WO2016181748A1 - Powder dissolving device and dissolving method - Google Patents

Powder dissolving device and dissolving method Download PDF

Info

Publication number
WO2016181748A1
WO2016181748A1 PCT/JP2016/061959 JP2016061959W WO2016181748A1 WO 2016181748 A1 WO2016181748 A1 WO 2016181748A1 JP 2016061959 W JP2016061959 W JP 2016061959W WO 2016181748 A1 WO2016181748 A1 WO 2016181748A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring blade
dissolution
dissolution tank
liquid
stirring
Prior art date
Application number
PCT/JP2016/061959
Other languages
French (fr)
Japanese (ja)
Inventor
俊成 高橋
善之 園田
弘樹 松原
和人 濱野
敏司 原田
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Priority to MX2017014427A priority Critical patent/MX2017014427A/en
Priority to JP2017517836A priority patent/JP6881300B2/en
Publication of WO2016181748A1 publication Critical patent/WO2016181748A1/en
Priority to CONC2017/0011914A priority patent/CO2017011914A2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices

Definitions

  • the present invention relates to a powder melting apparatus and a melting method.
  • a dissolving device for stirring and dissolving a liquid such as water and a powdered drug such as dialysate used for hemodialysis.
  • a dissolution apparatus has a dissolution tank into which water or a powder drug is charged, and a stirring blade for stirring the solution in the dissolution tank, dissolves the powder drug in the dissolution tank, Prepare the lysate.
  • a stirring blade used when preparing such a solution for example, a stirring blade described in Patent Document 1 is used.
  • a stirring blade is attached from the upper part of the dissolution tank, and the liquid in the dissolution tank is forcibly stirred by a motor.
  • the present invention aims to provide a powder dissolution apparatus and a dissolution method that prevent undissolved powder from remaining at the bottom of the dissolution tank and prevent undissolved powder drug from remaining undissolved.
  • the powder dissolving apparatus of the present invention includes a dissolving tank for storing a dissolving liquid, a stirring blade provided in the dissolving tank, and a communication pipe communicating between at least two places having different heights among the dissolving tanks. And a pump provided in the communication pipe, wherein the stirring blade is disposed at a position spaced a predetermined distance from the bottom of the dissolution tank, and the solution in the dissolution tank is driven by the pump.
  • the dissolution tank, the communication pipe, and the like so that the flow of the dissolution liquid that is sent to the bottom of the dissolution tank through the pipe and discharged from the communication pipe to the dissolution tank flows along the bottom of the dissolution tank. Are connected.
  • a bottom portion of the dissolution tank is formed in an inverted conical shape, and the communication pipe is connected to a top portion or a vicinity of the top portion of the inverted cone-shaped bottom portion in the bottom portion of the dissolution tank.
  • the rotating shaft of the stirring blade is arranged so as to be shifted from the central axis of the dissolution tank toward the side of the dissolution tank, and passes through the communication pipe to the bottom of the dissolution tank. It is preferable that the flow is configured to be directed toward the stirring blade.
  • the powder dissolving apparatus further includes a drive unit that rotates the stirring blade forward and backward, and a control unit that controls the drive unit, wherein the control unit is configured to perform the stirring operation. It is preferable that the stirring blade is controlled to rotate so that the dissolved solution stirred by the stirring blade generates an upward flow for a predetermined time after the start.
  • control unit controls the pump so that the pump is driven while the upward flow is generated.
  • the control unit controls the stirring blade so that the solution stirred by the stirring blade generates a downward flow before the dissolving solution causes the upward flow by the stirring blade.
  • the pump is preferably maintained in a non-driven state while the downflow is occurring.
  • the rotation speed of the stirring blade is changed according to the set liquid amount of the solution.
  • the driving unit drives the stirring blade at the first rotational speed while the upward flow is generated, and then performs the second rotation. It is preferable that the control unit controls the stirring blade so that the stirring blade is driven by a number, and the first rotational speed is limited to a predetermined rotational speed for suppressing foaming of the solution.
  • the dissolution method of the present invention includes a dissolution tank for storing a dissolution liquid, a stirring blade provided in the dissolution tank, and a communication pipe communicating between at least two places having different heights among the dissolution tanks, And a pump provided in the communication pipe, wherein the stirring blade is disposed at a position spaced apart from the bottom of the dissolution tank by a predetermined distance.
  • the pump In the dissolution process, the pump is driven to The dissolution liquid in the dissolution tank is sent to the bottom of the dissolution tank through the communication pipe, and the flow of the dissolution liquid discharged from the communication pipe to the dissolution tank flows along the bottom of the dissolution tank. It is characterized by.
  • the bottom of the melting tank is formed in an inverted cone shape, and the communication pipe is connected to the top of the inverted cone-shaped bottom or in the vicinity of the top at the bottom of the melting tank. preferable.
  • the rotating shaft of the stirring blade is arranged so as to be shifted from the central axis of the dissolving tank toward the side of the dissolving tank, and is sent toward the bottom of the dissolving tank through the communication pipe. It is preferable that the flow of the dissolved solution is directed to the stirring blade.
  • the stirring blades are arranged so that the dissolved liquid stirred by the stirring blades generates an upward flow for a predetermined time after the stirring blades start stirring operation. It is preferably rotated.
  • the pump is driven while the upward flow is generated.
  • the dissolution method may be configured such that the stirring blade rotates so that the solution stirred by the stirring blade generates a downward flow before the dissolving solution generates the upward flow by the stirring blade, and the downward flow is performed.
  • the pump is maintained in a non-driven state while
  • the rotation speed of the stirring blade is changed according to the set liquid amount of the dissolution liquid.
  • the agitating blade is driven at the first rotational speed while the drive unit is generating the upward flow.
  • the stirring blade is driven at a second rotational speed, and the first rotational speed is limited to a predetermined rotational speed for suppressing foaming of the solution.
  • the powder dissolving apparatus and the dissolving method of the present invention it is possible to suppress the undissolved powder from being generated at the bottom of the dissolving tank and to prevent undissolved powder drug from remaining undissolved.
  • the powder dissolution apparatus and the dissolution method of the present invention are used to dissolve a powdered drug in a liquid such as water, such as a powdered dialysis drug for preparing a dialysate used for hemodialysis.
  • a powdered dialysis drug for preparing a dialysate used for hemodialysis.
  • a powdered dialysis drug for preparing a dialysate used for hemodialysis.
  • a powdered dialysis drug is dissolved in water
  • the present invention is not limited to the case where the dialysis drug is dissolved, but may be applied to the case of preparing another solution. Can do.
  • FIG. 1 is a schematic view showing an embodiment of the powder dissolving apparatus of the present invention.
  • a powder dissolving apparatus 1 includes a dissolving tank 2 for storing a dissolving liquid L, a stirring blade 3 provided in the dissolving tank 2, and a height of the dissolving tank 2.
  • the communication pipe 4 communicated between at least two different locations, and the pump P provided in the communication pipe 4.
  • the dissolution tank 2 is a tank in which a liquid such as water introduced into the dissolution tank 2 and a powdered drug such as a dialysis drug are stirred and dissolved therein.
  • the dissolution tank 2 is a vertical dissolution tank having a substantially cylindrical side portion 2a extending in a substantially vertical direction and a bottom portion 2b below the side portion 2a.
  • the bottom 2b of the dissolution tank 2 is formed in an inverted conical shape as shown in FIG.
  • the shape of the bottom 2b of the dissolution tank 2 is not limited to the shape illustrated.
  • the bottom 2b may be flat or may be inclined in one direction.
  • a drug inlet 2 c for introducing the dialysis drug into the dissolution tank 2 a supply port 2 d for supplying liquid such as water (RO water) into the dissolution tank 2, and supply Supply means 21 for supplying water to the mouth 2d is provided.
  • the supply means 21 includes a water supply port 21a connected to an external pipe or the like. The water supplied from the water supply port 21 a is supplied into the dissolution tank 2 through the supply pipe 21 b of the supply means 21. Between the water supply port 21a and the supply port 2d, there are provided a flow rate sensor 21c that measures the amount of supplied water and a water supply valve 21d that is automatically controlled and opens and closes the pipeline of the supply tube 21b.
  • the upper part of the dissolution tank 2 is connected to a drive unit M such as a motor for rotating the stirring blade 3, a control unit C for controlling various components of the powder dissolving apparatus 1 such as the drive unit M, and the control unit C.
  • a drive unit M such as a motor for rotating the stirring blade 3
  • a control unit C for controlling various components of the powder dissolving apparatus 1 such as the drive unit M, and the control unit C.
  • an operation means 5 (not shown in FIG. 1; see FIG. 2) such as an operation panel capable of inputting settings of the powder dissolving apparatus 1 such as an operation mode of the powder dissolving apparatus 1 is provided.
  • the control unit C is connected to the control unit C so as to be controllable in order to control the drive unit M, the supply unit 21, the pump P, and the like, and controls the connected control target.
  • the control unit C can be, for example, a microprocessor including a calculation unit and a storage unit.
  • the control unit C performs control such that each process described later is executed based on the information input by the operation unit 5.
  • An operation means such as an operation panel (hereinafter referred to as an operation panel) 5 connected to the control unit C is operated when various processes such as a melting process of the powder dissolving apparatus 1 are performed.
  • the operation panel 5 can be a known operation means such as an operation button or a touch panel.
  • the operation panel 5 includes, for example, a melting mode (“MIXING” in FIG. 2), a washing mode (water washing mode, “RINSE” in FIG. 2), A mode selection unit 52 for selecting a plurality of modes such as a disinfection mode (“CLEANING” in FIG.
  • the powder dissolving apparatus 1 can set the amount of the solution L prepared as described above.
  • the dissolution tank 2 may be provided with a liquid amount detection sensor (not shown) that detects that the set liquid amount has entered the dissolution tank 2.
  • a liquid amount detection sensor for example, a float sensor can be used.
  • a plurality of liquid amount detection sensors may be provided in the dissolution tank 2 in order to detect the liquid level in two stages or three or more stages.
  • the communication pipe 4 includes an upper side connection part 41 a provided on the side part 2 a of the dissolution tank 2 and a lower side connection part provided on the bottom part 2 b of the dissolution tank 2.
  • 41b is connected to the dissolution tank 2.
  • the communication pipe 4 is connected at two locations, the side 2a and the bottom 2b of the dissolution tank 2.
  • the communication pipe 4 may be connected to the dissolution tank 2 at at least two places, and may be connected at three or more places.
  • the communication pipe 4 is provided with a pump P. By the driving of the pump P, the dissolution liquid L in the dissolution tank 2 is circulated from below the side part 2a of the dissolution tank 2 to the bottom part 2b side of the dissolution tank 2.
  • the communication pipe 4 includes a first communication path 42 (communication path formed by reference numerals 42 a and 42 b in FIG. 1) extending from the upper side connection portion 41 a to the pump P, and the pump P. And a second communication path 43 (communication path formed by reference numerals 43a, 43b, 43c, 43d and 43e in FIG. 1) extending to the lower side connection portion 41b.
  • the first communication passage 42 has a first valve V1 between the upper side connection portion 41a and the pump P, and has a second valve V2 between the pump P and the lower side connection portion 41b. is doing.
  • the first valve V1 and the second valve V2 are formed by a circulation passage 44 (reference numerals 44 and 43c) provided as a passage different from the passage (42b, 43a, 43b) in which the pump P is provided. Connected by a passage).
  • the structures of the first valve V1 and the second valve V2 are not particularly limited as long as the flow paths described in the present specification can be switched.
  • a three-way valve is used as the second valve V1 and the second valve V2.
  • the first valve V1 and the second valve V2 are referred to as a first three-way valve V1 and a second three-way valve V2, respectively.
  • the second three-way valve V2 has a liquid supply path 45 that branches from the second communication path 43 and supplies the liquid to the outside.
  • the liquid feed path 45 is provided with a filter (not shown) that removes impurities from the solution L. After the impurities are removed by the filter, the solution L prepared in the dissolution tank 2 is sent to another container or a dialysis machine through the solution feed path 45.
  • the second communication passage 43 has a waste liquid passage 46 (reference numerals 43e, 46a and 46b) on the downstream side (downstream in the circulation direction of the communication pipe 4) of the second three-way valve V2. Formed passages) are connected.
  • the waste liquid passage 46 branches off from the second communication passage 43 (a connection point between 43d and 43e) between the second three-way valve V2 and the lower side connection portion 41b.
  • the waste liquid path 46 is provided for discharging water or the dissolved liquid L from the dissolution tank 2 when the dissolution tank 2 is washed, for example.
  • the waste liquid path 46 is provided with a waste liquid valve V3 and a check valve V4.
  • the waste liquid is discharged by opening the waste liquid valve V3 at the time of waste liquid. Prevents backflow to Further, in the present embodiment, as shown in FIG. 1, an overflow pipe 47 that extends from the upper side to the lower side of the dissolution tank 2 and is connected to the waste liquid path 46 is provided.
  • the overflow pipe 47 is configured such that the dissolution liquid L is discharged from the overflow pipe 47 when the dissolution liquid L exceeds a predetermined amount.
  • a part of the solution L is collected when branching between the pump P and the second three-way valve V2 to check whether the solution L is not dissolved, for example.
  • it has a liquid collection path 48 through which the solution L can be discharged.
  • a liquid collection valve V5 is provided in the liquid collection path 48, and the liquid collection valve V5 is opened at the time of liquid collection to enable liquid collection.
  • the driving unit M drives and rotates the stirring blade 3.
  • the drive unit M is a drive motor that can rotate in the forward and reverse directions, and is controlled by the control unit C according to the selected mode and the set liquid amount to rotate the stirring blade 3 forward or backward.
  • a drive shaft 31 extends downward from the drive unit M toward the inside of the dissolution tank 2.
  • a stirring blade 3 is attached to the distal end side of the drive shaft 31.
  • the drive shaft 31 is provided in such a length that the stirring blade 3 is positioned at a position lower than the liquid level of the solution L at the lowest set liquid amount.
  • the drive shaft 31 may have a fixed length, or the drive shaft 31 can be expanded and contracted, and the drive shaft 31 is driven to expand and contract so that the stirring blade 3 is made of the solution L. You may comprise so that it may move to a position lower than a liquid level.
  • the stirring blade 3 stirs the powdered medicine by the rotation of the stirring blade 3.
  • the stirring blade 3 is disposed at a position spaced apart from the bottom 2 b of the dissolution tank 2 by a predetermined distance.
  • the predetermined distance here is not particularly limited as long as there is a space in which the solution L convects below the stirring blade 3, but for example, the lower end of the stirring blade 3 is located at the lowest position of the bottom 2b of the dissolution tank 2. It is preferable that the dissolution tank 2 is separated by 10 to 30% of the height in the vertical direction. Further, in the present embodiment, as shown in FIG.
  • the dissolution liquid L in the dissolution tank 2 is sent to the bottom 2b side of the dissolution tank 2 through the communication pipe 4.
  • the dissolution tank 2 and the communication pipe 4 are connected so that the flow of the dissolution liquid L discharged from the dissolution tank 2 to the dissolution tank 2 flows along the bottom 2 b of the dissolution tank 2.
  • the medicine is wound up by the flow toward the bottom 2b discharged from the communication tube 4, and is wound up.
  • the obtained powdery medicine is stirred by the stirring blade 3 disposed at a position separated from the bottom 2b, and becomes more easily dissolved. Thereby, it becomes possible to suppress the undissolved residue of the powdery medicine in the solution L.
  • the bottom 2 b of the dissolution tank 2 is formed in an inverted conical shape
  • the communication pipe 4 is the top of the inverted conical bottom 2 b in the bottom 2 b of the dissolution tank 2. It is connected in the vicinity of T or the top T.
  • the powdery medicine remaining undissolved in the dissolution tank 2 moves downward along both inclined portions S of the bottom portion 2b and is collected in the vicinity of the top portion T of the bottom portion 2b.
  • the collected medicine is wound up by the flow of the dissolution liquid L discharged into the dissolution tank 2 from the communication pipe 4 extending in the horizontal direction.
  • the flow of the dissolving liquid L which is disposed and is sent toward the bottom 2b of the dissolution tank 2 through the communication pipe 4 is configured to be directed to the stirring blade 3.
  • the stirring blade 3 since the stirring blade 3 is provided in the flow direction of the solution L that moves the powdered medicine, the wound powder medicine is more easily stirred by the stirring blade 3, and the stirring efficiency is improved. Further improve.
  • the rotation axis of the stirring blade 3 is arranged so as to be shifted from the central axis X of the dissolution tank 2, for example, the distance D1 from the rotation axis of the stirring blade 3 to the central axis X is the side of the dissolution tank 2 from the central axis X.
  • the rotating shaft of the stirring blade 3 so as to be 15 to 35% of the distance D2 to the inner surface of the part 2a.
  • the distance D1 is 15 to 35% of the distance D2
  • the pulverized effect of the solution L in the dissolution tank 2 can be agitated by the stirring blade 3 without impairing the convection effect. it can.
  • the shape of the stirring blade 3 is not particularly limited, and a known shape of the stirring blade can be used.
  • the size of the stirring blade 3 is not particularly limited.
  • the diameter of the stirring blade 3 can be 10 to 40% of the diameter (diameter) of the dissolution tank 2.
  • the stirring blade 3 causes an upward flow (upflow) of the solution L when rotated in one direction, and a downward flow (downflow) of the solution L when rotated in the other direction. ) Is used.
  • the stirring blade 3 rotates in one direction, as shown in FIG. 1, the solution L around the stirring blade 3 flows upward, and the upward convection of the solution L indicated by the arrow A1 is performed. Cause it to occur.
  • the stirring blade 3 Due to the upward convection of the solution L, a flow from the lower side to the upper side of the solution L can be generated, and the accumulation of the drug on the bottom 2b can be suppressed, and the stirring efficiency is improved.
  • the stirring blade 3 rotates in the other direction, as shown in FIG. 1, the solution L around the stirring blade 3 flows downward, and the downward convection of the solution L indicated by the arrow A2 is performed. Cause it to occur.
  • the drug deposited on the bottom 2b can be rolled up by this downward convection. Therefore, the stirring blade 3 can be rotated forward and backward by the driving unit M, and the control unit C can perform the stirring operation according to the state of the solution L by changing the driving direction of the driving unit M according to the state. it can.
  • FIG. 4 is a flowchart showing a melting method of the powder melting apparatus 1.
  • dissolution method shown below is an example to the last, and is not limited to this embodiment.
  • the powder dissolution apparatus 1 is started by operating the ON / OFF switch 51 of the operation panel 5 or the like.
  • the first three-way valve V1 and the second three-way valve V2 are operated while the melting tank 2 is empty, as shown in FIG.
  • the passage 43 is communicated. Thereby, a flow path indicated by an arrow in FIG. 5 is formed, and a circulation path through the communication pipe 4 from the inside of the dissolution tank 2 is secured.
  • a portion where the solution L does not flow is indicated by a broken line.
  • the mode selection unit 52 of the operation panel 5 is operated to select the dissolution mode.
  • the liquid volume setting unit 53 is operated to set the preparation liquid volume.
  • the water supply switch 54a of the operation start unit 54 can be operated.
  • the water supply switch 54a When the amount of the preparation liquid is set, the water supply switch 54a of the operation start unit 54 can be operated.
  • the water supply switch 54a When the water supply switch 54a is pushed, water supply into the dissolution tank 2 is started (S1). The amount of water supply is measured by the flow rate sensor 21c.
  • the control unit C closes the water supply valve 21d and stops the supply of water.
  • the stirring switch 54b of the operation start unit 54 can be operated.
  • the driving unit M is controlled by the control unit C, and the rotation of the stirring blade 3 is started (stirring step S2).
  • the stirring blade 3 rotates, the powdered medicine is introduced from the medicine inlet 2c of the dissolution tank 2 (drug supply step S3).
  • the medicine may be input before the water supply step S1 or at the same time.
  • a process of supplying a liquid such as water and a powdery medicine is collectively referred to as a supply process.
  • the circulation switch 54c of the operation start unit 54 can be operated.
  • the pump P is driven by the controller C. More specifically, when the circulation switch 54c is operated, the stirring blade 3 is temporarily stopped, and water is supplied to the dissolution tank 2 in addition to the predetermined amount of water supplied in step S1 described above. This water supply stops after it is sensed that the liquid amount set by the liquid amount detection sensor such as a float sensor has been reached.
  • the stopped stirring blade 3 is driven again and the pump P is driven, and as shown in FIG. 5, a circulation operation for circulating the solution L through the communication pipe 4 is started (circulation).
  • Step S4 the stirring step S2 and the circulation step S4 are collectively referred to as a dissolution step.
  • the stirring step S2 and the circulation step S4 may be performed simultaneously, or one of the stirring step S2 and the circulation step S4 may be performed.
  • the solution L circulates in the communication tube 4, as described above, the solution L is discharged from the communication tube 4 toward the bottom 2b, and the drug deposited on the bottom 2b is wound up from the bottom 2b.
  • the wound-up medicine 2b is further stirred by the stirring blade 3, and the stirring efficiency is improved.
  • the dissolution process for example, a part of the solution L is collected from the liquid collection channel 48, and it is confirmed whether there is any undissolved drug (dissolution determination process S5).
  • the first three-way valve V1 and the second three-way valve V2 are operated as shown in FIG. 6, and the liquid supply path connected to the liquid supply path 45 from the bottom 2b of the dissolution tank 2 Is formed, the solution L is fed (liquid feeding step S6), and the series of steps is completed.
  • a portion where the solution L does not flow is indicated by a broken line.
  • the operation panel 5 is operated again to return to the stirring step S2, and the dissolution step is resumed. Thereafter, when it is determined that there is no problem in the dissolution determination step S5, the solution L is fed.
  • the liquid feeding step S6 when the liquid feeding is temporarily interrupted, the second three-way valve V2 is operated from the state where the liquid feeding path is formed, and as shown in FIG. 7, reference numerals 44 and 42b. , 43a, 43c can form a loop-shaped circulation path, and the solution L can be circulated in the circulation path when the liquid feeding is interrupted.
  • the control unit C causes the drive unit M to move the solution L stirred by the stirring blade 3 upward for a predetermined time after the stirring blade 3 starts stirring operation.
  • the agitating blade 3 is controlled to rotate so as to convect to (to generate an upward flow).
  • the “predetermined time after the start of the stirring operation” refers to the total amount of time (for example, about 30 minutes at the maximum) during which the stirring operation is performed. This refers to the initial or first half where there is a lot of unmelted residue.
  • the starting point and length of the “predetermined time” are not particularly limited. For example, the starting point is immediately after the stirring operation or the initial stage (for example, within 1 minute), and the length is 5% of the total time of the stirring operation. It can be made 30%.
  • the controller C controls the stirring blade 3 so that the dissolving liquid L stirred by the stirring blade 3 generates a downward flow before the dissolving solution L generates an upward flow by the stirring blade 3.
  • the control unit C is configured to maintain the pump P in a non-driven state while the downflow is occurring. For example, the pump P is stopped for a second predetermined time after the stirring blade 3 starts the stirring operation, and the pump P is driven after the second predetermined time has elapsed. In the initial stage of the stirring step S2, since there is a large amount of undissolved drug in the dissolution tank 2, the powder P is stopped inside the pump P by stopping the pump P for a second predetermined time. Can be prevented from entering.
  • the “second predetermined time” at which the pump P is stopped refers to the initial or first half of the total time during which the stirring operation is performed, in which the powdered medicine is largely undissolved in the solution L, as described above.
  • the time may be the same time as the “predetermined time” when the solution L is convected upward, or may be a different time.
  • the circulation switch 54c can be operated.
  • the melting operation is started (step S21).
  • the control unit C controls the driving unit M to rotate the stirring blade 3 so that the dissolving liquid L stirred by the stirring blade 3 generates a downward flow (step S22). .
  • the stirring blade 3 rotates in the other direction, as shown in FIG. 1, the solution L around the stirring blade 3 flows downward, causing a downward flow of the solution L indicated by an arrow A2.
  • the pump P is maintained in a non-driven state and is stopped, and the medicine accumulated on the bottom 2b can be wound up by the downward flow caused by the rotation of the stirring blade 3. Therefore, it is possible to further suppress the accumulation of the drug on the bottom 2b.
  • the pump P is stopped when the downward flow is generated by the rotation of the stirring blade 3, but when the downward flow is generated by the rotation of the stirring blade 3, the pump P is driven. It doesn't matter. In this case, since the flow of the dissolution liquid L from the communication pipe 4 and the flow of the dissolution liquid L generated by the downward convection partially collide, the dissolution effect is further enhanced by the collision of the flows.
  • step S22 a downward flow is generated at the position of the stirring blade 3 toward the bottom 2b of the dissolution tank 2, and then the control unit C controls the drive unit M, and the stirring blade 3 is moved in the opposite direction to step S22. Rotate to generate an upward flow at the position of the stirring blade 3 and drive the pump P (see step S23).
  • the solution L circulates in the communication tube 4, as described above, the solution L is discharged from the communication tube 4 toward the bottom 2b, and the drug deposited on the bottom 2b is wound up from the bottom 2b.
  • the medicine wound up from the bottom 2 b further raises the flow of the solution L at the position of the stirring blade 3 by the upward flow by the stirring blade 3. Thereby, the chemical
  • step S23 the pump P is stopped, the upward flow is maintained for a while, and the melting operation is continued for a while by upward convection (see step S24).
  • step S24 the control unit C determines whether or not the number of repetitions of steps S22 to S24 set in advance has been performed (step S25). When steps S22 to S24 are less than the preset number of repetitions, the process returns to step S22, and when the number of repetitions set in advance is satisfied, the melting operation ends.
  • the liquid amount set by the operation panel 5 is a predetermined predetermined liquid.
  • the amount of set liquid that can be operated by the operation panel 5 is 25 gallons, 50 gallons, 75 gallons, and 25 gallons smaller than 50 gallons (predetermined liquid amount) are set. )
  • the process proceeds to step S33, and during the third predetermined time, the rotation speed of the stirring blade 3 is controlled to be equal to or lower than the predetermined rotation speed (first rotation speed). At this time, as described above, the stirring blade 3 rotates so that the dissolved liquid L becomes an upward flow, and the pump P is driven.
  • the rotational speed equal to or lower than the predetermined rotational speed is, for example, a rotational speed that is 40 to 60% of the rotational speed of the stirring blade 3 in the stirring step other than step S33.
  • the rotational speed in step S33 can be set to 280 to 1080 rpm.
  • the rotational speed in step S33 can be set to 400 to 900 rpm.
  • step S35 the stirring blade 3 is rotated so that the dissolved liquid L becomes an upward flow at a normal rotational speed as described above (step S35).
  • step S35 the pump P is driven as in step S33.
  • step S33 after the third predetermined time has elapsed, the stirring blade 3 is increased from the first rotational speed equal to or lower than the predetermined rotational speed to the second rotational speed that is greater than the first rotational speed.
  • the stirring blade 3 is rotated so that the solution L is in an upward flow, and the pump P is stopped, as in step S33.
  • the second number of rotations is not particularly limited, but can be the same as the number of rotations in a normal stirring step, and can be, for example, 700 to 1800 rpm, preferably 1000 to 1500 rpm.
  • Step S33 By rotating the stirring blade 3 at the first rotational speed in the step S33 and rotating the stirring blade 3 at the second rotational speed increased in the step S34, a small convection is generated in the dissolution tank 2 at a low rotational speed. Then, large convection can be generated at high rotation, and the foaming of the solution L can be suppressed, and the solution L can be efficiently stirred by the convection.
  • the “third predetermined time” in step S33 can be, for example, 1.5 to 5% of the total time during which the stirring operation is performed.
  • Step S36 after the predetermined time (fourth predetermined time) has elapsed in Step S35, the stirring blade 3 rotates in the same rotation speed and rotation direction as in Step S35, but the pump P is stopped. The solution L is stirred by convection of the solution L.
  • the fourth predetermined time can be the same time as the third predetermined time.
  • step S34 or step S36 the number of stirring operations actually performed (the number of repetitions of S32 to S34 or S32 to S36) is compared with a preset number of times corresponding to the set liquid amount, Whether or not the predetermined stirring operation has been performed is determined by the control unit C (S37).
  • the stirring operation ends in step S38, and when the number of stirring operations actually performed is less than the set number of times, the process returns to S32. The stirring operation is repeated.
  • the pump P is further driven to generate a flow from the communication pipe 4 to increase the dissolution efficiency.
  • the stirring blade 3 generates a downward flow, and the pump P is driven to collide the flow of the solution L from the communication pipe 4 with the downward flow of the stirring blade 3.
  • control of the rotation speed of the stirring blade described in the flowchart of FIG. 9 can also be applied in the steps S22 to S24 of the melting operation described in FIG.
  • steps S23 and S24 in FIG. 8 correspond to steps S33 and S34 or steps S35 and S36 in FIG.
  • the position which provides the drive part M, the control part C, and the operation panel 5 is especially It is not limited and may be attached to the side 2a or bottom 2b side of the dissolution tank 2, or may not be attached to the dissolution tank 2 and may be provided separately.
  • the stirring blade 3 and the drive shaft 31 showed what extended from the upper part side of the dissolution tank 2, the stirring blade 3 and the drive shaft 31 are extended from the lower side of the dissolution tank 2.
  • FIG. It doesn't matter.
  • the first three-way valve V1 and the second three-way valve V2 are manually opened and closed.
  • the valves may be automatically controlled by the control unit C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • External Artificial Organs (AREA)

Abstract

The purpose of the present invention is to provide a powder dissolving device and dissolving method that suppress the arising of undissolved powder at the bottom of a dissolution tank, thereby preventing powdered agents from remaining undissolved. This powder dissolving device 1 is provided with a dissolution tank 2 for storing a dissolving solution L, stirring blades 3 provided in the dissolution tank 2, a connecting pipe 4 linking to the dissolution tank 2 at at least two locations of different heights, and a pump P provided in the connecting pipe 4, and is characterized in that the stirring blades 3 are disposed in a position that is a prescribed spacing distance from the bottom 2b of the dissolution tank 2, and the dissolution tank 2 and the connecting pipe 4 are connected such that the dissolving solution L in the dissolution tank 2 is sent to the bottom 2b side of the dissolution tank 2 through the connecting pipe 4 by driving the pump P and the flow of the dissolving solution L discharged into the dissolution tank 2 from the connecting pipe 4 flows along the bottom 2b of the dissolution tank 2.

Description

粉末溶解装置および溶解方法Powder melting apparatus and melting method
 本発明は、粉末溶解装置および溶解方法に関する。 The present invention relates to a powder melting apparatus and a melting method.
 血液透析に用いる透析液など、水等の液体と粉末薬剤とを撹拌して溶解させる溶解装置が知られている。このような溶解装置は、水や粉末薬剤が投入される溶解槽と、溶解槽内で溶解液を撹拌する撹拌翼とを有し、溶解槽内で粉末薬剤を溶解させて、透析液などの溶解液を調製する。このような溶解液を調製する際に用いられる撹拌翼として、たとえば特許文献1に記載されるような撹拌翼が用いられている。この特許文献1の撹拌翼は、溶解槽の上部から撹拌翼を取り付けて、モータにより強制的に溶解槽内の液を撹拌する。 There is known a dissolving device for stirring and dissolving a liquid such as water and a powdered drug such as dialysate used for hemodialysis. Such a dissolution apparatus has a dissolution tank into which water or a powder drug is charged, and a stirring blade for stirring the solution in the dissolution tank, dissolves the powder drug in the dissolution tank, Prepare the lysate. As a stirring blade used when preparing such a solution, for example, a stirring blade described in Patent Document 1 is used. In the stirring blade of Patent Document 1, a stirring blade is attached from the upper part of the dissolution tank, and the liquid in the dissolution tank is forcibly stirred by a motor.
実公平6-28119号公報Japanese Utility Model Publication No. 6-28119
 しかし、特許文献1のような撹拌翼を用いた場合、溶解槽の底部の中央に溶け残りの粉末が集まって、撹拌翼の下方に未溶解の粉末が残るおそれがあり、粉末薬剤の完全な溶解が難しい。そのため、溶解液が所定の濃度とならない可能性がある。 However, when a stirring blade as in Patent Document 1 is used, undissolved powder may collect in the center of the bottom of the dissolution tank, and undissolved powder may remain below the stirring blade. It is difficult to dissolve. Therefore, there is a possibility that the solution does not have a predetermined concentration.
 そこで、本発明はかかる問題点に鑑みて、未溶解粉末が溶解槽の底部に残ることを抑制し、粉末薬剤の溶け残りを防止する粉末溶解装置および溶解方法の提供を目的とする。 Therefore, in view of such problems, the present invention aims to provide a powder dissolution apparatus and a dissolution method that prevent undissolved powder from remaining at the bottom of the dissolution tank and prevent undissolved powder drug from remaining undissolved.
 本発明の粉末溶解装置は、溶解液を貯留する溶解槽と、溶解槽内に設けられた撹拌翼と、前記溶解槽のうち、高さの異なる少なくとも2か所の間に連通する連通管と、前記連通管に設けられたポンプとを備え、前記撹拌翼が前記溶解槽の底部から所定の距離離間した位置に配置され、前記ポンプの駆動により、前記溶解槽内の溶解液が、前記連通管を通って前記溶解槽の底部側へ送出され、前記連通管から前記溶解槽に排出される溶解液の流れが前記溶解槽の底部に沿って流れるように、前記溶解槽と前記連通管とが接続されていることを特徴とする。 The powder dissolving apparatus of the present invention includes a dissolving tank for storing a dissolving liquid, a stirring blade provided in the dissolving tank, and a communication pipe communicating between at least two places having different heights among the dissolving tanks. And a pump provided in the communication pipe, wherein the stirring blade is disposed at a position spaced a predetermined distance from the bottom of the dissolution tank, and the solution in the dissolution tank is driven by the pump. The dissolution tank, the communication pipe, and the like so that the flow of the dissolution liquid that is sent to the bottom of the dissolution tank through the pipe and discharged from the communication pipe to the dissolution tank flows along the bottom of the dissolution tank. Are connected.
 また、前記溶解槽の底部が逆円錐状に形成され、前記連通管が、前記溶解槽の底部において、前記逆円錐状の底部の頂部または頂部近傍に接続されていることが好ましい。 Further, it is preferable that a bottom portion of the dissolution tank is formed in an inverted conical shape, and the communication pipe is connected to a top portion or a vicinity of the top portion of the inverted cone-shaped bottom portion in the bottom portion of the dissolution tank.
 また、前記撹拌翼の回転軸が、前記溶解槽の中心軸から溶解槽の側部に向かってずれて配置され、前記連通管を通って前記溶解槽の底部へ向かって送出される溶解液の流れが、前記撹拌翼に向かうように構成されていることが好ましい。 In addition, the rotating shaft of the stirring blade is arranged so as to be shifted from the central axis of the dissolution tank toward the side of the dissolution tank, and passes through the communication pipe to the bottom of the dissolution tank. It is preferable that the flow is configured to be directed toward the stirring blade.
 また、前記粉末溶解装置がさらに、前記撹拌翼を正逆回転させる駆動部と、前記駆動部を制御する制御部とを備え、前記制御部が、前記駆動部を、前記撹拌翼が撹拌動作を開始した後の、所定の時間の間、前記撹拌翼により撹拌される溶解液が上昇流を生じるように前記撹拌翼を回転させるように制御することが好ましい。 The powder dissolving apparatus further includes a drive unit that rotates the stirring blade forward and backward, and a control unit that controls the drive unit, wherein the control unit is configured to perform the stirring operation. It is preferable that the stirring blade is controlled to rotate so that the dissolved solution stirred by the stirring blade generates an upward flow for a predetermined time after the start.
 また、前記制御部が、前記上昇流が生じている間、前記ポンプが駆動されるように前記ポンプを制御することが好ましい。 Further, it is preferable that the control unit controls the pump so that the pump is driven while the upward flow is generated.
 また、前記撹拌翼により前記溶解液が前記上昇流を生じる前に、前記撹拌翼により撹拌される溶解液が下降流を生じるように、前記制御部が前記撹拌翼を制御し、前記制御部は、前記下降流が生じている間、前記ポンプを非駆動状態に維持することが好ましい。 The control unit controls the stirring blade so that the solution stirred by the stirring blade generates a downward flow before the dissolving solution causes the upward flow by the stirring blade. The pump is preferably maintained in a non-driven state while the downflow is occurring.
 また、前記撹拌翼の回転数が、前記溶解液の設定液量に応じて変更されることが好ましい。 Further, it is preferable that the rotation speed of the stirring blade is changed according to the set liquid amount of the solution.
 また、前記溶解液の設定液量が所定の量より少ない場合、前記駆動部が、前記上昇流が生じている間に、第1の回転数で前記撹拌翼を駆動した後、第2の回転数で前記撹拌翼を駆動するように、前記制御部により制御され、前記第1の回転数は、溶解液の泡立ちを抑制するための所定の回転数に制限されていることが好ましい。 Further, when the set liquid amount of the dissolution liquid is smaller than a predetermined amount, the driving unit drives the stirring blade at the first rotational speed while the upward flow is generated, and then performs the second rotation. It is preferable that the control unit controls the stirring blade so that the stirring blade is driven by a number, and the first rotational speed is limited to a predetermined rotational speed for suppressing foaming of the solution.
 本発明の溶解方法は、溶解液を貯留する溶解槽と、溶解槽内に設けられた撹拌翼と、前記溶解槽のうち、高さの異なる少なくとも2か所の間に連通する連通管と、前記連通管に設けられたポンプとを備え、前記撹拌翼が前記溶解槽の底部から所定の距離離間した位置に配置された粉末溶解装置を用いた溶解方法であって、前記溶解方法が、前記溶解槽に、液体および粉末状の薬剤を供給する供給工程、および前記液体および粉末状の薬剤を撹拌し、溶解液を調製する溶解工程を備え、前記溶解工程において、前記ポンプの駆動により、前記溶解槽内の溶解液が、前記連通管を通って前記溶解槽の底部側へ送出され、前記連通管から前記溶解槽に排出される溶解液の流れが前記溶解槽の底部に沿って流れることを特徴とする。 The dissolution method of the present invention includes a dissolution tank for storing a dissolution liquid, a stirring blade provided in the dissolution tank, and a communication pipe communicating between at least two places having different heights among the dissolution tanks, And a pump provided in the communication pipe, wherein the stirring blade is disposed at a position spaced apart from the bottom of the dissolution tank by a predetermined distance. A supply step of supplying a liquid and powdered drug to the dissolution tank; and a dissolution process of stirring the liquid and powdered drug to prepare a solution. In the dissolution process, the pump is driven to The dissolution liquid in the dissolution tank is sent to the bottom of the dissolution tank through the communication pipe, and the flow of the dissolution liquid discharged from the communication pipe to the dissolution tank flows along the bottom of the dissolution tank. It is characterized by.
 また、上記溶解方法は、前記溶解槽の底部が逆円錐状に形成され、前記連通管が、前記溶解槽の底部において、前記逆円錐状の底部の頂部または頂部近傍に接続されていることが好ましい。 Further, in the melting method, the bottom of the melting tank is formed in an inverted cone shape, and the communication pipe is connected to the top of the inverted cone-shaped bottom or in the vicinity of the top at the bottom of the melting tank. preferable.
 また、上記溶解方法は、前記撹拌翼の回転軸が、前記溶解槽の中心軸から溶解槽の側部に向かってずれて配置され、前記連通管を通って前記溶解槽の底部へ向かって送出される溶解液の流れが、前記撹拌翼に向かうように構成されていることが好ましい。 Further, in the melting method, the rotating shaft of the stirring blade is arranged so as to be shifted from the central axis of the dissolving tank toward the side of the dissolving tank, and is sent toward the bottom of the dissolving tank through the communication pipe. It is preferable that the flow of the dissolved solution is directed to the stirring blade.
 また、上記溶解方法は、前記溶解工程において、前記撹拌翼が撹拌動作を開始した後の、所定の時間の間、前記撹拌翼により撹拌される溶解液が上昇流を生じるように前記撹拌翼が回転されることが好ましい。 Further, in the melting step, in the melting step, the stirring blades are arranged so that the dissolved liquid stirred by the stirring blades generates an upward flow for a predetermined time after the stirring blades start stirring operation. It is preferably rotated.
 また、上記溶解方法は、前記上昇流が生じている間、前記ポンプが駆動されることが好ましい。 Further, in the above dissolution method, it is preferable that the pump is driven while the upward flow is generated.
 また、上記溶解方法は、前記撹拌翼により前記溶解液が前記上昇流を生じる前に、前記撹拌翼により撹拌される溶解液が下降流を生じるように、前記撹拌翼が回転し、前記下降流が生じている間、前記ポンプが非駆動状態に維持されることが好ましい。 Further, the dissolution method may be configured such that the stirring blade rotates so that the solution stirred by the stirring blade generates a downward flow before the dissolving solution generates the upward flow by the stirring blade, and the downward flow is performed. Preferably, the pump is maintained in a non-driven state while
 また、上記溶解方法は、前記撹拌翼の回転数が、前記溶解液の設定液量に応じて変更されることが好ましい。 Further, in the above dissolution method, it is preferable that the rotation speed of the stirring blade is changed according to the set liquid amount of the dissolution liquid.
 また、上記溶解方法は、前記溶解液の設定液量が所定の量より少ない場合、前記駆動部が、前記上昇流が生じている間に、第1の回転数で前記撹拌翼が駆動された後、第2の回転数で前記撹拌翼が駆動され、前記第1の回転数は、溶解液の泡立ちを抑制するための所定の回転数に制限されていることが好ましい。 Further, in the dissolution method, when the set liquid amount of the dissolution liquid is smaller than a predetermined amount, the agitating blade is driven at the first rotational speed while the drive unit is generating the upward flow. After that, it is preferable that the stirring blade is driven at a second rotational speed, and the first rotational speed is limited to a predetermined rotational speed for suppressing foaming of the solution.
 本発明の粉末溶解装置および溶解方法によれば、未溶解粉末が溶解槽の底部に生じることを抑制し、粉末薬剤の溶け残りを防止することができる。 According to the powder dissolving apparatus and the dissolving method of the present invention, it is possible to suppress the undissolved powder from being generated at the bottom of the dissolving tank and to prevent undissolved powder drug from remaining undissolved.
本発明の一実施形態の粉末溶解装置を示す概略図である。It is the schematic which shows the powder dissolving apparatus of one Embodiment of this invention. 本発明の一実施形態の粉末溶解装置に用いられる操作パネルの一例を示す図である。It is a figure which shows an example of the operation panel used for the powder melt | dissolution apparatus of one Embodiment of this invention. 本発明の一実施形態の粉末溶解装置の底部における溶解液の流れを示す概略図である。It is the schematic which shows the flow of the solution in the bottom part of the powder dissolving apparatus of one Embodiment of this invention. 本発明の一実施形態の溶解方法を示すフローチャートである。It is a flowchart which shows the melt | dissolution method of one Embodiment of this invention. 連通管の第1連通路および第2連通路が連通された状態を示す概略図である。It is the schematic which shows the state which the 1st communicating path and 2nd communicating path of the communicating pipe were connected. 粉末溶解装置の底部から送液路までが連通された状態を示す概略図である。It is the schematic which shows the state from the bottom part of the powder dissolving apparatus to the liquid feeding path. 送液の中断時に、溶解液を循環させるループ状の循環路を示す概略図である。It is the schematic which shows the loop-form circulation path which circulates a solution at the time of interruption of liquid feeding. 溶解工程の詳細について説明するフローチャートである。It is a flowchart explaining the detail of a melt | dissolution process. 粉末溶解装置の設定液量に応じた制御について説明するフローチャートである。It is a flowchart explaining the control according to the setting liquid amount of a powder dissolution apparatus.
 以下、添付図面を参照し、本発明の粉末溶解装置および溶解方法を説明する。本発明の粉末溶解装置および溶解方法は、たとえば、血液透析に使用する透析液を調製するための粉末状の透析薬剤など、粉末状の薬剤を水等の液体に溶解させるために用いられる。以下に示す実施形態では、粉末状の透析薬剤を水に溶解させる場合について説明するが、本発明は透析薬剤を溶解させる場合に限定されず、他の溶解液を調製する場合にも適用することができる。 Hereinafter, the powder dissolution apparatus and the dissolution method of the present invention will be described with reference to the accompanying drawings. The powder dissolution apparatus and the dissolution method of the present invention are used to dissolve a powdered drug in a liquid such as water, such as a powdered dialysis drug for preparing a dialysate used for hemodialysis. In the embodiment described below, a case where a powdered dialysis drug is dissolved in water will be described. However, the present invention is not limited to the case where the dialysis drug is dissolved, but may be applied to the case of preparing another solution. Can do.
 図1は、本発明の粉末溶解装置の一実施形態を示す概略図である。 FIG. 1 is a schematic view showing an embodiment of the powder dissolving apparatus of the present invention.
 図1に示されるように、一実施形態の粉末溶解装置1は、溶解液Lを貯留する溶解槽2と、溶解槽2内に設けられた撹拌翼3と、溶解槽2のうち、高さの異なる少なくとも2か所の間に連通する連通管4と、連通管4に設けられたポンプPとを備えている。 As shown in FIG. 1, a powder dissolving apparatus 1 according to an embodiment includes a dissolving tank 2 for storing a dissolving liquid L, a stirring blade 3 provided in the dissolving tank 2, and a height of the dissolving tank 2. The communication pipe 4 communicated between at least two different locations, and the pump P provided in the communication pipe 4.
 溶解槽2は、溶解槽2に投入される水等の液体と、透析薬剤等の粉末状の薬剤とをその内部で撹拌し、溶解させる槽である。溶解槽2は、本実施形態では、略垂直方向に延びる略円筒状の側部2aと、側部2aの下方に底部2bを有する縦型の溶解槽である。溶解槽2の底部2bは、本実施形態では、図1に示されるように逆円錐状に形成されている。しかし、溶解槽2の底部2bの形状は、図示する形状に限定されるものではない。たとえば、底部2bは、平坦であってもよいし、一方向に傾斜していても構わない。 The dissolution tank 2 is a tank in which a liquid such as water introduced into the dissolution tank 2 and a powdered drug such as a dialysis drug are stirred and dissolved therein. In this embodiment, the dissolution tank 2 is a vertical dissolution tank having a substantially cylindrical side portion 2a extending in a substantially vertical direction and a bottom portion 2b below the side portion 2a. In the present embodiment, the bottom 2b of the dissolution tank 2 is formed in an inverted conical shape as shown in FIG. However, the shape of the bottom 2b of the dissolution tank 2 is not limited to the shape illustrated. For example, the bottom 2b may be flat or may be inclined in one direction.
 溶解槽2の上部には、透析薬剤を溶解槽2内に投入するための薬剤投入口2cと、水(RO水)等の液体を溶解槽2内に供給するための供給口2dと、供給口2dに水を供給する供給手段21とを備えている。本実施形態では、供給手段21は、外部の管などに接続される給水口21aを備えている。給水口21aから供給される水は、供給手段21の供給管21bを通って溶解槽2内部に供給される。給水口21aと供給口2dとの間には、供給された水の量を測定する流量センサ21cと、自動制御され、供給管21bの管路を開閉する給水弁21dとが設けられている。また、溶解槽2の上部には、撹拌翼3を回転させるモータ等の駆動部Mと、駆動部M等、粉末溶解装置1の各種構成要素を制御する制御部Cと、制御部Cに接続され、粉末溶解装置1の動作モードなど、粉末溶解装置1の設定の入力が可能な操作パネル等の操作手段5(図1においては図示せず。図2参照)とが設けられている。 In the upper part of the dissolution tank 2, a drug inlet 2 c for introducing the dialysis drug into the dissolution tank 2, a supply port 2 d for supplying liquid such as water (RO water) into the dissolution tank 2, and supply Supply means 21 for supplying water to the mouth 2d is provided. In the present embodiment, the supply means 21 includes a water supply port 21a connected to an external pipe or the like. The water supplied from the water supply port 21 a is supplied into the dissolution tank 2 through the supply pipe 21 b of the supply means 21. Between the water supply port 21a and the supply port 2d, there are provided a flow rate sensor 21c that measures the amount of supplied water and a water supply valve 21d that is automatically controlled and opens and closes the pipeline of the supply tube 21b. Further, the upper part of the dissolution tank 2 is connected to a drive unit M such as a motor for rotating the stirring blade 3, a control unit C for controlling various components of the powder dissolving apparatus 1 such as the drive unit M, and the control unit C. In addition, an operation means 5 (not shown in FIG. 1; see FIG. 2) such as an operation panel capable of inputting settings of the powder dissolving apparatus 1 such as an operation mode of the powder dissolving apparatus 1 is provided.
 制御部Cは、駆動部M、供給手段21、ポンプP等を制御するために、これらに制御可能に接続され、接続された制御対象を制御する。制御部Cは、たとえば、演算部、記憶部などを備えたマイクロプロセッサとすることができる。制御部Cは、操作手段5により入力された情報に基づいて、後述する各工程を実行するように制御を行う。 The control unit C is connected to the control unit C so as to be controllable in order to control the drive unit M, the supply unit 21, the pump P, and the like, and controls the connected control target. The control unit C can be, for example, a microprocessor including a calculation unit and a storage unit. The control unit C performs control such that each process described later is executed based on the information input by the operation unit 5.
 制御部Cに接続された操作パネル等の操作手段(以下、操作パネルという)5は、粉末溶解装置1の溶解工程などの各種工程を行う際に操作される。操作パネル5は、たとえば、操作ボタンやタッチパネル等、公知の操作手段を用いることができる。操作パネル5は、たとえば、電源のON/OFFスイッチ51以外に、粉末を溶解させるための溶解モード(図2中の「MIXING」)、洗浄モード(水洗モード。図2中の「RINSE」)、消毒モード(図2中の「CLEANING」)など、複数のモードを選択するモード選択部52と、液量の設定を行う液量設定部53と、給水スイッチ54a、撹拌スイッチ54b、循環スイッチ54c、送液スイッチ54dなど、後述する各工程の動作を開始するために操作される動作開始部54とを有している。また、操作パネル5を操作することにより、各工程の処理時間や、設定液量などの設定の変更を行うこともできる。なお、図2に示した操作パネル5はあくまで一例であり、操作パネル5のデザインや配置、各部位の表示の方法などは特に限定されない。 An operation means such as an operation panel (hereinafter referred to as an operation panel) 5 connected to the control unit C is operated when various processes such as a melting process of the powder dissolving apparatus 1 are performed. The operation panel 5 can be a known operation means such as an operation button or a touch panel. The operation panel 5 includes, for example, a melting mode (“MIXING” in FIG. 2), a washing mode (water washing mode, “RINSE” in FIG. 2), A mode selection unit 52 for selecting a plurality of modes such as a disinfection mode (“CLEANING” in FIG. 2), a liquid amount setting unit 53 for setting a liquid amount, a water supply switch 54a, a stirring switch 54b, a circulation switch 54c, An operation start unit 54 that is operated to start an operation of each process described later, such as a liquid feed switch 54d. Further, by operating the operation panel 5, it is possible to change settings such as the processing time of each process and the amount of set liquid. Note that the operation panel 5 shown in FIG. 2 is merely an example, and the design and arrangement of the operation panel 5 and the display method of each part are not particularly limited.
 また、粉末溶解装置1は、上述したように調製する溶解液Lの液量を設定することが可能である。溶解槽2には、設定された液量が溶解槽2に入ったことを検知する液量検出センサ(図示せず)が設けられていても構わない。液量検出センサは、たとえば、フロートセンサを用いることができ、たとえば、2段階または3段階以上の液面を検出するために複数の液量検出センサが溶解槽2に設けられていてもよい。 Further, the powder dissolving apparatus 1 can set the amount of the solution L prepared as described above. The dissolution tank 2 may be provided with a liquid amount detection sensor (not shown) that detects that the set liquid amount has entered the dissolution tank 2. As the liquid amount detection sensor, for example, a float sensor can be used. For example, a plurality of liquid amount detection sensors may be provided in the dissolution tank 2 in order to detect the liquid level in two stages or three or more stages.
 連通管4は、本実施形態では、図1に示されるように、溶解槽2の側部2aに設けられた上方側接続部41aと、溶解槽2の底部2bに設けられた下方側接続部41bとにより、溶解槽2に接続されている。なお、本実施形態では溶解槽2の側部2aおよび底部2bの2か所において連通管4が接続されている。しかし、連通管4は、溶解槽2に少なくとも2か所で接続されていればよく、3か所以上で接続されていてもよい。連通管4には、図1に示されるように、ポンプPが設けられている。ポンプPの駆動により、溶解槽2内の溶解液Lが、溶解槽2の側部2aの下方から、溶解槽2の底部2b側へと循環される。連通管4は、図1に示されるように、上方側接続部41aからポンプPまで延びる第1連通路42(図1中、参照符号42aおよび42bにより形成される連通路)と、ポンプPから下方側接続部41bまで延びる第2連通路43(図1中、参照符号43a、43b、43c、43dおよび43eにより形成される連通路)とを有している。第1連通路42には、上方側接続部41aとポンプPとの間に、第1の弁V1を有し、ポンプPと下方側接続部41bとの間に、第2の弁V2を有している。第1の弁V1と、第2の弁V2とは、ポンプPが設けられている通路(42b、43a、43b)とは別の通路として設けられた循環通路44(参照符号44および43cにより形成される通路)により接続されている。なお、本実施形態では、第1の弁V1および第2の弁V2は、本明細書で説明する流路の切り替えが可能であればその構造は特に限定されないが、本実施形態では、第1の弁V1および第2の弁V2として三方弁が用いられている。以下の説明では、第1の弁V1および第2の弁V2をそれぞれ第1三方弁V1および第2三方弁V2と呼ぶ。 As shown in FIG. 1, the communication pipe 4 includes an upper side connection part 41 a provided on the side part 2 a of the dissolution tank 2 and a lower side connection part provided on the bottom part 2 b of the dissolution tank 2. 41b is connected to the dissolution tank 2. In this embodiment, the communication pipe 4 is connected at two locations, the side 2a and the bottom 2b of the dissolution tank 2. However, the communication pipe 4 may be connected to the dissolution tank 2 at at least two places, and may be connected at three or more places. As shown in FIG. 1, the communication pipe 4 is provided with a pump P. By the driving of the pump P, the dissolution liquid L in the dissolution tank 2 is circulated from below the side part 2a of the dissolution tank 2 to the bottom part 2b side of the dissolution tank 2. As shown in FIG. 1, the communication pipe 4 includes a first communication path 42 (communication path formed by reference numerals 42 a and 42 b in FIG. 1) extending from the upper side connection portion 41 a to the pump P, and the pump P. And a second communication path 43 (communication path formed by reference numerals 43a, 43b, 43c, 43d and 43e in FIG. 1) extending to the lower side connection portion 41b. The first communication passage 42 has a first valve V1 between the upper side connection portion 41a and the pump P, and has a second valve V2 between the pump P and the lower side connection portion 41b. is doing. The first valve V1 and the second valve V2 are formed by a circulation passage 44 ( reference numerals 44 and 43c) provided as a passage different from the passage (42b, 43a, 43b) in which the pump P is provided. Connected by a passage). In the present embodiment, the structures of the first valve V1 and the second valve V2 are not particularly limited as long as the flow paths described in the present specification can be switched. A three-way valve is used as the second valve V1 and the second valve V2. In the following description, the first valve V1 and the second valve V2 are referred to as a first three-way valve V1 and a second three-way valve V2, respectively.
 また、本実施形態では、第2三方弁V2の部位で第2連通路43から分岐し、外部へ送液するための送液路45を有している。送液路45には、溶解液Lから不純物を取り除くフィルター(図示せず)が設けられる。溶解槽2内で調製された溶解液Lは、フィルターにより不純物が取り除かれた後、送液路45により、他の容器や透析装置に送液される。また、第2連通路43には、図1に示されるように、第2三方弁V2の下流(連通管4の循環方向における下流)側に、廃液路46(参照符号43e、46aおよび46bにより形成される通路)が接続されている。廃液路46は、第2三方弁V2と、下方側接続部41bとの間の第2連通路43(43dおよび43eの接続箇所)から分岐している。廃液路46は、たとえば、溶解槽2の洗浄時など、溶解槽2内から、水や溶解液Lを排出するために設けられる。廃液路46には、図1に示されるように、廃液弁V3および逆止弁V4が設けられ、廃液時に廃液弁V3を開放することにより廃液が行なわれるとともに、逆止弁V4により溶解槽2への逆流を防止している。また、本実施形態では、図1に示されるように、溶解槽2の上部側から下部側へ延び、廃液路46と接続されるオーバーフロー管47が設けられている。オーバーフロー管47は、溶解液Lが所定量を超えたときに、オーバーフロー管47から溶解液Lが排出されるように構成されている。また、本実施形態では、ポンプPと第2三方弁V2との間で分岐して、たとえば、溶解液Lの溶け残りがないかを確認する際など、溶解液Lの一部を採液するために設けられ、外部に溶解液Lを排出可能な採液路48を有している。採液路48には、採液弁V5が設けられ、採液時に採液弁V5を開放して、採液が可能となっている。 In the present embodiment, the second three-way valve V2 has a liquid supply path 45 that branches from the second communication path 43 and supplies the liquid to the outside. The liquid feed path 45 is provided with a filter (not shown) that removes impurities from the solution L. After the impurities are removed by the filter, the solution L prepared in the dissolution tank 2 is sent to another container or a dialysis machine through the solution feed path 45. Further, as shown in FIG. 1, the second communication passage 43 has a waste liquid passage 46 ( reference numerals 43e, 46a and 46b) on the downstream side (downstream in the circulation direction of the communication pipe 4) of the second three-way valve V2. Formed passages) are connected. The waste liquid passage 46 branches off from the second communication passage 43 (a connection point between 43d and 43e) between the second three-way valve V2 and the lower side connection portion 41b. The waste liquid path 46 is provided for discharging water or the dissolved liquid L from the dissolution tank 2 when the dissolution tank 2 is washed, for example. As shown in FIG. 1, the waste liquid path 46 is provided with a waste liquid valve V3 and a check valve V4. The waste liquid is discharged by opening the waste liquid valve V3 at the time of waste liquid. Prevents backflow to Further, in the present embodiment, as shown in FIG. 1, an overflow pipe 47 that extends from the upper side to the lower side of the dissolution tank 2 and is connected to the waste liquid path 46 is provided. The overflow pipe 47 is configured such that the dissolution liquid L is discharged from the overflow pipe 47 when the dissolution liquid L exceeds a predetermined amount. In the present embodiment, a part of the solution L is collected when branching between the pump P and the second three-way valve V2 to check whether the solution L is not dissolved, for example. For this purpose, it has a liquid collection path 48 through which the solution L can be discharged. A liquid collection valve V5 is provided in the liquid collection path 48, and the liquid collection valve V5 is opened at the time of liquid collection to enable liquid collection.
 駆動部Mは、撹拌翼3を駆動して回転させる。本実施形態では、駆動部Mは、正逆回転可能な駆動モータであり、選択されたモードや、設定液量に応じて、制御部Cにより制御されて、撹拌翼3を正転または逆転させる。駆動部Mからは、溶解槽2の内部に向かって駆動シャフト31が下方に延びている。駆動シャフト31の先端側には、撹拌翼3が取り付けられている。駆動シャフト31は、最も低い設定液量のときに、撹拌翼3が溶解液Lの液面よりも低い位置に位置付けられるような長さで設けられる。なお、駆動シャフト31は、長さが固定されたものであってもよいし、駆動シャフト31を伸縮可能に構成して、駆動シャフト31を伸縮駆動することにより、撹拌翼3が溶解液Lの液面よりも低い位置に移動するように構成しても構わない。 The driving unit M drives and rotates the stirring blade 3. In the present embodiment, the drive unit M is a drive motor that can rotate in the forward and reverse directions, and is controlled by the control unit C according to the selected mode and the set liquid amount to rotate the stirring blade 3 forward or backward. . A drive shaft 31 extends downward from the drive unit M toward the inside of the dissolution tank 2. A stirring blade 3 is attached to the distal end side of the drive shaft 31. The drive shaft 31 is provided in such a length that the stirring blade 3 is positioned at a position lower than the liquid level of the solution L at the lowest set liquid amount. The drive shaft 31 may have a fixed length, or the drive shaft 31 can be expanded and contracted, and the drive shaft 31 is driven to expand and contract so that the stirring blade 3 is made of the solution L. You may comprise so that it may move to a position lower than a liquid level.
 撹拌翼3は、撹拌翼3の回転により、粉末状の薬剤を撹拌する。撹拌翼3は、図1に示されるように、溶解槽2の底部2bから所定の距離離間した位置に配置されている。ここでいう所定の距離は、撹拌翼3の下方に溶解液Lが対流するスペースがあれば特に限定されないが、たとえば、撹拌翼3の下端が、溶解槽2の底部2bの最も低い位置に対して、溶解槽2の上下方向の高さの10~30%離間していることが好ましい。また、本実施形態では、図1に示されるように、ポンプPの駆動により、溶解槽2内の溶解液Lが、連通管4を通って溶解槽2の底部2b側へ送出され、連通管4から溶解槽2に排出される溶解液Lの流れが溶解槽2の底部2bに沿って流れるように、溶解槽2と連通管4とが接続されている。これにより、図3に破線で示されるように、底部2bに粉末状の薬剤が堆積した場合であっても、薬剤は、連通管4から排出される底部2b側への流れにより巻き上げられ、巻き上げられた粉末状の薬剤は、底部2bから離間した位置に配置された撹拌翼3により撹拌されて、より溶けやすくなる。これにより、溶解液Lにおける粉末状の薬剤の溶け残りを抑制することが可能になる。 The stirring blade 3 stirs the powdered medicine by the rotation of the stirring blade 3. As shown in FIG. 1, the stirring blade 3 is disposed at a position spaced apart from the bottom 2 b of the dissolution tank 2 by a predetermined distance. The predetermined distance here is not particularly limited as long as there is a space in which the solution L convects below the stirring blade 3, but for example, the lower end of the stirring blade 3 is located at the lowest position of the bottom 2b of the dissolution tank 2. It is preferable that the dissolution tank 2 is separated by 10 to 30% of the height in the vertical direction. Further, in the present embodiment, as shown in FIG. 1, when the pump P is driven, the dissolution liquid L in the dissolution tank 2 is sent to the bottom 2b side of the dissolution tank 2 through the communication pipe 4. The dissolution tank 2 and the communication pipe 4 are connected so that the flow of the dissolution liquid L discharged from the dissolution tank 2 to the dissolution tank 2 flows along the bottom 2 b of the dissolution tank 2. As a result, as shown by the broken line in FIG. 3, even when the powdery medicine is deposited on the bottom 2b, the medicine is wound up by the flow toward the bottom 2b discharged from the communication tube 4, and is wound up. The obtained powdery medicine is stirred by the stirring blade 3 disposed at a position separated from the bottom 2b, and becomes more easily dissolved. Thereby, it becomes possible to suppress the undissolved residue of the powdery medicine in the solution L.
 また、本実施形態では、図3に示されるように、溶解槽2の底部2bが逆円錐状に形成され、連通管4が、溶解槽2の底部2bにおいて、逆円錐状の底部2bの頂部Tまたは頂部Tの近傍に接続されている。この構成により、溶解槽2内で溶け残った粉末状の薬剤は、底部2bの両方の傾斜部Sに沿って下方へ向かい、底部2bの頂部Tの近傍に集められる。集められた薬剤は、本実施形態では、水平方向に延びる連通管4から溶解槽2内に排出される溶解液Lの流れによって巻き上げられる。溶解液Lの流れは、底部2bの傾斜部Sに沿って流れて、薬剤は溶解槽2内で底部2bから上向きに流れ、撹拌翼3に近付いて移動する。これにより、巻き上げられた薬剤が撹拌翼3により撹拌され、撹拌効率が向上し、より溶け残りを抑制することができる。また、本実施形態では、図1および図3に示されるように、撹拌翼3の回転軸(駆動シャフト31)が、溶解槽2の中心軸Xから溶解槽2の側部2aに向かってずれて配置され、連通管4を通って溶解槽2の底部2bへ向かって送出される溶解液Lの流れが、撹拌翼3に向かうように構成されている。この場合、粉末状の薬剤を移動させる溶解液Lの流れ方向に、撹拌翼3が設けられているので、巻き上げられた粉末状の薬剤がより確実に撹拌翼3により撹拌されやすく、撹拌効率がさらに向上する。撹拌翼3の回転軸が、溶解槽2の中心軸Xからずれて配置される場合、たとえば、撹拌翼3の回転軸から中心軸Xまでの距離D1が、中心軸Xから溶解槽2の側部2aの内面までの距離D2の15~35%となるように撹拌翼3の回転軸を配置することが好ましい。距離D1を、距離D2の15~35%とすることにより、溶解槽2内での溶解液Lの対流効果が損なわれることなく、巻き上げられた粉末状の薬剤を撹拌翼3により撹拌することができる。 Further, in the present embodiment, as shown in FIG. 3, the bottom 2 b of the dissolution tank 2 is formed in an inverted conical shape, and the communication pipe 4 is the top of the inverted conical bottom 2 b in the bottom 2 b of the dissolution tank 2. It is connected in the vicinity of T or the top T. With this configuration, the powdery medicine remaining undissolved in the dissolution tank 2 moves downward along both inclined portions S of the bottom portion 2b and is collected in the vicinity of the top portion T of the bottom portion 2b. In the present embodiment, the collected medicine is wound up by the flow of the dissolution liquid L discharged into the dissolution tank 2 from the communication pipe 4 extending in the horizontal direction. The flow of the dissolution liquid L flows along the inclined portion S of the bottom portion 2 b, and the medicine flows upward from the bottom portion 2 b in the dissolution tank 2 and moves closer to the stirring blade 3. Thereby, the wound-up chemical | medical agent is stirred by the stirring blade 3, agitation efficiency improves, and it can suppress a melt | dissolution residue more. Moreover, in this embodiment, as FIG.1 and FIG.3 shows, the rotating shaft (drive shaft 31) of the stirring blade 3 slip | deviates from the center axis | shaft X of the dissolution tank 2 toward the side part 2a of the dissolution tank 2. FIG. The flow of the dissolving liquid L which is disposed and is sent toward the bottom 2b of the dissolution tank 2 through the communication pipe 4 is configured to be directed to the stirring blade 3. In this case, since the stirring blade 3 is provided in the flow direction of the solution L that moves the powdered medicine, the wound powder medicine is more easily stirred by the stirring blade 3, and the stirring efficiency is improved. Further improve. In the case where the rotation axis of the stirring blade 3 is arranged so as to be shifted from the central axis X of the dissolution tank 2, for example, the distance D1 from the rotation axis of the stirring blade 3 to the central axis X is the side of the dissolution tank 2 from the central axis X. It is preferable to arrange the rotating shaft of the stirring blade 3 so as to be 15 to 35% of the distance D2 to the inner surface of the part 2a. By setting the distance D1 to be 15 to 35% of the distance D2, the pulverized effect of the solution L in the dissolution tank 2 can be agitated by the stirring blade 3 without impairing the convection effect. it can.
 なお、撹拌翼3の形状は、特に限定されず、公知の形状の撹拌翼を用いることができる。また撹拌翼3の大きさは、特に限定されないが、たとえば、撹拌翼3の直径が、溶解槽2の径(直径)の10~40%とすることができる。しかし、本実施形態では、撹拌翼3として、一方向に回転したときには溶解液Lの上向きの流れ(上昇流)を生じさせ、他方向に回転したときは溶解液Lの下向きの流れ(下降流)を生じさせる構造の撹拌翼が用いられている。撹拌翼3が一方向に回転するときは、図1に示されるように、撹拌翼3の周囲の溶解液Lが上方へ向かって流れ、矢印A1で示す、溶解液Lの上方への対流を生じさせる。溶解液Lの上方への対流により、溶解液Lの下方から上方への流れを生み出し、底部2bへの薬剤の堆積を抑制することができ、撹拌効率が向上する。また、撹拌翼3が他方向に回転すると、図1に示されるように、撹拌翼3の周囲の溶解液Lが下方へ向かって流れ、矢印A2で示す、溶解液Lの下方への対流を生じさせる。連通管4による薬剤の巻き上げに加えて、この下方への対流によっても、底部2bに堆積した薬剤を巻き上げることができる。したがって、撹拌翼3が駆動部Mにより正逆回転可能であり、制御部Cによって駆動部Mを状況に応じて駆動方向を変えることによって、溶解液Lの状況に応じた撹拌動作を行うことができる。 In addition, the shape of the stirring blade 3 is not particularly limited, and a known shape of the stirring blade can be used. The size of the stirring blade 3 is not particularly limited. For example, the diameter of the stirring blade 3 can be 10 to 40% of the diameter (diameter) of the dissolution tank 2. However, in the present embodiment, the stirring blade 3 causes an upward flow (upflow) of the solution L when rotated in one direction, and a downward flow (downflow) of the solution L when rotated in the other direction. ) Is used. When the stirring blade 3 rotates in one direction, as shown in FIG. 1, the solution L around the stirring blade 3 flows upward, and the upward convection of the solution L indicated by the arrow A1 is performed. Cause it to occur. Due to the upward convection of the solution L, a flow from the lower side to the upper side of the solution L can be generated, and the accumulation of the drug on the bottom 2b can be suppressed, and the stirring efficiency is improved. When the stirring blade 3 rotates in the other direction, as shown in FIG. 1, the solution L around the stirring blade 3 flows downward, and the downward convection of the solution L indicated by the arrow A2 is performed. Cause it to occur. In addition to the drug rolling up by the communication pipe 4, the drug deposited on the bottom 2b can be rolled up by this downward convection. Therefore, the stirring blade 3 can be rotated forward and backward by the driving unit M, and the control unit C can perform the stirring operation according to the state of the solution L by changing the driving direction of the driving unit M according to the state. it can.
 つぎに、粉末溶解装置1を用いた溶解方法について説明する。 Next, a dissolution method using the powder dissolution apparatus 1 will be described.
 図4は、粉末溶解装置1の溶解方法について示すフローチャートである。なお、以下で示す溶解方法は、あくまで一例であり、本実施形態に限定されるものではない。 FIG. 4 is a flowchart showing a melting method of the powder melting apparatus 1. In addition, the melt | dissolution method shown below is an example to the last, and is not limited to this embodiment.
 まず、操作パネル5のON/OFFスイッチ51等を操作して、粉末溶解装置1を起動する。粉末溶解装置1が起動すると、溶解槽2が空の状態で、第1三方弁V1および第2三方弁V2を操作して、図5に示されるように、第1連通路42および第2連通路43を連通させる。これにより、図5に矢印で示される流路が形成され、溶解槽2の内部から連通管4を通る循環経路が確保される。なお、図5中、溶解液Lの流れがない部分については、破線で示している。つぎに、操作パネル5のモード選択部52を操作して、溶解モードを選択する。溶解モードが選択された後、液量設定部53を操作して、調製液量を設定する。調製液量が設定されると、動作開始部54の給水スイッチ54aが操作可能となる。給水スイッチ54aが押されると、溶解槽2内への給水が開始される(S1)。給水量は流量センサ21cにより測定され、所定の液量に到達すると、制御部Cにより給水弁21dが閉鎖され、水の供給が停止される。 First, the powder dissolution apparatus 1 is started by operating the ON / OFF switch 51 of the operation panel 5 or the like. When the powder melting apparatus 1 is activated, the first three-way valve V1 and the second three-way valve V2 are operated while the melting tank 2 is empty, as shown in FIG. The passage 43 is communicated. Thereby, a flow path indicated by an arrow in FIG. 5 is formed, and a circulation path through the communication pipe 4 from the inside of the dissolution tank 2 is secured. In FIG. 5, a portion where the solution L does not flow is indicated by a broken line. Next, the mode selection unit 52 of the operation panel 5 is operated to select the dissolution mode. After the dissolution mode is selected, the liquid volume setting unit 53 is operated to set the preparation liquid volume. When the amount of the preparation liquid is set, the water supply switch 54a of the operation start unit 54 can be operated. When the water supply switch 54a is pushed, water supply into the dissolution tank 2 is started (S1). The amount of water supply is measured by the flow rate sensor 21c. When the predetermined amount of liquid is reached, the control unit C closes the water supply valve 21d and stops the supply of water.
 給水工程S1が終了すると、動作開始部54の撹拌スイッチ54bの操作が可能となる。撹拌スイッチ54bが操作されると、制御部Cにより駆動部Mが制御され、撹拌翼3の回転が開始される(撹拌工程S2)。撹拌翼3が回転すると、粉末状の薬剤が、溶解槽2の薬剤投入口2cから投入される(薬剤供給工程S3)。なお、薬剤の投入は、給水工程S1の前であってもよいし、同時であってもよい。なお、本明細書では、水等の液体および粉末状の薬剤を供給する工程を合わせて供給工程と呼ぶ。 When the water supply step S1 is completed, the stirring switch 54b of the operation start unit 54 can be operated. When the stirring switch 54b is operated, the driving unit M is controlled by the control unit C, and the rotation of the stirring blade 3 is started (stirring step S2). When the stirring blade 3 rotates, the powdered medicine is introduced from the medicine inlet 2c of the dissolution tank 2 (drug supply step S3). It should be noted that the medicine may be input before the water supply step S1 or at the same time. In the present specification, a process of supplying a liquid such as water and a powdery medicine is collectively referred to as a supply process.
 薬剤および液体が溶解槽2に供給され、撹拌翼3により溶解液Lの撹拌動作が行なわれた後、動作開始部54の循環スイッチ54cの操作が可能となる。循環スイッチ54cが操作されると、制御部CによりポンプPが駆動される。より具体的には、循環スイッチ54cが操作されると、撹拌翼3が一旦停止され、上述した工程S1において給水された所定の液量に加えて、さらに溶解槽2への給水が行なわれる。この給水は、フロートセンサ等の液量検出センサにより設定した液量に到達したことが感知された後、停止する。給水が停止すると、停止した撹拌翼3が再度駆動されるとともに、ポンプPが駆動され、図5に示されるように、連通管4内を溶解液Lが循環する循環動作が開始される(循環工程S4)。なお、本明細書においては、撹拌工程S2および循環工程S4を合わせて溶解工程と呼ぶ。溶解工程中において、撹拌工程S2と循環工程S4とは同時に行われてもよいし、撹拌工程S2および循環工程S4のいずれか一方が行なわれていてもよい。連通管4内を溶解液Lが循環すると、上述したように、連通管4から底部2bに向かって溶解液Lが排出され、底部2bに堆積する薬剤が底部2bから巻き上げられる。巻き上げられた薬剤2bはさらに撹拌翼3により撹拌され、撹拌効率が向上する。溶解工程が終了すると、たとえば、採液路48から溶解液Lの一部を採取し、薬剤の溶け残りがないかが確認される(溶解判定工程S5)。溶け残りがないと判断されると、図6に示されるように、第1三方弁V1および第2三方弁V2が操作され、溶解槽2の底部2bから送液路45へとつながる送液路が形成され、溶解液Lが送液されて(送液工程S6)、一連の工程を終了させる。なお、図6中、溶解液Lの流れがない部分については、破線で示している。溶解判定工程S5において、溶け残りが存在する場合など、溶解が不充分である場合には、再度操作パネル5が操作されて、撹拌工程S2に戻り、溶解工程が再開される。その後、溶解判定工程S5により問題がないと判断されると、溶解液Lが送液される。なお、送液工程S6において、送液を一次中断する場合は、送液路が形成された状態から、第2三方弁V2を操作して、図7に示されるように、参照符号44、42b、43a、43cにより形成されるループ状の循環路を形成して、送液の中断時に循環路内で溶解液Lを循環させることができる。 After the drug and liquid are supplied to the dissolution tank 2 and the stirring operation of the solution L is performed by the stirring blade 3, the circulation switch 54c of the operation start unit 54 can be operated. When the circulation switch 54c is operated, the pump P is driven by the controller C. More specifically, when the circulation switch 54c is operated, the stirring blade 3 is temporarily stopped, and water is supplied to the dissolution tank 2 in addition to the predetermined amount of water supplied in step S1 described above. This water supply stops after it is sensed that the liquid amount set by the liquid amount detection sensor such as a float sensor has been reached. When the water supply is stopped, the stopped stirring blade 3 is driven again and the pump P is driven, and as shown in FIG. 5, a circulation operation for circulating the solution L through the communication pipe 4 is started (circulation). Step S4). In this specification, the stirring step S2 and the circulation step S4 are collectively referred to as a dissolution step. During the dissolution step, the stirring step S2 and the circulation step S4 may be performed simultaneously, or one of the stirring step S2 and the circulation step S4 may be performed. When the solution L circulates in the communication tube 4, as described above, the solution L is discharged from the communication tube 4 toward the bottom 2b, and the drug deposited on the bottom 2b is wound up from the bottom 2b. The wound-up medicine 2b is further stirred by the stirring blade 3, and the stirring efficiency is improved. When the dissolution process is completed, for example, a part of the solution L is collected from the liquid collection channel 48, and it is confirmed whether there is any undissolved drug (dissolution determination process S5). When it is determined that there is no undissolved portion, the first three-way valve V1 and the second three-way valve V2 are operated as shown in FIG. 6, and the liquid supply path connected to the liquid supply path 45 from the bottom 2b of the dissolution tank 2 Is formed, the solution L is fed (liquid feeding step S6), and the series of steps is completed. In FIG. 6, a portion where the solution L does not flow is indicated by a broken line. In the dissolution determination step S5, when the dissolution is insufficient, such as when there is an undissolved residue, the operation panel 5 is operated again to return to the stirring step S2, and the dissolution step is resumed. Thereafter, when it is determined that there is no problem in the dissolution determination step S5, the solution L is fed. In the liquid feeding step S6, when the liquid feeding is temporarily interrupted, the second three-way valve V2 is operated from the state where the liquid feeding path is formed, and as shown in FIG. 7, reference numerals 44 and 42b. , 43a, 43c can form a loop-shaped circulation path, and the solution L can be circulated in the circulation path when the liquid feeding is interrupted.
 つぎに、撹拌工程S2における詳細な制御について説明する。本実施形態では、撹拌工程S2において、制御部Cは、駆動部Mを、撹拌翼3が撹拌動作を開始した後の、所定の時間の間、撹拌翼3により撹拌される溶解液Lが上方へ対流するように(上昇流を生じさせるように)撹拌翼3を回転させるように制御する。薬剤が溶解槽2に投入された後(薬剤供給工程S3の後、かつ、撹拌工程S2が行なわれているとき)、撹拌翼3が撹拌動作を開始した後の所定の時間(撹拌動作の初期)には、溶解液L中に、溶け残りの薬剤が多く存在する。このような状況において、図1に矢印A1で示されるような溶解液Lの上昇流によって、溶解液L内で溶け残っている粉末状の薬剤は、溶解液Lの上昇流によって溶解槽2内で沈降しにくく、底部2bへの薬剤の堆積を抑制することができ、撹拌効率が向上する。なお、本明細書において、「撹拌動作を開始した後の所定の時間」とは、撹拌動作を行う全時間(たとえば、最大で約30分)のうち、溶解液L内に粉末状の薬剤の溶け残りが多い初期または前半をいう。「所定の時間」の開始時点および長さは特に限定されないが、たとえば、撹拌動作の直後または初期(たとえば1分以内)を開始時点とし、その長さは、撹拌動作の全時間のうち、5~30%とすることができる。 Next, detailed control in the stirring step S2 will be described. In the present embodiment, in the stirring step S2, the control unit C causes the drive unit M to move the solution L stirred by the stirring blade 3 upward for a predetermined time after the stirring blade 3 starts stirring operation. The agitating blade 3 is controlled to rotate so as to convect to (to generate an upward flow). After the medicine is put into the dissolution tank 2 (after the medicine supply step S3 and when the stirring step S2 is performed), a predetermined time after the stirring blade 3 starts the stirring operation (the initial stage of the stirring operation) ) Contains a large amount of undissolved drug in the solution L. In such a situation, the powdery medicine remaining undissolved in the solution L due to the upward flow of the solution L as indicated by the arrow A1 in FIG. It is difficult to settle and the accumulation of the drug on the bottom 2b can be suppressed, and the stirring efficiency is improved. In the present specification, the “predetermined time after the start of the stirring operation” refers to the total amount of time (for example, about 30 minutes at the maximum) during which the stirring operation is performed. This refers to the initial or first half where there is a lot of unmelted residue. The starting point and length of the “predetermined time” are not particularly limited. For example, the starting point is immediately after the stirring operation or the initial stage (for example, within 1 minute), and the length is 5% of the total time of the stirring operation. It can be made 30%.
 また、本実施形態では、撹拌翼3により溶解液Lが上昇流を生じる前に、撹拌翼3により撹拌される溶解液Lが下降流を生じるように、制御部Cが撹拌翼3を制御し、制御部Cは、下降流が生じている間、ポンプPを非駆動状態に維持するように構成されている。たとえば、撹拌翼3が撹拌動作を開始した後の、第2の所定の時間の間、ポンプPが停止され、第2の所定の時間の経過後にポンプPが駆動される。撹拌工程S2の初期において、溶解槽2内には、薬剤の溶け残りが多く存在するため、第2の所定の時間の間、ポンプPを停止することにより、ポンプPの内部に粉末状の薬剤が入り込むことを抑制することができる。なお、ポンプPが停止される「第2の所定の時間」は、撹拌動作を行う全時間のうち、溶解液L内に粉末状の薬剤の溶け残りが多い初期または前半をいい、上述した、溶解液Lを上方へ対流させる際の「所定の時間」と同様の時間としてもよいし、異なる時間としてもよい。 Further, in the present embodiment, the controller C controls the stirring blade 3 so that the dissolving liquid L stirred by the stirring blade 3 generates a downward flow before the dissolving solution L generates an upward flow by the stirring blade 3. The control unit C is configured to maintain the pump P in a non-driven state while the downflow is occurring. For example, the pump P is stopped for a second predetermined time after the stirring blade 3 starts the stirring operation, and the pump P is driven after the second predetermined time has elapsed. In the initial stage of the stirring step S2, since there is a large amount of undissolved drug in the dissolution tank 2, the powder P is stopped inside the pump P by stopping the pump P for a second predetermined time. Can be prevented from entering. The “second predetermined time” at which the pump P is stopped refers to the initial or first half of the total time during which the stirring operation is performed, in which the powdered medicine is largely undissolved in the solution L, as described above. The time may be the same time as the “predetermined time” when the solution L is convected upward, or may be a different time.
 つぎに、図8のフローチャートを用いて、薬剤の溶解工程をより詳細に説明する。溶解工程のうち、上述した工程S2や工程S3などによる溶解準備が完了すると、循環スイッチ54cの操作が可能となる。循環スイッチ54cが操作されると、溶解動作が開始される(工程S21)。溶解動作が開始されると、制御部Cが、駆動部Mを、撹拌翼3により撹拌される溶解液Lが下降流を生じるように、撹拌翼3を回転させるように制御する(工程S22)。撹拌翼3が他方向に回転すると、図1に示されるように、撹拌翼3の周囲の溶解液Lが下方へ向かって流れ、矢印A2で示す、溶解液Lの下降流を生じさせる。このとき、ポンプPは非駆動状態に維持されて停止しており、撹拌翼3の回転による下降流により、底部2bに堆積した薬剤を巻き上げることができる。したがって、より底部2bへの薬剤の堆積を抑制することができる。なお、本実施形態では、撹拌翼3の回転により下降流を生じさせる際に、ポンプPを停止させているが、撹拌翼3の回転による下降流を生じさせる際に、ポンプPを駆動しても構わない。この場合、連通管4からの溶解液Lの流れと、下方への対流により生じる溶解液Lの流れとが、一部衝突するため、流れの衝突によって溶解効果がより高められる。 Next, the dissolution process of the drug will be described in more detail using the flowchart of FIG. When the preparation for dissolution in the above-described steps S2 and S3 is completed, the circulation switch 54c can be operated. When the circulation switch 54c is operated, the melting operation is started (step S21). When the melting operation is started, the control unit C controls the driving unit M to rotate the stirring blade 3 so that the dissolving liquid L stirred by the stirring blade 3 generates a downward flow (step S22). . When the stirring blade 3 rotates in the other direction, as shown in FIG. 1, the solution L around the stirring blade 3 flows downward, causing a downward flow of the solution L indicated by an arrow A2. At this time, the pump P is maintained in a non-driven state and is stopped, and the medicine accumulated on the bottom 2b can be wound up by the downward flow caused by the rotation of the stirring blade 3. Therefore, it is possible to further suppress the accumulation of the drug on the bottom 2b. In the present embodiment, the pump P is stopped when the downward flow is generated by the rotation of the stirring blade 3, but when the downward flow is generated by the rotation of the stirring blade 3, the pump P is driven. It doesn't matter. In this case, since the flow of the dissolution liquid L from the communication pipe 4 and the flow of the dissolution liquid L generated by the downward convection partially collide, the dissolution effect is further enhanced by the collision of the flows.
 工程S22により、溶解槽2の底部2bに向けて、撹拌翼3の位置で下降流を生じさせた後、制御部Cが駆動部Mを制御し、工程S22とは逆方向に撹拌翼3を回転させて、撹拌翼3の位置において上昇流を生じさせるとともに、ポンプPを駆動させる(工程S23参照)。連通管4内を溶解液Lが循環すると、上述したように、連通管4から底部2bに向かって溶解液Lが排出され、底部2bに堆積する薬剤が底部2bから巻き上げられる。底部2bから巻き上げられた薬剤は、撹拌翼3による上昇流により、溶解液Lの流れを、撹拌翼3の位置においてさらに上昇させる。これにより、底部2bから巻き上げられた薬剤は、撹拌翼3によりさらに撹拌され、撹拌効率が向上する。 In step S22, a downward flow is generated at the position of the stirring blade 3 toward the bottom 2b of the dissolution tank 2, and then the control unit C controls the drive unit M, and the stirring blade 3 is moved in the opposite direction to step S22. Rotate to generate an upward flow at the position of the stirring blade 3 and drive the pump P (see step S23). When the solution L circulates in the communication tube 4, as described above, the solution L is discharged from the communication tube 4 toward the bottom 2b, and the drug deposited on the bottom 2b is wound up from the bottom 2b. The medicine wound up from the bottom 2 b further raises the flow of the solution L at the position of the stirring blade 3 by the upward flow by the stirring blade 3. Thereby, the chemical | medical agent wound up from the bottom part 2b is further stirred by the stirring blade 3, and stirring efficiency improves.
 工程S23の後、ポンプPを停止させて上昇流をしばらく維持して、上方への対流によりしばらく溶解動作を続ける(工程S24参照)。工程S24が完了すると、事前に設定された工程S22~S24の繰り返し回数が行なわれたか否かが制御部Cにより判定される(工程S25)。工程S22~S24が事前に設定された繰り返し回数に満たない場合は、工程S22に戻り、事前に設定された繰り返し回数を満たす場合には、溶解動作が終了する。 After step S23, the pump P is stopped, the upward flow is maintained for a while, and the melting operation is continued for a while by upward convection (see step S24). When step S24 is completed, the control unit C determines whether or not the number of repetitions of steps S22 to S24 set in advance has been performed (step S25). When steps S22 to S24 are less than the preset number of repetitions, the process returns to step S22, and when the number of repetitions set in advance is satisfied, the melting operation ends.
 つぎに、図9を用いて、粉末溶解装置1の設定液量に応じた制御を行う他の実施形態について説明する。以下に示す例では、撹拌翼の回転数が、前記溶解液の設定液量に応じて変更され、設定液量に応じた撹拌をして、液量に応じた最適な撹拌が可能となる。 Next, another embodiment that performs control according to the set liquid amount of the powder dissolving apparatus 1 will be described with reference to FIG. In the example shown below, the rotation speed of the stirring blade is changed according to the set liquid amount of the dissolving liquid, and stirring according to the set liquid amount is performed, so that optimal stirring according to the liquid amount is possible.
 図9に示されるように、撹拌動作が開始された後(撹拌翼3は、下降流を生じさせている。S31参照)、操作パネル5により設定された液量が、予め定めた所定の液量よりも少ない場合(たとえば、操作パネル5により操作可能な設定液量が、25ガロン、50ガロン、75ガロンの場合で、50ガロン(所定の液量)よりも少ない25ガロンが設定された場合)、工程S33に進み、第3の所定の時間の間、撹拌翼3の回転数が所定の回転数以下の回転数(第1の回転数)に制御される。また、このとき、上述したように、撹拌翼3は、溶解液Lが上昇流となるように回転し、ポンプPが駆動されている。ここで、所定の回転数以下の回転数は、たとえば、工程S33以外の撹拌工程における撹拌翼3の回転数の40~60%の回転数をいう。工程S33以外、たとえば後述する工程S34における撹拌翼3の回転数が、700~1800rpmの場合には、たとえば、工程S33における回転数を、280~1080rpmとすることができる。好ましくは、後述する工程S34における撹拌翼3の回転数が、1000~1500rpmの場合には、たとえば、工程S33における回転数を、400~900rpmとすることができる。このように、設定液量が所定の液量よりも低い場合は、溶解液Lの液面は低い位置にあるため、撹拌翼3の回転により空気を巻き込みやすく、溶解液Lが泡立ちやすくなっている。しかし、上述したように、撹拌翼3の回転数を設定液量が少ないときに回転数を低くすることにより、空気を巻き込みにくく、溶解液Lの泡立ちが抑制される。なお、設定液量が所定の液量以上の場合は、上述したように撹拌翼3は、通常の回転数で溶解液Lが上昇流となるように回転される(工程S35)。なお、工程S35においては、工程S33と同様にポンプPは駆動されている。 As shown in FIG. 9, after the stirring operation is started (the stirring blade 3 generates a downward flow. Refer to S <b> 31), the liquid amount set by the operation panel 5 is a predetermined predetermined liquid. When the amount of set liquid that can be operated by the operation panel 5 is 25 gallons, 50 gallons, 75 gallons, and 25 gallons smaller than 50 gallons (predetermined liquid amount) are set. ), The process proceeds to step S33, and during the third predetermined time, the rotation speed of the stirring blade 3 is controlled to be equal to or lower than the predetermined rotation speed (first rotation speed). At this time, as described above, the stirring blade 3 rotates so that the dissolved liquid L becomes an upward flow, and the pump P is driven. Here, the rotational speed equal to or lower than the predetermined rotational speed is, for example, a rotational speed that is 40 to 60% of the rotational speed of the stirring blade 3 in the stirring step other than step S33. When the rotational speed of the stirring blade 3 is 700 to 1800 rpm, for example, in step S34 described later, other than step S33, for example, the rotational speed in step S33 can be set to 280 to 1080 rpm. Preferably, when the rotational speed of the stirring blade 3 in step S34 described later is 1000 to 1500 rpm, for example, the rotational speed in step S33 can be set to 400 to 900 rpm. As described above, when the set liquid amount is lower than the predetermined liquid amount, the liquid surface of the solution L is at a low position, so that the air is easily involved by the rotation of the stirring blade 3 and the solution L is easily bubbled. Yes. However, as described above, by reducing the rotation speed of the stirring blade 3 when the set liquid amount is small, it is difficult to entrain air and foaming of the solution L is suppressed. When the set liquid amount is equal to or larger than the predetermined liquid amount, the stirring blade 3 is rotated so that the dissolved liquid L becomes an upward flow at a normal rotational speed as described above (step S35). In step S35, the pump P is driven as in step S33.
 工程S33において、第3の所定の時間が経過した後は、所定の回転数以下の第1の回転数から、第1の回転数よりも大きい第2の回転数に撹拌翼3が増速される(S34)。なお、本実施形態では、工程S34においては、撹拌翼3は工程S33と同様に、溶解液Lが上昇流となるように回転しており、ポンプPは停止している。第2の回転数は、特に限定されないが、通常の撹拌工程の回転数と同様とすることができ、たとえば、700~1800rpm、好ましくは1000~1500rpmとすることができる。工程S33により第1の回転数で撹拌翼3を回転させ、工程S34により増速された第2の回転数で撹拌翼3を回転させることにより、低回転で溶解槽2内に小さな対流を生じさせた後、高回転で大きな対流を生じさせ、溶解液Lの泡立ちを抑えつつ、溶解液Lの対流による撹拌を効率良く行うことができる。なお、工程S33における「第3の所定の時間」は、たとえば、撹拌動作を行う全時間のうち、1.5~5%の時間とすることができる。なお、工程S36において、工程S35において所定の時間(第4の所定の時間)が経過した後は、工程S35と同様の回転数、回転方向で撹拌翼3が回転するが、ポンプPが停止され、溶解液Lの対流により溶解液Lが撹拌される。なお、第4の所定の時間は、第3の所定の時間と同様の時間とすることができる。 In step S33, after the third predetermined time has elapsed, the stirring blade 3 is increased from the first rotational speed equal to or lower than the predetermined rotational speed to the second rotational speed that is greater than the first rotational speed. (S34). In the present embodiment, in step S34, the stirring blade 3 is rotated so that the solution L is in an upward flow, and the pump P is stopped, as in step S33. The second number of rotations is not particularly limited, but can be the same as the number of rotations in a normal stirring step, and can be, for example, 700 to 1800 rpm, preferably 1000 to 1500 rpm. By rotating the stirring blade 3 at the first rotational speed in the step S33 and rotating the stirring blade 3 at the second rotational speed increased in the step S34, a small convection is generated in the dissolution tank 2 at a low rotational speed. Then, large convection can be generated at high rotation, and the foaming of the solution L can be suppressed, and the solution L can be efficiently stirred by the convection. The “third predetermined time” in step S33 can be, for example, 1.5 to 5% of the total time during which the stirring operation is performed. In Step S36, after the predetermined time (fourth predetermined time) has elapsed in Step S35, the stirring blade 3 rotates in the same rotation speed and rotation direction as in Step S35, but the pump P is stopped. The solution L is stirred by convection of the solution L. The fourth predetermined time can be the same time as the third predetermined time.
 工程S34または工程S36が終了すると、実際に行われた撹拌動作の回数(S32~S34またはS32~S36の繰り返しの回数)と、設定液量に応じた予め設定された設定回数とが比較され、所定の撹拌動作が行なわれたか否かが制御部Cにより判定される(S37)。設定回数と、実際に行われた撹拌動作の回数が一致する場合は、工程S38において撹拌動作が終了し、実際に行われた撹拌動作の回数が設定回数に満たない場合は、S32に戻り、撹拌動作が繰り返される。 When step S34 or step S36 is completed, the number of stirring operations actually performed (the number of repetitions of S32 to S34 or S32 to S36) is compared with a preset number of times corresponding to the set liquid amount, Whether or not the predetermined stirring operation has been performed is determined by the control unit C (S37). When the set number of times and the number of stirring operations actually performed are the same, the stirring operation ends in step S38, and when the number of stirring operations actually performed is less than the set number of times, the process returns to S32. The stirring operation is repeated.
 図9のフローチャートに示す実施形態の変形例として、さらにS34またはS36の後に、さらにポンプPを駆動させて、連通管4からの流れを発生させて、溶解効率を高めることもできる。具体的には、工程S34またはS36の後に、撹拌翼3により下降流を生じさせるとともに、ポンプPを駆動させて、連通管4からの溶解液Lの流れと、撹拌翼3による下降流を衝突させることにより、溶解効率を高めることができる。 As a modification of the embodiment shown in the flowchart of FIG. 9, after S34 or S36, the pump P is further driven to generate a flow from the communication pipe 4 to increase the dissolution efficiency. Specifically, after step S34 or S36, the stirring blade 3 generates a downward flow, and the pump P is driven to collide the flow of the solution L from the communication pipe 4 with the downward flow of the stirring blade 3. By making it, dissolution efficiency can be improved.
 なお、図9のフローチャートにおいて説明した撹拌翼の回転数の制御は、図8において説明した溶解動作の工程S22~S24において適用することもできる。この場合、たとえば、図8における工程S23およびS24が、図9における工程S33、S34または工程S35、S36に対応する。 Note that the control of the rotation speed of the stirring blade described in the flowchart of FIG. 9 can also be applied in the steps S22 to S24 of the melting operation described in FIG. In this case, for example, steps S23 and S24 in FIG. 8 correspond to steps S33 and S34 or steps S35 and S36 in FIG.
 上記実施形態では、駆動部M、制御部C、操作パネル5は、溶解槽2の上部に取り付けられたものを示したが、駆動部M、制御部C、操作パネル5を設ける位置は、特に限定されるものではなく、溶解槽2の側部2aや底部2b側に取り付けられていてもよいし、溶解槽2に取り付けられず、別途設けられてもよい。 In the said embodiment, although the drive part M, the control part C, and the operation panel 5 showed what was attached to the upper part of the dissolution tank 2, the position which provides the drive part M, the control part C, and the operation panel 5 is especially It is not limited and may be attached to the side 2a or bottom 2b side of the dissolution tank 2, or may not be attached to the dissolution tank 2 and may be provided separately.
 また、上記実施形態では、撹拌翼3および駆動シャフト31は、溶解槽2の上部側から延びたものを示したが、撹拌翼3および駆動シャフト31は、溶解槽2の下側から延びていても構わない。また、上記実施形態では、第1三方弁V1、第2三方弁V2などの弁は、手動で開閉されるものを例にあげたが、制御部Cにより自動で制御されていても構わない。 Moreover, in the said embodiment, although the stirring blade 3 and the drive shaft 31 showed what extended from the upper part side of the dissolution tank 2, the stirring blade 3 and the drive shaft 31 are extended from the lower side of the dissolution tank 2. FIG. It doesn't matter. In the above embodiment, the first three-way valve V1 and the second three-way valve V2 are manually opened and closed. However, the valves may be automatically controlled by the control unit C.
 1 粉末溶解装置
 2 溶解槽
 2a 溶解槽の側部
 2b 溶解槽の底部
 2c 薬剤投入口
 2d 供給口
 21 供給手段
 21a 給水口
 21b 供給管
 21c 流量センサ
 21d 給水弁
 3 撹拌翼
 4 連通管
 41a 上方側接続部
 41b 下方側接続部
 42 第1連通路
 43 第2連通路
 44 循環通路
 45 送液路
 46 廃液路
 47 オーバーフロー管
 48 採液路
 5 操作手段(操作パネル)
 51 ON/OFFスイッチ
 52 モード選択部
 53 液量設定部
 54 動作開始部
 54a 給水スイッチ
 54b 撹拌スイッチ
 54c 循環スイッチ
 54d 送液スイッチ
 C 制御部
 D1 撹拌翼の回転軸から中心軸までの距離
 D2 中心軸から溶解槽の側部の内面までの距離
 L 溶解液
 M 駆動部
 P ポンプ
 S 底部の傾斜部
 T 底部の頂部
 V1 第1三方弁
 V2 第2三方弁
 V3 廃液弁
 V4 逆止弁
 V5 採液弁
 X 溶解槽の中心軸
DESCRIPTION OF SYMBOLS 1 Powder dissolution apparatus 2 Dissolution tank 2a Side part of dissolution tank 2b Bottom part of dissolution tank 2c Chemical inlet 2d Supply port 21 Supply means 21a Supply port 21b Supply pipe 21c Flow rate sensor 21d Supply valve 3 Stirring blade 4 Communication pipe 41a Upper connection Portion 41b Lower side connection portion 42 First communication passage 43 Second communication passage 44 Circulation passage 45 Liquid supply passage 46 Waste liquid passage 47 Overflow pipe 48 Liquid collection passage 5 Operation means (operation panel)
51 ON / OFF switch 52 Mode selection unit 53 Fluid volume setting unit 54 Operation start unit 54a Water supply switch 54b Stirring switch 54c Circulation switch 54d Liquid feeding switch C Control unit D1 Distance from the rotation axis of the stirring blade to the central axis D2 From the central axis Distance to the inner surface of the side of the dissolution tank L Dissolved solution M Drive unit P Pump S Bottom slope T Bottom top V1 First three-way valve V2 Second three-way valve V3 Waste liquid valve V4 Check valve V5 Liquid collection valve X Dissolution Center axis of tank

Claims (16)

  1. 溶解液を貯留する溶解槽と、溶解槽内に設けられた撹拌翼と、前記溶解槽のうち、高さの異なる少なくとも2か所の間に連通する連通管と、前記連通管に設けられたポンプとを備えた粉末溶解装置であって、
    前記撹拌翼が前記溶解槽の底部から所定の距離離間した位置に配置され、
    前記ポンプの駆動により、前記溶解槽内の溶解液が、前記連通管を通って前記溶解槽の底部側へ送出され、前記連通管から前記溶解槽に排出される溶解液の流れが前記溶解槽の底部に沿って流れるように、前記溶解槽と前記連通管とが接続されている粉末溶解装置。
    A dissolution tank for storing the dissolution liquid, a stirring blade provided in the dissolution tank, a communication pipe communicating between at least two places having different heights in the dissolution tank, and provided in the communication pipe A powder dissolving apparatus comprising a pump,
    The stirring blade is disposed at a position spaced a predetermined distance from the bottom of the dissolution tank,
    By the driving of the pump, the dissolution liquid in the dissolution tank is sent to the bottom of the dissolution tank through the communication pipe, and the flow of the dissolution liquid discharged from the communication pipe to the dissolution tank is the dissolution tank. The powder dissolution apparatus with which the said dissolution tank and the said communication pipe are connected so that it may flow along the bottom part.
  2. 前記溶解槽の底部が逆円錐状に形成され、前記連通管が、前記溶解槽の底部において、前記逆円錐状の底部の頂部または頂部近傍に接続されている請求項1記載の粉末溶解装置。 The powder dissolution apparatus according to claim 1, wherein a bottom portion of the dissolution tank is formed in a reverse cone shape, and the communication pipe is connected to a top portion of the bottom portion of the reverse cone shape or a vicinity thereof at a bottom portion of the dissolution tank.
  3. 前記撹拌翼の回転軸が、前記溶解槽の中心軸から溶解槽の側部に向かってずれて配置され、前記連通管を通って前記溶解槽の底部へ向かって送出される溶解液の流れが、前記撹拌翼に向かうように構成されている請求項1または2記載の粉末溶解装置。 The rotating shaft of the stirring blade is arranged so as to be shifted from the central axis of the dissolution tank toward the side of the dissolution tank, and the flow of the dissolved solution sent to the bottom of the dissolution tank through the communication pipe The powder dissolving apparatus according to claim 1, wherein the powder dissolving apparatus is configured to face the stirring blade.
  4. 前記粉末溶解装置がさらに、
    前記撹拌翼を正逆回転させる駆動部と、
    前記駆動部を制御する制御部とを備え、
    前記制御部が、前記駆動部を、
    前記撹拌翼が撹拌動作を開始した後の、所定の時間の間、前記撹拌翼により撹拌される溶解液が上昇流を生じるように前記撹拌翼を回転させるように制御する
    請求項1~3のいずれか1項に記載の粉末溶解装置。
    The powder dissolving device further includes
    A drive unit for rotating the stirring blade forward and backward, and
    A control unit for controlling the drive unit,
    The controller controls the drive unit,
    4. The control according to claim 1, wherein the stirring blade is controlled to rotate so that the dissolved liquid stirred by the stirring blade generates an upward flow for a predetermined time after the stirring blade starts the stirring operation. The powder dissolving apparatus of any one of Claims.
  5. 前記制御部が、前記上昇流が生じている間、前記ポンプが駆動されるように前記ポンプを制御する
    請求項4記載の粉末溶解装置。
    The powder dissolution apparatus according to claim 4, wherein the control unit controls the pump so that the pump is driven while the upward flow is generated.
  6. 前記撹拌翼により前記溶解液が前記上昇流を生じる前に、前記撹拌翼により撹拌される溶解液が下降流を生じるように、前記制御部が前記撹拌翼を制御し、前記制御部は、前記下降流が生じている間、前記ポンプを非駆動状態に維持する請求項4または5記載の粉末溶解装置。 The control unit controls the stirring blade such that the solution stirred by the stirring blade generates a downward flow before the dissolving solution causes the upward flow by the stirring blade. The powder dissolving apparatus according to claim 4 or 5, wherein the pump is maintained in a non-driven state while a downward flow is occurring.
  7. 前記撹拌翼の回転数が、前記溶解液の設定液量に応じて変更される請求項1~6のいずれか1項に記載の粉末溶解装置。 The powder dissolving apparatus according to any one of claims 1 to 6, wherein a rotation speed of the stirring blade is changed according to a set liquid amount of the dissolving liquid.
  8. 前記撹拌液の設定液量が所定の量より少ない場合、前記駆動部が、前記上昇流が生じている間に、第1の回転数で前記撹拌翼を駆動した後、第2の回転数で前記撹拌翼を駆動するように、前記制御部により制御され、前記第1の回転数は、溶解液の泡立ちを抑制するための所定の回転数に制限されている請求項7記載の粉末溶解装置。 When the set amount of the stirring liquid is smaller than a predetermined amount, the driving unit drives the stirring blade at the first rotation speed while the upward flow is generated, and then at the second rotation speed. 8. The powder dissolving apparatus according to claim 7, which is controlled by the control unit so as to drive the stirring blade, and the first rotational speed is limited to a predetermined rotational speed for suppressing foaming of the solution. .
  9. 溶解液を貯留する溶解槽と、溶解槽内に設けられた撹拌翼と、前記溶解槽のうち、高さの異なる少なくとも2か所の間に連通する連通管と、前記連通管に設けられたポンプとを備え、前記撹拌翼が前記溶解槽の底部から所定の距離離間した位置に配置された粉末溶解装置を用いた溶解方法であって、
    前記溶解方法が、
    前記溶解槽に、液体および粉末状の薬剤を供給する供給工程、および
    前記液体および粉末状の薬剤を撹拌し、溶解液を調製する溶解工程を備え、
    前記溶解工程において、前記ポンプの駆動により、前記溶解槽内の溶解液が、前記連通管を通って前記溶解槽の底部側へ送出され、前記連通管から前記溶解槽に排出される溶解液の流れが前記溶解槽の底部に沿って流れる溶解方法。
    A dissolution tank for storing the dissolution liquid, a stirring blade provided in the dissolution tank, a communication pipe communicating between at least two places having different heights in the dissolution tank, and provided in the communication pipe A dissolving method using a powder dissolving apparatus, wherein the stirring blade is disposed at a position spaced apart from the bottom of the dissolving tank by a predetermined distance,
    The dissolution method comprises
    A supply step of supplying liquid and powdered medicine to the dissolution tank, and a dissolution step of stirring the liquid and powdered medicine to prepare a solution;
    In the dissolution step, the solution in the dissolution tank is sent to the bottom side of the dissolution tank through the communication pipe by driving the pump, and the dissolution liquid discharged from the communication pipe to the dissolution tank A melting method in which a flow flows along the bottom of the dissolution tank.
  10. 前記溶解槽の底部が逆円錐状に形成され、前記連通管が、前記溶解槽の底部において、前記逆円錐状の底部の頂部または頂部近傍に接続されている請求項9記載の溶解方法。 The melting method according to claim 9, wherein a bottom portion of the dissolution tank is formed in an inverted conical shape, and the communication pipe is connected to or near the top of the bottom portion of the inverted cone shape at the bottom portion of the dissolution tank.
  11. 前記撹拌翼の回転軸が、前記溶解槽の中心軸から溶解槽の側部に向かってずれて配置され、前記連通管を通って前記溶解槽の底部へ向かって送出される溶解液の流れが、前記撹拌翼に向かうように構成されている請求項9または10記載の溶解方法。 The rotating shaft of the stirring blade is arranged so as to be shifted from the central axis of the dissolution tank toward the side of the dissolution tank, and the flow of the dissolved solution sent to the bottom of the dissolution tank through the communication pipe The melting method according to claim 9, wherein the melting method is configured to face the stirring blade.
  12. 前記溶解工程において、前記撹拌翼が撹拌動作を開始した後の、所定の時間の間、前記撹拌翼により撹拌される溶解液が上昇流を生じるように前記撹拌翼が回転される
    請求項9~11のいずれか1項に記載の溶解方法。
    In the melting step, the stirring blade is rotated so that the dissolved liquid stirred by the stirring blade generates an upward flow for a predetermined time after the stirring blade starts stirring operation. 12. The dissolution method according to any one of 11 above.
  13. 前記上昇流が生じている間、前記ポンプが駆動される
    請求項12記載の溶解方法。
    The melting method according to claim 12, wherein the pump is driven while the upward flow is generated.
  14. 前記撹拌翼により前記溶解液が前記上昇流を生じる前に、前記撹拌翼により撹拌される溶解液が下降流を生じるように、前記撹拌翼が回転し、前記下降流が生じている間、前記ポンプが非駆動状態に維持される請求項12または13記載の溶解方法。 The stirring blade rotates so that the solution stirred by the stirring blade generates a downward flow before the dissolving solution causes the upward flow by the stirring blade. The lysis method according to claim 12 or 13, wherein the pump is maintained in a non-driven state.
  15. 前記撹拌翼の回転数が、前記溶解液の設定液量に応じて変更される請求項9~14のいずれか1項に記載の溶解方法。 The dissolution method according to any one of claims 9 to 14, wherein the rotation speed of the stirring blade is changed according to a set liquid amount of the dissolution liquid.
  16. 前記撹拌液の設定液量が所定の量より少ない場合、前記駆動部が、前記上昇流が生じている間に、第1の回転数で前記撹拌翼が駆動された後、第2の回転数で前記撹拌翼が駆動すされ、前記第1の回転数は、溶解液の泡立ちを抑制するための所定の回転数に制限されている請求項15記載の溶解方法。 When the set amount of the stirring liquid is smaller than a predetermined amount, the driving unit drives the second rotation speed after the stirring blade is driven at the first rotation speed while the upward flow is generated. The melting method according to claim 15, wherein the stirring blade is driven and the first rotational speed is limited to a predetermined rotational speed for suppressing foaming of the dissolving liquid.
PCT/JP2016/061959 2015-05-11 2016-04-14 Powder dissolving device and dissolving method WO2016181748A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2017014427A MX2017014427A (en) 2015-05-11 2016-04-14 Powder dissolving device and dissolving method.
JP2017517836A JP6881300B2 (en) 2015-05-11 2016-04-14 Powder melting device
CONC2017/0011914A CO2017011914A2 (en) 2015-05-11 2017-11-23 Powder dissolution device and dissolution method technical field of the invention

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-096755 2015-05-11
JP2015096755 2015-05-11

Publications (1)

Publication Number Publication Date
WO2016181748A1 true WO2016181748A1 (en) 2016-11-17

Family

ID=57247966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061959 WO2016181748A1 (en) 2015-05-11 2016-04-14 Powder dissolving device and dissolving method

Country Status (5)

Country Link
JP (1) JP6881300B2 (en)
CL (1) CL2017002842A1 (en)
CO (1) CO2017011914A2 (en)
MX (1) MX2017014427A (en)
WO (1) WO2016181748A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899495A (en) * 2017-10-30 2018-04-13 武汉都市环保工程技术股份有限公司 Site remediation medicament compounding system and its application method
CN108311010A (en) * 2018-01-05 2018-07-24 苏州浙远自动化工程技术有限公司 A kind of automatic heating matches the device and method of liquid
JP2020522466A (en) * 2017-05-15 2020-07-30 サタナッシ,デイビッド Unit for the immediate production of water-based physiological solutions or isotonic solutions
CN113083138A (en) * 2021-04-27 2021-07-09 罗志红 Tombarthite production is with making tombarthite auxiliary assembly who dissolves fast
CN113522168A (en) * 2021-06-28 2021-10-22 合肥中聚合臣电子材料有限公司 Reaction kettle and polyimide feeding method
CN114808509A (en) * 2022-05-11 2022-07-29 广州市宏晓包装制品有限公司 Clean production equipment and process for whole pulping and papermaking process
CN115462202A (en) * 2022-08-12 2022-12-13 贵州民族大学 Intelligent phosphate solubilizing bacterium application device and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384660U (en) * 1976-12-16 1978-07-12
JPS60224098A (en) * 1984-03-27 1985-11-08 コミサリア・ア・レネルジ・アトミック Method and device for dissolving plutonium oxide and neptunium oxide
JPH03115034U (en) * 1990-03-08 1991-11-27
JPH05127342A (en) * 1991-10-21 1993-05-25 Fuji Photo Film Co Ltd Processing agent dissolving device
JPH08126826A (en) * 1994-10-31 1996-05-21 Nissho Corp Dissolving device
JPH11266799A (en) * 1998-03-24 1999-10-05 Inui Keikaku Kk Dissolving apparatus of powder or viscous body
JP2002326023A (en) * 2001-05-08 2002-11-12 Sumitomo Heavy Ind Ltd External circulation agitating device
JP2007330847A (en) * 2006-06-12 2007-12-27 Nippon Kagaku Kikai Seizo Kk Stirring apparatus
JP2013202565A (en) * 2012-03-29 2013-10-07 Mol Engineering Co Ltd Dissolving device of powder or granular body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384660U (en) * 1976-12-16 1978-07-12
JPS60224098A (en) * 1984-03-27 1985-11-08 コミサリア・ア・レネルジ・アトミック Method and device for dissolving plutonium oxide and neptunium oxide
JPH03115034U (en) * 1990-03-08 1991-11-27
JPH05127342A (en) * 1991-10-21 1993-05-25 Fuji Photo Film Co Ltd Processing agent dissolving device
JPH08126826A (en) * 1994-10-31 1996-05-21 Nissho Corp Dissolving device
JPH11266799A (en) * 1998-03-24 1999-10-05 Inui Keikaku Kk Dissolving apparatus of powder or viscous body
JP2002326023A (en) * 2001-05-08 2002-11-12 Sumitomo Heavy Ind Ltd External circulation agitating device
JP2007330847A (en) * 2006-06-12 2007-12-27 Nippon Kagaku Kikai Seizo Kk Stirring apparatus
JP2013202565A (en) * 2012-03-29 2013-10-07 Mol Engineering Co Ltd Dissolving device of powder or granular body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335166B2 (en) 2017-05-15 2023-08-29 サタナッシ,デイビッド Unit for immediate production of water-based physiological or isotonic solutions
US11945738B2 (en) 2017-05-15 2024-04-02 David Satanassi Unit for extemporaneous generation of a physiological or isotonic solution based on water
JP2020522466A (en) * 2017-05-15 2020-07-30 サタナッシ,デイビッド Unit for the immediate production of water-based physiological solutions or isotonic solutions
CN107899495A (en) * 2017-10-30 2018-04-13 武汉都市环保工程技术股份有限公司 Site remediation medicament compounding system and its application method
CN107899495B (en) * 2017-10-30 2024-03-22 中冶南方都市环保工程技术股份有限公司 Site repair agent preparation system and application method thereof
CN108311010B (en) * 2018-01-05 2021-06-08 苏州浙远自动化工程技术有限公司 Automatic liquid thermal preparation device and method
CN108311010A (en) * 2018-01-05 2018-07-24 苏州浙远自动化工程技术有限公司 A kind of automatic heating matches the device and method of liquid
CN113083138A (en) * 2021-04-27 2021-07-09 罗志红 Tombarthite production is with making tombarthite auxiliary assembly who dissolves fast
CN113522168A (en) * 2021-06-28 2021-10-22 合肥中聚合臣电子材料有限公司 Reaction kettle and polyimide feeding method
CN114808509A (en) * 2022-05-11 2022-07-29 广州市宏晓包装制品有限公司 Clean production equipment and process for whole pulping and papermaking process
CN114808509B (en) * 2022-05-11 2023-08-22 广州市宏晓包装制品有限公司 Clean production equipment and process for whole pulping and papermaking process
CN115462202A (en) * 2022-08-12 2022-12-13 贵州民族大学 Intelligent phosphate solubilizing bacterium application device and method
CN115462202B (en) * 2022-08-12 2023-11-24 贵州民族大学 Intelligent phosphate solubilizing bacterium application device and method

Also Published As

Publication number Publication date
JP6881300B2 (en) 2021-06-02
CL2017002842A1 (en) 2018-06-01
JPWO2016181748A1 (en) 2018-03-01
CO2017011914A2 (en) 2018-02-09
MX2017014427A (en) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2016181748A1 (en) Powder dissolving device and dissolving method
CN103276563B (en) Washing machine and washing agent thereof are thrown in assembly
JP2012523538A (en) Apparatus for making flake ice and method for washing, descaling and / or sterilizing apparatus for making flake ice
JP5372459B2 (en) Beverage production equipment
CN108013799B (en) Cooking apparatus and cooking control method
US11713531B2 (en) Method and apparatus for cleaning laundry
CN104364052A (en) Device and method for separating grinding oil from grinding slurries
US20120111067A1 (en) Liquid additive dispensing apparatus for a washing machine
CN108640428A (en) A kind of mercurous industrial wastewater depths reason Zero discharging system
CN107661717A (en) A kind of heat accumulating compounds cooling device
CN108013766B (en) Cooking apparatus and cooking control method
JP5405099B2 (en) Beverage dispenser
JP5036692B2 (en) Cell processing equipment
JP6043703B2 (en) Food mixing machine
CN208989825U (en) Condensate container is used in a kind of dialysis
JP2010193854A (en) Device for coagulating soybean product
JP2010082046A (en) Beverage supply device
JP6043700B2 (en) Food mixing machine
JP6722871B2 (en) Beverage production equipment
JP6040968B2 (en) hydraulic unit
CN109629181A (en) Device for clothing processing
CN210184425U (en) Fruit juice blending production line
CN111411485A (en) Clothes treatment device and washing machine
JP2018075177A (en) Beverage manufacturing device
JP2019000305A (en) Preparation apparatus and preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517836

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/014427

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: NC2017/0011914

Country of ref document: CO

122 Ep: pct application non-entry in european phase

Ref document number: 16792473

Country of ref document: EP

Kind code of ref document: A1