WO2016184235A1 - 一种正交振幅调制信号的相位模糊处理方法及装置 - Google Patents

一种正交振幅调制信号的相位模糊处理方法及装置 Download PDF

Info

Publication number
WO2016184235A1
WO2016184235A1 PCT/CN2016/076281 CN2016076281W WO2016184235A1 WO 2016184235 A1 WO2016184235 A1 WO 2016184235A1 CN 2016076281 W CN2016076281 W CN 2016076281W WO 2016184235 A1 WO2016184235 A1 WO 2016184235A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
check
result
received signal
Prior art date
Application number
PCT/CN2016/076281
Other languages
English (en)
French (fr)
Inventor
费爱梅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16795722.4A priority Critical patent/EP3297240B1/en
Priority to US15/574,457 priority patent/US10218557B2/en
Publication of WO2016184235A1 publication Critical patent/WO2016184235A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3455Modifications of the signal space to allow the transmission of additional information in order to facilitate carrier recovery at the receiver end, e.g. by transmitting a pilot or by using additional signal points to allow the detection of rotations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/002Coherencemultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3872Compensation for phase rotation in the demodulated signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3818Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers
    • H04L27/3827Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers in which the carrier is recovered using only the demodulated baseband signals

Definitions

  • This document relates to, but is not limited to, the field of optical communication technologies, and in particular, to a phase blur processing method and apparatus for a quadrature amplitude modulation signal.
  • phase ambiguity In high-rate communication systems, there is a problem of phase ambiguity when using phase modulation.
  • the current solutions include: a training sequence method applied to an absolute phase detection system, that is, a training sequence with known phase detection. Phase blur angle, and then correct the adjacent signal; this method can solve the phase ambiguity problem well, but this method will increase the system overhead; the other is to use phase differential modulation to correct the phase ambiguity problem, but the relative training The performance of the sequence method is degraded.
  • the QAM is quadrature amplitude modulation, Such as 32-SP-QAM, 128-SP-QAM.
  • This pattern divides the N bits that make up the signal into two subsets, one subset that makes up the SP-QAM signal n and the other that is the parity bit.
  • the SP-QAM signal carries n bits of valid information per symbol, and the minimum Euclidean distance is improved compared to PM-MQAM.
  • FIG. 1 Taking 128-SP-QAM as an example, a total of 8 bits, of which 7-bit signals, as shown in FIG. 1, d1 to d7 are valid information.
  • Figure 2, Figure 3 and Figure 4 illustrate the correlation between the X-polarization state and the Y-polarization state. For example, when the effective signal is 1101 011, the last bit can only be based on odd or even parity. Or 1, for example, if you use even parity, it can only be 1.
  • the decision algorithm steps of the receiving end generally include:
  • the non-conforming symbols X and Y are re-submitted to the next decision domain decision, and the distance of the original symbol from the decision point is recorded, and the distance between X and Y is short, and the short data is updated;
  • phase ambiguity problem needs to be solved. If the training sequence based method is completed before the check decoding in the SP-QAM system, the parity erroneous problem caused by phase ambiguity can be avoided, but the disadvantage of this method is Training sequences increase system overhead.
  • the parity misjudgment caused by the phase blur in the system can also be avoided, but the system performance will be degraded; if the difference is After the decoding is placed in the check error correction, the verification misjudgment caused by the phase blur will cause the continuous error to be large.
  • Embodiments of the present invention provide a phase blur processing method and apparatus for a quadrature amplitude modulation signal, which can prevent the quadrature amplitude modulation signal from effectively reducing the error rate of differential decoding of the QAM signal when performing phase blur correction, and further reduce the system. Overhead, improve system performance.
  • Embodiments of the present invention provide a phase blur processing method for a quadrature amplitude modulation signal, including:
  • mapping obtains first bit information, wherein the received signal includes a plurality of first signals
  • the second signal is again subjected to check analysis. If the verification result is normal, the second signal is stored such that the second signal replaces the first signal for decoding processing.
  • the step of performing verification analysis on the first bit information, and generating the first verification result includes:
  • the first processing result When the first processing result is consistent with the check bit, it indicates that the comparison result of the first signal is that the check is normal; when the first process result is inconsistent with the check bit, then Indicates that the comparison result of the first signal is a verification abnormality;
  • the comparison result of each of the first signals together constitutes the first verification result.
  • the step of determining, by the first verification result, whether the received signal has a phase ambiguity result comprises:
  • the step of acquiring at least one first signal in the received signal includes:
  • the first first signal in which the continuous abnormality occurs and all the first signals after the first first signal are acquired.
  • the step of determining, by the first verification result, whether the received signal has a phase ambiguity result comprises:
  • the step of acquiring at least one first signal in the received signal includes:
  • the step of phase-rotating the first signal to obtain a second signal includes:
  • the second signal has a phase change of ⁇ /2 or - ⁇ /2 compared to the first signal.
  • performing the check analysis on the second signal again, and recording the second signal if the check result is normal, so that the step of replacing the first signal with the second signal for the decoding process comprises:
  • the second signal is stored such that the second signal replaces the first signal for decoding processing.
  • phase blur processing method further includes:
  • the second signal is subjected to a second close distance re-judgment to obtain a third signal, and the third signal is stored, so that the third signal is replaced.
  • the second signal is used for decoding processing.
  • phase blur processing method further includes:
  • the embodiment of the invention further provides a phase blur processing device for a quadrature amplitude modulation signal, comprising:
  • a decision module configured to determine a symbol on an X-polarization state and a Y-polarization state of the received signal, and obtain a first bit information, where the received signal includes a plurality of first signals;
  • the first check module is configured to perform check analysis on the first bit information to generate a first check result
  • the verification result judging module is configured to determine the first verification result to obtain a determination result of whether the received signal has phase ambiguity
  • a first acquiring module configured to acquire at least one first signal in the received signal when the determining result indicates that the received signal is phase blurred
  • phase rotation module configured to phase rotate the first signal to obtain a second signal
  • a second check module configured to perform the check analysis on the second signal again, and if the check result is normal, storing the second signal, so that the second signal is used instead of the first signal for decoding processing .
  • the verification result judging module is set to:
  • the first obtaining module is set to:
  • the first first signal in which the continuous abnormality occurs and all the first signals after the first first signal are acquired.
  • the verification result judging module is set to:
  • the first obtaining module is set to:
  • phase rotation module is set to:
  • the second signal has a phase change of ⁇ /2 or - ⁇ /2 compared to the first signal.
  • the second verification module includes:
  • a determining unit configured to determine a symbol in the second signal, and obtain a second bit information by mapping
  • a verification unit configured to perform verification analysis on the second bit information to generate a second verification result
  • a storage unit configured to: when the second verification result indicates that the second signal verification is normal, The second signal is stored such that the second signal replaces the first signal for decoding processing.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the QAM signal is error-corrected by the phase rotation method. It effectively reduces the error rate of differential decoding of QAM signals. At the same time, this method also reduces system overhead and improves system performance.
  • Figure 1 shows a schematic diagram of a 128-SP-QAM signal generation process
  • FIG. 2 is a schematic diagram showing Gray mapping of a 16QAM signal
  • Figure 3 shows a schematic diagram of an X-axis signal based on Gray mapping of a 16QAM signal
  • FIG. 4 is a schematic diagram showing a Y-axis signal based on Gray mapping of a 16QAM signal
  • FIG. 5 is a general flowchart of the phase blur processing method according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram showing the generation process of a 64-SP-QAM signal
  • Figure 7 is a diagram showing the generation process of a 32-SP-QAM (produced on a PM-8QAM basis) signal
  • Figure 8 is a diagram showing the generation process of a 32-SP-QAM (produced on a PM-16QAM basis) signal
  • FIG. 9 is a detailed flowchart of the step 120 of the embodiment of the present invention.
  • FIG. 10 is a detailed flowchart of the phase blur processing method according to an embodiment of the present invention.
  • Figure 11 is a diagram showing an abnormal state of the X-polarization state of the 128-SP-QAM signal
  • FIG. 12 is a block diagram showing the phase blur processing apparatus of the embodiment of the present invention.
  • Embodiments of the present invention may perform phase blur correction on a correlated quadrature amplitude modulation signal.
  • the embodiment of the present invention provides a phase blur processing method for a quadrature amplitude modulation signal, which includes:
  • Step 110 Determine a symbol on an X polarization state and a Y polarization state of the received signal, and obtain a first bit information, where the received signal includes a plurality of first signals;
  • Step 120 Perform check analysis on the first bit information to generate a first check result.
  • Step 130 Perform a determination on the first verification result to obtain a determination result of whether the received signal has phase ambiguity
  • Step 140 When the determination result indicates that the received signal is phase blurred, acquiring at least one first signal in the received signal;
  • Step 150 Perform phase rotation on the first signal to obtain a second signal.
  • Step 160 Perform a check analysis on the second signal again. If the verification result is normal, store the second signal, so that the second signal replaces the first signal for decoding processing.
  • the QAM signal is error-corrected by the phase rotation method. It effectively reduces the error rate of differential decoding of QAM signals. At the same time, this method also reduces system overhead and improves system performance.
  • the 64-SP-QAM signal generation process is as shown in FIG. 6, and the X-polarization symbol is from d1 to d3 effective information and the exclusive-OR information of d1 to d3.
  • the Y-polarization state symbol is composed of d5-d7 effective information and d5-d7 XOR information;
  • 32-SP-QAM (generated on the basis of PM-8QAM) signal generation process is shown in Fig.
  • the symbol consists of d1 ⁇ d3 effective information, and its Y-polarization symbol consists of d4 ⁇ d5 valid information and d1 ⁇ d5 XOR information; 32-SP-QAM (PM-16QAM generated) signal generation process is shown in Figure 8.
  • the X-polarization symbol is composed of d1 to d3 effective information and exclusive-OR information of d1 to d3, and the Y-polarization symbol is from d5 to d6 effective information, d5 to d6 exclusive-OR information, and d1 to d3 effective information, d5.
  • the -d6 valid information, the exclusive OR information of d1 to d3, and the exclusive OR information of d5 to d6 constitute the exclusive OR information of the above four.
  • the receiving end of the QAM signal also obtains the manner in which the QAM signal is generated when the QAM signal is received. For different QAM signal generating modes, the receiving end adopts a corresponding symbol decision mode. It should be noted that the step is The manner in which the bit information is obtained from the received signal in 110 is well known to those skilled in the art and will not be described in detail herein.
  • an implementation manner of the step 120 is:
  • Step 121 Acquire a signal bit and a check bit in the first bit information corresponding to each of the first signals.
  • Step 122 Perform XOR processing on the signal bits to obtain a first processing result.
  • Step 123 Compare the first processing result with the check bit, and obtain the comparison result, including:
  • the first processing result When the first processing result is consistent with the check bit, it indicates that the comparison result of the first signal is that the check is normal; when the first process result is inconsistent with the check bit, then Indicates that the comparison result of the first signal is a verification abnormality;
  • the comparison result of each of the first signals together constitutes the first verification result.
  • the step 120 illustrates that each of the first signals (ie, QAM signals) in the received signal is separately verified (either odd or even), and it should be noted that the QAM signal is adopted.
  • the generation method here also uses the corresponding verification method when performing verification, when the received signal is the 128-SP-QAM signal shown in FIG. 1 or the 32 generated on the basis of PM-8QAM shown in FIG. -SP-QAM signal, the bit information on the X-polarization state and the Y-polarization state of the QAM signal is required to be overall verified, the verification result is obtained, and the verification result is stored one by one according to the reception order of the QAM signal.
  • the received signal is the 64-SP-QAM signal shown in Figure 6, or the 32-SP-QAM signal generated on the basis of PM-16QAM shown in Figure 8, it is necessary for each QAM signal.
  • the bit information on the X polarization state and the Y polarization state are respectively checked, and then the X polarization state verification result is stored one by one according to the reception order of the QAM signal, and the Y polarization state verification result is in accordance with the reception order of the QAM signal. Corresponding storage for later use.
  • the first implementation manner of the step 130 in the embodiment of the present invention includes:
  • the implementation of the step 140 includes: when the determination result indicates that the received signal is phase blurred, acquiring the first first signal and the first first signal that occur continuously All the first signals behind.
  • a second implementation manner of the step 130 in the embodiment of the present invention includes:
  • the implementation of the step 140 includes: when the determination result indicates that the received signal is phase blurred, acquiring all the first signals in the received signal.
  • the specific implementation of the step 150 includes:
  • the second signal has a phase change of ⁇ /2 or - ⁇ /2 compared to the first signal.
  • the correction method adopted for different QAM signal generation methods is also different, when the received signal is the 128-SP-QAM signal shown in FIG. 1 or the PM-8QAM shown in FIG.
  • the 32-SP-QAM signal is generated, when the phase is blurred, the signal of the X-polarization state or the Y-polarization state of the QAM signal is rotated in the forward direction by 90 degrees or reversely rotated by 90 degrees;
  • the 64-SP-QAM signal shown in FIG. 6 or the 32-SP-QAM signal generated based on the PM-16QAM shown in FIG. 8 is used, when phase ambiguity occurs, it is necessary to know which phase is blurred.
  • phase ambiguity occurs for the X-polarization state
  • the phase of the symbol on the X-polarization state of the QAM signal needs to be rotated 90 degrees in the forward direction or 90 degrees in the reverse direction, but the phase distortion occurs in both the X-polarization state and the Y-polarization state of the QAM signal.
  • the step 160 includes:
  • the second signal is stored such that the second signal replaces the first signal for decoding processing.
  • the phase blur processing method further includes:
  • the second signal is subjected to a second close distance re-judgment to obtain a third signal, and the third signal is stored, so that the third signal is replaced.
  • the second signal is used for decoding processing.
  • the second signal check analysis is abnormal, it is considered that the check abnormality of the second signal is caused by the shift of the signal in the phase, and the second signal needs to be subjected to the second close distance re-judgment.
  • Finding a third signal that is closer to the second signal, and storing the third signal, the third signal is a normal received signal after the phase signal is subjected to the phase blurring process; it should be noted that the second close distance
  • the method of re-judgment is well known to those skilled in the art and will not be described in detail herein.
  • the phase blur processing method further includes:
  • the normal QAM signal in the received signal in which the phase blur has not occurred is directly stored, and the QAM signal of the abnormality is subjected to the second-distance re-judgment to obtain the QAM signal after the decision, and the judgment is stored.
  • the QAM signal is used as the basis for the decoding process.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • Step 1 Determine a symbol on an X polarization state and a Y polarization state of each received QAM signal, and obtain bit information by mapping;
  • Step 2 Performing check analysis on the bit information of each QAM signal obtained, including: performing XOR processing on the bit with the signal, and comparing the processing result with the check bit, and comparing the check bits Normal, inconsistent, the verification is abnormal, and the verification analysis results are recorded one by one according to the signal receiving order;
  • Step 3 Determine the result of the verification analysis of the record to determine whether the received QAM signal has phase ambiguity, and the determination method can be divided into two modes.
  • Method 1 Determine whether the number of consecutive abnormalities exceeds the number of consecutive abnormalities in the verification analysis result Threshold value, if the number of consecutive abnormalities exceeds the threshold, it is considered that phase ambiguity occurs. If the number of consecutive abnormalities does not exceed the threshold, it is considered that phase ambiguity does not occur.
  • Method 2 Determine whether the total number of abnormalities in the check analysis result is If the threshold is exceeded, if the number of total anomalies exceeds the threshold, phase ambiguity is considered to occur. If the number of total anomalies does not exceed the threshold, phase ambiguity does not occur;
  • Step 4 When the result of the determination in step 3 is YES, the phase rotation processing of the QAM signal is required.
  • the phase rotation processing method is different for different verification analysis modes, and step 3 is performed.
  • the phase rotation processing is performed by rotating the first abnormal signal of the polarization state in which the continuous abnormality occurs together with the phase of all the following signals by ⁇ /2. Or - ⁇ /2 (ie, 90 degrees forward rotation or 90 degree reverse rotation); for mode 2 in step 3, the phase rotation processing is performed by: phase rotation of all QAM signals on the abnormal polarization state ⁇ /2 or - ⁇ /2;
  • Step 5 Re-decision of the QAM signal after the phase rotation, perform verification analysis, and record the verification result, and save the normal bit information; perform a short-distance re-judgment on the QAM signal for verifying the abnormality, and save the time. Bit information after near-distance re-judgment;
  • Step 6 When the judgment result in the step 3 is no, the phase of the QAM signal is not processed, the bit information of the normal check is saved, the QAM signal of the check abnormality is subjected to the second close distance re-judgment, and the second close distance is saved. Bit information after re-judgment;
  • Step 7. Perform differential decoding processing on the recorded bit result.
  • the baud rate is 30Gb/s and the OSNR (Optical Signal Noise Ratio) is 23dB
  • the differential decoding is corrected in the SP-QAM Completion before the error can also avoid the parity misjudgment caused by phase ambiguity in the system, but the performance is poor.
  • the detected BER Bit Error Rate
  • the differential decoding is placed After verifying the error correction, the check caused by the phase ambiguity misjudges the continuous error, and the error is about 0.2. If the differential decoding is placed after the check and error correction, the method in the embodiment of the invention is used, and the performance is greatly improved. Increase, the error is close to zero.
  • 64-SP-QAM is generated on the basis of PM-16QAM, the last bit of X, Y polarization state is used as check digit; 64-SP-QAM is in X, Y polarization state.
  • the error when changing is 0.24, and the error when the +/- ⁇ /2 phase change occurs in both polarization states is 0.5, which is implemented according to the present invention.
  • the error of the corrected method is close to 0; it can be seen that when a polarization state occurs +/- ⁇ /2 phase change will cause the polarization state signal to be wrong, and both polarization states have problems, then all errors occur.
  • the last one of the Y polarization states is used as a check bit, that is, one of the 6 bits is used as a check bit, and the correction method and 128- SP-QAM is basically the same.
  • 32-SP-QAM When 32-SP-QAM is implemented on the basis of PM-16QAM, it is generated as follows: the last bit of the X polarization state is used as the check bit of the X polarization state, and the first two bits of the Y polarization state are information, The three bits are used as the check bits of the Y polarization state, and the last one of the Y polarization states is a check bit of the whole.
  • the correction method is basically the same as that of the 64-SP-QAM, and the X and Y need to be corrected separately.
  • an embodiment of the present invention further provides a phase blur processing apparatus for a quadrature amplitude modulation signal, including:
  • the determining module 210 is configured to determine a symbol on an X polarization state and a Y polarization state of the received signal, and obtain a first bit information, where the received signal includes a plurality of first signals;
  • the first check module 220 is configured to perform check analysis on the first bit information to generate a first check result.
  • the verification result judging module 230 is configured to determine the first verification result to obtain a determination result of whether the received signal has phase ambiguity;
  • the first obtaining module 240 is configured to: when the determining result indicates that the received signal is phase blurred, acquiring at least one first signal in the received signal;
  • the phase rotation module 250 is configured to phase rotate the first signal to obtain a second signal
  • the second check module 260 is configured to perform the check analysis on the second signal again, and if the check result is normal, store the second signal, so that the second signal replaces the first signal for decoding deal with.
  • the first verification module 220 includes:
  • a bit acquiring unit configured to acquire a signal bit and a check bit in the first bit information corresponding to each of the first signals
  • a processing unit configured to perform an exclusive OR process on the signal bit to obtain a first processing result
  • a comparing unit configured to compare the first processing result with the parity bit to obtain Taking the comparison result
  • the first processing result When the first processing result is consistent with the check bit, it indicates that the comparison result of the first signal is that the check is normal; when the first process result is inconsistent with the check bit, then Indicates that the comparison result of the first signal is a verification abnormality;
  • the comparison result of each of the first signals together constitutes the first verification result.
  • the verification result judging module 230 is configured to determine, by using the following first implementation manner, the first verification result, and obtain a determination result of whether the received signal has phase ambiguity:
  • the first obtaining module 240 is configured to: when the determination result indicates that the received signal is phase blurred, obtain the first first signal and the first All first signals after a signal.
  • the verification result judging module 230 is configured to determine, by using the following second implementation manner, the first verification result, to obtain a result of determining whether the received signal is phase blurred:
  • the first acquiring module 240 is configured to: when the determination result indicates that the received signal is phase blurred, acquire all the first signals in the received signal.
  • phase rotation module 250 is configured to:
  • the second signal has a phase change of ⁇ /2 or - ⁇ /2 compared to the first signal.
  • the second verification module includes:
  • a determining unit configured to determine a symbol in the second signal, and obtain a second bit information by mapping
  • a verification unit configured to perform verification analysis on the second bit information to generate a second verification result
  • a storage unit configured to store the second signal when the second verification result indicates that the second signal is normal, such that the second signal replaces the first signal for decoding processing.
  • the second verification module 260 further includes:
  • a second short-range re-determination unit configured to: when the second verification result indicates that the second signal verification is abnormal, perform a second short-distance re-judgment on the second signal to obtain a third signal, and store the third The signal is such that the third signal replaces the second signal for a decoding process.
  • phase obfuscating device further includes:
  • a first storage module configured to: when the determination result indicates that the received signal does not have phase blur, store a first signal that is normal in the received signal, and use a first signal that is normal in the received signal to be used for Decoding processing
  • a decision storage module configured to perform a second short-distance re-judgment on the first signal of the received signal in the received signal to obtain a fourth signal, and store the fourth signal, so that the fourth signal replaces the first signal Used for decoding processing.
  • the advantage of the implementation in the present invention is that the required additional overhead is saved compared with the training sequence method, and the system performance is improved compared with the pre-verification solution method.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, being executed by a processor and stored in a memory. Programs/instructions to implement their respective functions.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution effectively reduces the error rate of differential decoding of the QAM signal, reduces system overhead, and improves system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种正交振幅调制信号的相位模糊处理方法及装置。相位模糊处理方法,包括:对接收信号的X偏振态和Y偏振态上的符号进行判决,映射得到第一比特信息,接收信号包含多个第一信号;对第一比特信息进行校验分析,生成第一校验结果;对第一校验结果进行判断,得到接收信号是否发生相位模糊的判断结果;当判断结果表明接收信号发生相位模糊,获取接收信号中的至少一第一信号;将第一信号进行相位旋转得到第二信号;将第二信号再次进行校验分析,校验结果正常,存储第二信号,使得第二信号替代第一信号用于解码处理。对QAM信号进行校验判断,得到其有相位模糊时,对其进行纠错,以此降低QAM信号差分解码的出错率,降低系统开销,提高系统性能。

Description

一种正交振幅调制信号的相位模糊处理方法及装置 技术领域
本文涉及但不限于光通信技术领域,特别涉及一种正交振幅调制信号的相位模糊处理方法及装置。
背景技术
在高速率通信系统中,采用相位调制时会存在相位模糊的问题,目前解决的方法包括:一种是应用于绝对相位检测系统中的训练序列法,也就是通过已知相位的训练序列检测出相位模糊角度,然后对临近信号作相应纠正;这种方法能很好的解决相位模糊问题,但这种方法会增加系统开销;另一种是采用相位差分调制来纠正相位模糊问题,但相对训练序列法性能下降。
在基于对偏振复用(如PM-MQAM,Polarization Multiplexed M-state Quadrature Amplitude Modulation)进行分割的四维调制格式,如SP-QAM(Set-partitioning Quadrature Amplitude Modulation),所述QAM即正交振幅调制,如32-SP-QAM、128-SP-QAM。该码型是将组成该信号的N比特分成两个子集,一个子集是组成SP-QAM信号n,另一个子集是校验位。这样,SP-QAM信号每个符号承载n比特有效信息,最小欧式距离比PM-MQAM有所提高。以128-SP-QAM为例,一共8比特,其中7比特信号,如图1所示,d1~d7为有效信息。图2、图3和图4说明了此种方法实现了X偏振态和Y偏振态的关联,比如当有效信号为1101 011时,最后一位就只能根据奇校验或者偶校验为0或1,比如采用偶校验的话只能为1。
收端的判决算法步骤一般包括:
1、将X、Y偏振态上符号进行判决,通过映射得到比特信息,将比特信息进行校验分析,保留符合校验的数据;
2、将不符合的符号X、Y重新进行次近的判决域判决,同时记录原始符号距离该判决点的距离,比较X、Y的距离短,更新短的数据;
3、误码比较;
误码比较前,需要进行相位模糊问题,基于训练序列的方法如果在SP-QAM系统中置于校验解码前完成,则可避免相位模糊引起的奇偶校验误判问题,但该方法缺点是训练序列会增加系统开销。
对于采用相位差分的SP-QAM系统,如果差分解码在SP-QAM校验纠错前完成,同样可以避免系统中相位模糊引起的奇偶校验误判问题,但会造成系统性能下降;如果将差分解码置于校验纠错之后,则相位模糊引起的校验误判会导致连续误码很大。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种正交振幅调制信号的相位模糊处理方法及装置,可以避免正交振幅调制信号在进行相位模糊纠正时,有效降低了对QAM信号差分解码的出错率,还降低了系统开销,提高了系统性能。
本发明实施例提供一种正交振幅调制信号的相位模糊处理方法,包括:
对接收信号的X偏振态和Y偏振态上的符号进行判决,映射得到第一比特信息,所述接收信号中包含多个第一信号;
对所述第一比特信息进行校验分析,生成第一校验结果;
对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果;
当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号;
将所述第一信号进行相位旋转得到第二信号;
将所述第二信号再次进行校验分析,若校验结果正常,则存储所述第二信号,使得所述第二信号替代所述第一信号用于解码处理。
可选地,所述对所述第一比特信息进行校验分析,生成第一校验结果的步骤包括:
获取每一个所述第一信号对应的第一比特信息中的信号比特位和校验比 特位;
将所述信号比特位进行异或处理,得到第一处理结果;
将所述第一处理结果与所述校验比特位进行比较,获取所述比较结果;
当所述第一处理结果与所述校验比特位一致时,则表明所述第一信号的比较结果为校验正常;当所述第一处理结果与所述校验比特位不一致时,则表明所述第一信号的比较结果为校验异常;
每一个所述第一信号的比较结果共同构成所述第一校验结果。
可选地,所述对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果的步骤包括:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
若所述第一校验结果中所述第一信号连续校验异常的个数超过第一预设值,则表明所述接收信号发生了相位模糊;
所述当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号的步骤包括:
当所述判断结果表明所述接收信号发生相位模糊时,获取连续异常发生的首个第一信号以及首个第一信号后面的所有第一信号。
可选地,所述对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果的步骤包括:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
若所述第一校验结果中所述第一信号校验异常的总数超过第二预设值,则表明所述接收信号发生了相位模糊;
所述当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号的步骤包括:
当所述判断结果表明所述接收信号发生相位模糊时,获取接收信号中的所有第一信号。
可选地,所述将所述第一信号进行相位旋转得到第二信号的步骤包括:
将所述第一信号的X偏振态或Y偏振态上的符号进行相位旋转得到第二 信号;其中,
所述第二信号与所述第一信号相比,相位变化为π/2或-π/2。
可选地,将所述第二信号再次进行校验分析,若校验结果正常则记录所述第二信号,使得所述第二信号替代所述第一信号用于解码处理的步骤包括:
对所述第二信号中的符号进行判决,映射得到第二比特信息;
将所述第二比特信息进行校验分析,生成第二校验结果;
当第二校验结果表明所述第二信号校验正常时,则将所述第二信号进行存储,使得所述第二信号替代所述第一信号用于解码处理。
可选地,所述相位模糊处理方法还包括:
当第二校验结果表明所述第二信号校验异常时,则对所述第二信号进行次近距离重判决得到第三信号,并存储所述第三信号,使得所述第三信号替代所述第二信号用于解码处理。
可选地,所述相位模糊处理方法还包括:
当所述判断结果表明所述接收信号未发生相位模糊时,存储所述接收信号中校验正常的第一信号,将所述接收信号中校验正常的第一信号用于解码处理;
对所述接收信号中校验异常的第一信号进行次近距离重判决得到第四信号,并存储所述第四信号,使得所述第四信号替代所述第一信号用于解码处理。
本发明实施例还提供一种正交振幅调制信号的相位模糊处理装置,包括:
判决模块,设置为对接收信号的X偏振态和Y偏振态上的符号进行判决,映射得到第一比特信息,所述接收信号中包含多个第一信号;
第一校验模块,设置为对所述第一比特信息进行校验分析,生成第一校验结果;
校验结果判断模块,设置为对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果;
第一获取模块,设置为当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号;
相位旋转模块,设置为将所述第一信号进行相位旋转得到第二信号;
第二校验模块,设置为将所述第二信号再次进行校验分析,若校验结果正常,则存储所述第二信号,使得所述第二信号替代所述第一信号用于解码处理。
可选地,所述校验结果判断模块是设置为:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
若所述第一校验结果中所述第一信号连续校验异常的个数超过第一预设值,则表明所述接收信号发生了相位模糊;
所述第一获取模块是设置为:
当所述判断结果表明所述接收信号发生相位模糊时,获取连续异常发生的首个第一信号以及首个第一信号后面的所有第一信号。
可选地,所述校验结果判断模块是设置为:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
若所述第一校验结果中所述第一信号校验异常的总数超过第二预设值,则表明所述接收信号发生了相位模糊;
所述第一获取模块是设置为:
当所述判断结果表明所述接收信号发生相位模糊时,获取接收信号中的所有第一信号。
可选地,所述相位旋转模块是设置为:
将所述第一信号的X偏振态或Y偏振态上的符号进行相位旋转得到第二信号;其中,
所述第二信号与所述第一信号相比,相位变化为π/2或-π/2。
可选地,所述第二校验模块包括:
判决单元,设置为对所述第二信号中的符号进行判决,映射得到第二比特信息;
校验单元,设置为将所述第二比特信息进行校验分析,生成第二校验结果;
存储单元,设置为当第二校验结果表明所述第二信号校验正常时,则将 所述第二信号进行存储,使得所述第二信号替代所述第一信号用于解码处理。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例的有益效果是:
上述方案,通过对正交振幅调制QAM信号进行校验判断,在得到所述QAM信号的校验出错是由相位模糊引起时,利用相位旋转方式对所述QAM信号进行纠错处理,此种方式,有效降低了对QAM信号差分解码的出错率,同时,此种方式,还降低了系统开销,提高了系统性能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1表示128-SP-QAM信号产生过程示意图;
图2表示16QAM信号的格雷映射示意图;
图3表示基于16QAM信号的格雷映射的X轴信号示意图;
图4表示基于16QAM信号的格雷映射的Y轴信号示意图;
图5表示本发明实施例的所述相位模糊处理方法的总体流程图;
图6表示64-SP-QAM信号的产生过程示意图;
图7表示32-SP-QAM(PM-8QAM基础上产生)信号的产生过程示意图;
图8表示32-SP-QAM(PM-16QAM基础上产生)信号的产生过程示意图;
图9表示本发明实施例的所述步骤120的详细流程图;
图10表示本发明实施例的所述相位模糊处理方法的详细流程图;
图11表示128-SP-QAM信号的X偏振态异常情况示意图;
图12表示本发明实施例的所述相位模糊处理装置的模块示意图。
本发明的实施方式
下面将结合附图及具体实施例对本发明进行详细描述。
本发明实施例针对相关的正交振幅调制信号在进行相位模糊纠正时,会 造成系统开销增大,功耗较大,不利于节约成本的问题,如图5所示,本发明实施例提供一种正交振幅调制信号的相位模糊处理方法,包括:
步骤110,对接收信号的X偏振态和Y偏振态上的符号进行判决,映射得到第一比特信息,所述接收信号中包含多个第一信号;
步骤120,对所述第一比特信息进行校验分析,生成第一校验结果;
步骤130,对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果;
步骤140,当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号;
步骤150,将所述第一信号进行相位旋转得到第二信号;
步骤160,将所述第二信号再次进行校验分析,若校验结果正常,则存储所述第二信号,使得所述第二信号替代所述第一信号用于解码处理。
上述方案,通过对正交振幅调制QAM信号进行校验判断,在得到所述QAM信号的校验出错是由相位模糊引起时,利用相位旋转方式对所述QAM信号进行纠错处理,此种方式,有效降低了对QAM信号差分解码的出错率,同时,此种方式,还降低了系统开销,提高了系统性能。
应当说明的是,不同QAM信号的形成方式也是不同的,例如:64-SP-QAM信号产生过程如图6所示,其X偏振态符号由d1~d3有效信息和d1~d3的异或信息构成,其Y偏振态符号由d5~d7有效信息和d5~d7的异或信息构成;32-SP-QAM(在PM-8QAM基础上产生)信号产生过程如图7所示,其X偏振态符号由d1~d3有效信息构成,其Y偏振态符号由d4~d5有效信息和d1~d5的异或信息构成;32-SP-QAM(PM-16QAM基础上产生)信号产生过程如图8所示,其X偏振态符号由d1~d3有效信息和d1~d3的异或信息构成,其Y偏振态符号由d5~d6有效信息、d5~d6的异或信息以及d1~d3有效信息、d5~d6有效信息、d1~d3的异或信息和d5~d6的异或信息上述四者的异或信息构成。
QAM信号的接收端在接收到QAM信号时,也获得了所述QAM信号的产生方式,针对不同的QAM信号产生方式,所述接收端采取对应的符号判决方式,应当说明的是,所述步骤110中由接收信号获取得到比特信息的方式为本领域技术人员所熟知的,在此不再进行详细的说明。
本发明实施例中,如图9所示,所述步骤120的一种实现方式为:
步骤121,获取每一个所述第一信号对应的第一比特信息中的信号比特位和校验比特位;
步骤122,将所述信号比特位进行异或处理,得到第一处理结果;
步骤123,将所述第一处理结果与所述校验比特位进行比较,获取所述比较结果,包括:
当所述第一处理结果与所述校验比特位一致时,则表明所述第一信号的比较结果为校验正常;当所述第一处理结果与所述校验比特位不一致时,则表明所述第一信号的比较结果为校验异常;
每一个所述第一信号的比较结果共同构成所述第一校验结果。
所述步骤120说明的是,将接收信号中的每一个第一信号(即QAM信号)分别进行校验(进行奇校验或者是偶校验),应当说明的是,所述QAM信号采用怎样的生成方式,此处在进行校验时也采用相对应的校验方式,当接收信号为图1所示的128-SP-QAM信号或图7所示的在PM-8QAM基础上产生的32-SP-QAM信号时,需要对所述QAM信号的X偏振态和Y偏振态上的比特信息进行整体校验,得到校验结果,并将校验结果按照QAM信号的接收顺序一一对应存储,以供后续使用;当接收信号为图6所示的64-SP-QAM信号或图8所示的在PM-16QAM基础上产生的32-SP-QAM信号时,需要对每个QAM信号的X偏振态和Y偏振态上的比特信息分别进行校验,然后将X偏振态校验结果按照QAM信号的接收顺序一一对应存储,将Y偏振态校验结果按照QAM信号的接收顺序一一对应存储,以供后续使用。
在得到所述校验结果后,便需要对所述校验结果进行分析,判断校验出错是否是由相位模糊引起,因此,本发明实施例中所述步骤130的第一种实现方式包括:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态:
若所述第一校验结果中所述第一信号连续校验异常的个数超过第一预设值,则表明所述接收信号发生了相位模糊;
针对于所述第一种实现方式,所述步骤140的实现方式包括:当所述判断结果表明所述接收信号发生相位模糊时,获取连续异常发生的首个第一信号以及首个第一信号后面的所有第一信号。
本发明实施例中所述步骤130的第二种实现方式包括:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
若所述第一校验结果中所述第一信号校验异常的总数超过第二预设值,则表明所述接收信号发生了相位模糊;
针对于所述第二种实现方式,所述步骤140的实现方式包括:当所述判断结果表明所述接收信号发生相位模糊时,获取接收信号中的所有第一信号。
应当说明的是,上述两种实现方式,均可以用来进行相位模糊的判断,具体使用哪种方式实现可以根据实际应用情况进行选择。
在得到所述接收信号发生了相位模糊时,便需要进行所述接收信号的纠正,在获取得到所述需要纠正的QAM信号后,所述步骤150的具体实现方式包括:
将所述第一信号的X偏振态或Y偏振态上的符号进行相位旋转得到第二信号;其中,
所述第二信号与所述第一信号相比,相位变化为π/2或-π/2。
这里应当说明的是,针对不同的QAM信号生成方式,采用的纠正方式也是不相同的,当接收信号为图1所示的128-SP-QAM信号或图7所示的在PM-8QAM基础上产生的32-SP-QAM信号时,当出现相位模糊的情况时,对所述QAM信号的X偏振态或Y偏振态的信号进行相位正向旋转90度或逆向旋转90度;而当接收信号为图6所示的64-SP-QAM信号或图8所示的在PM-16QAM基础上产生的32-SP-QAM信号时,当出现相位模糊时,需要获知具体是哪个相位出现了模糊,如果为X偏振态出现了相位模糊,则需要进行QAM信号的X偏振态上符号的相位正向旋转90度或逆向旋转90度,但是当QAM信号的X偏振态和Y偏振态均出现相位模糊时,则需要将QAM信号的X偏振态和Y偏振态上的符号的相位分别正向旋转90度或逆向旋转90度。
在进行相位旋转后,需要进行第二信号的再次分析,以得到第一信号进行相位旋转后得到的第二信号是否正确,因此,本发明另一实施例中,所述步骤160包括:
对所述第二信号中的符号进行判决,映射得到第二比特信息;
将所述第二比特信息进行校验分析,生成第二校验结果;
当第二校验结果表明所述第二信号校验正常时,则将所述第二信号进行存储,使得所述第二信号替代所述第一信号用于解码处理。
应当说明的是,将进行相位旋转得到的第二信号再次进行校验分析,此校验分析过程与所述第一信号的校验分析过程相同,在此不再进行详细的说明;若第二信号校验分析正常,则证明所述第二信号对应的第一信号在进行相位旋转后变回了正常的信号,此第二信号为解码需要的信号,保存所述第二信号以供后续的解码处理;而当所述第二信号校验分析异常,则证明所述第二信号对应的第一信号在进行相位旋转后并未变回正常的信号,因此还需对此第二信号进行再次分析处理,因此,本发明另一实施例中,所述相位模糊处理方法还包括:
当第二校验结果表明所述第二信号校验异常时,则对所述第二信号进行次近距离重判决得到第三信号,并存储所述第三信号,使得所述第三信号替代所述第二信号用于解码处理。
应当说明的是,当第二信号校验分析异常,则认为第二信号的校验异常是因为信号在此相位上发生了移位引起的,则需要对第二信号进行次近距离重判决,找到距离第二信号较近的第三信号,并进行第三信号的存储,此第三信号便为第一信号进行相位模糊处理后的正常的接收信号;需要说明的是,所述次近距离重判决方式为本领域技术人员所熟知的,在此不再进行详细的说明。
应当说明的是,在对接收信号进行是否发生相位模糊的判断时,在得到所述接收信号并未发生相位模糊,但此时所述接收信号中的QAM信号可能并未都处于校验正常的状态,因此本发明另一实施例中,所述相位模糊处理方法还包括:
当所述判断结果表明所述接收信号未发生相位模糊时,存储所述接收信 号中校验正常的第一信号,将所述接收信号中校验正常的第一信号用于解码处理;
对所述接收信号中校验异常的第一信号进行次近距离重判决得到第四信号,并存储所述第四信号,使得所述第四信号替代所述第一信号用于解码处理。
应当说明的是,对未发生相位模糊的接收信号中的校验正常的QAM信号直接进行存储,对校验异常的QAM信号进行次近距离重判决,得到判决后的QAM信号,并存储判决后的QAM信号,将此信号作为解码处理的依据。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
如图10所示,本发明实施例上述过程的详细实现流程为:
步骤1、对接收的每一个QAM信号的X偏振态和Y偏振态上的符号进行判决,映射得到比特信息;
步骤2、将得到的每一个QAM信号的比特信息一一进行校验分析,包括:将带有信号的比特位进行异或处理,处理结果和校验比特位进行比较,比较一致则认为校验正常,不一致则认为校验异常,并将校验分析结果按照信号接收顺序一一进行记录;
步骤3、对记录的校验分析结果进行判断以确定接收的QAM信号是否发生了相位模糊,判断方法可以分为两种方式,方式一:判断校验分析结果中,连续异常的个数是否超过阈值,如果连续异常的个数超过阈值,则认为发生了相位模糊,如果连续异常的个数未超过阈值,认为未发生相位模糊;方式二:判断校验分析结果中,总异常的个数是否超过阈值,如果总异常的个数超过阈值,则认为发生了相位模糊,如果总异常的个数未超过阈值,认为未发生相位模糊;
步骤4、当步骤3中的判断结果为是时,则需要对QAM信号进行相位旋转处理;而本发明实施例中针对不同的校验分析方式,采用的相位旋转处理方式也不同,针对步骤3中的方式一,所述相位旋转处理的方式为:将发生连续异常的那个偏振态的首个异常信号连同后面的所有信号的相位旋转π/2 或-π/2(即正向旋转90度或逆向旋转90度);针对步骤3中的方式二,所述相位旋转处理的方式为:将发生异常的偏振态上的所有QAM信号的相位旋转π/2或-π/2;
步骤5、将进行相位旋转后的QAM信号重新判决,进行校验分析,并记录校验结果,保存校验正常的比特信息;对于校验异常的QAM信号进行次近距离重判决,并保存次近距离重判决后的比特信息;
步骤6、当步骤3中的判断结果为否时,对QAM信号的相位不做处理,保存校验正常的比特信息,将校验异常的QAM信号进行次近距离重判决,并保存次近距离重判决后的比特信息;
步骤7、将记录的比特结果进行差分解码处理。
以128-SP-QAM为例,假设校验采用偶校验,如图3和图4所示,当收端接收的信号XY分别为1101和0111时,校验位正常;当如图11所示,如果接收的为1100和0111,则校验位异常,原因可能有两个:一个可能是由于判决误差导致,实际发端发射的是1101,那通过次近判决可纠正;另一个可能是由于X偏振态相位模糊π/2,也就是说实际信号是0001 0111,如果仍按是判决误差导致寻找次近判决为1101 0111,则会导致2个误码产生,如果再进行差分解码,误码加倍。
如果将对于采用相位差分的128-SP-QAM系统,在波特率为30Gb/s下且OSNR(Optical Signal Noise Ratio,光信噪比)为23dB时,如果差分解码在SP-QAM校验纠错前完成,同样可以避免系统中相位模糊引起的奇偶校验误判问题,但性能较差,检测的BER(Bit Error Rate,误比特率)大概为3e-4;但是如果将差分解码置于校验纠错之后,则相位模糊引起的校验误判连续误码,误码大概为0.2;如果将差分解码置于校验纠错之后,同时采用发明实施例中的方法,性能得到很大提高,误码接近于0。
以64-SP-QAM为例,64-SP-QAM是在PM-16QAM的基础上产生的,X、Y偏振态的最后一个比特作为校验位;64-SP-QAM在X、Y偏振态上都可能出现+/-π/2相位变化,所以两偏振态都需要进行判断是否发生相位变化,并进行修正;当波特为32Gb/s时,在一个偏振态+/-π/2相位变化时的误码为0.24,两个偏振态下都发生+/-π/2相位变化时的误码为0.5,依据本发明实施 例方法纠正后的误码接近为0;可见当一个偏振态发生+/-π/2相位变化会导致该偏振态信号出错,两个偏振态都出问题时,则全出错。
当32-SP-QAM是在PM-8QAM基础上实现时,将Y偏振态上的最后一个作为校验位,也就是6个比特中的其中一个比特作为校验位,其纠正方法和128-SP-QAM基本一致。
当32-SP-QAM是在PM-16QAM基础上实现时,它的产生方法如下:X偏振态的最后一个比特作为X偏振态的校验位,Y偏振态的前两个比特是信息,第三个比特作为Y偏振态的校验位,Y偏振态的最后一个作为整体的一个校验位,其纠正方法与64-SP-QAM基本一致,需要对X、Y分别纠正。
如图12所示,本发明实施例还提供一种正交振幅调制信号的相位模糊处理装置,包括:
判决模块210,设置为对接收信号的X偏振态和Y偏振态上的符号进行判决,映射得到第一比特信息,所述接收信号中包含多个第一信号;
第一校验模块220,设置为对所述第一比特信息进行校验分析,生成第一校验结果;
校验结果判断模块230,设置为对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果;
第一获取模块240,设置为当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号;
相位旋转模块250,设置为将所述第一信号进行相位旋转得到第二信号;
第二校验模块260,设置为将所述第二信号再次进行校验分析,若校验结果正常,则存储所述第二信号,使得所述第二信号替代所述第一信号用于解码处理。
可选地,所述第一校验模块220包括:
比特位获取单元,设置为获取每一个所述第一信号对应的第一比特信息中的信号比特位和校验比特位;
处理单元,设置为将所述信号比特位进行异或处理,得到第一处理结果;
比较单元,设置为将所述第一处理结果与所述校验比特位进行比较,获 取所述比较结果;
当所述第一处理结果与所述校验比特位一致时,则表明所述第一信号的比较结果为校验正常;当所述第一处理结果与所述校验比特位不一致时,则表明所述第一信号的比较结果为校验异常;
每一个所述第一信号的比较结果共同构成所述第一校验结果。
可选地,所述校验结果判断模块230的是设置为通过以下第一种实现方式对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
若所述第一校验结果中所述第一信号连续校验异常的个数超过第一预设值,则表明所述接收信号发生了相位模糊;
针对于所述第一种实现方式,所述第一获取模块240是设置为:当所述判断结果表明所述接收信号发生相位模糊时,获取连续异常发生的首个第一信号以及首个第一信号后面的所有第一信号。
可选地,所述校验结果判断模块230是设置为通过以下第二种实现方式对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果:
对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
若所述第一校验结果中所述第一信号校验异常的总数超过第二预设值,则表明所述接收信号发生了相位模糊;
针对于所述第二种实现方式,所述第一获取模块240是设置为:当所述判断结果表明所述接收信号发生相位模糊时,获取接收信号中的所有第一信号。
可选地,所述相位旋转模块250是设置为:
将所述第一信号的X偏振态或Y偏振态上的符号进行相位旋转得到第二信号;其中,
所述第二信号与所述第一信号相比,相位变化为π/2或-π/2。
可选地,所述第二校验模块包括:
判决单元,设置为对所述第二信号中的符号进行判决,映射得到第二比特信息;
校验单元,设置为将所述第二比特信息进行校验分析,生成第二校验结果;
存储单元,设置为当第二校验结果表明所述第二信号校验正常时,则将所述第二信号进行存储,使得所述第二信号替代所述第一信号用于解码处理。
可选地,所述第二校验模块260还包括:
次近距离重判决单元,设置为当第二校验结果表明所述第二信号校验异常时,则对所述第二信号进行次近距离重判决得到第三信号,并存储所述第三信号,使得所述第三信号替代所述第二信号用于解码处理。
可选地,所述相位模糊处理装置还包括:
第一存储模块,设置为当所述判断结果表明接收信号未发生相位模糊时,存储所述接收信号中校验正常的第一信号,将所述接收信号中校验正常的第一信号用于解码处理;
判决存储模块,设置为对所述接收信号中校验异常的第一信号进行次近距离重判决得到第四信号,并存储所述第四信号,使得所述第四信号替代所述第一信号用于解码处理。
应当说明的是,本发明中的实现方式的优势体现在,与训练序列法比较节省了所需额外开销,与校验前解差分法比较提高了系统性能。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的 程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。
工业实用性
上述技术方案有效降低了对QAM信号差分解码的出错率,降低了系统开销,提高了系统性能。

Claims (14)

  1. 一种正交振幅调制信号的相位模糊处理方法,包括:
    对接收信号的X偏振态和Y偏振态上的符号进行判决,映射得到第一比特信息,所述接收信号中包含多个第一信号;
    对所述第一比特信息进行校验分析,生成第一校验结果;
    对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果;
    当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号;
    将所述第一信号进行相位旋转得到第二信号;
    将所述第二信号再次进行校验分析,若校验结果正常,则存储所述第二信号,使得所述第二信号替代所述第一信号用于解码处理。
  2. 根据权利要求1所述的相位模糊处理方法,其中,所述对所述第一比特信息进行校验分析,生成第一校验结果的步骤包括:
    获取每一个所述第一信号对应的第一比特信息中的信号比特位和校验比特位;
    将所述信号比特位进行异或处理,得到第一处理结果;
    将所述第一处理结果与所述校验比特位进行比较,获取所述比较结果:
    当所述第一处理结果与所述校验比特位一致时,则表明所述第一信号的比较结果为校验正常;当所述第一处理结果与所述校验比特位不一致时,则表明所述第一信号的比较结果为校验异常;
    每一个所述第一信号的比较结果共同构成所述第一校验结果。
  3. 根据权利要求1所述的相位模糊处理方法,其中,所述对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果的步骤包括:
    对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
    若所述第一校验结果中所述第一信号连续校验异常的个数超过第一预设 值,则表明所述接收信号发生了相位模糊;
    所述当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号的步骤包括:
    当所述判断结果表明所述接收信号发生相位模糊时,获取连续异常发生的首个第一信号以及首个第一信号后面的所有第一信号。
  4. 根据权利要求1所述的相位模糊处理方法,其中,所述对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果的步骤包括:
    对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
    若所述第一校验结果中所述第一信号校验异常的总数超过第二预设值,则表明所述接收信号发生了相位模糊;
    所述当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号的步骤包括:
    当所述判断结果表明所述接收信号发生相位模糊时,获取接收信号中的所有第一信号。
  5. 根据权利要求1-4任一项所述的相位模糊处理方法,其中,所述将所述第一信号进行相位旋转得到第二信号的步骤包括:
    将所述第一信号的X偏振态或Y偏振态上的符号进行相位旋转得到第二信号;其中,
    所述第二信号与所述第一信号相比,相位变化为π/2或-π/2。
  6. 根据权利要求1所述的相位模糊处理方法,其中,将所述第二信号再次进行校验分析,若校验结果正常则记录所述第二信号,使得所述第二信号替代所述第一信号用于解码处理的步骤包括:
    对所述第二信号中的符号进行判决,映射得到第二比特信息;
    将所述第二比特信息进行校验分析,生成第二校验结果;
    当第二校验结果表明所述第二信号校验正常时,则将所述第二信号进行存储,使得所述第二信号替代所述第一信号用于解码处理。
  7. 根据权利要求6所述的相位模糊处理方法,所述方法还包括:
    当第二校验结果表明所述第二信号校验异常时,则对所述第二信号进行次近距离重判决得到第三信号,并存储所述第三信号,使得所述第三信号替代所述第二信号用于解码处理。
  8. 根据权利要求1所述的相位模糊处理方法,所述方法还包括:
    当所述判断结果表明所述接收信号未发生相位模糊时,存储所述接收信号中校验正常的第一信号,将所述接收信号中校验正常的第一信号用于解码处理;
    对所述接收信号中校验异常的第一信号进行次近距离重判决得到第四信号,并存储所述第四信号,使得所述第四信号替代所述第一信号用于解码处理。
  9. 一种正交振幅调制信号的相位模糊处理装置,包括:
    判决模块,设置为对接收信号的X偏振态和Y偏振态上的符号进行判决,映射得到第一比特信息,所述接收信号中包含多个第一信号;
    第一校验模块,设置为对所述第一比特信息进行校验分析,生成第一校验结果;
    校验结果判断模块,设置为对所述第一校验结果进行判断,得到所述接收信号是否发生相位模糊的判断结果;
    第一获取模块,设置为当所述判断结果表明所述接收信号发生相位模糊时,则获取所述接收信号中的至少一第一信号;
    相位旋转模块,设置为将所述第一信号进行相位旋转得到第二信号;
    第二校验模块,设置为将所述第二信号再次进行校验分析,若校验结果正常,则存储所述第二信号,使得所述第二信号替代所述第一信号用于解码处理。
  10. 根据权利要求9所述的相位模糊处理装置,其中,所述校验结果判断模块是设置为:
    对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
    若所述第一校验结果中所述第一信号连续校验异常的个数超过第一预设值,则表明所述接收信号发生了相位模糊;
    所述第一获取模块是设置为:
    当所述判断结果表明所述接收信号发生相位模糊时,获取连续异常发生的首个第一信号以及首个第一信号后面的所有第一信号。
  11. 根据权利要求9所述的相位模糊处理方法,其中,所述校验结果判断模块是设置为:
    对所述第一校验结果中每一个所述第一信号的状态进行分析,判断所述第一信号是否处于校验异常状态;
    若所述第一校验结果中所述第一信号校验异常的总数超过第二预设值,则表明所述接收信号发生了相位模糊;
    所述第一获取模块是设置为:
    当所述判断结果表明所述接收信号发生相位模糊时,获取接收信号中的所有第一信号。
  12. 根据权利要求9-11任一项所述的相位模糊处理装置,其中,所述相位旋转模块是设置为:
    将所述第一信号的X偏振态或Y偏振态上的符号进行相位旋转得到第二信号;其中,
    所述第二信号与所述第一信号相比,相位变化为π/2或-π/2。
  13. 根据权利要求9所述的相位模糊处理装置,其中,所述第二校验模块包括:
    判决单元,设置为对所述第二信号中的符号进行判决,映射得到第二比特信息;
    校验单元,设置为将所述第二比特信息进行校验分析,生成第二校验结果;
    存储单元,设置为当第二校验结果表明所述第二信号校验正常时,则将所述第二信号进行存储,使得所述第二信号替代所述第一信号用于解码处理。
  14. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~8中任一项所述的方法。
PCT/CN2016/076281 2015-05-15 2016-03-14 一种正交振幅调制信号的相位模糊处理方法及装置 WO2016184235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16795722.4A EP3297240B1 (en) 2015-05-15 2016-03-14 Phase ambiguity processing method and device for quadrature amplitude modulation signal
US15/574,457 US10218557B2 (en) 2015-05-15 2016-03-14 Phase ambiguity processing method and device for quadrature amplitude modulation signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510247479.3A CN106301589B (zh) 2015-05-15 2015-05-15 一种正交振幅调制信号的相位模糊处理方法及装置
CN201510247479.3 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016184235A1 true WO2016184235A1 (zh) 2016-11-24

Family

ID=57319435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076281 WO2016184235A1 (zh) 2015-05-15 2016-03-14 一种正交振幅调制信号的相位模糊处理方法及装置

Country Status (4)

Country Link
US (1) US10218557B2 (zh)
EP (1) EP3297240B1 (zh)
CN (1) CN106301589B (zh)
WO (1) WO2016184235A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071894B (zh) * 2018-01-22 2022-05-06 中兴通讯股份有限公司 一种信息处理方法和系统、发送装置及接收装置
CN109447271B (zh) * 2018-10-15 2020-09-15 合肥本源量子计算科技有限责任公司 一种量子比特量子态读取方法及装置
GB201818076D0 (en) 2018-11-06 2018-12-19 Sec Dep For Foreign And Commonwealth Affairs Improved device and method for modualating information
US11736320B2 (en) * 2022-02-14 2023-08-22 Ultralogic 6G, Llc Multiplexed amplitude-phase modulation for 5G/6G noise mitigation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033184A1 (en) * 2009-08-07 2011-02-10 Futurewei Technologies, Inc. Side Band Pilot Tone for Digital Signal Processing in Polarization Multiplexed Coherent Optical Communication System
CN102571682A (zh) * 2011-12-17 2012-07-11 华中科技大学 一种正交幅度调制信号光的产生方法和装置
CN103051384A (zh) * 2012-12-12 2013-04-17 华中科技大学 一种qam光矢量信号产生及零差解调装置
CN103124208A (zh) * 2013-02-28 2013-05-29 西南交通大学 一种基于多偏振态的多输入多输出mimo光传输方案
RU2012104932A (ru) * 2012-02-13 2013-10-27 Закрытое акционерное общество "Научно-производственная фирма "Микран" Способ передачи и приема сигналов квадратурной амплитудной модуляции с использованием пилот сигнала (варианты)

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400348A (en) * 1992-09-03 1995-03-21 Yang; Sung-Moon Packet start detection using check bit coding
US6108374A (en) * 1997-08-25 2000-08-22 Lucent Technologies, Inc. System and method for measuring channel quality information
US6215827B1 (en) * 1997-08-25 2001-04-10 Lucent Technologies, Inc. System and method for measuring channel quality information in a communication system
CA2566295C (en) * 2004-03-30 2010-09-14 Modesat Communications Ou System and method for transmission and reception of qam signals at low signal to noise ratio
KR100653232B1 (ko) * 2004-12-08 2006-12-04 한국전자통신연구원 케이블 다운스트림 전송을 위한 qam 심볼 매핑 방법 및장치
US7680211B1 (en) * 2005-05-18 2010-03-16 Urbain A. von der Embse MIMO maximum-likelihood space-time architecture
US7590186B2 (en) * 2006-03-23 2009-09-15 Motorola, Inc. Orthogonal frequency division multiplexing (OFDM) system receiver using low-density parity-check (LDPC) codes
US7627058B2 (en) * 2006-03-28 2009-12-01 Teledyne Licensing Llc Alternating quadratures differential binary phase shift keying modulation and demodulation method
US7992070B2 (en) * 2006-12-27 2011-08-02 Nec Laboratories America, Inc. Bit-interleaved LDPC-coded modulation for high-speed optical transmission
US8369450B2 (en) * 2007-08-07 2013-02-05 Samsung Electronics Co., Ltd. Pilot boosting and traffic to pilot ratio estimation in a wireless communication system
US8185796B2 (en) * 2008-08-20 2012-05-22 Nec Laboratories America, Inc. Mitigation of fiber nonlinearities in multilevel coded-modulation schemes
US8166365B2 (en) * 2008-12-03 2012-04-24 Ciena Corporation Cycle slip location and correction
EP2219312A1 (en) * 2009-02-11 2010-08-18 NTT DoCoMo, Inc. Apparatus for providing a combined digital signal
US8594244B2 (en) * 2009-04-06 2013-11-26 Mediatek Inc. Data signal phase reversal correction method and system implementing the same
US8315528B2 (en) * 2009-12-22 2012-11-20 Ciena Corporation Zero mean carrier recovery
CN102088317A (zh) * 2011-01-18 2011-06-08 北京邮电大学 基于tcm-64qam编码调制的高速光传输系统和方法
JP5813331B2 (ja) * 2011-01-26 2015-11-17 日本オクラロ株式会社 光受信器
CN103259613B (zh) * 2012-02-17 2016-12-07 华为技术有限公司 检测相位模糊度的方法、设备、解码方法、接收器和系统
US9444553B2 (en) * 2012-07-05 2016-09-13 Lumentum Operations Llc Tunable coherent optical receiver and method
US9209908B2 (en) * 2012-10-04 2015-12-08 Zte (Usa) Inc. System and method for heterodyne coherent detection with optimal offset
US9225429B2 (en) * 2012-12-21 2015-12-29 Zte Corporation Recovering data from quadrature phase shift keying modulated optical signals
US9225455B2 (en) * 2013-01-15 2015-12-29 Zte (Usa) Inc. Digital non-linear compensation in optical communication systems
US9270513B2 (en) * 2013-01-29 2016-02-23 Zte (Usa) Inc. Method and apparatus for algorithm on flexible square-QAM coherent detection
US8924823B2 (en) * 2013-03-15 2014-12-30 Tyco Electronics Subsea Communications Llc System and method for cycle slip correction
CN105103508A (zh) * 2013-03-30 2015-11-25 中兴通讯股份有限公司 从正交相移键控调制光信号恢复数据
US10305620B2 (en) * 2013-05-03 2019-05-28 Zte (Usa) Inc. Method and apparatuses for algorithm on QAM coherent optical detection
WO2015027903A1 (en) * 2013-08-27 2015-03-05 Zte Corporation Optical communication using super-nyquist signals
US9264144B2 (en) * 2013-10-22 2016-02-16 Zte Corporation Transmission and reception of quad-subcarrier orthogonal frequency division multiplexed signals
US9336079B2 (en) * 2013-12-11 2016-05-10 Tyco Electronics Subsea Communications Llc System and method for cycle slip correction
US9166628B2 (en) * 2013-12-13 2015-10-20 Alcatel Lucent Use of parity-check coding for carrier-phase estimation in an optical transport system
EP2922221B1 (en) * 2014-03-19 2018-08-29 ZTE Corporation Techniques for blind equalization of high-order quadrature amplitude modulation signals
US9270383B2 (en) * 2014-03-31 2016-02-23 Infinera Corporation Frequency and phase compensation for modulation formats using multiple sub-carriers
EP2978146A1 (en) * 2014-07-25 2016-01-27 Xieon Networks S.à r.l. Modulation codée résistante aux glissements de cycle pour des communications par fibres optiques
US9564976B2 (en) * 2014-08-19 2017-02-07 Zte Corporation Blind equalization of dual subcarrier OFDM signals
US9780990B2 (en) * 2014-10-31 2017-10-03 Tyco Electronics Subsea Communications Llc System and method for multi-dimensional modulation using multiple constellations
CN105610517B (zh) * 2014-11-14 2018-05-08 中兴通讯股份有限公司 相干光接收机的迭代后均衡
US9806781B2 (en) * 2015-04-29 2017-10-31 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
CN107735966A (zh) * 2015-06-29 2018-02-23 三菱电机株式会社 光发送装置、光接收装置、光传输系统以及光传输方法
JP6257866B2 (ja) * 2015-11-24 2018-01-10 三菱電機株式会社 光中継装置
US10148363B2 (en) * 2015-12-08 2018-12-04 Zte Corporation Iterative nonlinear compensation
US9941974B2 (en) * 2015-12-21 2018-04-10 Zte Corporation Techniques for receiving DFT spreading modulation signals
US9673907B1 (en) * 2016-03-29 2017-06-06 Fujitsu Limited Constellation shaping of modulation formats for optical communication systems
US10236989B2 (en) * 2016-10-10 2019-03-19 Nec Corporation Data transport using pairwise optimized multi-dimensional constellation with clustering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033184A1 (en) * 2009-08-07 2011-02-10 Futurewei Technologies, Inc. Side Band Pilot Tone for Digital Signal Processing in Polarization Multiplexed Coherent Optical Communication System
CN102571682A (zh) * 2011-12-17 2012-07-11 华中科技大学 一种正交幅度调制信号光的产生方法和装置
RU2012104932A (ru) * 2012-02-13 2013-10-27 Закрытое акционерное общество "Научно-производственная фирма "Микран" Способ передачи и приема сигналов квадратурной амплитудной модуляции с использованием пилот сигнала (варианты)
CN103051384A (zh) * 2012-12-12 2013-04-17 华中科技大学 一种qam光矢量信号产生及零差解调装置
CN103124208A (zh) * 2013-02-28 2013-05-29 西南交通大学 一种基于多偏振态的多输入多输出mimo光传输方案

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO, GUOLIANG ET AL.: "Extended Kalman-based PDM-16QAM Polarizing State and Carrier Phase Swift Track.", ACTA OPTICA SINICA., vol. 34, no. 12, 31 December 2014 (2014-12-31), XP009507551 *
See also references of EP3297240A4 *

Also Published As

Publication number Publication date
CN106301589A (zh) 2017-01-04
CN106301589B (zh) 2019-06-04
EP3297240A4 (en) 2019-01-30
EP3297240A1 (en) 2018-03-21
EP3297240B1 (en) 2023-12-06
US10218557B2 (en) 2019-02-26
US20180145865A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2016184235A1 (zh) 一种正交振幅调制信号的相位模糊处理方法及装置
US9521022B2 (en) Cycle-slip detection method and apparatus, and receiver
EP1936904A1 (en) Logarithmic likelihood ratio calculating circuit, transmitter apparatus, logarithmic likelihood ratio calculating method and program
EP2926517B1 (en) Enhanced decoding and demapping method and apparatus for qam data signals
EP2779559B1 (en) Method and apparatus for performing soft demapping in rotated quadrature amplitude modulation (QAM) based communication system
US20160006560A1 (en) Data transmitter and data receiver
US8024644B2 (en) Communication signal decoding
US8495478B2 (en) Frame boundary detection and decoding
US11018699B2 (en) Method and apparatus for controlling interleaving depth
US20120179950A1 (en) Method and System for Detecting the Frame Boundary of a Data Stream Received in Forward Error Correction Layer in the Ethernet
CN101499992B (zh) 解码设备和方法、接收设备和方法
WO2015092585A1 (en) Method and apparatus for cipher fault detection
WO2011017840A1 (en) Phase recovery device, phase recovery method and receiver for 16 quadrature amplitude modulation data modulation
WO2019228349A1 (zh) 部分伪随机化处理方法、相应装置、设备及存储介质
WO2017075745A1 (en) Methods, systems, and computer-readable media for decoding cyclic code
US10320523B2 (en) Method for detecting sent sequence, receiver, and receiving device
CN116232825B (zh) 信息调制、信息解调方法及装置
US9942071B2 (en) Signal processing method, apparatus and signal receiver
CN105871505B (zh) 多维码处理方法、发送端、接收端和系统
JP6633252B2 (ja) 尤度生成装置
KR101795217B1 (ko) 패리티가 포함된 전송 패킷을 인코딩 또는 디코딩하는 장치 및 방법
JP2009141542A (ja) 受信装置
JP2008092412A (ja) フレーム同期方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574457

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016795722

Country of ref document: EP