WO2016184116A1 - 一种超声刺激神经组织的装置 - Google Patents

一种超声刺激神经组织的装置 Download PDF

Info

Publication number
WO2016184116A1
WO2016184116A1 PCT/CN2015/099468 CN2015099468W WO2016184116A1 WO 2016184116 A1 WO2016184116 A1 WO 2016184116A1 CN 2015099468 W CN2015099468 W CN 2015099468W WO 2016184116 A1 WO2016184116 A1 WO 2016184116A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
control
pulse
stimulation
echo
Prior art date
Application number
PCT/CN2015/099468
Other languages
English (en)
French (fr)
Inventor
郑海荣
邱维宝
黎国锋
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2016184116A1 publication Critical patent/WO2016184116A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the present invention relates to the field of medical device technology, and in particular to a device for ultrasonically stimulating nerve tissue.
  • Nerve stimulation and regulation refers to the process of using physical, electrical, optical, thermal, thermal or mechanical stimuli and chemical stimuli to act on the living nervous system (such as organisms, organs, tissues, cells, etc.) and cause reactions.
  • the effects of stimulation regulation can be divided into excitatory stimuli that cause function display or enhancement and inhibitory stimuli that cause function to disappear or weaken.
  • Through stimulation, regulating nerve activity it is helpful to treat nervous system diseases and mental diseases. It is also the basic means to study human brain's feelings, movements and cognitive functions.
  • Electrical stimulation is the most widely used stimulus. As early as 1870, there was a documentary record of electrical stimulation of the dog's cortex, triggering an action response. In 1954, the literature showed that electrical stimulation of the human brain can effectively interfere with epilepsy. In recent years, the popular deep brain stimulation technique achieves timed stimulation of local areas of the brain by implanting electrodes in the deep part of the brain. This technique is also essentially electrical stimulation; experiments show that deep brain stimulation can treat Parkinson's and dystonia. Mental illness such as obsessive-compulsive disorder. Deep brain stimulation has high spatial resolution. Combined with functional magnetic resonance imaging and diffusion tension imaging technology, visualization of the neural circuit in the stimulation area can be realized. However, because the complicated preoperative operation process is needed before stimulation, the stimulation site cannot be flexibly changed.
  • Transcranial direct current stimulation is a non-invasive electrical stimulation, which induces excitation of the cortical layer by affixing two electrodes on the surface of the brain and applying a constant current to change the membrane potential of the neurons on the surface of the brain. Because of the low spatial resolution of the technology, it is difficult to achieve brain region localization. Transcranial magnetic stimulation technology is also a non-invasive brain stimulation technique.
  • This technique applies an instantaneous high voltage pulse through an extracorporeal coil, causing tissue to generate an induced current in a particular spatial region perpendicular to the plane of the coil, thereby producing an evoked potential.
  • This technology can be used to evaluate neurophysiological conduction pathways, as well as neurological rehabilitation of diseases such as depression, epilepsy, stroke, schizophrenia, and autism.
  • due to the spatial resolution of transcranial magnetic stimulation it only reaches the centimeter level, and it is impossible to achieve deep brain spur Excited.
  • Chemical stimulation often involves precise local direct administration through micro drug pump technology, which can achieve local neuromodulation and help treat sputum diseases of brain origin.
  • Photoreceptor gene neural regulation technology through the transfection of a certain protein gene to a specific neuron, allowing specific light to accurately stimulate specific neurons, thereby achieving the regulation of neural circuits.
  • Ultrasound stimulation is an ancient and emerging non-invasive nerve stimulation. As early as 1929, there have been reports of ultrasound on the effective regulation of the nerve (heart) muscles of frogs and turtles. Subsequently, in 1958, literature was recorded that ultrasound penetrated the skull of a cranial cat and reversibly inhibited the photoexcitation potential of the retina. High intensity focused ultrasound (HIFU) is often used as an intervention in the central nervous system.
  • HIFU High intensity focused ultrasound
  • Tyler et al. confirmed that ultrasound stimulated hippocampal slices, which stimulated action potentials, pressure-controlled sodium ions, calcium ion transients, and synaptic transmission. In 2010, the Tyler team first stimulated the cranial motor cortex in mice with positive transcranial ultrasound, which induced action potentials and caused action responses of limbs and tails. Since then, the use of ultrasound as a means of nerve stimulation has attracted widespread attention.
  • Invasive nerve stimulation means that the location of the stimulation target is related to the installation position of the stimulation electrode.
  • the selection of the installation position is usually determined according to the previous CT and MRI imaging information and the site information of the installation process; once the electrode is installed, the target is stimulated. It cannot be changed.
  • Non-invasive nerve stimulation such as transcranial magnetic stimulation, is not necessary for precise positioning because of its low spatial resolution.
  • the nerve stimulation method using phased array high-intensity focused ultrasound can guide the location of the ultrasound stimulation target and realize the stimulation effect evaluation function by functional magnetic resonance imaging.
  • the existing neural stimulation techniques are either invasive or have low spatial resolution and poor targeting characteristics.
  • the present invention provides a device for ultrasonically stimulating nerve tissue, which uses a method of ultrasonic stimulation and ultrasound imaging to share an ultrasound transducer array, realizing real-time visualization of the ultrasound nerve stimulation process, and facilitating dynamic adjustment of the stimulation. Target location and assessment of stimulation effects.
  • the present invention provides an apparatus for ultrasonically stimulating nerve tissue, comprising: a control and ultrasound imaging unit, a control and data communication unit, a pulse excitation unit, an echo receiving unit, and an ultrasound transducer array;
  • the control and data communication unit is configured to receive the control command issued by the control and the ultrasound imaging unit, generate a pulse parameter and a beam synthesis parameter according to the control command, and input the pulse parameter to the pulse excitation unit, The beam synthesis parameter is input to the echo receiving unit; meanwhile, the ultrasonic echo RF data output by the echo receiving unit is received and transmitted to the control and ultrasound imaging unit;
  • the pulse excitation unit is configured to generate a pulse sequence and a voltage control signal according to the pulse parameter, and the pulse sequence is converted into a high voltage pulse sequence having different timings and different voltage amplitudes under the action of the voltage control signal; And inputting the high voltage pulse sequence to the ultrasound transducer array;
  • the echo receiving unit is configured to synthesize ultrasonic echo RF data by using ultrasonic echo according to the beam synthesis parameter;
  • the control and ultrasound imaging unit is configured to issue a control instruction according to a user operation instruction; and receive the ultrasound echo RF data output by the control and data communication unit, and scan the target nerve tissue according to the ultrasound echo RF data
  • the region performs ultrasound imaging; wherein the user operation instruction includes an operation instruction for setting an ultrasound imaging parameter by a user and a nerve stimulation operation instruction generated according to the ultrasound imaging result;
  • the ultrasonic transducer array is configured to generate a pulsed ultrasonic wave according to the high voltage pulse sequence; wherein when the system is in an ultrasonic imaging state, the high voltage pulse sequence is used to generate ultrasonic waves to scan the target nerve tissue, and receive the The ultrasonic echo reflected or scattered by the target nerve tissue, and the ultrasonic echo is input to the echo receiving unit; when the system is in a nerve stimulation state, the high-voltage pulse sequence is used to generate ultrasonic waves to stimulate the target nerve tissue.
  • the present invention has the following advantages:
  • the cost is lower.
  • the prior art solution determines the stimulation position based on magnetic resonance imaging and evaluates the stimulation effect, which is obviously very costly; in the present invention, the stimulation uses the same hardware system as the imaging, so the cost can be greatly compressed.
  • the location of ultrasound stimulation is more flexible. Because the size of the ultrasound transducer array is small (the longest length of the contact surface is less than 10 cm), it can be used for stimulation of human brain, body surface and animal nervous system.
  • FIG. 1 is a block diagram of a device for ultrasonically stimulating nerve tissue according to the present invention
  • Figure 2 is a block diagram of the apparatus of the embodiment
  • FIG. 3 is a block diagram showing the composition of the control and ultrasound imaging unit of the present embodiment
  • FIG. 4 is a block diagram of a control and data communication unit of the embodiment.
  • Figure 5 is a block diagram showing the composition of the pulse excitation unit of the embodiment
  • FIG. 6 is a schematic diagram of a nerve stimulation pulse signal of the embodiment
  • FIG. 7 is a schematic diagram of an imaging pulse and a nerve stimulation pulse signal of the embodiment.
  • FIG. 8 is a block diagram showing the composition of an echo receiving unit of the embodiment.
  • FIG. 9 is a schematic structural view of an ultrasonic transducer array of the embodiment.
  • the technical solution comprises five major units, namely a control and imaging unit, a system control and data communication unit, a pulse excitation unit, an echo receiving unit and an ultrasonic transducer array unit, and the system is in an ultrasound brightness mode.
  • a control and imaging unit namely a control and imaging unit, a system control and data communication unit, a pulse excitation unit, an echo receiving unit and an ultrasonic transducer array unit
  • the system is in an ultrasound brightness mode.
  • B-Mode real-time imaging
  • precise stimulation and regulation of more than one target position of nerve tissue can be achieved.
  • the technical solution proposes a non-invasive and high spatial resolution neurostimulation regulation method, that is, a method of generating focused ultrasound by a linear array ultrasonic transducer to realize nerve stimulation.
  • the technical scheme adopts a method of sharing an ultrasonic probe with ultrasonic stimulation and ultrasonic imaging to realize real-time visualization of the ultrasonic nerve stimulation process, which is helpful for dynamically adjusting the position of the stimulation target and evaluating the stimulation effect.
  • the technical solution combines real-time ultrasound imaging information to realize real-time stimulation or regulation of nerve tissue by ultrasound, which not only greatly reduces the cost and time of nerve stimulation regulation, but also can flexibly stimulate the central nervous system and peripheral nerve.
  • the present invention proposes a device for ultrasonically stimulating nerve tissue, as shown in FIG.
  • the device includes:
  • Control and ultrasound imaging unit 101 control and data communication unit 102, pulse excitation unit 103, echo receiving unit 104, and ultrasound transducer array 105;
  • the control and data communication unit 102 is configured to receive the control instruction issued by the control and ultrasound imaging unit 101, generate a pulse parameter and a beam synthesis parameter according to the control instruction, and input the pulse parameter to the pulse excitation unit 103, The beam synthesis parameter is input to the echo receiving unit 104; at the same time, the ultrasonic echo radio frequency data output by the echo receiving unit 104 is received and transmitted to the control and ultrasound imaging unit 101;
  • the pulse excitation unit 103 is configured to generate a pulse sequence and a voltage control signal according to the pulse parameter, and the pulse sequence is converted into a high voltage pulse sequence having different timings and different voltage amplitudes by the voltage control signal And inputting the high voltage pulse sequence to the ultrasound transducer array 105;
  • the control and ultrasound imaging unit 101 is configured to issue a control command according to a user operation instruction; and receive the ultrasound echo radio frequency data output by the control and data communication unit 102, and the target nerve according to the ultrasound echo radio frequency data Organizing a scan area for ultrasound imaging; wherein the user operation instruction includes an operation instruction for setting an ultrasound imaging parameter by a user and a nerve stimulation operation instruction generated according to the ultrasound imaging result;
  • the echo receiving unit 104 is configured to synthesize ultrasonic echo radio frequency data by using the ultrasonic echo signal according to the beam synthesis parameter;
  • the ultrasound transducer array 105 is configured to adjust whether the ultrasound pulse state is in a neural stimulation state or an ultrasound imaging state according to the high voltage pulse sequence; wherein when the system is in an ultrasound imaging state, the high voltage pulse sequence is used to generate ultrasound to the target nerve The tissue is scanned and receives ultrasonic echoes reflected or scattered by the target neural tissue, and the ultrasonic echo is input to the echo receiving unit 104; when the system is in a nerve stimulation state, the high voltage pulse is utilized The sequence generates ultrasound to stimulate the target neural tissue.
  • FIG. 2 it is a block diagram of the apparatus of the present embodiment. It consists of two parts: the instrument end and the computer end. The two parts are connected by optical fiber communication or USB3.0 communication mode to realize the bidirectional transmission of ultrasonic data and control commands.
  • Control function refers to using the mouse to operate the software interface of the computer, adjusting the ultrasound imaging depth, focus position, ultrasonic emission power, ultrasonic stimulation intensity, ultrasonic stimulation pulse characteristics, ultrasonic stimulation position and other parameters as well as freezing control, stimulation control and other control commands;
  • ultrasound imaging Function refers to ultrasound imaging of the ultrasound probe scanning area.
  • FIG. 3 a block diagram of the control and ultrasound imaging unit of the present embodiment is shown.
  • the unit is based on a general-purpose computer with a USB 3.0 communication interface or a fiber-optic communication module, and can be programmed by a high-level language (for example, VC++, C#, Matlab, etc.).
  • a high-level language for example, VC++, C#, Matlab, etc.
  • the human-computer interaction interface module provides a control platform for the entire device, and obtains control parameters of ultrasound imaging and nerve tissue stimulation through mouse operation and/or keyboard input; adjustable ultrasound imaging depth, focus position, ultrasonic emission power, ultrasonic stimulation intensity, ultrasonic stimulation Pulse characteristics, ultrasonic stimulation position and other parameters; the above parameters together with the freeze control, stimulation excitation and other control commands are uniformly encoded into a 16-bit command word by the encoding module, and downlink to the instrument end through the communication interface.
  • the ultrasonic echo RF data from the instrument end is stored in a designated area of the memory after passing through the first data buffer; unless the system is in a frozen state, the CPU periodically reads the data in the buffer and executes it through the envelope detection module.
  • Envelope operation (which can be implemented by quadrature demodulation and low-pass filtering or Hilbert transform),
  • the operation result is sequentially stored in the area defined as the display buffer in the memory according to the scanning position; the image data of the area is subjected to logarithmic compression, denoising (inter-frame average filtering, median filtering), edge enhancement, etc. through the image enhancement module.
  • the enhancement process combined with the information annotation, is displayed in the software interface.
  • the instrument end includes: control and data communication unit, pulse excitation unit, echo receiving unit and ultrasonic transducer array unit, which realizes B-ultrasound image acquisition and high-power ultrasonic pulse generation.
  • FIG. 4 a block diagram of the control and data communication unit of the present embodiment is shown.
  • the 16-bit command word from the communication module is processed by the decoding module to generate a transmit pulse parameter and a beam synthesis parameter; the former is provided to the pulse excitation unit to generate a pulse sequence of a specific parameter, and the latter is provided to the echo receiving unit to generate a beam Synthetic solution.
  • the data packet processing module After the ultrasonic radio frequency data from the echo receiving unit enters the second data buffer, the data packet processing module periodically reads out from the second data buffer and packs it through the unified standard, and then sends it to the communication module, and transmits it to the communication module through the communication module.
  • the pulse excitation unit includes a pulse generator, a programmable switching power supply, and a high voltage light-emitting array.
  • the pulse generator generates four voltage control signals and 128 pulse sequences based on the pulse parameters from the control and data communication unit outputs. Specifically, the pulse generator transmits four voltage control signals to the programmable switching power supply, and the pulse generator transmits 128 pulse sequences to the 128-channel high voltage switch array, allowing independent generation of 128 channels of high voltage pulse output.
  • the pulse generator generates N sets of pulse sequences of the same pulse shape but different phase and amplitude; wherein, for the pulse sequence, the phase difference and the amplitude difference are determined by the ultrasonic excitation position (ie, the focus position); the pulse generator generates 4
  • the circuit voltage control signal to the programmable switching power supply, the programmable switching power supply generates four different excitation voltages, and inputs the excitation voltage to the high voltage switch array, and acts on the 128 pulse sequence under the action of the high voltage switch array, thereby generating different voltage amplitudes.
  • the pulse shape is characterized by five parameters: pulse amplitude, pulse fundamental period, number of fundamental waves per pulse, pulse period and number of pulses, as shown in Fig. 6.
  • the high-voltage pulse sequence is generated by a high-voltage switch array, which includes the sequence used for nerve stimulation and the sequence used for ultrasound imaging.
  • the difference between the two sequences is only the difference of the above five parameters, specifically: pulse amplitude when nerve stimulation
  • the value is between 40V and 80V
  • the pulse fundamental period is between 0.15uS and 0.3uS
  • the fundamental number of each pulse is between 500 and 2500
  • the pulse period is between 0.5mS and 2mS
  • the number of pulses is between 100 and 1000.
  • the pulse amplitude is less than 30V
  • the pulse fundamental period is between 0.15uS and 0.3uS
  • the fundamental wave number of each pulse is between 1-5
  • the pulse period is between 0.13mS and 0.26mS
  • the number of pulses is between 200- 500.
  • the nerve-stimulated ultrasound pulse sequence is different from the pulse sequence required for conventional pulse backscatter echo ultrasound imaging, as shown in FIG.
  • an effective nerve stimulation pulse usually contains multiple pulses (Pn ), a specific pulse period (Pt), a specific number of fundamental waves (CpP) in each pulse, a specific fundamental period (Ct), and a specific pulse amplitude (Pa).
  • Pn pulses
  • Pt specific pulse period
  • CpP specific number of fundamental waves
  • Ct specific fundamental period
  • Pa specific pulse amplitude
  • the above pulse parameters can be generated by an FPGA-based pulse generator under a certain range of computer control.
  • the pulse having a smaller amplitude and a narrower pulse width is an imaging pulse sequence
  • the pulse having a larger amplitude, a wider pulse width, and a larger pulse period is a nerve stimulation pulse
  • the generation of the nerve stimulation pulse is performed by the operator.
  • Control can be generated in the imaging gap, and its pulse shape can be flexibly changed.
  • a block diagram of the echo receiving unit of the present embodiment includes a switch array, an ultrasonic analog front-end module, and a beamforming module.
  • the 128-channel ultrasonic echo signal from the ultrasonic transducer array after the 128-channel switch array, removes the high-voltage pulse interference signal and enters the ultrasonic analog front-end module; the ultrasonic analog front-end module realizes preamplification, filtering, and voltage-controlled amplification.
  • 128 digital RF signals sent by the ultrasonic analog front-end module are sent to the beam synthesis unit implemented by the FPGA; the beam synthesis unit is selected in the selected aperture according to the beam synthesis parameters from the control and data communication unit The radio frequency data of the beam is phase-compensated and superimposed, and finally the ultrasonic echo RF data is formed and input to the system control and data communication unit.
  • FIG. 9 is a schematic structural view of the ultrasonic transducer array of the embodiment.
  • the ultrasound transducer array has 128 array elements. For ease of description, only four array elements are drawn in the figure, and the other 124 array elements have similar structures.
  • the above-mentioned ultrasonic transducer array includes an acoustic lens layer, a matching layer, an array of array elements, a sound absorbing backing material, and a heat dissipating metal block five-layer structure from top to bottom. In addition to the heat-dissipating metal block, the other four-layer structure is similar to the classic ultrasonic probe structure. In order to meet the application requirements of using ultrasound to stimulate nerves, ultrasound should produce strong sound pressure output.
  • the ultrasonic transducer array in this technical solution adopts the following two improvements: one is to increase the length and width of the array element;
  • the length of the array element is 10-15mm, the width of the array element is 1.5 times the wavelength of the acoustic wave to increase the ultrasonic radiation area of the single array element, and the second is to add a heat dissipation metal block (such as aluminum) about 10-20mm thick behind the sound absorbing backing material.
  • a heat dissipation metal block such as aluminum
  • the thickness of the sound absorbing backing material is controlled at an odd multiple of 1/4 wavelength and the thickness is less than 2 mm, and the heat conductive material (such as tungsten powder) is added. The proportion of use.
  • the human-computer interaction interface module sends an ultrasound imaging instruction according to the system default or preset parameters, and the instruction is encoded by the coding module and sent to the decoding module through the communication module to generate pulse parameters and beam synthesis parameters, and the pulse parameters are transmitted.
  • the number is combined with the synchronous clock and sent to the pulse generator to generate 128 pulse sequences and voltage control signals.
  • the 128 pulse sequences have the same amplitude and are standard TTL levels.
  • the voltage control signal controls the programmable switching power supply to output a lower voltage to the high voltage switch array, the 128 pulse sequence driving the high voltage switch array to output 128 high voltage pulse sequences, the high voltage pulse sequence exciting the ultrasonic transducer array to generate a dynamic scan
  • the ultrasonic beam, the weak ultrasonic echo reflected or scattered during the penetration of the ultrasonic beam into the nerve tissue, is received by the ultrasonic transducer array and converted into an ultrasonic echo signal, and the ultrasonic echo signal is formed by the echo receiving unit
  • the user can adjust the position of the ultrasound transducer array to obtain an ultrasound image of the region of interest.
  • the user can select one or more stimulation targets (targets) of interest in the ultrasound imaging region according to the above ultrasound imaging result information.
  • the setting parameter of each stimulation target is outputted by the user according to the position of the selected stimulation target in the ultrasonic image, and the voltage control signal controls the programmable switching power supply to output a higher voltage to the high voltage switch array.
  • the 128-way pulse sequence drives the high-voltage switch array to output 128 high-voltage pulse sequences that excite the ultrasound transducer array to perform ultrasonic nerve stimulation on the target.
  • a single nerve stimulation lasts for a short time ( ⁇ 0.5S), while in multiple nerve stimulations, the time interval between each nerve stimulation is relatively long (>2S), due to the various nerve stimulations.
  • the long time interval >1.5S
  • the ultrasound imaging can still be carried out, and because the ultrasound imaging time per frame is only between 30mS-150mS, more than 10 frames of ultrasound imaging can still be achieved in the nerve stimulation gap. .
  • the user can observe the gradual process (such as morphological change or displacement change) of the nerve tissue at the target point after ultrasonic stimulation, and dynamically change the nerve stimulation parameters to achieve effective nerve stimulation on the stimulation target. .
  • the technical solution has the following characteristics:
  • the technical solution adopts an ultrasonic transducer array and a pulse excitation unit, and has the functions of generating an imaging pulse with small intensity and narrow pulse width, and an ultrasonic stimulation pulse with large intensity and wide pulse width variation; the specific performance is ultrasonic exchange Energy device
  • the pulse excitation unit adds a programmable switching power supply unit to the conventional excitation unit, and combines the matched pulse sequence to generate a high voltage pulse integrated with the imaging pulse and the excitation pulse through the high voltage switch array;
  • the ultrasonic transducer array used in the technical solution and the corresponding pulse excitation unit, the control and data communication unit, the control and the ultrasonic imaging unit have 128 independent channels, and the channels can be combined or operated independently in any manner.
  • single-point nerve stimulation only needs to be realized by some of the channel combinations. As long as the spatial interval of the stimulation is not too close, and the mutual interference of the adjacent stimulation ultrasonic beams is avoided, the nerve stimulation of the single or multi-point spatial position can be realized;
  • the working frequency adopted by the technical solution is high (3-5MHz), and the multi-array electronic focusing mode is used to realize the focusing of the ultrasonic stimulation beam, and finally the lateral diameter of the stimulation target is relatively small (0.9-1.5mm).
  • the spatial resolution of this size is clearly higher than the centimeter-level spatial resolution of the currently popular transcranial magnetic stimulation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种超声刺激神经组织的装置,包括:控制与数据通信单元(102)接收控制指令来产生脉冲参数和波束合成参数;接收回波接收单元(104)输出的超声回波射频数据,并传输至控制与超声成像单元(101);脉冲激励单元(103)根据脉冲参数产生高压脉冲序列;回波接收单元(104)根据波束合成参数,利用超声回波合成超声回波射频数据;控制与超声成像单元(101)根据用户操作指令发出控制指令;根据超声回波射频数据对目标神经组织扫描区域进行超声成像;超声换能器阵列(105)根据高压脉冲序列调控是处于神经刺激状态还是处于超声成像状态。该装置采用超声刺激与超声成像共用超声换能器阵列的方法,实现超声神经刺激过程的实时可视化,有助于动态调整刺激靶点位置和评估刺激效果。

Description

一种超声刺激神经组织的装置
本申请要求2015年05月15日递交的申请号为201510250365.4、发明名称为“一种超声刺激神经组织的装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械技术领域,特别涉及一种超声刺激神经组织的装置。
背景技术
神经刺激和调控是指采用电、光、声、冷热或者机械等物理性刺激以及化学性刺激,作用于活体神经系统(如生物体、器官、组织、细胞等)并引起反应的过程。按刺激调控的效果可分为使功能显示或增强的兴奋性刺激和使功能消失或减弱的抑制性刺激。通过刺激,调控神经活动,有助于治疗神经系统疾病及精神疾病,同时也是研究人脑感受、动作和认知功能的基本手段。
电刺激是最广泛使用的刺激手段。早在1870年,已经出现关于电刺激狗脑皮层,引发动作响应的文献记录。1954年,文献表明电刺激人脑,能有效干预癫痫疾病。近年来流行的深脑刺激技术,通过在脑颅深部长期植入电极,实现对大脑局部区域的定时刺激,该技术本质上也属于电刺激;实验表明深脑刺激能治疗帕金森、肌张力障碍、强迫症等精神疾病。深脑刺激具有较高的空间分辨力,结合功能磁共振成像、弥散张力成像技术,可实现刺激区域神经环路的可视化,但由于刺激前需要比较复杂的前期手术过程,刺激部位不能灵活改变,只能局限于初始设定区域,并且在后期使用过程中需要周期性地更换电池。此外,结合功能磁共振成像的深脑刺激技术的安全问题仍受到质疑。类似深脑刺激的迷你神经刺激技术有助于治疗癫痫病和抑郁症。经颅直流电刺激属无创式的电刺激,其通过在颅脑表面贴上两片电极片并施加恒定电流,使大脑表面神经元膜电位改变,从而诱发脑皮层兴奋。因该技术空间分辨力不高而难以实现脑区定位。经颅磁刺激技术,同样属于无创式颅脑刺激技术。该技术通过体外线圈施加瞬时高压脉冲,引起与线圈平面垂直的特定空间区域内组织产生感生电流,从而产生诱发电位。该技术可用于评价神经电生理传导通路,以及抑郁症、癫痫、中风、精神分裂症、自闭症等疾病的神经康复治疗。但由于经颅磁刺激的空间分辨力仅达到厘米级,且无法实现深脑刺 激。化学刺激常通过微量药物泵技术实施精确位置直接给药,可实现局部神经调控,有助于治疗大脑起源的痉挛疾病。光感基因神经调控技术,通过转染某种蛋白基因至特定神经元,允许特定光对特定神经元的精准刺激,从而实现神经环路的调控研究。
超声刺激属于既古老又新兴的无创神经刺激手段。早在1929年,已经出现超声对蛙、龟的神经(心)肌肉的有效调控的文献报道。随后在1958年,有文献记录超声穿透开颅猫的颅骨,并能可逆地抑制视网膜的光激发电位。高强度聚焦超声(HIFU)常用作中枢神经系统的干预手段。2008年,Tyler等证实超声刺激海马脑片,可激发动作电位、压控钠离子、钙离子瞬态及突触传递。2010年,Tyler团队首次正面经颅超声刺激小鼠颅脑运动皮层,可诱发动作电位,引起肢体及尾巴的动作响应。从此,采用超声作为神经刺激手段引起人们的广泛关注。
有创的神经刺激手段,刺激靶点的定位与刺激电极的安装位置有关,安装位置的选择通常根据前期的CT、MRI成像信息以及安装过程的现场信息确定;电极一旦被安装好,刺激靶点则不可改变。无创的神经刺激手段,如经颅磁刺激,因其空间分辨力很低,因此没有精确定位的必要。而采用相控阵高强度聚焦超声的神经刺激手段,则可通过功能磁共振成像技术引导超声刺激靶点的定位并实现刺激效果评估的功能。
综上所述,现有神经刺激技术要么有创,要么空间分辨力低、靶向特性差。
发明内容
为解决现有技术的问题,本发明提出一种超声刺激神经组织的装置,采用超声刺激与超声成像共用超声换能器阵列的方法,实现超声神经刺激过程的实时可视化,有助于动态调整刺激靶点位置和评估刺激效果。
为实现上述目的,本发明提供了一种超声刺激神经组织的装置,包括:控制与超声成像单元、控制与数据通信单元、脉冲激励单元、回波接收单元和超声换能器阵列;其中,
所述控制与数据通信单元,用于接收所述控制与超声成像单元发出的控制指令,根据控制指令产生脉冲参数和波束合成参数,将所述脉冲参数输入至所述脉冲激励单元,将所述波束合成参数输入至所述回波接收单元;同时,接收所述回波接收单元输出的超声回波射频数据,并传输至所述控制与超声成像单元;
所述脉冲激励单元,用于根据所述脉冲参数产生脉冲序列和电压控制信号,在所述电压控制信号的作用下,所述脉冲序列转换为具有不同时序、不同电压幅值的高压脉冲序列;并将所述高压脉冲序列输入至所述超声换能器阵列;
所述回波接收单元,用于根据所述波束合成参数,利用超声回波合成超声回波射频数据;
所述控制与超声成像单元,用于根据用户操作指令发出控制指令;并接收所述控制与数据通信单元输出的超声回波射频数据,根据所述超声回波射频数据对所述目标神经组织扫描区域进行超声成像;其中,所述用户操作指令包括用户设置超声成像参数的操作指令以及根据超声成像结果产生的神经刺激操作指令;
所述超声换能器阵列,用于根据所述高压脉冲序列产生脉冲超声波;其中,当系统处于超声成像状态时,利用所述高压脉冲序列产生超声波对目标神经组织进行扫描,并接收由所述目标神经组织反射或散射的超声回波,并将所述超声回波输入至所述回波接收单元;当系统处于神经刺激状态时,利用所述高压脉冲序列产生超声波对目标神经组织进行刺激。
与现有技术方案相比,本发明有如下几点优势:
1)神经刺激调控位置的实时可视化,本技术方案中刺激调控的位置基于实时超声成像结果来选择,位置选取的精度更高,灵活性更大。
2)成本更低,现有技术方案基于磁共振成像确定刺激位置和评估刺激效果,显然成本非常高;而本发明中刺激与成像采用相同的硬件系统,因此成本能被极大压缩。
3)超声刺激调控的部位更灵活,由于超声换能器阵列尺寸很小(接触面最长的长度小于10厘米),因此可用于人体颅脑、体表神经、动物神经系统的刺激。
4)可实现多于1点位置的同时刺激,满足更复杂神经环路研究的需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提出的一种超声刺激神经组织的装置框图;
图2为本实施例的装置框图;
图3为本实施例的控制与超声成像单元组成框图;
图4为本实施例的控制与数据通信单元组成框图;
图5为本实施例的脉冲激励单元组成框图;
图6为本实施例的神经刺激脉冲信号示意图;
图7为本实施例的成像脉冲与神经刺激脉冲信号示意图;
图8为本实施例的回波接收单元组成框图;
图9为本实施例的超声换能器阵列结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本技术方案的工作原理:本技术方案包含五大单元,分别是控制与成像单元、系统控制与数据通信单元、脉冲激励单元、回波接收单元和超声换能器阵列单元,该系统在超声亮度模式(B-Mode)实时成像的引导下,可实现对神经组织超过1个靶点位置的精准刺激与调控。进一步地,本技术方案提出无创的且具有较高空间分辨力的神经刺激调控方法,即以线阵超声换能器产生聚焦超声,实现神经刺激的方法。本技术方案采用超声刺激与超声成像共用超声探头的方法,实现超声神经刺激过程的实时可视化,有助于动态调整刺激靶点位置和评估刺激效果。另外,本技术方案结合实时的超声成像信息实现超声对神经组织的实时刺激或者调控,不仅极大降低神经刺激调控的成本与时间,而且能灵活实现对中枢神经以及外周神经的刺激。
基于上述工作原理,本发明提出一种超声刺激神经组织的装置,如图1所示。该装置包括:
控制与超声成像单元101、控制与数据通信单元102、脉冲激励单元103、回波接收单元104和超声换能器阵列105;其中,
所述控制与数据通信单元102,用于接收所述控制与超声成像单元101发出的控制指令,根据控制指令产生脉冲参数和波束合成参数,将所述脉冲参数输入至所述脉冲激励单元103,将所述波束合成参数输入至所述回波接收单元104;同时,接收所述回波接收单元104输出的超声回波射频数据,并传输至所述控制与超声成像单元101;
所述脉冲激励单元103,用于根据所述脉冲参数产生脉冲序列和电压控制信号,在所述电压控制信号的作用下,所述脉冲序列转换为具有不同时序、不同电压幅值的高压脉冲序列;并将所述高压脉冲序列输入至所述超声换能器阵列105;
所述控制与超声成像单元101,用于根据用户操作指令发出控制指令;并接收所述控制与数据通信单元102输出的超声回波射频数据,根据所述超声回波射频数据对所述目标神经组织扫描区域进行超声成像;其中,所述用户操作指令包括用户设置超声成像参数的操作指令以及根据超声成像结果产生的神经刺激操作指令;
所述回波接收单元104,用于根据所述波束合成参数,利用所述超声回波信号合成超声回波射频数据;
所述超声换能器阵列105,用于根据所述高压脉冲序列调控是处于神经刺激状态还是处于超声成像状态;其中,当系统处于超声成像状态时,利用所述高压脉冲序列产生超声波对目标神经组织进行扫描,并接收由所述目标神经组织反射或散射的超声回波,并将所述超声回波输入至所述回波接收单元104;当系统处于神经刺激状态时,利用所述高压脉冲序列产生超声波对目标神经组织进行刺激。
下面结合实施例和附图。对本技术方案做进一步的详细说明。
如图2所示,为本实施例的装置框图。由仪器端和电脑端两部分组成,两部分通过光纤通信或者USB3.0通信方式连接,实现超声数据和控制指令的双向传输。
控制与超声成像单元基于电脑实现系统功能。控制功能是指用鼠标操作电脑端的软件界面,调节超声成像深度、焦点位置、超声发射功率、超声刺激强度、超声刺激脉冲特征、超声刺激位置等参数以及冻结控制、刺激控制等控制指令;超声成像功能是指对超声探头扫查区域进行超声成像。
如图3所示,为本实施例的控制与超声成像单元组成框图。该单元基于具有USB3.0通信接口或者光纤通信模块的通用电脑,可由高级语言(例如VC++,C#,Matlab等)编程实现。人机交互界面模块提供整个装置的控制平台,通过鼠标操作和/或键盘输入获得超声成像和神经组织刺激的控制参数;可调节超声成像深度、焦点位置、超声发射功率、超声刺激强度、超声刺激脉冲特征、超声刺激位置等参数;上述参数连同冻结控制、刺激激励等控制指令经编码模块统一编码成16位命令字,并通过通信接口下行至仪器端。来自仪器端的超声回波射频数据,经过第一数据缓冲器后,保存于内存的指定区域;除非系统处于冻结状态,否则CPU将周期性读取上述缓冲器内的数据并通过包络检测模块执行取包络运算(可采用正交解调并低通滤波或者希尔伯特变换的方法实现), 运算结果按扫描位置的不同依次保存在内存中定义为显示缓冲区的区域;该区域图像数据通过图像增强模块经对数压缩、去噪(帧间平均滤波、中值滤波)、边缘增强等图像增强处理后,结合信息标注,被显示在软件界面。
仪器端包括:控制与数据通信单元、脉冲激励单元、回波接收单元以及超声换能器阵列单元,实现B超图像采集以及高功率超声脉冲产生的功能。
如图4所示,为本实施例的控制与数据通信单元组成框图。来自通信模块的16位命令字经译码模块处理,产生发射脉冲参数和波束合成参数;前者提供给脉冲激励单元,以产生特定参数的脉冲序列,后者提供给回波接收单元,以产生波束合成的方案。来自回波接收单元的超声射频数据进入第二数据缓冲器后,数据包处理模块周期性地从第二数据缓冲器中读出并经统一标准打包,然后送至通信模块,经过通信模块传输至电脑端。
如图5所示,为本实施例的脉冲激励单元组成框图。脉冲激励单元包括脉冲发生器、程控开关电源和高压开光阵列3部分。脉冲发生器根据来自控制与数据通信单元输出的脉冲参数产生4路电压控制信号和128路脉冲序列。具体地,脉冲发生器将4路电压控制信号传输至程控开关电源,脉冲发生器将128路脉冲序列传输至128通道的高压开关阵列,允许独立产生128通道的高压脉冲输出。脉冲发生器产生N组脉冲形态相同但相位和幅值均不同的脉冲序列;其中,对于脉冲序列来说,相位差异和幅值差异由超声激励位置(即聚焦位置)确定;脉冲发生器产生4路电压控制信号至程控开关电源,程控开关电源产生四组不同的激励电压,并将激励电压输入至高压开关阵列,在高压开关阵列作用下,对128路脉冲序列作用,从而产生具有不同电压幅值的脉冲序列。N为有效激励通道数,即有效孔径,通常取N=32。
脉冲形态由脉冲幅值、脉冲基波周期、每个脉冲的基波数、脉冲周期和脉冲个数五个参数表征,如图6所示。高压脉冲序列由高压开关阵列产生,其包括神经刺激所使用的序列和超声成像所使用的序列,这两种序列的差异仅表现为上述5个参数的不同,具体为:神经刺激时,脉冲幅值介于40V-80V,脉冲基波周期介于0.15uS-0.3uS,每个脉冲的基波数介于500-2500,脉冲周期介于0.5mS-2mS,脉冲个数介于100-1000;超声成像时,脉冲幅值小于30V,脉冲基波周期介于0.15uS-0.3uS,每个脉冲的基波数介于1-5,脉冲周期介于0.13mS-0.26mS,脉冲个数介于200-500。神经刺激的超声脉冲序列与常规脉冲背向散射回波超声成像所需的脉冲序列不同,如图7所示。表现为:超声成像时仅需产生一个具有1-5个周期的窄脉冲即可实现一次波束扫描,以特定频率(指脉冲 重复频率)周期性地产生相同形态脉冲,即可实现整幅图像的扫描过程;而神经刺激时需要的脉冲序列的形态更为复杂,一次有效的神经刺激脉冲通常包含多个脉冲个数(Pn)、特定的脉冲周期(Pt)、特定的每个脉冲中的基波数(CpP)、特定的基波周期(Ct)和特定的脉冲幅值(Pa)。上述脉冲参数均可在一定范围内在电脑端控制下由基于FPGA的脉冲发生器产生。
在图7中,幅值较小脉宽较窄的脉冲为成像脉冲序列,而幅值较大、脉宽较宽、脉冲周期较大的脉冲为神经刺激脉冲,神经刺激脉冲的产生由操作者控制,可在成像间隙产生,其脉冲形态可灵活改变。
如图8所示,为本实施例的回波接收单元组成框图。包括开关阵列、超声模拟前端模块、波束合成模块3部分。来自超声换能器阵列的128路超声回波信号,经过128通道的开关阵列后,去除了高压脉冲的干扰信号,进入超声模拟前端模块;超声模拟前端模块实现前置放大、滤波、压控放大和模数转换的功能;由超声模拟前端模块送出的128路数字射频信号被送入由FPGA实现的波束合成单元;波束合成单元根据来自控制与数据通信单元的波束合成参数,对被选中孔径内波束的射频数据进行相位补偿叠加,最终形成超声回波射频数据,并输入至所述系统控制与数据通信单元。
如图9所示,为本实施例的超声换能器阵列结构示意图。超声换能器阵列具有128个阵元,为便于描述,图中仅画出4个阵元,其他124个阵元具有类似结构。上述超声换能器阵列由上至下包括声学透镜层、匹配层、阵元阵列、吸声背衬材料和散热金属块五层结构。除了散热金属块外,其他四层结构与经典的超声探头结构相似。为满足用超声刺激神经的应用需求,超声应能产生较强的声压输出,本技术方案中的超声换能器阵列采取了如下两点改进:一是增加阵元的长度和宽度;其中,阵元的长度10~15mm,阵元的宽度达1.5倍声波波长,以增加单一阵元的超声辐射面积;二是在吸声背衬材料后方增加约10-20mm厚的散热金属块(如铝块),以助于阵元散热;此外,为保证散热金属块的散热效果,吸声背衬材料厚度控制在1/4波长的奇数倍且厚度小于2mm,并且增加导热材料(如钨粉)的使用比例。
下面介绍使用本申请提出的装置进行超声刺激神经组织的工作过程:
首先,开机;
然后,开启实时超声成像;
人机交互界面模块按照系统默认或者预设参数发出超声成像指令,该指令经编码模块编码后通过通信模块被送至译码模块,产生脉冲参数以及波束合成参数,发射脉冲参 数结合同步时钟送至脉冲发生器,产生128路脉冲序列及电压控制信号,该128路脉冲序列的幅值相同,都是标准的TTL电平。电压控制信号控制程控开关电源输出较低的电压至高压开关阵列,所述128路脉冲序列驱动高压开关阵列输出128路高压脉冲序列,所述高压脉冲序列激励超声换能器阵列,产生动态扫描的超声波束,超声波束穿透神经组织过程中反射或者散射的微弱超声回波,被所述超声换能器阵列接收并转换为超声回波信号,所述超声回波信号经回波接收单元后形成超声回波射频数据,并输入至系统控制与数据通信单元,最好到达控制与超声成像单元,经处理后获取超声成像结果图,实现超声成像。
根据实时超声成像结果,用户可调整超声换能器阵列的位置,获得感兴趣部位的超声图像。
在上述成像的基础上,确定超声换能器位置后,用户根据上述超声成像结果信息,可在超声成像区域内,用鼠标选择感兴趣的一个或多个刺激目标(靶点)。
用户对每个刺激靶点的设置参数,根据上述所选的刺激靶点在超声图像中的位置,输出神经刺激指令,电压控制信号控制程控开关电源输出较高的电压至高压开关阵列,所述128路脉冲序列驱动高压开关阵列输出128路高压脉冲序列,所述高压脉冲序列激励超声换能器阵列,对靶点实施超声神经刺激。
通常,单次神经刺激所持续的时间很短(<0.5S),而在多次神经刺激时,各次神经刺激间的时间间隔相对较长(>2S),由于在各次神经刺激之间的时间间隙较长(>1.5S),那么超声成像仍可持续进行,又因为每帧超声成像的时间仅介于30mS-150mS,因此,在神经刺激的间隙仍可实现大于10帧的超声成像。
基于上述神经刺激过程中的超声成像,用户可实时观察靶点处神经组织经超声刺激后的渐变过程(如形态改变或位移变化),并动态更改神经刺激参数,实现对刺激目标的有效神经刺激。
针对本实施例的装置,已经做了动物实验验证。结果表明,该系统可以对小鼠的颅脑皮层进行刺激,并且产生诱发电位,引起肢体和尾巴的动作响应。采用可视化的多点高分辨力超声刺激,可实现小动物的中枢神经系统或者外周神经系统的神经环路研究或者神经疾病治疗。
根据上述描述,本技术方案具有如下特点:
1)、本技术方案采用超声换能器阵列和脉冲激励单元,均具有产生强度小、脉宽窄的成像脉冲和强度大、脉宽变化范围宽的超声刺激脉冲的功能;具体表现为超声换能器 除具有常规线阵超声成像探头的特征外,还具有阵元尺寸更宽、背衬材料更薄导热更好、配备散热金属块的特征,这些特征能保证超声换能器阵列可产生超声刺激脉冲;脉冲激励单元与常规激励单元相比,增加了程控开关电源单元,结合与之匹配的脉冲序列,通过高压开关阵列,即可产生集成了成像脉冲和激励脉冲的高压脉冲;
2)、本技术方案采用的超声换能器阵列以及与之对应的脉冲激励单元、控制与数据通信单元、控制与超声成像单元均具有128个独立通道,这些通道可以按任何方式组合或者独立工作;通常单点神经刺激仅需其中部分通道组合实现,只要保证刺激的空间间隔不是太近,避免相邻刺激超声波束的相互干扰,即可实现单点或者多点空间位置的神经刺激;
3)、本技术方案所采用的工作频率较高(3-5MHz),且采用多阵元电子聚焦方式实现超声刺激波束的聚焦,最终可使刺激靶点的横向直径比较小(0.9-1.5mm),此尺寸的空间分辨力显然比当前流行的经颅磁刺激的厘米级空间分辨力更高。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种超声刺激神经组织的装置,其特征在于,包括:控制与超声成像单元、控制与数据通信单元、脉冲激励单元、回波接收单元和超声换能器阵列;其中,
    所述控制与数据通信单元,用于接收所述控制与超声成像单元发出的控制指令,根据控制指令产生脉冲参数和波束合成参数,将所述脉冲参数输入至所述脉冲激励单元,将所述波束合成参数输入至所述回波接收单元;同时,接收所述回波接收单元输出的超声回波射频数据,并传输至所述控制与超声成像单元;
    所述脉冲激励单元,用于根据所述脉冲参数产生脉冲序列和电压控制信号,在所述电压控制信号的作用下,所述脉冲序列转换为具有不同时序、不同电压幅值的高压脉冲序列;并将所述高压脉冲序列输入至所述超声换能器阵列;
    所述回波接收单元,用于根据所述波束合成参数,利用超声回波合成超声回波射频数据;
    所述控制与超声成像单元,用于根据用户操作指令发出控制指令;并接收所述控制与数据通信单元输出的超声回波射频数据,根据所述超声回波射频数据对所述目标神经组织扫描区域进行超声成像;其中,所述用户操作指令包括用户设置超声成像参数的操作指令以及根据超声成像结果产生的神经刺激操作指令;
    所述超声换能器阵列,用于根据所述高压脉冲序列产生脉冲超声波;其中,当系统处于超声成像状态时,利用所述高压脉冲序列产生超声波对目标神经组织进行扫描,并接收由所述目标神经组织反射或散射的超声回波,并将所述超声回波输入至所述回波接收单元;当系统处于神经刺激状态时,利用所述高压脉冲序列产生超声波对目标神经组织进行刺激。
  2. 如权利要求1所述的装置,其特征在于,所述控制指令包括:调节超声成像深度控制指令、调节焦点位置控制指令、调节超声发射功率控制指令、调节超声刺激强度控制指令、调节超声刺激脉冲特征控制指令、调节超声刺激位置控制指令、冻结控制指令、刺激控制指令。
  3. 如权利要求1或2所述的装置,其特征在于,所述控制与超声成像单元包括:人机交互界面模块、编码模块、第一数据缓存器、包络检测模块和图像增强模块;其中,
    所述人机交互界面模块,用于显示需扫描区域的超声图像,并提供所述装置的控制平台,通过鼠标操作和/或键盘输入获得超声成像和神经组织刺激的控制参数;
    所述编码模块,用于接收所述人机交互界面模块输出的控制参数,对所述控制参数编码后生成控制指令;
    所述第一数据缓存器,用于对所述控制与数据通信单元输出的超声回波射频数据保存至相应区域;
    所述包络检测模块,用于周期性从所述第一数据缓存器内读取数据信息并执行取包络运算,对运算结果按扫描位置的不同依次保存在显示缓冲区域内;
    所述图像增强模块,用于对显示缓冲区域内的数据进行图像增强处理后,输出扫描区域的超声图像。
  4. 如权利要求3所述的装置,其特征在于,所述控制与数据通信单元包括通信模块、数据包处理模块、译码模块和第二数据缓存器;其中,
    所述译码模块,用于对所述控制指令进行处理,生成脉冲参数和波束合成参数;并将所述脉冲参数输入至脉冲激励单元,将所述波束合成参数输入至所述回波接收单元;
    所述第二数据缓存器,用于对所述回波接收单元输出的超声射频数据进行缓存;
    所述数据包处理模块,用于周期性地从所述第二数据缓存器中读取超声射频数据,统一标准打包处理;
    所述通信模块,用于将实现所述控制与数据通信单元和所述控制与超声成像单元之间信息互相传输;其中,包括:将所述编码模块生成的控制指令输入至译码模块;将所述数据包处理模块输出的数据包输入至所述第一数据缓存器。
  5. 如权利要求4所述的装置,其特征在于,所述脉冲激励单元包括:脉冲发生器、程控开关电源和高压开关阵列;其中,
    所述脉冲发生器,用于根据所述脉冲参数产生电压控制信号和脉冲序列,并将所述电压控制信号输入至所述程控开关电源,将所述脉冲序列输入至所述高压开关阵列;其中,所述脉冲序列的特征为脉冲形态相同但相位和幅值均不同;
    所述程控开关电源,用于根据所述电压控制信号产生激励电压,并将所述激励电压输入至所述高压开关阵列;
    所述高压开关阵列,用于在所述激励电压的作用下,根据所述脉冲序列,产生具有不同相位、不同电压幅值的高压脉冲序列;并将所述具有不同相位、不同电压幅值的高压脉冲序列输入至超声换能器阵列。
  6. 如权利要求5所述的装置,其特征在于,所述回波接收单元包括:开关阵列、超声模拟前端模块和波束合成模块;其中,
    所述开关阵列,用于接收所述超声换能器阵列输出的超声回波信号,去除高压脉冲的干扰信号后,将处理后的信号输入至所述超声模拟前端模块;
    所述超声模拟前端模块,用于对所述开关阵列输出的信号经过前置放大、滤波、压控放大和模数转换后,输出数字射频信号;并将数字射频信号输入至所述波束合成模块;
    所述波束合成模块,用于根据所述控制与数据通信单元输出的波束合成参数,对被选中孔径内波束的射频数据进行相位补偿叠加,形成超声回波射频数据,并输入至所述系统控制与数据通信单元。
  7. 如权利要求1或2所述的装置,其特征在于,所述超声换能器阵列由上至下包括声学透镜层、匹配层、阵元阵列、吸声背衬材料和散热金属块;其中,所述阵元阵列包括128个阵元,且阵元的长度10mm~15mm,阵元的宽度达1.5倍声波波长;所述散热金属块的厚度为10-20mm;所述吸声背衬材料厚度为1/4波长的奇数倍且厚度小于2mm。
PCT/CN2015/099468 2015-05-15 2015-12-29 一种超声刺激神经组织的装置 WO2016184116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510250365.4 2015-05-15
CN201510250365.4A CN104826243B (zh) 2015-05-15 2015-05-15 一种超声刺激神经组织的装置

Publications (1)

Publication Number Publication Date
WO2016184116A1 true WO2016184116A1 (zh) 2016-11-24

Family

ID=53804673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099468 WO2016184116A1 (zh) 2015-05-15 2015-12-29 一种超声刺激神经组织的装置

Country Status (2)

Country Link
CN (1) CN104826243B (zh)
WO (1) WO2016184116A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497062A (zh) * 2017-08-31 2017-12-22 中国科学院苏州生物医学工程技术研究所 基于无创温度监测的聚焦超声溶脂系统
CN112370067A (zh) * 2020-11-05 2021-02-19 上海市徐汇区中心医院 一种多通道神经元信号采集调控系统
CN113332619A (zh) * 2021-05-28 2021-09-03 西安交通大学 一种用于相变纳米液滴药物载体的超声适形激活及监控成像方法与系统
CN114224385A (zh) * 2022-02-28 2022-03-25 深圳高性能医疗器械国家研究院有限公司 一种无创肾交感神经活性检测系统及方法
CN115845251A (zh) * 2022-11-28 2023-03-28 江苏思创致源智能科技有限公司 美容仪功率控制装置及美容仪

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826243B (zh) * 2015-05-15 2018-02-27 深圳先进技术研究院 一种超声刺激神经组织的装置
CN106687587A (zh) * 2015-09-01 2017-05-17 中国科学院深圳先进技术研究院 声敏感离子通道遗传操作方法及系统
CN105662704B (zh) * 2015-12-29 2017-10-20 深圳先进技术研究院 超声视网膜刺激设备
CN105999569B (zh) * 2016-05-04 2019-03-12 中国科学院深圳先进技术研究院 一种多阵元换能器的阵元选择装置、方法和超声刺激系统
WO2018045482A1 (zh) * 2016-09-06 2018-03-15 深圳先进技术研究院 一种超声神经调控系统
WO2018115283A1 (en) 2016-12-22 2018-06-28 Koninklijke Philips N.V. Systems and methods of operation of capacitive radio frequency micro-electromechanical switches
CN106861061B (zh) * 2017-03-09 2019-06-04 中国科学院深圳先进技术研究院 清醒动物超声神经调控装置
CN107468235B (zh) * 2017-07-31 2020-11-20 中国科学院电子学研究所 神经调控检测集成系统及方法
CN107361794B (zh) * 2017-08-03 2021-01-19 爱纳医疗科技股份有限公司 一种基于超声组件与周围神经刺激器检测运动神经反馈的装置及方法
CN108904969A (zh) * 2018-07-20 2018-11-30 芜湖碧水谣医疗设备科技有限公司 一种医疗神经科用缓痛装置
CN109044307B (zh) * 2018-09-17 2020-07-21 西安交通大学 一种基于超声神经刺激的无创血压调控系统
CN109771855A (zh) * 2019-03-04 2019-05-21 武汉市中创悟空生命科技有限公司 基于多模成像的超声调控神经组织的装置及方法
CN110755749B (zh) * 2019-08-17 2023-07-18 深圳市德力凯医疗设备股份有限公司 一种建立经颅磁刺激靶点和重复频率的方法
CN110433406B (zh) * 2019-09-04 2021-05-28 珠海医凯电子科技有限公司 超声聚焦定位图像优化方法
WO2021087817A1 (zh) * 2019-11-06 2021-05-14 中国科学院深圳先进技术研究院 超声调控及成像装置、方法、服务器及存储介质
CN111529970B (zh) * 2020-04-20 2023-06-27 内江师范学院 一种头戴式多通道超声神经刺激装置及方法
CN111589001B (zh) * 2020-06-10 2022-03-01 浙江大学 一种阵列式超声治疗系统
CN111790067A (zh) * 2020-08-24 2020-10-20 中国人民解放军陆军军医大学第一附属医院 一种多频超声刺激仪
CN112657033B (zh) * 2020-12-10 2022-12-13 中国科学院深圳先进技术研究院 超声唤醒系统
CN112870562B (zh) * 2021-01-06 2022-05-17 上海交通大学 一种植入式压电mems超声换能器及其制备方法
US11515900B1 (en) * 2021-07-30 2022-11-29 Amazing Microelectronics Corp. Transmitter circuit
CN114209355B (zh) * 2022-02-24 2022-06-10 深圳高性能医疗器械国家研究院有限公司 深部神经超声自动定位和标测方法、装置、设备和介质
CN115344122A (zh) * 2022-08-15 2022-11-15 中国科学院深圳先进技术研究院 声波无创脑机接口及控制方法
CN117398122A (zh) * 2023-09-07 2024-01-16 深圳高性能医疗器械国家研究院有限公司 一种超声诊疗设备及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110270138A1 (en) * 2010-05-02 2011-11-03 Mishelevich David J Ultrasound macro-pulse and micro-pulse shapes for neuromodulation
CN103028202A (zh) * 2012-12-26 2013-04-10 上海交通大学 经颅超声刺激修复脑神经功能的装置及方法
US8622909B1 (en) * 2010-10-19 2014-01-07 Quantason, LLC Method of locating the position of a microcalcification in a human breast
CN104383646A (zh) * 2014-12-12 2015-03-04 黄晶 一种超声介入治疗系统
CN104826243A (zh) * 2015-05-15 2015-08-12 深圳先进技术研究院 一种超声刺激神经组织的装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105986B2 (en) * 2004-08-27 2006-09-12 General Electric Company Ultrasound transducer with enhanced thermal conductivity
CN100515343C (zh) * 2005-08-19 2009-07-22 深圳迈瑞生物医疗电子股份有限公司 拼接多发射焦点回波信号的方法及其超声成像系统
CN101199430B (zh) * 2006-12-15 2011-12-28 深圳迈瑞生物医疗电子股份有限公司 空间复合成像方法、设备及其超声成像系统
CN101858972B (zh) * 2010-03-23 2013-01-30 深圳市蓝韵实业有限公司 基于延时参数实时计算和流水线的多波束合成方法和装置
JP5560134B2 (ja) * 2010-08-03 2014-07-23 富士フイルム株式会社 超音波画像生成装置
US20120153776A1 (en) * 2010-12-16 2012-06-21 General Electric Company Ultrasound Transducer with Improved Adhesion Between Layers
CN102551791B (zh) * 2010-12-17 2016-04-27 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法和装置
CN103117010B (zh) * 2011-11-17 2016-08-24 深圳迈瑞生物医疗电子股份有限公司 一种超声成像模拟系统
CN103156636B (zh) * 2011-12-15 2016-05-25 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN102940508B (zh) * 2012-11-30 2014-08-20 深圳市理邦精密仪器股份有限公司 一种医用超声无线探测装置及其信号处理方法
CN203914949U (zh) * 2014-02-18 2014-11-05 深圳长佳医疗设备有限公司 智能超声成像系统
CN104548390B (zh) * 2014-12-26 2018-03-23 中国科学院深圳先进技术研究院 一种获得用于发射穿颅聚焦超声的超声发射序列的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110270138A1 (en) * 2010-05-02 2011-11-03 Mishelevich David J Ultrasound macro-pulse and micro-pulse shapes for neuromodulation
US8622909B1 (en) * 2010-10-19 2014-01-07 Quantason, LLC Method of locating the position of a microcalcification in a human breast
CN103028202A (zh) * 2012-12-26 2013-04-10 上海交通大学 经颅超声刺激修复脑神经功能的装置及方法
CN104383646A (zh) * 2014-12-12 2015-03-04 黄晶 一种超声介入治疗系统
CN104826243A (zh) * 2015-05-15 2015-08-12 深圳先进技术研究院 一种超声刺激神经组织的装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497062A (zh) * 2017-08-31 2017-12-22 中国科学院苏州生物医学工程技术研究所 基于无创温度监测的聚焦超声溶脂系统
CN107497062B (zh) * 2017-08-31 2024-01-23 中国科学院苏州生物医学工程技术研究所 基于无创温度监测的聚焦超声溶脂系统
CN112370067A (zh) * 2020-11-05 2021-02-19 上海市徐汇区中心医院 一种多通道神经元信号采集调控系统
CN113332619A (zh) * 2021-05-28 2021-09-03 西安交通大学 一种用于相变纳米液滴药物载体的超声适形激活及监控成像方法与系统
CN113332619B (zh) * 2021-05-28 2023-06-20 西安交通大学 一种用于相变纳米液滴药物载体的超声适形激活及监控成像系统
CN114224385A (zh) * 2022-02-28 2022-03-25 深圳高性能医疗器械国家研究院有限公司 一种无创肾交感神经活性检测系统及方法
CN115845251A (zh) * 2022-11-28 2023-03-28 江苏思创致源智能科技有限公司 美容仪功率控制装置及美容仪
CN115845251B (zh) * 2022-11-28 2024-03-19 江苏思创致源智能科技有限公司 美容仪功率控制装置及美容仪

Also Published As

Publication number Publication date
CN104826243B (zh) 2018-02-27
CN104826243A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016184116A1 (zh) 一种超声刺激神经组织的装置
Naor et al. Ultrasonic neuromodulation
US20150151142A1 (en) Device and Methods for Targeting of Transcranial Ultrasound Neuromodulation by Automated Transcranial Doppler Imaging
CA3022003A1 (en) Systems and methods for cosmetic ultrasound treatment of skin
US11464482B2 (en) System and method for measuring and correcting ultrasound phase distortions induced by aberrating media
CN107693962B (zh) 一种头戴式超声传导装置
Qiu et al. A portable ultrasound system for non-invasive ultrasonic neuro-stimulation
WO2017107230A1 (zh) 一种基于大规模面阵元的超声脑刺激或调控方法及装置
WO2017113179A1 (zh) 头戴式超声刺激设备及系统
KR102111453B1 (ko) 체외 충격파 치료 장치
CN108144199A (zh) 超声激励装置、方法及系统
CN101854854A (zh) 用于定位如神经的结构的非侵入性设备和方法
Li et al. Imaging-guided dual-target neuromodulation of the mouse brain using array ultrasound
CN103028202A (zh) 经颅超声刺激修复脑神经功能的装置及方法
CN108652672A (zh) 一种超声成像系统、方法及装置
CN103432691A (zh) 一种经颅超声脑调控的方法与装置
US20210353967A1 (en) Methods and system for selective and long-term neuromodulation using ultrasound
CN102793980A (zh) 双频聚焦超声系统
CN105233429A (zh) 一种基于超声波成像对目标物进行自动追踪定位及实时智能刺激的方法及系统
Zhuang et al. A spatial multitarget ultrasound neuromodulation system using high-powered 2-D array transducer
US20210283428A1 (en) Systems and methods for simultaneous monitoring of human nerve displacement
Liu et al. A noninvasive deep brain stimulation method via temporal-spatial interference magneto-acoustic effect: simulation and experimental validation
CN112774048A (zh) 一种闭环超声神经调控系统及方法
WO2021143554A1 (zh) 一种超声共振成像系统
US20210059535A1 (en) Handheld ultrasound transducer array for 3d transcranial and transthoracic ultrasound and acoustoelectric imaging and related modalities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15892490

Country of ref document: EP

Kind code of ref document: A1