WO2016183731A1 - 一种信号处理方法、装置及系统 - Google Patents

一种信号处理方法、装置及系统 Download PDF

Info

Publication number
WO2016183731A1
WO2016183731A1 PCT/CN2015/079070 CN2015079070W WO2016183731A1 WO 2016183731 A1 WO2016183731 A1 WO 2016183731A1 CN 2015079070 W CN2015079070 W CN 2015079070W WO 2016183731 A1 WO2016183731 A1 WO 2016183731A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
frequency
subcarriers
side device
sounding
Prior art date
Application number
PCT/CN2015/079070
Other languages
English (en)
French (fr)
Inventor
孙方林
石操
潘众
涂建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/079070 priority Critical patent/WO2016183731A1/zh
Priority to EP15892112.2A priority patent/EP3291491B1/en
Priority to CN201580001078.8A priority patent/CN106464544B/zh
Publication of WO2016183731A1 publication Critical patent/WO2016183731A1/zh
Priority to US15/813,426 priority patent/US11095407B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/50Systems for transmission between fixed stations via two-conductor transmission lines

Definitions

  • the present invention relates to the field of data communications, and in particular to a signal processing method, apparatus and system.
  • DSL Digital Subscriber Line
  • UDP Unshielded Twist Pair
  • DSL technologies include Asymmetrical Digital Subscriber Line (ADSL), Very-high-bit-rate Digital Subscriber Line (VDSL), and Very High-Speed Digital Subscriber Line 2 (Very-high-bit- Rate Digital Subscriber Line 2, VDSL2) and Single-pair High-bit-rate Digital Subscriber Line (SHDSL).
  • a device that provides multiple DSL access for Customer Premises Equipment (CPE) is called a DSL Access Multiplexer (DSLAM).
  • DSL Access Multiplexer DSL Access Multiplexer
  • VDSL next-generation VDSL
  • VDSL2 will extend the spectrum of VDSL2 up to 17.664MHz to more than 30MHz, and the high spectrum will naturally lead to high crosstalk on the line, and crosstalk in the high frequency band is also It cannot be eliminated directly by the crosstalk elimination method of VDSL2, which will seriously affect the signal transmission on the line.
  • the embodiment of the invention provides a signal processing method, device and system, which are implemented.
  • an embodiment of the present invention provides a signal processing method, where the method includes
  • the network side device divides the frequency band used for transmitting the downlink synchronization symbol into at least two parts that do not overlap. a frequency band, wherein the two frequency bands are a first frequency band and a second frequency band; wherein a lowest frequency point of the second frequency band is higher than a highest frequency point of the first frequency band;
  • the network side device modulates the downlink pilot sequence to the probe subcarriers on the first frequency band and the second frequency band, and then sends the downlink pilot sequence to the peer device.
  • the allocating the frequency spacing on the first frequency band to the detecting subcarrier and the marking subcarrier specifically includes: alternating the frequency points on the first frequency band according to the comb structure Assigned to the probe subcarrier and the labeled subcarrier.
  • the network side device modulates a downlink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and on the first frequency band, in an initialization phase. Marking the subcarriers; and modulating the downlink pilot sequences to the sounding subcarriers on the first and second frequency bands during the data transmission phase.
  • the ranges of the first frequency band and the second frequency band are in a device Fixedly set, or determined by interactive negotiation with the peer device during the handshake phase or initialization phase.
  • the method further includes: the network side device receiving the pair The signal fed back by the end device, the signal fed back by the peer device reflects the signal received by the peer device on the detecting subcarriers in the first frequency band and the second frequency band.
  • the signal that is fed back by the peer device is that the peer device is in the first frequency band and the second frequency band. Detecting an error sample signal of the received signal on the subcarrier, or a frequency domain converted signal of the received signal on the detected subcarriers in the first frequency band and the second frequency band.
  • the frequency band used by the network device to send the downlink synchronization symbol is two different frequency bands. Combination of frequency bands for transmitting downlink synchronization symbols in the DSL mode; the highest frequency point of the first frequency band is not higher than the highest frequency point of the coincident frequency band for transmitting downlink synchronization symbols in the DSL mode of the two different frequency bands .
  • the embodiment of the present invention further provides a signal processing method, including:
  • the user side device divides the frequency band used for transmitting the uplink synchronization symbol into at least two frequency bands that do not overlap, the two frequency bands are the first frequency band and the second frequency band; the lowest frequency point of the second frequency band is higher than the foregoing The highest frequency point of a frequency band;
  • the user side device modulates the uplink pilot sequence to the sounding subcarriers on the first frequency band and the second frequency band, and then sends the uplink pilot sequence to the peer device.
  • the user side device modulates an uplink pilot sequence to the sounding subcarriers on the first frequency band and the second frequency band in an initialization phase, and on the first frequency band. Marking the subcarriers; and modulating the uplink pilot sequence to the sounding subcarriers on the first and second frequency bands during the data transmission phase.
  • the ranges of the first frequency band and the second frequency band are fixedly set in the device, Or it is determined after the peer device negotiates through the interaction in the handshake phase or the initialization phase.
  • the user side device is configured to send an uplink synchronization symbol.
  • the frequency band is a combination of frequency bands for transmitting uplink synchronization symbols in the DSL mode of two different frequency bands, and the highest frequency point of the first frequency band is not higher than the uplink synchronization symbol sent in the DSL mode of the two different frequency bands. The highest frequency point of the coincidence band.
  • an embodiment of the present invention provides a network side device, where the network side device includes a spectrum division module and a signal sending module;
  • the spectrum division module divides a frequency band used for transmitting a downlink synchronization symbol into at least two frequency bands that do not overlap, the two frequency bands are a first frequency band and a second frequency band; and a lowest frequency point of the second frequency band is higher than The highest frequency point of the first frequency band; and the frequency point interval on the first frequency band is allocated to the sounding subcarrier and the labeled subcarrier; all frequency points of the second frequency band are allocated to the sounding subcarrier;
  • the signal sending module is configured to: the network side device modulates the downlink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and then sends the downlink pilot sequence to the peer device.
  • the performing, by the spectrum division module, the frequency division interval on the first frequency band to the detection subcarrier and the labeled subcarrier, the spectrum division module according to the comb structure The frequency points on the first frequency band are alternately allocated to the sounding subcarriers and the labeled subcarriers.
  • the network side device further includes a signal receiving module, configured to receive the peer device A signal that is fed back, the signal reflecting a signal received by the peer device on the sounding subcarriers on the first frequency band and the second frequency band.
  • the signaling module is in the initialization phase And modulating a downlink pilot sequence onto the sounding subcarriers on the first frequency band and the second frequency band, and on the labeled subcarriers on the first frequency band; and modulating the downlink pilot sequence to the first in the data transmission phase On the probe subcarriers in the frequency band and the second frequency band.
  • the network side device is a DSLAM device
  • the spectrum division module is a processing chip in the DSLAM device.
  • the signal transmitting module is a signal transmitter in the DSLAM.
  • the frequency band used for transmitting the downlink synchronization symbol is used in the DSL mode of two different frequency bands. a combination of frequency bands for transmitting downlink synchronization symbols; a highest frequency point of the first frequency band is not higher than a highest frequency point of a coincident frequency band for transmitting downlink synchronization symbols in a DSL mode of the two different frequency bands
  • an embodiment of the present invention provides a user side device, where the user side device includes a spectrum division module and a signal sending module.
  • the spectrum division module divides the frequency band used for transmitting the uplink synchronization symbol into at least two frequency bands that do not overlap, the two frequency bands are the first frequency band and the second frequency band; and the lowest frequency point of the second frequency band is high. And the highest frequency point of the first frequency band; and the frequency point interval on the first frequency band is allocated to the sounding subcarrier and the labeled subcarrier; all frequency points of the second frequency band are allocated to the sounding subcarrier;
  • the signal sending module is configured to modulate the uplink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and then send the uplink pilot sequence to the opposite device.
  • the signal sending module modulates an uplink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and on the first frequency band in an initialization phase. Marking the subcarriers; and modulating the uplink pilot sequence to the sounding subcarriers on the first and second frequency bands during the data transmission phase.
  • the user equipment is a customer premises equipment (CPE)
  • the spectrum division module is a processing chip in a CPE
  • the signal sending module is a CPE.
  • the signal transmitter in a fourth aspect, or a second possible implementation manner of the fourth aspect
  • the frequency band used for transmitting the uplink synchronization symbol is two different frequency bands.
  • the highest frequency point of the first frequency band is not higher than the highest frequency point of the coincident frequency band for transmitting the uplink synchronization symbol in the DSL mode of the two different frequency bands .
  • an embodiment of the present invention provides a network system, where the network side device and the user side device are connected by using a twisted pair cable;
  • the network side device is the network side device described above; or the user side device is the above User side device.
  • the frequency band used for transmitting the downlink synchronization symbol is divided into at least two frequency bands that do not overlap, wherein the lowest frequency point of the second frequency band is higher than the highest frequency point of the first frequency band.
  • FIG. 1 is a schematic diagram of a connection relationship of a DSLAM system
  • FIG. 2 is a schematic flowchart diagram of a signal processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of frequency point allocation according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of another signal processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a user side device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a general network component according to an embodiment of the present invention.
  • the transmit signal can be pre-compensated on the network side (CO side) according to the crosstalk parameter fed back from the user side (ie, the CPE side).
  • This technique is called vectorization. (Vectoring) processing; the device for performing vectorization processing is a Vectoring Control Entity (VCE) in the DSLAM.
  • VCE Vectoring Control Entity
  • the VCE modulates a specified downlink pilot sequence to a probe sub-stream of a downlink synchronization symbol in an initialization phase and a data transmission phase (Showtime phase).
  • Showtime phase Showtime phase
  • the embodiment of the invention provides a signal processing method, as shown in FIG. 2, including
  • Step 201 The frequency band used by the network side device to send the downlink synchronization symbol is divided into at least two frequency bands that are not overlapped, and the two frequency bands are the first frequency band and the second frequency band; wherein the lowest frequency point of the second frequency band is higher than The highest frequency point of the first frequency band.
  • the frequency band used by the network device to transmit the downlink synchronization symbol is 0-35.328 MHz, and the 0-35.328 MHz may be divided into two frequency bands.
  • the highest frequency point of the first frequency band is not higher than 17.664 MHz; the lowest frequency point of the second frequency band is higher than two of the highest frequency points of the first frequency band.
  • the frequency point is the center frequency value of the frequency band in which the subcarrier or subchannel is located.
  • the frequency band used by the network device to send the downlink synchronization symbol may be a combination of frequency bands used for transmitting downlink synchronization symbols in the DSL mode of two different frequency bands, for example, the network device can simultaneously support VDSL2 and the next generation VDSL.
  • the two bands supported by the two systems for transmitting downlink synchronization symbols, the frequency band for transmitting downlink synchronization symbols in VDSL2 mode is 0-176.64 MHz, and the frequency band for transmitting downlink synchronization symbols in the next generation VDSL mode is at least For 0-35.328MHz, the frequency band set used to transmit the downlink synchronization symbols in these two modes is 0-35.328MHz.
  • the highest frequency point of the first frequency band is not higher than the highest frequency point of the coincident frequency band for transmitting the downlink synchronization symbol in the DSL mode of the two different frequency bands.
  • the cutoff frequency of the first frequency band is not higher than half of the cutoff frequency of the second frequency band, or the number of subcarriers on the first frequency band is not more than the number of subcarriers on the second frequency band.
  • Step 203 Allocating frequency bin intervals on the first frequency band to the probe subcarriers and marking subcarriers; and all frequency points of the second frequency band are allocated to the probe subcarriers.
  • Step 205 The network side device modulates the downlink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and then sends the downlink pilot sequence to the peer device.
  • the method further includes: step 207 (not shown): the network side device receives a signal that is sent back by the peer device, and the signal fed back by the peer device reflects that the peer device is The signals received on the sounding subcarriers on the first frequency band and the second frequency band.
  • the signal fed back by the peer device is an error sample signal of the signal received by the peer device on the detecting subcarriers in the first frequency band and the second frequency band, or A signal obtained by frequency domain conversion of a received signal on a sounding subcarrier on the first frequency band and the second frequency band.
  • the foregoing assigning the frequency interval on the first frequency band to the detecting subcarrier and marking the subcarrier specifically includes alternately allocating frequency points on the first frequency band to the detecting subcarrier and the marking subcarrier according to the comb structure.
  • Fig. 3 shows an example in which frequency points on the first frequency band are alternately allocated to the probe subcarriers and the labeled subcarriers in a comb structure.
  • the frequency points of 0 to 17.664 MHz corresponding to 0 to 4095 are assigned to the frequency points of 10n, 10n+2, 10n+3, 10n+4, 10n+5, 10n+6, 10n+8, and 10n+9.
  • the network side device modulates a downlink pilot sequence to the sounding subcarriers on the first frequency band and the second frequency band, and the labeled subcarriers on the first frequency band in an initialization phase; and in the Showtime phase
  • the downlink pilot sequence is modulated onto the sounding subcarriers on the first frequency band and the second frequency band.
  • the range of the first frequency band and the second frequency band is fixedly set in the device, or is determined by interactive negotiation with the peer device in a handshake phase or an initialization phase.
  • the method further includes the network side device performing precoding processing on the signal to be transmitted according to the signal fed back by the peer device.
  • the network side device allocates a frequency band for transmitting a downlink synchronization symbol into at least two frequency bands that do not overlap, and allocates a high frequency band that is more susceptible to interference to the sounding subcarrier, and adds a probe.
  • the density of the carrier is modulated by the downlink pilot sequence to the detecting subcarriers in the first frequency band and the second frequency band, and then sent to the peer device to ensure that the peer device can normally acquire each frequency point on the high frequency spectrum.
  • the signal enables the peer device to accurately feed back the parameters related to the received signal to the network side device; thereby enabling the network side device to perform high-precision crosstalk cancellation processing according to the signal fed back by the opposite device.
  • the embodiment of the invention provides a signal processing method, as shown in FIG. 4, including
  • Step 401 The user side device divides the frequency band used for transmitting the uplink synchronization symbol into at least two frequency bands that do not overlap, where the two frequency bands are the first frequency band and the second frequency band; the lowest frequency point of the second frequency band is higher than The highest frequency point of the first frequency band.
  • the frequency band used by the user equipment to send the uplink synchronization symbol is 0-35.328 MHz, and the 0-35.328 MHz may be divided into two frequency bands.
  • the highest frequency point of the first frequency band is not higher than 17.664 MHz; the lowest frequency point of the second frequency band is higher than two of the highest frequency points of the first frequency band.
  • the frequency point is the center frequency value of the frequency band in which the subcarrier or subchannel is located.
  • the frequency band used by the user equipment to send the uplink synchronization symbol may be a combination of frequency bands used for transmitting uplink synchronization symbols in the DSL mode of two different frequency bands.
  • the network device can simultaneously support VDSL2 and the next generation VDSL.
  • the two channels supported by the two systems are used to transmit the uplink synchronization symbols.
  • the frequency band used for transmitting the uplink synchronization symbols in the VDSL2 mode is 0-176.64 MHz
  • the next generation VDSL mode is used to transmit the uplink synchronization symbols.
  • the frequency band is at least 0-35.328MHz.
  • the frequency band collection of the two modes for transmitting the uplink synchronization symbol is 0-35.328MHz, and the coincidence frequency band is 0-176.64MHz.
  • the highest frequency point of the first frequency band is not higher than the highest frequency point of the coincident frequency band for transmitting the uplink synchronization symbol in the DSL mode of the two different frequency bands.
  • the cutoff frequency of the first frequency band is not higher than half of the cutoff frequency of the second frequency band, or the number of subcarriers on the first frequency band is not more than the number of subcarriers on the second frequency band.
  • Step 403 Allocating frequency bin intervals on the first frequency band to the probe subcarriers and marking subcarriers; and all frequency points of the second frequency band are allocated to the probe subcarriers.
  • Step 405 The user side device modulates the uplink pilot sequence to the sounding subcarriers on the first frequency band and the second frequency band, and then sends the uplink pilot sequence to the peer device.
  • the user side device modulates an uplink pilot sequence to the sounding subcarriers on the first frequency band and the second frequency band, and the labeled subcarriers on the first frequency band in an initialization phase; and in the Showtime phase
  • the uplink pilot sequence is modulated onto the sounding subcarriers on the first frequency band and the second frequency band.
  • the range of the first frequency band and the second frequency band is fixedly set in the device, or is determined after the peer device negotiates through interaction in the Handshake or initialization phase.
  • the user side device allocates a frequency band for transmitting a downlink synchronization symbol into at least two frequency bands that do not overlap, and allocates a high frequency band that is more susceptible to interference to the detection subcarrier, and adds a probe.
  • the density of the carrier; the uplink pilot sequence is modulated onto the sounding subcarriers in the first frequency band and the second frequency band, and then sent to the peer device, so that the peer device can normally acquire each frequency point on the high frequency spectrum.
  • the signal enables the peer device to perform high-precision crosstalk cancellation processing requirements based on the received signal.
  • the embodiment of the present invention further provides a network side device 500.
  • the network side device 500 includes a spectrum dividing module 501 and a signal sending module 503.
  • the spectrum dividing module 501 divides a frequency band used for transmitting a downlink synchronization symbol into at least two frequency bands that do not overlap, wherein the two frequency bands are a first frequency band and a second frequency band; and the lowest frequency point of the second frequency band is higher than The highest frequency point of the first frequency band;
  • the signal sending module 503 is configured to: the network side device modulates the downlink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and then sends the downlink pilot sequence to the peer device.
  • the frequency band used by the network device to send the downlink synchronization symbol may be a combination of frequency bands used for transmitting downlink synchronization symbols in the DSL mode of two different frequency bands; the highest frequency point of the first frequency band is not higher than The highest frequency point of the coincident frequency band in which the downlink synchronization symbol is transmitted in the DSL mode of the two different frequency bands.
  • the network side device 500 further includes a signal receiving module 505 (not shown) for receiving a signal fed back by the peer device, and the signal fed back by the peer device reflects the peer device.
  • the spectrum dividing module 501 specifically allocates a frequency point interval on the first frequency band to the detecting subcarrier and the labeled subcarrier, and the spectrum dividing module 501 alternately allocates frequency points on the first frequency band according to the comb structure. Give subcarriers and tag subcarriers.
  • the signal sending module 503 modulates the downlink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and the labeled subcarriers on the first frequency band in an initialization phase; and downlinks in the Showtime phase.
  • a pilot sequence is modulated onto the probe subcarriers on the first and second frequency bands.
  • the network side device 500 is a DSLAM device
  • the spectrum dividing module 501 is a processing chip in the DSLAM device
  • the signal sending module 503 is a signal transmitter in the DSLAM.
  • the signal receiving module 505 is a signal receiver in the DSLAM.
  • the embodiment of the present invention further provides a user side device 600.
  • the user side device is 600 includes a spectrum division module 601 and a signal transmission module 603;
  • the spectrum division module 601 is configured to divide the frequency band used for transmitting the uplink synchronization symbol into at least two frequency bands that are not overlapped, where the two frequency bands are the first frequency band and the second frequency band; and the second frequency band is the lowest The frequency point is higher than the highest frequency point of the first frequency band;
  • the signal sending module 603 is configured to modulate the uplink pilot sequence to the detecting subcarriers on the first frequency band and the second frequency band, and then send the uplink pilot sequence to the peer device.
  • the frequency band used by the user equipment to send the uplink synchronization symbol may be a combination of frequency bands used for transmitting the uplink synchronization symbol in the DSL mode of two different frequency bands, where the highest frequency point of the first frequency band is not higher than The DSL mode of the two different frequency bands transmits the highest frequency point of the coincident frequency band of the uplink synchronization symbol.
  • the signal sending module 603 modulates the uplink pilot sequence to the sounding subcarriers on the first frequency band and the second frequency band, and the labeled subcarriers on the first frequency band in an initialization phase; and in the Showtime phase
  • the uplink pilot sequence is modulated onto the sounding subcarriers on the first frequency band and the second frequency band.
  • the user side device 600 is a CPE
  • the spectrum dividing module 601 is a processing chip in the CPE
  • the signal sending module 603 is a signal transmitter in the CPE.
  • the embodiment of the present invention further provides a network system 700 including a network side device 701 and a user side device 703. As shown in FIG. 7, the network side device 701 and the user side device 703 are connected by a twisted pair 705.
  • the network side device 701 is the network side device 500 in the above embodiment
  • the user side device 703 is the user side device 600 in the above embodiment.
  • FIG. 8 schematically illustrates an electrical universal network component 800 suitable for implementing one or more embodiments of the components disclosed herein.
  • the network component 800 includes a processor 802 (which may be referred to as a central processing unit or CPU) that includes a second memory 804, a read only memory (ROM) 806, a random access memory (RAM) 808, input/ The output (I/O) device 810 and the network connectivity device 812 communicate with the memory device.
  • the processor 802 can be implemented as one or more CPU chips or as part of one or more application specific integrated circuits.
  • the second memory 804 is typically comprised of one or more disk drives or disk drives and is used for non-volatile storage of data and as an overflow data storage device if the RAM 808 is not sufficient to accommodate all of the operational data.
  • the second memory 804 can be used to store programs that are loaded into the RAM 808 when selected for execution.
  • ROM 806 is used to store instructions and data that is read during program execution.
  • ROM 806 is a non-volatile memory device that typically has a smaller memory capacity relative to the larger memory capacity of second memory 804.
  • RAM 808 is used to store volatile data and may store instructions. Access to ROM 806 and RAM 808 is typically faster than access to second memory 804.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例提供了一种信号处理方法,包括将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备;本发明实施例还提供了一种信号处理装置和网络系统。

Description

一种信号处理方法、装置及系统 技术领域
本发明涉及数据通讯领域,具体地说,涉及一种信号处理方法、装置及系统。
背景技术
数字用户线路(DSL,Digital Subscriber Line)技术是一种在电话双绞线上,例如无屏蔽双绞线(UTP,Unshielded Twist Pair),传输的高速数据传输技术。DSL技术包括非对称数字用户线(Asymmetrical Digital Subscriber Line,ADSL)、甚高速数字用户线(Very-high-bit-rate Digital Subscriber Line,VDSL)、甚高速数字用户线2(Very-high-bit-rate Digital Subscriber Line 2,VDSL2)和单线对高速数字用户线(Single-pair High-bit-rate Digital Subscriber Line,SHDSL)等。为用户驻地设备(Customer Premises Equipment,CPE)提供多路DSL接入的设备叫做DSL接入复用器(DSL Access Multiplexer,DSLAM),其系统连接关系如图1所示。
目前业界也开始了对下一代VDSL的定义和技术讨论,将原有将VDSL2最大为17.664MHz的频谱扩展到30MHz以上,而高频谱自然会导致线路上的高串扰,并且高频带的串扰也无法直接用VDSL2的串扰消除方法消除,会严重影响线路上的信号传输。
发明内容
本发明实施例提供一种信号处理方法、装置及系统,以实现提。
第一方面,本发明实施例提供信号处理方法,该方法包括
网络侧设备将用于发送下行同步符号的频段划分为不重叠的至少两部分 频段,所述两部分频段为第一频段和第二频段;其中所述第二频段的最低频点高于所述第一频段的最高频点;
将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
所述网络侧设备将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
在第一方面的第一种可能的实现方式中,所述将第一频段上的频点间隔分配给探测子载波和标记子载波具体包括,按照梳形结构将第一频段上的频点交替分配给探测子载波和标记子载波。
在第一方面的第二种可能的实现方式中,所述网络侧设备在初始化阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在数据传输阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上。
结合第一方面、第一方面的第一种或第一方面的第二种可能实现的方式,在第三种可能实现的方式中,所述第一频段和第二频段的范围是在设备中固定设置的,或者是与对端设备在握手阶段或初始化阶段通过交互协商后确定的。
结合第一方面、第一方面的第一种或第一方面的第二种可能实现的方式,在第四种可能实现的方式中,所述方法还包括,所述网络侧设备接收所述对端设备反馈过来的信号,所述对端设备反馈过来的信号反映了对端设备在所述第一频段和第二频段上的探测子载波上接收到的信号。
结合第一方面的第四种可能实现的方式,在第五种可能实现的方式中,所述对端设备反馈过来的信号是所述对端设备在所述第一频段和第二频段上的探测子载波上接收信号的误差样本信号,或对所述第一频段和第二频段上的探测子载波上接收信号进行频域转化后的信号。
结合第一方面、第一方面的第一种、第一方面的第二种、第一方面的第 三种、第一方面的第四种或第一方面的第五种可能实现的方式,在第六种可能实现的方式中,所述网络设备用于发送下行同步符号的频段是两种不同频段的DSL模式下用于发送下行同步符号的频段的组合;所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送下行同步符号的重合频段的最高频点。
第二方面,本发明实施例还提供一种信号处理方法包括:
用户侧设备将用于发送上行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;
将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
所述用户侧设备将上行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
在第二方面的第一种可能的实现方式中,所述用户侧设备在初始化阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在数据传输阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上。
结合第二方面或第二方面的第一种可能实现的方式,在第二方面的第二种可能的实现方式中,所述第一频段和第二频段的范围是在设备中固定设置的,或者是与对端设备在握手阶段或初始化阶段通过交互协商后确定的。
结合第二方面、第二方面的第一种或第二方面的第二种可能实现的方式,在第二方面的第三种可能的实现方式中,所述用户侧设备用于发送上行同步符号的频段是两种不同频段的DSL模式下用于发送上行同步符号的频段的组合,所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送上行同步符号的重合频段的最高频点。
第三方面,本发明实施例提供一种网络侧设备,所述网络侧设备包括频谱划分模块和信号发送模块;
所述频谱划分模块将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;并将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
所述信号发送模块用于所述网络侧设备将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
在第三方面的第一种可能的实现方式中,所述频谱划分模块将第一频段上的频点间隔分配给探测子载波和标记子载波具体包括,所述频谱划分模块按照梳形结构将第一频段上的频点交替分配给探测子载波和标记子载波。
结合第三方面或第三方面的第一种可能实现的方式,在第三方面的第二种可能的实现方式中,所述网络侧设备还包括信号接收模块,用于接收所述对端设备反馈过来的信号,所述信号反映了对端设备在所述第一频段和第二频段上的探测子载波上接收到的信号。
结合第三方面、第三方面的第一种可能实现的方式或、第三方面的第二种可能实现的方式,在第三方面的第三种可能的实现方式中,信号发送模块在初始化阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在数据传输阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上。
结合第三方面的第三种可能实现的方式,在第三方面的第四种可能的实现方式中,所述网络侧设备为DSLAM设备,所述频谱划分模块为DSLAM设备中的处理芯片,所述信号发送模块为DSLAM中的信号发送器。
结合第三方面、第三方面的第一种、第三方面的第二种、第三方面的第三种和第三方面的第四种可能实现的方式,在第三方面的第五种可能的实现方式中,所述用于发送下行同步符号的频段是两种不同频段的DSL模式下用 于发送下行同步符号的频段的组合;所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送下行同步符号的重合频段的最高频点
第四方面,本发明实施例提供一种用户侧设备,所述用户侧设备包括频谱划分模块和信号发送模块;
所述频谱划分模块将所述用于发送上行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;并将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
所述信号发送模块用于将上行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
在第四方面的第一种可能的实现方式中,所述信号发送模块在初始化阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在数据传输阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上。
在第四方面或第四方面的第二种可能的实现方式中,所述用户侧设备为用户驻地设备(CPE),所述频谱划分模块为CPE中的处理芯片,所述信号发送模块为CPE中的信号发送器。
结合第四方面、第四方面的第一种和第四方面的第二种,在第四方面的第三种可能的实现方式中,所述用于发送上行同步符号的频段是两种不同频段的DSL模式下用于发送上行同步符号的频段的组合,所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送上行同步符号的重合频段的最高频点。
第五方面,本发明实施例提供一种网络系统,包括网络侧设备和用户侧设备,所述网络侧设备和用户侧设备通过双绞线连接;
所述网络侧设备是上述的网络侧设备;或者,所述用户侧设备是上述的 用户侧设备。
采用本实施例所述的方案,通过将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,其中第二频段的最低频点高于所述第一频段的最高频点,将更容易受到干扰的高频段都分配给了探测子载波,就能增加了探测子载波的密度;这样将上行或下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备,能保证对端设备能正常获取到高频谱上每个频点的信号。
附图说明
图1为DSLAM系统连接关系示意图;
图2为本发明实施例的一种信号处理方法的流程示意图;
图3为本发明实施例的频点分配示意图;
图4为本发明实施例的另一种信号处理方法的流程示意图;
图5为本发明实施例的一种网络侧设备结构示意图;
图6为本发明实施例的一种用户侧设备结构示意图;
图7为本发明实施例的一种系统结构示意图;
图8为本发明实施例的一种通用网络部件示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为消除VDSL2线路上的串扰,可以根据用户侧(即CPE侧)反馈的串扰参数,在网络侧(CO侧)对发送信号进行预补偿等,该技术称为矢量化 (Vectoring)处理;所述进行矢量化处理的装置是DSLAM中的矢量化控制实体(Vectoring Control Entity,VCE)。其中所述VCE在初始化阶段和数据传输阶段(Showtime阶段)会将指定的下行导频序列(pilot sequence)调制至下行同步符号的探测子载波(probe tones)上。除了探测子载波外,还有标记子载波(flag tones),用于传输导频序列。
本发明实施例提供一种信号处理方法,如图2所示,包括
步骤201:网络侧设备用于发送下行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;其中所述第二频段的最低频点高于所述第一频段的最高频点。
作为一个例子,所述网络设备用于发送下行同步符号的频段为0-35.328MHz可以将所述0-35.328MHz分成两个频段。设置第一频段的最高频点不高于17.664MHz;第二频段的最低频点高于所述第一频段的最高频点的两段。其中频点就是子载波或子通道所在频段的中心频率值。
进一步地,所述网络设备用于发送下行同步符号的频段可以是两种不同频段的DSL模式下用于发送下行同步符号的频段的组合,例如该网络设备可同时支持VDSL2和下一代VDSL,所支持的这两种制式下用于发送下行同步符号的频段的合集,VDSL2模式下用于发送下行同步符号的频段为0-17.664MHz,而下一代VDSL模式下用于发送下行同步符号的频段至少为0-35.328MHz,这两种模式下用于发送下行同步符号的频段合集就为0-35.328MHz。此时,所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送下行同步符号的重合频段的最高频点。
可选地,所述第一频段的截止频率不高于第二频段的截止频率的一半,或第一频段上的子载波数不多于第二频段上的子载波数。
步骤203:将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波。
步骤205:所述网络侧设备将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
进一步地,所述方法还包括,步骤207(图中未示出):所述网络侧设备接收所述对端设备反馈过来的信号,所述对端设备反馈过来的信号反映了对端设备在所述第一频段和第二频段上的探测子载波上接收到的信号。
更具体的,所述对端设备反馈过来的信号是所述对端设备在所述第一频段和第二频段上的探测子载波上接收信号的误差样本信号(error sample),或对所述第一频段和第二频段上的探测子载波上接收信号进行频域转化后的信号。
上述将第一频段上的频点间隔分配给探测子载波和标记子载波具体包括,按照梳形结构将第一频段上的频点交替分配给探测子载波和标记子载波。
图3示出了一种按照梳形结构将第一频段上的频点交替分配给探测子载波和标记子载波的实例。0到17.664MHz对应为0到4095的频点将序号为10n、10n+2、10n+3、10n+4、10n+5、10n+6、10n+8和10n+9的频点分配给探测子载波,其中n是非负整数;将序号为10n+1和10n+7的频点分配给标记子载波。
进一步地,所述网络侧设备在初始化阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在Showtime阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上。
更进一步地,所述第一频段和第二频段的范围是在设备中固定设置的,或者是与对端设备在握手阶段(Handshake)或初始化阶段通过交互协商后确定的。
所述方法还进一步包括,所述网络侧设备根据对端设备反馈的信号对待发送信号进行预编码处理。
利用本方法实施例,网络侧设备通过将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,并将更容易受到干扰的高频段都分配给了探测子载波,增加了探测子载波的密度;这样将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备,能保证对端设备能正常获取到高频谱上每个频点的信号,使对端设备高精度地反馈与接收信号相关的参数给该网络侧设备成为可能;从而使网络侧设备能根据对端设备反馈的信号进行高精度的串扰消除处理。
本发明实施例提供一种信号处理方法,如图4所示,包括
步骤401:用户侧设备将用于发送上行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点。
作为一个例子,所述用户侧设备用于发送上行同步符号的频段为0-35.328MHz可以将所述0-35.328MHz分成两个频段。设置第一频段的最高频点不高于17.664MHz;第二频段的最低频点高于所述第一频段的最高频点的两段。其中频点就是子载波或子通道所在频段的中心频率值。
进一步地,所述用户侧设备用于发送上行同步符号的频段可以是两种不同频段的DSL模式下用于发送上行同步符号的频段的组合,例如该网络设备可同时支持VDSL2和下一代VDSL,所支持的这两种制式的下用于发送上行同步符号的频段的合集,VDSL2模式下用于发送上行同步符号的频段为0-17.664MHz,而下一代VDSL模式下用于发送上行同步符号的频段至少为0-35.328MHz,这两种模式用于发送上行同步符号的频段合集就为0-35.328MHz,重合频段就是0-17.664MHz。此时,所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送上行同步符号的重合频段的最高频点。
可选地,所述第一频段的截止频率不高于第二频段的截止频率的一半,或第一频段上的子载波数不多于第二频段上的子载波数。
步骤403:将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波。
步骤405:所述用户侧设备将上行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
进一步地,所述用户侧设备在初始化阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在Showtime阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上。
更进一步地,所述第一频段和第二频段的范围是在设备中固定设置的,或者是与对端设备在Handshake或初始化阶段通过交互协商后确定的。
利用本方法实施例,用户侧设备通过将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,并将更容易受到干扰的高频段都分配给了探测子载波,增加了探测子载波的密度;这样将上行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备,能保证对端设备能正常获取到高频谱上每个频点的信号,使对端设备根据接收到的信号进行高精度的串扰消除处理要求成为可能。
本发明实施例还提供一种网络侧设备500,如图5所示,所述网络侧设备500包括频谱划分模块501和信号发送模块503;其中
所述频谱划分模块501将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;
并将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波。
所述信号发送模块503用于所述网络侧设备将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
进一步地,所述网络设备用于发送下行同步符号的频段可以是两种不同频段的DSL模式下用于发送下行同步符号的频段的组合;所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送下行同步符号的重合频段的最高频点。
进一步地,所述网络侧设备500还包括信号接收模块505(图中未示出),用于接收所述对端设备反馈过来的信号,所述对端设备反馈过来的信号反映了对端设备在所述第一频段和第二频段上的探测子载波上接收到的信号。
进一步地,所述频谱划分模块501将第一频段上的频点间隔分配给探测子载波和标记子载波具体包括,所述频谱划分模块501按照梳形结构将第一频段上的频点交替分配给探测子载波和标记子载波。
进一步地,信号发送模块503在初始化阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在Showtime阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上。
进一步地,所述网络侧设备500为DSLAM设备,所述频谱划分模块501为DSLAM设备中的处理芯片,所述信号发送模块503为DSLAM中的信号发送器。进一步地,所述信号接收模块505为DSLAM中的信号接收器。
需要补充说明的是,所述网络侧设备500中的各个模块执行的具体动作就是上文方法实施例中的方法,达到的效果也一样,具体内容不再赘述。
本发明实施例还提供一种用户侧设备600,如图6所示,所述用户侧设备 600包括频谱划分模块601和信号发送模块603;其中
所述频谱划分模块601用于将所述用于发送上行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;
并将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波。
所述信号发送模块603用于将上行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
进一步地,所述用户侧设备用于发送上行同步符号的频段可以是两种不同频段的DSL模式下用于发送上行同步符号的频段的组合,所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送上行同步符号的重合频段的最高频点。
进一步地,所述信号发送模块603在初始化阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在Showtime阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上。
进一步地,所述用户侧设备600为CPE,所述频谱划分模块601为CPE中的处理芯片,所述信号发送模块603为CPE中的信号发送器。
需要补充说明的是,所述用户侧设备600中的各个模块执行的具体动作就是上文方法实施例中的方法,达到的效果也一样,具体内容不再赘述。
本发明实施例还提供一种网络系统700包括网络侧设备701和用户侧设备703,如图7所示,所述网络侧设备701和用户侧设备703通过双绞线705连接。
其中,所述网络侧设备701就是上文实施例中的网络侧设备500;
或者所述用户侧设备703就是上文实施例中的用户侧设备600。
需要进一步说明的是,所述网络侧设备或用户侧设备所执行的具体动作就是上文方法实施例中的方法,具体步骤不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。具体为以上所述的网络处理过程可以在诸如具有足够的处理能力、存储器资源和网络吞吐量能力的计算机或网络部件的通用部件上实施。图8示意性地表示适于实施本文中公开的部件的一个或多个实施例的电性的通用网络部件800。该网络部件800包括处理器802(可被称为中央处理单元或CPU),该处理器802与包括第二存储器804、只读存储器(ROM)806、随即存取存储器(RAM)808、输入/输出(I/O)设备810和网络连接性设备812在内的存储器设备通信。该处理器802可被实施为一个或多个CPU芯片,或是被实施为一个或多个专用集成电路的一部分。
该第二存储器804典型地由一个或多个盘驱动器或碟驱动器构成,并用于数据的非易失性存储,以及如果RAM808没有达到足以容纳所有工作数据则用作溢出数据存储设备。第二存储器804可用于存储那些当被选择用于执行时被装入RAM808的程序。ROM 806被用于存储指令以及或者在程序执行期间读取的数据。ROM806是一种非易失性存储器设备,其典型地具有相对于第二存储器804的较大存储器容量较小的存储器容量。RAM 808用于存储易失性数据,并可能存储指令。对ROM806和RAM808的访问通常比对第二存储器804的访问快。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种信号处理方法,其特征在于,该方法包括
    网络侧设备将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;其中所述第二频段的最低频点高于所述第一频段的最高频点;
    将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
    所述网络侧设备将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
  2. 如权利要求1所述的方法,其特征在于,所述将第一频段上的频点间隔分配给探测子载波和标记子载波具体包括,按照梳形结构将第一频段上的频点交替分配给探测子载波和标记子载波。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一频段的截止频率不高于第二频段的截止频率的一半,或第一频段上的子载波数不多于第二频段上的子载波数。
  4. 如权利要求1或2所述的方法,其特征在于,所述网络设备用于发送下行同步符号的频段是两种不同频段的DSL模式下用于发送下行同步符号的频段的组合;所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送下行同步符号的重合频段的最高频点。
  5. 如权利要求1所述的方法,其特征在于,所述网络侧设备在初始化阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在数据传输阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述第一频段和第二 频段的范围是在设备中固定设置的,或者是与对端设备在握手阶段或初始化阶段通过交互协商后确定的。
  7. 如权利要求1-5任一所述的方法,其特征在于,所述方法还包括,所述网络侧设备接收所述对端设备反馈过来的信号,所述对端设备反馈过来的信号反映了对端设备在所述第一频段和第二频段上的探测子载波上接收到的信号。
  8. 如权利要求7所述的方法,其特征在于,所述对端设备反馈过来的信号是所述对端设备在所述第一频段和第二频段上的探测子载波上接收信号的误差样本信号,或对所述第一频段和第二频段上的探测子载波上接收信号进行频域转化后的信号。
  9. 一种信号处理方法,该方法包括
    用户侧设备将用于发送上行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;
    将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
    所述用户侧设备将上行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
  10. 如权利要求9所述的方法,其特征在于,所述用户侧设备用于发送上行同步符号的频段是两种不同频段的DSL模式下用于发送上行同步符号的频段的组合,所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送上行同步符号的重合频段的最高频点。
  11. 如权利要求10所述的方法,其特征在于,所述用户侧设备在初始化阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上,以 及第一频段上的标记子载波上;并在数据传输阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上。
  12. 如权利要求9或10所述的方法,其特征在于,所述第一频段和第二频段的范围是在设备中固定设置的,或者是与对端设备在握手阶段或初始化阶段通过交互协商后确定的。
  13. 一种网络侧设备,所述网络侧设备包括频谱划分模块501和信号发送模块503;其特征在于:
    所述频谱划分模块501将用于发送下行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;并将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
    所述信号发送模块503用于所述网络侧设备将下行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
  14. 如权利要求13所述的网络侧设备,其特征在于,所述用于发送下行同步符号的频段是两种不同频段的DSL模式下用于发送下行同步符号的频段的组合;所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送下行同步符号的重合频段的最高频点。
  15. 如权利要求13或14所述的网络侧设备,其特征在于,所述频谱划分模块501将第一频段上的频点间隔分配给探测子载波和标记子载波具体包括,所述频谱划分模块501按照梳形结构将第一频段上的频点交替分配给探测子载波和标记子载波。
  16. 如权利要求13或14所述的网络侧设备,其特征在于,所述网络侧设备还包括信号接收模块505,用于接收所述对端设备反馈过来的信号,所述信号反映了对端设备在所述第一频段和第二频段上的探测子载波上接收到的信 号。
  17. 如权利要求13到16任一所述的网络侧设备,其特征在于,信号发送模块503在初始化阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在数据传输阶段将下行导频序列调制至所述第一频段和第二频段上的探测子载波上。
  18. 如权利要求13所述的网络侧设备,其特征在于,所述网络侧设备为DSLAM设备,所述频谱划分模块501为DSLAM设备中的处理芯片,所述信号发送模块503为DSLAM中的信号发送器。
  19. 一种用户侧设备,所述用户侧设备包括频谱划分模块601和信号发送模块603;其特征在于:
    所述频谱划分模块601将所述用于发送上行同步符号的频段划分为不重叠的至少两部分频段,所述两部分频段为第一频段和第二频段;所述第二频段的最低频点高于所述第一频段的最高频点;并将所述第一频段上的频点间隔分配给探测子载波和标记子载波;将所述第二频段的所有频点分配给探测子载波;
    所述信号发送模块603用于将上行导频序列调制到所述第一频段和第二频段上的探测子载波上后发送给对端设备。
  20. 如权利要求19所述的用户侧设备,其特征在于,所述用于发送上行同步符号的频段是两种不同频段的DSL模式下用于发送上行同步符号的频段的组合,所述第一频段的最高频点不高于所述两种不同频段的DSL模式下发送上行同步符号的重合频段的最高频点。
  21. 如权利要求19或20所述的用户侧设备,其特征在于,所述信号发送模块603在初始化阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上,以及第一频段上的标记子载波上;并在数据传输阶段将上行导频序列调制至所述第一频段和第二频段上的探测子载波上。
  22. 如权利要求19-21任一所述的用户侧设备,其特征在于,所述用户侧设备为用户驻地设备(CPE),所述频谱划分模块601为CPE中的处理芯片,所述信号发送模块603为CPE中的信号发送器。
  23. 一种网络系统,包括网络侧设备701和用户侧设备703,所述网络侧设备701和用户侧设备703通过双绞线705连接;其特征在于,
    所述网络侧设备701是权利要求13-18任一所述的网络侧设备;或者,
    所述用户侧设备703是权利要求19-22任一所述的用户侧设备。
PCT/CN2015/079070 2015-05-15 2015-05-15 一种信号处理方法、装置及系统 WO2016183731A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/079070 WO2016183731A1 (zh) 2015-05-15 2015-05-15 一种信号处理方法、装置及系统
EP15892112.2A EP3291491B1 (en) 2015-05-15 2015-05-15 Signal processing method and device
CN201580001078.8A CN106464544B (zh) 2015-05-15 2015-05-15 一种信号处理方法、装置及系统
US15/813,426 US11095407B2 (en) 2015-05-15 2017-11-15 Signal processing method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079070 WO2016183731A1 (zh) 2015-05-15 2015-05-15 一种信号处理方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/813,426 Continuation US11095407B2 (en) 2015-05-15 2017-11-15 Signal processing method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016183731A1 true WO2016183731A1 (zh) 2016-11-24

Family

ID=57319075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079070 WO2016183731A1 (zh) 2015-05-15 2015-05-15 一种信号处理方法、装置及系统

Country Status (4)

Country Link
US (1) US11095407B2 (zh)
EP (1) EP3291491B1 (zh)
CN (1) CN106464544B (zh)
WO (1) WO2016183731A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228185A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 信号传输方法及通信装置
CN115883049A (zh) * 2022-11-30 2023-03-31 深圳市云天数字能源有限公司 信号同步方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192521A (zh) * 2020-01-13 2021-07-30 华为技术有限公司 一种音频编解码方法和音频编解码设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070047631A1 (en) * 2005-08-29 2007-03-01 Alcatel Method for determining crosstalk coupling and crosstalk determining unit for integration in digital data transmission systems
CN101222242A (zh) * 2005-09-30 2008-07-16 华为技术有限公司 降低vdsl高频串扰的方法及装置
CN101237398A (zh) * 2007-02-02 2008-08-06 华为技术有限公司 一种提高vdsl稳定性的方法及其系统
US20080267391A1 (en) * 2005-09-30 2008-10-30 Huawei Technologies Co., Ltd. Method and apparatus for reducing crosstalk between digital subscriber lines
CN101997796A (zh) * 2009-08-27 2011-03-30 华为技术有限公司 一种消除多载波调制系统中混叠噪声的方法、装置和系统
CN103229445A (zh) * 2012-12-26 2013-07-31 华为技术有限公司 一种线路的初始化方法及设备
CN103891155A (zh) * 2011-08-31 2014-06-25 瑞典爱立信有限公司 调制解调器之间的快速串扰限制

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203719C (zh) * 2000-03-23 2005-05-25 西门子移动通讯公司 无线通信系统中的切换方法
CN100373991C (zh) * 2005-06-30 2008-03-05 中国科学院计算技术研究所 一种分组网络中语音通信的加密协商方法
EP2293535A1 (en) * 2009-09-08 2011-03-09 Ikanos Technology Ltd. Method and apparatus for crosstalk cancellation during SELT testing
CN103873183B (zh) * 2012-12-07 2017-03-01 电信科学技术研究院 一种数据传输方法及装置
CN104247358B (zh) * 2013-04-03 2017-11-17 华为技术有限公司 探测调制方法、误差反馈方法及相应设备和系统
KR101755971B1 (ko) * 2013-05-05 2017-07-07 란티크 도이칠란트 게엠베하 연결-준비 그룹을 사용하는 벡터화된 시스템에서의 복수의 회선의 트레이닝 최적화
US9692563B2 (en) * 2014-04-14 2017-06-27 Cisco Technology, Inc. Upstream contention measurement reporting and mitigation in DOCSIS remote PHY network environments

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070047631A1 (en) * 2005-08-29 2007-03-01 Alcatel Method for determining crosstalk coupling and crosstalk determining unit for integration in digital data transmission systems
CN101222242A (zh) * 2005-09-30 2008-07-16 华为技术有限公司 降低vdsl高频串扰的方法及装置
US20080267391A1 (en) * 2005-09-30 2008-10-30 Huawei Technologies Co., Ltd. Method and apparatus for reducing crosstalk between digital subscriber lines
CN101237398A (zh) * 2007-02-02 2008-08-06 华为技术有限公司 一种提高vdsl稳定性的方法及其系统
CN101997796A (zh) * 2009-08-27 2011-03-30 华为技术有限公司 一种消除多载波调制系统中混叠噪声的方法、装置和系统
CN103891155A (zh) * 2011-08-31 2014-06-25 瑞典爱立信有限公司 调制解调器之间的快速串扰限制
CN103229445A (zh) * 2012-12-26 2013-07-31 华为技术有限公司 一种线路的初始化方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228185A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 信号传输方法及通信装置
CN115883049A (zh) * 2022-11-30 2023-03-31 深圳市云天数字能源有限公司 信号同步方法及装置

Also Published As

Publication number Publication date
CN106464544A (zh) 2017-02-22
US11095407B2 (en) 2021-08-17
EP3291491A1 (en) 2018-03-07
EP3291491B1 (en) 2020-01-08
US20180069674A1 (en) 2018-03-08
EP3291491A4 (en) 2018-04-04
CN106464544B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
US10135490B2 (en) Interference group discovery for full duplex network architecture in cable network environment
JP6414715B2 (ja) Osdシステムにおける回線同期方法、システム、およびベクトル化制御エンティティ
US9362959B2 (en) Data processing in a digital subscriber line environment
WO2014032260A1 (zh) 一种兼容vdsl2传统用户端设备的方法、装置及系统
BR112015027220B1 (pt) Método e aparelho para inicialização de um grupo de dispositivos de equipamentos em instalações de cliente
WO2016183731A1 (zh) 一种信号处理方法、装置及系统
US20210105128A1 (en) Full Duplex Cable Communication
US9473240B2 (en) Method and apparatus for providing twisted pair multilink communications
WO2014101847A1 (zh) 一种串扰信道估计方法、装置和系统
US20170237465A1 (en) Nonlinear precoding bit loading method, transmit end, receive end, and system
CN108886381A (zh) Cm受干扰度测量方法、装置和系统
WO2016197324A1 (zh) 一种信号处理方法、装置及系统
CN108737306A (zh) 基于频分复用的通信
US20110235657A1 (en) Multimode Apparatus and Method
US9312975B2 (en) Method and system for initiating bi-directional communication in a time-division duplex communication system
CN105814805A (zh) 一种信号传输方法、装置及系统
EP4270959A2 (en) A comprehensive system design to address the needs for virtual segmentation of the coaxial cable plant
WO2014101202A1 (zh) 多线路串扰测试方法、装置及系统
CN104254977B (zh) 上行导频序列同步的方法、设备及系统
CN105229931A (zh) Osd系统中的线路同步方法、系统及矢量化控制实体
CN115379572A (zh) 无线通信装置及其动态传输频宽配置方法
JP2018074464A (ja) 通信システム、通信装置、送信方法、受信方法、及び、通信方法
JP2006115070A (ja) 通信方法および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015892112

Country of ref document: EP