JP6903539B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP6903539B2
JP6903539B2 JP2017189450A JP2017189450A JP6903539B2 JP 6903539 B2 JP6903539 B2 JP 6903539B2 JP 2017189450 A JP2017189450 A JP 2017189450A JP 2017189450 A JP2017189450 A JP 2017189450A JP 6903539 B2 JP6903539 B2 JP 6903539B2
Authority
JP
Japan
Prior art keywords
impeller
compressor
liquid
motor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017189450A
Other languages
Japanese (ja)
Other versions
JP2019065726A (en
Inventor
大輔 川口
大輔 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017189450A priority Critical patent/JP6903539B2/en
Priority to PCT/JP2018/029714 priority patent/WO2019064948A1/en
Priority to US16/635,244 priority patent/US20200370559A1/en
Publication of JP2019065726A publication Critical patent/JP2019065726A/en
Application granted granted Critical
Publication of JP6903539B2 publication Critical patent/JP6903539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/10Purpose of the control system to cope with, or avoid, compressor flow instabilities
    • F05D2270/101Compressor surge or stall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

本発明は圧縮機に関し,特に天然ガスを産出するガス田で使用される圧縮機に関する。 The present invention relates to a compressor, and particularly to a compressor used in a gas field that produces natural gas.

近年,化石燃料に対する需要の増加と採掘技術の発展に伴い,在来型ガス田から非在来型ガス田へ開発がシフトしつつあり,例えば大深水やガス田直下といった苛酷環境に圧縮機を設置する必要が生じてきた。 In recent years, with the increase in demand for fossil fuels and the development of mining technology, development is shifting from conventional gas fields to unconventional gas fields. For example, compressors are used in harsh environments such as deep water and directly under gas fields. It has become necessary to install it.

大深水においては,数百メートルの海底に圧縮機を設置し,地中の貯留層から天然ガスを圧送する方法(サブシー圧縮機)が検討されている。また,ガス田直下においては,地下数千メートルのガス井内部に圧縮機を投入し,井戸の底部でガスを圧縮して地上まで送り出す方法が提唱され,そのための圧縮機(ダウンホール圧縮機)の研究開発が行われている。開発当初には地下の圧力が高いが,ガスを採取するにつれて内部の圧力が下がっていく。ガス田の地下の圧力が高い間は天然ガスを地上まで自噴させることができるが,圧力が限界以下に低下するとガスを自噴させることができなくなるため,従来は圧力が下がったガス井は枯渇したものとされていた。しかし,地下の圧力がガスを自噴させるには不十分なレベルに低下した後でも,ガス田の内部にはまだ相当量の天然ガスが残っている。 In deep water, a method of installing a compressor on the seabed several hundred meters and pumping natural gas from the underground reservoir (subsea compressor) is being studied. In addition, directly under the gas field, a method has been proposed in which a compressor is put inside a gas well several thousand meters underground, and the gas is compressed at the bottom of the well and sent out to the ground. A compressor for that purpose (downhole compressor) Research and development is being carried out. Underground pressure is high at the beginning of development, but internal pressure decreases as gas is collected. Natural gas can be self-injected to the ground while the underground pressure in the gas field is high, but when the pressure drops below the limit, the gas cannot be self-injected. It was supposed to be. However, even after the underground pressure has dropped to a level insufficient for self-injection of gas, a considerable amount of natural gas still remains inside the gas field.

そこで,ダウンホール圧縮機を適用しガス田直下の圧力をブーストすることで,ガス田の生産能力を回復することが可能であると考えられている。 Therefore, it is considered possible to restore the production capacity of the gas field by applying a downhole compressor to boost the pressure directly under the gas field.

以上説明したサブシー圧縮機やダウンホール圧縮機はガス田の底部あるいはガス田直下に設置されるため,作動環境が非常に厳しい。一般的に天然ガスを産出するガス田で使用される圧縮機の作動流体には天然ガスだけでなく,水やコンデンセートと呼ばれる軽質液状炭化水素が含まれた液分が混入する動作環境下にあることが特徴として挙げられる。特に先に述べた大深水やガス田直下においては,液分率が非常に高い環境下にある。そのような環境下において圧縮機内部に侵入した液分は羽根車への衝突による効率の減少,ファウリングに起因する流路の閉塞による作動範囲の減少や不安定流体力の発生,壊食による羽根車の減肉をもたらすと考えられており,天然ガスを産出するガス田で使用される圧縮機には,液分が混入する動作環境下において性能低下させることなく圧縮機を運転する技術が必要となる。 Since the subsea compressors and downhole compressors described above are installed at the bottom of the gas field or directly under the gas field, the operating environment is extremely harsh. The working fluid of compressors used in gas fields that generally produce natural gas is in an operating environment where not only natural gas but also water and liquids containing light liquid hydrocarbons called condensate are mixed. Is mentioned as a feature. Especially in the deep water and directly under the gas field mentioned above, the liquid fraction is very high. In such an environment, the liquid that has entered the compressor will have reduced efficiency due to collision with the impeller, reduced operating range due to blockage of the flow path due to fouling, generation of unstable fluid force, and erosion. It is thought that the wall thickness of the impeller will be reduced, and the compressor used in gas fields that produce natural gas has the technology to operate the compressor in an operating environment where liquids are mixed without degrading the performance. You will need it.

従って,本発明は液分が混入する動作環境で稼動する圧縮機において,羽根車の効率や作動範囲を減少させることなく運転可能とするために羽根車に混入した液滴を制御する方法に関するものである。従来の羽根車に混入した液滴を除去する構造に関するものとして[特許文献1]が挙げられる。 Therefore, the present invention relates to a method for controlling droplets mixed in an impeller in order to enable operation without reducing the efficiency and operating range of the impeller in a compressor operating in an operating environment in which liquids are mixed. Is. [Patent Document 1] is mentioned as a structure for removing droplets mixed in a conventional impeller.

特表2013−508618Special table 2013-508618

本発明の目的は,液分が混入する動作環境で稼動する圧縮機において羽根車の効率や作動範囲を減少させることなく運転可能とするために液分混入時に羽根車の運転状態を制御する圧縮機を提供することにある。 An object of the present invention is compression that controls the operating state of an impeller when liquid is mixed in order to enable operation of a compressor operating in an operating environment where liquid is mixed without reducing the efficiency and operating range of the impeller. To provide an opportunity.


上記課題を達成するために、本発明は、回転軸と、前記回転軸を駆動するモータと、前記モータへ電力を供給するインバータと、前記インバータを制御する演算手段と、前記回転軸に取り付けられた羽根車とを備えた圧縮機において、少なくとも前記モータから検出される軸動力の情報を用いて,前記羽根車の羽根に対する液滴の付着を抑制するように、前記羽根車の回転状態を制御することを特徴とするものである。

In order to achieve the above object, the present invention is attached to the rotating shaft, a motor for driving the rotating shaft, an inverter for supplying electric power to the motor, a calculation means for controlling the inverter, and the rotating shaft. In a compressor equipped with an impeller, at least the information of the axial power detected from the motor is used to control the rotational state of the impeller so as to suppress the adhesion of droplets to the blades of the impeller. It is characterized by doing.

更に、本発明は、圧縮機において、液膜の形成が判定される場合には,前記演算手段によって前記インバータを介して前記モータの回転速度を一時的に増加させるように制御を行うことを特徴とするものである。 Further, the present invention is characterized in that, when the formation of a liquid film is determined in the compressor, the calculation means controls the motor to temporarily increase the rotation speed via the inverter. Is to be.

また、上記課題を達成するために、本発明は、回転軸と、前記回転軸を駆動するモータと、前記モータへ電力を供給するインバータと、前記インバータを制御する演算手段と、前記回転軸に取り付けられた羽根車とを備えた圧縮機において、前記羽根車の上流に配置したセンサを備え、前記センサからの少なくとも液の流速の情報を用いて、前記羽根車の羽根に対する液滴の付着を抑制するように、前記羽根車の回転状態を制御することを特徴とするものである。 Further, in order to achieve the above problems, the present invention uses a rotating shaft, a motor for driving the rotating shaft, an inverter for supplying electric power to the motor, a calculation means for controlling the inverter, and the rotating shaft. In a compressor equipped with an attached impeller, a sensor arranged upstream of the impeller is provided, and at least information on the flow velocity of the liquid from the sensor is used to attach droplets to the impeller blades. It is characterized in that the rotational state of the impeller is controlled so as to suppress it.

更に、本発明は、圧縮機において、前記センサからの少なくとも液の流速の情報と供に、液滴径の情報を用いて、前記羽根車の羽根に対する液滴の付着を抑制するように、前記羽根車の回転状態を制御することを特徴とするものである。 Further, the present invention uses the information on the droplet diameter together with the information on the flow velocity of at least the liquid from the sensor in the compressor so as to suppress the adhesion of the droplets to the blades of the impeller. It is characterized by controlling the rotational state of the impeller.

更に、本発明は、圧縮機において、記憶手段を備え、前記記憶手段は、液膜の形成が判定される状態であることを判断するためのデータベースを備えたことを特徴するものである。 Further, the present invention is characterized in that the compressor is provided with a storage means, and the storage means is provided with a database for determining that the formation of a liquid film is determined.

液分混入時に圧縮機効率や作動範囲低下を抑制することができる。また,液分を除去するための補機を必要としないため,機器を小型化することができる。 It is possible to suppress a decrease in compressor efficiency and operating range when liquid is mixed. In addition, since no auxiliary equipment is required to remove the liquid, the equipment can be miniaturized.

本発明の第一の実施形態を示す圧縮機の断面図である。It is sectional drawing of the compressor which shows the 1st Embodiment of this invention. 本発明の第二の実施形態を示す圧縮機の断面図である。It is sectional drawing of the compressor which shows the 2nd Embodiment of this invention. 液分率と軸動力の関係を示す図である。It is a figure which shows the relationship between the liquid fraction and the shaft power. 従来の圧縮機の断面図である。It is sectional drawing of the conventional compressor. 本発明の実施形態に係る圧縮機が設置されたガス井の断面図である。It is sectional drawing of the gas well in which the compressor which concerns on embodiment of this invention is installed.

以下、添付図面に示す実施形態に基づいてこの発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments shown in the accompanying drawings.

図5は、本実施形態に係る圧縮機が設置されたガス井の断面図を示す。 FIG. 5 shows a cross-sectional view of a gas well in which the compressor according to the present embodiment is installed.

ガス井100は地上からガス層102に達する掘削穴であり、その内部には内壁を保護するための鋼管104が設置されている。圧縮機1は、支持部材130によってガス井100底部の鋼管104の内壁に取り付けられる。圧縮機1は、鋼管104内に配設された送電ケーブル132を介して地上に設置された電源装置134と接続される。圧縮機1と鋼管104内壁との隙間には、圧縮機1の下方(上流側)と上方(下流側)とを分離し、圧縮機1の下流側から上流側へのガスの逆流を防止するパッカー(図示せず)が取り付けられている。圧縮機1は、自噴不能なレベルまで圧力が低下したガス層102の天然ガス(以下、周囲ガスという)120を吸入し、自噴可能な圧力まで圧縮した後、地上に向けて放出する。圧縮機1から放出された圧縮ガス122は、鋼管104内を上昇して地上に噴出し、ガス輸送管142を介してセパレータ140に送られ、ガス成分とオイル成分とに分離される。図1は本発明の第一実施例を示す圧縮機の断面図を示す。図1に示す通り圧縮機1はターボ型圧縮機が採用されており,ケーシング11内部に,モータ12によって回転駆動する回転軸13と回転軸13に保持され円周方向にほぼ等間隔で設けられた羽根14を持つ羽根車15を有し,送電ケーブル132から供給される電力を変換してモータ12を駆動するインバータ4と、インバータ4の制御機構として、記憶手段のデータベース2と演算手段3が備えられている。上記構成において,羽根車15の回転により吸込口から吸入した作動流体は羽根車15の回転作用により増速,昇圧され下流へと導かれる。 The gas well 100 is a drilling hole that reaches the gas layer 102 from the ground, and a steel pipe 104 for protecting the inner wall is installed inside the drilling hole. The compressor 1 is attached to the inner wall of the steel pipe 104 at the bottom of the gas well 100 by the support member 130. The compressor 1 is connected to a power supply device 134 installed on the ground via a power transmission cable 132 arranged in the steel pipe 104. In the gap between the compressor 1 and the inner wall of the steel pipe 104, the lower side (upstream side) and the upper side (downstream side) of the compressor 1 are separated to prevent backflow of gas from the downstream side to the upstream side of the compressor 1. A packer (not shown) is attached. The compressor 1 sucks in the natural gas (hereinafter referred to as ambient gas) 120 of the gas layer 102 whose pressure has dropped to a level at which it cannot self-inject, compresses it to a pressure at which it can self-inject, and then releases it toward the ground. The compressed gas 122 released from the compressor 1 rises in the steel pipe 104, is ejected to the ground, is sent to the separator 140 via the gas transport pipe 142, and is separated into a gas component and an oil component. FIG. 1 shows a cross-sectional view of a compressor showing a first embodiment of the present invention. As shown in FIG. 1, a turbo type compressor is adopted as the compressor 1, and the compressor 1 is held inside the casing 11 by a rotating shaft 13 and a rotating shaft 13 which are rotationally driven by a motor 12, and are provided at substantially equal intervals in the circumferential direction. An inverter 4 having an impeller 15 having a turbocharged blade 14 and converting power supplied from a transmission cable 132 to drive a motor 12, and a database 2 of storage means and a calculation means 3 as control mechanisms of the inverter 4 It is equipped. In the above configuration, the working fluid sucked from the suction port by the rotation of the impeller 15 is accelerated and boosted by the rotation action of the impeller 15 and guided to the downstream.

従来の装置では、液分が混入する動作環境で稼動した場合,図4に示す従来の圧縮機において羽根車15へ混入した液分は羽根14へ付着し液膜を形成する。その結果,羽根車15の軸動力が増加するため圧縮機の効率が低下するだけでなく,羽根車を駆動するモータ12の許容軸動力を超過するためトリップによる停止を引き起こす。また,羽根14へ付着した液膜は流路を閉塞させるため作動範囲の減少や不安定流体力の発生をもたらすとともに壊食による羽根車の減肉をもたらす。 In the conventional apparatus, when operating in an operating environment in which liquids are mixed, the liquids mixed in the impeller 15 in the conventional compressor shown in FIG. 4 adhere to the blades 14 to form a liquid film. As a result, not only the efficiency of the compressor is lowered because the shaft power of the impeller 15 is increased, but also the permissible shaft power of the motor 12 for driving the impeller is exceeded, which causes a stop due to a trip. Further, the liquid film adhering to the blade 14 blocks the flow path, so that the operating range is reduced and unstable fluid force is generated, and the wall thickness of the impeller is reduced due to erosion.

一方,本実施の圧縮機の形態では,モータ12より取得した少なくとも軸動力の傾向がデータベース2において例えば図3に示す液分率に対する軸動力の増加量を参照して液膜の形成が判定される場合には,演算手段3によってインバータ4を介してモータ12の回転速度を一時的に増加させるように制御を行う。 On the other hand, in the form of the compressor of the present embodiment, at least the tendency of the axial power acquired from the motor 12 is determined in the database 2 by referring to, for example, the amount of increase in the axial power with respect to the liquid fraction shown in FIG. In this case, the calculation means 3 controls the rotation speed of the motor 12 to be temporarily increased via the inverter 4.

具体的にはある液分率306の状態で、当初は羽根14には付着が無いので実線データ302に従い軸動力は低くて済むが、羽根車15へ混入した液分が羽根14へ付着すると、点線304に従って軸動力は増加するようになる。この軸動力の増加量を参照して、液膜の形成を判定して、モータ12の回転速度を一時的に増加させるように制御する。 Specifically, in the state of a certain liquid content ratio 306, since there is no adhesion to the blade 14 at the beginning, the axial power can be low according to the solid line data 302, but when the liquid mixed in the impeller 15 adheres to the blade 14, Axial power increases according to the dotted line 304. The formation of the liquid film is determined with reference to the amount of increase in the axial power, and the rotation speed of the motor 12 is controlled to be temporarily increased.

結果的に羽根車15に流入する液は回転速度によるせん断力で微粒化され液滴となることで液膜の形成が防止されるため,羽根14に対する液分の付着を防ぎ,図3に示すとおり羽根車15の軸動力の増加量が液膜が形成する場合と比較して抑制されるため効率の低下やモータ12のトリップによる停止を抑制可能となる。 As a result, the liquid flowing into the impeller 15 is atomized by the shearing force due to the rotation speed into droplets to prevent the formation of a liquid film, so that the liquid content is prevented from adhering to the blades 14 and is shown in FIG. As shown above, since the increase in the axial power of the impeller 15 is suppressed as compared with the case where the liquid film is formed, it is possible to suppress a decrease in efficiency and a stop due to a trip of the motor 12.

また,羽根14に対する液滴の付着が抑制されるため,流路の閉塞による作動範囲の減少や不安定流体力の発生を抑制することが可能となる。以上により,少なくともモータ12から検出される軸動力の情報を用いて,羽根車15の回転状態を制御することで羽根車15に混入する液滴が液膜に変化することを防止することが可能となり,羽根車15の効率や作動範囲を減少させることなく運転可能とすることができる。なお,本発明は上述した実施形態に限定されず,本発明の趣旨を逸脱しない範囲で種々変更可能である。 Further, since the adhesion of the droplets to the blade 14 is suppressed, it is possible to suppress the reduction of the operating range and the generation of unstable fluid force due to the blockage of the flow path. From the above, it is possible to prevent the droplets mixed in the impeller 15 from changing into a liquid film by controlling the rotational state of the impeller 15 by using at least the information of the axial power detected from the motor 12. Therefore, it is possible to operate the impeller 15 without reducing the efficiency and operating range of the impeller 15. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

図2は本発明の第二実施例を示す圧縮機の断面図である。図2に示す通り圧縮機1はターボ型圧縮機が採用されており,ケーシング11内部に,モータ12によって回転駆動する回転軸13と回転軸13に保持され円周方向にほぼ等間隔で設けられた羽根14を持つ羽根車15を有しており,羽根車15の上流に配置したセンサ5とデータベース2と演算手段3ならびにインバータ4が設けられている。 FIG. 2 is a cross-sectional view of a compressor showing a second embodiment of the present invention. As shown in FIG. 2, a turbo type compressor is adopted as the compressor 1, and the compressor 1 is held inside the casing 11 by the rotating shaft 13 and the rotating shaft 13 which are rotationally driven by the motor 12, and are provided at substantially equal intervals in the circumferential direction. It has an impeller 15 having a turbocharger 14, and is provided with a sensor 5, a database 2, a calculation means 3, and an inverter 4 arranged upstream of the impeller 15.

上記構成において,羽根車15の回転により吸込口から吸入した作動流体は羽根車15の回転作用により増速,昇圧され下流へと導かれる。液分が混入する動作環境で稼動した場合,図4に示す従来の圧縮機において羽根車15へ混入した液分は羽根14へ付着し液膜を形成する。その結果,羽根車15の軸動力が増加するため圧縮機の効率が低下するだけでなく,モータ12の許容軸動力を超過するためトリップによる停止を引き起こす。また,羽根14へ付着した液膜は流路を閉塞させるため作動範囲の減少や不安定流体力の発生をもたらすとともに壊食による羽根車の減肉をもたらす。 In the above configuration, the working fluid sucked from the suction port by the rotation of the impeller 15 is accelerated and boosted by the rotation action of the impeller 15 and guided to the downstream. When operating in an operating environment in which liquids are mixed, the liquids mixed in the impeller 15 in the conventional compressor shown in FIG. 4 adhere to the blades 14 to form a liquid film. As a result, not only the efficiency of the compressor is lowered because the shaft power of the impeller 15 is increased, but also the permissible shaft power of the motor 12 is exceeded, which causes a stop due to a trip. Further, the liquid film adhering to the blade 14 blocks the flow path, so that the operating range is reduced and unstable fluid force is generated, and the wall thickness of the impeller is reduced due to erosion.

これに対して、本実施の圧縮機の形態では,羽根車15の上流に設けられたセンサ2により取得した少なくとも液分の流速の情報、更には液の液滴径とを用いて算出した閾値に基づき,記憶手段のデータベース2に照会して液膜の形成が判定される状態場合には演算手段3によってインバータ4を介してモータ12の回転速度を一時的に増加させるよう制御を行う。結果的に羽根車15に流入する液は回転速度によるせん断力で微粒化され液滴となることで液膜の形成が防止されるため,羽根14に対する液分の付着を防ぎ,図3に示すとおり羽根車15の軸動力の増加量が抑制されるため効率の低下やモータ12のトリップによる停止を抑制可能となる。 On the other hand, in the form of the compressor of the present embodiment, the threshold value calculated by using at least the information on the flow velocity of the liquid content acquired by the sensor 2 provided upstream of the impeller 15 and the droplet diameter of the liquid. When the formation of the liquid film is determined by referring to the database 2 of the storage means, the calculation means 3 controls the rotation speed of the motor 12 to be temporarily increased via the inverter 4. As a result, the liquid flowing into the impeller 15 is atomized by the shearing force due to the rotation speed into droplets to prevent the formation of a liquid film, so that the liquid content is prevented from adhering to the blades 14 and is shown in FIG. As shown, since the increase in the axial power of the impeller 15 is suppressed, it is possible to suppress a decrease in efficiency and a stop due to a trip of the motor 12.

また,羽根14に対する液滴の付着が抑制されるため,流路の閉塞による作動範囲の減少や不安定流体力の発生を抑制することが可能となる。 Further, since the adhesion of the droplets to the blade 14 is suppressed, it is possible to suppress the reduction of the operating range and the generation of unstable fluid force due to the blockage of the flow path.

以上より,羽根車15の上流にセンサ2を設置し,センサ2によって取得した少なくとも液分の流速の情報、更には液の液滴径の情報を用いて,羽根車の回転状態を制御することで羽根車15に混入する液滴が液膜に変化することを防止することが可能となり,羽根車15の効率や作動範囲を減少させることなく運転可能とすることができる。なお,本発明は上述した実施形態に限定されず,本発明の趣旨を逸脱しない範囲で種々変更可能である。 From the above, the sensor 2 is installed upstream of the impeller 15, and the rotational state of the impeller is controlled by using at least the information on the flow velocity of the liquid and the information on the droplet diameter of the liquid acquired by the sensor 2. It is possible to prevent the droplets mixed in the impeller 15 from changing into a liquid film, and it is possible to operate the impeller 15 without reducing the efficiency and operating range of the impeller 15. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1 圧縮機、2 データベース、3 演算手段、4 インバータ、5 センサ、11 ケーシング、 12 モータ、13 回転軸、14 羽根、15 羽根車 1 Compressor, 2 Database, 3 Computational means, 4 Inverter, 5 Sensor, 11 Casing, 12 Motor, 13 Rotating shaft, 14 blades, 15 impeller

Claims (2)

回転軸と、
前記回転軸を駆動するモータと、
前記モータへ電力を供給するインバータと、
前記インバータを制御する演算手段と、
前記回転軸に取り付けられた羽根車とを備えた圧縮機において、
前記羽根車の上流に配置したセンサを備え、
前記演算手段は、前記センサからの少なくとも液の流速の情報と液滴径の情報とを用いて前記羽根車の羽根に対する液膜の形成が判定される場合には,前記羽根車に流入する液を前記羽根車の回転によるせん断力で微粒化して前記羽根車の羽根に対する液滴の付着を抑制すべく、前記インバータを介して前記モータの回転速度を一時的に増加させるように前記羽根車の回転状態を制御することを特徴とする圧縮機。
Rotation axis and
The motor that drives the rotating shaft and
An inverter that supplies power to the motor and
An arithmetic means for controlling the inverter and
In a compressor equipped with an impeller attached to the rotating shaft,
It is equipped with a sensor located upstream of the impeller.
When the formation of a liquid film on the blades of the impeller is determined by using at least the information on the flow velocity of the liquid and the information on the droplet diameter from the sensor, the calculation means flows into the impeller. Is atomized by the shearing force due to the rotation of the impeller so as to temporarily increase the rotation speed of the motor via the inverter in order to suppress the adhesion of droplets to the blades of the impeller. A compressor characterized by controlling the rotational state.
請求項の圧縮機において、
記憶手段を備え、前記記憶手段は、前記センサからの少なくとも液の流速の情報と液滴径の情報とに基づき、前記羽根車の羽根に対する液膜の形成が判定されるためのデータベースを備えたことを特徴する圧縮機。
In the compressor of claim 1,
The storage means includes a database for determining the formation of a liquid film on the blades of the impeller based on at least the information on the flow velocity of the liquid and the information on the droplet diameter from the sensor. compressor, characterized in that.
JP2017189450A 2017-09-29 2017-09-29 Compressor Active JP6903539B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017189450A JP6903539B2 (en) 2017-09-29 2017-09-29 Compressor
PCT/JP2018/029714 WO2019064948A1 (en) 2017-09-29 2018-08-08 Compressor
US16/635,244 US20200370559A1 (en) 2017-09-29 2018-08-08 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017189450A JP6903539B2 (en) 2017-09-29 2017-09-29 Compressor

Publications (2)

Publication Number Publication Date
JP2019065726A JP2019065726A (en) 2019-04-25
JP6903539B2 true JP6903539B2 (en) 2021-07-14

Family

ID=65901504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017189450A Active JP6903539B2 (en) 2017-09-29 2017-09-29 Compressor

Country Status (3)

Country Link
US (1) US20200370559A1 (en)
JP (1) JP6903539B2 (en)
WO (1) WO2019064948A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288349B2 (en) * 2019-05-31 2023-06-07 株式会社日立製作所 Compressor and its control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20120125A1 (en) * 2012-06-19 2013-12-20 Nuovo Pignone Srl "WET GAS COMPRESSOR AND METHOD"
RU2674479C2 (en) * 2014-02-24 2018-12-11 ДжиИ ОЙЛ ЭНД ГЭС ЭСП, ИНК. Downhole wet gas compressor processor
US10352150B2 (en) * 2014-07-03 2019-07-16 Schlumberger Technology Corporation System and method for downhole and surface measurements for an electric submersible pump
US10393916B2 (en) * 2016-03-15 2019-08-27 Schlumbergr Technology Corporation Predicting water holdup measurement accuracy of multiphase production logging tools

Also Published As

Publication number Publication date
JP2019065726A (en) 2019-04-25
US20200370559A1 (en) 2020-11-26
WO2019064948A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
US11162340B2 (en) Integrated pump and compressor and method of producing multiphase well fluid downhole and at surface
US20150114632A1 (en) High-Speed, Multi-Power Submersible Pumps and Compressors
GB2367576A (en) Method of separating gas, water and preferably oil of a well fluid stream downhole
CN110219808A (en) A kind of self priming centrifugal pump handling gas-liquid mixed media
US10480522B2 (en) Abrasion-resistant thrust ring for use with a downhole electrical submersible pump
RU2674479C2 (en) Downhole wet gas compressor processor
JP6903539B2 (en) Compressor
US10947831B2 (en) Fluid driven commingling system for oil and gas applications
EP3623636B1 (en) System for the circulation of gas in air gaps of rotating machines
US10260518B2 (en) Downhole electrical submersible pump with upthrust balance
WO2016185570A1 (en) Centrifugal compressor
WO2020240974A1 (en) Compressor, and method for controlling same
JP6840693B2 (en) Compressor
CN202266450U (en) Novel water pump
Wilson et al. Practical Experience with Slurry Systems

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210623

R150 Certificate of patent or registration of utility model

Ref document number: 6903539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150