WO2016181710A1 - Thin film device - Google Patents

Thin film device Download PDF

Info

Publication number
WO2016181710A1
WO2016181710A1 PCT/JP2016/059103 JP2016059103W WO2016181710A1 WO 2016181710 A1 WO2016181710 A1 WO 2016181710A1 JP 2016059103 W JP2016059103 W JP 2016059103W WO 2016181710 A1 WO2016181710 A1 WO 2016181710A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
resin layer
resistive
reinforcing
substrate
Prior art date
Application number
PCT/JP2016/059103
Other languages
French (fr)
Japanese (ja)
Inventor
智行 芦峰
智 進藤
竹島 裕
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017515872A priority Critical patent/JP6191804B2/en
Priority to CN201690000755.4U priority patent/CN207572353U/en
Publication of WO2016181710A1 publication Critical patent/WO2016181710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Definitions

  • the present invention relates to a thin film device including a thin film resistance element.
  • a conventional thin film device 500 shown in FIG. 6 is provided between an integrated circuit 502 formed on a semiconductor substrate 501, a plurality of electrode pads 503 arranged on the integrated circuit 502, and each electrode pad 503. And a resin layer 505 formed on the passivation film 504.
  • the resin layer 505 is formed of polyimide resin, epoxy resin, or the like, and a through hole is provided at a position overlapping the electrode pad 503 of the resin layer 505.
  • a rewiring 507 connected to the electrode pad 503 through the barrier metal layer 506 in the through hole is formed on the resin layer 505.
  • a thin film resistance element 508 is provided at a position between the rewiring 507 on the resin layer 505.
  • the thin film resistance element 508 includes a barrier metal layer 506 and a seed layer 509 stacked on the barrier metal layer 506.
  • the barrier metal layer 506 is formed of Ti, TiN, Ni, or the like, and is provided to improve the adhesion between the electrode pad 503 and the rewiring 507.
  • the seed layer 509 functions as an electrode when the rewiring 507 is formed by a plating method, and is formed of Cu, Al, or the like.
  • the resistance value of the thin film resistive element 508 is adjusted by adjusting the film thicknesses of the barrier metal layer 506 and the seed layer 509 as appropriate.
  • JP 2009-267248 A (paragraphs 0012, 0016, 0017, FIG. 1, etc.)
  • the thin film device 500 shown in FIG. 6 when the thin film device 500 shown in FIG. 6 is heated in a thermal cycle when mounted on another substrate or the like, a bending stress is applied to the thin film resistance element 508 due to expansion of the resin layer 505, etc.
  • the thin film resistance element 508 may be damaged.
  • the present invention has been made in view of the above-described problems, and can prevent a thin film resistive element from being damaged by a stress or the like caused by expansion of a resin layer, thereby obtaining a highly reliable thin film device.
  • the purpose is to provide technology.
  • a thin film device of the present invention includes a substrate and a plurality of resin layers laminated on one main surface side of the substrate, and the plurality of resin layers includes one thin film resistor element.
  • the thin film resistor element includes a resistive thin film and a first reinforcing thin film formed on the resistive thin film, and the first reinforcing thin film overlaps the first metal thin film in plan view. It is characterized by being placed in the part that should not be.
  • the first resin layer on which the thin film resistance element is formed has a coefficient of thermal expansion. Attempts to expand toward the opposite side of the small substrate.
  • the first metal thin film is formed on the second resin layer disposed on the side opposite to the substrate of the first resin layer, the first metal thin film among the resistance thin films included in the thin film resistance element In a portion overlapping in plan view, the resistive thin film is pressed against the substrate by the first metal thin film. Therefore, the bending stress applied to the resistance thin film can be relaxed by the expansion of the resin layer in a high temperature state.
  • the first reinforcing thin film is formed, so that the thin film resistance element is damaged by the stress generated by the expansion of the resin layer. Can be prevented.
  • the thin film resistance element may further include a connection electrode formed on the resistance thin film, and the first reinforcing thin film and the connection electrode may be simultaneously formed by the same process.
  • connection electrode for reducing the contact resistance with the extraction electrode connected to the thin film resistance element and the first reinforcing thin film are simultaneously formed on the resistance thin film using the same material by the same process.
  • the process for forming the first reinforcing thin film can be simplified. Therefore, it is possible to provide a highly reliable thin film device in which cracks and disconnections of the thin film resistor element are prevented using a conventional manufacturing process without increasing the manufacturing process. In addition, the manufacturing cost of the thin film device can be reduced.
  • the resistive thin film may contain Si.
  • the resistivity of the resistive thin film may be larger than the resistivity of the first reinforcing thin film.
  • the resistance value depends on the resistivity of the 1st thin film for reinforcing, arbitrary on the resistive thin film
  • the plurality of resin layers further include a third resin layer provided on one main surface with a second metal thin film disposed on the substrate side of the first resin layer, and the thin film resistor element includes: It is preferable to further include a second reinforcing thin film formed on the resistive thin film, and the second reinforcing thin film is disposed in a portion not overlapping the second metal thin film in plan view.
  • the other end of each of the first and second thin film resistor elements may be connected to both ends of the thin film capacitor element.
  • the capacitance of the thin film capacitor element is adjusted by adjusting the voltage between the third and fourth external electrodes and arbitrarily adjusting the voltage applied to both ends of the thin film capacitor element via the first and second thin film resistor elements. Can be adjusted.
  • an ESD protection element that forms a current path that does not pass through the first and second thin film resistor elements and the thin film capacitor element when an electrostatic discharge of a predetermined voltage or higher occurs may be further provided.
  • the resistance thin film in the portion of the resistance thin film that overlaps the first metal thin film in plan view, the resistance thin film is pressed against the substrate by the first metal thin film, so that the resin layer expands at a high temperature.
  • the bending stress applied to the thin film resistance element can be relaxed, and the first reinforcing thin film is formed in the portion of the resistance thin film that does not overlap the first metal thin film in plan view.
  • the thin film resistance element can be prevented from being damaged by a stress or the like generated by the expansion of the resin layer, and a highly reliable thin film device with a thin film resistance element can be obtained.
  • FIG. 1 It is sectional drawing of the thin film device concerning 1st Embodiment of this invention. It is a top view which shows the principal part of the thin film device of FIG. 1, Comprising: It is a top view for demonstrating the arrangement position of the thin film for reinforcement which a thin film resistive element has. It is a figure which shows the electric circuit with which the thin film device of FIG. 1 is provided. It is sectional drawing of the thin film device concerning 2nd Embodiment of this invention. It is sectional drawing of the thin film device concerning 3rd Embodiment of this invention. It is a principal part enlarged view which shows the conventional thin film device, Comprising: The upper drawing is a schematic sectional drawing of a principal part, and the lower drawing is a figure which shows the schematic upper surface perspective view of a principal part.
  • FIG. 1 and FIG. 2 only the main configuration according to the present invention is shown for simplicity of explanation. 4 and 5 to be referred to in the following description, only the main components are shown as in FIGS. 1 and 2, but the description thereof is omitted in the following description.
  • the thin film device 100 includes a substrate 1 such as a glass substrate, a ceramic substrate, a resin substrate, a Si substrate (Si linear expansion coefficient: 3.4 ⁇ 10 ⁇ 6 / K), a GaAs substrate, and the one main surface 1a side of the substrate 1.
  • the thin film capacitor element C includes a capacitor electrode layer 5 formed of a Pt thin film in a predetermined region on one main surface 1a of the substrate 1, a (Ba, Sr) TiO 3 (hereinafter referred to as “BST”) dielectric layer 6 and And a capacitor electrode layer 7 formed of a Pt thin film on the BST dielectric layer 6.
  • the thin film capacitor element C is covered with a protective layer 8 formed of a SiO 2 moisture-resistant protective film, and the resin layer 2 is laminated on the protective layer 8.
  • a capacitor electrode on the upper side of the thin film capacitor element C is formed through a protective layer 8 and a through hole formed in the resin layer 2.
  • Cu / Ti lead electrode 10 connected to capacitor electrode layer 5 on the lower side of thin film capacitor element C, and second metal thin films 11a and 11b are formed. ing.
  • the second metal thin films 11a and 11b are formed simultaneously with the extraction electrodes 9 and 10 using the same material by the same thin film formation process.
  • the resin layer 3 is laminated on the resin layer 2 so as to cover the extraction electrodes 9 and 10 and the second metal thin films 11a and 11b.
  • the second metal thin films 11a and 11b and the extraction electrodes 9 and 10 are integrally formed.
  • the second metal thin films 11a and 11b and the extraction electrodes 9 and 10 are formed separately.
  • the second metal thin films 11a and 11b may be formed integrally with the other extraction electrode formed on the one main surface 2a of the resin layer 2.
  • Each of the thin film resistance elements R1 and R2 is one main layer of the resin layer 3 (corresponding to the “first resin layer” of the present invention) (linear expansion coefficient of the resin layer 3: 54.0 ⁇ 10 ⁇ 6 / K).
  • the first and second reinforcing thin films 12a and 12b and the connection electrodes 12c and 12d are formed in the state of being separated and arranged by the same thin film forming process using the same material containing Ni as a main component and Cr. Has been.
  • the resistive thin film 12 is formed of a material whose resistivity is higher than that of the first and second reinforcing thin films 12a and 12b.
  • each thin film resistive element R1, R2 may each be disperse
  • Each thin film resistance element R1, R2 (resistance thin film 12) is covered with a resin layer 4 laminated on one main surface 3a of the resin layer 3.
  • the one main surface 4a of the resin layer 4 (corresponding to the “second resin layer” of the present invention) (linear expansion coefficient of the resin layer 4: 54.0 ⁇ 10 ⁇ 6 / K) is not shown in detail.
  • Cu / Ti extraction electrodes 13 electrically connected to the extraction electrodes 9 and 10 and the connection electrodes 12c and 12d of the thin film resistance elements R1 to R13 through the through holes formed in the resin layers 3 and 4, respectively.
  • first metal thin films 15a, 15b, and 15c are formed.
  • Each of the first metal thin films 15a to 15c is formed simultaneously with the extraction electrodes 13 and 14 by using the same material by the same thin film forming process.
  • the first metal thin film 15c is formed separately from the first metal thin films 15a and 15b integrally formed with the extraction electrodes 13 and 14, respectively.
  • the first metal thin film 15c may be integrally formed with the first metal thin films 15a and 15b and other extraction electrodes.
  • the first reinforcing thin film 12a is disposed on the portion of the resistive thin film 12 that does not overlap with the second metal thin films 11a and 11b of the resin layer 2 disposed on the substrate 1 side of the resin layer 3 in plan view.
  • the second reinforcing thin film 12b is disposed.
  • first and second reinforcing thin films 12a and 12b are arranged so as to overlap the boundary portions of the first and second metal thin films 11a, 11b, 15a to 15c and the resistive thin film 12 in plan view. It is good to. Furthermore, since stress tends to concentrate on the boundary portion, bending stress applied to the thin film resistance element can be suitably reduced by arranging the reinforcing thin films 12a and 12b so as to overlap the boundary portion.
  • a plurality of Au / Ni external electrodes 16 are formed on the first metal thin films 15a and 15b connected to the extraction electrodes 13 and 14, and the extraction electrodes 13 and 14 and the first metal thin films 15a and 15b, A protective layer 17 formed of resin so as to cover the edge portions of each external electrode 16 is laminated on one main surface 4 a of the resin layer 4.
  • Each of the ESD protection elements D1, D2 is formed of a bidirectional Zener diode as shown in FIG.
  • the method of forming the bidirectional Zener diode is not particularly limited and is not shown in the figure.
  • the first semiconductor thin film of one of the p-type and n-type conductivity and the other conductivity type may be used.
  • a semiconductor film formed by n-type a-Si on a substrate 1 made of pn junction with a second semiconductor thin film or, for example, B-doped Si-formed p-type Thus, the ESD protection elements D1 and D2 can be formed.
  • the thin film device 100 configured as described above includes first to fourth external electrodes P1 to P4 each formed by an external electrode 16, and includes first and second external electrodes P1, Ten thin film capacitor elements C are connected in series between P2.
  • the other end of one of the plurality of first thin film resistance elements R1 having one end connected to the third external electrode P3 and the second thin film resistance element R2 having one end connected to the fourth external electrode P4.
  • the other end of each of the first thin film resistor elements R1 and each of the second thin films so that any one of the plurality of thin film capacitor elements C is inserted between the other end of each of the first thin film resistor elements C1.
  • the other end of each resistance element R2 is connected to both ends of each thin film capacitor element C.
  • ESD electrostatic discharge
  • the lower Pt capacitor electrode layer 5 is formed by sputtering in a predetermined region on the substrate 1 made of, for example, Si, the BST dielectric layer 6 is formed by MOD, and the upper Pt capacitor electrode layer 7 is formed by sputtering.
  • a plurality of thin film capacitor elements C are formed by patterning by RIE (reactive ion etching).
  • RIE reactive ion etching
  • a SiO 2 protective layer 8 covering each thin film capacitor element C is formed, and a resin layer 2 made of a phenol-based photosensitive resin insulating film in which through holes are formed by photolithography is formed, and the resin layer is cured. The heat treatment is performed.
  • the resin layer 2 may be formed so as to cover each thin film capacitor element C without providing the protective layer 8.
  • the SiO 2 moisture-resistant protective film in the through holes of the resin layer 2 is removed by dry etching, and the extraction electrodes 9 and 10 and the second metal thin films 11a and 11b are formed by using a sputtering method which is a thin film formation process.
  • a Ti film is formed, and a Cu film is formed.
  • a pattern is formed by etching by photolithography to form the extraction electrodes 9 and 10 and the second metal thin films 11a and 11b.
  • a resin layer 3 made of a phenol-based photosensitive resin insulating film having through holes formed by photolithography is formed, and a heat treatment for curing the resin layer is performed.
  • a lift-off resist is formed, and a resistance thin film 12 is formed by vapor deposition by a lift-off method using a vapor deposition material made of a mixture mainly composed of Ni, Cr, and Si.
  • a lift-off resist is formed, and the first and second reinforcing thin films 12a and 12b and the connection electrodes 12c and 12d are formed into a resistance thin film by a lift-off method using a vapor deposition material made of a mixture containing Ni and Cr as main components. 12 is formed by vapor deposition.
  • the first and second reinforcing thin films 12a and 12b are, when viewed in plan, the second metal thin films 11a and 11b on the resin layer 2 and the first metal on the resin layer 4 described later.
  • the thin films 15a to 15c are disposed so as to overlap with a portion where both of the thin films 15a to 15c cannot be formed or a portion where they are not formed.
  • a resin layer 4 made of a phenol-based photosensitive resin insulating film having through holes formed by photolithography is formed, and a heat treatment for curing the resin layer is performed.
  • a Ti film for forming the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c is formed using a sputtering method which is a thin film formation process, and a Cu film is formed.
  • a resist with an opening provided at a predetermined position is formed on the formed Cu / Ti film, and the external electrodes 16 constituting the first to fourth external electrodes P1 to P4 are formed by Cu / Ti film by plating. It is formed at a predetermined position above. Then, after the resist is removed, the Cu / Ti film is patterned by photolithography etching to form the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c.
  • a protective layer 17 made of a phenol-based photosensitive resin insulating film having an external electrode exposed portion formed by photolithography is formed, and after heat treatment for curing the resin layer, each thin film device 100 is subjected to dicing.
  • the thin film device 100 is completed by being separated into pieces.
  • the thin film device 100 configured as described above is mounted on another wiring board or the like using solder, wire bonding, or the like, so that the variable capacitance element having the first and second external electrodes P1 and P2 as input / output terminals is provided. Used as. That is, by adjusting the voltage between the third and fourth external electrodes P3 and P4, the voltage applied to both ends of each thin film capacitor element C through the first and second thin film resistance elements R1 and R2 can be arbitrarily set. By adjusting, the capacitance of each thin film capacitor element C can be adjusted.
  • the electrical circuit shown in FIG. 3 is an example, and the number of thin film capacitor elements C, the number of first and second thin film resistance elements R1 and R2, and the number of ESD protection elements D1 and D2 are examples shown in FIG. It is not limited to.
  • the resin layer 3 on which the thin film resistor elements R1 and R2 are formed is heated. It tries to expand toward the opposite side of the substrate 1 having a small expansion coefficient.
  • the first metal thin films 15a to 15c are formed on the resin layer 4 arranged on the opposite side of the resin layer 3 from the substrate 1, the first of the resistance thin films 12 of the thin film resistance elements R1 and R2 is included. In a portion overlapping the first metal thin film 15a to 15c in plan view, the resistance thin film 12 is pressed against the substrate 1 by the first metal thin film 15a to 15c.
  • the bending stress applied to the resistance thin film 12 by the expansion of the resin layer 3 in a high temperature state can be relaxed.
  • the first reinforcing thin film 12a is also formed in the portion of the resistance thin film 12 that does not overlap with the first metal thin films 15a to 15c in plan view, the stress generated by the expansion of the resin layer 3 This can prevent the thin film resistor elements R1, R2 from being damaged.
  • the high temperature state is maintained.
  • the resin layer 3 expands, the bending stress applied to the thin film resistor elements R1, R2 can be further relaxed.
  • the second reinforcing thin film 12b is also formed in the portion of the resistance thin film 12 that does not overlap with the second metal thin films 11a and 11b in plan view, the stress generated by the expansion of the resin layer 3 This can more reliably prevent the thin film resistor elements R1 and R2 from being damaged.
  • connection electrodes 12c and 12d for reducing the contact resistance with the extraction electrodes 13 and 14 connected to the thin film resistance elements R1 and R2 and the first and second reinforcing thin films 12a and 12b are made the same thin film.
  • the process for forming the first and second reinforcing thin films 12a and 12b can be simplified. Therefore, it is possible to provide a highly reliable thin film device 100 in which cracks and disconnections of the thin film resistor elements R1 and R2 are prevented using a conventional manufacturing process without increasing the manufacturing process. Moreover, the manufacturing cost of the thin film device 100 can be reduced.
  • the resistivity of the resistive thin film 12 is larger than the resistivity of the first and second reinforcing thin films 12a and 12b, the first and second reinforcing thin films 12a of the resistive thin film 12 are configured. , 12b, the resistance value depends on the resistivity of the first and second reinforcing thin films 12a, 12b. Therefore, by forming the first and second reinforcing thin films 12a and 12b in any shape and size on the resistive thin film 12, the resistance value design of the thin film resistive elements R1 and R2 can be easily performed.
  • the first metal thin films 15 a to 15 c may be formed to extend to the edge of the resin layer 4 so as to be exposed on the side surface of the thin film device 100. In this way, the stress absorbed by the first metal thin films 15 a to 15 c can be effectively released to the side surface of the thin film device 100. Further, since the first metal thin film 15 c and the extraction electrodes 13 and 14 are formed separately, it is possible to suppress the stress absorbed by the first metal thin film 15 c from being applied to the extraction electrodes 13 and 14. it can. Moreover, the same effect can be produced by forming the second metal thin film 11a and the extraction electrode 9 separately.
  • This embodiment is different from the first embodiment described above in that the second metal thin films 11a and 11b are not provided as shown in FIG.
  • differences from the above-described first embodiment will be mainly described, and other configurations are the same as those of the above-described first embodiment. Therefore, the same reference numerals are used to describe the configuration. Is omitted.
  • the thin film device 100 a includes a substrate 1, a plurality of resin layers 3 and 4 stacked on the one main surface 1 a side of the substrate 1, and a thin film resistance element R.
  • the thin film resistance element R includes a resistance thin film 12 mainly composed of Ni, Cr, and Si formed by a thin film formation process in a predetermined region of the one main surface 3a of the resin layer 3 laminated on the one main surface 1a of the substrate 1.
  • the first reinforcing thin film 12a and the connection electrodes 12c and 12d respectively formed on the resistive thin film 12 are provided.
  • the first and second reinforcing thin films 12a and 12b and the connection electrodes 12c and 12d are formed in the state of being separated and arranged by the same thin film forming process using the same material containing Ni as a main component and Cr. Has been.
  • the thin film resistive element R (resistive thin film 12) is covered with a resin layer 4 laminated on one main surface 3a of the resin layer 3. Further, on one main surface 4a of the resin layer 4, Cu / Ti lead electrodes 13, 14 electrically connected to the thin film resistance element R through through holes (not shown) formed in the resin layer 4, First metal thin films 15a to 15c are formed. As in the first embodiment described above, the first reinforcing thin film 12a is disposed in a portion of the resistive thin film 12 that does not overlap the first metal thin films 15a to 15c in plan view.
  • a plurality of Au / Ni external electrodes 16 are formed on the extraction electrodes 13 and 14 to cover the extraction electrodes 13 and 14 and the first metal thin films 15a and 15b and the edge portions of the respective external electrodes 16.
  • the protective layer 17 formed of resin is laminated on the one main surface 4 a of the resin layer 4.
  • a resin layer 3 made of a phenol-based photosensitive resin insulating film is formed on a substrate 1 made of, for example, Si, and heat treatment for curing the resin layer is performed.
  • a lift-off resist is formed, and the resistive thin film 12 is formed by vapor deposition by a lift-off method using a vapor deposition material made of a mixture containing Ni, Cr, and Si as main components.
  • a lift-off resist is formed, and the first reinforcing thin film 12a and the connection electrodes 12c and 12d are vapor-deposited on the resistance thin film 12 by a lift-off method using a vapor deposition material composed of a mixture containing Ni and Cr as main components. Is done.
  • the first reinforcing thin film 12a is disposed so as to overlap a portion where the first metal thin films 15a to 15c on the resin layer 4 to be described later cannot be formed or a portion where the first metal thin film 15a is not formed when viewed in plan. Is done.
  • a resin layer 4 made of a phenol-based photosensitive resin insulating film having through holes (not shown) formed by photolithography is formed, and heat treatment for curing the resin layer is performed.
  • a Ti film for forming the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c is formed using a sputtering method which is a thin film formation process, and a Cu film is formed.
  • a resist having an opening at a predetermined position is patterned on the formed Cu / Ti film, and the external electrode 16 is formed at a predetermined position on the Cu / Ti film by plating. Then, after the resist is removed, the Cu / Ti film is patterned by photolithography etching to form the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c.
  • a protective layer 17 made of a phenol-based photosensitive resin insulating film having external electrode exposed portions formed by photolithography is formed, and after heat treatment for curing the resin layer, dicing is performed for each thin film device 100a.
  • the thin film device 100a is completed by being separated into pieces.
  • the first reinforcing thin film 12a is formed in a portion of the resistance thin film 12 that does not overlap the first metal thin films 15a to 15c in plan view. Therefore, even if the resin layer 3 expands in a high temperature state, for example, it is possible to prevent the thin film resistance element R from being damaged by the stress generated by the expansion of the resin layers 3 and 4.
  • connection electrodes 12c and 12d are not formed on the resistive thin film 12, as shown in FIG. Since other configurations are the same as those in the first embodiment, description of the configurations is omitted by citing the same reference numerals.
  • connection electrodes 12c and 12d are not formed on the resistance thin film 12
  • the first and second thin film resistance elements R are formed by the first reinforcing thin film 12a as in the second embodiment.
  • a highly reliable thin film device 100 that is prevented from being damaged can be provided.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. They may be combined.
  • the material of the thin film resistance elements R, R1, R2 (resistance thin film 12) is not limited to the above-described example, and the thin film resistance elements R, R1, R2 may be formed of, for example, a CrSi alloy.
  • the thin film resistor elements R, R1, and R2 may be formed of a conductive material such as Pt.
  • the first and second metal thin films 11a, 11b, 15a to 15c described above may form a signal line through which a high-frequency signal passes, or form a power supply line connected to a power source. It may be a dummy electrode.
  • a thin film device in which various circuits including the thin film resistor element are configured by appropriately combining thin film circuit elements such as a thin film capacitor element, a thin film inductor element, and a thin film thermistor element is provided.
  • the thin film capacitor element, the thin film inductor element, and the thin film thermistor element may have a general thin film circuit element structure.
  • a device for adjusting antenna sensitivity of a short-range communication device or a noise filter device for photodiodes can be constituted by the thin film device of the present invention.
  • the dielectric material for forming the dielectric layer is not limited to the above example.
  • the dielectric layer may be formed of a dielectric material such as BaTiO 3 , SrTiO 3 , or PbTiO 3 .
  • the present invention can be widely applied to a thin film device including a thin film resistance element.

Abstract

The purpose of the present invention is to provide a feature making it possible to prevent a thin film resistance element from breaking due to stress caused by resin layer expansion, and obtain a highly reliable thin film device. In portions of a resistive thin film 12 overlapping with first metal thin films 15a-15c in plan view, the resistive thin film 12 is held against a substrate 1 by the first metal thin films 15a-15c, making it possible to mitigate flexural stress, etc., applied to thin film resistance elements R1, R2 by expansion of a resin layer 3 in a high-temperature state. In portions of a resistive thin film 12 that do not overlap with the first metal thin films 15a-15c in plan view, a first reinforcement thin film 12 is formed, making it possible to prevent the thin film resistance elements R1, R2 from breaking due to stress, etc., caused by the expansion of the resin layer 3. It is thus possible to obtain a thin film device 100 having highly reliable thin film resistance elements R1, R2.

Description

薄膜デバイスThin film device
 本発明は、薄膜抵抗素子を備える薄膜デバイスに関する。 The present invention relates to a thin film device including a thin film resistance element.
 従来、薄膜抵抗素子を備える種々の薄膜デバイスが提供されている(例えば特許文献1参照)。例えば、図6に示す従来の薄膜デバイス500は、半導体基板501上に形成された集積回路502と、集積回路502上に配置された複数の電極パッド503と、各電極パッド503間に設けられたパッシベーション膜504上に形成された樹脂層505とを備えている。樹脂層505はポリイミド樹脂やエポキシ樹脂等により形成され、樹脂層505の電極パッド503に重なる位置に貫通孔が設けられている。また、貫通孔内においてバリアメタル層506を介して電極パッド503に接続される再配線507が樹脂層505上に形成されている。そして、樹脂層505上の再配線507に挟まれた位置に薄膜抵抗素子508が設けられている。 Conventionally, various thin film devices including a thin film resistance element have been provided (see, for example, Patent Document 1). For example, a conventional thin film device 500 shown in FIG. 6 is provided between an integrated circuit 502 formed on a semiconductor substrate 501, a plurality of electrode pads 503 arranged on the integrated circuit 502, and each electrode pad 503. And a resin layer 505 formed on the passivation film 504. The resin layer 505 is formed of polyimide resin, epoxy resin, or the like, and a through hole is provided at a position overlapping the electrode pad 503 of the resin layer 505. A rewiring 507 connected to the electrode pad 503 through the barrier metal layer 506 in the through hole is formed on the resin layer 505. A thin film resistance element 508 is provided at a position between the rewiring 507 on the resin layer 505.
 図6に示す薄膜デバイス500では、薄膜抵抗素子508は、バリアメタル層506と、バリアメタル層506上に積層されたシード層509とを備えている。バリアメタル層506は、Ti、TiN、Ni等により形成され、電極パッド503と再配線507との密着性を向上させるために設けられている。また、シード層509は、再配線507をめっき法により形成する際の電極として機能するものであり、Cu、Al等により形成されている。そして、バリアメタル層506およびシード層509それぞれの膜厚が適宜調整されることにより、薄膜抵抗素子508の抵抗値が調整されている。 In the thin film device 500 shown in FIG. 6, the thin film resistance element 508 includes a barrier metal layer 506 and a seed layer 509 stacked on the barrier metal layer 506. The barrier metal layer 506 is formed of Ti, TiN, Ni, or the like, and is provided to improve the adhesion between the electrode pad 503 and the rewiring 507. The seed layer 509 functions as an electrode when the rewiring 507 is formed by a plating method, and is formed of Cu, Al, or the like. And the resistance value of the thin film resistive element 508 is adjusted by adjusting the film thicknesses of the barrier metal layer 506 and the seed layer 509 as appropriate.
特開2009-267248号公報(段落0012,0016,0017、図1など)JP 2009-267248 A (paragraphs 0012, 0016, 0017, FIG. 1, etc.)
 ところで、図6に示す薄膜デバイス500が、他の基板などに実装等される際の熱サイクルにおいて加熱された場合に、樹脂層505が膨張すること等により薄膜抵抗素子508に曲げ応力が加わり、薄膜抵抗素子508が破損するおそれがある。 By the way, when the thin film device 500 shown in FIG. 6 is heated in a thermal cycle when mounted on another substrate or the like, a bending stress is applied to the thin film resistance element 508 due to expansion of the resin layer 505, etc. The thin film resistance element 508 may be damaged.
 この発明は、上記した課題に鑑みてなされたものであり、樹脂層が膨張することにより生じる応力等により薄膜抵抗素子が破損するのを防止して、信頼性の高い薄膜デバイスを得ることができる技術を提供することを目的とする。 The present invention has been made in view of the above-described problems, and can prevent a thin film resistive element from being damaged by a stress or the like caused by expansion of a resin layer, thereby obtaining a highly reliable thin film device. The purpose is to provide technology.
 上記した目的を達成するために、本発明の薄膜デバイスは、基板と、前記基板の一方主面側に積層された複数の樹脂層とを備え、前記複数の樹脂層は、薄膜抵抗素子が一方主面に設けられた第1の樹脂層と、前記第1の樹脂層の前記基板と反対側に配置された第1の金属薄膜が一方主面に設けられた第2の樹脂層とを含み、前記薄膜抵抗素子は、抵抗薄膜と、前記抵抗薄膜上に形成された第1の補強用薄膜とを有し、前記第1の補強用薄膜が、前記第1の金属薄膜と平面視で重ならない部分に配置されていることを特徴としている。 In order to achieve the above-described object, a thin film device of the present invention includes a substrate and a plurality of resin layers laminated on one main surface side of the substrate, and the plurality of resin layers includes one thin film resistor element. A first resin layer provided on a main surface; and a second resin layer provided on one main surface with a first metal thin film disposed on the opposite side of the first resin layer from the substrate. The thin film resistor element includes a resistive thin film and a first reinforcing thin film formed on the resistive thin film, and the first reinforcing thin film overlaps the first metal thin film in plan view. It is characterized by being placed in the part that should not be.
 このように構成された発明では、他の基板などに実装等される際の熱サイクルにおいて薄膜デバイスが加熱された場合に、薄膜抵抗素子が形成された第1の樹脂層は、熱膨張率が小さい基板と反対側に向って膨張しようとする。このとき、第1の樹脂層の基板と反対側に配置された第2の樹脂層に第1の金属薄膜が形成されているため、薄膜抵抗素子が有する抵抗薄膜のうちの第1の金属薄膜と平面視で重なる部分においては、抵抗薄膜が第1の金属薄膜により基板に対して押さえ込まれた状態になる。そのため、高温状態において樹脂層が膨張することにより抵抗薄膜に加わる曲げ応力を緩和することができる。一方、抵抗薄膜のうちの第1の金属薄膜と平面視で重ならない部分においても、第1の補強用薄膜が形成されているので、樹脂層が膨張することにより生じる応力により薄膜抵抗素子が破損するのを防止することができる。 In the invention configured as described above, when the thin film device is heated in a thermal cycle when mounted on another substrate or the like, the first resin layer on which the thin film resistance element is formed has a coefficient of thermal expansion. Attempts to expand toward the opposite side of the small substrate. At this time, since the first metal thin film is formed on the second resin layer disposed on the side opposite to the substrate of the first resin layer, the first metal thin film among the resistance thin films included in the thin film resistance element In a portion overlapping in plan view, the resistive thin film is pressed against the substrate by the first metal thin film. Therefore, the bending stress applied to the resistance thin film can be relaxed by the expansion of the resin layer in a high temperature state. On the other hand, even in the portion of the resistance thin film that does not overlap with the first metal thin film in plan view, the first reinforcing thin film is formed, so that the thin film resistance element is damaged by the stress generated by the expansion of the resin layer. Can be prevented.
 また、前記薄膜抵抗素子は、前記抵抗薄膜上に形成された接続電極をさらに有し、前記第1の補強用薄膜と前記接続電極とが同一のプロセスにより同時に形成されていてもよい。 The thin film resistance element may further include a connection electrode formed on the resistance thin film, and the first reinforcing thin film and the connection electrode may be simultaneously formed by the same process.
 このように構成すると、薄膜抵抗素子に接続される引出電極との接触抵抗を低減するための接続電極と、第1の補強用薄膜とを同一のプロセスにより同一の材料を用いて同時に抵抗薄膜上に形成することにより、第1の補強用薄膜を形成するための工程を簡略化することができる。したがって、製造工程を増大させることなく従来の製造工程を用いて、薄膜抵抗素子のクラックや断線が防止された信頼性の高い薄膜デバイスを提供することができる。また、薄膜デバイスの製造コストの低減を図ることができる。 With this configuration, the connection electrode for reducing the contact resistance with the extraction electrode connected to the thin film resistance element and the first reinforcing thin film are simultaneously formed on the resistance thin film using the same material by the same process. By forming the first thin film, the process for forming the first reinforcing thin film can be simplified. Therefore, it is possible to provide a highly reliable thin film device in which cracks and disconnections of the thin film resistor element are prevented using a conventional manufacturing process without increasing the manufacturing process. In addition, the manufacturing cost of the thin film device can be reduced.
 また、前記抵抗薄膜は、Siを含有するとよい。 The resistive thin film may contain Si.
 このようにしても、Siを含有することにより脆くなった薄膜抵抗素子の破損を防止した信頼性の高い薄膜デバイスを提供することができる。 Even in this case, it is possible to provide a highly reliable thin film device that prevents damage to the thin film resistance element that has become brittle by containing Si.
 また、前記抵抗薄膜の抵抗率が、前記第1の補強用薄膜の抵抗率よりも大きいとよい。 Also, the resistivity of the resistive thin film may be larger than the resistivity of the first reinforcing thin film.
 このようにすると、抵抗薄膜のうちの第1の補強用薄膜が形成された部分においては、抵抗値が第1の補強用薄膜の抵抗率に依存することを利用して、抵抗薄膜上に任意の形状および大きさで第1の補強用薄膜を形成することにより、薄膜抵抗素子の抵抗値設計を容易に行うことができる。 If it does in this way, in the part in which the 1st thin film for reinforcement of the resistive thin film was formed, using that the resistance value depends on the resistivity of the 1st thin film for reinforcing, arbitrary on the resistive thin film By forming the first reinforcing thin film with the shape and size, it is possible to easily design the resistance value of the thin film resistance element.
 また、前記複数の樹脂層は、前記第1の樹脂層の前記基板側に配置された第2の金属薄膜が一方主面に設けられた第3の樹脂層をさらに含み、前記薄膜抵抗素子は、前記抵抗薄膜上に形成された第2の補強用薄膜をさらに有し、前記第2の補強用薄膜が、前記第2の金属薄膜と平面視で重ならない部分に配置されているとよい。 The plurality of resin layers further include a third resin layer provided on one main surface with a second metal thin film disposed on the substrate side of the first resin layer, and the thin film resistor element includes: It is preferable to further include a second reinforcing thin film formed on the resistive thin film, and the second reinforcing thin film is disposed in a portion not overlapping the second metal thin film in plan view.
 このように構成すると、抵抗薄膜のうちの第2の樹脂層の第1の金属薄膜と第3の樹脂層の第2の金属薄膜との間に挟み込まれた状態になる部分においては、高温状態において樹脂層が膨張することにより薄膜抵抗素子に加わる曲げ応力をさらに緩和することができる。また、抵抗薄膜のうちの第2の金属薄膜と平面視で重ならない部分においても、第2の補強用薄膜が形成されているので、樹脂層が膨張することにより生じる応力により薄膜抵抗素子が破損するのをさらに確実に防止することができる。 If comprised in this way, in the part used as the state pinched | interposed between the 1st metal thin film of the 2nd resin layer of the resistance thin film, and the 2nd metal thin film of the 3rd resin layer, it is a high temperature state The bending stress applied to the thin film resistor element due to the expansion of the resin layer can be further relaxed. In addition, since the second reinforcing thin film is formed in a portion of the resistive thin film that does not overlap with the second metal thin film in plan view, the thin film resistive element is damaged by the stress generated by the expansion of the resin layer. This can be prevented more reliably.
 また、第1~第4外部電極と、前記第1、第2外部電極間に直列接続された可変容量型の薄膜キャパシタ素子と、一端が前記第3外部電極に接続された第1の前記薄膜抵抗素子と、一端が前記第4外部電極に接続された第2の前記薄膜抵抗素子とを備え、前記第1、第2の薄膜抵抗素子の他端間に前記薄膜キャパシタ素子が挿入されるように、前記第1、第2の薄膜抵抗素子それぞれの他端が前記薄膜キャパシタ素子両端のそれぞれに接続されているとよい。 In addition, the first to fourth external electrodes, the variable capacitance type thin film capacitor element connected in series between the first and second external electrodes, and the first thin film having one end connected to the third external electrode A resistor element; and a second thin film resistor element having one end connected to the fourth external electrode, wherein the thin film capacitor element is inserted between the other ends of the first and second thin film resistor elements. In addition, the other end of each of the first and second thin film resistor elements may be connected to both ends of the thin film capacitor element.
 このように構成すると、第1、第2外部電極を入出力端子とする可変容量型の薄膜キャパシタ素子を備える薄膜デバイスを提供することができる。すなわち、第3、第4外部電極間の電圧を調整して第1、第2の薄膜抵抗素子を介して薄膜キャパシタ素子の両端に印加される電圧を任意に調整することにより薄膜キャパシタ素子の容量を調整することができる。 With this configuration, it is possible to provide a thin film device including a variable capacitance type thin film capacitor element having the first and second external electrodes as input / output terminals. That is, the capacitance of the thin film capacitor element is adjusted by adjusting the voltage between the third and fourth external electrodes and arbitrarily adjusting the voltage applied to both ends of the thin film capacitor element via the first and second thin film resistor elements. Can be adjusted.
 また、所定電圧以上の静電気放電が生じた場合に前記第1、第2の薄膜抵抗素子および前記薄膜キャパシタ素子を経由しない電流パスを形成するESD保護素子をさらに備えていてもよい。 Further, an ESD protection element that forms a current path that does not pass through the first and second thin film resistor elements and the thin film capacitor element when an electrostatic discharge of a predetermined voltage or higher occurs may be further provided.
 このように構成すると、所定電圧以上の静電気放電(ESD:Electro-Static Discharge)に起因する過電圧が生じると、第1、第2の薄膜抵抗素子および薄膜キャパシタ素子を経由しない電流パスがESD保護素子により形成されるので、第1、第2の薄膜抵抗素子および薄膜キャパシタ素子を過電圧から保護することができる。 With this configuration, when an overvoltage caused by electrostatic discharge (ESD) of a predetermined voltage or higher occurs, a current path that does not pass through the first and second thin film resistor elements and the thin film capacitor element is formed as an ESD protection element. Thus, the first and second thin film resistor elements and the thin film capacitor element can be protected from overvoltage.
 本発明によれば、抵抗薄膜のうちの第1の金属薄膜と平面視で重なる部分においては、第1の金属薄膜により抵抗薄膜が基板に対して押さえこまれるので、高温状態において樹脂層が膨張することにより薄膜抵抗素子に加わる曲げ応力等を緩和することができ、抵抗薄膜のうちの第1の金属薄膜と平面視で重ならない部分には第1の補強用薄膜が形成されているので、樹脂層が膨張することにより生じる応力等によって薄膜抵抗素子が破損するのを防止することができ、信頼性の高い薄膜抵抗素子付きの薄膜デバイスを得ることができる。 According to the present invention, in the portion of the resistance thin film that overlaps the first metal thin film in plan view, the resistance thin film is pressed against the substrate by the first metal thin film, so that the resin layer expands at a high temperature. As a result, the bending stress applied to the thin film resistance element can be relaxed, and the first reinforcing thin film is formed in the portion of the resistance thin film that does not overlap the first metal thin film in plan view. The thin film resistance element can be prevented from being damaged by a stress or the like generated by the expansion of the resin layer, and a highly reliable thin film device with a thin film resistance element can be obtained.
本発明の第1実施形態にかかる薄膜デバイスの断面図である。It is sectional drawing of the thin film device concerning 1st Embodiment of this invention. 図1の薄膜デバイスの要部を示す平面図であって、薄膜抵抗素子が有する補強用薄膜の配置位置を説明するための平面図である。It is a top view which shows the principal part of the thin film device of FIG. 1, Comprising: It is a top view for demonstrating the arrangement position of the thin film for reinforcement which a thin film resistive element has. 図1の薄膜デバイスが備える電気回路を示す図である。It is a figure which shows the electric circuit with which the thin film device of FIG. 1 is provided. 本発明の第2実施形態にかかる薄膜デバイスの断面図である。It is sectional drawing of the thin film device concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる薄膜デバイスの断面図である。It is sectional drawing of the thin film device concerning 3rd Embodiment of this invention. 従来の薄膜デバイスを示す要部拡大図であって、上側の図面は要部の概略断面図であり、下側の図面は要部の概略上面透視図を示す図である。It is a principal part enlarged view which shows the conventional thin film device, Comprising: The upper drawing is a schematic sectional drawing of a principal part, and the lower drawing is a figure which shows the schematic upper surface perspective view of a principal part.
 <第1実施形態>
 本発明の第1実施形態について図1~図3を参照して説明する。なお、図1および図2では、説明を簡易なものとするために本発明にかかる主要な構成のみが図示されている。また、後の説明で参照する図4および図5についても、図1および図2と同様に主要な構成のみが図示されているが、以下の説明においてはその説明は省略する。
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIGS. In FIG. 1 and FIG. 2, only the main configuration according to the present invention is shown for simplicity of explanation. 4 and 5 to be referred to in the following description, only the main components are shown as in FIGS. 1 and 2, but the description thereof is omitted in the following description.
 (構成)
 薄膜デバイス100の概略構成について説明する。
(Constitution)
A schematic configuration of the thin film device 100 will be described.
 薄膜デバイス100は、ガラス基板やセラミック基板、樹脂基板、Si基板(Siの線膨張係数:3.4×10-6/K)、GaAs基板などの基板1と、基板1の一方主面1a側に積層された複数の樹脂層2,3,4と、基板1の一方主面1a上に設けられた可変容量型の複数(この実施形態では10個)の薄膜キャパシタ素子Cと、複数(この実施形態では7個)の第1の薄膜抵抗素子R1(本発明の「薄膜抵抗素子」に相当)と、複数(この実施形態では6個)の第2の薄膜抵抗素子R2(本発明の「薄膜抵抗素子」に相当)と、複数(この実施形態では2個)のESD保護素子D1,D2とを備えている。 The thin film device 100 includes a substrate 1 such as a glass substrate, a ceramic substrate, a resin substrate, a Si substrate (Si linear expansion coefficient: 3.4 × 10 −6 / K), a GaAs substrate, and the one main surface 1a side of the substrate 1. A plurality of resin layers 2, 3, 4 stacked on one side, a plurality of (10 in this embodiment) thin film capacitor elements C provided on one main surface 1 a of the substrate 1, and a plurality (this In the embodiment, there are seven first thin film resistor elements R1 (corresponding to “thin film resistor elements” of the present invention) and a plurality (six in this embodiment) of second thin film resistor elements R2 (“ And a plurality (two in this embodiment) of ESD protection elements D1 and D2.
 薄膜キャパシタ素子Cは、基板1の一方主面1a上の所定領域にPt薄膜により形成されたキャパシタ電極層5と、(Ba,Sr)TiO(以下「BST」と称する)誘電体層6と、BST誘電体層6上にPt薄膜により形成されたキャパシタ電極層7とにより形成される。 The thin film capacitor element C includes a capacitor electrode layer 5 formed of a Pt thin film in a predetermined region on one main surface 1a of the substrate 1, a (Ba, Sr) TiO 3 (hereinafter referred to as “BST”) dielectric layer 6 and And a capacitor electrode layer 7 formed of a Pt thin film on the BST dielectric layer 6.
 また、薄膜キャパシタ素子Cは、SiO耐湿保護膜により形成された保護層8により被覆され、保護層8上に樹脂層2が積層されている。樹脂層2(本発明の「第3の樹脂層」に相当)の一方主面2aには、保護層8および樹脂層2に形成された透孔を介して薄膜キャパシタ素子Cの上側のキャパシタ電極層7に接続されたCu/Ti引出電極9と、薄膜キャパシタ素子Cの下側のキャパシタ電極層5に接続されたCu/Ti引出電極10と、第2の金属薄膜11a,11bとが形成されている。 The thin film capacitor element C is covered with a protective layer 8 formed of a SiO 2 moisture-resistant protective film, and the resin layer 2 is laminated on the protective layer 8. On one main surface 2a of the resin layer 2 (corresponding to the “third resin layer” of the present invention), a capacitor electrode on the upper side of the thin film capacitor element C is formed through a protective layer 8 and a through hole formed in the resin layer 2. Cu / Ti lead electrode 9 connected to layer 7, Cu / Ti lead electrode 10 connected to capacitor electrode layer 5 on the lower side of thin film capacitor element C, and second metal thin films 11a and 11b are formed. ing.
 第2の金属薄膜11a,11bは、それぞれ、同一の薄膜形成プロセスにより同一の材料を用いて引出電極9,10と同時に形成されている。また、樹脂層2に、引出電極9,10および第2の金属薄膜11a,11bを被覆して樹脂層3が積層されている。なお、この実施形態では、第2の金属薄膜11a,11bと引出電極9,10とが一体形成されているが、第2の金属薄膜11a,11bと引出電極9,10とが分離して形成されていてもよいし、第2の金属薄膜11a,11bが樹脂層2の一方主面2aに形成された他の引出電極と一体形成されていてもよい。 The second metal thin films 11a and 11b are formed simultaneously with the extraction electrodes 9 and 10 using the same material by the same thin film formation process. The resin layer 3 is laminated on the resin layer 2 so as to cover the extraction electrodes 9 and 10 and the second metal thin films 11a and 11b. In this embodiment, the second metal thin films 11a and 11b and the extraction electrodes 9 and 10 are integrally formed. However, the second metal thin films 11a and 11b and the extraction electrodes 9 and 10 are formed separately. Alternatively, the second metal thin films 11a and 11b may be formed integrally with the other extraction electrode formed on the one main surface 2a of the resin layer 2.
 各薄膜抵抗素子R1,R2は、それぞれ、樹脂層3(本発明の「第1の樹脂層」に相当)(樹脂層3の線膨張係数:54.0×10-6/K)の一方主面3aの所定領域に薄膜形成プロセスにより形成されたNi、Cr、Siを主成分とする抵抗薄膜12と、それぞれ抵抗薄膜12上に形成された第1、第2の補強用薄膜12a,12bおよび接続電極12c,12dとを備えている。第1、第2の補強用薄膜12a,12bおよび接続電極12c,12dは、それぞれ、Niを主成分としてCrを含む同一の材料を用いて同一の薄膜形成プロセスにより、分離配置された状態で形成されている。 Each of the thin film resistance elements R1 and R2 is one main layer of the resin layer 3 (corresponding to the “first resin layer” of the present invention) (linear expansion coefficient of the resin layer 3: 54.0 × 10 −6 / K). A resistive thin film 12 mainly composed of Ni, Cr, and Si formed in a predetermined region of the surface 3a, and first and second reinforcing thin films 12a and 12b formed on the resistive thin film 12, respectively; Connection electrodes 12c and 12d are provided. The first and second reinforcing thin films 12a and 12b and the connection electrodes 12c and 12d are formed in the state of being separated and arranged by the same thin film forming process using the same material containing Ni as a main component and Cr. Has been.
 ここで、抵抗薄膜12は、その抵抗率が第1、第2の補強用薄膜12a,12bの抵抗率よりも大きい材料により形成されている。なお、各薄膜抵抗素子R1,R2の全てが樹脂層3上に形成されているが、各薄膜抵抗素子R1,R2が、それぞれ、異なる樹脂層上に分散して配置されていてもよい。 Here, the resistive thin film 12 is formed of a material whose resistivity is higher than that of the first and second reinforcing thin films 12a and 12b. In addition, although all of each thin film resistive element R1, R2 is formed on the resin layer 3, each thin film resistive element R1, R2 may each be disperse | distributed and arrange | positioned on a different resin layer.
 また、各薄膜抵抗素子R1,R2(抵抗薄膜12)は、樹脂層3の一方主面3a上に積層された樹脂層4により被覆されている。樹脂層4(本発明の「第2の樹脂層」に相当)(樹脂層4の線膨張係数:54.0×10-6/K)の一方主面4aには、詳細には図示省略されているが、樹脂層3,4に形成された透孔を介して引出電極9,10や薄膜抵抗素子R1~R13の接続電極12c,12dに電気的に接続されたCu/Ti引出電極13,14(Cuの線膨張係数:16.5×10-6/K、Tiの線膨張係数:8.6×10-6/K)と、第1の金属薄膜15a,15b,15cとが形成されている。第1の金属薄膜15a~15cそれぞれは、同一の薄膜形成プロセスにより同一の材料を用いて引出電極13,14と同時に形成されている。なお、図1および図2に示すように、第1の金属薄膜15cが、それぞれ引出電極13,14と一体形成された第1の金属薄膜15a,15bと分離した状態で形成されているが、第1の金属薄膜15cが、第1の金属薄膜15a,15bや他の引出電極と一体形成されていてもよい。 Each thin film resistance element R1, R2 (resistance thin film 12) is covered with a resin layer 4 laminated on one main surface 3a of the resin layer 3. The one main surface 4a of the resin layer 4 (corresponding to the “second resin layer” of the present invention) (linear expansion coefficient of the resin layer 4: 54.0 × 10 −6 / K) is not shown in detail. However, Cu / Ti extraction electrodes 13 electrically connected to the extraction electrodes 9 and 10 and the connection electrodes 12c and 12d of the thin film resistance elements R1 to R13 through the through holes formed in the resin layers 3 and 4, respectively. 14 (Cu linear expansion coefficient: 16.5 × 10 −6 / K, Ti linear expansion coefficient: 8.6 × 10 −6 / K) and the first metal thin films 15a, 15b, and 15c are formed. ing. Each of the first metal thin films 15a to 15c is formed simultaneously with the extraction electrodes 13 and 14 by using the same material by the same thin film forming process. As shown in FIGS. 1 and 2, the first metal thin film 15c is formed separately from the first metal thin films 15a and 15b integrally formed with the extraction electrodes 13 and 14, respectively. The first metal thin film 15c may be integrally formed with the first metal thin films 15a and 15b and other extraction electrodes.
 また、図1および図2に示すように、抵抗薄膜12のうち、樹脂層3の基板1と反対側に配置された樹脂層4の第1の金属薄膜15a~15cと平面視で重ならない部分に、第1の補強用薄膜12aが配置され、抵抗薄膜12のうち、樹脂層3の基板1側に配置された樹脂層2の第2の金属薄膜11a,11bと平面視で重ならない部分に、第2の補強用薄膜12bが配置されている。なお、第1、第2の金属薄膜11a,11b,15a~15cと抵抗薄膜12との平面視における境界部分に重なるように、第1、第2の補強用薄膜12a,12bが配置されるようにするとよい。さらに、境界部分には応力が集中しやすいため、補強用薄膜12a,12bが境界部分に重なるように配置されることで、薄膜抵抗素子に加わる曲げ応力等を好適に緩和できる。 Also, as shown in FIGS. 1 and 2, a portion of the resistive thin film 12 that does not overlap with the first metal thin films 15a to 15c of the resin layer 4 disposed on the opposite side of the resin layer 3 from the substrate 1 in plan view. The first reinforcing thin film 12a is disposed on the portion of the resistive thin film 12 that does not overlap with the second metal thin films 11a and 11b of the resin layer 2 disposed on the substrate 1 side of the resin layer 3 in plan view. The second reinforcing thin film 12b is disposed. It should be noted that the first and second reinforcing thin films 12a and 12b are arranged so as to overlap the boundary portions of the first and second metal thin films 11a, 11b, 15a to 15c and the resistive thin film 12 in plan view. It is good to. Furthermore, since stress tends to concentrate on the boundary portion, bending stress applied to the thin film resistance element can be suitably reduced by arranging the reinforcing thin films 12a and 12b so as to overlap the boundary portion.
 また、引出電極13,14に接続された第1の金属薄膜15a,15b上に複数のAu/Ni外部電極16が形成され、引出電極13,14および第1の金属薄膜15a,15bと、各外部電極16それぞれの端縁部分とを被覆するように樹脂により形成された保護層17が樹脂層4の一方主面4a上に積層されている。 Also, a plurality of Au / Ni external electrodes 16 are formed on the first metal thin films 15a and 15b connected to the extraction electrodes 13 and 14, and the extraction electrodes 13 and 14 and the first metal thin films 15a and 15b, A protective layer 17 formed of resin so as to cover the edge portions of each external electrode 16 is laminated on one main surface 4 a of the resin layer 4.
 ESD保護素子D1,D2それぞれは、図3に示すように、双方向ツェナーダイオードにより形成されている。双方向ツェナーダイオードの形成方法については特に限定されるものではなく、図示省略されているが、例えば、p型およびn型のいずれか一方の導電型の第1の半導体薄膜と他方の導電型の第2の半導体薄膜とがpn接合されて形成されたものや、例えば、Bドープされてp型に形成されたSiから成る基板1上にn型a-Siにより半導体膜が成膜されて形成されたものにより、ESD保護素子D1,D2を形成することができる。 Each of the ESD protection elements D1, D2 is formed of a bidirectional Zener diode as shown in FIG. The method of forming the bidirectional Zener diode is not particularly limited and is not shown in the figure. For example, the first semiconductor thin film of one of the p-type and n-type conductivity and the other conductivity type may be used. A semiconductor film formed by n-type a-Si on a substrate 1 made of pn junction with a second semiconductor thin film or, for example, B-doped Si-formed p-type Thus, the ESD protection elements D1 and D2 can be formed.
 以上のように構成された薄膜デバイス100は、図3に示すように、それぞれ外部電極16により形成された第1~第4外部電極P1~P4を有し、第1、第2外部電極P1,P2間に10個の薄膜キャパシタ素子Cが直列接続されている。また、一端が第3外部電極P3に接続された複数の第1の薄膜抵抗素子R1のうちのいずれかの他端と、一端が第4外部電極P4に接続された第2の薄膜抵抗素子R2のうちのいずれかの他端との間に複数の薄膜キャパシタ素子Cのうちのいずれか1個が挿入されるように、各第1の薄膜抵抗素子R1それぞれの他端および各第2の薄膜抵抗素子R2それぞれの他端が各薄膜キャパシタ素子Cそれぞれの両端に接続されている。 As shown in FIG. 3, the thin film device 100 configured as described above includes first to fourth external electrodes P1 to P4 each formed by an external electrode 16, and includes first and second external electrodes P1, Ten thin film capacitor elements C are connected in series between P2. The other end of one of the plurality of first thin film resistance elements R1 having one end connected to the third external electrode P3 and the second thin film resistance element R2 having one end connected to the fourth external electrode P4. The other end of each of the first thin film resistor elements R1 and each of the second thin films so that any one of the plurality of thin film capacitor elements C is inserted between the other end of each of the first thin film resistor elements C1. The other end of each resistance element R2 is connected to both ends of each thin film capacitor element C.
 また、所定電圧以上の静電気放電(ESD:Electro-Static Discharge)が生じた場合に、第1、第2の薄膜抵抗素子R1,R2および薄膜キャパシタ素子Cを経由しない電流パスW1,W2が形成されるように、第1、第3外部電極P1,P3間にESD保護素子D1が直列接続され、第2、第3外部電極P2,P3間にESD保護素子D2が直列接続されている。 Further, when electrostatic discharge (ESD) exceeding a predetermined voltage occurs, current paths W1 and W2 that do not pass through the first and second thin film resistance elements R1 and R2 and the thin film capacitor element C are formed. As shown, the ESD protection element D1 is connected in series between the first and third external electrodes P1 and P3, and the ESD protection element D2 is connected in series between the second and third external electrodes P2 and P3.
 したがって、所定電圧以上の静電気放電に起因する過電圧が生じると、第1、第2の薄膜抵抗素子R1,R2および薄膜キャパシタ素子Cを経由しない電流パスW1,W2がESD保護素子D1,D2により形成されるので、第1、第2の薄膜抵抗素子R1,R2および薄膜キャパシタ素子Cを過電圧から保護することができる。 Therefore, when an overvoltage caused by electrostatic discharge of a predetermined voltage or higher occurs, current paths W1 and W2 that do not pass through the first and second thin film resistance elements R1 and R2 and the thin film capacitor element C are formed by the ESD protection elements D1 and D2. Therefore, the first and second thin film resistor elements R1, R2 and the thin film capacitor element C can be protected from overvoltage.
 (製造方法)
 薄膜デバイス100の製造方法の一例について説明する。なお、この実施形態では、大面積の基板1が用いられて複数の薄膜デバイス100の集合体が形成された後に個片化されることにより、複数の薄膜デバイス100が同時に形成される。なお、以下の説明においては、ESD保護素子D1,D2の形成方法の説明は省略する。
(Production method)
An example of a method for manufacturing the thin film device 100 will be described. In this embodiment, a plurality of thin film devices 100 are formed at the same time by using a large-area substrate 1 to form an aggregate of a plurality of thin film devices 100 and then separating them. In the following description, a description of the method of forming the ESD protection elements D1, D2 is omitted.
 まず、例えばSiにより形成された基板1上の所定領域にスパッタにより下側のPtキャパシタ電極層5が形成され、MOD法によりBST誘電体層6が形成され、スパッタにより上側のPtキャパシタ電極層7が形成された後に、RIE(反応性イオンエッチング)によりパターニングされることにより、複数の薄膜キャパシタ素子Cが形成される。次に、各薄膜キャパシタ素子Cを被覆するSiO保護層8が形成され、フォトリソグラフィによって透孔が形成されたフェノール系感光性樹脂絶縁膜から成る樹脂層2が形成され、樹脂層硬化のための熱処理が行われる。なお、保護層8を設けずに、各薄膜キャパシタ素子Cを被覆するように樹脂層2が形成されてもよい。 First, the lower Pt capacitor electrode layer 5 is formed by sputtering in a predetermined region on the substrate 1 made of, for example, Si, the BST dielectric layer 6 is formed by MOD, and the upper Pt capacitor electrode layer 7 is formed by sputtering. After forming, a plurality of thin film capacitor elements C are formed by patterning by RIE (reactive ion etching). Next, a SiO 2 protective layer 8 covering each thin film capacitor element C is formed, and a resin layer 2 made of a phenol-based photosensitive resin insulating film in which through holes are formed by photolithography is formed, and the resin layer is cured. The heat treatment is performed. The resin layer 2 may be formed so as to cover each thin film capacitor element C without providing the protective layer 8.
 続いて、樹脂層2の透孔内のSiO耐湿保護膜をドライエッチングにより除去し、薄膜形成プロセスであるスパッタ法を用いて、引出電極9,10および第2の金属薄膜11a,11bを形成するTi膜が成膜され、Cu膜が成膜される。そして、フォトリソグラフィによるエッチングによりパターン形成されて、引出電極9,10および第2の金属薄膜11a,11bが形成される。次に、フォトリソグラフィによって透孔が形成されたフェノール系感光性樹脂絶縁膜から成る樹脂層3が形成され、樹脂層硬化のための熱処理が行われる。 Subsequently, the SiO 2 moisture-resistant protective film in the through holes of the resin layer 2 is removed by dry etching, and the extraction electrodes 9 and 10 and the second metal thin films 11a and 11b are formed by using a sputtering method which is a thin film formation process. A Ti film is formed, and a Cu film is formed. Then, a pattern is formed by etching by photolithography to form the extraction electrodes 9 and 10 and the second metal thin films 11a and 11b. Next, a resin layer 3 made of a phenol-based photosensitive resin insulating film having through holes formed by photolithography is formed, and a heat treatment for curing the resin layer is performed.
 次に、リフトオフレジストが形成され、Ni、Cr、Siを主成分とする混合物から成る蒸着材料を用いて、リフトオフ法により抵抗薄膜12が蒸着形成される。続いて、リフトオフレジストが形成され、Ni、Crを主成分とする混合物から成る蒸着材料を用いて、リフトオフ法により第1、第2の補強用薄膜12a,12bおよび接続電極12c,12dが抵抗薄膜12上に蒸着形成される。このとき、第1、第2の補強用薄膜12a,12bは、それぞれ、平面視したときに、樹脂層2上の第2の金属薄膜11a,11bおよび後述する樹脂層4上の第1の金属薄膜15a~15cの両方を形成することができない部分、または形成しない部分に重なるように配置される。 Next, a lift-off resist is formed, and a resistance thin film 12 is formed by vapor deposition by a lift-off method using a vapor deposition material made of a mixture mainly composed of Ni, Cr, and Si. Subsequently, a lift-off resist is formed, and the first and second reinforcing thin films 12a and 12b and the connection electrodes 12c and 12d are formed into a resistance thin film by a lift-off method using a vapor deposition material made of a mixture containing Ni and Cr as main components. 12 is formed by vapor deposition. At this time, the first and second reinforcing thin films 12a and 12b are, when viewed in plan, the second metal thin films 11a and 11b on the resin layer 2 and the first metal on the resin layer 4 described later. The thin films 15a to 15c are disposed so as to overlap with a portion where both of the thin films 15a to 15c cannot be formed or a portion where they are not formed.
 続いて、フォトリソグラフィによって透孔が形成されたフェノール系感光性樹脂絶縁膜から成る樹脂層4が形成され、樹脂層硬化のための熱処理が行われる。そして、薄膜形成プロセスであるスパッタ法を用いて、引出電極13,14および第1の金属薄膜15a~15cを形成するTi膜が成膜され、Cu膜が成膜される。 Subsequently, a resin layer 4 made of a phenol-based photosensitive resin insulating film having through holes formed by photolithography is formed, and a heat treatment for curing the resin layer is performed. Then, a Ti film for forming the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c is formed using a sputtering method which is a thin film formation process, and a Cu film is formed.
 次に、形成されたCu/Ti膜上に所定位置に開口が設けられたレジストがパターン形成されて、めっき法により第1~第4外部電極P1~P4を成す外部電極16がCu/Ti膜上の所定位置に形成される。そして、レジストが除去された後に、フォトリソグラフィによるエッチングによりCu/Ti膜がパターン形成されて、引出電極13,14および第1の金属薄膜15a~15cが形成される。 Next, a resist with an opening provided at a predetermined position is formed on the formed Cu / Ti film, and the external electrodes 16 constituting the first to fourth external electrodes P1 to P4 are formed by Cu / Ti film by plating. It is formed at a predetermined position above. Then, after the resist is removed, the Cu / Ti film is patterned by photolithography etching to form the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c.
 そして、フォトリソグラフィによって外部電極露出部が形成されたフェノール系感光性樹脂絶縁膜からなる保護層17が形成され、樹脂層硬化のための熱処理が行われた後に、ダイシングにより各薄膜デバイス100ごとに個片化されることによって、薄膜デバイス100が完成する。 Then, a protective layer 17 made of a phenol-based photosensitive resin insulating film having an external electrode exposed portion formed by photolithography is formed, and after heat treatment for curing the resin layer, each thin film device 100 is subjected to dicing. The thin film device 100 is completed by being separated into pieces.
 このように構成された薄膜デバイス100は、他の配線基板等にはんだやワイヤボンディング等を用いて実装されることにより、第1、第2外部電極P1,P2を入出力端子とする可変容量素子として使用される。すなわち、第3、第4外部電極P3,P4間の電圧を調整して第1、第2の薄膜抵抗素子R1,R2を介して各薄膜キャパシタ素子Cそれぞれの両端に印加される電圧を任意に調整することにより各薄膜キャパシタ素子Cそれぞれの容量を調整することができる。なお、図3に示す電気回路は一例であって、薄膜キャパシタ素子Cの数や第1、第2の薄膜抵抗素子R1,R2の数、ESD保護素子D1,D2の数は図3に示す例に限定されるものではない。 The thin film device 100 configured as described above is mounted on another wiring board or the like using solder, wire bonding, or the like, so that the variable capacitance element having the first and second external electrodes P1 and P2 as input / output terminals is provided. Used as. That is, by adjusting the voltage between the third and fourth external electrodes P3 and P4, the voltage applied to both ends of each thin film capacitor element C through the first and second thin film resistance elements R1 and R2 can be arbitrarily set. By adjusting, the capacitance of each thin film capacitor element C can be adjusted. The electrical circuit shown in FIG. 3 is an example, and the number of thin film capacitor elements C, the number of first and second thin film resistance elements R1 and R2, and the number of ESD protection elements D1 and D2 are examples shown in FIG. It is not limited to.
 以上のように、この実施形態では、他の基板などに実装等される際の熱サイクルにおいて薄膜デバイス100が加熱された場合に、薄膜抵抗素子R1,R2が形成された樹脂層3は、熱膨張率が小さい基板1と反対側に向って膨張しようとする。このとき、樹脂層3の基板1と反対側に配置された樹脂層4に第1の金属薄膜15a~15cが形成されているため、薄膜抵抗素子R1,R2が有する抵抗薄膜12のうちの第1の金属薄膜15a~15cと平面視で重なる部分においては、抵抗薄膜12が第1の金属薄膜15a~15cにより基板1に対して押さえ込まれた状態になる。そのため、高温状態において樹脂層3が膨張することにより抵抗薄膜12に加わる曲げ応力を緩和することができる。一方、抵抗薄膜12のうちの第1の金属薄膜15a~15cと平面視で重ならない部分においても、第1の補強用薄膜12aが形成されているので、樹脂層3が膨張することにより生じる応力により薄膜抵抗素子R1,R2が破損するのを防止することができる。 As described above, in this embodiment, when the thin film device 100 is heated in a thermal cycle when mounted on another substrate or the like, the resin layer 3 on which the thin film resistor elements R1 and R2 are formed is heated. It tries to expand toward the opposite side of the substrate 1 having a small expansion coefficient. At this time, since the first metal thin films 15a to 15c are formed on the resin layer 4 arranged on the opposite side of the resin layer 3 from the substrate 1, the first of the resistance thin films 12 of the thin film resistance elements R1 and R2 is included. In a portion overlapping the first metal thin film 15a to 15c in plan view, the resistance thin film 12 is pressed against the substrate 1 by the first metal thin film 15a to 15c. Therefore, the bending stress applied to the resistance thin film 12 by the expansion of the resin layer 3 in a high temperature state can be relaxed. On the other hand, since the first reinforcing thin film 12a is also formed in the portion of the resistance thin film 12 that does not overlap with the first metal thin films 15a to 15c in plan view, the stress generated by the expansion of the resin layer 3 This can prevent the thin film resistor elements R1, R2 from being damaged.
 また、抵抗薄膜12のうちの樹脂層4の第1の金属薄膜15a~15cと樹脂層2の第2の金属薄膜11a,11bとの間に挟み込まれた状態になる部分においては、高温状態において樹脂層3が膨張することにより薄膜抵抗素子R1,R2に加わる曲げ応力をさらに緩和することができる。また、抵抗薄膜12のうちの第2の金属薄膜11a,11bと平面視で重ならない部分においても、第2の補強用薄膜12bが形成されているので、樹脂層3が膨張することにより生じる応力により薄膜抵抗素子R1,R2が破損するのをさらに確実に防止することができる。 Further, in the portion of the resistance thin film 12 that is sandwiched between the first metal thin films 15a to 15c of the resin layer 4 and the second metal thin films 11a and 11b of the resin layer 2, the high temperature state is maintained. When the resin layer 3 expands, the bending stress applied to the thin film resistor elements R1, R2 can be further relaxed. Further, since the second reinforcing thin film 12b is also formed in the portion of the resistance thin film 12 that does not overlap with the second metal thin films 11a and 11b in plan view, the stress generated by the expansion of the resin layer 3 This can more reliably prevent the thin film resistor elements R1 and R2 from being damaged.
 また、薄膜抵抗素子R1,R2に接続される引出電極13,14との接触抵抗を低減するための接続電極12c,12dと、第1、第2の補強用薄膜12a,12bとを同一の薄膜形成プロセスにより同一の材料を用いて同時に抵抗薄膜12上に形成することにより、第1、第2の補強用薄膜12a,12bを形成するための工程を簡略化することができる。したがって、製造工程を増大させることなく従来の製造工程を用いて、薄膜抵抗素子R1,R2のクラックや断線が防止された信頼性の高い薄膜デバイス100を提供することができる。また、薄膜デバイス100の製造コストの低減を図ることができる。 Further, the connection electrodes 12c and 12d for reducing the contact resistance with the extraction electrodes 13 and 14 connected to the thin film resistance elements R1 and R2 and the first and second reinforcing thin films 12a and 12b are made the same thin film. By forming simultaneously on the resistive thin film 12 using the same material by the formation process, the process for forming the first and second reinforcing thin films 12a and 12b can be simplified. Therefore, it is possible to provide a highly reliable thin film device 100 in which cracks and disconnections of the thin film resistor elements R1 and R2 are prevented using a conventional manufacturing process without increasing the manufacturing process. Moreover, the manufacturing cost of the thin film device 100 can be reduced.
 また、抵抗薄膜12の抵抗率が、第1、第2の補強用薄膜12a,12bの抵抗率よりも大きく構成されているので、抵抗薄膜12のうちの第1、第2の補強用薄膜12a,12bが形成された部分においては、抵抗値が第1、第2の補強用薄膜12a,12bの抵抗率に依存する。したがって、抵抗薄膜12上に任意の形状および大きさで第1、第2の補強用薄膜12a、12bを形成することにより、薄膜抵抗素子R1,R2の抵抗値設計を容易に行うことができる。 Further, since the resistivity of the resistive thin film 12 is larger than the resistivity of the first and second reinforcing thin films 12a and 12b, the first and second reinforcing thin films 12a of the resistive thin film 12 are configured. , 12b, the resistance value depends on the resistivity of the first and second reinforcing thin films 12a, 12b. Therefore, by forming the first and second reinforcing thin films 12a and 12b in any shape and size on the resistive thin film 12, the resistance value design of the thin film resistive elements R1 and R2 can be easily performed.
 また、上記した構成とすることにより、Siを含有することにより脆くなった各薄膜抵抗素子R1,R2の破損を防止した信頼性の高い薄膜デバイス100を提供することができる。 In addition, with the above-described configuration, it is possible to provide a highly reliable thin film device 100 in which the thin film resistance elements R1 and R2 that have become brittle by containing Si are prevented from being damaged.
 なお、第1の金属薄膜15a~15cを、薄膜デバイス100の側面に露出するように、樹脂層4の端縁部まで引き伸ばして形成してもよい。このようにすると、第1の金属薄膜15a~15cにより吸収した応力を薄膜デバイス100の側面に効果的に逃がすことができる。また、第1の金属薄膜15cと引出電極13,14とが分離して形成されているので、第1の金属薄膜15cにより吸収された応力が引出電極13,14に加わるのを抑制することができる。また、第2の金属薄膜11aと引出電極9とを分離して形成することにより、同様の効果を奏することができる。 Note that the first metal thin films 15 a to 15 c may be formed to extend to the edge of the resin layer 4 so as to be exposed on the side surface of the thin film device 100. In this way, the stress absorbed by the first metal thin films 15 a to 15 c can be effectively released to the side surface of the thin film device 100. Further, since the first metal thin film 15 c and the extraction electrodes 13 and 14 are formed separately, it is possible to suppress the stress absorbed by the first metal thin film 15 c from being applied to the extraction electrodes 13 and 14. it can. Moreover, the same effect can be produced by forming the second metal thin film 11a and the extraction electrode 9 separately.
 <第2実施形態>
 本発明の第2の実施形態について図4を参照して説明する。
Second Embodiment
A second embodiment of the present invention will be described with reference to FIG.
 この実施形態が上記した第1実施形態と異なるのは、図4に示すように、第2の金属薄膜11a,11bが設けられていない点である。以下の説明においては、上記した第1実施形態と異なる点を中心に説明し、その他の構成は上記した第1実施形態と同様の構成であるため、同一符号を引用することによりその構成の説明は省略する。 This embodiment is different from the first embodiment described above in that the second metal thin films 11a and 11b are not provided as shown in FIG. In the following description, differences from the above-described first embodiment will be mainly described, and other configurations are the same as those of the above-described first embodiment. Therefore, the same reference numerals are used to describe the configuration. Is omitted.
 (構成)
 薄膜デバイス100aの概略構成について説明する。
(Constitution)
A schematic configuration of the thin film device 100a will be described.
 薄膜デバイス100aは、基板1と、基板1の一方主面1a側に積層された複数の樹脂層3,4と、薄膜抵抗素子Rとを備えている。 The thin film device 100 a includes a substrate 1, a plurality of resin layers 3 and 4 stacked on the one main surface 1 a side of the substrate 1, and a thin film resistance element R.
 薄膜抵抗素子Rは、基板1の一方主面1aに積層された樹脂層3の一方主面3aの所定領域に薄膜形成プロセスにより形成されたNi、Cr、Siを主成分とする抵抗薄膜12と、それぞれ抵抗薄膜12上に形成された第1の補強用薄膜12aおよび接続電極12c,12dとを備えている。第1、第2の補強用薄膜12a,12bおよび接続電極12c,12dは、それぞれ、Niを主成分としてCrを含む同一の材料を用いて同一の薄膜形成プロセスにより、分離配置された状態で形成されている。そして、薄膜抵抗素子R(抵抗薄膜12)は、樹脂層3の一方主面3a上に積層された樹脂層4により被覆されている。また、樹脂層4の一方主面4aには、樹脂層4に形成された透孔(図示省略)を介して薄膜抵抗素子Rに電気的に接続されたCu/Ti引出電極13,14と、第1の金属薄膜15a~15cとが形成されている。なお、上記した第1実施形態と同様に、第1の補強用薄膜12aは、抵抗薄膜12のうちの第1の金属薄膜15a~15cと平面視で重ならない部分に配置されている。 The thin film resistance element R includes a resistance thin film 12 mainly composed of Ni, Cr, and Si formed by a thin film formation process in a predetermined region of the one main surface 3a of the resin layer 3 laminated on the one main surface 1a of the substrate 1. The first reinforcing thin film 12a and the connection electrodes 12c and 12d respectively formed on the resistive thin film 12 are provided. The first and second reinforcing thin films 12a and 12b and the connection electrodes 12c and 12d are formed in the state of being separated and arranged by the same thin film forming process using the same material containing Ni as a main component and Cr. Has been. The thin film resistive element R (resistive thin film 12) is covered with a resin layer 4 laminated on one main surface 3a of the resin layer 3. Further, on one main surface 4a of the resin layer 4, Cu / Ti lead electrodes 13, 14 electrically connected to the thin film resistance element R through through holes (not shown) formed in the resin layer 4, First metal thin films 15a to 15c are formed. As in the first embodiment described above, the first reinforcing thin film 12a is disposed in a portion of the resistive thin film 12 that does not overlap the first metal thin films 15a to 15c in plan view.
 また、引出電極13,14上に複数のAu/Ni外部電極16が形成され、引出電極13,14および第1の金属薄膜15a,15bと、各外部電極16それぞれの端縁部分とを被覆するように樹脂により形成された保護層17が樹脂層4の一方主面4a上に積層されている。 Also, a plurality of Au / Ni external electrodes 16 are formed on the extraction electrodes 13 and 14 to cover the extraction electrodes 13 and 14 and the first metal thin films 15a and 15b and the edge portions of the respective external electrodes 16. Thus, the protective layer 17 formed of resin is laminated on the one main surface 4 a of the resin layer 4.
 (製造方法)
 薄膜デバイス100aの製造方法の一例について説明する。なお、上記した第1実施形態と同様に、大面積の基板1が用いられて複数の薄膜デバイス100aの集合体が形成された後に個片化されることにより、複数の薄膜デバイス100aが同時に形成される。
(Production method)
An example of a method for manufacturing the thin film device 100a will be described. As in the first embodiment described above, a plurality of thin film devices 100a are simultaneously formed by using a large-area substrate 1 to form an aggregate of a plurality of thin film devices 100a and then separating them into individual pieces. Is done.
 まず、例えばSiにより形成された基板1上にフェノール系感光性樹脂絶縁膜から成る樹脂層3が形成され、樹脂層硬化のための熱処理が行われる。次に、リフトオフレジストが形成され、Ni、Cr、Siを主成分とする混合物から成る蒸着材料を用いて、リフトオフ法により抵抗薄膜12が蒸着形成される。続いて、リフトオフレジストが形成され、Ni、Crを主成分とする混合物から成る蒸着材料を用いて、リフトオフ法により第1の補強用薄膜12aおよび接続電極12c,12dが抵抗薄膜12上に蒸着形成される。このとき、第1の補強用薄膜12aは、平面視したときに、後述する樹脂層4上の第1の金属薄膜15a~15cを形成することができない部分、または形成しない部分に重なるように配置される。 First, a resin layer 3 made of a phenol-based photosensitive resin insulating film is formed on a substrate 1 made of, for example, Si, and heat treatment for curing the resin layer is performed. Next, a lift-off resist is formed, and the resistive thin film 12 is formed by vapor deposition by a lift-off method using a vapor deposition material made of a mixture containing Ni, Cr, and Si as main components. Subsequently, a lift-off resist is formed, and the first reinforcing thin film 12a and the connection electrodes 12c and 12d are vapor-deposited on the resistance thin film 12 by a lift-off method using a vapor deposition material composed of a mixture containing Ni and Cr as main components. Is done. At this time, the first reinforcing thin film 12a is disposed so as to overlap a portion where the first metal thin films 15a to 15c on the resin layer 4 to be described later cannot be formed or a portion where the first metal thin film 15a is not formed when viewed in plan. Is done.
 次に、フォトリソグラフィによって透孔(図示省略)が形成されたフェノール系感光性樹脂絶縁膜から成る樹脂層4が形成され、樹脂層硬化のための熱処理が行われる。そして、薄膜形成プロセスであるスパッタ法を用いて、引出電極13,14および第1の金属薄膜15a~15cを形成するTi膜が成膜され、Cu膜が成膜される。 Next, a resin layer 4 made of a phenol-based photosensitive resin insulating film having through holes (not shown) formed by photolithography is formed, and heat treatment for curing the resin layer is performed. Then, a Ti film for forming the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c is formed using a sputtering method which is a thin film formation process, and a Cu film is formed.
 次に、形成されたCu/Ti膜上に所定位置に開口が設けられたレジストがパターン形成されて、めっき法により外部電極16がCu/Ti膜上の所定位置に形成される。そして、レジストが除去された後に、フォトリソグラフィによるエッチングによりCu/Ti膜がパターン形成されて、引出電極13,14および第1の金属薄膜15a~15cが形成される。 Next, a resist having an opening at a predetermined position is patterned on the formed Cu / Ti film, and the external electrode 16 is formed at a predetermined position on the Cu / Ti film by plating. Then, after the resist is removed, the Cu / Ti film is patterned by photolithography etching to form the extraction electrodes 13 and 14 and the first metal thin films 15a to 15c.
 そして、フォトリソグラフィによって外部電極露出部が形成されたフェノール系感光性樹脂絶縁膜からなる保護層17が形成され、樹脂層硬化のための熱処理が行われた後に、ダイシングにより各薄膜デバイス100aごとに個片化されることによって、薄膜デバイス100aが完成する。 Then, a protective layer 17 made of a phenol-based photosensitive resin insulating film having external electrode exposed portions formed by photolithography is formed, and after heat treatment for curing the resin layer, dicing is performed for each thin film device 100a. The thin film device 100a is completed by being separated into pieces.
 以上のように、この実施形態では、上記した第1実施形態と同様に、抵抗薄膜12のうちの第1の金属薄膜15a~15cと平面視で重ならない部分に第1の補強用薄膜12aが形成されているので、例えば高温状態において樹脂層3が膨張しても、各樹脂層3,4が膨張することにより生じる応力により薄膜抵抗素子Rが破損するのを防止することができる。 As described above, in this embodiment, as in the first embodiment, the first reinforcing thin film 12a is formed in a portion of the resistance thin film 12 that does not overlap the first metal thin films 15a to 15c in plan view. Therefore, even if the resin layer 3 expands in a high temperature state, for example, it is possible to prevent the thin film resistance element R from being damaged by the stress generated by the expansion of the resin layers 3 and 4.
 <第3実施形態>
 本発明の第3の実施形態について図5を参照して説明する。
<Third Embodiment>
A third embodiment of the present invention will be described with reference to FIG.
 この実施形態が上記した第2実施形態と異なるのは、図5に示すように、抵抗薄膜12上に接続電極12c,12dが形成されていない点ある。その他の構成は上記した第1実施形態と同様の構成であるため、同一符号を引用することによりその構成の説明は省略する。 This embodiment is different from the second embodiment described above in that connection electrodes 12c and 12d are not formed on the resistive thin film 12, as shown in FIG. Since other configurations are the same as those in the first embodiment, description of the configurations is omitted by citing the same reference numerals.
 このように、抵抗薄膜12上に接続電極12c,12dが形成されていなくとも、上記した第2実施形態と同様に、第1の補強用薄膜12aにより第1、第2の薄膜抵抗素子Rが破損するのが防止された信頼性の高い薄膜デバイス100を提供することができる。 Thus, even if the connection electrodes 12c and 12d are not formed on the resistance thin film 12, the first and second thin film resistance elements R are formed by the first reinforcing thin film 12a as in the second embodiment. A highly reliable thin film device 100 that is prevented from being damaged can be provided.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能であり、上記した各実施形態がどのように組み合わされてもよい。例えば、薄膜抵抗素子R,R1,R2(抵抗薄膜12)の材料は上記した例に限定されるものではなく、例えばCrSi合金により薄膜抵抗素子R,R1,R2が形成されてもよいし、例えば図6に示す従来の薄膜デバイス500のように、Pt等の導電材料により薄膜抵抗素子R,R1,R2が形成されてもよい。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. They may be combined. For example, the material of the thin film resistance elements R, R1, R2 (resistance thin film 12) is not limited to the above-described example, and the thin film resistance elements R, R1, R2 may be formed of, for example, a CrSi alloy. As in the conventional thin film device 500 shown in FIG. 6, the thin film resistor elements R, R1, and R2 may be formed of a conductive material such as Pt.
 また、上記した第1、第2の金属薄膜11a,11b,15a~15cは、それぞれ、高周波信号が通過する信号線を形成してもよいし、電源に接続された電源ラインを形成するものであってもよいし、ダミー電極であってもよい。 The first and second metal thin films 11a, 11b, 15a to 15c described above may form a signal line through which a high-frequency signal passes, or form a power supply line connected to a power source. It may be a dummy electrode.
 また、薄膜抵抗素子に追加して、薄膜キャパシタ素子や薄膜インダクタ素子、薄膜サーミスタ素子等の薄膜回路素子が適宜組み合わされることにより、薄膜抵抗素子を備える各種の回路が構成された薄膜デバイスを提供することができる。この場合には、薄膜キャパシタ素子、薄膜インダクタ素子、薄膜サーミスタ素子の構成は、一般的な薄膜回路素子の構成を有していればよい。具体的には、例えば、近距離通信装置のアンテナ感度調整用のデバイスや、フォトダイオード用ノイズフィルタデバイスを本発明の薄膜デバイスにより構成することができる。 Further, in addition to the thin film resistor element, a thin film device in which various circuits including the thin film resistor element are configured by appropriately combining thin film circuit elements such as a thin film capacitor element, a thin film inductor element, and a thin film thermistor element is provided. be able to. In this case, the thin film capacitor element, the thin film inductor element, and the thin film thermistor element may have a general thin film circuit element structure. Specifically, for example, a device for adjusting antenna sensitivity of a short-range communication device or a noise filter device for photodiodes can be constituted by the thin film device of the present invention.
 また、誘電体層を形成する誘電体材料は上記した例に限定されるものではない。たとえば、BaTiO、SrTiO、PbTiOなどの誘電体材料により誘電体層が形成されていてもよい。 Further, the dielectric material for forming the dielectric layer is not limited to the above example. For example, the dielectric layer may be formed of a dielectric material such as BaTiO 3 , SrTiO 3 , or PbTiO 3 .
 また、第1の金属薄膜15a~15c、第2の金属薄膜11a,11bを形成するための薄膜形成プロセスは、上記したスパッタ法に限定されるものではなく、CVD法等であってもよい。 Further, the thin film formation process for forming the first metal thin films 15a to 15c and the second metal thin films 11a and 11b is not limited to the above sputtering method, and may be a CVD method or the like.
 本発明は、薄膜抵抗素子を備える薄膜デバイスに広く適用することができる。 The present invention can be widely applied to a thin film device including a thin film resistance element.
 1  基板
 2,3,4  樹脂層
 1a,2a,3a,4a  一方主面
 11a,11b  第2の金属薄膜
 12  抵抗薄膜
 12a  第1の補強用薄膜
 12b  第2の補強用薄膜
 12c,12d  接続電極
 15a~15c  第1の金属薄膜
 100,100a  薄膜デバイス
 C  薄膜キャパシタ素子
 D1,D2  ESD保護素子
 P1  第1外部電極
 P2  第2外部電極
 P3  第3外部電極
 P4  第4外部電極
 R  薄膜抵抗素子
 R1  第1の薄膜抵抗素子(薄膜抵抗素子)
 R2  第2の薄膜抵抗素子(薄膜抵抗素子)
 W1,W2  電流パス
DESCRIPTION OF SYMBOLS 1 Substrate 2,3,4 Resin layer 1a, 2a, 3a, 4a One main surface 11a, 11b Second metal thin film 12 Resistive thin film 12a First reinforcing thin film 12b Second reinforcing thin film 12c, 12d Connection electrode 15a 15c First metal thin film 100, 100a Thin film device C Thin film capacitor element D1, D2 ESD protection element P1 First external electrode P2 Second external electrode P3 Third external electrode P4 Fourth external electrode R Thin film resistance element R1 First Thin film resistance element (thin film resistance element)
R2 Second thin film resistance element (thin film resistance element)
W1, W2 Current path

Claims (7)

  1.  基板と、
     前記基板の一方主面側に積層された複数の樹脂層とを備え、
     前記複数の樹脂層は、
     薄膜抵抗素子が一方主面に設けられた第1の樹脂層と、
     前記第1の樹脂層の前記基板と反対側に配置された第1の金属薄膜が一方主面に設けられた第2の樹脂層とを含み、
     前記薄膜抵抗素子は、
     抵抗薄膜と、前記抵抗薄膜上に形成された第1の補強用薄膜とを有し、
     前記第1の補強用薄膜が、前記第1の金属薄膜と平面視で重ならない部分に配置されている
     ことを特徴とする薄膜デバイス。
    A substrate,
    A plurality of resin layers laminated on one main surface side of the substrate,
    The plurality of resin layers are:
    A first resin layer provided with a thin film resistance element on one main surface;
    A first metal thin film disposed on the opposite side of the first resin layer from the substrate includes a second resin layer provided on one main surface;
    The thin film resistance element is
    A resistive thin film, and a first reinforcing thin film formed on the resistive thin film,
    The first reinforcing thin film is disposed in a portion that does not overlap the first metal thin film in plan view.
  2.  前記薄膜抵抗素子は、
     前記抵抗薄膜上に形成された接続電極をさらに有し、
     前記第1の補強用薄膜と前記接続電極とが同一のプロセスにより同時に形成されていることを特徴とする請求項1に記載の薄膜デバイス。
    The thin film resistance element is
    A connection electrode formed on the resistive thin film;
    2. The thin film device according to claim 1, wherein the first reinforcing thin film and the connection electrode are simultaneously formed by the same process.
  3.  前記抵抗薄膜は、Siを含有することを特徴とする請求項1または2に記載の薄膜デバイス。 3. The thin film device according to claim 1, wherein the resistive thin film contains Si.
  4.  前記抵抗薄膜の抵抗率が、前記第1の補強用薄膜の抵抗率よりも大きいことを特徴とする請求項1ないし3のいずれかに記載の薄膜デバイス。 The thin film device according to any one of claims 1 to 3, wherein a resistivity of the resistive thin film is larger than a resistivity of the first reinforcing thin film.
  5.  前記複数の樹脂層は、
     前記第1の樹脂層の前記基板側に配置された第2の金属薄膜が一方主面に設けられた第3の樹脂層をさらに含み、
     前記薄膜抵抗素子は、
     前記抵抗薄膜上に形成された第2の補強用薄膜をさらに有し、
     前記第2の補強用薄膜が、前記第2の金属薄膜と平面視で重ならない部分に配置されている
     ことを特徴とする請求項1ないし4のいずれかに記載の薄膜デバイス。
    The plurality of resin layers are:
    The second resin thin film disposed on the substrate side of the first resin layer further includes a third resin layer provided on one main surface;
    The thin film resistance element is
    A second reinforcing thin film formed on the resistive thin film;
    The thin film device according to any one of claims 1 to 4, wherein the second reinforcing thin film is disposed in a portion that does not overlap the second metal thin film in plan view.
  6.  第1~第4外部電極と、
     前記第1、第2外部電極間に直列接続された可変容量型の薄膜キャパシタ素子と、
     一端が前記第3外部電極に接続された第1の前記薄膜抵抗素子と、
     一端が前記第4外部電極に接続された第2の前記薄膜抵抗素子とを備え、
     前記第1、第2の薄膜抵抗素子の他端間に前記薄膜キャパシタ素子が挿入されるように、前記第1、第2の薄膜抵抗素子それぞれの他端が前記薄膜キャパシタ素子両端のそれぞれに接続されていることを特徴とする請求項1ないし5いずれかに記載の薄膜デバイス。
    First to fourth external electrodes;
    A variable capacitance type thin film capacitor element connected in series between the first and second external electrodes;
    A first thin film resistor element having one end connected to the third external electrode;
    A second thin film resistor element having one end connected to the fourth external electrode;
    The other ends of the first and second thin film resistor elements are connected to both ends of the thin film capacitor element so that the thin film capacitor element is inserted between the other ends of the first and second thin film resistor elements. The thin film device according to claim 1, wherein the thin film device is formed.
  7.  所定電圧以上の静電気放電が生じた場合に前記第1、第2の薄膜抵抗素子および前記薄膜キャパシタ素子を経由しない電流パスを形成するESD保護素子をさらに備えることを特徴とする請求項6に記載の薄膜デバイス。 The ESD protection element according to claim 6, further comprising an ESD protection element that forms a current path that does not pass through the first and second thin film resistor elements and the thin film capacitor element when electrostatic discharge of a predetermined voltage or more occurs. Thin film device.
PCT/JP2016/059103 2015-05-13 2016-03-23 Thin film device WO2016181710A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017515872A JP6191804B2 (en) 2015-05-13 2016-03-23 Thin film device
CN201690000755.4U CN207572353U (en) 2015-05-13 2016-03-23 Thin-film device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015098307 2015-05-13
JP2015-098307 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016181710A1 true WO2016181710A1 (en) 2016-11-17

Family

ID=57247903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059103 WO2016181710A1 (en) 2015-05-13 2016-03-23 Thin film device

Country Status (3)

Country Link
JP (1) JP6191804B2 (en)
CN (1) CN207572353U (en)
WO (1) WO2016181710A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978249B2 (en) 2017-02-17 2021-04-13 Murata Manufacturing Co, Ltd. Thin-film device and method of manufacturing thin-film device
WO2022149371A1 (en) * 2021-01-08 2022-07-14 ローム株式会社 Electronic component
WO2023112551A1 (en) * 2021-12-17 2023-06-22 ローム株式会社 Semiconductor device and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225950A (en) * 1990-01-31 1991-10-04 Sony Corp Semiconductor device
US20060228879A1 (en) * 2005-04-08 2006-10-12 Texas Instruments Incorporated Thin film resistor head structure and method for reducing head resistivity variance
JP2006332428A (en) * 2005-05-27 2006-12-07 Seiko Instruments Inc Semiconductor integrated circuit device
JP2015088585A (en) * 2013-10-30 2015-05-07 ルネサスエレクトロニクス株式会社 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225950A (en) * 1990-01-31 1991-10-04 Sony Corp Semiconductor device
US20060228879A1 (en) * 2005-04-08 2006-10-12 Texas Instruments Incorporated Thin film resistor head structure and method for reducing head resistivity variance
JP2006332428A (en) * 2005-05-27 2006-12-07 Seiko Instruments Inc Semiconductor integrated circuit device
JP2015088585A (en) * 2013-10-30 2015-05-07 ルネサスエレクトロニクス株式会社 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978249B2 (en) 2017-02-17 2021-04-13 Murata Manufacturing Co, Ltd. Thin-film device and method of manufacturing thin-film device
WO2022149371A1 (en) * 2021-01-08 2022-07-14 ローム株式会社 Electronic component
WO2023112551A1 (en) * 2021-12-17 2023-06-22 ローム株式会社 Semiconductor device and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2016181710A1 (en) 2017-08-10
JP6191804B2 (en) 2017-09-06
CN207572353U (en) 2018-07-03

Similar Documents

Publication Publication Date Title
US10026557B2 (en) Chip capacitor, circuit assembly, and electronic device
JP4674606B2 (en) Thin film capacitor
US10424440B2 (en) Capacitor having an auxiliary electrode
JP2004079579A (en) Semiconductor device
US20090283914A1 (en) Silicon interposer and method for manufacturing the same
JP6222365B2 (en) Composite electronic parts with ESD protection function
TWI503856B (en) Metal film surface mount fuse
US10770451B2 (en) Thin-film ESD protection device
JP6269639B2 (en) ESD protection device
JP6191804B2 (en) Thin film device
JP6319467B2 (en) Thin film device
US8664744B2 (en) Anti-fuse element without defective opens
JPWO2017057422A1 (en) Thin film type LC component and its mounting structure
US20150162327A1 (en) Semiconductor module
KR20130128403A (en) Ceramic multilayered component and method for producing a ceramic multilayered component
US11469593B2 (en) Thin-film ESD protection device with compact size
US10410772B2 (en) Chip resistor
US9698092B2 (en) Electronic device
US20160064614A1 (en) Light emitting diode package and manufacturing method thereof
JP6819894B2 (en) Electronic components
TWI490890B (en) Over-current protection device
JP2018078259A (en) Thin film device
KR20020073821A (en) Semiconductor device including surge protection circuit and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792435

Country of ref document: EP

Kind code of ref document: A1