WO2016184236A1 - 资源池配置方法、d2d ue和计算机存储介质 - Google Patents

资源池配置方法、d2d ue和计算机存储介质 Download PDF

Info

Publication number
WO2016184236A1
WO2016184236A1 PCT/CN2016/076343 CN2016076343W WO2016184236A1 WO 2016184236 A1 WO2016184236 A1 WO 2016184236A1 CN 2016076343 W CN2016076343 W CN 2016076343W WO 2016184236 A1 WO2016184236 A1 WO 2016184236A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
mapping
pscch
bitmap sequence
information
Prior art date
Application number
PCT/CN2016/076343
Other languages
English (en)
French (fr)
Inventor
杨瑾
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016184236A1 publication Critical patent/WO2016184236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications, and in particular, to a resource pool configuration method and a device to device (Device To Device, D2D for short) user equipment UE and a computer storage medium.
  • a resource pool configuration method and a device to device (Device To Device, D2D for short) user equipment UE and a computer storage medium.
  • both UE1 and UE2 are D2D UEs, and UE1 and UE2 can communicate through a side link (Sidelink) without passing through a base station, and this communication is D2D communication.
  • the D2D communication mode has characteristics that are distinct from the communication mode of the cellular system.
  • D2D transmission not only saves wireless spectrum resources, but also reduces the data transmission pressure of the core network, and can reduce the system. Resource occupation, increase the spectrum efficiency of the cellular communication system, reduce the terminal transmission power consumption, and largely save network operation costs.
  • the data is directly transmitted between the UEs, and the transmitting end UE can obtain the physical side link control channel (PSCCH) and the physical side link of the D2D communication according to the scheduling configuration of the network side.
  • PSCCH physical side link control channel
  • a shared channel (Physical Sidelink Shared Channel, PSSCH for short) resource may also compete for selecting resources in a given PSCCH and PSSCH resource pool for D2D communication control and data information transmission.
  • the resource configuration for D2D communication is periodically repeated, and each cycle may be referred to as a PSCCH cycle.
  • a part of the subframe is a PSCCH subframe for transmitting side link control information (Sidelink Control Information, SCI information for short), and a partial subframe is used for transmitting data information PSSCH. frame.
  • SCI information Sidelink Control Information
  • a partial subframe is used for transmitting data information PSSCH. frame.
  • SCI information Sidelink Control Information
  • the embodiment of the present invention is to provide a resource pool configuration method and a D2D UE to rationally configure a subframe in the PSCCH period to improve resource utilization and data information transmission efficiency.
  • a first aspect of the embodiments of the present invention provides a resource pool configuration method, where the method includes:
  • the subframe configuration bitmap sequence includes N indicator bits; an nth indicator bit of the N indicator bits is used to indicate a PSCCH period Whether a subframe having a mapping relationship with the nth indication bit is a PSCCH subframe; the N is a positive integer; the n is a positive integer not greater than the N;
  • the mapping times information is a total number of mapping times or a number of repeated mappings.
  • the total number of mappings is used to indicate that the subframe configuration bitmap sequence performs mapping of the subframe configuration bitmap sequence in the PSCCH period. a total number of times; the number of repetition mappings is used to indicate that the subframe configuration bitmap sequence performs the number of repetitions of the subframe configuration bitmap sequence mapping in the PSCCH period; the mapping offset is two adjacent
  • the sub-frame configures the subframe offset between the bitmap sequence maps.
  • the subframe configuration bitmap sequence mapping is performed according to the subframe configuration bitmap sequence, the mapping number information, and the mapping offset, and the PSCCH sub-period in the PSCCH period is determined.
  • Frames including:
  • the starting subframe of the PSCCH period Starting from the start subframe of the PSCCH period, performing the first subframe configuration bitmap sequence mapping according to the subframe configuration bitmap sequence; wherein, the starting subframe of the PSCCH period is the PSCCH The first subframe in the cycle.
  • the PSCCH subframe in the PSCCH period by performing the subframe configuration bitmap sequence mapping according to the subframe configuration bitmap sequence, the mapping number information, and the mapping offset, including:
  • the subframe configuration bitmap sequence Starting from the first subframe after the cut subframe of the mth subframe configuration bitmap sequence mapping, performing subframe offset according to the mapping offset, determining the m+1th subframe configuration bitmap a start subframe of the sequence mapping, where the cut subframe of the mth subframe configuration bitmap sequence mapping is in the mth subframe configuration bitmap sequence mapping, the subframe configuration bitmap sequence a subframe corresponding to the last indicator bit;
  • the m is a positive integer smaller than the total number of mappings or not greater than the number of repeated mappings.
  • the PSCCH determined by configuring the bitmap sequence mapping in the kth subframe The edge link control information sent on the subframe, the range of the PSSCH subframe used for data transmission indicated is from the subframe s to the subframe t;
  • the subframe s is the first subframe after the last one of the PSCCH subframes in the bitmap sequence mapping of the kth subframe; or the subframe s is configured for the kth subframe a first subframe after the last one of the PSCCH subframes in the bitmap sequence map and located in the PSSCH resource pool;
  • the subframe t is one subframe before the start subframe in the bitmap sequence mapping of the k+1th subframe configuration
  • the subframe t is the last subframe before the start subframe in the bitmap sequence mapping of the k+1th subframe configuration, and is located in the PSSCH resource pool;
  • the subframe t is one subframe before the first one of the PSCCH subframes in the bitmap sequence mapping of the k+1th subframe configuration;
  • the subframe t is the first subframe in the PSSCH resource pool before the first PSCCH subframe in the bitmap sequence mapping of the k+1th subframe configuration;
  • the subframe t is the last subframe in the PSCCH period or the last subframe in the PSSCH resource pool;
  • the PSSCH resource pool includes at least one PSSCH subframe.
  • the determining the mapping times information and the mapping offset of the subframe configuration bitmap sequence includes at least one of the following:
  • mapping times information and/or the mapping offset according to the attribute information of the PSCCH resource pool, where the attribute information of the PSCCH resource pool includes the PSCCH resource pool And the number of PSCCH subframes included in the PSCCH resource pool;
  • the attribute information of the PSSCH resource pool includes a period of the PSSCH resource pool and/or the PSSCH The number of PSSCH subframes included in the resource pool;
  • the PSSCH resource pool includes at least one PSSCH subframe.
  • the high layer signaling includes a system message
  • mapping times information and/or the mapping offset used to send all the devices in the cell of the system message to the D2D UE in the D2D UE or the designated D2D group to perform the determination of the PSCCH subframe .
  • the high layer signaling includes a radio resource control RRC message
  • mapping number information and/or the mapping offset are carried in a device-to-device communication configuration information unit of the RRC message and/or a configuration information element related to a device-to-device communication relay.
  • the method further includes:
  • a second aspect of the embodiments of the present invention provides a D2D UE, where the D2D UE includes:
  • An acquiring unit configured to acquire a subframe configuration bitmap sequence of the physical edge link control channel PSCCH, where the subframe configuration bitmap sequence includes N indicator bits; and the nth indicator bit of the N indicator bits is used by Whether a subframe having a mapping relationship with the nth indication bit in the PSCCH period is a PSCCH subframe; the N is a positive integer; the n is a positive integer not greater than the N;
  • a first determining unit configured to determine a mapping number information and a mapping offset of the subframe configuration bitmap sequence
  • a second determining unit configured to configure a bitmap sequence and a mapping number according to the subframe Information and mapping offset, performing subframe configuration bitmap sequence mapping to determine a PSCCH subframe in a PSCCH period
  • the mapping times information is a total number of mapping times or a number of repeated mappings.
  • the total number of mappings is used to indicate that the subframe configuration bitmap sequence performs mapping of the subframe configuration bitmap sequence in the PSCCH period. a total number of times; the number of repetition mappings is used to indicate that the subframe configuration bitmap sequence performs the number of repetitions of the subframe configuration bitmap sequence mapping in the PSCCH period; the mapping offset is two adjacent
  • the sub-frame configures the subframe offset between the bitmap sequence maps.
  • the second determining unit is configured to perform, according to the subframe configuration bitmap sequence, the first subframe configuration bitmap sequence mapping, starting from a start subframe of the PSCCH period, where The starting subframe of the PSCCH period is the first subframe in the PSCCH period.
  • the second determining unit is further configured to start, according to the starting subframe of the mth subframe configuration bitmap sequence mapping, perform subframe offset according to the mapping offset, and determine the mth. a starting subframe of the bitmap sequence mapping of the +1st subframe; wherein, the starting subframe of the mth subframe configuration bitmap sequence mapping is the configuration bit in the mth subframe In the sequence mapping of the picture, the subframe is configured with a subframe corresponding to the first indicator bit in the bitmap sequence;
  • the subframe Starting from the first subframe after the cut subframe of the mth subframe configuration bitmap sequence mapping, performing subframe offset according to the mapping offset, determining the m+1th subframe configuration bitmap a start subframe of the sequence mapping; wherein, the cut subframe of the mth subframe configuration bitmap sequence mapping is In the mth subframe configuration bitmap sequence mapping, the subframe configures a subframe corresponding to a last indicator bit in the bitmap sequence;
  • the m is a positive integer smaller than the total number of mappings or not greater than the number of repeated mappings.
  • the edge link control information sent on the PSCCH subframe determined by the kth subframe configuration bitmap sequence mapping is used to indicate that the range of the PSSCH subframe used for data transmission is a slave.
  • the subframe s is the first subframe after the last one of the PSCCH subframes in the bitmap sequence mapping of the kth subframe; or the subframe s is configured for the kth subframe a first subframe after the last one of the PSCCH subframes in the bitmap sequence map and located in the PSSCH resource pool;
  • the subframe t is one subframe before the start subframe in the bitmap sequence mapping of the k+1th subframe configuration
  • the subframe t is the last subframe before the start subframe in the bitmap sequence mapping of the k+1th subframe configuration, and is located in the PSSCH resource pool;
  • the subframe t is one subframe before the first one of the PSCCH subframes in the bitmap sequence mapping of the k+1th subframe configuration;
  • the subframe t is the first subframe in the PSSCH resource pool before the first PSCCH subframe in the bitmap sequence mapping of the k+1th subframe configuration;
  • the subframe t is the last subframe in the PSCCH period or the last subframe in the PSSCH resource pool;
  • the PSSCH resource pool includes at least one PSSCH subframe.
  • the first determining unit is configured to determine the mapping times information and/or the mapping offset according to pre-configuration information; and/or,
  • mapping number information Determining the mapping number information and/or the mapping offset based on system definition information; and / or,
  • the attribute information of the PSSCH resource pool includes a period of the PSSCH resource pool and/or Or the number of PSSCH subframes included in the PSSCH resource pool;
  • the PSSCH resource pool includes at least one PSSCH subframe.
  • the high layer signaling includes a system message
  • mapping times information and the mapping offset are used by all D2D UEs in the cell that send the system message or D2D UEs in the designated D2D group to perform the determination of the PSCCH subframe.
  • the high layer signaling includes a radio resource control RRC message
  • mapping number information and/or the mapping offset are carried in a device-to-device communication configuration information unit of the RRC message and/or a configuration information element related to a device-to-device communication relay.
  • the D2D UE further includes:
  • a third determining unit configured to determine, when the determined PSCCH subframe overlaps with a PSSCH subframe in the PSSCH resource pool, that a subframe that overlaps with the PSCCH subframe in the PSSCH resource pool is not used for sending Data information.
  • a third aspect of the embodiments of the present invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform at least one of the foregoing methods.
  • the method for configuring a subframe in a PSCCH resource pool, the D2D UE, and the computer storage medium when performing subframe configuration, combines a subframe configuration bitmap sequence, a mapping number information, and a mapping offset in one Performing one or more subframe configuration bitmap sequence mappings in the PSCCH period, such that the maximum number of SCI information that can be transmitted by the subsequent D2D UEs is equal to the subframe configuration bitmap performed in one of the PSCCH periods.
  • the PSCCH subframes are dispersed in the entire PSCCH period with a high probability, which facilitates D2D UEs to perform data transmission in different periods of the PSCCH period, thereby improving resource utilization and transmission efficiency in the PSCCH period.
  • the electromagnetic radiation of the terminal to the human body minimizes the electromagnetic radiation damage of the mobile terminal to the human body.
  • Figure 1 is a schematic diagram of D2D communication
  • FIG. 2 is a schematic diagram of a configuration effect of a subframe configuration
  • FIG. 3 is a schematic flowchart of a method for configuring a subframe according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a configuration effect of a subframe configuration according to an embodiment of the present invention.
  • 5a to 5c are schematic diagrams showing a starting position of a subframe offset according to an embodiment of the present invention.
  • FIG. 6 to FIG. 7 are schematic diagrams showing ranges of PSSCH subframes indicated by SCI information transmitted in a PSCCH subframe according to an embodiment of the present invention
  • FIG. 8 to FIG. 9 are schematic flowcharts of a method for determining mapping times information and mapping offsets according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a subframe configuration apparatus according to an embodiment of the present invention.
  • the PSCCH resource pool configuration is periodically repeated, and each period contains one or more PSCCHs.
  • the indication of the PSCCH subframe is implemented by a subframe configuration bitmap sequence (bitmap).
  • bitmap is mapped from the start position of the PSCCH period according to the bit map sequence indicated by the base station or the system pre-configured.
  • the indication bit of the corresponding subframe configuration bitmap sequence is “1”, the subframe is represented.
  • For a PSCCH subframe when it is "0", it indicates that this subframe is not a PSCCH subframe.
  • the D2D UE transmits the SCI information.
  • the SCI information is used to indicate information such as a PSSCH subframe and a Resource Block (abbreviated as RB) configuration in which the corresponding data information is located.
  • the configuration of the PSSCH subframe may be indicated by a Timing Resource Pattern (TRP) in the SCI information, and the corresponding PSSCH subframe configuration may be determined according to the TRP.
  • TRP Timing Resource Pattern
  • the PSSCH subframe indicated by the TRP is repeatedly mapped within the period until the end of the period.
  • the D2D UE adopts the resource mode one the PSSCH subframe indicated by the TRP is mapped on the continuous system uplink subframe.
  • the PSSCH subframe indicated by the TRP is mapped to the PSSCH resource based on the corresponding PSSCH resource pool. On the subframes contained in the pool.
  • the first subframe configuration bitmap sequence mapping is started from the PSCCH cycle start subframe based on the subframe configuration bitmap sequence.
  • the subframe range indicated by the subframe configuration bitmap sequence is the first subframe to the Nth subframe in the PSCCH period.
  • the N is the number of indicator bits included in the sequence of the bitmap configuration bitmap.
  • the subframe configuration bitmap may correspond to N subframes.
  • the normal subframe configuration bitmap sequence includes N indicator bits, and the N indicator bits can be used to indicate whether the N subframes are PSCCH subframes.
  • the subframe configuration bitmap sequence is used to indicate which subframes of the first N subframes in the PSCCH period will be used as PSCCH subframes.
  • a maximum of N PSCCH subframes are configured in the PSCCH period, and the N PSCCH subframes must be located in the first N subframes of the PSCCH period.
  • a D2D transmitting end UE can only transmit one SCI information.
  • only one PSSCH resource can be scheduled and scheduled to transmit a set of data; again, this will occur.
  • the UE cannot send SCI information after N subframes of the PSCCH period, and cannot perform real-time scheduled D2D communication, which leads to D2D communication. The waste of the resource, the transmission delay of the D2D communication, and the low data transmission rate.
  • the UE When a UE performs D2D communication or transmits multiple sets of different data to a plurality of UEs in the current PSCCH period, the UE may not be able to perform the configuration because the configuration and transmission rules of the subframes in the PSCCH period cannot meet the corresponding requirements.
  • the mapping times information and the mapping offset are introduced, so that when the subframe configuration is performed, the bitmap sequence is configured 2 or 2 times based on the PSCCH subframe configuration.
  • the above subframe configuration bit map sequence mapping so that the limitation of only the first N subframes in which the PSCCH subframe can be configured in the PSCCH period can be broken, and the PSCCH subframe can be dispersed in the entire period of the PSCCH period, so that the UE can Perform flexible SCI transmission and PSSCH resource indication.
  • this embodiment provides a resource pool configuration method, where the method includes:
  • Step S110 Acquire a subframe configuration bitmap sequence of the physical edge link control channel PSCCH, where the subframe configuration bitmap sequence includes N indicator bits; an nth indicator bit of the N indicator bits is used to indicate Whether a subframe having a mapping relationship with the nth indication bit in the PSCCH period is a PSCCH subframe; the N is a positive integer; the n is a positive integer not greater than the N;
  • Step S120 determining the mapping times information of the subframe configuration bitmap sequence and the mapping offset.
  • Step S130 Performing a subframe configuration bitmap according to the subframe configuration bitmap sequence, the mapping number information, and the mapping offset.
  • the sequence mapping determines a PSCCH subframe in a PSCCH period;
  • the mapping times information is a total number of mapping times or a number of repeated mappings.
  • the total number of mappings is used to indicate that the subframe configuration bitmap sequence performs mapping of the subframe configuration bitmap sequence in the PSCCH period.
  • the total number of times; the number of repeated mappings is used to indicate the subframe configuration
  • the bitmap sequence performs the number of repetitions of the subframe configuration bitmap sequence mapping in the PSCCH period; the mapping offset is a subframe offset between two adjacent subframe configuration bitmap sequence mappings the amount.
  • the resource pool configuration method in this embodiment may be referred to as a subframe type determining method, and may be used in a D2D UE applied to a D2D communication process, and may be used in both a transmitting UE and a D2D as D2D communication.
  • the receiving end UE of the communication When applied to the D2D transmitting UE, the transmitting UE may use one or more PSCCH subframes to transmit SCI information of the D2D communication according to the determined PSCCH subframe configuration, and on the PSSCH subframe indicated by the SCI. Send D2D communication data.
  • the receiving end UE may perform blind detection of the SCI on the PSCCH subframe according to the determined PSCCH subframe configuration, and further receive data on the indicated PSSCH subframe according to the detected SCI, and complete D2D communication. Data interaction.
  • the manner of acquiring the subframe configuration bitmap sequence in step S110 includes: receiving a subframe configuration bitmap sequence from the base station.
  • a D2D UE typically receives a sequence of subframe configuration bitmaps from a base station in its geographic location.
  • the base station may include various types of base stations, such as a macro base station, etc., such as an evolved base station eNB.
  • the mapping number information can directly or indirectly characterize the number of times the subframe configuration bitmap sequence performs the subframe configuration bitmap sequence mapping in one PSCCH period.
  • the number of repeated maps is equal to the total number of maps minus one. If the number of repeated mappings of a subframe configuration bitmap sequence is three, the total number of mappings of the subframe configuration bitmap sequence in one PSCCH cycle is four.
  • Whether the subframe corresponding to each indicator bit is a PSCCH subframe may be determined according to the information content of the corresponding indication bit. Each of the indication bits is "0" or "1". Generally, when the information indication bit is "1", the corresponding subframe is a PSCCH subframe, otherwise it is a non-PSCCH subframe.
  • the mapping offset is in units of subframes, and the value ranges from not less than one and less than the total number of subframes included in the PSCCH period.
  • the subframe configuration bitmap sequence is mapped multiple times on different subframes in the PSCCH period based on the subframe offset determined by the mapping offset.
  • the mapping number information and the mapping offset may be pre-stored in the D2D UE, in step S120. Determining the mapping number information and the mapping offset includes: reading the mapping times information and the mapping offset from the storage area in which the mapping number information and the mapping offset are stored; or receiving the mapping times information from the peripheral device such as the base station Map configuration information for the offset.
  • the initial subframe of the first subframe configuration bitmap sequence mapping may be performed, which may be any subframe within the PSCCH period, but is better for the prior art. Compatible and more important is to make better use of the resources in the PSCCH period.
  • the first indicator bit of the subframe configuration bitmap sequence is used to indicate whether the first subframe in the PSCCH period is a PSCCH subframe.
  • FIG. 4 is one of configuration effect diagrams formed based on the resource pool configuration method of the present embodiment.
  • the number of times of repetition N repeat is equal to 2 in FIG. That is, the subframe configuration bitmap sequence will be mapped three times in the PSCCH period shown in FIG.
  • Four of the N indicator bits of the subframe configuration bitmap sequence indicate that the corresponding subframe is a PSCCH subframe, and the subframe configuration bitmap sequence mapping is performed 3 times in the PSCCH period, as shown in FIG.
  • the configuration of 12 PSCCH subframes It can be seen from FIG.
  • the resource pool configuration method in this embodiment can not only configure more PSCCH subframes, but also make PSCCH subframes more evenly distributed throughout the PSCCH cycle, thereby facilitating better improvement of subframe utilization and D2D communication. Data transfer rate.
  • the subframe configuration bitmap sequence mapping based on the subframe configuration bitmap sequence is not less than twice.
  • Such a D2D transmitting end UE may send two or more SCI information, and may perform multiple PSSCH resource scheduling indications based on the transmission of multiple SCI information, and schedule transmission of multiple sets of data; and can perform two or more times. Data broadcasting and/or unicast; thereby increasing capital Source utilization and data transmission efficiency.
  • the step S130 may include:
  • the subframe offset is performed according to the mapping offset, and the starting subframe of the m+1th subframe configuration bitmap sequence mapping is determined.
  • the starting subframe of the subframe configuration bitmap sequence mapping refers to the subframe corresponding to the first indicator bit in the subframe configuration bitmap sequence.
  • the value of the number of subframes corresponding to the mapping offset is preferably greater than the number of subframes in which the subframe configuration bitmap sequence performs the subframe configuration bitmap sequence, so that the number of subframes can be made.
  • the PSCCH subframes determined by the multiple subframe configuration bitmap sequence mapping can be discretely distributed in the PSCCH period, so that the UE can transmit the SCI information by using the PSCCH subframe at different times.
  • the number of subframes corresponding to the mapping offset is greater than the number of subframes indicated by the subframe configuration bitmap sequence for one subframe configuration bitmap sequence, it is also possible to avoid multiple subframes when performing subframe configuration.
  • the same subframe is repeatedly selected as the PSCCH subframe.
  • the step S130 may include:
  • the starting subframe of the mth subframe configuration bitmap sequence mapping is in the mth subframe configuration bitmap sequence mapping, the first indication in the subframe configuration bitmap sequence The corresponding subframe.
  • the last PSCCH subframe determined from the mth subframe configuration bitmap sequence mapping may be configured with the largest sequence number in the PSCCH subframe determined in the bitmap sequence mapping process for the mth subframe configuration.
  • One subframe. This sub-frame configures the offset mode of the bitmap sequence mapping, It can avoid the problem of mapping to the same sub-frame during the mapping process of bitmap configuration in two subframes to the greatest extent, and the implementation is simple and convenient.
  • the step S130 may include:
  • the cut-off subframe of the m-th subframe configuration bitmap sequence mapping is a subframe corresponding to the last indicator bit in the subframe configuration bitmap sequence in the m-th subframe configuration bitmap sequence mapping.
  • This method can also avoid the problem that the multiple mapping of the subframe configuration bitmap sequence indicates the same subframe, and the purpose of dispersing the PSCCH subframe in the PSCCH cycle can also be achieved.
  • the value of m is less than the total number of mappings or not greater than the number of repeated mappings.
  • the PSCCH subframe is used to send SCI information, and can be used to indicate control information of all PSSCH subframes located after it.
  • the PSCCH indicated in the multiple subframe configuration bitmap sequence mapping is further clarified.
  • the range of the PSSCH subframe that the SCI information transmitted on the subframe can indicate.
  • the SCI that can be indicated on the PSCCH subframe determined by the kth subframe configuration bitmap sequence mapping may range from the subframe s to the subframe t.
  • the subframe s is the first subframe after the last PSCCH subframe in the bitmap sequence map of the kth subframe configuration; or the subframe s is configured in the bitmap sequence map of the kth subframe configuration.
  • the subframe t is one subframe before the start subframe in the bitmap sequence mapping of the k+1th subframe; or, the subframe t is the start in the bitmap sequence mapping of the k+1th subframe configuration
  • the last subframe in the pool; or, subframe t is the last subframe in the PSCCH period or the last subframe in the PSSCH resource pool.
  • the PSCCH subframe configuration bitmap sequence is mapped multiple times in one cycle, it is necessary to determine that the SCI information sent on the PSCCH subframe in each subframe configuration bitmap sequence mapping can be indicated.
  • the range of the PSSCH subframe determines the SCI and the corresponding PSSCH subframe indication relationship.
  • step 120 the mapping times information and the mapping offset are determined.
  • the D2D UE can obtain the mapping times information and the mapping offset. Several alternative methods are provided below.
  • mapping times information and/or mapping offset based on pre-configuration information. For example, determining the value of the mapping times and/or the value of the mapping offset according to the bandwidth of the communication system and/or the duplex mode of the communication system is pre-configured by the relevant function node in the communication system, and is delivered by the network side device. The mapping times information and/or the mapping offset are determined to the entire network or pre-configured on the network side and/or the terminal device according to the operator's requirements.
  • the related function node device and the network side device herein may be any one or more of the following: an evolved base station (eNB), a relay station (RN), a cell coordination entity (MCE), a gateway (GW), and a mobility management device ( MME), Evolved Universal Terrestrial Radio Access Network (EUTRAN) Operations Management and Maintenance (OAM) Manager.
  • eNB evolved base station
  • RN relay station
  • MCE cell coordination entity
  • GW gateway
  • MME mobility management device
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • OAM Operations Management and Maintenance
  • the system definition information herein may include a communication protocol, and the D2D UE determines the value of the mapping number information and/or the mapping offset based on the communication protocol followed.
  • the value of the mapping times information and/or the mapping offset may be modified by using a signaling configuration, and the UE receives the high layer signaling sent by the base station at the location where the UE is located, and obtains the number of mappings carried in the high layer signaling.
  • the high layer signaling can
  • the system information SIB sent by the base station may further include high-level signaling such as a radio resource control RRC message.
  • the mapping number information and/or the mapping offset are carried in the ProseCommConfig information element of the RRC message, and/or in the configuration information element associated with the Prose Relay.
  • the ProseCommConfig information element is the device-to-device communication configuration information unit.
  • the configuration information unit related to the Prose Relay is a device-to-device communication relay related configuration.
  • the indicated mapping times information and/or mapping offset configuration is used for all D2D UEs in the cell, or D2D UEs in the D2D group are specified, and the PSCCH subframe configuration is determined.
  • the fourth type determining the mapping times information and/or the mapping offset according to the attribute information of the PSCCH resource pool; wherein the attribute information of the PSCCH resource pool includes a period of the PSCCH resource pool and/or a PSCCH subframe included in the PSCCH resource pool. quantity;
  • the fifth type determining the mapping times information and/or the mapping offset according to the attribute information of the PSSCH resource pool, where the attribute information of the PSSCH resource pool includes a period of the PSSCH resource pool and/or a PSSCH subframe included in the PSSCH resource pool. quantity.
  • a PSSCH resource pool is a resource pool that includes one or more PSSCH subframes.
  • This example provides a mapping offset Three uses
  • bit sequence sequence here is the PSCCH subframe configuration bitmap sequence.
  • method one Indicates the number after the start subframe of the mth bitmap sequence map from the bitmap sequence Starting at the beginning of the sub-frame, performing the m+1th bitmap sequence mapping, as shown in Figure 5a;
  • Method Two Indicates the number after the cutoff subframe mapped from the mth bit sequence of the bitmap sequence Starting at a sub-frame, performing the m+1th bitmap sequence mapping, as shown in Figure 5c;
  • Method three Indicates the number after the last valid subframe in the mth bitmap sequence map from the bitmap sequence At the beginning of each subframe, the m+1th bitmap sequence mapping is performed, as shown in FIG. 5b.
  • the starting subframe of the bitmap sequence mapping refers to the subframe corresponding to the first bit indicator bit in the bitmap sequence; the cut-off subframe mapped by the bitmap sequence refers to the subframe corresponding to the last bit indicator bit in the bitmap sequence, that is, from the subframe.
  • the corresponding indication relationship between the PSCCH resource and the PSSCH resource in the PSCCH subframe configuration determined by the present invention when the D2D UE adopts the mode 1 resource scheme is provided.
  • the PSCCH and PSSCH resources of the D2D UE may be scheduled by the eNB, and the PSSCH subframe indicated by the TRP in the SCI information corresponds to the system uplink subframe by subframe.
  • the SSCH information on the PSCCH subframe indicated by the kth bitmap sequence mapping may indicate the PSSCH subframe range from the subframe s to the subframe t.
  • the subframe s is the first subframe after the last valid subframe in the kth bitmap sequence mapping; the valid subframe here is the last PSCCH subframe determined in the kth bitmap sequence mapping.
  • the subframe t is the last subframe before the start subframe of the k+1th bitmap sequence mapping
  • N repeat is the number of repeated mappings
  • subframe t is the last subframe in the PSCCH period.
  • N repeat 1 in the SCI information carried on the PSCCH subframe indicated by the first bitmap sequence mapping, the range of the PSSCH subframe that can be indicated is, the subframe s is the first bitmap sequence.
  • the range of the PSSCH subframe that can be indicated is that the subframe s is the first subframe after the last valid subframe in the second bitmap sequence mapping, and the subframe t is the PSCCH period. The last subframe within.
  • the corresponding indication relationship between the PSCCH resource and the PSSCH resource in the PSCCH subframe configuration determined by the present invention when the D2D UE adopts the resource scheme of the mode 2 is provided.
  • the PSCCH and the PSSCH resources of the D2D UE are used by the UE in the configured resource pool.
  • the PSSCH subframe indicated by the TRP in the SCI information corresponds to the subframe in the PSSCH resource pool.
  • the PSSCH subframe range that can be indicated by the SCI information on the PSCCH subframe indicated by the kth bitmap sequence mapping is from the subframe s to the subframe t.
  • the subframe s is the first subframe in the PSSCH resource pool after being the last valid subframe in the kth bitmap sequence mapping map;
  • the subframe t is the last subframe in the PSSCH resource pool before the first valid subframe in the k+1th bitmap sequence mapping map;
  • the subframe t is the last subframe included in the PSSCH resource pool within the PSCCH period.
  • N repeat 1 in the SCI information carried on the PSCCH subframe indicated by the first bitmap sequence mapping, the range of the PSSCH subframe that can be indicated is the corresponding subframe s is the first bitmap.
  • the first subframe in the PSSCH resource pool after the subframe; the corresponding subframe t is the last subframe in the PSSCH resource pool in the PSCCH period.
  • mapping times information and a mapping offset to a D2D UE by using high layer signaling is provided.
  • mapping number information and the mapping offset may be indicated by the system through higher layer signaling, such as system broadcast information SIB or RRC message.
  • this example includes:
  • Step S11 The eNB sends system information including mapping times information and mapping offset to the D2D UE.
  • Step S12 The D2D UE determines the PSCCH subframe based on the mapping times information and the mapping offset.
  • the PSCCH subframe is specifically determined, it is also determined based on the subframe configuration bitmap sequence.
  • the example includes:
  • Step S21 The eNB sends an RRC message including the mapping times information and the mapping offset to the D2D UE.
  • Step S22 The D2D UE determines the PSCCH subframe based on the mapping times information and the mapping offset.
  • the RRC message can be used to perform independent mapping times information and mapping offset configuration for the UE, and can be configured separately for each D2D UE in the cell.
  • the RRC message that can be used to carry the mapping times information and the mapping offset parameter is the ProseCommConfig information element. Or a configuration information element related to Prose Relay.
  • a method of determining mapping time information based on a PSCCH resource period is a method of determining mapping time information based on a PSCCH resource period.
  • the mapping times information is represented by the number of repeated mappings N repeat , which can be determined according to the period of the PSCCH resource pool, and the index relationship between the N repeat and the PSCCH resource pool period is defined by the system, and for any PSCCH period, only one N repeat value is corresponding,
  • the signaling needs to indicate the N repeat configuration to the D2D UE, and the D2D UE can directly determine the value of N repeat according to the period of the PSCCH resource pool and the index relationship between the two.
  • Table 1 shows the correspondence between a PSCCH resource pool period and N repeat .
  • this embodiment provides a D2D UE, where the D2D UE includes:
  • the acquiring unit 110 is configured to acquire a subframe configuration bitmap sequence of the physical edge link control channel PSCCH, where the subframe configuration bitmap sequence includes N indicator bits; the nth indicator bit of the N indicator bits Determining whether a subframe having a mapping relationship with the nth indication bit in a PSCCH period is a PSCCH subframe; the N is a positive integer; the n is a positive integer not greater than the N;
  • the first determining unit 120 is configured to determine mapping time information of the subframe configuration bitmap sequence and a mapping offset
  • the second determining unit 130 is configured to perform a subframe configuration bitmap sequence mapping to determine a PSCCH subframe in a PSCCH period according to the subframe configuration bitmap sequence, the mapping number information, and the mapping offset.
  • the mapping times information is a total number of mapping times or a number of repeated mappings; the total number of mappings is used to indicate the total number of times the subframe configuration bitmap sequence performs the mapping of the subframe configuration bitmap sequence in the PSCCH period.
  • the number of repetition mappings is used to indicate the number of repetitions of the subframe configuration bitmap sequence mapping in the PSCCH period in the subframe configuration bitmap sequence; the mapping offset is two adjacent The subframe offset between the bitmap configuration bitmap mappings.
  • the specific structure of the acquiring unit 110 in this embodiment is different according to the manner in which the sequence of the bitmap configuration bitmap is obtained, for example, when the D2D UE receives the subframe configuration bitmap from a peripheral device such as a base station.
  • the D2D UE includes a receiving interface, and the receiving interface may include one or more receiving antennas.
  • the structure of the first determining unit 120 may include a processor having information processing and a storage medium.
  • the storage medium stores the mapping times information and a mapping offset; the processor may read the mapping times information and a mapping offset from the storage medium by executing a specified code.
  • the first determining unit 120 may also include a receiving interface, and the receiving interface may receive the mapping times information and the mapping offset from a peripheral device such as a base station.
  • the specific specific structure of the second determining unit 130 may include a processor or a processing chip, and determine, according to the subframe configuration bitmap sequence, the mapping number information, and the mapping offset, which subframes in the PSCCH period are PSCCH sub- frame.
  • the D2D UE in this embodiment may be used to implement the resource pool configuration method in the foregoing method embodiment, and the resource pool configured by the D2D UE in the embodiment may be configured to allow the sending UE to be in one of the PSCCHs. Sending more than one SCI information in a cycle can be better Use resources within the PSCCH cycle to improve transmission efficiency and the like.
  • the second determining unit 120 is configured to perform the first subframe configuration bitmap sequence mapping according to the subframe configuration bitmap sequence starting from a start subframe of the PSCCH period. In the embodiment, the second determining unit 120 starts from the start subframe of the PSCCH period when performing the subframe configuration bitmap sequence mapping, where the starting subframe of the PSCCH period refers to the PSCCH period. The first subframe.
  • the following is a structure in which the second determining unit 120 performs subframe offset according to the mapping offset in the embodiment.
  • the second determining unit 120 is further configured to perform a subframe offset according to the mapping offset from the starting subframe of the mth subframe configuration bitmap sequence mapping, and determine the m+1th The subframe configures the starting subframe of the bitmap sequence map.
  • the starting subframe of the mth subframe configuration bitmap sequence mapping is configured in the mth subframe configuration bitmap sequence mapping, where the subframe configuration bitmap sequence is the first The sub-frame corresponding to the indication bit.
  • the second determining unit 120 is further configured to start from the first subframe after the last one of the PSCCH subframes determined by the mth subframe configuration bitmap sequence mapping, according to the mapping offset Subframe offset, determining a starting subframe of the m+1th subframe configuration bitmap sequence mapping;
  • the second determining unit 120 is further configured to perform, according to the mapping offset, a subframe offset, starting from a first subframe after the cut subframe of the mth subframe configuration bitmap sequence mapping, Determining a starting subframe of the m+1th subframe configuration bitmap sequence mapping; wherein the m is a positive integer smaller than the total number of mappings or not greater than the number of repeated mappings.
  • the cut-off subframe of the m-th subframe configuration bitmap sequence mapping is a subframe corresponding to a last indicator bit in the subframe configuration bitmap sequence in the m-th subframe configuration bitmap sequence mapping;
  • the edge link control information sent on the PSCCH subframe determined by the kth subframe configuration bitmap sequence mapping, the range of the PSSCH subframe used for data transmission indicated is from the subframe s to the child Frame t.
  • a PSCCH subframe can be used to transmit side link control information; the side link control information is used to indicate a PSSCH subframe for performing data transmission; wherein the kth subframe configuration bit
  • the range of the PSSCH subframe that can be indicated by the PSCCH subframe determined in the sequence diagram of the picture sequence is from the subframe s to the subframe t.
  • the subframe s is the first subframe after the last one of the PSCCH subframes in the bitmap sequence mapping of the kth subframe; or the subframe s is configured for the kth subframe a first subframe after the last one of the PSCCH subframes in the bitmap sequence map and located in the PSSCH resource pool;
  • the subframe t is one subframe before the start subframe in the bitmap sequence mapping of the k+1th subframe configuration
  • the subframe t is the last subframe before the start subframe in the bitmap sequence mapping of the k+1th subframe configuration, and is located in the PSSCH resource pool;
  • the subframe t is one subframe before the first one of the PSCCH subframes in the bitmap sequence mapping of the k+1th subframe configuration;
  • the subframe t is the first subframe in the PSSCH resource pool before the first PSCCH subframe in the bitmap sequence mapping of the k+1th subframe configuration;
  • the subframe t is the last subframe in the PSCCH period or the last subframe in the PSSCH resource pool.
  • the first determining unit 110 determines that the mapping number information and the mapping offset have a variety of structures, and several alternative structures are provided below.
  • the first determining unit 110 includes at least one of the following optional structures;
  • the first determining unit 110 is configured to determine the mapping times based on pre-configuration information. And/or the mapping offset.
  • the first determining unit 110 is configured to determine the mapping times information and/or the mapping offset according to system definition information.
  • the first determining unit 110 is configured to receive high layer signaling and obtain mapping times information and/or the mapping offset from the high layer signaling.
  • the first determining unit 110 is configured to determine the mapping times information and/or the mapping offset according to the attribute information of the PSCCH resource pool, where the attribute information of the PSCCH resource pool includes the PSCCH resource pool
  • the PSCCH resource pool is a set of PSCCH subframes;
  • the first determining unit 110 is configured to determine the mapping times information and the mapping offset according to the attribute information of the PSSCH resource pool, where the attribute information of the PSSCH resource pool includes the PSSCH resource pool. The number of periodic and/or PSCCH subframes in the PSSCH resource pool.
  • the high-level signaling includes a system message, the mapping times information, and the mapping offset, used to send all D2D UEs in a cell of the system message or D2D UEs in a specified D2D group to perform the PSCCH sub- The determination of the frame.
  • the high layer signaling further includes a radio resource control RRC message; the mapping times information and the mapping offset are carried in a ProseCommConfig information element of the RRC message and/or a configuration information element related to the Prose Relay.
  • the D2D UE further includes a third determining unit, in order to solve the conflict that the same subframe in the PSCCH period is configured as a PSCCH subframe and a PSSCH subframe.
  • An embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used in the foregoing resource pool configuration method. At least one of the methods, for example, at least one of the methods shown in FIGS. 3, 8, and 9.
  • the computer storable medium may include various types of storage media such as an optical disk, a magnetic disk, or a hard disk, and may be a time-consuming storage medium.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the embodiment of the present invention further describes a computer storage medium, wherein the computer storage medium stores a computer program for performing the method for reducing the mobile terminal SAR shown in FIG. 1 in the embodiment of the present invention.
  • At least two antennas are disposed in the mobile terminal, the first antenna is a main antenna, the second antenna is an auxiliary antenna, and the first antenna and the second antenna are used in the mobile terminal. Diagonally placed; detecting the external radiated power of the first antenna in the communication process of the mobile terminal in real time; controlling the mobile terminal to communicate using the first antenna or the second antenna according to the external radiated power, thus reducing the mobile terminal in The SAR during communication also reduces the electromagnetic radiation of the mobile terminal to the human body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种资源池配置方法、D2D UE及存储介质,所述方法包括:获取PSCCH的子帧配置位图序列;其中,子帧配置位图序列包含N个指示位;N个指示位中的第n指示位用于指示PSCCH周期中与第n指示位具有映射关系的子帧是否为PSCCH子帧;确定子帧配置位图序列的映射次数信息及映射偏移量;其中,映射次数信息包括总映射次数或重复映射次数;总映射次数,用于指示子帧配置位图序列在PSCCH周期中映射的总次数;重复映射次数,用于指示子帧配置位图序列在PSCCH周期中映射的重复次数;映射偏移量为相邻两次子帧配置位图序列映射之间的子帧偏移量;依据子帧配置位图序列、映射次数信息及映射偏移量,确定PSCCH周期中的PSCCH子帧。

Description

资源池配置方法、D2D UE和计算机存储介质 技术领域
本发明涉及通信领域,尤其涉及一种资源池配置方法及设备到设备(Device To Device,简称为D2D)用户设备UE和计算机存储介质。
背景技术
在D2D通信系统中,用户设备(User Equipment,简称为UE)之间有业务需要传输时,UE之间的业务数据不经过基站的转发,而是直接由数据源UE通过空中接口传输给目标UE。如图1所示,UE1和UE2都为D2D UE,UE1和UE2可通过边链路(Sidelink)而不经过基站进行通信,这种通信即为D2D通信。D2D通信模式具有明显区别于蜂窝系统通信模式的特征,对于能够应用D2D通信方式的近距离通信用户来说,D2D传输不但节省了无线频谱资源,而且降低了核心网的数据传输压力,能够减少系统资源占用,增加蜂窝通信系统频谱效率,降低终端发射功耗,并在很大程度上节省网络运营成本。
在D2D通信系统中,UE之间直接进行数据的传输,发送端UE可以按照网络侧的调度配置获得D2D通信的物理边链路控制信道(Physical Sidelink Control Channel,简称为PSCCH)和物理边链路共享信道(Physical Sidelink Shared Channel,简称为PSSCH)资源,也可以在给定的PSCCH和PSSCH资源池中竞争选择资源进行D2D通信控制及数据信息的发送。
用于D2D通信的资源配置周期性重复,每一个周期可称为PSCCH周期。在现有技术中,在该PSCCH周期内,部分子帧是用于发送边链路控制信息(Sidelink Control Information,简称为SCI信息)的PSCCH子帧,部分子帧是用于发送数据信息PSSCH子帧。而在进行D2D通信时,数据信 息的发送和接收都是与所述SCI信息相关,故合理配置PSCCH子帧和PSSCH子帧是会影响到PSCCH周期内的资源利用率和数据传输速率和效率的。
发明内容
有鉴于此,本发明实施例期望提供一种资源池配置方法及D2D UE,以合理化配置所述PSCCH周期内的子帧,以提高资源利用率和数据信息的传输效率。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例第一方面提供一种资源池配置方法,所述方法包括:
获取物理边链路控制信道PSCCH的子帧配置位图序列;其中,所述子帧配置位图序列包含N个指示位;所述N个指示位中的第n指示位用于指示PSCCH周期中与所述第n指示位具有映射关系的子帧是否为PSCCH子帧;所述N为正整数;所述n为不大于所述N的正整数;
确定所述子帧配置位图序列的映射次数信息及映射偏移量;
依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧;
其中,所述映射次数信息为总映射次数或重复映射次数;所述总映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的总次数;所述重复映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的重复次数;所述映射偏移量为相邻两次所述子帧配置位图序列映射之间的子帧偏移量。
基于上述方案,所述依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子 帧,包括:
从所述PSCCH周期的起始子帧开始,依据所述子帧配置位图序列进行第一次所述子帧配置位图序列映射;其中,所述PSCCH周期的起始子帧为所述PSCCH周期中的第一个子帧。
基于上述方案,所述依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧,包括:
从第m次所述子帧配置位图序列映射的起始子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次所述子帧配置位图序列映射的起始子帧为在所述第m次所述子帧配置位图序列映射中,所述子帧配置位图序列中第一个指示位对应的子帧;
或,
从所述第m次子帧配置位图序列映射确定的最后一个所述PSCCH子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;
或,
从所述第m次子帧配置位图序列映射的截止子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次子帧配置位图序列映射的截止子帧为在所述第m次子帧配置位图序列映射中,所述子帧配置位图序列中最后一个指示位对应的子帧;
其中,所述m为小于所述总映射次数或不大于所述重复映射次数的正整数。
基于上述方案,在第k次子帧配置位图序列映射所确定的所述PSCCH 子帧上发送的边链路控制信息,用于指示的用于进行数据传输的PSSCH子帧的范围为从子帧s到子帧t;
所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后的第一个子帧;或所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后,且位于所述PSSCH资源池中的第一个子帧;
所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前的一个子帧;或,
所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前,且位于所述PSSCH资源池中的最后一个子帧;或,
所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前的一个子帧;或,
所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前,且位于所述PSSCH资源池中最后一个子帧;或,
所述子帧t为所述PSCCH周期内的最后一个子帧或所述PSSCH资源池中的最后一个子帧;
其中,所述PSSCH资源池包括至少一个PSSCH子帧。
基于上述方案,所述确定所述子帧配置位图序列的映射次数信息及映射偏移量,包括以下的至少其中之一:
基于预配置信息,确定所述映射次数信息和/或所述映射偏移量;
基于系统定义信息,确定所述映射次数信息和/或所述映射偏移量;
接收高层信令并从所述高层信令获取映射次数信息和/或所述映射偏移量;
依据PSCCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSCCH资源池的属性信息包括所述PSCCH资源池 的周期和/或所述PSCCH资源池中包含的PSCCH子帧的数量;
依据所述PSSCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSSCH资源池的属性信息包括所述PSSCH资源池的周期和/或所述PSSCH资源池中包含的PSSCH子帧的数量;
所述PSSCH资源池包括至少一个PSSCH子帧。
基于上述方案,所述高层信令包括系统消息;
所述映射次数信息和/或所述映射偏移量,用于发送所述系统消息的小区内的全部设备到设备D2D UE或指定的D2D群组内的D2D UE进行所述PSCCH子帧的确定。
基于上述方案,所述高层信令包括无线资源控制RRC消息;
所述映射次数信息和/或所述映射偏移量承载在所述RRC消息的设备到设备通信配置信息单元和/或与设备到设备通信中继相关的配置信息单元中。
基于上述方案,
所述方法还包括:
当确定出的所述PSCCH子帧与所述PSSCH资源池中的PSSCH子帧重叠时,确定所述PSSCH资源池中与所述PSCCH子帧重叠的子帧不用于发送数据信息。
本发明实施例第二方面提供一种D2D UE,所述D2DUE包括:
获取单元,配置为获取物理边链路控制信道PSCCH的子帧配置位图序列;其中,所述子帧配置位图序列包含N个指示位;所述N个指示位中的第n指示位用于指示PSCCH周期中与所述第n指示位具有映射关系的子帧是否为PSCCH子帧;所述N为正整数;所述n为不大于所述N的正整数;
第一确定单元,配置为确定所述子帧配置位图序列的映射次数信息及映射偏移量;第二确定单元,用于依据所述子帧配置位图序列、映射次数 信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧;
其中,所述映射次数信息为总映射次数或重复映射次数;所述总映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的总次数;所述重复映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的重复次数;所述映射偏移量为相邻两次所述子帧配置位图序列映射之间的子帧偏移量。
基于上述方案,所述第二确定单元,配置为从所述PSCCH周期的起始子帧开始,依据所述子帧配置位图序列进行第一次所述子帧配置位图序列映射;其中,所述PSCCH周期的起始子帧为所述PSCCH周期中的第一个子帧。
基于上述方案,所述第二确定单元,还配置为从第m次所述子帧配置位图序列映射的起始子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次所述子帧配置位图序列映射的起始子帧为在所述第m次所述子帧配置位图序列映射中,所述子帧配置位图序列中第一个指示位对应的子帧;
或,
从所述第m次子帧配置位图序列映射确定的最后一个所述PSCCH子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;
或,
从所述第m次子帧配置位图序列映射的截止子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次子帧配置位图序列映射的截止子帧为 在所述第m次子帧配置位图序列映射中,所述子帧配置位图序列中最后一个指示位对应的子帧;
其中,所述m为小于所述总映射次数或不大于所述重复映射次数的正整数。
基于上述方案,在第k次子帧配置位图序列映射所确定的所述PSCCH子帧上发送的边链路控制信息,用于指示的用于进行数据传输的PSSCH子帧的范围为从子帧s到子帧t;
所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后的第一个子帧;或所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后,且位于所述PSSCH资源池中的第一个子帧;
所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前的一个子帧;
所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前,且位于所述PSSCH资源池中的最后一个子帧;或,
所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前的一个子帧;或,
所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前,且位于所述PSSCH资源池中最后一个子帧;或,
所述子帧t为所述PSCCH周期内的最后一个子帧或所述PSSCH资源池中的最后一个子帧;
其中,所述PSSCH资源池包括至少一个PSSCH子帧。
基于上述方案,所述第一确定单元,配置为基于预配置信息,确定所述映射次数信息和/或所述映射偏移量;和/或,
基于系统定义信息,确定所述映射次数信息和/或所述映射偏移量;和/ 或,
接收高层信令并从所述高层信令获取映射次数信息和/或所述映射偏移量;和/或,
依据PSCCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSCCH资源池的属性信息包括所述PSCCH资源池的周期和/或所述PSCCH资源池中包含的PSCCH子帧的数量;
和/或,依据所述PSSCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSSCH资源池的属性信息包括所述PSSCH资源池的周期和/或所述PSSCH资源池中包含的PSSCH子帧的数量;
所述PSSCH资源池包括至少一个PSSCH子帧。
基于上述方案,所述高层信令包括系统消息;
所述映射次数信息及所述映射偏移量,用于发送所述系统消息的小区内的全部D2D UE或指定D2D群组内的D2D UE进行所述PSCCH子帧的确定。
基于上述方案,所述高层信令包括无线资源控制RRC消息;
所述映射次数信息和/或所述映射偏移量承载在所述RRC消息的设备到设备通信配置信息单元和/或与设备到设备通信中继相关的配置信息单元中。
基于上述方案,所述D2D UE还包括:
第三确定单元,配置为当确定出的所述PSCCH子帧与所述PSSCH资源池中的PSSCH子帧重叠时,确定所述PSSCH资源池中与所述PSCCH子帧重叠的子帧不用于发送数据信息。
本发明实施例第三方面还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法的至少其中之一。
本发明实施例所述的PSCCH资源池中子帧的配置方法、D2D UE和计算机存储介质,在进行子帧配置时,会结合子帧配置位图序列、映射次数信息及映射偏移量在一个PSCCH周期内进行一次或多次的子帧配置位图序列映射,这样后续D2D UE在进行通信时,能够发送的SCI信息的最大个数等于在一个所述PSCCH周期内进行的子帧配置位图序列映射的次数,从而实现了D2D UE在一个所述PSCCH周期内对多个SCI信息的发送,进一步方便了D2D UE采用多个SCI信息进行PSSCH资源调度和多次数据的传输,并且能有更大概率的使所述PSCCH子帧分散在整个所述PSCCH周期中,方便D2D UE在所述PSCCH周期的不同时间段内进行数据传输,提高了PSCCH周期内的资源利用率及传输效率。终端对人体的电磁辐射,使移动终端对人体的电磁辐射危害降到了最低。
附图说明
图1为D2D通信的示意图;
图2为一种子帧配置的配置效果示意图;
图3为本发明实施例所述子帧配置的方法流程示意图;
图4为本发明实施例所述子帧配置的配置效果示意图之一;
图5a至图5c本发明实施例所述子帧偏移的起始位置的示意图;
图6至图7为本发明实施例所述PSCCH子帧发送的SCI信息指示的PSSCH子帧的范围示意图;
图8至图9为本发明实施例所述的确定映射次数信息和映射偏移量的方法流程示意图;
图10为本发明实施例所述的子帧配置装置的结构示意图。
具体实施方式
PSCCH资源池配置周期性重复,每个周期中包含一个或多个PSCCH 子帧,对PSCCH子帧的指示通过子帧配置位图序列(bitmap)实现。根据基站指示的或系统预配置的比特位图序列,从PSCCH周期的起始位置开始映射比特位图序列,通常,相应子帧配置位图序列的指示位为“1”时,表示此子帧为PSCCH子帧,为“0”时表示此子帧不作为PSCCH子帧。
在PSCCH子帧上,D2D UE发送SCI信息。所述SCI信息用于指示相应的数据信息所在的PSSCH子帧及资源块(Resource Block,可简称为RB)配置等信息。对PSSCH子帧的配置在SCI信息中可通过时域资源图样(Timing Resource Pattern,可简称为TRP)指示,根据TRP可以确定相应的PSSCH子帧配置。TRP所指示的PSSCH子帧在周期内重复映射,直至周期结束。当D2D UE采用资源模式一时,TRP指示的PSSCH子帧映射在连续的系统上行子帧上,当采用资源模式二时,TRP指示的PSSCH子帧以相应的PSSCH资源池为基础,映射在PSSCH资源池中包含的子帧上。
进行子帧配置时,基于子帧配置位图序列从PSCCH周期起始子帧开始第一次子帧配置位图序列映射。所述子帧配置位图序列指示的子帧范围为PSCCH周期内第一个子帧到第N个子帧。所述N为所述子帧配置位图序列所包括的指示位的个数。如图2所示,子帧配置位图可对应N个子帧。此时,通常子帧配置位图序列包括N个指示位,这N个指示位可用于对N个子帧是否为PSCCH子帧进行指示。在图2中,所述子帧配置位图序列用于指示所述PSCCH周期内前N个子帧中哪些子帧将作为PSCCH子帧。
采用这种子帧配置方式,在所述PSCCH周期内最多配置N个PSCCH子帧,且这N个PSCCH子帧一定位于所述PSCCH周期的前N个子帧。首先,在这种配置情况下,一个D2D发送端UE仅能发送一个SCI信息;其次,基于这一个SCI信息,仅能进行一次PSSCH资源的调度及调度传输一组数据;再次,还会出现这样的情况,UE无法在PSCCH周期的N个子帧之后发送SCI信息,无法进行实时调度的D2D通信,这就会导致D2D通 信资源的浪费、D2D通信的传输时延及数据传输速率低等问题。当一个UE向在本PSCCH周期内与多个UE进行D2D通信或传输多组不同的数据时,也会因为PSCCH周期内子帧的配置及发送规则不能满足相应的要求,而无法进行。
在本申请中在进行所述PSCCH子帧的配置时,引入了映射次数信息和映射偏移量,这样能够使得在进行子帧配置时,基于PSCCH子帧配置位图序列进行2次或2次以上的子帧配置位图序列映射,这样就能够打破仅能将PSCCH子帧配置在PSCCH周期的前N个子帧的局限,同时使PSCCH子帧能够分散在PSCCH周期的整个周期内,使UE可以进行灵活的SCI传输及PSSCH资源指示。
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
方法实施例:
如图3所示,本实施例提供一种资源池配置方法,所述方法包括:
步骤S110:获取物理边链路控制信道PSCCH的子帧配置位图序列;其中,所述子帧配置位图序列包含N个指示位;所述N个指示位中的第n指示位用于指示PSCCH周期中与所述第n指示位具有映射关系的子帧是否为PSCCH子帧;所述N为正整数;所述n为不大于所述N的正整数;
步骤S120:确定所述子帧配置位图序列的映射次数信息及映射偏移量;步骤S130:依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧;
其中,所述映射次数信息为总映射次数或重复映射次数;所述总映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的总次数;所述重复映射次数,用于指示所述子帧配置 位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的重复次数;所述映射偏移量为相邻两次所述子帧配置位图序列映射之间的子帧偏移量。
本实施例所述的资源池配置方法,又可称为子帧类型确定方法,可为应用于D2D通信过程的D2D UE中,既可用于作为D2D通信的发送端UE中,也可以应用于D2D通信的接收端UE中。当应用于D2D发送端UE中时,所述发送端UE可以根据所确定的PSCCH子帧配置,使用一个或多个PSCCH子帧来发送D2D通信的SCI信息,并在SCI所指示PSSCH子帧上发送D2D通信数据。所述接收端UE,可以根据所确定的PSCCH子帧配置,在PSCCH子帧上进行SCI的盲检,并根据检测到的SCI,进一步在指示出的PSSCH子帧上接收数据,完成D2D通信中的数据交互。
在步骤S110中获取所述子帧配置位图序列的方式包括:从基站接收子帧配置位图序列。D2D UE通常从其所在地理位置的基站接收子帧配置位图序列。基站可包括各种类型的基站,如宏基站等,具体如演进型基站eNB。
在步骤S120中确定所述映射次数信息能够直接或间接表征子帧配置位图序列在一个PSCCH周期内进行子帧配置位图序列映射的次数。重复映射次数等于总映射次数减去1。若一个子帧配置位图序列的重复映射次数为3次,则该子帧配置位图序列在一个PSCCH周期中的总映射次数为4次。每个指示位对应的子帧是否为PSCCH子帧,可根据对应指示位的信息内容进行确定。每一个指示位为“0”或为“1”两种状态,通常当所述信息指示位为“1”时,对应的子帧为PSCCH子帧,否则为非PSCCH子帧。
本实施例中映射偏移量以子帧为单位,取值范围为不小于1且小于PSCCH周期包括的子帧总数。基于映射偏移量确定的子帧偏移,使子帧配置位图序列在PSCCH周期内在不同子帧上进行多次映射。
映射次数信息和映射偏移量可以预先存储在D2D UE中,步骤S120中 的确定映射次数信息和映射偏移量包括:从存储有映射次数信息和映射偏移量的存储区域中读取映射次数信息和映射偏移量;或从基站等外设接收对映射次数信息和映射偏移量的配置信息。
在步骤S130进行子帧配置位图序列映射时,进行第一次子帧配置位图序列映射的起始子帧,可以为PSCCH周期内的任意一个子帧,但是为了与现有技术更好的兼容且更重要的是更好的利用PSCCH周期内的资源,在本申请实施例中优选为从PSCCH周期的起始子帧开始,依据子帧配置位图序列进行第一次子帧配置位图序列映射。这样的话子帧配置位图序列的第一个指示位,用于指示PSCCH周期内的第一子帧是否为PSCCH子帧。
图4所示的即为基于本实施例的资源池配置方法形成的配置效果图之一。在图4中重复映射次数Nrepeat等于2。即子帧配置位图序列在图4所示的PSCCH周期中将进行3次映射。子帧配置位图序列的N个指示位中有4个指示位指示对应的子帧为PSCCH子帧,在该PSCCH周期中进行3次子帧配置位图序列映射,形成如图4中所示的配置了12个PSCCH子帧。从图4中可知,映射偏移量对应的子帧的数量大于子帧配置位图序列进行一次子帧配置位图序列映射指示的子帧的数量,可以使得多次映射确定的PSCCH子帧分散在PSCCH周期中。显然本实施例的资源池配置方法,不仅能够配置更多的PSCCH子帧,同时还能使PSCCH子帧在整个PSCCH周期中更均匀分布,从而方便更好的提高子帧利用率以及D2D通信中的数据传输速率。
显然本实施例中的资源池的配置方法,当重复映射次数不为0或总映射次数不小于2时,基于子帧配置位图序列进行的子帧配置位图序列映射不会少于两次,这样一个D2D发送端UE可发送2个及以上的SCI信息,基于多个SCI信息的发送可进行多次PSSCH资源调度的指示,调度传输多组的数据;能够进行两次或两次以上的数据广播和/或单播;从而提升了资 源利用率及数据传输效率。
基于子帧偏移量进行子帧偏移的方式有多种,以下提供三种可选方式。
方式一:
如图5a所示,所述步骤S130可包括:
从第m次子帧配置位图序列映射的起始子帧开始,依据映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧。其中,子帧配置位图序列映射的起始子帧是指子帧配置位图序列中第一个指示位对应的子帧。在这种子帧偏移方式中,映射偏移量对应的子帧数量的取值优选大于所述子帧配置位图序列进行一次子帧配置位图序列指示的子帧的数量,这样的话能够使多次子帧配置位图序列映射确定的PSCCH子帧能够离散的分布在PSCCH周期中,方便UE在不同时刻,利用PSCCH子帧发送SCI信息。此外,若映射偏移量对应的子帧数量大于所述子帧配置位图序列进行一次子帧配置位图序列指示的子帧的数量,还能够在进行子帧配置时,避免多次子帧配置位图序列映射过程中,重复选定同一个子帧作为PSCCH子帧的现象。
方式二:
如图5b所示,所述步骤S130可包括:
从第m次子帧配置位图序列映射确定的最后一个PSCCH子帧之后的第一个子帧开始,依据映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧。所述第m次所述子帧配置位图序列映射的起始子帧为在所述第m次所述子帧配置位图序列映射中,所述子帧配置位图序列中第一个指示位对应的子帧。
在本方式中,从第m次子帧配置位图序列映射中确定的最后一个PSCCH子帧,可为第m次子帧配置位图序列映射过程中所确定的PSCCH子帧中的序号最大的一个子帧。这种子帧配置位图序列映射的偏移方式, 能够最大程度的避免两次子帧配置位图序列映射过程中的映射到同一个子帧的问题,且实现简单便捷。
方式三:
如图5c所示,所述步骤S130可包括:
从第m次子帧配置位图序列映射的截止子帧之后的第一个子帧开始,依据映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧。
所述第m次子帧配置位图序列映射的截止子帧为在所述第m次子帧配置位图序列映射中,所述子帧配置位图序列中最后一个指示位对应的子帧。
此方式也能够避免子帧配置位图序列的多次映射指示到同一个子帧的问题,同样也能达到使PSCCH子帧分散在PSCCH周期中的目的。
值得注意的是,不管是上述三种方式中,任何一种所述方式,m的取值小于总映射次数或不大于重复映射次数。
PSCCH子帧用于发送SCI信息,可用于指示位于其之后的所有的PSSCH子帧的控制信息,在本实施例中,还进一步明确了在多次子帧配置位图序列映射中指示出的PSCCH子帧上发送的SCI信息能够指示的PSSCH子帧的范围。
在第k次子帧配置位图序列映射所确定的PSCCH子帧上发送的SCI,可指示的PSSCH子帧的范围为从子帧s到子帧t。
此时,子帧s为第k次子帧配置位图序列映射中的最后一个PSCCH子帧之后的第一个子帧;或者,子帧s为第k次子帧配置位图序列映射中的最后一个PSCCH子帧之后,且位于PSSCH的资源池中的第一个子帧;
子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前的一个子帧;或者,子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前,且位于PSSCH资源池中的最后一个子帧;子帧t为第k+1次子帧配置位图序 列映射中的第一个所述PSCCH子帧之前的一个子帧;或者,子帧t为第k+1次子帧配置位图序列映射中的第一个PSCCH子帧之前,且位于PSSCH资源池中最后一个子帧;或者,子帧t为PSCCH周期内的最后一个子帧或PSSCH资源池中的最后一个子帧。
在本实施例中由于在一个周期内对PSCCH子帧配置位图序列进行了多次映射,因此需确定每一次子帧配置位图序列映射中的PSCCH子帧上发送的SCI信息中所能够指示的PSSCH子帧的范围,确定SCI和相应的PSSCH子帧指示关系。
步骤120中将确定映射次数信息和映射偏移量;D2D UE获取映射次数信息及映射偏移量的方式有多种,以下提供几种可选方式。
第一种:基于预配置信息,确定映射次数信息和/或映射偏移量。具体如,根据通信系统的带宽和/或通信系统的双工方式确定映射次数信息和/或映射偏移量的取值,由通信系统中的相关功能节点进行预配置,通过网络侧设备下发到全网,或根据运营商需求在网络侧和/或终端设备中进行预配置,确定映射次数信息和/或映射偏移量。此处的相关功能节点设备、网络侧设备可以为以下任意一种或多种:演进型基站(eNB)、中继站(RN)、小区协作实体(MCE)、网关(GW)、移动性管理设备(MME)、演进型通用陆地无线接入网(EUTRAN)操作管理及维护(OAM)管理器。
第二种:基于系统定义信息,确定所述映射次数信息和/或所述映射偏移量。此处的系统定义信息可包括通信协议,D2D UE基于所遵循的通信协议确定映射次数信息和/或映射偏移量的取值。
第三种:接收高层信令并从高层信令获取映射次数信息和/或所述映射偏移量。在本方式中映射次数信息和/或映射偏移量的取值可通过信令配置进行修改,UE通过接收其所在位置的基站发送的高层信令,并获取承载在高层信令中的映射次数信息和/或映射偏移量的取值配置。所述高层信令可 包括基站发送的系统信息SIB,还可包括无线资源控制RRC消息等高层信令。
映射次数信息和/或映射偏移量承载在RRC消息的ProseCommConfig信息单元,和/或与Prose Relay相关的配置信息单元中。此处的,所述ProseCommConfig信息单元即为所述设备到设备通信配置信息单元。所述Prose Relay相关的配置信息单元即为设备到设备通信中继相关的配置。
高层信令为SIB消息时,指示的映射次数信息和/或映射偏移量配置,用于小区内的全部D2D UE,或指定D2D群组内的D2DUE,确定PSCCH子帧配置。
第四种:依据PSCCH资源池的属性信息,确定映射次数信息和/或映射偏移量;其中,PSCCH资源池的属性信息包括PSCCH资源池的周期和/或PSCCH资源池中包含的PSCCH子帧的数量;
第五种:依据PSSCH资源池的属性信息,确定映射次数信息和/或映射偏移量;其中,PSSCH资源池的属性信息包括PSSCH资源池的周期和/或PSSCH资源池中包含的PSSCH子帧的数量。PSSCH资源池为包括一个或多个PSSCH子帧的资源池。当采用本实施例所述的方法,所指示出的PSCCH子帧与PSSCH子帧重叠,即对应于同一个子帧时,本实施例所述的方法还包括:在PSSCH与PSCCH子帧重叠时,确定重叠子帧作为PSCCH子帧使用,用于发送SCI信息,不发送数据信息。
以下结合上述实施例提供几个具体实例。
实例一:
本示例提供映射偏移量
Figure PCTCN2016076343-appb-000001
的三种用法;
在本实例中,
Figure PCTCN2016076343-appb-000002
指示了相邻两次bitmap序列映射之间的相对偏移量,对
Figure PCTCN2016076343-appb-000003
的实际指示意义可以有三种实现方法。此处的所述bitmap序列即为上述PSCCH子帧配置位图序列。
方法一:
Figure PCTCN2016076343-appb-000004
指示从bitmap序列的第m次bitmap序列映射的起始子帧之后的第
Figure PCTCN2016076343-appb-000005
个子帧开始,进行第m+1次bitmap序列映射,如图5a所示;
方法二:
Figure PCTCN2016076343-appb-000006
指示从bitmap序列的第m次bitmap序列映射的截止子帧之后的第
Figure PCTCN2016076343-appb-000007
个子帧开始,进行第m+1次bitmap序列映射,如图5c所示;
方法三:
Figure PCTCN2016076343-appb-000008
指示从bitmap序列的第m次bitmap序列映射中的最后一个有效子帧之后的第
Figure PCTCN2016076343-appb-000009
个子帧开始,进行第m+1次bitmap序列映射,如图5b所示。
其中,bitmap序列映射的起始子帧是指bitmap序列中第一个bit指示位对应的子帧;bitmap序列映射的截止子帧是指bitmap序列中最后一个bit指示位对应的子帧,即从起始子帧开始的第N个子帧,N为bitmap序列长度,即bitmap序列中包含的bit数;bitmap序列映射中的有效子帧是指bitmap序列中指示出的配置为PSCCH资源的子帧,即bitmap序列中相应指示位为“1”对应的子帧,则最后一个有效子帧对应于bitmap序列中最后一个置“1”的指示位对应的子帧。
实例二
本实例中将提供当D2D UE采用模式一的资源方案时,基于本发明确定的PSCCH子帧配置下,PSCCH资源与PSSCH资源的对应指示关系。
当采用模式一时,D2D UE的PSCCH及PSSCH资源可由eNB调度配置,SCI信息中的TRP指示的PSSCH子帧按子帧一一对应于系统上行子帧。此时,当PSCCH bitmap在周期内重复映射,第k次bitmap序列映射指示出的PSCCH子帧上的SCI信息可指示的PSSCH子帧范围为从子帧s到子帧t。
子帧s为第k次bitmap序列映射中的最后一个有效子帧之后的第一个子帧;此处的有效子帧即为在第k次bitmap序列映射中所确定的最后一个PSCCH子帧。
子帧t为第k+1次bitmap序列映射的起始子帧之前的最后一个子帧;
当k=Nrepeat+1时,Nrepeat为重复映射次数,子帧t为PSCCH周期内的最后一个子帧。
如图6所示,Nrepeat=1,在第一次bitmap序列映射指示出的PSCCH子帧上承载的SCI信息中,可指示的PSSCH子帧的范围为,子帧s为第一次bitmap序列映射中的最后一个有效子帧之后的第一个子帧,子帧t为第二次bitmap序列映射映射的起始子帧之前的最后一个子帧;在第二次bitmap序列映射指示出的PSCCH子帧上承载的SCI信息中,可指示的PSSCH子帧的范围为,子帧s为第二次bitmap序列映射中的最后一个有效子帧之后的第一个子帧,子帧t为PSCCH周期内的最后一个子帧。
实例三
本实例中将提供当D2D UE采用模式二的资源方案时,基于本发明确定的PSCCH子帧配置下,PSCCH资源与PSSCH资源的对应指示关系。
当采用资源模式二时,D2D UE的PSCCH及PSSCH资源由UE在配置的资源池中竞争选择使用,SCI信息中的TRP指示的PSSCH子帧按子帧一一对应于PSSCH资源池中的子帧。此时,当bitmap序列在PSSCH周期内重复映射,第k次bitmap序列映射指示出的PSCCH子帧上的SCI信息可指示的PSSCH子帧范围为从子帧s到子帧t。
子帧s为第k次bitmap序列映射映射中的最后一个有效子帧之后,包含在PSSCH资源池中的第一个子帧;
子帧t为第k+1次bitmap序列映射映射中的第一个有效子帧之前,包含在PSSCH资源池中的最后一个子帧;
当k=Nrepeat+1时,子帧t为PSCCH周期内包含在PSSCH资源池中的最后一个子帧。
如图7所示,Nrepeat=1,在第一次bitmap序列映射指示出的PSCCH子帧上承载的SCI信息中,可指示的PSSCH子帧的范围为对应的子帧s为第一次bitmap序列映射指示的最后一个有效子帧之后PSSCH资源池中的第一个子帧;所述对应的子帧t为第二次bitmap序列映射的第一个有效子帧之前,PSSCH资源池中的最后一个子帧;在第二次bitmap序列映射指示出的PSCCH子帧上承载的SCI信息中,可指示的PSSCH子帧的范围为对应的子帧s为第二次bitmap序列映射中的最后一个有效子帧之后PSSCH资源池中的第一个子帧;对应的子帧t为PSCCH周期内,PSSCH资源池中的最后一个子帧。
实例四
本实例中提供采用高层信令向D2D UE发送所述映射次数信息和映射偏移量的方法。
映射次数信息和映射偏移量可由系统通过高层信令,如系统广播信息SIB或RRC消息指示。
如图8所示,本实例包括:
步骤S11:eNB向D2D UE发送包括映射次数信息和映射偏移量的系统信息;
步骤S12:D2D UE基于所述映射次数信息和映射偏移量确定PSCCH子帧,当然在具体确定所述PSCCH子帧时,还将基于子帧配置位图序列来确定。
如图9所示,本实例包括:
步骤S21:eNB向D2D UE发送包括映射次数信息和映射偏移量的RRC消息。
步骤S22:D2D UE基于所述映射次数信息和映射偏移量确定PSCCH子帧。
通过RRC消息可以针对UE进行独立的映射次数信息和映射偏移量配置,可以对小区内的各个D2D UE分别进行配置,可用于承载映射次数信息和映射偏移量参数的RRC消息为ProseCommConfig信息单元,或者为与Prose Relay相关的配置信息单元。
实例五
基于PSCCH资源周期确定映射次数信息的方法。
映射次数信息体现为重复映射次数Nrepeat,可以根据PSCCH资源池的周期确定,由系统定义Nrepeat与PSCCH资源池周期之间的索引关系,对于任意PSCCH周期唯一对应一个Nrepeat取值,则不需要信令向D2D UE指示Nrepeat配置,D2D UE可根据PSCCH资源池的周期,及二者的索引关系直接确定Nrepeat的数值。表1为一种PSCCH资源池周期与Nrepeat的对应关系。
Figure PCTCN2016076343-appb-000010
表1
设备实施例:
如图10所示,本实施例提供一种D2D UE,所述D2DUE包括:
获取单元110,配置为获取物理边链路控制信道PSCCH的子帧配置位图序列;其中,所述子帧配置位图序列包含N个指示位;所述N个指示位中的第n指示位用于指示PSCCH周期中与所述第n指示位具有映射关系的子帧是否为PSCCH子帧;所述N为正整数;所述n为不大于所述N的正整数;
第一确定单元120,配置为确定所述子帧配置位图序列的映射次数信息及映射偏移量;
第二确定单元130,配置为依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧。
所述映射次数信息为总映射次数或重复映射次数;所述总映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的总次数;所述重复映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的重复次数;所述映射偏移量为相邻两次所述子帧配置位图序列映射之间的子帧偏移量。
本实施例所述的获取单元110的具体结构根据获取所述子帧配置位图序列的方式不同而不同,具体如当所述D2D UE是从基站等外设上接收所述子帧配置位图序列时,所述D2D UE包括接收接口,所述接收接口可包括一根或多根接收天线。
所述第一确定单元120的结构可包括具有信息处理的处理器及存储介质。所述存储介质存储有所述映射次数信息及映射偏移量;所述处理器可通过执行指定代码从所述存储介质读取所述映射次数信息及映射偏移量。所述第一确定单元120也可包括接收接口,所述接收接口可以从基站等外设上接收所述映射次数信息及映射偏移量。
所述第二确定单元130的具体具体结构可包括处理器或处理芯片,将依据所述子帧配置位图序列、映射次数信息及映射偏移量确定出PSCCH周期中的哪些子帧是PSCCH子帧。
本实施例所述的D2D UE可以用于实现前述方法实施例中所述的资源池的配置方法,采用本实施例所述D2D UE配置出的资源池,能够允许发送端UE在一个所述PSCCH周期内发送一个以上的SCI信息,能够更好的 利用PSCCH周期内的资源,提高传输效率等。
所述第二确定单元120,配置为从所述PSCCH周期的起始子帧开始,依据所述子帧配置位图序列进行第一次所述子帧配置位图序列映射。在本实施例中所述第二确定单元120在进行子帧配置位图序列映射时,将从PSCCH周期的起始子帧开始,这里的PSCCH周期的起始子帧指的是所述PSCCH周期的第一个子帧。
以下为本实施例中所述第二确定单元120根据映射偏移量进行子帧偏移的几种结构。
结构一:
所述第二确定单元120,还配置为从第m次所述子帧配置位图序列映射的起始子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧。其中,所述第m次所述子帧配置位图序列映射的起始子帧为在所述第m次所述子帧配置位图序列映射中,所述子帧配置位图序列中第一个指示位对应的子帧。
结构二:
所述第二确定单元120,还配置为从所述第m次子帧配置位图序列映射确定的最后一个所述PSCCH子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;
结构三:
所述第二确定单元120,还配置为从所述第m次子帧配置位图序列映射的截止子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述m为小于所述总映射次数或不大于所述重复映射次数的正整数。所述第m次子帧配置位图序列映射的截止子帧为在所述第m次子帧配置位图序列映射中,所述子帧配置位图序列中最后一个指示位对应的子帧;
在第k次子帧配置位图序列映射所确定的所述PSCCH子帧上发送的边链路控制信息,用于指示的用于进行数据传输的PSSCH子帧的范围为从子帧s到子帧t。
此处的意思可理解为:PSCCH子帧能够用于发送边链路控制信息;所述边链路控制信息用于指示进行数据传输的PSSCH子帧;其中,所述第k次子帧配置位图序列映射中确定出的所述PSCCH子帧可指示的PSSCH子帧的范围为从子帧s到子帧t。
所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后的第一个子帧;或所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后,且位于所述PSSCH资源池中的第一个子帧;
所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前的一个子帧;
所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前,且位于所述PSSCH资源池中的最后一个子帧;或,
所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前的一个子帧;或,
所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前,且位于所述PSSCH资源池中最后一个子帧;或,
所述子帧t为所述PSCCH周期内的最后一个子帧或所述PSSCH资源池中的最后一个子帧。
所述第一确定单元110确定所述映射次数信息和所述映射偏移量的结构有很多种,以下提供几种可选结构。
所述第一确定单元110包括以下可选结构的至少其中之一;
所述第一确定单元110,配置为基于预配置信息,确定所述映射次数信 息和/或所述映射偏移。
所述第一确定单元110,配置为基于系统定义信息,确定所述映射次数信息和/或所述映射偏移量。
所述第一确定单元110,配置为接收高层信令并从所述高层信令获取映射次数信息和/或所述映射偏移量。
所述第一确定单元110,配置为依据PSCCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSCCH资源池的属性信息包括所述PSCCH资源池的周期包和/或所述PSCCH资源池包括的PSCCH子帧的数量;所述PSCCH资源池为PSCCH子帧的集合;
所述第一确定单元110,具体用于依据PSSCH资源池的属性信息,确定所述映射次数信息及所述映射偏移量;其中,所述PSSCH资源池的属性信息包括所述PSSCH资源池的周期和/或所述PSSCH资源池中的PSCCH子帧的数量。
所述高层信令包括系统消息;所述映射次数信息及所述映射偏移量,用于发送所述系统消息的小区内的全部D2D UE或指定D2D群组内的D2D UE进行所述PSCCH子帧的确定。所述高层信令还包括无线资源控制RRC消息;所述映射次数信息及所述映射偏移量承载在所述RRC消息的ProseCommConfig信息单元和/或与Prose Relay相关的配置信息单元中。
为了解决将PSCCH周期中的同一个子帧既配置为PSCCH子帧又配置为PSSCH子帧的冲突,在本实施例中所述D2D UE还包括第三确定单元。所述第三确定单元用于当确定出的所述PSCCH子帧与所述PSSCH资源池中的PSSCH子帧重叠时,确定所述PSSCH资源池中与所述PSCCH子帧重叠的子帧不用于发送数据信息。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于前述资源池配置方法 方法的至少其中之一,例如,可以执行如图3、图8和图9所示方法的至少其中之一。
所述计算机可存储介质可包括光盘、磁盘或硬盘等各种类型的存储介质,可选为费瞬间存储介质。在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本发明实施例还记载一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行本发明实施例中图1所示的降低移动终端SAR的方法。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。
工业实用性
本发明实施例中,在移动终端中设置至少两根天线,所述第一天线为主天线,所述第二天线为辅助天线,在移动终端中将所述第一天线与所述第二天线呈对角线放置;实时检测移动终端通信过程中第一天线的对外辐射功率;根据所述对外辐射功率控制移动终端使用所述第一天线或第二天线进行通信,如此,降低了移动终端在通信时的SAR,从而也减少了移动终端对人体的电磁辐射。

Claims (17)

  1. 一种资源池配置方法,所述方法包括:
    获取物理边链路控制信道PSCCH的子帧配置位图序列;其中,所述子帧配置位图序列包含N个指示位;所述N个指示位中的第n指示位用于指示PSCCH周期中与所述第n指示位具有映射关系的子帧是否为PSCCH子帧;所述N为正整数;所述n为不大于所述N的正整数;
    确定所述子帧配置位图序列的映射次数信息及映射偏移量;
    依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧;
    其中,所述映射次数信息为总映射次数或重复映射次数;所述总映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的总次数;所述重复映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的重复次数;所述映射偏移量为相邻两次所述子帧配置位图序列映射之间的子帧偏移量。
  2. 根据权利要求1所述的方法,其中,
    所述依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧,包括:
    从所述PSCCH周期的起始子帧开始,依据所述子帧配置位图序列进行第一次所述子帧配置位图序列映射;其中,所述PSCCH周期的起始子帧为所述PSCCH周期中的第一个子帧。
  3. 根据权利要求1或2所述的方法,其中,
    所述依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧,包括:
    从第m次所述子帧配置位图序列映射的起始子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次所述子帧配置位图序列映射的起始子帧为在所述第m次所述子帧配置位图序列映射中,所述子帧配置位图序列中第一个指示位对应的子帧;
    或,
    从所述第m次子帧配置位图序列映射确定的最后一个所述PSCCH子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;
    或,
    从所述第m次子帧配置位图序列映射的截止子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次子帧配置位图序列映射的截止子帧为在所述第m次子帧配置位图序列映射中,所述子帧配置位图序列中最后一个指示位对应的子帧;
    其中,所述m为小于所述总映射次数或不大于所述重复映射次数的正整数。
  4. 根据权利要求1所述的方法,其中,
    在第k次子帧配置位图序列映射所确定的所述PSCCH子帧上发送的边链路控制信息,用于指示的用于进行数据传输的PSSCH子帧的范围为从子帧s到子帧t;
    所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后的第一个子帧;或所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后,且位于所述PSSCH资源池中的第一个子帧;
    所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前的一个子帧;或,
    所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前,且位于所述PSSCH资源池中的最后一个子帧;或,
    所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前的一个子帧;或,
    所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前,且位于所述PSSCH资源池中最后一个子帧;或,
    所述子帧t为所述PSCCH周期内的最后一个子帧或所述PSSCH资源池中的最后一个子帧;
    其中,所述PSSCH资源池包括至少一个PSSCH子帧。
  5. 根据权利要求1所述的方法,其中,
    所述确定所述子帧配置位图序列的映射次数信息及映射偏移量,包括以下的至少其中之一:
    基于预配置信息,确定所述映射次数信息和/或所述映射偏移量;
    基于系统定义信息,确定所述映射次数信息和/或所述映射偏移量;
    接收高层信令并从所述高层信令获取映射次数信息和/或所述映射偏移量;
    依据PSCCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSCCH资源池的属性信息包括所述PSCCH资源池的周期和/或所述PSCCH资源池中包含的PSCCH子帧的数量;
    依据所述PSSCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSSCH资源池的属性信息包括所述PSSCH资源池的周期和/或所述PSSCH资源池中包含的PSSCH子帧的数量;
    所述PSSCH资源池包括至少一个PSSCH子帧。
  6. 根据权利要求5所述的方法,其中,
    所述高层信令包括系统消息;
    所述映射次数信息和/或所述映射偏移量,用于发送所述系统消息的小区内的全部设备到设备D2D UE或指定的D2D群组内的D2D UE进行所述PSCCH子帧的确定。
  7. 根据权利要求5所述的方法,其中,
    所述高层信令包括无线资源控制RRC消息;
    所述映射次数信息和/或所述映射偏移量承载在所述RRC消息的设备到设备通信配置信息单元和/或与设备到设备通信中继相关的配置信息单元中。
  8. 根据权利要求1所述的方法,其中,
    所述方法还包括:
    当确定出的所述PSCCH子帧与所述PSSCH资源池中的PSSCH子帧重叠时,确定所述PSSCH资源池中与所述PSCCH子帧重叠的子帧不用于发送数据信息。
  9. 一种D2D UE,所述D2DUE包括:
    获取单元,配置为获取物理边链路控制信道PSCCH的子帧配置位图序列;其中,所述子帧配置位图序列包含N个指示位;所述N个指示位中的第n指示位用于指示PSCCH周期中与所述第n指示位具有映射关系的子帧是否为PSCCH子帧;所述N为正整数;所述n为不大于所述N的正整数;
    第一确定单元,配置为确定所述子帧配置位图序列的映射次数信息及映射偏移量;第二确定单元,用于依据所述子帧配置位图序列、映射次数信息及映射偏移量,进行子帧配置位图序列映射确定出PSCCH周期中的PSCCH子帧;
    其中,所述映射次数信息为总映射次数或重复映射次数;所述总映射 次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的总次数;所述重复映射次数,用于指示所述子帧配置位图序列在所述PSCCH周期中进行所述子帧配置位图序列映射的重复次数;所述映射偏移量为相邻两次所述子帧配置位图序列映射之间的子帧偏移量。
  10. 根据权利要求9所述的D2D UE,其中,
    所述第二确定单元,配置为从所述PSCCH周期的起始子帧开始,依据所述子帧配置位图序列进行第一次所述子帧配置位图序列映射;其中,所述PSCCH周期的起始子帧为所述PSCCH周期中的第一个子帧。
  11. 根据权利要求9或10所述的D2D UE,其中,
    所述第二确定单元,还配置为从第m次所述子帧配置位图序列映射的起始子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次所述子帧配置位图序列映射的起始子帧为在所述第m次所述子帧配置位图序列映射中,所述子帧配置位图序列中第一个指示位对应的子帧;
    或,
    从所述第m次子帧配置位图序列映射确定的最后一个所述PSCCH子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;
    或,
    从所述第m次子帧配置位图序列映射的截止子帧之后的第一个子帧开始,依据所述映射偏移量进行子帧偏移,确定第m+1次子帧配置位图序列映射的起始子帧;其中,所述第m次子帧配置位图序列映射的截止子帧为在所述第m次子帧配置位图序列映射中,所述子帧配置位图序列中最后一个指示位对应的子帧;
    其中,所述m为小于所述总映射次数或不大于所述重复映射次数的正整数。
  12. 根据权利要求9所述的D2D UE,其中,
    在第k次子帧配置位图序列映射所确定的所述PSCCH子帧上发送的边链路控制信息,用于指示的用于进行数据传输的PSSCH子帧的范围为从子帧s到子帧t;
    所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后的第一个子帧;或所述子帧s为所述第k次子帧配置位图序列映射中的最后一个所述PSCCH子帧之后,且位于所述PSSCH资源池中的第一个子帧;
    所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前的一个子帧;
    所述子帧t为第k+1次子帧配置位图序列映射中的起始子帧之前,且位于所述PSSCH资源池中的最后一个子帧;或,
    所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前的一个子帧;或,
    所述子帧t为所述第k+1次子帧配置位图序列映射中的第一个所述PSCCH子帧之前,且位于所述PSSCH资源池中最后一个子帧;或,
    所述子帧t为所述PSCCH周期内的最后一个子帧或所述PSSCH资源池中的最后一个子帧;
    其中,所述PSSCH资源池包括至少一个PSSCH子帧。
  13. 根据权利要求9所述的D2D UE,其中,
    所述第一确定单元,配置为基于预配置信息,确定所述映射次数信息和/或所述映射偏移量;和/或,
    基于系统定义信息,确定所述映射次数信息和/或所述映射偏移量;和/ 或,
    接收高层信令并从所述高层信令获取映射次数信息和/或所述映射偏移量;和/或,
    依据PSCCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSCCH资源池的属性信息包括所述PSCCH资源池的周期和/或所述PSCCH资源池中包含的PSCCH子帧的数量;
    和/或,依据所述PSSCH资源池的属性信息,确定所述映射次数信息和/或所述映射偏移量;其中,所述PSSCH资源池的属性信息包括所述PSSCH资源池的周期和/或所述PSSCH资源池中包含的PSSCH子帧的数量;
    所述PSSCH资源池包括至少一个PSSCH子帧。
  14. 根据权利要求13所述的D2D UE,其中,
    所述高层信令包括系统消息;
    所述映射次数信息及所述映射偏移量,用于发送所述系统消息的小区内的全部D2D UE或指定D2D群组内的D2D UE进行所述PSCCH子帧的确定。
  15. 根据权利要求13所述的D2D UE,其中,
    所述高层信令包括无线资源控制RRC消息;
    所述映射次数信息和/或所述映射偏移量承载在所述RRC消息的设备到设备通信配置信息单元和/或与设备到设备通信中继相关的配置信息单元中。
  16. 根据权利要求9所述的D2D UE,其中,
    所述D2D UE还包括:
    第三确定单元,配置为当确定出的所述PSCCH子帧与所述PSSCH资源池中的PSSCH子帧重叠时,确定所述PSSCH资源池中与所述PSCCH子帧重叠的子帧不用于发送数据信息。
  17. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至8所述方法的至少其中之一。
PCT/CN2016/076343 2015-05-15 2016-03-15 资源池配置方法、d2d ue和计算机存储介质 WO2016184236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510251272.3 2015-05-15
CN201510251272.3A CN106304344B (zh) 2015-05-15 2015-05-15 资源池配置方法及d2d ue

Publications (1)

Publication Number Publication Date
WO2016184236A1 true WO2016184236A1 (zh) 2016-11-24

Family

ID=57319426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076343 WO2016184236A1 (zh) 2015-05-15 2016-03-15 资源池配置方法、d2d ue和计算机存储介质

Country Status (2)

Country Link
CN (1) CN106304344B (zh)
WO (1) WO2016184236A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392149A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 资源池子帧的确定方法、装置、存储介质及处理器
CN110380814A (zh) * 2018-04-12 2019-10-25 维沃移动通信有限公司 信息指示方法、终端设备和网络设备
CN111385075A (zh) * 2018-12-29 2020-07-07 展讯半导体(南京)有限公司 边链路信息传输方法、用户终端及计算机可读存储介质
US10912109B2 (en) 2016-11-03 2021-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and network device for determining a waveform used in an uplink transmission
CN114338598A (zh) * 2021-11-26 2022-04-12 北京中科晶上科技股份有限公司 5g信道资源映射的方法、装置与计算机存储介质
US12010685B2 (en) 2018-12-29 2024-06-11 Spreadtrum Semiconductor (Nanjing) Co., Ltd. Information transmission method for sidelink, and user equipment and computer-readable storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110786062A (zh) * 2017-08-11 2020-02-11 中兴通讯股份有限公司 基于短传输时间间隔的资源分配
CN111757454A (zh) * 2019-03-27 2020-10-09 夏普株式会社 由用户设备执行的方法以及用户设备
CN111614415A (zh) * 2019-04-02 2020-09-01 维沃移动通信有限公司 信道资源确定方法、信道检测方法及终端
WO2021040495A1 (ko) * 2019-08-29 2021-03-04 엘지전자 주식회사 무선통신시스템에서 사용자기기의 방법
CN112566231A (zh) * 2019-09-25 2021-03-26 大唐移动通信设备有限公司 一种信息发送方法、接收方法及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281099A (zh) * 2011-08-08 2011-12-14 电信科学技术研究院 Tdd无线帧中传输数据的方法、系统和设备
US20130109301A1 (en) * 2011-11-02 2013-05-02 Renesas Mobile Corporation D2D Discovery Process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904778B2 (en) * 2007-01-09 2011-03-08 Sharp Kabushiki Kaisha Base station device, mobile station device, control information transmission method, control information reception method and program
EP2861033B1 (en) * 2013-10-08 2016-05-25 Telefónica, S.A. Method, system and devices for improving discontinous reception in wireless communication networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281099A (zh) * 2011-08-08 2011-12-14 电信科学技术研究院 Tdd无线帧中传输数据的方法、系统和设备
US20130109301A1 (en) * 2011-11-02 2013-05-02 Renesas Mobile Corporation D2D Discovery Process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP.: "Correction on UE Procedure of Determining Subframe Pool for PSCCH and PSSCH in ProSe", 3GPP TSG-RAN WG1 MEETING #80B R1-152191, 24 April 2015 (2015-04-24), Belgrade, Serbia, XP050935043 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912109B2 (en) 2016-11-03 2021-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method, terminal device and network device for determining a waveform used in an uplink transmission
US11284419B2 (en) 2016-11-03 2022-03-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, terminal device and network device
CN109392149A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 资源池子帧的确定方法、装置、存储介质及处理器
CN109392149B (zh) * 2017-08-11 2023-01-20 中兴通讯股份有限公司 资源池子帧的确定方法、装置、存储介质及处理器
CN110380814A (zh) * 2018-04-12 2019-10-25 维沃移动通信有限公司 信息指示方法、终端设备和网络设备
CN111385075A (zh) * 2018-12-29 2020-07-07 展讯半导体(南京)有限公司 边链路信息传输方法、用户终端及计算机可读存储介质
CN111385075B (zh) * 2018-12-29 2021-04-20 展讯半导体(南京)有限公司 边链路信息传输方法、用户终端及计算机可读存储介质
US12010685B2 (en) 2018-12-29 2024-06-11 Spreadtrum Semiconductor (Nanjing) Co., Ltd. Information transmission method for sidelink, and user equipment and computer-readable storage medium
CN114338598A (zh) * 2021-11-26 2022-04-12 北京中科晶上科技股份有限公司 5g信道资源映射的方法、装置与计算机存储介质
CN114338598B (zh) * 2021-11-26 2024-01-23 北京中科晶上科技股份有限公司 5g信道资源映射的方法、装置与计算机存储介质

Also Published As

Publication number Publication date
CN106304344B (zh) 2021-03-12
CN106304344A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016184236A1 (zh) 资源池配置方法、d2d ue和计算机存储介质
CN106793092B (zh) 控制信道资源的获取方法及设备
WO2016107244A1 (zh) 资源池配置方法及设备、计算机存储介质
WO2016045409A1 (zh) 比特位数指示方法及装置
WO2017128757A1 (zh) 一种通信方法及通信装置
US9392615B2 (en) Methods and devices for allocating resources in device-to-device communication
KR20150076209A (ko) 장치 간 통신을 위한 애드혹/네트워크 보조의 디스커버리 프로토콜에 대한 시스템 및 방법
WO2017114119A1 (zh) 无线局域网的通信方法及通信装置和站点
KR20150122202A (ko) 장치 대 장치 간 통신을 위한 네트워크-보조 다중-셀 장치 디스커버리 프로토콜
WO2019104685A1 (zh) 通信方法和通信设备
WO2013189293A1 (zh) 通知上行数据发送的信道使用时间的方法、上行数据发送方法和设备
WO2016019724A1 (zh) 数据发送方法、装置及系统
WO2016045410A1 (zh) Mac pdu数量的指示方法及装置
TWI741138B (zh) 無線通信方法、終端設備和網絡設備
WO2021003703A1 (zh) 物理下行控制信道的传输参数更新方法、装置及存储介质
WO2016070660A1 (zh) 数据传输结束的指示、处理方法及装置
WO2021003713A1 (zh) 基于免授权上行调度的数据传输方法、装置及存储介质
WO2017088123A1 (zh) 无线通信的方法、网络设备和终端设备
WO2022073246A1 (zh) 一种通信方法及装置
CN106792429A (zh) 用户设备、基站及近距离业务单播通信、资源调度方法
WO2022040939A1 (zh) 无线通信的方法和终端设备
WO2021134577A1 (zh) 一种数据传输方法及装置
WO2021092841A1 (zh) 下行控制信息传输方法及装置、通信设备及存储介质
WO2014205746A1 (zh) 终端到终端通信的资源配置方法及设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795723

Country of ref document: EP

Kind code of ref document: A1