WO2016185074A1 - Sistema de medición de variables ambientales en espacios cerrados y dispositivo aéreo remoto - Google Patents

Sistema de medición de variables ambientales en espacios cerrados y dispositivo aéreo remoto Download PDF

Info

Publication number
WO2016185074A1
WO2016185074A1 PCT/ES2016/070374 ES2016070374W WO2016185074A1 WO 2016185074 A1 WO2016185074 A1 WO 2016185074A1 ES 2016070374 W ES2016070374 W ES 2016070374W WO 2016185074 A1 WO2016185074 A1 WO 2016185074A1
Authority
WO
WIPO (PCT)
Prior art keywords
bag
support structure
base
aerial device
gas
Prior art date
Application number
PCT/ES2016/070374
Other languages
English (en)
French (fr)
Inventor
Manuel GARCÍA PACHECO
Original Assignee
Creadores De Estrategia Para Proyectos De Ingeniería S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creadores De Estrategia Para Proyectos De Ingeniería S.L. filed Critical Creadores De Estrategia Para Proyectos De Ingeniería S.L.
Publication of WO2016185074A1 publication Critical patent/WO2016185074A1/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/30Lighter-than-air aircraft, e.g. aerostatic aircraft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/045Cells with aqueous electrolyte characterised by aqueous electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/35UAVs specially adapted for particular uses or applications for science, e.g. meteorology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite

Definitions

  • a remote air system for measuring environmental variables in enclosed spaces essentially comprises the aerial device or flying structure, a base for recharging and parking and positioning beacons.
  • the aerial device formed by said structure incorporates sensors for measuring environmental variables and a navigation system that does not use GPS, to be used indoors or indoors.
  • the aerial device can incorporate a helium balloon or bag that supports the structure in the air.
  • the field of application of the present invention is that of unmanned aerial systems or drones.
  • UAS Unmanned Aircraft System
  • a UAS could be defined generically as a system consisting basically of an air segment and a ground segment.
  • the air segment is formed by the aerial platform, the payload (payload) appropriate to the assigned mission and part of the communications system.
  • the ground segment includes communications equipment, battery recharge systems, aircraft control systems (in the event that the UAS is piloted remotely) and the launch and collection system of the air segment.
  • the platform also incorporates the propulsion, positioning, navigation, communications and data links systems, necessary for both flight control, mission control, and downloading of captured information.
  • the payload is constituted by the means and on-board equipment required for the mission.
  • UAS systems in different configurations.
  • wing type we can classify them as: airplane, airship, helicopter and multicopter or multi-rotor.
  • the usual use of these is the capture of images by cameras or image sensors.
  • the objective of the present invention is, therefore, to provide a device for making measurements, mainly environmental, in enclosed spaces, especially when they are large, by developing the present remote aerial device comprising sensors, which are not image , at least exclusively, and a system that understands it.
  • the present invention therefore proposes a remote aerial device for measuring environmental variables in enclosed spaces, for example greenhouses or similar facilities, according to claim 1.
  • a second object of the invention is a system according to claim 10.
  • the device object of the invention comprises a bag containing a gas lighter than air; a support structure associated with the bag, at least four propellers or motors located under the bag on two perpendicular axes transverse to the bag and at least one control plate in the support structure connected with at least one measuring sensor of an environmental parameter, at least one inertial navigation system, at least one control system and at least one power supply.
  • the bag is approximately spherical in shape, with a width slightly greater than the height and a vertical axis of rotation.
  • Said device flies completely autonomously, supported by the bag-shaped helium balloon and propelled by said at least four motors or propellers and comprising at least said measuring sensor, preferably a set of measuring sensors (temperature, humidity, pressure , etc.), for the measurement of the environmental variables to be achieved, and a navigation system that preferably comprises ultrasonic sensors, magnetometers, accelerometers and gyroscope, in addition to the communication, control and power supply system.
  • a measuring sensor preferably a set of measuring sensors (temperature, humidity, pressure , etc.)
  • a navigation system that preferably comprises ultrasonic sensors, magnetometers, accelerometers and gyroscope, in addition to the communication, control and power supply system.
  • the device comprises at least two cross bearing arms on whose free ends the propellers are located, specifically one at each free end of each arm, so that said crossed arms form 90 ° to each other.
  • the free ends of the arms comprise a first section and a second angled section with respect to said first section, such that this angle is between 135 ° to 165 °.
  • the device can comprise four bearing arms at whose free ends the thrusters are located, specifically one at each free end of each arm, so that the arms are arranged in pairs one below. of the other.
  • the arms comprise a first angled section with respect to a second section.
  • the distance between the motors or thrusters located at the ends of the same arm, or of the two arms arranged one after the other, is smaller than the diameter of the bag or balloon, so that the bag or balloon itself protects the engines or propellants of unwanted collisions, said collisions absorbing the bag or balloon itself.
  • said arms with the motors or propellers are associated with the support structure, and in order to make the structure and the motors or propellers of the balloon or bag independent, as far as possible, they are both linked together by means of an articulated mechanism that allows rotation independently of the bag with respect to the structure in the event of impact against solids, thus not affecting the orientation of displacement of the support structure.
  • Each of said motors or propellers comprises a rotation axis, in which a propeller is preferably located, responsible for propelling the aerial device.
  • the axis of rotation of said propeller is inclined with respect to a vertical axis, parallel to the axis of rotation of the bag, as well as inclined with respect to the axis of the second section of the arm, that is to say, that the motors or propellers, introduced in solidarity bushes to the arms, they are turned, because the caps are, with respect to two directions.
  • the four bushings, and therefore, the four engines or thrusters have the same inclinations.
  • the device can comprise a base for the parking of the balloon or ball, support structure and motors, base that is installed at some point of the enclosed enclosure in which the device is to be used, serving as a point of loading and unloading the gas contained in the device bag as well as the charging point for the batteries.
  • Said base comprises a seat for parking the device, coupling means between the seat of the base and the support structure of the device, and a dispenser for filling and emptying the bag, the same being connected to a gas cylinder by means of a hose.
  • the movement of the device is carried out at low speeds. This results in greater precision at the time of taking measurements by the set of reading sensors with which the device is equipped.
  • the lift by helium, or by a gas lighter than air gives the device greater autonomy of work, since the impulse of the motors will be used mostly for displacement and not for its buoyancy, allowing its displacement, for example, through the corridors that determine the rows of plants in a greenhouse with a maximum diameter of 1.5 meters.
  • the use of a set of mobile sensors to be located in the device object of the invention allows a series of advantages over the use of fixed sensors, such as the possibility of taking measurements of any parameter to be determined in almost any point of the closed space, so that obtaining the data for control environmental in a given area will be of greater quantity and quality, as well as greater precision, than with the use of fixed sensors arranged in specific places in that area.
  • a complete mapping of the environmental conditions in large-area spaces can be done with great precision, without having to install a large number of fixed sensors that cover said surface, resulting, therefore, much more economical and more precise.
  • the navigation and positioning system does not use GPS, but is based on an inertial navigation system, using ultrasonic sensors or UT (English ultrasonic trans uctors) and earth's magnetic field sensors, which allows the use of apparatus in enclosed spaces.
  • ultrasonic sensors or UT English ultrasonic trans uctors
  • earth's magnetic field sensors which allows the use of apparatus in enclosed spaces.
  • a second object of the present invention is a system for measuring environmental variables in enclosed spaces comprising a remote aerial device, a parking and loading base, and positioning beacons.
  • Said remote air device may be one as described above and the first object of the present invention, or any air device comprising:
  • the air device could be any one with a gas bag lighter than air, as described above, or another air device with the aforementioned characteristics and mainly with a sensor measuring an environmental parameter.
  • an aerial device although preferably it is completely autonomous on its flight due to the previous programming of its trajectory, could also be piloted remotely.
  • an aerial device with or without a bag, incorporates at least one radio frequency transceiver that allows remote control.
  • the positioning beacons of the system are located in different areas and together with the radio frequency transceiver or transceivers of the aerial device allow to place it in the enclosed space.
  • the beacons are preferably composed of radio frequency transceivers, electronic control elements and power batteries. These beacons are placed in certain areas within the enclosed airspace depending on the type of navigation of the device and the geometry and dimension of the space to be covered.
  • the aforementioned parking base may also include:
  • an electric charging element for the power supply located in the device that provides the electrical power for the electrical and electronic components necessary for communications, measurements and navigation.
  • the air device comprises a gas bag
  • said base will also comprise a dispenser for filling and emptying the bag, the same being connected to a gas bottle by means of a hose.
  • the base can also comprise a platform anchored to a pillar or other element, preferably vertical, for height positioning.
  • Figure number 1 shows a front and side elevation view of the device object of the invention, the main parts and elements comprising it being appreciated.
  • Figure 2 shows a bottom plan view of the device.
  • Figure 3 shows an exploded view of the device
  • Figure 4 shows two views of the angled arms that support the drive motors of the device.
  • Figure 5 shows a schematic elevational view of the system or the remote aerial device assembly for measuring environmental variables in enclosed spaces, according to the invention, showing the device and the base, showing the parts and elements it comprises as well as its arrangement.
  • Figure 6 shows an exploded view of an alternative aerial device to that of Figures 1 to 3.
  • Figure 7 shows a view of the system object of the invention with an aerial device according to Figure 6.
  • Figure 8 shows a plan view of a closed space in which environmental variables are to be measured and in which the system is observed with the aerial device and the base.
  • the invention comprises a device (2) that flies and moves autonomously supported by gas lighter than air, preferably helium, comprising at least one bag (3), which contains said gas, a support structure (5) associated with the bag (3) and on which motors or propellers (4) are fixed and which in turn incorporates the set of measurement sensors, the communication and control system, system navigation, and batteries (components not shown in the figures).
  • the invention also contemplates the possibility of comprising a device (2) as described and a parking base (6) of the device (2), forming a parking system (1) for the aerial device.
  • the bag (3) of the device is preferably a body with an approximately spherical shape, in fact with a height of less length than the width of the bag, with a rotation axis (V), and manufactured from plastic sheet material , being equipped with a filling valve to inject and discharge helium gas.
  • the bag can be attached to the support structure by means of an articulated mechanism (7) that allows the rotation of the bag (3) independently of the structure in the event of impact against solids independently thus not affecting the orientation of displacement of the support structure.
  • This mechanism makes the bag (3) independent of the structure (5) that supports the motors or propellers (4).
  • the bag (3) can be integrated or covered by a housing (7), preferably of a light and plastic material, which acts as a shield to avoid breaking the bag (3) in the case of collisions.
  • a propeller (4) is incorporated, preferably consisting of a motor, with reversal capacity, and propellers for the movement of the apparatus in the air.
  • the distance between two pairs of engines (4) located at opposite ends of the arms (8) is smaller than the width of the bag or balloon (3), so that none of the elements of the aerial device protrudes from the projection of the perimeter of the bag (3), thus protecting the motors or propellers (4), incorporated in bushings (9) integral to the arms (8) of collisions that will be absorbed by the balloon itself or bag (3).
  • These arms (8) aim to maintain an angle of inclination between the motors (4) and the vertical axis (V) of the device, axis that coincides with the vertical axis of the globe or bag (3), and that if it were a sphere perfect, it would be equivalent to its axis of rotation.
  • the arms (8) comprise two sections, a first horizontal section, perpendicular to the vertical axis (V) and a second section with an inclination with respect to the first section and at which end the motor (4) is located. ).
  • two motors (4) incorporated in their corresponding diametrically opposite bearing arms (8), and two motors (4) coupled in the other two supporting arms (8) are contemplated.
  • the set of propellers or motors (4) allows the movements mentioned above.
  • four arms (8) are preferably contemplated with their corresponding four motors (4) housed in their corresponding bushings (9) and having an inclination (a) between the two sections of the ends of each arm that is always greater than zero, preferably between 135 ° and 165 °.
  • the angle a is therefore the angle between the two sections of the arm (8), that is, the angle of the motors (4) with respect to the horizontal section of the supporting arm (8).
  • each of said motors or propellers (4) comprises a rotation axis, in which a propeller is preferably located, responsible for propelling the aerial device.
  • the axis of rotation of said propeller can be found inclined with respect to a vertical axis, parallel to the vertical axis (V) of the bag (3), as well as inclined with respect to the axis of the second leg section (8), that is, the motors or propellers (4), inserted in the bushings (9) integral with the arms (8), can be turned, because the bushings (9) are, with respect to two directions.
  • the four bushings (9), and therefore, the four engines or propellers (8) have the same inclinations.
  • the set of propellers (4) allows the ascent, descent, advance in a straight and curved line (with or without change of altitude), rotation and rotation on itself of the device.
  • the determination of the angle of inclination (a) of the two sections of the arms (4), as well as the inclination of the motors (4) is established based on: 1.
  • the resulting weight of the device that is, the mass of the device in the absence of helium minus the thrust caused by its volume.
  • the measurement sensors are conveniently coupled, in addition to the components for the control, communications, navigation, connection and battery necessary for the operation of the complete device.
  • This support structure (5) is located in the same cross section as the supporting arms (8) of the thrusters (4).
  • the measurement of environmental variables is carried out through the measurement sensors with the device (2) in motion. You can take as many measures as necessary along the route you take. These sensors are connected through data cabling to a control board, said board processing the information and sending it, through a WIFI radio antenna incorporated in it, to an internet software platform. Through this platform, the measurement data of the environmental variables can be processed according to interest.
  • This device may also comprise on said control board, a radio frequency transceiver.
  • the positioning of the device (2) is done through the information provided by the inertial navigation system, in particular, the ultrasonic sensors (distance with respect to objects), by the angle with respect to the magnetic north provided by a sensor magnetic field of the earth (magnetometer), by acceleration measurements provided by an accelerometer and by the calculation of position that is performed by treating the radio frequency signal emitted by positioning beacons that can be arranged inside the enclosure .
  • the displacement and navigation is done by applying power to the motors (4) that make the assembly move in the desired direction.
  • the correction of the trajectory is carried out by means of the information provided by the positioning sensors described above.
  • the travel speed of the device (2) is 0.5 km / h at 5 km / h, which allows several measurements to be made with the sensors for measuring environmental variables, and also minimizes the risk of collision with animated or inanimate objects at the along the path of the device (2).
  • lift with helium increases the autonomy of the device (2) improving the efficiency of the device as a whole.
  • the optional housing that could be incorporated around the bag could also act as a support structure (5) for the thrusters or motors (4) and for the different sensors.
  • said motors (4) can be located in the perimeter of the housing, preferably in the same horizontal plane, perpendicular to the vertical axis (V) of the bag, or even in the lower part of said housing.
  • the parking base (6) for the device (2) preferably comprises, as seen in Figure 5, a seat or support (10), preferably in the form of a funnel, to park the apparatus safely , a dispenser (11) for filling the bag (3) with the gas, and preferably also a balance (12) for checking the weight of the device (2), a platform (13) anchored in a pillar (14) or element Similar vertical for height positioning, in addition to a gas cylinder (16), which as indicated preferably is helium, and a hose (17) that connects the cylinder to the filling gun (1 1). Also, said base (6) preferably also has a charger (15) for the battery of the device (2). In an alternative construction the balance (12) can be replaced by a measuring system integrated in the device itself (2).
  • the device object of the invention To use the device object of the invention inside a greenhouse, it is first necessary to fill the device bag (2) with a gas, preferably helium, and for this the device (2) is placed on the base (6 ) so that the gun connected to the gas cylinder fills the bag (3). Subsequently, the device (2) moves controlled by remote control, moving with the help of propellers or motors (4) through the corridors of the greenhouse, which is possible thanks to the shape of the bag (3), avoiding the risk of collision with plants or other elements of the greenhouse, by keeping the bag in the aisles. When passing through the aisles, the device (2) captures the existing environmental parameters and stores and / or transmits them wirelessly to a station or portable device (6). From these measures it is possible to regulate these parameters and adapt them to the optimal conditions for the development of the plants.
  • a gas preferably helium
  • the device (2) is moved back to the base (6), where it is placed again on the support or seat (10) and the bag (3) is emptied by storing the gas again In the bottle. This prevents gas from staying in the bag (3) which would imply the loss of said gas due to leaks and the consequent expense.
  • the batteries of the device (2) are recharged when it is at rest until its next use, in which it will be necessary to recharge the gas in the bag ( 3) before starting to use the device (2).
  • the aerial device (20) comprises a structure (50) on which four motors or thrusters (40) are arranged arranged on four arms (80) that are part of the structure (50).
  • Said structure (50) is formed by a cross-shaped body with the four arms (80) where the thrusters (40) are placed in the same plane at 90 °.
  • all the electronic components of the device such as the environmental variable measurement sensors, the communication and control system, the navigation system, the batteries and batteries are arranged on a control board (53). Your charging system.
  • Said control plate (53) is protected with a cover (51) by mechanical retention means.
  • the aerial device follows a previously programmed path and transmitted to the aerial device, however, it is possible to partially control the device by means of a computer, redefining new paths, or it is even possible to be remotely piloted.
  • the aerial device with bag or without bag, can incorporate a radio frequency transceiver as well as an ultrasound sensor (52).
  • a radio frequency transceiver as well as an ultrasound sensor (52).
  • the treatment of the radio frequency signal emitted by positioning beacons (70) that are arranged inside said enclosed enclosure (90) is carried out.
  • the parking base (60) shown in Figure 7 comprises a vertical pillar or element (140) and a platform (130) with a support or seat (100) on which the aerial device (20) is located.
  • Said base (60) comprises an electrical and electronic box (61) where the electrical components are housed to provide the electrical supply to the charging system of the device (20), such as alternating current to direct current transformers and other electrical elements that allow connect the base (60) to the mains.
  • the box (61) comprises electronic elements for the navigation and positioning system, and mainly radio frequency transceivers.
  • This base (60) could additionally incorporate a cylinder like the one in Figure 5 if the air device included an air bag.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Image Processing (AREA)
  • Toys (AREA)

Abstract

Sistema aéreo remoto para medir variables ambientales en espacios cerrados y dispositivo aéreo remoto, para ser utilizado, por ejemplo, en invernaderos o instalaciones similares, y que comprende esencialmente el dispositivo (2) aéreo o estructura que vuela y una base (6) para recarga y estacionamiento. Asimismo, el dispositivo aéreo conformado por dicha estructura incorpora sensores de medición de variables ambientales y un sistema de navegación que no utiliza GPS, para poder ser utilizado en espacios interiores o cerrados. El dispositivo aéreo puede incorporar un globo o bolsa (3) de helio que sustenta la estructura en el aire.

Description

SISTEMA PARA MEDICIÓN DE VARIABLES AMBIENTALES EN ESPACIOS CERRADOS Y
DISPOSITIVO AÉREO REMOTO D E S C R I P C I Ó N OBJETO DE LA INVENCIÓN
La presente invención, sistema aéreo remoto para medición de variables ambientales en espacios cerrados, por ejemplo invernaderos o instalaciones similares, esencialmente, comprende el dispositivo aéreo o estructura que vuela, una base para recarga y estacionado y balizas de posicionamiento. El dispositivo aéreo conformado por dicha estructura incorpora sensores de medición de variables ambientales y un sistema de navegación que no utiliza GPS, para poder ser utilizado en espacios interiores o cerrados. El dispositivo aéreo puede incorporar un globo o bolsa de helio que sustenta la estructura en el aire.
El campo de aplicación de la presente invención es el de los sistemas aéreos no tripulados o drones.
ANTECEDENTES DE LA INVENCIÓN
Se conoce como UAS (Unmanned Aircraft System) a un sistema aéreo no tripulado donde el control del vehículo es completamente autónomo. Un UAS podría definirse genéricamente como un sistema constituido básicamente por un segmento aéreo y un segmento terreno. El segmento aéreo lo forma la plataforma aérea, la carga útil (carga de pago) adecuada a la misión asignada y parte del sistema de comunicaciones. El segmento de tierra incluye equipos de comunicaciones, sistemas de recarga de baterías, sistemas de control de la aeronave (en el caso de que el UAS sea pilotado remotamente) y el sistema de lanzamiento y recogida del segmento aéreo.
La plataforma incorpora además los sistemas de propulsión, posicionamiento, navegación, comunicaciones y los enlaces de datos, necesarios tanto para el control de vuelo, como para el control de la misión, y la descarga de la información capturada. La carga útil está constituida por los medios y equipos embarcados requeridos para la misión.
Las ventajas de un vehículo sin piloto humano son evidentes: gran flexibilidad en cuanto a dimensiones de la aeronave, capacidad de realizar misiones a un coste más reducido, capacidad de asumir riesgos que con un piloto humano serian inasumibles, etc.
Este tipo de sistemas de aeronaves no tripuladas forman parte, desde hace años, de los inventarios militares, básicamente como plataformas de observación operando desde aeródromos militares y con destino en zonas de conflicto. No obstante, los avances tecnológicos en los campos de las comunicaciones, en los sistemas de navegación y posicionamiento, el incremento de la capacidad de procesamiento, la compactación de los equipos, el incremento de su fiabilidad, el desarrollo de "cargas de pago" cada vez más ligeras, fiables y con altas prestaciones, han propiciado el desarrollo de este concepto de sistema como plataforma aérea no tripulada para un uso civil y/o comercial desempeñando diferentes funciones.
En el estado actual de la técnica existen sistemas UAS en diferentes configuraciones. Según el "tipo de ala" podemos clasificarlos en: aeroplano, dirigible, helicóptero y multicóptero o multi-rotor. El uso habitual de los mismos es la captación de imágenes mediante cámaras o sensores de imagen.
El inconveniente de estos dispositivos oscila desde una baja autonomía de vuelo hasta una elevada velocidad de desplazamiento y/o altura de vuelo, lo que limita las aplicaciones prácticas de estos, especialmente en "espacios cerrados". Además, el uso extensivo de dispositivos GPS en los sistemas UAS, como elemento de referencia para su posicionamiento en el espacio, dificulta su aplicación en espacios cerrados, dado que la señal GPS no penetra la estructura de un espacio cerrado.
Por otro lado, actualmente el control ambiental en espacios e instalaciones cerradas (ejemplo: edificios, industrias, invernaderos, etc.) se realiza mediante sensores estáticos o fijos, es decir, sensores unidos mecánicamente a paredes, techos, suelos o cualquier otro elemento de la estructura. Por ello, estos sensores proporcionan únicamente información del parámetro medioambiental que miden en un entorno cercano a los mismos.
Además, en los casos en los que se tienen que realizar mediciones en un espacio de grandes dimensiones habrá que instalar tantos sensores fijos como sea necesario, lo cual hace que, en algunos casos, se evite instalar el número adecuado de los mismos como consecuencia del elevado coste que supone. Por todo ello, la solución actual pasa por instalar un número de sensores fijos que no proporcionan la información necesaria.
El objetivo de la presente invención es, por lo tanto, proporcionar un dispositivo para efectuar mediciones, principalmente ambientales, en espacios cerrados, especialmente cuando son de grandes dimensiones, mediante el desarrollo del presente dispositivo aéreo remoto que comprende sensores, que no son de imagen, al menos exclusivamente, y un sistema que lo comprende.
EXPLICACIÓN DE LA INVENCIÓN La presente invención propone por lo tanto un dispositivo aéreo remoto para medición de variables ambientales en espacios cerrados, por ejemplo invernaderos o instalaciones similares, conforme a la reivindicación 1.
Asimismo, un segundo objeto de la invención es un sistema según la reivindicación 10.
El dispositivo objeto de la invención comprende una bolsa que contiene un gas más ligero que el aire; una estructura soporte asociada a la bolsa, al menos cuatro propulsores o motores situados bajo la bolsa en dos ejes perpendiculares transversales a la bolsa y al menos una placa de control en la estructura soporte conectada con al menos un sensor de medición de un parámetro ambiental, al menos un sistema de navegación inercial, al menos un sistema de control y al menos una fuente de alimentación eléctrica.
La bolsa tiene forma aproximadamente esférica, con una anchura ligeramente mayor que la altura y un eje de giro vertical.
Dicho dispositivo vuela de modo completamente autónomo, sustentado por el globo de helio en forma de bolsa y propulsado por dichos al menos cuatro motores o propulsores y comprendiendo al menos dicho sensor de medición, preferiblemente un conjunto de sensores de medición (temperatura, humedad, presión, etc.), para la medición de las variables ambientales a conseguir, y un sistema de navegación que preferiblemente comprende sensores de ultrasonidos, magnetometros, acelerometros y giroscopio, además del sistema de comunicación, control y baterías de alimentación.
El dispositivo comprende al menos dos brazos portantes cruzados sobre cuyos extremos libres se sitúan los propulsores, en concreto uno en cada extremo libre de cada brazo, de manera que dichos brazos cruzados forman 90° entre sí. Los extremos libres de los brazos comprenden un primer tramo y un segundo tramo angulado respecto a dicho primer tramo, de manera que ese ángulo es de entre 135° a 165°.
En una construcción alternativa, pero equivalente a la anterior, el dispositivo puede comprender cuatro brazos portantes en cuyos extremos libres se sitúan los propulsores, en concreto uno en cada extremo libre de cada brazo, de manera que están los brazos dispuestos por parejas uno a continuación del otro. Al igual que en el caso anterior, los brazos comprenden un primer tramo angulado respecto a un segundo tramo.
La distancia entre los motores o propulsores situados en los extremos del mismo brazo, o de los dos brazos dispuestos uno a continuación del otro, es menor que el diámetro de la bolsa o globo, de manera que la propia bolsa o globo protege a los motores o propulsores de colisiones indeseadas, absorbiendo dichas colisiones la propia bolsa o globo. Asimismo, dicho brazos con los motores o propulsores se asocian a la estructura de soporte, y para independizar en la medida de lo posible la estructura y los motores o propulsores del globo o bolsa, quedan ambos unidos entre sí mediante un mecanismo articulado que permite el giro de forma independiente de la bolsa respecto de la estructura en el supuesto de impacto contra sólidos, no afectando así a la orientación de desplazamiento de la estructura soporte.
Cada uno de dichos motores o propulsores comprende un eje de giro, en el que se emplaza preferiblemente una hélice, encargada de propulsar al dispositivo aéreo. El eje de giro de dicha hélice se encuentra inclinado respecto a un eje vertical, paralelo al eje de giro de la bolsa, así como inclinado respecto al eje del segundo tramo del brazo, es decir, que los motores o propulsores, introducidos en casquillos solidarios a los brazos, se encuentran girados, porque los casquillos lo están, respecto a dos direcciones. Preferiblemente, los cuatro casquillos, y por tanto, los cuatro motores o propulsores presentan las mismas inclinaciones.
Asimismo, el dispositivo puede comprender una base para el estacionado del globo o bola, estructura de soporte y motores, base que se instala en algún punto del recinto cerrado en el que se va a utilizar el dispositivo, sirviendo como punto de carga y descarga del gas contenido en la bolsa del dispositivo así como punto de recarga para las baterías.
Dicha base comprende un asiento para estacionar el dispositivo, medios de acoplamiento entre el asiento de la base y la estructura soporte del dispositivo, y un dosificador para llenado y vaciado de la bolsa, estando la misma conectada a una bombona de gas mediante una manguera.
Gracias a la sustentación que proporciona la bolsa de gas, preferiblemente helio, el desplazamiento del dispositivo se realiza a bajas velocidades. Esto redunda en una mayor precisión a la hora de la toma de mediciones por parte del conjunto de sensores de lectura con que está equipado el aparato. Por otro lado, la sustentación por helio, o por un gas más ligero que el aire, confiere al dispositivo una mayor autonomía de trabajo, ya que el impulso de los motores será empleado mayoritariamente para el desplazamiento y no para la flotabilidad del mismo, permitiendo su desplazamiento, por ejemplo, por los pasillos que determinan las hileras de plantas de un invernadero con un diámetro máximo de 1 ,5 metros.
El uso de un conjunto de sensores móviles por emplazarse en el dispositivo objeto de la invención, permite una serie de ventajas respecto al uso de sensores fijos, como la posibilidad de tomar mediciones de cualquier parámetro a determinar prácticamente en casi cualquier punto del espacio cerrado, de manera que la obtención de los datos para el control ambiental en un área determinada será de mayor cantidad y calidad, así como mayor precisión, que con el uso de sensores fijos dispuestos en lugares puntuales de ese área. De esta forma se puede hacer un mapeo completo de las condiciones ambientales en espacios de gran superficie con una gran precisión, sin tener que instalar un elevado número de sensores fijos que abarquen dicha superficie, resultando, por tanto, mucho más económico y más preciso.
Además, el sistema de navegación y posicionamiento no utiliza GPS, sino que se basa en un sistema de navegación inercial, mediante sensores ultrasónicos o UT (del inglés ultrasonic trans uctors) y sensores de campo magnético de la tierra, lo cual permite el uso del aparato en espacios cerrados.
Como se ha mencionado, un segundo objeto de la presente invención es un sistema para medición de variables ambientales en espacios cerrados que comprende un dispositivo aéreo remoto, una base de estacionado y carga, y balizas de posicionamiento. Dicho dispositivo aéreo remoto puede ser uno como el descrito anteriormente y primer objeto de la presente invención, o cualquier dispositivo aéreo que comprenda:
- una estructura soportante con propulsores o motores que se sitúan preferiblemente en cuatro brazos de la estructura,
- una placa de control en la propia estructura,
- estando dicha placa conectada a al menos un sensor de medición de un parámetro ambiental,
- un sistema de navegación inercial, y
- un sistema de control.
Es decir, el dispositivo aéreo podría ser cualquiera con una bolsa de gas más ligero que el aire, como el descrito anteriormente, u otro dispositivo aéreo con las características mencionadas y principalmente con un sensor de medición de un parámetro ambiental.
Asimismo, dicho dispositivo aéreo, aunque preferiblemente es completamente autónomo en su vuelo debido a la programación previa de su trayectoria, también podría ser pilotado remotamente. Para ello, dispositivo aéreo, con bolsa o sin ella, incorpora al menos un transceptor de radiofrecuencia que permita su control remoto.
Las balizas de posicionamiento del sistema se sitúan en diferentes zonas y junto con el transceptor o transceptores de radiofrecuencia del dispositivo aéreo permiten situar a este en el espacio cerrado. Las balizas están preferiblemente compuestas por transceptores de radiofrecuencia, elementos electrónicos de control y baterías de alimentación. Dichas balizas se colocan en zonas determinadas dentro del espacio aéreo cerrado en función del tipo de navegación del dispositivo y la geometría y dimensión del espacio a cubrir.
La base de estacionado citada puede asimismo comprender:
un asiento para estacionar el dispositivo,
unos medios de acoplamiento entre el asiento de la base y la estructura soporte del dispositivo aéreo, y
un elemento de carga eléctrica para la fuente de alimentación eléctrica situada en el dispositivo que proporciona la potencia eléctrica para los componentes eléctricos y electrónicos necesarios para comunicaciones, mediciones y navegación.
En el caso de que el dispositivo aéreo comprenda una bolsa de gas, dicha base comprenderá además un dosificador para llenado y vaciado de la bolsa, estando la misma conectada a una bombona de gas mediante una manguera.
La base puede comprender además una plataforma anclada a un pilar u a otro elemento, preferiblemente vertical, para su posicionamiento en altura.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de facilitar una mejor comprensión de las características de la invención, se incluye en la presente memoria descriptiva, como parte integrante de la misma, un juego de figuras que tienen carácter ilustrativo y no limitativo.
La figura número 1 , muestra una vista en alzado frontal y otra lateral del dispositivo objeto de la invención, apreciándose las principales partes y elementos que comprende el mismo.
La figura 2 muestra una vista en planta inferior del dispositivo.
La figura 3 muestra una vista explosionada del dispositivo,
La figura 4 muestra dos vistas de los brazos, angulados, que soportan los motores propulsores del dispositivo.
La figura 5 muestra una vista esquemática en alzado del sistema o del conjunto del dispositivo aéreo remoto para medición de variables ambientales en espacios cerrados, según la invención, mostrando el dispositivo y la base, apreciándose las partes y elementos que comprende así como su disposición.
La figura 6 muestra una vista explosionada de un dispositivo aéreo alternativo al de las figuras 1 a 3. La figura 7 muestra una vista del sistema objeto de la invención con un dispositivo aéreo según la figura 6.
La figura 8 muestra una vista en planta de un espacio cerrado en la que se van a medir las variables ambientales y en el que se observa el sistema con el dispositivo aéreo y la base.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las citadas figuras, se observa que la invención comprende un dispositivo (2) que vuela y se desplaza de manera autónoma sustentado por gas más ligero que el aire, preferentemente helio, comprendiendo al menos una bolsa (3), que contiene dicho gas, una estructura de soporte (5) asociada a la bolsa (3) y sobre la que se fijan motores o propulsores (4) y que a su vez incorpora el conjunto de sensores de medición, el sistema de comunicación y control, sistema de navegación, y baterías (componentes no representados en las figuras). La invención también contempla la posibilidad de comprender un dispositivo (2) como el descrito y una base (6) de estacionado del dispositivo (2), formando un sistema (1) de estacionado para el dispositivo aéreo.
La bolsa (3) del dispositivo es, preferentemente un cuerpo con forma aproximadamente esférica, de hecho con una altura de menor longitud que el ancho de la bolsa, con un eje de giro (V), y fabricado a partir de material plástico en láminas, estando dotada de una válvula de llenado para inyectar y descargar el gas helio. Opcionalmente, como se muestra en las figuras 1 a 3, puede estar unida la bolsa a la estructura soporte mediante un mecanismo articulado (7) que permite el giro de forma independiente de la bolsa (3) respecto de la estructura en el supuesto de impacto contra solidos de forma independiente no afectando así a la orientación de desplazamiento de la estructura soporte. Este mecanismo independiza la bolsa (3) de la estructura (5) que soporta los motores o propulsores (4). Asimismo, la bolsa (3) puede estar integrada o cubierta por una carcasa (7), preferiblemente de un material plástico y ligero, que actúa a modo de escudo para evitar roturas de la bolsa (3) en el caso de colisiones.
Sobre dicha estructura de soporte (5), se encuentran fijados, preferiblemente en la parte inferior de la misma y de la bolsa (3), cuatro brazos portantes (8) fijos, preferiblemente de un material ligero, como el plástico. Estos brazos portantes (8) están colocados en la dimensión transversal de la zona más baja de la bolsa (3), por debajo de la estructura (5), con objeto de optimizar el espacio ocupado por el dispositivo completo. En el extremo libre de los brazos portantes (8) se incorpora un propulsor (4), consistente preferiblemente en un motor, con capacidad de inversión de giro, y hélices para el desplazamiento del aparato en el aire. La distancia entre dos parejas de motores (4) situados en extremos opuestos de los brazos (8) es menor que la anchura de la bolsa o globo (3), de manera que ninguno de los elementos del dispositivo aéreo sobresale de la proyección del perímetro de la bolsa (3), protegiendo así a los motores o propulsores (4), incorporados en casquillos (9) solidarios a los brazos (8) de colisiones que serán absorbidas por el propio globo o bolsa (3).
Estos brazos (8) tienen como objetivo mantener un ángulo de inclinación entre los motores (4) y el eje vertical (V) del dispositivo, eje que coincide con el eje vertical del globo o bolsa (3), y que si fuese una esfera perfecta, equivaldría al eje de rotación de la misma.
En el ejemplo representado en las figuras, los brazos (8) comprenden dos tramos, un primer tramo horizontal, perpendicular al eje vertical (V) y un segundo tramo con una inclinación respecto al primer tramo y en cuyo extremo se sitúa el motor (4). Preferentemente, se contemplan dos motores (4) incorporados en sus correspondientes brazos portantes (8) diametralmente opuestos, y dos motores (4) acoplados en los otros dos brazos portantes (8). Con ello el conjunto de propulsores o motores (4) permite los movimientos citados anteriormente. De esta manera, preferiblemente se contemplan cuatro brazos (8) con sus correspondientes cuatro motores (4) alojados en sus correspondientes casquillos (9) y presentando una inclinación (a) entre los dos tramos de los extremos de cada brazo que siempre es mayor que cero, preferiblemente de entre 135° y 165°. El ángulo a es por lo tanto el ángulo entre los dos tramos del brazo (8), es decir, el ángulo de los motores (4) con respecto al tramo horizontal del brazo portante (8).
Asimismo, cada uno de dichos motores o propulsores (4) comprende un eje de giro, en el que se emplaza preferiblemente una hélice, encargada de propulsar al dispositivo aéreo. El eje de giro de dicha hélice se puede encontrar inclinado respecto a un eje vertical, paralelo al eje vertical (V) de la bolsa (3), así como inclinado respecto al eje del segundo tramo del brazo (8), es decir, que los motores o propulsores (4), introducidos en los casquillos (9) solidarios a los brazos (8), pueden encontrarse girados, porque los casquillos (9) lo están, respecto a dos direcciones. Preferiblemente, los cuatro casquillos (9), y por tanto, los cuatro motores o propulsores (8) presentan las mismas inclinaciones.
Con ello, el conjunto de propulsores (4) permite el ascenso, descenso, avance en línea recta y curva (con o sin cambio de altitud), giro y giro sobre sí mismo del dispositivo.
La determinación del ángulo de inclinación (a) de los dos tramos de los brazos (4), así como la inclinación de los motores (4) se establece en función de: 1. El peso resultante del dispositivo, es decir, la masa del dispositivo en ausencia de helio menos el empuje provocado por el volumen del mismo.
2. El tipo de propulsor utilizado.
3. El tipo de hélice.
4. Las necesidades de velocidad de desplazamiento y giro.
5. La resistencia aerodinámica de la bolsa.
Por su parte, en la estructura de soporte (5) se hallan convenientemente acoplados los sensores de medición, además de los componentes para el control, comunicaciones, navegación, conexionado y batería necesaria para el funcionamiento del dispositivo completo. Esta estructura de soporte (5), como se ha mencionado, está situada en la misma sección transversal que los brazos portantes (8) de los propulsores (4).
La medición de variables ambientales se realiza a través de los sensores de medición con el dispositivo (2) en movimiento. Pueden tomarse cuantas medidas sean necesarias a lo largo del recorrido que realice el mismo. Estos sensores están conectados a través de cableado de datos a una placa de control, procesando dicha placa la información y enviándola, a través de una antena WIFI radio incorporada en ella, a una plataforma software en internet. Por medio de esta plataforma pueden procesarse los datos de medición de las variables ambientales según sea de interés. Este dispositivo puede comprender también en dicha placa de control, un transceptor de radiofrecuencia.
El posicionado del dispositivo (2) se realiza a través de la información proporcionada por el sistema de navegación inercial, en concreto, los sensores de ultrasonidos (distancia con respecto a objetos), por el ángulo con respecto al norte magnético que proporciona un sensor de campo magnético de la tierra (magnetómetro), por medidas de aceleración que proporciona un acelerómetro y por el cálculo de posición que se realiza mediante el tratamiento de la señal de radiofrecuencia emitida por unas balizas de posicionamiento que se pueden disponer en el interior del recinto cerrado.
El desplazamiento y navegación se realiza mediante la aplicación de potencia a los motores (4) que hacen que el conjunto se mueva en la dirección deseada. La corrección de la trayectoria se realiza mediante la información proporcionada por los sensores de posicionado anteriormente descritos.
La velocidad de desplazamiento del dispositivo (2) es de 0,5 km/h a 5 km/h lo que permite la realización de varias medidas con los sensores de medición de variables ambientales, además minimiza el riesgo de colisión con objetos animados o inanimados a lo largo de la trayectoria del aparato (2).
Por otro lado, la sustentación con helio incrementa la autonomía del aparato (2) mejorando la eficiencia del conjunto del dispositivo.
En una construcción alternativa, no representada, la carcasa opcional que podría incorporarse alrededor de la bolsa, podría actuar también como estructura de soporte (5) de los propulsores o motores (4) y de los distintos sensores. En este supuesto, los citados motores (4) pueden situarse en el perímetro de la carcasa, preferiblemente en el mismo plano horizontal, perpendicular al eje vertical (V) de la bolsa, o incluso en la parte inferior de dicha carcasa.
Por otra parte, la base (6) de estacionado para el dispositivo (2) comprende, preferiblemente, como se observa en la figura 5, un asiento o soporte (10), preferentemente en forma de embudo, para estacionar el aparato de manera segura, un dosificador (11) para llenado de la bolsa (3) con el gas, y preferentemente también una balanza (12) para comprobación de peso del dispositivo (2), una plataforma (13) anclada en un pilar (14) o elemento vertical semejante para su posicionado en altura, además de una bombona de gas (16), que como se ha señalado preferentemente es helio, y una manguera (17) que conecta la bombona a la pistola (1 1) de llenado. Asimismo, dicha base (6) cuenta preferentemente también con un cargador (15) para la batería del aparato (2). En una construcción alternativa la balanza (12) se puede sustituir por un sistema de medición integrado en el propio dispositivo (2).
Para utilizar el dispositivo objeto de la invención en el interior de un invernadero, en primer lugar es necesario llenar la bolsa del dispositivo (2) con un gas, preferiblemente helio, y para ello se sitúa el dispositivo (2) sobre la base (6) de manera que la pistola conectada con la bombona de gas llena la bolsa (3). Posteriormente, el dispositivo (2) se desplaza controlado por control remoto, desplazándose con ayuda de los propulsores o motores (4) por los pasillos del invernadero, lo cual es posible gracias a la forma de la bolsa (3), evitando el riesgo de colisión con las plantas u otros elementos del invernadero, al mantener la bolsa en los pasillos. El dispositivo (2) al pasar por los pasillos va captando los parámetros ambientales existentes y los almacena y/ o los transmite de manera inalámbrica a una estación o dispositivo portátil (6). A partir de dichas medidas es posible regular dichos parámetros y adecuarlos a las condiciones óptimas para el desarrollo de las plantas.
Una vez finalizada la toma de medidas, el dispositivo (2) se traslada de nuevo hasta la base (6), donde se sitúa de nuevo sobre el soporte o asiento (10) y se vacía la bolsa (3) almacenando de nuevo el gas en la bombona. De esta manera se evita que el gas se quede en la bolsa (3) lo cual implicaría la pérdida de dicho gas por fugas y el consiguiente gasto. Una vez en la base (6) y con la bolsa (3) vacía, las baterías del dispositivo (2) se recargan cuando este está en reposo hasta su próxima utilización, en la que habrá que volver a recargar el gas en la bolsa (3) antes de comenzar a utilizar el dispositivo (2).
En una construcción alternativa, tal y como se muestra en la figura 6, el dispositivo aéreo (20) comprende una estructura (50) sobre la que se fijan cuatro motores o propulsores (40) dispuestos sobre cuatro brazos (80) que forman parte de la estructura (50). Dicha estructura (50) está formada por un cuerpo con forma de cruz con los cuatro brazos (80) donde se sitúan los propulsores (40) en un mismo plano a 90°. En el centro de la estructura (50) se disponen sobre una placa de control (53) todos los componentes electrónicos del dispositivo tales como los sensores de medición de variables medioambientales, el sistema de comunicación y control, el sistema de navegación, las baterías y su sistema de carga. Dicha placa de control (53) se protege con una tapa (51) mediante medios de retención mecánicos.
Preferiblemente el dispositivo aéreo sigue una trayectoria previamente programada y transmitida al dispositivo aéreo, sin embargo, es posible controlar parcialmente al dispositivo mediante un ordenador, redefiniendo nuevas trayectorias, o incluso es posible que sea pilotado remotamente. Con este último fin, el dispositivo aéreo, con bolsa o sin bolsa, puede incorporar un transceptor de radiofrecuencia así como un sensor de ultrasonido (52). Para calcular la posición del dispositivo (20) en el interior del recinto cerrado (90) se realiza el tratamiento de la señal de radiofrecuencia emitida por unas balizas (70) de posicionamiento que se disponen en el interior de dicho recinto cerrado (90).
La base (60) de estacionado mostrada en la figura 7 comprende un pilar o elemento vertical (140) y una plataforma (130) con un soporte o asiento (100) sobre el que se sitúa el dispositivo aéreo (20). Dicha base (60) comprende una caja eléctrica y electrónica (61) donde se alojan los componentes eléctricos para proporcionar el suministro eléctrico al sistema de carga del dispositivo (20), tales como transformadores de corriente alterna a corriente continua y otros elementos eléctricos que permiten conectar la base (60) a la red eléctrica. Asimismo la caja (61) comprende elementos electrónicos para el sistema de navegación y posicionamiento, y principalmente transceptores de radiofrecuencia. Este base (60) podría incorporar adicionalmente una bombona como la de la figura 5 si el dispositivo aéreo incluyese una bolsa de aire.

Claims

REIVINDICACIONES
1. Dispositivo (2) aéreo remoto para medición de variables ambientales en espacios cerrados, caracterizado porque comprende:
Una bolsa (3) que contiene un gas más ligero que el aire con un eje de rotación
(V),
Una estructura soporte (5) asociada a la bolsa (3),
- Al menos cuatro propulsores (4) situados en dos ejes perpendiculares y transversales a la bolsa (3) formando un ángulo de inclinación respecto al citado eje de rotación (V), situados en la parte inferior de la bolsa, y
- Al menos una placa de control en la estructura soporte conectada con al menos un sensor de medición de un parámetro ambiental, al menos un sistema de navegación inercial, al menos un sistema de control y al menos una fuente de alimentación eléctrica.
2. Dispositivo, según reivindicación 1 , caracterizado porque la bolsa comprende una altura de menor longitud que el ancho de la bolsa.
3. Dispositivo, según reivindicación 1 , caracterizado porque comprende una válvula para el llenado y vaciado del gas.
4. Dispositivo, según reivindicación 1 , caracterizado porque la estructura soporte es una plataforma situada en la parte inferior de la bolsa.
5. Dispositivo, según reivindicación 1 , caracterizado porque un propulsor (4) comprende un motor con capacidad de inversión de giro y una hélice para el desplazamiento del aparato en el aire.
6. Dispositivo, según reivindicación 1 , caracterizado porque comprende un mecanismo articulado (7) dispuesto entre la estructura de soporte y la parte inferior de la bolsa (que permite el giro de dicha (3) en caso de impacto de la bolsa (3) contra sólidos, de manera que se independicen la bolsa (3) y la estructura 5), no afectando el impacto a la orientación de desplazamiento de la estructura soporte
7. Dispositivo, según reivindicación 1 , caracterizado porque comprende medios de transmisión inalámbricos para la transmisión de los datos captados por los sensores.
8. Dispositivo, según reivindicación 1 , caracterizado porque el sistema de navegación inercial comprende sensores de ultrasonidos y/o magnetómetros y/o acelerómetros y/o giroscopios.
9. Dispositivo, según reivindicación 1 , caracterizado porque el gas es helio.
10. Sistema para medición de variables ambientales en espacios cerrados, caracterizado porque comprende:
- Un dispositivo aéreo remoto (2,20), y
Una base de estacionado y carga (6, 60) de dicho dispositivo (2, 20).
11. Sistema, según reivindicación 10, caracterizado porque la base de estacionado (6, 60) comprende:
- un asiento (10, 100) para estacionar el dispositivo (2, 20),
- medios de acoplamiento entre el asiento (10, 100) de la base (6, 60) y la estructura soporte (5, 50) del dispositivo (2, 20), y
- elementos de carga (15, 61) eléctrica para la fuente de alimentación eléctrica del dispositivo (2, 20).
12. Sistema, según reivindicación 10, caracterizado porque la base (6, 60) comprende una plataforma (13, 130) anclada en un pilar (14, 140) u otro elemento vertical para su posicionado en altura.
13. Sistema, según reivindicación 10, caracterizado porque comprende al menos una baliza de posicionamiento (70).
14. Sistema, según reivindicación 13, caracterizado porque las balizas (70) comprenden:
Un transceptor de radiofrecuencia
Elementos electrónicos de control, y
Una batería de alimentación.
15. Sistema, según reivindicación 10, caracterizado porque comprende un dispositivo aéreo remoto (2) según las reivindicaciones 1 a 9.
16. Sistema, según reivindicación 10 y 15, caracterizado porque la base (6) comprende un dosificador (1 1) para llenado y vaciado de la bolsa (3), estando la misma conectada a una bombona de gas (16) mediante una manguera (17).
17. Sistema, según reivindicación 10, caracterizado porque comprende un dispositivo aéreo remoto (20) que comprende:
- una estructura (50) sobre la que se fijan cuatro motores o propulsores (40) dispuestos sobre cuatro brazos (80) que forman parte de la estructura (50), y
- una placa de control (53) que comprende los componentes electrónicos del dispositivo (20).
PCT/ES2016/070374 2015-05-18 2016-05-18 Sistema de medición de variables ambientales en espacios cerrados y dispositivo aéreo remoto WO2016185074A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201530580U ES1140161Y (es) 2015-05-18 2015-05-18 Dispositivo aereo remoto para medicion de variables ambientales en espacios cerrados
ESU201530580 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016185074A1 true WO2016185074A1 (es) 2016-11-24

Family

ID=53379986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070374 WO2016185074A1 (es) 2015-05-18 2016-05-18 Sistema de medición de variables ambientales en espacios cerrados y dispositivo aéreo remoto

Country Status (2)

Country Link
ES (1) ES1140161Y (es)
WO (1) WO2016185074A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135802A1 (en) * 2018-01-05 2019-07-11 Raytheon Company Flight vehicle with drone and lift-producing balloon

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES1146933Y (es) * 2015-09-25 2016-02-24 Medina Francisco Javier Garcia Cualquier sistema destinado a la captación y/o recolección de partículas aerobiológicas mediante el uso de multirrotores.
AT519417B1 (de) * 2016-11-22 2019-04-15 Riegl Laser Measurement Systems Gmbh Verfahren zum Messen eines Zustandes eines metallurgischen Gefäßes in einem Stahlwerk und Stahlwerk hiefür
NL2033602B1 (en) * 2022-11-23 2024-05-30 Univ Delft Tech A balloon enabled drone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080144884A1 (en) * 2006-07-20 2008-06-19 Babak Habibi System and method of aerial surveillance
US20120212228A1 (en) * 2009-10-28 2012-08-23 Korea Institute Of Geoscience & Mineral Resources Portable unmanned airship for magnetic-force surveying and a magnetic-force surveying system employing the same
US20120271491A1 (en) * 2011-04-20 2012-10-25 Accenture Global Services Limited Capturing environmental information
US8544788B1 (en) * 2010-07-07 2013-10-01 Captures, LLC Aerostat assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080144884A1 (en) * 2006-07-20 2008-06-19 Babak Habibi System and method of aerial surveillance
US20120212228A1 (en) * 2009-10-28 2012-08-23 Korea Institute Of Geoscience & Mineral Resources Portable unmanned airship for magnetic-force surveying and a magnetic-force surveying system employing the same
US8544788B1 (en) * 2010-07-07 2013-10-01 Captures, LLC Aerostat assembly
US20120271491A1 (en) * 2011-04-20 2012-10-25 Accenture Global Services Limited Capturing environmental information

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135802A1 (en) * 2018-01-05 2019-07-11 Raytheon Company Flight vehicle with drone and lift-producing balloon
US11352134B2 (en) 2018-01-05 2022-06-07 Raytheon Company Flight vehicle with drone and lift-producing protrusion

Also Published As

Publication number Publication date
ES1140161Y (es) 2015-09-10
ES1140161U (es) 2015-06-19

Similar Documents

Publication Publication Date Title
ES2941804T3 (es) Método de dron de retransmisión
US9789969B2 (en) Impact protection apparatus
WO2016185074A1 (es) Sistema de medición de variables ambientales en espacios cerrados y dispositivo aéreo remoto
JP6618547B2 (ja) 無人航空機を制御する方法、装置、非一時的コンピュータ可読媒体及び無人航空機
US9434267B2 (en) Systems and methods for UAV battery power backup
EP3828087B1 (en) Landing platform and method for unmanned aerial vehicle, and charging system
US20090212157A1 (en) Micro-rotorcraft surveillance system
US20130206915A1 (en) Vertical take-off and landing multimodal, multienvironment, gyropendular craft with compensatory propulsion and fluidic gradient collimation
ES2713494T3 (es) Aparato y método de carga útil de aeronave
EP3921232B1 (en) Aerial vehicle
JP6683357B1 (ja) 導通検査システム
RU123393U1 (ru) Беспилотный летательный аппарат и комплекс авианаблюдения для него
ES2877756T3 (es) Dispositivo para la siembra de una celda de nube
RU2518440C2 (ru) Беспилотный летательный аппарат и комплекс авианаблюдения для него
EP3772460A1 (en) Method for controlling a plurality of hover-capable aircraft and flying load transport system
ES2332488B1 (es) Sistema robotico con capacidad todoterreno y plataforma giroestabilizada para colaboracion con vehiculos aereos no tripulados.
RU2003105729A (ru) Портативный комплекс авианаблюдений и автономно пилотируемый летательный микроаппарат для него
RU2827131C1 (ru) Гибридная аэромобильная система воздушного наблюдения
ES1298151U (es) Aerostato para vuelo estratosferico de larga duracion
ES2755821B2 (es) Ojiva giroestabilizadora para aeronaves no tripuladas
Perez Lebbink UAV mission design for the exploration of Mars-ESA/EUROAVIA Design Workshop 2006
Ferguson et al. A small buzz in the air
ES2637543A1 (es) Vehículo volador ligero
KR20100113183A (ko) 헬리콥터 기능을 구비한 비행선

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735898

Country of ref document: EP

Kind code of ref document: A1