07 1969-12-02 United Aircraft Canada Impeller boundary layer control device
US4060337A (en) * 1976-10-01 1977-11-29 General Motors Corporation Centrifugal compressor with a splitter shroud in flow path
US4152092A (en) * 1977-03-18 1979-05-01 Swearingen Judson S Rotary device with bypass system
NO144048C (en) * 1978-01-02 1981-06-10 Jan Mowill PROCEDURE FOR STABILIZING THE FLOW OF WORKING MEDIUM IN SEWING MACHINES AND COMPRESSOR AND TURBINE MACHINERY FOR IMPLEMENTING THE PROCEDURE
US4277222A (en) * 1979-01-11 1981-07-07 Teledyne Industries, Inc. Turbine engine compressor
US4472107A (en) * 1982-08-03 1984-09-18 Union Carbide Corporation Rotary fluid handling machine having reduced fluid leakage
IT1198017B (en) * 1986-08-06 1988-12-21 Nuovo Pignone Spa CENTRIFUGAL PUMP PARTICULARLY SUITABLE FOR THE PUMPING OF HIGH GAS CONTENT FLUIDS
US4820115A (en) * 1987-11-12 1989-04-11 Dresser Industries, Inc. Open impeller for centrifugal compressors
US4890980A (en) * 1988-08-08 1990-01-02 Ingersoll-Rand Company Centrifugal pump
US4997340A (en) * 1989-09-25 1991-03-05 Carrier Corporation Balance piston and seal arrangement
DE4319628A1 (en) * 1993-06-15 1994-12-22 Klein Schanzlin & Becker Ag Structured surfaces of fluid machine components
JP3567064B2 (en) * 1997-06-23 2004-09-15 株式会社 日立インダストリイズ Labyrinth seal device and fluid machine provided with the same
JP2000050602A (en) * 1998-07-28 2000-02-18 Calsonic Corp Blower brushless motor
SE525029C2 (en) * 2001-07-13 2004-11-16 Abs Pump Prod Ab Device at centrifugal pump
US6752590B2 (en) * 2002-09-26 2004-06-22 International Engine Intellectual Property Company, Llc Water pump and impeller therefor
US20070134086A1 (en) * 2003-12-03 2007-06-14 Mitsubishi Heavy Indusries Ltd. Impeller for compressor
EP1937979B1 (en) * 2005-09-19 2010-06-23 Ingersoll-Rand Company Centrifugal compressor including a seal system
US20070063449A1 (en) * 2005-09-19 2007-03-22 Ingersoll-Rand Company Stationary seal ring for a centrifugal compressor
DE602006019310D1 (en) * 2005-09-19 2011-02-10 Ingersoll Rand Co DRIVE WHEEL FOR A RADIAL COMPRESSOR
NO330015B1 (en) * 2009-06-22 2011-02-07 Statoil Asa An axial gas thrust bearing for rotary machinery rotors
US8935926B2 (en) * 2010-10-28 2015-01-20 United Technologies Corporation Centrifugal compressor with bleed flow splitter for a gas turbine engine
US20140030055A1 (en) * 2012-07-25 2014-01-30 Summit Esp, Llc Apparatus, system and method for pumping gaseous fluid
US9689402B2 (en) * 2014-03-20 2017-06-27 Flowserve Management Company Centrifugal pump impellor with novel balancing holes that improve pump efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113101U (en) * 1980-02-01 1981-09-01
US5628616A (en) * 1994-12-19 1997-05-13 Camco International Inc. Downhole pumping system for recovering liquids and gas
JP2009133267A (en) * 2007-11-30 2009-06-18 Mitsubishi Heavy Ind Ltd Impeller of compressor
JP5299727B2 (en) * 2010-06-30 2013-09-25 アイシン精機株式会社 Impeller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022020249A (en) * 2020-07-20 2022-02-01 株式会社豊田自動織機 Centrifugal compressor
JP7375698B2 (en) 2020-07-20 2023-11-08 株式会社豊田自動織機 centrifugal compressor

Also Published As

Publication number Publication date
JPWO2016185570A1 (en) 2018-03-15
US20180135643A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
US8070426B2 (en) System, method and apparatus for open impeller and diffuser assembly for multi-stage submersible pump
US9638207B2 (en) Centrifugal pump for handling abrasive-laden fluid
US10731651B2 (en) Apertures spaced around impeller bottom shroud of centrifugal pump
WO2016160016A1 (en) Balance chambers in electric submersible pumps
US20150204336A1 (en) Stepped Balance Ring for a Submersible Well Pump
WO2016185570A1 (en) Centrifugal compressor
AU2015363802B2 (en) Centrifugal pressure booster and method for modifying or constructing a centrifugal pressure booster
US20120014779A1 (en) Disc pump
RU2422679C1 (en) Stage of submersible pump
KR101393054B1 (en) Adapter for preventing cavitaion and centrifugal pump having adapter
US10260518B2 (en) Downhole electrical submersible pump with upthrust balance
RU2138691C1 (en) Stage of submersible multi-stage pump
US20190085862A1 (en) Compressor
JP7294942B2 (en) oil drilling pump
JP6903539B2 (en) Compressor
RU205750U1 (en) Impeller of submersible multistage vane pump
JP7320994B2 (en) multistage pump
RU74174U1 (en) STEP OF SUBMERSIBLE MULTISTAGE CENTRIFUGAL PUMP
RU2282754C1 (en) Compressor overrotor device and axial-flow compressor
JP2018132021A (en) Centrifugal compressor and method for using centrifugal compressor
RU66789U1 (en) PUMP DISPERSANT
WO2019220579A1 (en) Multi-stage pump
US20210213462A1 (en) Rotodynamic separator for multiphase fluid without a central hub
GB2539514A (en) Impellers for centrifugal pumps
RU147158U1 (en) STEP OF SUBMERSIBLE MULTISTAGE CENTRIFUGAL PUMP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518672

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892570

Country of ref document: EP

Kind code of ref document: A1