WO2016181603A1 - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
WO2016181603A1
WO2016181603A1 PCT/JP2016/001910 JP2016001910W WO2016181603A1 WO 2016181603 A1 WO2016181603 A1 WO 2016181603A1 JP 2016001910 W JP2016001910 W JP 2016001910W WO 2016181603 A1 WO2016181603 A1 WO 2016181603A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
beam portion
magnet
power generation
weight portion
Prior art date
Application number
PCT/JP2016/001910
Other languages
French (fr)
Japanese (ja)
Inventor
洋一朗 鈴木
高岡 彰
雅士 森
高俊 関澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016181603A1 publication Critical patent/WO2016181603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • This disclosure relates to a power generation apparatus including a vibration power generation device that generates power by vibration.
  • Patent Document 1 a power generation device that generates power by vibration has been proposed.
  • a moving magnet is arranged in a cylindrical casing, and fixed magnets and piezoelectric elements that repel the moving magnet are provided on both sides in the moving direction of the moving magnet, and the fixed magnet is moved along with the movement of the moving magnet. Electric power is generated by applying the repulsive force applied to the piezoelectric element.
  • a helical coil wound around the moving part of the moving magnet in the casing is provided, and an induced electromotive force is generated in the coil by electromagnetic induction accompanying the movement of the moving magnet. In addition, power is generated even in the coil.
  • An object of the present disclosure is to provide a power generation device that can improve the life of a power generation device by enabling power generation without using a sliding structure of a magnet, and that can reduce the size of the power generation device by reducing the size of a coil body.
  • the power generation device includes a fixed portion, a beam portion supported on one end side by the fixed portion, and a weight portion supported on the other end side of the beam portion and vibrated together with the beam portion. And a stopper portion that is disposed in the vibration direction of the weight portion and restricts movement of the weight portion in the vibration direction by being brought into contact with the weight portion, and is attached to the beam portion, and the deformation of the beam portion A piezoelectric element that generates power by being deformed along with the piezoelectric element.
  • the weight portion is provided with a magnet.
  • the stopper portion is provided with a coil constituted by a coil pattern formed on a printed circuit board. The magnet and the coil are arranged to face each other. Power is generated in the coil in accordance with the vibration of the weight portion provided with the magnet.
  • the hybrid power generation structure in which both the power generation by the magnet provided in the weight portion and the coil provided in the stopper portion is performed. Since the movement of the magnet is restricted by the stopper portion, it is possible to prevent the beam portion and the piezoelectric element from being deformed excessively, and the strength of the beam portion and the piezoelectric element can be ensured. Therefore, it is possible to generate power without using a conventional sliding structure, and it is possible to improve the life of the power generation device as compared with the case where a sliding structure is used.
  • the coil body can be reduced in size, and the power generation device can be reduced in size.
  • the power generation device includes a fixed portion, a beam portion supported on one end side by the fixed portion, and a weight portion supported on the other end side of the beam portion and vibrated together with the beam portion.
  • a stopper portion that is disposed in the vibration direction of the beam portion and restricts movement of the beam portion and the weight portion in the vibration direction by being brought into contact with the beam portion, and is attached to the beam portion,
  • a piezoelectric element that generates power by being deformed along with the deformation of the beam portion and a magnet are provided.
  • a coil constituted by a coil pattern formed on a printed circuit board is provided in the beam portion. The magnet is provided at a position facing the coil. The coil generates power with the vibration of the beam portion.
  • the magnet is provided at a position facing the coil while the coil is formed of the coil pattern formed on the printed board in the beam portion.
  • Such a structure is also a hybrid power generation structure in which, in addition to power generation by the piezoelectric element attached to the beam portion, power generation by both the magnet and the coil provided in the beam portion is performed. Thereby, the effect similar to a 1st aspect can be acquired.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of the power generation device according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic perspective view of the coil 10 provided in the power generator shown in FIG.
  • FIG. 3 is a diagram illustrating a cross-sectional configuration of the power generation device according to the second embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a cross-sectional configuration of the power generation device according to the third embodiment of the present disclosure.
  • FIG. 5 is a schematic perspective view of the coil 10 provided in the power generation device according to the fourth embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of the power generation device according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic perspective view of the coil 10 provided in the power generator shown in FIG.
  • FIG. 3 is a diagram illustrating a cross-sectional configuration of the power generation device according to the second embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating
  • FIG. 6 is a schematic perspective view of the coil 10 provided in the power generation device according to the fifth embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view showing a configuration example of the weight portion 6 described in another embodiment.
  • FIG. 8 is a cross-sectional view illustrating a configuration example of the weight portion 6 described in another embodiment.
  • the power generation device described here is used, for example, as a device that is mounted in a tire mounted on a vehicle and generates power based on the rotation of the tire.
  • the power generation device is used for power generation of a tire side device in a direct tire pressure detection system (hereinafter referred to as TPMS: Tire Pressure Monitoring System).
  • TPMS Tire Pressure Monitoring System
  • a transmitter having a sensor such as a pressure sensor is directly attached to the tire side, and an antenna and a receiver are provided on the vehicle body side.
  • data including the detection result of the sensor is transmitted from the transmitter, and data including the detection result is received by the receiver via the antenna, and the detection result is analyzed.
  • the tire pressure is detected at.
  • a transmitter since a transmitter is attached to a place in the tire where it is difficult to supply power from the battery, it is desirable to provide a power generation device in the tire so that power can be supplied separately from the battery.
  • the power generation apparatus of the present embodiment is preferably applied for power supply of such a direct TPMS transmitter.
  • the power generation device 1 is configured to include a fixed portion 2, a support substrate 3, a beam portion 4, a piezoelectric element 5, a weight portion 6, a stopper portion 7, and the like.
  • the fixing unit 2 supports the components of the power generation device 1 such as the support substrate 3, the beam unit 4, the piezoelectric element 5, the weight unit 6, and the stopper unit 7, and is used to fix these components in the tire.
  • the fixed portion 2 has a frame shape in which the upper surface shape is a rectangular shape.
  • An opening 2 a is partially formed in the fixed portion 2, and the beam portion 4, the piezoelectric element 5, and the weight portion 6 are supported in the opening 2 a together with the support substrate 3.
  • the stopper part 7 is supported by each of the upper end surface and the lower end surface of the fixing
  • the support substrate 3 is mounted with the piezoelectric element 5 together with the beam portion 4, and is formed with various wiring patterns such as a lead-out wiring 31 for the electric power generated by the piezoelectric element 5, and is configured by a printed circuit board, for example.
  • the lead-out wiring 31 formed on the support substrate 3 is electrically connected to first and second electrodes 51 and 52 provided in the piezoelectric element 5 described later through bonding wires 32 and 33, and an electromotive force generated by the piezoelectric element 5. The current based on is taken out.
  • the support substrate 3 is extended to the outside of the fixed portion 2, and a rectified storage circuit portion 34 and a power supply component 35 are provided in a portion extended to the outside of the fixed portion 2.
  • Various wiring patterns including the lead-out wiring 31 are formed from the support substrate 3 to the portion extending from the inside to the outside of the fixed portion 2, and the rectifying power storage circuit portion 34 and the power supply component 35 are formed with respect to the various wiring patterns. Are electrically connected.
  • the rectifying power storage circuit unit 34 rectifies the current supplied from the piezoelectric element 5 and performs charging.
  • the rectifying power storage circuit unit 34 includes a rectifying element such as a diode and a capacitor for storing power.
  • the power supply component 35 is a component that is supplied with power as a power source when charging is performed in the rectification power storage circuit unit 34 or a rectification power storage circuit unit 72 described later based on the power generated by the piezoelectric element 5 or the like.
  • a microcomputer of a TPMS transmitter corresponds to the power supply component 35.
  • the beam portion 4 is made of, for example, a resin and is supported by being attached to the support substrate 3 together with the piezoelectric element 5 by, for example, adhesion.
  • the beam portion 4 is disposed on one side of the weight portion 6 and supports the weight portion 6 on one side. That is, a cantilever support structure in which the weight portion 6 is supported by the beam portion 4 arranged on one side is provided.
  • the beam portion 4 has a spring constant set based on the thickness and the like, and the other end, which is a free end, is vibrated as the tire rotates with one end supported by the support substrate 3 as a fulcrum. ing.
  • a weight portion 6 is attached to the other end of the beam portion 4, and the weight portion 6 serves as a weight so that the amplitude of vibration associated with tire rotation is increased.
  • the beam portion 4 is supported together with the piezoelectric element 5 by the single support substrate 3, but this is merely an example, and other structures may be used.
  • the support substrate 3 may be a first substrate and a second substrate, and the beam 4 may be sandwiched between the first and second substrates together with the piezoelectric element 5.
  • the electrodes 51 and 52 of the piezoelectric element 5 are electrically connected to the lead wires provided on one of the first and second substrates or to the lead wires provided separately on both. If it is set as a form, the electric power extraction from the piezoelectric element 5 can be performed.
  • the piezoelectric element 5 is attached to the beam portion 4 by pasting or the like, and generates power by being deformed together with the beam portion 4.
  • the piezoelectric element 5 includes a first electrode 51 and a second electrode 52, and a piezoelectric film 53 disposed between the first electrode 51 and the second electrode 52.
  • the first electrode 51 and the second electrode 52 of the piezoelectric element 5 are electrically connected to different lead wires 31 formed on the support substrate 3, respectively.
  • the weight portion 6 functions as a weight for increasing the vibration of the beam portion 4.
  • the weight portion 6 also functions as a magnet portion constituting the magnet 9, and here, the entire weight portion 6 is constituted by the magnet 9.
  • the weight portion 6 is moved so as to swing toward both stopper portions 7 due to the deformation of the beam portion 4, and the magnet 9 constituting the weight portion 6 is magnetized with an N pole on one side in its moving direction, The other side is magnetized to the S pole.
  • the magnet 9 is magnetized with the N pole on the upper side of FIG. 1 and the S pole on the lower side of FIG. As the tire rotates, it is vibrated up and down in FIG. 1, and the magnet 9 functions as a weight, so that the vibration amplitude of the beam portion 4 increases. Thereby, the electric power generation amount by the piezoelectric element 5 becomes large, and larger electric power can be obtained.
  • the resonance frequency of the vibration of the weight portion 6 is determined according to the weight of the weight portion 6 and the distance from the support point at which the fixed portion 2 supports the beam portion 4 to the center of gravity of the weight portion 6. For this reason, it is possible to adjust the resonance frequency of the vibration of the weight portion 6 by appropriately adjusting these parameters.
  • the stopper portion 7 regulates the movement of the weight portion 6 and is disposed at a position away from the weight portion 6 at the time of non-vibration by being attached to the fixed portion 2, and the weight portion 6 is shown in FIG.
  • the movement of the weight part 6 is regulated by contacting when the vertical vibration is performed.
  • the stopper portion 7 is provided at each end of the fixed portion 2 and has the same configuration.
  • the coil 10 is constituted by the stopper portion 7, and here the coil 10 is a laminated substrate type coil.
  • the multilayer substrate type coil is a multilayer printed circuit board in which a plurality of spiral coil patterns composed of conductors are formed on the surface of a base material composed of a thermoplastic resin. It is constituted by. The ends of the coil patterns are connected by a conductor, and have the same structure as a plurality of coils wound in a spiral shape by a laminated substrate type coil. And the stopper part 7 is affixed on the fixing
  • a general multilayer printed board is based on a thermosetting resin, but the multilayer printed board can be made a flexible board by using a thermoplastic resin as a base. For this reason, even if a plurality of base materials are superposed, the occurrence of base material cracking can be suppressed, and the thickness can be kept thin while realizing a coil with a large number of turns in which a large number of base materials are superposed. You can also. By using such a laminated substrate type coil, it is possible to reduce the size of the coil body as compared with a conventional helical coil wound around a casing.
  • the arrangement place of the coil 10 is a position facing the above-described weight portion 6, that is, a position facing the magnet 9. For this reason, when the magnet 9 is moved in the vertical direction on the paper surface in FIG. 1 as the tire rotates, the distance to the coil 10 varies, and an induced electromotive force is generated in the coil 10 due to electromagnetic induction.
  • the coil 10 provided in the stopper portion 7 is electrically connected to the rectifying storage circuit portion 72 through the lead wiring 71. Then, the electric power generated by the coil 10 is transmitted to the rectified energy storage circuit unit 72 having the same configuration as that of the rectified energy storage circuit unit 34 through the lead wiring 71, and the rectified energy storage circuit unit 72 is charged.
  • the rectified power storage circuit portion 72 is connected to the lead wiring 31 formed on the support substrate 3 via the lead wiring 73 and the bonding wire 74, and is electrically connected to the power supply component 35 through these. For this reason, the electric power charged in the rectification electrical storage circuit unit 72 is supplied to the power supply component 35.
  • the laminated substrate type coil as described above can be formed by, for example, PLAAP (Patterned Prepreg Lay-Up Process abbreviation: PALAP is a registered trademark).
  • PALAP is prepared by patterning a conductor placed on the surface of a thermoplastic resin base material by etching, then making holes in the base material and filling the holes with resin-less metal paste, and overlaying them (layup) Are all pressed together. Since PALAP can incorporate an electronic component in addition to a conductor pattern obtained by patterning a conductor, it can also include a capacitor component. Therefore, it is possible to incorporate the above-described rectifying power storage circuit unit 72 in the PALAP.
  • one layer of PALAP is as thin as about 50 ⁇ m, the total thickness can be kept thin even if the number of stacked layers is increased, and the number of windings can be increased. Therefore, the generated power can be increased while suppressing the thickness of the coil 10.
  • the power generation apparatus 1 is configured.
  • a power generator 1 is attached to, for example, the back surface of a tread of a tire.
  • one surface provided with the stopper portion 7 is attached to the back surface of the tread of the tire.
  • one surface of the fixed portion 2 is attached to the back surface of the tread of the tire.
  • the beam portion 4 When the tire is rotated, the beam portion 4 is vibrated by the centrifugal force or the rotational direction (tangential direction) force, and the piezoelectric element 5 is also deformed accordingly. At this time, since the weight portion 6 is provided, the weight portion 6 functions as a weight, so that the deformation amount of the beam portion 4 and the piezoelectric element 5 can be increased.
  • the charged rectifying and accumulating circuit units 34 and 72 are used as a power source, and the microcomputer of the transmitter of the TPMS is activated, and pressure detection by a sensor such as a pressure sensor provided in the transmitter is performed. . Then, the microcomputer performs signal processing on the pressure detection result and creates data including the detection result. Thereafter, when a predetermined transmission cycle comes, data including the detection result is transmitted by wireless communication using the charged rectifying and storing circuit units 34 and 72 as a power source. This is input to the receiver through an antenna provided on the vehicle body side. By analyzing this data, the tire pressure is detected by the receiver.
  • the multilayer printed circuit board constituting the magnet 9 and the stopper portion 7 provided in the weight portion 6 is used. It is set as the hybrid electric power generation structure where both the electric power generation with the coil 10 provided is performed. Since the movement of the weight portion 6 is restricted by the stopper portion 7, it is possible to prevent the beam portion 4 and the piezoelectric element 5 from being deformed excessively and to secure the strength of the beam portion 4 and the piezoelectric element 5. Therefore, it becomes possible to generate power without using a conventional sliding structure, and it is possible to improve the life of the power generation apparatus 1 as compared with the case where a sliding structure is used.
  • the size of the coil can be reduced and the power generator 1 can be reduced in size.
  • both sides of the weight portion 6 have a both-end supported structure supported by the fixed portion 2 via the beam portion 4. Even with such a double-sided support structure, the same effect as in the case of the cantilevered support structure as in the first embodiment can be obtained.
  • power generation can be performed by the piezoelectric elements 5 on both sides of the weight portion 6, so that the power generation amount by the power generation device 1 can be further increased.
  • the coil 10 is comprised by the beam part 4.
  • the beam portion 4 is a laminated substrate type coil formed of a flexible substrate as described in the first embodiment, and the flexible substrate functions as a beam. Since the spring constant of the flexible substrate is determined by the thickness of the flexible substrate, that is, the number of layers of the base material to be superimposed, the beam portion 4 having a desired spring constant can be obtained by adjusting the thickness of the flexible substrate.
  • the coil 10 provided in the beam portion 4 is electrically connected to the lead wiring formed on the support substrate 3 and charges the rectifying power storage circuit portion through this lead wiring. ing.
  • the weight portion 6 functions as a simple weight
  • the magnet 9 is disposed at a position facing the beam portion 4 in the stopper portion 7, that is, a position facing the coil 10.
  • the magnet 9 is attached to the stopper portion 7 so that the center of the coil 10 provided in the beam portion 4, that is, the center position of the spiral coil pattern and the magnetized center of the magnet 9 correspond to each other. It has been.
  • the magnet 9 on the side attached to one stopper portion 7 is magnetized so that the coil 10 side is N-pole, and the magnet 9 on the side attached to the other stopper portion 7 is It is magnetized to have an S pole.
  • the magnet 9 is also functioned as a part of the stopper portion 7. That is, when the beam portion 4 is vibrated and the vibration is increased, the beam portion 4 or the piezoelectric element 5 is brought into contact with the magnet 9 as the stopper portion 7 so that the movement of the weight portion 6 and the beam portion 4 is restricted. It has become.
  • the coil 10 may be provided in the beam portion 4, and the power generation in the coil 10 may be performed by the movement of the coil 10 accompanying the movement of the beam portion 4.
  • the beam portion 4 is constituted by the flexible substrate provided with the coil 10 as described above, the beam portion 4 and the coil 10 can be made common.
  • the magnet 9 is also functioned as the stopper portion 7. If it does in this way, it will become possible to aim at reduction of a number of parts, and the product cost reduction of the electric power generating apparatus 1 can also be aimed at.
  • the coil 10 is constituted by a laminated substrate type coil, but the coil pattern constituting the coil 10 is changed to the shape shown in FIG.
  • the coil 10 is configured by a coil coil having a frame shape with a part cut away, and a spiral coil formed by superimposing the coil pattern.
  • One end side of the notched portion of the coil pattern of each layer is connected to the other end side of the coil pattern located in the upper layer, and the other end side of the lowermost coil pattern and the coil pattern of the uppermost layer Is connected to a lead wire (not shown).
  • the coil 10 can also be constituted by a helical coil.
  • the coil 10 is a spiral coil, since it is a laminated substrate type coil, the thickness can be reduced, and the same effects as those of the above embodiments can be obtained.
  • the coil 10 is constituted by a laminated substrate type coil, but the coil pattern constituting the coil 10 is changed to the shape shown in FIG.
  • the coil pattern formed on the surface of the two-layer base material has a layout in which a plurality of strips are arranged at regular angular intervals along a circle.
  • Each strip on the lower layer side is provided inclined at the same angle with respect to a radial straight line passing from the center of the circle to the end of each strip closer to the center of the circle, and each strip on the upper layer side is It is provided so as to be inclined at the same angle in the opposite direction of the circumferential direction with each strip on the lower layer side with respect to the straight line.
  • the ends on the side far from the center of the circle and the end on the side farthest from the center of the circle on the strip on the upper layer are electrically connected, and among the strips on the lower layer side, near the center of the circle Among the strips on the side and the strips on the upper layer side, the ends on the side close to the center of the circle are electrically connected. And about two of the strips on the upper layer side, one end is not connected to the strip on the lower layer side, but is connected to a lead-out wiring (not shown).
  • the coil 10 can also be configured by such a structure. Even in such a configuration, since the coil 10 is a laminated substrate type coil, the thickness can be reduced, and the same effects as those of the above-described embodiments can be obtained.
  • the coil 10 is a multilayer substrate type coil constituted by a multilayer printed board, but may be a coil constituted by a single layer printed board.
  • the coil 10 may be configured by only one layer of the spiral coil pattern shown in FIG.
  • the weight part 6 is made to function only as a mere weight, it combines with the 1st and 2nd embodiment, the weight part 6 is also made into the magnet 9, and the coil 10 is provided in the stopper part 7 If it becomes, it will become possible to increase electric power generation further.
  • the stopper part 7 was comprised by the magnet 9, you may comprise the stopper part 7 and the magnet 9 by another member.
  • the whole weight part 6 is made into the magnet 9,
  • the whole is not made into the magnet 9, but only the part facing the coil 10 is used.
  • a structure in which the center portion of the weight portion 6 is a weight plate 61 made of metal or the like and the magnets 9 are arranged on both sides of the weight plate 61 may be adopted.
  • the resonance frequency of the weight portion 6 can be adjusted by adjusting the weight of the weight plate 61.
  • the magnet 9 is functioned also as a part of stopper part 7, when the weight part 6 contact
  • the coil 10 is of a magnetic material built-in type in order to improve the power generation by the coil 10.
  • the magnetic body built-in type coil 10 can be obtained.
  • PLAAP can also incorporate the magnetic body 10a in addition to the conductor pattern that forms the conductor portion of the coil 10, it is preferable to configure the magnetic body built-in type coil 10 by PLAAP.
  • PLAAP can also incorporate the magnetic body 10a in addition to the conductor pattern that forms the conductor portion of the coil 10.

Abstract

This power generation device is provided with: a fixing section (2); a beam section (4) wherein one end side is supported by the fixing section; a weight section (6), which is supported by the other end side of the beam section, and which is vibrated with the beam section; a stopper section (7) that regulates, by having the weight section in contact with the stopper section, movement of the weight section in the vibration direction; and a piezoelectric element (5), which is attached to the beam section, and which generates power by being deformed with deformation of the beam section. The weight section is provided with a magnet (9). The stopper section is provided with a coil (10) that is configured from a coil pattern formed on a printed board. The magnet and the coil are disposed facing each other. Power is generated at the coil with the vibration of the weight section that is provided with the magnet.

Description

発電装置Power generator 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年5月8日に出願された日本特許出願番号2015-95902号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-95902 filed on May 8, 2015, the contents of which are incorporated herein by reference.
 本開示は、振動によって発電を行う振動発電デバイスにて構成される発電装置に関するものである。 This disclosure relates to a power generation apparatus including a vibration power generation device that generates power by vibration.
 従来、特許文献1において、振動によって発電を行う発電装置が提案されている。この発電装置では、筒状の筐体内に移動磁石を配置すると共に、その移動磁石の移動方向の両側に移動磁石に反発する固定磁石および圧電素子を設け、移動磁石の移動に伴って固定磁石に加わる斥力が圧電素子に加わることで発電を行っている。また、この発電装置では、筐体のうち移動磁石の移動部位近辺を囲むように巻回された螺旋型コイルが設けられており、移動磁石の移動に伴う電磁誘導によってコイルに誘導起電力を発生させ、コイルでも発電が行われるようにしている。 Conventionally, in Patent Document 1, a power generation device that generates power by vibration has been proposed. In this power generation device, a moving magnet is arranged in a cylindrical casing, and fixed magnets and piezoelectric elements that repel the moving magnet are provided on both sides in the moving direction of the moving magnet, and the fixed magnet is moved along with the movement of the moving magnet. Electric power is generated by applying the repulsive force applied to the piezoelectric element. In addition, in this power generation device, a helical coil wound around the moving part of the moving magnet in the casing is provided, and an induced electromotive force is generated in the coil by electromagnetic induction accompanying the movement of the moving magnet. In addition, power is generated even in the coil.
 しかしながら、筐体の内壁面を摺動面として移動磁石が移動させられる構成であることから、摺動構造の強度に伴う寿命の問題が生じる。また、筐体の周囲に巻回した螺旋型コイルであることから、コイル体格が大きくなる。つまり、コイルの径と巻き数とによって発電力が変化することから、発電力を高くしようとするとコイルの径が大きくなると共に巻き数が多くなり、コイル体格が大きくなってしまう。これにより、発電装置の大型化を招く。 However, since the moving magnet is moved with the inner wall surface of the housing as the sliding surface, there is a problem of the life due to the strength of the sliding structure. Moreover, since it is the helical coil wound around the housing | casing, a coil body size becomes large. That is, since the generated power changes depending on the diameter and the number of turns of the coil, when the generated power is increased, the diameter of the coil increases and the number of turns increases, and the coil size increases. Thereby, the enlargement of a power generator is caused.
特開2011-166894号公報JP2011-166894A
 本開示は、磁石の摺動構造を用いることなく発電可能とすることで発電装置の寿命向上を図ると共に、コイル体格の小型化によって発電装置の小型化を実現する発電装置を提供することを目的とする。 An object of the present disclosure is to provide a power generation device that can improve the life of a power generation device by enabling power generation without using a sliding structure of a magnet, and that can reduce the size of the power generation device by reducing the size of a coil body. And
 本開示の第一の態様において、発電装置は、固定部と、前記固定部に一端側が支持された梁部と、前記梁部の他端側に支持され、前記梁部と共に振動させられる錘部と、前記錘部の振動方向に配置され、該錘部が当接させられることで該錘部の振動方向への移動を規制するストッパー部と、前記梁部に取り付けられ、該梁部の変形に伴って変形させられることで発電を行う圧電素子とを備える。前記錘部に磁石が備えられている。前記ストッパー部にプリント基板に形成されたコイルパターンにより構成されるコイルが備えられている。前記磁石と前記コイルとが対向配置されている。前記磁石が備えられた前記錘部の振動に伴って前記コイルでの発電が行われる。 In the first aspect of the present disclosure, the power generation device includes a fixed portion, a beam portion supported on one end side by the fixed portion, and a weight portion supported on the other end side of the beam portion and vibrated together with the beam portion. And a stopper portion that is disposed in the vibration direction of the weight portion and restricts movement of the weight portion in the vibration direction by being brought into contact with the weight portion, and is attached to the beam portion, and the deformation of the beam portion A piezoelectric element that generates power by being deformed along with the piezoelectric element. The weight portion is provided with a magnet. The stopper portion is provided with a coil constituted by a coil pattern formed on a printed circuit board. The magnet and the coil are arranged to face each other. Power is generated in the coil in accordance with the vibration of the weight portion provided with the magnet.
 このように、梁部に取り付けた圧電素子による発電に加えて、錘部に備えた磁石とストッパー部に備えられたコイルとによる発電が両方とも行われるハイブリッド発電構造とされている。そして、磁石の移動がストッパー部によって規制されることから、梁部や圧電素子が変形し過ぎることを抑制でき、梁部や圧電素子の強度を確保することができる。したがって、従来のような摺動構造を用いることなく発電可能となり、摺動構造を用いる場合と比較して、発電装置の寿命向上を図ることが可能となる。 Thus, in addition to the power generation by the piezoelectric element attached to the beam portion, the hybrid power generation structure in which both the power generation by the magnet provided in the weight portion and the coil provided in the stopper portion is performed. Since the movement of the magnet is restricted by the stopper portion, it is possible to prevent the beam portion and the piezoelectric element from being deformed excessively, and the strength of the beam portion and the piezoelectric element can be ensured. Therefore, it is possible to generate power without using a conventional sliding structure, and it is possible to improve the life of the power generation device as compared with the case where a sliding structure is used.
 また、プリント基板に備えたコイルによって発電を行うことができることから、コイル体格の小型化が図れ、発電装置の小型化を実現することが可能となる。 Moreover, since power generation can be performed by the coil provided on the printed circuit board, the coil body can be reduced in size, and the power generation device can be reduced in size.
 よって、磁石の摺動構造を用いることなく発電可能にでき、発電装置の寿命向上を図ることができると共に、コイル体格の小型化によって発電装置の小型化を実現することが可能となる。 Therefore, it is possible to generate power without using a magnet sliding structure, to improve the life of the power generator, and to reduce the size of the power generator by reducing the size of the coil body.
 本開示の第二の態様において、発電装置は、固定部と、前記固定部に一端側が支持された梁部と、前記梁部の他端側に支持され、前記梁部と共に振動させられる錘部と、前記梁部の振動方向に配置され、該梁部が当接させられることで該梁部および前記錘部の振動方向への移動を規制するストッパー部と、前記梁部に取り付けられ、該梁部の変形に伴って変形させられることで発電を行う圧電素子と、磁石を備える。前記梁部にプリント基板に形成されたコイルパターンにより構成されるコイルが備えられている。該コイルと対向する位置に前記磁石が備えられている。前記梁部の振動に伴って前記コイルでの発電が行われる。 In the second aspect of the present disclosure, the power generation device includes a fixed portion, a beam portion supported on one end side by the fixed portion, and a weight portion supported on the other end side of the beam portion and vibrated together with the beam portion. A stopper portion that is disposed in the vibration direction of the beam portion and restricts movement of the beam portion and the weight portion in the vibration direction by being brought into contact with the beam portion, and is attached to the beam portion, A piezoelectric element that generates power by being deformed along with the deformation of the beam portion and a magnet are provided. A coil constituted by a coil pattern formed on a printed circuit board is provided in the beam portion. The magnet is provided at a position facing the coil. The coil generates power with the vibration of the beam portion.
 このように、梁部にプリント基板に形成されたコイルパターンにより構成されるコイルを備えつつ、該コイルと対向する位置に磁石を備えるようにしている。このような構造としても、梁部に取り付けた圧電素子による発電に加えて、磁石と梁部に備えられたコイルとによる発電が両方とも行われるハイブリッド発電構造とされる。これにより、第一の態様と同様の効果を得ることができる。 As described above, the magnet is provided at a position facing the coil while the coil is formed of the coil pattern formed on the printed board in the beam portion. Such a structure is also a hybrid power generation structure in which, in addition to power generation by the piezoelectric element attached to the beam portion, power generation by both the magnet and the coil provided in the beam portion is performed. Thereby, the effect similar to a 1st aspect can be acquired.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態にかかる発電装置の断面構成を示す図であり、 図2は、図1に示す発電装置に備えられるコイル10の斜視模式図であり、 図3は、本開示の第2実施形態にかかる発電装置の断面構成を示す図であり、 図4は、本開示の第3実施形態にかかる発電装置の断面構成を示す図であり、 図5は、本開示の第4実施形態にかかる発電装置に備えられるコイル10の斜視模式図であり、 図6は、本開示の第5実施形態にかかる発電装置に備えられるコイル10の斜視模式図であり、 図7は、他の実施形態で説明する錘部6の構成例を示した断面図であり、 図8は、他の実施形態で説明する錘部6の構成例を示した断面図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram illustrating a cross-sectional configuration of the power generation device according to the first embodiment of the present disclosure. FIG. 2 is a schematic perspective view of the coil 10 provided in the power generator shown in FIG. FIG. 3 is a diagram illustrating a cross-sectional configuration of the power generation device according to the second embodiment of the present disclosure. FIG. 4 is a diagram illustrating a cross-sectional configuration of the power generation device according to the third embodiment of the present disclosure. FIG. 5 is a schematic perspective view of the coil 10 provided in the power generation device according to the fourth embodiment of the present disclosure. FIG. 6 is a schematic perspective view of the coil 10 provided in the power generation device according to the fifth embodiment of the present disclosure. FIG. 7 is a cross-sectional view showing a configuration example of the weight portion 6 described in another embodiment. FIG. 8 is a cross-sectional view illustrating a configuration example of the weight portion 6 described in another embodiment.
 (第1実施形態)
 本開示の第1実施形態にかかる発電装置について説明する。ここで説明する発電装置は、例えば車両に取り付けられるタイヤ内に取り付けられ、タイヤの回転に基づいて発電を行うものとして用いられる。例えば、発電装置は、ダイレクト式のタイヤ空気圧検出システム(以下、TPMS:Tire Pressure Monitoring Systemという)におけるタイヤ側装置の発電に用いられる。
(First embodiment)
The power generation device according to the first embodiment of the present disclosure will be described. The power generation device described here is used, for example, as a device that is mounted in a tire mounted on a vehicle and generates power based on the rotation of the tire. For example, the power generation device is used for power generation of a tire side device in a direct tire pressure detection system (hereinafter referred to as TPMS: Tire Pressure Monitoring System).
 ダイレクト式のTPMSでは、タイヤ側に圧力センサ等のセンサが備えられた送信機を直接取り付けると共に、車体側にアンテナおよび受信機を備えた構成とされる。このような構成を用いて、TPMSでは、センサでの検出結果を含むデータを送信機から送信させると共に、アンテナを介して受信機にその検出結果を含むデータを受信させ、検出結果を解析することでタイヤ空気圧を検出している。このようなTPMSでは、タイヤ内というバッテリからの電力供給が困難な場所に送信機が取り付けられることから、タイヤ内に発電装置を設けてバッテリとは別に電力供給が行えるようにすることが望ましい。本実施形態の発電装置は、このようなダイレクト式のTPMSの送信機の電力供給用として適用されると好適である。 In the direct type TPMS, a transmitter having a sensor such as a pressure sensor is directly attached to the tire side, and an antenna and a receiver are provided on the vehicle body side. Using such a configuration, in TPMS, data including the detection result of the sensor is transmitted from the transmitter, and data including the detection result is received by the receiver via the antenna, and the detection result is analyzed. The tire pressure is detected at. In such a TPMS, since a transmitter is attached to a place in the tire where it is difficult to supply power from the battery, it is desirable to provide a power generation device in the tire so that power can be supplied separately from the battery. The power generation apparatus of the present embodiment is preferably applied for power supply of such a direct TPMS transmitter.
 図1に示すように、発電装置1は、固定部2、支持基板3、梁部4、圧電素子5、錘部6およびストッパー部7などを有した構成とされている。 As shown in FIG. 1, the power generation device 1 is configured to include a fixed portion 2, a support substrate 3, a beam portion 4, a piezoelectric element 5, a weight portion 6, a stopper portion 7, and the like.
 固定部2は、支持基板3、梁部4、圧電素子5、錘部6およびストッパー部7などの発電装置1の構成要素を支持すると共に、これらの構成要素をタイヤ内に固定するものとして用いられたケースであり、例えば金属によって形成されている。固定部2は、上面形状が矩形状に構成された枠状形状とされている。固定部2には、部分的に開口部2aが形成されており、この開口部2a内に支持基板3と共に梁部4や圧電素子5および錘部6が支持されている。また、固定部2の上端面および下端面のそれぞれにストッパー部7がネジ締めなどによって支持されている。 The fixing unit 2 supports the components of the power generation device 1 such as the support substrate 3, the beam unit 4, the piezoelectric element 5, the weight unit 6, and the stopper unit 7, and is used to fix these components in the tire. For example, it is made of metal. The fixed portion 2 has a frame shape in which the upper surface shape is a rectangular shape. An opening 2 a is partially formed in the fixed portion 2, and the beam portion 4, the piezoelectric element 5, and the weight portion 6 are supported in the opening 2 a together with the support substrate 3. Moreover, the stopper part 7 is supported by each of the upper end surface and the lower end surface of the fixing | fixed part 2 by screwing.
 支持基板3は、梁部4と共に圧電素子5が搭載されると共に、圧電素子5で発電される電力の引出配線31などの各種配線パターンが形成され、例えばプリント基板によって構成されている。支持基板3に形成された引出配線31は、ボンディングワイヤ32、33を通じて後述する圧電素子5に備えられる第1、第2電極51、52に電気的に接続され、圧電素子5が発生させる起電力に基づく電流を取り出す。 The support substrate 3 is mounted with the piezoelectric element 5 together with the beam portion 4, and is formed with various wiring patterns such as a lead-out wiring 31 for the electric power generated by the piezoelectric element 5, and is configured by a printed circuit board, for example. The lead-out wiring 31 formed on the support substrate 3 is electrically connected to first and second electrodes 51 and 52 provided in the piezoelectric element 5 described later through bonding wires 32 and 33, and an electromotive force generated by the piezoelectric element 5. The current based on is taken out.
 また、支持基板3は、固定部2よりも外側まで延設されており、この固定部2よりも外側に延設された部分に整流蓄電回路部34や電源供給部品35が備えられている。支持基板3における固定部2よりも内側から外側まで延設された部分に至るまで、引出配線31を含む各種配線パターンが形成され、各種配線パターンに対して整流蓄電回路部34や電源供給部品35が電気的に接続されている。 Further, the support substrate 3 is extended to the outside of the fixed portion 2, and a rectified storage circuit portion 34 and a power supply component 35 are provided in a portion extended to the outside of the fixed portion 2. Various wiring patterns including the lead-out wiring 31 are formed from the support substrate 3 to the portion extending from the inside to the outside of the fixed portion 2, and the rectifying power storage circuit portion 34 and the power supply component 35 are formed with respect to the various wiring patterns. Are electrically connected.
 整流蓄電回路部34は、圧電素子5から供給される電流を整流し、充電を行っている。例えば、整流蓄電回路部34は、ダイオードなどの整流素子と蓄電用のコンデンサなどによって構成されている。電源供給部品35は、圧電素子5などで発電した電力に基づいて整流蓄電回路部34や後述する整流蓄電回路部72での充電が行われると、これらを電源として電力供給がなされる部品であり、本実施形態の場合には、TPMSの送信機のマイクロコンピュータなどが電源供給部品35に該当する。 The rectifying power storage circuit unit 34 rectifies the current supplied from the piezoelectric element 5 and performs charging. For example, the rectifying power storage circuit unit 34 includes a rectifying element such as a diode and a capacitor for storing power. The power supply component 35 is a component that is supplied with power as a power source when charging is performed in the rectification power storage circuit unit 34 or a rectification power storage circuit unit 72 described later based on the power generated by the piezoelectric element 5 or the like. In the case of this embodiment, a microcomputer of a TPMS transmitter corresponds to the power supply component 35.
 梁部4は、例えば樹脂などによって構成されており、圧電素子5と共に支持基板3に例えば接着などによって貼り付けられることで支持されている。梁部4は、錘部6の片側に配置され、錘部6を片側で支持している。つまり、片側に配置された梁部4によって錘部6を支持した片持ち支持構造とされている。梁部4は、厚みなどに基づいてバネ定数が設定されており、支持基板3によって支持された一端を支点として、自由端とされている他端側がタイヤ回転に伴って振動させられるようになっている。この梁部4の他端には錘部6が貼り付けられており、この錘部6が錘となって、タイヤ回転に伴う振動の振幅が大きくなるようにしてある。 The beam portion 4 is made of, for example, a resin and is supported by being attached to the support substrate 3 together with the piezoelectric element 5 by, for example, adhesion. The beam portion 4 is disposed on one side of the weight portion 6 and supports the weight portion 6 on one side. That is, a cantilever support structure in which the weight portion 6 is supported by the beam portion 4 arranged on one side is provided. The beam portion 4 has a spring constant set based on the thickness and the like, and the other end, which is a free end, is vibrated as the tire rotates with one end supported by the support substrate 3 as a fulcrum. ing. A weight portion 6 is attached to the other end of the beam portion 4, and the weight portion 6 serves as a weight so that the amplitude of vibration associated with tire rotation is increased.
 なお、ここでは、1枚の支持基板3によって梁部4を圧電素子5と共に支持しているが、これは単なる一例であり、他の構造であっても良い。例えば、支持基板3を第1基板と第2基板の2枚とし、これら第1、第2基板の間に梁部4を圧電素子5と共に挟持した構造としても良い。その場合、例えば、圧電素子5の両電極51、52が第1、第2基板の一方に設けられた引出配線もしくは両方に別々に設けられたそれぞれの引出配線に電気的に接続されるような形態とすれば、圧電素子5からの電力取り出しを行うことができる。 Note that, here, the beam portion 4 is supported together with the piezoelectric element 5 by the single support substrate 3, but this is merely an example, and other structures may be used. For example, the support substrate 3 may be a first substrate and a second substrate, and the beam 4 may be sandwiched between the first and second substrates together with the piezoelectric element 5. In that case, for example, the electrodes 51 and 52 of the piezoelectric element 5 are electrically connected to the lead wires provided on one of the first and second substrates or to the lead wires provided separately on both. If it is set as a form, the electric power extraction from the piezoelectric element 5 can be performed.
 圧電素子5は、梁部4に貼り付けなどによって取り付けられ、梁部4と共に変形することで発電を行う。具体的には、圧電素子5は、第1電極51および第2電極52と、これら第1電極51と第2電極52の間に配置された圧電膜53によって構成されている。圧電素子5の第1電極51と第2電極52は、それぞれが支持基板3に形成された異なる引出配線31に電気的に接続されている。 The piezoelectric element 5 is attached to the beam portion 4 by pasting or the like, and generates power by being deformed together with the beam portion 4. Specifically, the piezoelectric element 5 includes a first electrode 51 and a second electrode 52, and a piezoelectric film 53 disposed between the first electrode 51 and the second electrode 52. The first electrode 51 and the second electrode 52 of the piezoelectric element 5 are electrically connected to different lead wires 31 formed on the support substrate 3, respectively.
 このように構成される圧電素子5は、梁部4の振動に伴って変形させられると、その変位に伴って圧電膜53の圧電効果により第1電極51と第2電極52の間に起電力を発生させる。この起電力によって整流蓄電回路部34での充電が行われる。 When the piezoelectric element 5 configured as described above is deformed with the vibration of the beam portion 4, an electromotive force is generated between the first electrode 51 and the second electrode 52 due to the piezoelectric effect of the piezoelectric film 53 according to the displacement. Is generated. Charging in the rectifying power storage circuit unit 34 is performed by this electromotive force.
 錘部6は、梁部4の振動を大きくするための錘として機能する。本実施形態の場合には、錘部6は、磁石9を構成する磁石部としても機能しており、ここでは錘部6全体を磁石9によって構成している。錘部6は、梁部4の変形によって両ストッパー部7側に向かって振幅するように移動させられ、錘部6を構成する磁石9は、その移動方向の一方側がN極に着磁され、他方側がS極に着磁されている。本実施形態の場合、磁石9のうち図1の紙面上方をN極、紙面下方をS極に着磁してある。タイヤ回転に伴って図1中において上下振動させられ、この磁石9が錘として機能することで梁部4の振動の振幅が大きくなる。これにより、圧電素子5での発電量が大きくなり、より大きな電力を得ることができる。 The weight portion 6 functions as a weight for increasing the vibration of the beam portion 4. In the case of the present embodiment, the weight portion 6 also functions as a magnet portion constituting the magnet 9, and here, the entire weight portion 6 is constituted by the magnet 9. The weight portion 6 is moved so as to swing toward both stopper portions 7 due to the deformation of the beam portion 4, and the magnet 9 constituting the weight portion 6 is magnetized with an N pole on one side in its moving direction, The other side is magnetized to the S pole. In the case of the present embodiment, the magnet 9 is magnetized with the N pole on the upper side of FIG. 1 and the S pole on the lower side of FIG. As the tire rotates, it is vibrated up and down in FIG. 1, and the magnet 9 functions as a weight, so that the vibration amplitude of the beam portion 4 increases. Thereby, the electric power generation amount by the piezoelectric element 5 becomes large, and larger electric power can be obtained.
 なお、錘部6の振動の共振周波数は、錘部6の重さや固定部2が梁部4を支持している支持点から錘部6の重心点までの距離に応じて決まる。このため、これらのパラメータを適宜調整することで、錘部6の振動の共振周波数を調整することが可能である。 It should be noted that the resonance frequency of the vibration of the weight portion 6 is determined according to the weight of the weight portion 6 and the distance from the support point at which the fixed portion 2 supports the beam portion 4 to the center of gravity of the weight portion 6. For this reason, it is possible to adjust the resonance frequency of the vibration of the weight portion 6 by appropriately adjusting these parameters.
 ストッパー部7は、錘部6の移動を規制するものであり、固定部2に貼り付けられることで非振動時の錘部6から所定距離離れた位置に配置され、錘部6が図1中における上下振動を行ったときに当接することで錘部6の移動を規制する。ストッパー部7は、固定部2の両端それぞれに設けられており、共に同様の構成とされている。また、本実施形態の場合、ストッパー部7によってコイル10を構成しており、ここではコイル10を積層基板型コイルとしている。 The stopper portion 7 regulates the movement of the weight portion 6 and is disposed at a position away from the weight portion 6 at the time of non-vibration by being attached to the fixed portion 2, and the weight portion 6 is shown in FIG. The movement of the weight part 6 is regulated by contacting when the vertical vibration is performed. The stopper portion 7 is provided at each end of the fixed portion 2 and has the same configuration. In the case of the present embodiment, the coil 10 is constituted by the stopper portion 7, and here the coil 10 is a laminated substrate type coil.
 図2に示すように、積層基板型コイルは、熱可塑性樹脂により構成された基材の表面に導体にて構成された渦巻状のコイルパターンが形成されたものを複数枚重ね合わせた多層プリント基板によって構成されている。各コイルパターンの先端同士は導体で接続されており、積層基板型コイルにより、渦巻状に巻回されたコイルが複数重ね合わされたのと同じ構造とされている。そして、渦巻状のコイルパターンの中心位置と磁石9の着磁中心とが対応するように、ストッパー部7が固定部2に貼り付けられている。 As shown in FIG. 2, the multilayer substrate type coil is a multilayer printed circuit board in which a plurality of spiral coil patterns composed of conductors are formed on the surface of a base material composed of a thermoplastic resin. It is constituted by. The ends of the coil patterns are connected by a conductor, and have the same structure as a plurality of coils wound in a spiral shape by a laminated substrate type coil. And the stopper part 7 is affixed on the fixing | fixed part 2 so that the center position of a spiral coil pattern and the magnetization center of the magnet 9 may respond | correspond.
 一般的な多層プリント基板は、熱硬化性樹脂を基材としたものであるが、熱可塑性樹脂を基材として用いることで多層プリント基板をフレキシブル基板とすることができる。このため、複数の基材を重ね合わせても、基材割れが発生することを抑制できるし、より多数の基材を重ね合わせた巻き数の多いコイルを実現しつつも、厚みを薄く抑えることもできる。このような積層基板型コイルとすることで、従来のような筐体の周囲に巻回させた螺旋型コイルと比較して、コイル体格の小型化を図ることも可能となる。 A general multilayer printed board is based on a thermosetting resin, but the multilayer printed board can be made a flexible board by using a thermoplastic resin as a base. For this reason, even if a plurality of base materials are superposed, the occurrence of base material cracking can be suppressed, and the thickness can be kept thin while realizing a coil with a large number of turns in which a large number of base materials are superposed. You can also. By using such a laminated substrate type coil, it is possible to reduce the size of the coil body as compared with a conventional helical coil wound around a casing.
 コイル10の配置場所は、上記した錘部6と対向する位置、つまり磁石9と対向する位置とされている。このため、タイヤ回転に伴って磁石9が図1中の紙面上下方向に移動させられると、コイル10との間の距離が変動し、コイル10に電磁誘導に伴う誘導起電力が発生する。 The arrangement place of the coil 10 is a position facing the above-described weight portion 6, that is, a position facing the magnet 9. For this reason, when the magnet 9 is moved in the vertical direction on the paper surface in FIG. 1 as the tire rotates, the distance to the coil 10 varies, and an induced electromotive force is generated in the coil 10 due to electromagnetic induction.
 ストッパー部7に設けられたコイル10は、引出配線71を通じて整流蓄電回路部72と電気的に接続されている。そして、引出配線71を介して、コイル10で発電した電力が整流蓄電回路部34と同様の構成とされた整流蓄電回路部72に伝えられ、整流蓄電回路部72での充電が行われる。整流蓄電回路部72は、引出配線73およびボンディングワイヤ74を介して支持基板3に形成された引出配線31に接続されており、これらを通じて電源供給部品35に電気的に接続されている。このため、整流蓄電回路部72で充電された電力が電源供給部品35に供給されるようになっている。 The coil 10 provided in the stopper portion 7 is electrically connected to the rectifying storage circuit portion 72 through the lead wiring 71. Then, the electric power generated by the coil 10 is transmitted to the rectified energy storage circuit unit 72 having the same configuration as that of the rectified energy storage circuit unit 34 through the lead wiring 71, and the rectified energy storage circuit unit 72 is charged. The rectified power storage circuit portion 72 is connected to the lead wiring 31 formed on the support substrate 3 via the lead wiring 73 and the bonding wire 74, and is electrically connected to the power supply component 35 through these. For this reason, the electric power charged in the rectification electrical storage circuit unit 72 is supplied to the power supply component 35.
 なお、上記したような積層基板型コイルは、例えばPALAP(Patterned Prepreg Lay-Up Processの略称:PALAPは登録商標)によって形成可能である。PALAPは、熱可塑性樹脂の基材の表面に配置した導体をエッチングによってパターニングしたのち基材に穴空けして穴内に樹脂レス金属ペーストを充填したもの複数用意し、それらを重ね合わせ(レイアップ)て一括プレスしたものである。PALAPは、導体をパターニングした導体パターンに加えて、電子部品を内蔵できることから、コンデンサ部品などを備えることもできる。したがって、PALAP内に上記した整流蓄電回路部72を内蔵することも可能である。そして、PALAPは、1層が50μm程度と薄いことから、積層数を多くしても全体の厚みを薄く抑えることが可能となり、巻線数を多くすることが可能となる。よって、コイル10の厚みを抑えつつ発電力を大きくできる。 Note that the laminated substrate type coil as described above can be formed by, for example, PLAAP (Patterned Prepreg Lay-Up Process abbreviation: PALAP is a registered trademark). PALAP is prepared by patterning a conductor placed on the surface of a thermoplastic resin base material by etching, then making holes in the base material and filling the holes with resin-less metal paste, and overlaying them (layup) Are all pressed together. Since PALAP can incorporate an electronic component in addition to a conductor pattern obtained by patterning a conductor, it can also include a capacitor component. Therefore, it is possible to incorporate the above-described rectifying power storage circuit unit 72 in the PALAP. Since one layer of PALAP is as thin as about 50 μm, the total thickness can be kept thin even if the number of stacked layers is increased, and the number of windings can be increased. Therefore, the generated power can be increased while suppressing the thickness of the coil 10.
 以上のようにして、本実施形態にかかる発電装置1が構成されている。このような発電装置1は、例えばタイヤのトレッドの裏面に貼り付けられる。例えば、発電装置1をタイヤの遠心方向の力によって発電させる場合、ストッパー部7が備えられた一面がタイヤのトレッドの裏面に貼り付けられる。また、発電装置1を回転方向(接線方向)の力によって発電させる場合、固定部2の一面がタイヤのトレッドの裏面に貼り付けられる。 As described above, the power generation apparatus 1 according to the present embodiment is configured. Such a power generator 1 is attached to, for example, the back surface of a tread of a tire. For example, when the power generation apparatus 1 is caused to generate power by the force in the centrifugal direction of the tire, one surface provided with the stopper portion 7 is attached to the back surface of the tread of the tire. Moreover, when generating the power generation device 1 with a force in the rotational direction (tangential direction), one surface of the fixed portion 2 is attached to the back surface of the tread of the tire.
 続いて、本実施形態にかかる発電装置1の作動について、TPMSの作動と関連付けて説明する。 Subsequently, the operation of the power generation device 1 according to the present embodiment will be described in association with the operation of the TPMS.
 タイヤが回転させられると、その遠心方向の力もしくは回転方向(接線方向)の力によって梁部4が振動させられ、それに伴って圧電素子5も変形させられる。このとき、錘部6が備えられていることから、錘部6が錘として機能することで、梁部4や圧電素子5の変形量を大きくすることが可能となる。 When the tire is rotated, the beam portion 4 is vibrated by the centrifugal force or the rotational direction (tangential direction) force, and the piezoelectric element 5 is also deformed accordingly. At this time, since the weight portion 6 is provided, the weight portion 6 functions as a weight, so that the deformation amount of the beam portion 4 and the piezoelectric element 5 can be increased.
 そして、このときの圧電素子5の変形により、圧電素子5に備えられた圧電膜53の圧電効果により第1電極51と第2電極52の間に起電力が発生させられる。これにより、整流蓄電回路部34での充電が行われる。 Then, due to the deformation of the piezoelectric element 5 at this time, an electromotive force is generated between the first electrode 51 and the second electrode 52 due to the piezoelectric effect of the piezoelectric film 53 provided in the piezoelectric element 5. As a result, the rectifying power storage circuit unit 34 is charged.
 また、錘部6の磁石9の振動によってコイル10でも電磁誘導による誘導起電力が発生させられ、発電が行われる。これにより、整流蓄電回路部72での充電も行われる。 In addition, an induced electromotive force due to electromagnetic induction is also generated in the coil 10 by the vibration of the magnet 9 of the weight portion 6, and power generation is performed. As a result, the rectifying power storage circuit unit 72 is also charged.
 これにより、充電された整流蓄電回路部34、72を電源として用いて、TPMSの送信機のマイクロコンピュータが起動させられると共に、送信機に備えられた圧力センサなどのセンサによる圧力検出などが行われる。そして、マイクロコンピュータにより、圧力検出結果が信号処理されて検出結果を含むデータが作成される。その後、所定の送信周期が来ると、充電された整流蓄電回路部34、72を電源として、そのエネルギーを用いて無線通信により検出結果を含むデータが送信される。これが車体側に備えられたアンテナを通じて受信機に入力される。このデータが解析されることで、受信機でタイヤ空気圧が検出される。 As a result, the charged rectifying and accumulating circuit units 34 and 72 are used as a power source, and the microcomputer of the transmitter of the TPMS is activated, and pressure detection by a sensor such as a pressure sensor provided in the transmitter is performed. . Then, the microcomputer performs signal processing on the pressure detection result and creates data including the detection result. Thereafter, when a predetermined transmission cycle comes, data including the detection result is transmitted by wireless communication using the charged rectifying and storing circuit units 34 and 72 as a power source. This is input to the receiver through an antenna provided on the vehicle body side. By analyzing this data, the tire pressure is detected by the receiver.
 以上説明したように、本実施形態の発電装置1では、梁部4に貼り付けた圧電素子5による発電に加えて、錘部6に備えた磁石9とストッパー部7を構成する多層プリント基板に備えたコイル10とによる発電が両方とも行われるハイブリッド発電構造とされている。そして、錘部6の移動がストッパー部7によって規制されることから、梁部4や圧電素子5が変形し過ぎることを抑制でき、梁部4や圧電素子5の強度を確保することができる。したがって、従来のような摺動構造を用いることなく発電可能となり、摺動構造を用いる場合と比較して、発電装置1の寿命向上を図ることが可能となる。 As described above, in the power generation device 1 of the present embodiment, in addition to the power generation by the piezoelectric element 5 attached to the beam portion 4, the multilayer printed circuit board constituting the magnet 9 and the stopper portion 7 provided in the weight portion 6 is used. It is set as the hybrid electric power generation structure where both the electric power generation with the coil 10 provided is performed. Since the movement of the weight portion 6 is restricted by the stopper portion 7, it is possible to prevent the beam portion 4 and the piezoelectric element 5 from being deformed excessively and to secure the strength of the beam portion 4 and the piezoelectric element 5. Therefore, it becomes possible to generate power without using a conventional sliding structure, and it is possible to improve the life of the power generation apparatus 1 as compared with the case where a sliding structure is used.
 また、多層プリント基板に備えたコイル10によって発電を行うことができることから、コイル体格の小型化が図れ、発電装置1の小型化を実現することが可能となる。 In addition, since power can be generated by the coil 10 provided on the multilayer printed board, the size of the coil can be reduced and the power generator 1 can be reduced in size.
 よって、磁石の摺動構造を用いることなく発電可能にでき、発電装置1の寿命向上を図ることができると共に、コイル体格の小型化によって発電装置1の小型化を実現することが可能となる。 Therefore, it is possible to generate electric power without using a magnet sliding structure, and it is possible to improve the life of the power generation device 1 and to reduce the size of the power generation device 1 by reducing the size of the coil body.
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して錘部6の支持構造を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present disclosure will be described. In the present embodiment, the support structure of the weight portion 6 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only portions different from the first embodiment will be described.
 図3に示すように、本実施形態では、錘部6の両側共に梁部4を介して固定部2に支持された両持ち支持構造とされている。このような両持ち支持構造であっても、第1実施形態のような片持ち支持構造とする場合と同様の効果を得ることができる。そして、このような両持ち支持構造とする場合には、錘部6の両側の圧電素子5によって発電を行うことができることから、さらに発電装置1による発電量を増やすことが可能となる。 As shown in FIG. 3, in this embodiment, both sides of the weight portion 6 have a both-end supported structure supported by the fixed portion 2 via the beam portion 4. Even with such a double-sided support structure, the same effect as in the case of the cantilevered support structure as in the first embodiment can be obtained. In the case of such a double-end support structure, power generation can be performed by the piezoelectric elements 5 on both sides of the weight portion 6, so that the power generation amount by the power generation device 1 can be further increased.
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態は、第1実施形態に対して梁部4や錘部6およびストッパー部7などの構造を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment of the present disclosure will be described. In the present embodiment, the structure of the beam portion 4, the weight portion 6, the stopper portion 7, and the like is changed with respect to the first embodiment, and the others are the same as those in the first embodiment. Only different parts will be described.
 図4に示すように、本実施形態では、梁部4によってコイル10を構成している。具体的には、梁部4を第1実施形態で説明したようなフレキシブル基板にて構成される積層基板型コイルとし、フレキシブル基板を梁として機能させている。フレキシブル基板のバネ定数は、フレキシブル基板の厚み、すなわち重ね合わせる基材の層数などによって決まることから、フレキシブル基板の厚みを調整することで、所望のバネ定数の梁部4を得ることができる。なお、図示していないが、梁部4に備えられたコイル10は、支持基板3に形成された引出配線に電気的に接続されており、この引出配線を通じて整流蓄電回路部への充電を行っている。 As shown in FIG. 4, in this embodiment, the coil 10 is comprised by the beam part 4. As shown in FIG. Specifically, the beam portion 4 is a laminated substrate type coil formed of a flexible substrate as described in the first embodiment, and the flexible substrate functions as a beam. Since the spring constant of the flexible substrate is determined by the thickness of the flexible substrate, that is, the number of layers of the base material to be superimposed, the beam portion 4 having a desired spring constant can be obtained by adjusting the thickness of the flexible substrate. Although not shown, the coil 10 provided in the beam portion 4 is electrically connected to the lead wiring formed on the support substrate 3 and charges the rectifying power storage circuit portion through this lead wiring. ing.
 また、本実施形態では、錘部6を単なる錘として機能させ、磁石9についてはストッパー部7のうち梁部4と対向する位置、つまりコイル10と対向する位置に配置してある。そして、上記したように、梁部4に備えられたコイル10の中心、つまり渦巻状のコイルパターンの中心位置と磁石9の着磁中心とが対応するように磁石9がストッパー部7に貼り付けられている。一方のストッパー部7に貼り付けられた側の磁石9については、コイル10側がN極となるように着磁され、他方のストッパー部7に貼り付けられた側の磁石9については、コイル10側がS極となるように着磁されている。 Further, in the present embodiment, the weight portion 6 functions as a simple weight, and the magnet 9 is disposed at a position facing the beam portion 4 in the stopper portion 7, that is, a position facing the coil 10. As described above, the magnet 9 is attached to the stopper portion 7 so that the center of the coil 10 provided in the beam portion 4, that is, the center position of the spiral coil pattern and the magnetized center of the magnet 9 correspond to each other. It has been. The magnet 9 on the side attached to one stopper portion 7 is magnetized so that the coil 10 side is N-pole, and the magnet 9 on the side attached to the other stopper portion 7 is It is magnetized to have an S pole.
 また、本実施形態では、磁石9をストッパー部7の一部としても機能させている。すなわち、梁部4が振動させられて振動が大きくなると、梁部4もしくは圧電素子5がストッパー部7としての磁石9に当接することで、錘部6や梁部4などの移動を規制するようになっている。 In this embodiment, the magnet 9 is also functioned as a part of the stopper portion 7. That is, when the beam portion 4 is vibrated and the vibration is increased, the beam portion 4 or the piezoelectric element 5 is brought into contact with the magnet 9 as the stopper portion 7 so that the movement of the weight portion 6 and the beam portion 4 is restricted. It has become.
 このように、梁部4にコイル10を備え、梁部4の移動に伴うコイル10の移動によってコイル10での発電が行われるようにしても良い。また、このように梁部4をコイル10が備えられたフレキシブル基板によって構成しているため、梁部4とコイル10とを共通化させられる。さらに、磁石9をストッパー部7としても機能させている。このようにすれば、部品点数の削減を図ることが可能となり、発電装置1の製品コスト削減を図ることもできる。 Thus, the coil 10 may be provided in the beam portion 4, and the power generation in the coil 10 may be performed by the movement of the coil 10 accompanying the movement of the beam portion 4. In addition, since the beam portion 4 is constituted by the flexible substrate provided with the coil 10 as described above, the beam portion 4 and the coil 10 can be made common. Furthermore, the magnet 9 is also functioned as the stopper portion 7. If it does in this way, it will become possible to aim at reduction of a number of parts, and the product cost reduction of the electric power generating apparatus 1 can also be aimed at.
 (第4実施形態)
 本開示の第4実施形態について説明する。本実施形態は、第1~第3実施形態に対してコイル10の構造を変更したものであり、その他については第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment of the present disclosure will be described. In the present embodiment, the structure of the coil 10 is changed with respect to the first to third embodiments, and the rest is the same as the first to third embodiments. Only the different parts will be described.
 本実施形態でも、コイル10を積層基板型コイルによって構成しているが、コイル10を構成するコイルパターンを図5に示す形状に変更している。具体的には、一部が切り欠かれた枠体形状のコイルパターンとし、それを重ね合わせた螺旋型コイルによってコイル10を構成している。各層のコイルパターンの切り欠かれた部分の一端側をその上層に位置するコイルパターンの他端側に接続しており、最下層のコイルパターンのうちの他端側および最上層のコイルパターンのうちの一端側を図示しない引出配線に接続している。 Also in this embodiment, the coil 10 is constituted by a laminated substrate type coil, but the coil pattern constituting the coil 10 is changed to the shape shown in FIG. Specifically, the coil 10 is configured by a coil coil having a frame shape with a part cut away, and a spiral coil formed by superimposing the coil pattern. One end side of the notched portion of the coil pattern of each layer is connected to the other end side of the coil pattern located in the upper layer, and the other end side of the lowermost coil pattern and the coil pattern of the uppermost layer Is connected to a lead wire (not shown).
 このように、螺旋型コイルによってコイル10を構成することもできる。このような構成とした場合、コイル10を螺旋型コイルとしているものの、積層基板型コイルであることから、厚みを薄く抑えることができ、上記各実施形態と同様の効果を得ることができる。 Thus, the coil 10 can also be constituted by a helical coil. In the case of such a configuration, although the coil 10 is a spiral coil, since it is a laminated substrate type coil, the thickness can be reduced, and the same effects as those of the above embodiments can be obtained.
 (第5実施形態)
 本開示の第5実施形態について説明する。本実施形態も、第1~第3実施形態に対してコイル10の構造を変更したものであり、その他については第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。
(Fifth embodiment)
A fifth embodiment of the present disclosure will be described. This embodiment is also a modification of the structure of the coil 10 with respect to the first to third embodiments, and the rest is the same as the first to third embodiments. Only the different parts will be described.
 本実施形態でも、コイル10を積層基板型コイルによって構成しているが、コイル10を構成するコイルパターンを図6に示す形状に変更している。具体的には、二層の基材の表面に形成したコイルパターンをそれぞれ複数の短冊を円に沿って一定角度間隔で配置したレイアウトとしてある。下層側の各短冊は、円の中心から各短冊のうち円の中心に近い側の端部を通過する径方向の直線に対して同じ角度傾斜して設けられ、上層側の各短冊は、その直線に対して下層側の各短冊と周方向の反対方向において同じ角度傾斜して設けられている。下層側の短冊のうち円の中心から遠い側の端部と上層側の短冊のうち円の中心から遠い側の端部同士が電気的に接続され、下層側の短冊のうち円の中心から近い側の端部と上層側の短冊のうち円の中心から近い側の端部同士が電気的に接続されている。そして、上層側の短冊のうちの2つについては、一方の端部を下層側の短冊に接続せず、図示しない引出配線に接続している。 Also in this embodiment, the coil 10 is constituted by a laminated substrate type coil, but the coil pattern constituting the coil 10 is changed to the shape shown in FIG. Specifically, the coil pattern formed on the surface of the two-layer base material has a layout in which a plurality of strips are arranged at regular angular intervals along a circle. Each strip on the lower layer side is provided inclined at the same angle with respect to a radial straight line passing from the center of the circle to the end of each strip closer to the center of the circle, and each strip on the upper layer side is It is provided so as to be inclined at the same angle in the opposite direction of the circumferential direction with each strip on the lower layer side with respect to the straight line. Of the strips on the lower layer side, the end on the side far from the center of the circle and the end on the side farthest from the center of the circle on the strip on the upper layer are electrically connected, and among the strips on the lower layer side, near the center of the circle Among the strips on the side and the strips on the upper layer side, the ends on the side close to the center of the circle are electrically connected. And about two of the strips on the upper layer side, one end is not connected to the strip on the lower layer side, but is connected to a lead-out wiring (not shown).
 このような構造によってコイル10を構成することもできる。このような構成とした場合も、コイル10が積層基板型コイルであることから、厚みを薄く抑えることができ、上記各実施形態と同様の効果を得ることができる。 The coil 10 can also be configured by such a structure. Even in such a configuration, since the coil 10 is a laminated substrate type coil, the thickness can be reduced, and the same effects as those of the above-described embodiments can be obtained.
 (他の実施形態)
 例えば、上記第1~第3実施形態では、コイル10を多層プリント基板にて構成される積層基板型コイルとしているが、単層のプリント基板にて構成されるコイルであっても良い。例えば、図2に示した渦巻型のコイルパターンの1層のみによってコイル10を構成しても良い。
(Other embodiments)
For example, in the first to third embodiments, the coil 10 is a multilayer substrate type coil constituted by a multilayer printed board, but may be a coil constituted by a single layer printed board. For example, the coil 10 may be configured by only one layer of the spiral coil pattern shown in FIG.
 また、上記第3実施形態では、錘部6を単なる錘としてしか機能させていないが、第1、第2実施形態と組み合わせ、錘部6も磁石9とし、ストッパー部7にコイル10を備えるようにすれば、さらに発電量を増やすことが可能となる。また、上記第3実施形態において、ストッパー部7を磁石9によって構成したが、ストッパー部7と磁石9とを別部材で構成しても良い。 Moreover, in the said 3rd Embodiment, although the weight part 6 is made to function only as a mere weight, it combines with the 1st and 2nd embodiment, the weight part 6 is also made into the magnet 9, and the coil 10 is provided in the stopper part 7 If it becomes, it will become possible to increase electric power generation further. Moreover, in the said 3rd Embodiment, although the stopper part 7 was comprised by the magnet 9, you may comprise the stopper part 7 and the magnet 9 by another member.
 また、上記第1、第2実施形態では、錘部6を磁石9とする場合に、錘部6の全体を磁石9としているが、全体を磁石9とせずに、コイル10と対向する部分のみを磁石9としても良い。例えば、図7に示すように、錘部6の中心部を金属などの錘板61とし、錘板61の両側に磁石9を配置した構造としても良い。その場合、錘板61の重さによって錘部6の全体としても重さを調整できることから、錘板61の重さを調整することで、錘部6の共振周波数を調整することができる。 Moreover, in the said 1st, 2nd embodiment, when the weight part 6 is made into the magnet 9, the whole weight part 6 is made into the magnet 9, However, The whole is not made into the magnet 9, but only the part facing the coil 10 is used. May be the magnet 9. For example, as shown in FIG. 7, a structure in which the center portion of the weight portion 6 is a weight plate 61 made of metal or the like and the magnets 9 are arranged on both sides of the weight plate 61 may be adopted. In that case, since the weight of the weight portion 6 can be adjusted as a whole by the weight of the weight plate 61, the resonance frequency of the weight portion 6 can be adjusted by adjusting the weight of the weight plate 61.
 また、第3実施形態では、磁石9をストッパー部7の一部としても機能させているが、錘部6がストッパー部7のうち磁石9とは別の部分に当接することで錘部6の移動を規制するようにしても良い。 Moreover, in 3rd Embodiment, although the magnet 9 is functioned also as a part of stopper part 7, when the weight part 6 contact | abuts a part different from the magnet 9 among the stopper parts 7, the weight part 6 of FIG. The movement may be restricted.
 さらに、上記各実施形態において、コイル10による発電力を向上させるために、コイル10を磁性体内蔵型にすると好ましい。例えば、図8に示すように、第1実施形態において、コイル10の中心に磁性体10aを配置することで、磁性体内蔵型のコイル10とすることができる。なお、PALAPは、コイル10の導体部分を構成する導体パターンに加えて、磁性体10aを内蔵することもできることから、PALAPによって磁性体内蔵型のコイル10を構成すると好ましい。このように、PALAPによって磁性体内蔵型のコイル10を構成することで、コイル10の厚みを抑えつつ発電力をより大きくすることが可能となる。 Furthermore, in each of the embodiments described above, it is preferable that the coil 10 is of a magnetic material built-in type in order to improve the power generation by the coil 10. For example, as shown in FIG. 8, in the first embodiment, by arranging the magnetic body 10 a at the center of the coil 10, the magnetic body built-in type coil 10 can be obtained. In addition, since PLAAP can also incorporate the magnetic body 10a in addition to the conductor pattern that forms the conductor portion of the coil 10, it is preferable to configure the magnetic body built-in type coil 10 by PLAAP. Thus, by forming the coil 10 with a built-in magnetic body by PALAP, it is possible to increase the power generation while suppressing the thickness of the coil 10.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  固定部(2)と、
     前記固定部に一端側が支持された梁部(4)と、
     前記梁部の他端側に支持され、前記梁部と共に振動させられる錘部(6)と、
     前記錘部の振動方向に配置され、該錘部が当接させられることで該錘部の振動方向への移動を規制するストッパー部(7)と、
     前記梁部に取り付けられ、該梁部の変形に伴って変形させられることで発電を行う圧電素子(5)と、を備え、
     前記錘部に磁石(9)が備えられており、
     前記ストッパー部にプリント基板に形成されたコイルパターンにより構成されるコイル(10)が備えられ、
     前記磁石と前記コイルとが対向配置されていて、
     前記磁石が備えられた前記錘部の振動に伴って前記コイルでの発電が行われる発電装置。
    A fixing part (2);
    A beam part (4) supported at one end by the fixed part;
    A weight portion (6) supported on the other end side of the beam portion and vibrated together with the beam portion;
    A stopper portion (7) that is disposed in the vibration direction of the weight portion and regulates the movement of the weight portion in the vibration direction by contacting the weight portion;
    A piezoelectric element (5) attached to the beam portion and generating power by being deformed along with the deformation of the beam portion,
    The weight portion is provided with a magnet (9),
    The stopper portion is provided with a coil (10) constituted by a coil pattern formed on a printed circuit board,
    The magnet and the coil are arranged to face each other,
    A power generation device in which power is generated by the coil in accordance with vibration of the weight portion provided with the magnet.
  2.  前記梁部は、前記錘部の片側にのみ配置され、
     前記錘部が片側の前記梁部によって支持された片持ち支持構造とされている請求項1に記載の発電装置。
    The beam portion is disposed only on one side of the weight portion,
    The power generation device according to claim 1, wherein the weight portion has a cantilever support structure supported by the beam portion on one side.
  3.  前記梁部は、前記錘部の両側に配置され、
     前記錘部が両側の前記梁部によって支持された両持ち支持構造とされている請求項1に記載の発電装置。
    The beam portion is disposed on both sides of the weight portion,
    The power generation device according to claim 1, wherein the weight portion has a both-end support structure in which the beam portions on both sides are supported.
  4.  前記コイルは、前記プリント基板を多層プリント基板とすることで構成された積層基板型コイルであり、
     前記多層プリント基板は、熱可塑性樹脂を基材としたフレキシブル基板によって構成されている請求項1ないし3のいずれか1つに記載の発電装置。
    The coil is a multilayer substrate type coil configured by using the printed circuit board as a multilayer printed circuit board,
    The power generation apparatus according to any one of claims 1 to 3, wherein the multilayer printed circuit board is configured by a flexible substrate having a thermoplastic resin as a base material.
  5.  固定部(2)と、
     前記固定部に一端側が支持された梁部(4)と、
     前記梁部の他端側に支持され、前記梁部と共に振動させられる錘部(6)と、
     前記梁部の振動方向に配置され、該梁部が当接させられることで該梁部および前記錘部の振動方向への移動を規制するストッパー部(7)と、
     前記梁部に取り付けられ、該梁部の変形に伴って変形させられることで発電を行う圧電素子(5)と、
     磁石(9)を備え、
     前記梁部にプリント基板に形成されたコイルパターンにより構成されるコイル(10)が備えられており、
     該コイルと対向する位置に前記磁石(9)が備えられており、
     前記梁部の振動に伴って前記コイルでの発電が行われる発電装置。
    A fixing part (2);
    A beam part (4) supported at one end by the fixed part;
    A weight portion (6) supported on the other end side of the beam portion and vibrated together with the beam portion;
    A stopper portion (7) that is disposed in the vibration direction of the beam portion and restricts movement of the beam portion and the weight portion in the vibration direction by being brought into contact with the beam portion;
    A piezoelectric element (5) that is attached to the beam portion and generates electric power by being deformed along with the deformation of the beam portion;
    With a magnet (9),
    A coil (10) configured by a coil pattern formed on a printed circuit board is provided in the beam portion,
    The magnet (9) is provided at a position facing the coil,
    A power generation device in which power is generated by the coil in accordance with vibration of the beam portion.
  6.  前記コイルは、前記プリント基板を多層プリント基板とすることで構成された積層基板型コイルであり、
     前記多層プリント基板は、熱可塑性樹脂を基材としたフレキシブル基板によって構成されており、
     前記梁部は、前記フレキシブル基板によって構成されている請求項5に記載の発電装置。
    The coil is a multilayer substrate type coil configured by using the printed circuit board as a multilayer printed circuit board,
    The multilayer printed board is constituted by a flexible board based on a thermoplastic resin,
    The power generator according to claim 5, wherein the beam portion is configured by the flexible substrate.
  7.  前記磁石が前記ストッパー部の一部として機能し、
     前記磁石に前記梁部が当接させられることで前記錘部の移動が規制される請求項5または6に記載の発電装置。
     
    The magnet functions as a part of the stopper portion;
    The power generation device according to claim 5 or 6, wherein movement of the weight portion is restricted by causing the beam portion to abut on the magnet.
PCT/JP2016/001910 2015-05-08 2016-04-05 Power generation device WO2016181603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-095902 2015-05-08
JP2015095902A JP6413914B2 (en) 2015-05-08 2015-05-08 Power generator

Publications (1)

Publication Number Publication Date
WO2016181603A1 true WO2016181603A1 (en) 2016-11-17

Family

ID=57247860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001910 WO2016181603A1 (en) 2015-05-08 2016-04-05 Power generation device

Country Status (2)

Country Link
JP (1) JP6413914B2 (en)
WO (1) WO2016181603A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317516A (en) * 2017-08-17 2017-11-03 浙江师范大学 A kind of boat-carrying self-powered positioning and tracking device
CN107332471A (en) * 2017-08-17 2017-11-07 浙江师范大学 A kind of vehicle-mounted vibrating electricity generator of low frequency
CN107359824A (en) * 2017-08-17 2017-11-17 浙江师范大学 A kind of vehicle-mounted vibration piezoelectric generator
CN107947633A (en) * 2017-12-08 2018-04-20 东南大学 Piezoelectricity electromagnetism combined vibrating energy harvester and preparation method thereof
CN108054952A (en) * 2017-12-08 2018-05-18 东南大学 A kind of piezoelectric-electrcombinedc combinedc vibrational energy collector and preparation method thereof
CN111817603A (en) * 2020-07-07 2020-10-23 安徽理工大学 Double-acting piezomagnetic coupling vibration energy harvester with main magnet and auxiliary magnet
CN112532105A (en) * 2020-10-29 2021-03-19 西北工业大学 Novel piezoelectric-electromagnetic composite energy capture structure based on tire deformation
JP2022058210A (en) * 2020-09-30 2022-04-11 ▲広▼州大学 Vortex-induced resonance composite power generation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876445B2 (en) * 2014-09-01 2018-01-23 Samsung Electro-Mechanics Co., Ltd. Piezoelectric energy harvester and wireless switch including the same
US10050565B2 (en) * 2014-09-01 2018-08-14 Samsung Electro-Mechanics Co., Ltd. Piezoelectric energy harvester and wireless switch including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191786A (en) * 2011-03-11 2012-10-04 Casio Comput Co Ltd Power generation device
JP2014003733A (en) * 2012-06-15 2014-01-09 Canon Inc Vibration wave driving device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504789A (en) * 2003-08-28 2007-03-01 ユニバーシティ、オブ、サウサンプトン Electromagnetic device for converting mechanical vibration energy into electric energy and method for manufacturing the same
US9431994B2 (en) * 2012-02-16 2016-08-30 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric resonator including an adjusting magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191786A (en) * 2011-03-11 2012-10-04 Casio Comput Co Ltd Power generation device
JP2014003733A (en) * 2012-06-15 2014-01-09 Canon Inc Vibration wave driving device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317516A (en) * 2017-08-17 2017-11-03 浙江师范大学 A kind of boat-carrying self-powered positioning and tracking device
CN107332471A (en) * 2017-08-17 2017-11-07 浙江师范大学 A kind of vehicle-mounted vibrating electricity generator of low frequency
CN107359824A (en) * 2017-08-17 2017-11-17 浙江师范大学 A kind of vehicle-mounted vibration piezoelectric generator
CN107359824B (en) * 2017-08-17 2019-02-15 浙江师范大学 A kind of vehicle-mounted vibration piezoelectric generator
CN107947633A (en) * 2017-12-08 2018-04-20 东南大学 Piezoelectricity electromagnetism combined vibrating energy harvester and preparation method thereof
CN108054952A (en) * 2017-12-08 2018-05-18 东南大学 A kind of piezoelectric-electrcombinedc combinedc vibrational energy collector and preparation method thereof
CN107947633B (en) * 2017-12-08 2019-08-16 东南大学 Piezoelectric-electrcombinedc combinedc vibrational energy collector and preparation method thereof
CN108054952B (en) * 2017-12-08 2019-11-05 东南大学 A kind of piezoelectric-electrcombinedc combinedc vibrational energy collector and preparation method thereof
CN111817603A (en) * 2020-07-07 2020-10-23 安徽理工大学 Double-acting piezomagnetic coupling vibration energy harvester with main magnet and auxiliary magnet
JP2022058210A (en) * 2020-09-30 2022-04-11 ▲広▼州大学 Vortex-induced resonance composite power generation device
JP7083546B2 (en) 2020-09-30 2022-06-13 ▲広▼州大学 Vortex-excited resonance combined cycle
CN112532105A (en) * 2020-10-29 2021-03-19 西北工业大学 Novel piezoelectric-electromagnetic composite energy capture structure based on tire deformation

Also Published As

Publication number Publication date
JP6413914B2 (en) 2018-10-31
JP2016213971A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
WO2016181603A1 (en) Power generation device
JP6715101B2 (en) Vibration power generator, vibration power generation unit, vibration power generation module and electrical equipment
JP6246838B2 (en) Torque sensor
JP6129992B2 (en) Rotating body non-contact power feeding device and torque sensor
JP4947637B2 (en) Non-contact power transmission coil, portable terminal and terminal charging device
KR101390746B1 (en) Induction coil for cordless energy charging and data transfer
US9812256B2 (en) Coil assembly
CN102428622B (en) Containing the electronic equipment of inductance receiving coil and the method with ultra-thin shielding layer
WO2011070637A1 (en) Magnetic-field resonance power transmission device and magnetic-field resonance power receiving device
WO2013172349A1 (en) Antenna sheet for contactless charging device and charging device using said sheet
US10444086B2 (en) System and method of magnetic shielding for sensors
US9472340B2 (en) Coil type unit for wireless power transmission, wireless power transmission device, electronic device and manufacturing method of coil type unit for wireless power transmission
JP2007208201A (en) Noncontact power supply apparatus
US9369067B2 (en) Vibrational wave driving apparatus
JP2006054956A (en) Generating equipment and tire equipped therewith
CN101479916A (en) Magnetic structure
JPWO2018021060A1 (en) Wireless module, RFID system and wireless power supply device
JP2009290454A (en) Transmission antenna device and door handle housing transmission antenna device
JP6743677B2 (en) Bearing with wireless sensor and bearing feeding system
JP2021197782A (en) Position detection system and wireless power transmission system
US8720285B2 (en) Non-contact measurement signal transmission system and method thereof
JP2019180183A (en) Power generation unit with sensor and bearing with sensor
JP2013165190A (en) Flexible coil and wireless power reception device using the same
JP2012175897A (en) Planar coil for non-contact power transmission apparatus
JP2012070535A (en) Thin vibration power generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792336

Country of ref document: EP

Kind code of ref document: A1