WO2016181427A1 - Compressed air production device, and turbocharger and internal combustion engine equipped with same - Google Patents

Compressed air production device, and turbocharger and internal combustion engine equipped with same Download PDF

Info

Publication number
WO2016181427A1
WO2016181427A1 PCT/JP2015/002452 JP2015002452W WO2016181427A1 WO 2016181427 A1 WO2016181427 A1 WO 2016181427A1 JP 2015002452 W JP2015002452 W JP 2015002452W WO 2016181427 A1 WO2016181427 A1 WO 2016181427A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
supply passage
air
speed
compressor
Prior art date
Application number
PCT/JP2015/002452
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 武藤
Original Assignee
日産ライトトラック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産ライトトラック株式会社 filed Critical 日産ライトトラック株式会社
Priority to PCT/JP2015/002452 priority Critical patent/WO2016181427A1/en
Publication of WO2016181427A1 publication Critical patent/WO2016181427A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0253Surge control by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/14Preswirling

Definitions

  • the present invention relates to a compressed air production apparatus having a compressor chamber in which a compressor impeller is installed, and more particularly to a compressed air production apparatus having an IGV (Inlet Guide Vane) in which a plurality of vanes are installed at the inlet of the compressor chamber. .
  • IGV Inlet Guide Vane
  • a turbocharger used as a supercharger for an internal combustion engine is known as a machine equipped with this type of compressed air production apparatus.
  • the turbocharger rotates the turbine impeller 121 in the turbine chamber 120 by the exhaust gas G from the engine 101, thereby driving the compressor impeller 131 coaxial with the turbine impeller 121.
  • the turbocharger centrifugally compresses the intake air A from the air supply passage 150 in the compressor chamber 130 by the rotation of the compressor impeller 131 and sends the compressed air to the engine 101 from the intake passage 105 to obtain high output. .
  • FIG. 6 shows an example of a compressor map of the turbocharger.
  • the compressor map shows an operable operating range determined from the constraints of the surge region S, the choke region C, and the region R exceeding the allowable rotational speed of the turbo.
  • the surge limit DS on the surge region S side is exceeded, the operation cannot be performed due to surging due to the stall of the compressor wheel, and if the limit DR on the region R side exceeding the allowable rotation number is exceeded, turbo damage Therefore, when the choke limit C on the choke region C side is exceeded, the operation cannot be performed due to choking.
  • IGV Inlet Guide Vane
  • IGV Inlet Guide Vane
  • the turbocharger to widen the surge limit DS (expansion of the air flow range) in the low flow rate range where the rotation speed of the compressor wheel is low.
  • IGV installs multiple vanes at the inlet of the compressor chamber, and these multiple vanes increase the incident angle of the intake air to the compressor wheel by giving the intake air a pre-turn in the same direction as the compressor wheel.
  • a turbocharger equipped with an IGV in a high flow rate region, a plurality of vanes provided at the inlet of the compressor chamber themselves provide resistance to the intake air, and the performance on the choke region side is degraded. Therefore, there is a problem that the air flow rate range in the high flow rate region is reduced. Therefore, the present invention has been made paying attention to such problems, and can expand the air flow range in the low flow range and suppress the decrease in the air flow range even in the high flow range. It is an object of the present invention to provide a compressed air manufacturing apparatus, a turbocharger including the apparatus, and an internal combustion engine.
  • a compressed air production apparatus includes a compressor chamber in which a compressor impeller is installed, two air supply passages communicating with an inlet of the compressor chamber, and intake air.
  • Air distribution means for distributing the air to the two air supply passages, and the two air supply passages have an IGV (Inlet Guide Vane) having a plurality of vanes and an IGV.
  • IGV Inlet Guide Vane
  • a high-speed air supply passage, and the air distribution means distributes the intake air in preference to the low-speed air supply passage on the surge region side, and the high-speed air supply on the choke region side. It is characterized by sorting in preference to the passage.
  • the high-speed air supply passage has a cylindrical shape in which an air supply passage inlet to the compressor chamber is disposed on the same axis as the compressor impeller.
  • An air supply passage inlet to the compressor chamber surrounds the air supply passage inlet of the high-speed air supply passage, and the suction from the outer periphery of the high-speed air supply passage. It is preferable to have an annular passage through which air flows.
  • the low-speed air supply passage is reduced in diameter as the annular passage moves toward the compressor impeller.
  • the cross-sectional area of the cylindrical passage is preferably larger than the cross-sectional area of the annular passage of the low-speed air supply passage.
  • the air distribution means includes an air distribution valve provided in the high-speed air supply passage, and a controller that controls an open / close state of the air distribution valve.
  • the controller calculates a current operating point position from the air amount and pressure ratio in the current operating state, and the current operating point position is on a compressor map defined by the air flow rate and pressure ratio. It is determined whether the position is closer to the surge area side or closer to the choke area side, and if it is the surge area side, the air vibrations are distributed so that the intake air is distributed with priority over the low-speed air supply passage. It is preferable to switch the open / close state of the air distribution valve so that the intake air is preferentially distributed to the high-speed air supply passage if it is on the choke area side. .
  • a turbocharger is a turbocharger that rotates a turbine impeller with exhaust gas and drives a centrifugal compressor coaxial with the turbine impeller.
  • the centrifugal compressor includes a compressed air manufacturing apparatus according to an aspect of the present invention.
  • an internal combustion engine includes the turbocharger according to an aspect of the present invention.
  • a low-speed air supply passage having an IGV a high-speed air supply passage not having an IGV, and an air distribution means for distributing intake air to these two air supply passages. Since the intake air is distributed on the surge region side in preference to the low-speed air supply passage, and the choke region side is distributed in preference to the high-speed air supply passage, the low-speed air having IGV is distributed on the surge region side.
  • the supply passage can give a pre-swirl to the intake air to the compressor chamber. Therefore, surging in the low flow rate region can be prevented or suppressed, and the air flow range can be expanded.
  • the high speed air supply passage having no IGV is preferentially used, so that the plurality of vanes themselves do not give resistance to the intake air. For this reason, in the high flow rate region, the deterioration of the ventilation resistance to the compressor chamber can be minimized by using the high-speed air supply passage. Therefore, a decrease in the air flow range in the high flow rate region can be suppressed.
  • FIG. 1A is a schematic cross-sectional view of the main part of FIG. 1, and FIG.
  • FIG. 1A is a schematic cross-sectional view of the main part of FIG. 1, and FIG.
  • 2 is a compressor map showing a relationship between an air flow rate and a pressure ratio in the turbocharger of FIG. 1.
  • This embodiment is an example in which a turbocharger 10 is provided as a supercharger of an engine 1 that is an internal combustion engine, as shown in FIG.
  • the engine 1 is provided with an exhaust manifold 2 communicating with the exhaust passage 3 and an intake manifold 4 communicating with the intake passage 5.
  • the downstream side of the exhaust passage 3 is connected to the turbine chamber 20 of the turbocharger 10.
  • the upstream side of the intake passage 5 is connected to the compressor chamber 30 of the turbocharger 10.
  • an intercooler 6 is provided between the compressor chamber 30 and the intake manifold 4.
  • a turbine impeller 21 is internally provided in the turbine chamber 20, and a compressor impeller 31 is internally provided in the compressor chamber 30.
  • the turbine impeller 21 and the compressor impeller 31 are coaxially connected to each other by the rotation shaft 12, and the rotation shaft 12 is rotatably supported by the bearing portion 11.
  • An air supply passage 50 is connected to the inlet of the compressor chamber 30, and an air cleaner 7 is provided on the upstream side of the air supply passage 50.
  • the turbocharger 10 includes two air supply passages 51 and 52 as the air supply passage 50 communicating with the inlet of the compressor chamber 30.
  • the two air supply passages 51 and 52 of this embodiment are connected to the front end side of the main pipeline 50M so as to be bifurcated from the main pipeline 50M.
  • the air supply passage 50 includes a low-speed air supply passage 51 having an IGV 40 in which a plurality of vanes 41 are installed, and a high-speed air supply passage having no IGV. 52.
  • the high-speed air supply passage 52 is provided coaxially with the main pipeline 50M, and a cylindrical shape in which the air supply passage inlet 52s to the compressor chamber 30 is arranged on the same axis as the axis CL of the compressor impeller 31. It is a passage.
  • the low-speed air supply passage 51 is formed such that the upstream side is branched from the middle portion of the main pipeline 50M to the side, and the middle middle pipeline is arranged in parallel with the high-speed air supply passage 52. Yes.
  • the air supply passage inlet 51s to the compressor chamber 30 on the downstream side surrounds the air supply passage inlet 52s of the high-speed air supply passage 52, and the high-speed air supply passage 51 It is arranged in an annular shape so that the intake air A flows from the outer periphery of 52.
  • the high-speed air supply passage 52 is set such that the cross-sectional area of the cylindrical passage is wider than the cross-sectional area of the annular passage of the low-speed air supply passage 51.
  • the low-speed air supply passage 51 is reduced in diameter as the air supply passage inlet 51 s formed as an annular passage moves toward the compressor impeller 31.
  • the IGV 40 is provided in the annular passage portion of the air supply passage inlet 51 s to the compressor chamber 30 of the low speed air supply passage 51.
  • the plurality of vanes 41 are arranged radially so as to give the intake air A a pre-turn in the same direction as the compressor impeller 31 as shown in FIG. Accordingly, by using the low-speed air supply passage 51, the incident angle of the intake air A introduced into the compressor impeller 31 is increased in the low flow rate region, and surging due to the stall of the compressor impeller 31 is prevented to prevent the air from flowing.
  • the flow range can be expanded.
  • the turbocharger 10 includes air distribution means for distributing the intake air A to the two air supply passages 51 and 52.
  • the air distribution means of the present embodiment includes an air distribution valve 70 provided at the upstream inlet portion of the high-speed air supply passage 52, and a controller (ECU) 80 that controls the open / closed state of the air distribution valve 70; Is provided.
  • the air distribution valve 70 includes a valve body 71 having a butterfly valve body disposed inside the high-speed air supply passage 52, and an actuator (for example, a stepping motor) 72 that opens and closes the valve body 71.
  • the controller 80 controls the actuator 72 of the air distribution valve 70 to adjust the opening degree of the valve main body 71, and the intake air A flowing through the two air supply passages 51, 52 is slow on the surge region S side.
  • the air supply passage 51 is preferentially distributed, and the choke region C side is preferentially distributed to the high-speed air supply passage 52.
  • the controller 80 executes a flow path distribution process shown in FIG.
  • the flow path distribution process is executed, as shown in FIG. 3, first, the process proceeds to step S1, the current “distribution management information” is acquired, and the process proceeds to step S2.
  • the “distribution management information” is information (data) necessary for determining the distribution of the intake air A, and in this embodiment, the rotation speed of the compressor impeller 31 and the air passing through the compressor chamber 30. Flow rate information and pressure information on the intake side and discharge side of the compressor chamber 30 are acquired.
  • the rotational speed of the compressor wheel 31, the information on the air flow rate passing through the compressor chamber 30, and the pressure information on the intake side and the discharge side of the compressor chamber 30 were respectively measured and measured by a plurality of sensors (not shown). “Distribution management information” is input to the controller 80.
  • step S2 the air flow rate and pressure ratio are calculated from the acquired distribution management information based on the measured air flow rate information and pressure information, and the operating point corresponding to the current operating state is calculated. Then, the positional relationship between the surge region side and the choke region side on the compressor map is specified from the calculated current operating point position and the compressor map data stored in the storage device of the controller 80 in advance.
  • the compressor map of the turbocharger 10 of this embodiment is shown in FIG.
  • the compressor map in the figure has the air flow rate on the horizontal axis and the pressure ratio (discharge side pressure / intake side pressure) between the intake side and the discharge side of the compressor chamber 30 on the vertical axis, and the surge region S side, choke region Limits DS, DC, DR of operation lines that can be operated from the constraints on the C side and the region R side that exceeds the permissible rotational speed are illustrated, and an example of changes in the operation line corresponding to the operation state (this example is a full-open acceleration) As an example of operation at the time, the operation line D is indicated by a thick solid line.
  • an operable range M1 indicated by a one-dot chain line of a thin line indicates an operating line range that can be operated when only the low-speed air supply passage 51 is used as an air supply passage, and an operation indicated by a thin solid line.
  • the possible range M2 indicates the range of operating lines that can be operated when only the high-speed air supply passage 52 is used as the air supply passage
  • the operable range M3 indicated by a thick two-dot chain line indicates the intake air A in the surge region.
  • the range of operating lines that can be operated when the low-speed air supply passage 51 is preferentially allocated and the choke region C side is preferentially allocated to the high-speed air supply passage 52 is shown.
  • step S3 the current operating point position is shown in FIG. 4 from the compressor map data stored in advance in the storage device of the controller 80 and the current operating point position calculated in step S2. If it is the surge side determination area SR of the map (Yes), the process proceeds to Step S6, and if not (No), the process proceeds to Step S4. In step S4, if the current operating point position is the intermediate region MR of the compressor map from the compressor map data stored in advance in the storage device of the controller 80 and the current operating point position calculated in step S2. (Yes) Move to step S7, otherwise (No) move to step S5.
  • step S5 from the compressor map data stored in advance in the storage device of the controller 80 and the current operating point position calculated in step S2, the current operating point position is determined in the choke side determination area CR of the compressor map. If there is (Yes), the process proceeds to step S8. If not (No), the process returns to step S3. In step S6, since the current operating point position is located in the surge side determination region SR, the open / close state of the air distribution valve 70 is set so that the intake air A is distributed with priority over the low-speed air supply passage 51. Switch.
  • the opening of the air distribution valve 70 when it is located on the surge region S side with respect to the first switching point P1, the opening of the air distribution valve 70 is fully closed, and the intake air A that flows from the main pipeline 50M to the air supply passage 50 Are allotted to the low-speed air supply passage 51, and the process returns to step S1.
  • step S7 since the current operating point position is located in the intermediate region MR, transient control is executed.
  • the ratio of the current operating point position with respect to the surge region S side and the choke region C side is calculated, and the intake air A is changed to a low-speed air supply passage so that the distribution amount corresponds to the calculated ratio.
  • the process returns to step S1 by switching the open / close state of the air distribution valve 70 so as to be distributed between the air supply passage 51 and the high-speed air supply passage 52.
  • high-speed air is supplied from the low-speed air supply passage 51 toward the choke region C side from the surge region S side according to the ratio of the current operating point position to the surge region S side and the choke region C side.
  • the open / close state of the air distribution valve 70 is switched so that the distribution amount of the intake air A to the supply passage 52 increases.
  • step S8 since the current operating point position is located on the choke region C side, the open / close state of the air distribution valve 70 is set so that the intake air A is distributed preferentially to the high-speed air supply passage 52. Switch.
  • the opening of the air distribution valve 70 when it is located on the choke region C side with respect to the second switching point P2, the opening of the air distribution valve 70 is fully opened, and the intake air A flowing from the main pipeline 50M to the air supply passage 50 is Almost the entire amount is distributed to the high-speed air supply passage 52, and the process returns to step S1.
  • turbocharger 10 when the exhaust gas G discharged from the exhaust passage 3 of the engine 1 is introduced into the turbine chamber 20 as shown in FIG. 1, the turbine impeller 21 in the turbine chamber 20 rotates at high speed. Then, the compressor wheel 31 on the same axis is rotated by the rotational force, and in the compressor chamber 30, the intake air A from the air supply passage 50 is centrifugally compressed. Thereby, the turbocharger 10 can obtain the high output of the engine 1 by sending the compressed air from the intake passage 5 to the engine 1 via the intercooler 6.
  • the amount of exhaust gas introduced into the turbine chamber 20 is adjusted so that the supercharging pressure becomes a specified value by controlling a bypass valve (not shown) provided between the engine 1 and the turbine chamber 20.
  • the turbocharger 10 of the present embodiment has a low-speed air supply passage 51 having an IGV 40, a high-speed air supply passage 52 having no IGV, and intake air A flowing through these two air supply passages 51 and 52. Since the air distribution valve 70 and the controller 80 are provided as the air distribution means for distribution, the air flow range is expanded by preventing or suppressing surging in the low flow range, and also in the high flow range. Can be reduced. That is, in the turbocharger 10 of the present embodiment, when the engine 1 is driven, the controller (ECU) 80 executes the above-described flow path allocating process, for example, when the accelerator pedal is depressed and the vehicle is accelerated. Based on the assigned distribution management information, an operating point corresponding to the current operating state is calculated.
  • the controller 80 determines that it is the surge region S side, fully closes the air distribution valve 70, and sets the air supply passage 50 to the low speed air.
  • the operation is started by switching to the supply passage 51.
  • the compressor impeller 31 is started to be accelerated by setting the operable range M1 that is the map on the low flow rate region side shown in FIG. Therefore, according to the turbocharger 10, the low-speed air supply passage 51 having the IGV 40 is preferentially used on the surge region S side, so that the intake air to the compressor chamber 30 is taken by the IGV 40 of the low-speed air supply passage 51.
  • a pre-turn can be given to A.
  • the surge side determination region SR shown by the shaded portion in FIG. 4 becomes the range expansion region, and the surging in the low flow region is prevented or suppressed to expand the air flow range. can do.
  • the operation line Dh of the comparative example is shown by a broken line in FIG. It can be seen that it is difficult to expand the air flow rate range by surging in the low flow rate region (the range expansion region is indicated by the shaded portion).
  • the controller 80 monitors the positional relationship between the current operating point position and the two switching points P1, P2 based on the acquired air flow rate information and pressure information, When the operating point position reaches the first switching point P1 where the air flow rate and pressure ratio increase, the air distribution valve 70 starts to open. Further, when the current operating point position is between the two switching points P1 and P2, the controller 80 performs the transient control so that the ratio of the current operating point position to the surge region S side and the choke region C side is determined. The air distribution valve 70 is switched between open and closed states so that the distribution amount corresponds to.
  • the controller 80 fully opens the air distribution valve 70 when determining that the second switching point P2 has been reached based on the acquired air flow rate information and pressure information.
  • the air supply passage 50 is switched to the high-speed air supply passage 52.
  • the operable range M2 that is a map on the choke region C side is set. Therefore, on the choke region C side, the plurality of vanes 41 themselves do not give resistance to the intake air A by preferentially using the high-speed air supply passage 52 having no IGV. Therefore, the deterioration of the ventilation resistance to the compressor chamber 30 can be minimized in the high flow rate region.
  • the turbocharger having only the air supply passage with the IGV, or the low-speed air in the present embodiment, as shown in the operable range M1 which is a map set on the surge region S side by the one-dot chain line in FIG.
  • the operable range M1 which is a map set on the surge region S side by the one-dot chain line in FIG.
  • turbocharger 10 of the present embodiment on the choke region C side, by using the high-speed air supply passage 52, it is possible to suppress a decrease in the air flow range even in a high flow rate region. That is, according to the turbocharger 10 of the present embodiment, since the low-speed air supply passage 51 is used on the surge region S side, surging in the low flow region can be prevented or suppressed and the air flow range can be expanded. Since the high-speed air supply passage 52 is used on the choke region C side, the reduction of the air flow rate range is suppressed even in the high flow rate region, and an operable range M3 having a wide air flow rate range is obtained.
  • FIG. 4 also shows an operation line D2 during deceleration. That is, the controller 80 executes the flow path distribution process even when the vehicle is decelerating, calculates the air flow rate and pressure ratio based on the distribution management information such as the measured air flow rate information and pressure information, and the current operation. Set the point position.
  • the air distribution valve 70 When the vehicle is gradually decelerated, for example, in FIG. 4, when it is determined that the operating point has reached the intermediate region MR of the compressor map (in this example, the position of the symbol P4), the air distribution valve 70 starts to be closed.
  • the air distribution valve 70 is switched between open and closed states so that the distribution amount corresponds to the ratio of the current operating point position to the surge region S side and the choke region C side, and further reaches the surge side determination region SR.
  • the air distribution valve 70 When it is determined that the air distribution valve 70 is fully closed (in this example, the position indicated by symbol P3), the air distribution valve 70 is fully closed.
  • an operable range M3 is obtained even when the vehicle is decelerating, and surging in the low flow rate region is prevented or suppressed, the air flow range on the surge region S side is expanded, and also on the choke region C side. Reduction of the air flow range can be suppressed.
  • the air supply passage 50 the low-speed air supply passage 51 having the IGV 40, the high-speed air supply passage 52 having no IGV
  • the compressed air manufacturing apparatus which concerns on this invention is not limited to the said embodiment, Of course, a various deformation
  • a turbocharger used as a supercharger for an internal combustion engine has been described as an example of a compressed air production apparatus according to one aspect of the present invention.
  • the present invention is not limited to a turbocharger and is not limited to a turbocharger.
  • Such a compressed air production apparatus can be applied to various centrifugal compressors.
  • the present invention can be applied to a device that drives a centrifugal compressor with a motor.
  • the example of having the air distribution valve 70 and the controller 80 for controlling the open / closed state of the air distribution valve 70 has been described as an example of the air distribution unit.
  • the compressor chamber A mechanical valve mechanism whose opening / closing amount is variable according to the discharge side pressure of 30 may be used.
  • the operating point position corresponding to the current operating state is determined based on the acquired distribution management information.
  • the positional relationship between the surge region S side and the choke region C side on the compressor map is determined from the calculated current operating point position and the compressor map data stored in advance in the storage device of the controller 80.
  • the intake air A is preferentially distributed over the low speed air supply passage 51, and in the choke region C side, the intake air A is preferentially distributed over the high speed air supply passage 52.
  • the flow path distribution process is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The purpose of the present invention is to increase the range of the amount of air flow in a low-flow-volume region and prevent a reduction in the range of the amount of air flow even in a high-flow-volume region. A turbocharger (10) is equipped with two air supply passages (51, 52) connected to an inlet of a compressor (30), and an air distribution means (70, 80) for distributing the air flowing in the two air supply passages (51, 52). The two air supply passages (51, 52) include a low-speed air supply passage (51), which has an inlet guide vane (IGV) (40) formed by arranging multiple vanes (41), and a high-speed air supply passage (52), which does not have an IVG. The air distribution means (70, 80) preferentially distributes the air flowing in the two air supply passages (51, 52) to the low-speed air supply passage (51) on a surge-region side, and preferentially distributes the air flowing in the two air supply passages to the high-speed air supply passage (52) on a choke-region side.

Description

圧縮空気製造装置およびこれを備えるターボチャージャ並びに内燃機関Compressed air manufacturing apparatus, turbocharger including the same, and internal combustion engine
 本発明は、コンプレッサ翼車が内装されたコンプレッサ室を有する圧縮空気製造装置に係り、特に、コンプレッサ室の入口に複数のベーンを設置してなるIGV(Inlet Guide Vane)を有する圧縮空気製造装置に関する。 The present invention relates to a compressed air production apparatus having a compressor chamber in which a compressor impeller is installed, and more particularly to a compressed air production apparatus having an IGV (Inlet Guide Vane) in which a plurality of vanes are installed at the inlet of the compressor chamber. .
 この種の圧縮空気製造装置を備える機械としては、例えば、内燃機関の過給機として用いられるターボチャージャが知られている。ターボチャージャは、図7に一例を示すように、エンジン101からの排気ガスGによりタービン室120内のタービン翼車121を回し、これにより、タービン翼車121と同軸上のコンプレッサ翼車131を駆動する。そして、ターボチャージャは、コンプレッサ翼車131の回転により、空気供給通路150からの吸入空気Aをコンプレッサ室130で遠心圧縮し、その圧縮空気を吸気通路105からエンジン101に送り込むことで高出力を得る。 For example, a turbocharger used as a supercharger for an internal combustion engine is known as a machine equipped with this type of compressed air production apparatus. As shown in FIG. 7, the turbocharger rotates the turbine impeller 121 in the turbine chamber 120 by the exhaust gas G from the engine 101, thereby driving the compressor impeller 131 coaxial with the turbine impeller 121. To do. Then, the turbocharger centrifugally compresses the intake air A from the air supply passage 150 in the compressor chamber 130 by the rotation of the compressor impeller 131 and sends the compressed air to the engine 101 from the intake passage 105 to obtain high output. .
 ここで、図6にターボチャージャのコンプレッサマップの一例を示す。コンプレッサマップは、同図において、サージ領域S、チョーク領域Cおよびターボの許容回転数を超える領域Rそれぞれの制約から決まる運転可能な作動範囲を示す。つまり、同図において、サージ領域S側のサージ限界DSを超えると、コンプレッサ翼車の失速によるサージングにより運転ができず、許容回転数を超える領域R側の回転数の限界DRを超えるとターボ破損の懸念があるため運転ができず、チョーク領域C側のチョーク限界DCを超えるとチョーキングにより運転ができない。 Here, FIG. 6 shows an example of a compressor map of the turbocharger. In the figure, the compressor map shows an operable operating range determined from the constraints of the surge region S, the choke region C, and the region R exceeding the allowable rotational speed of the turbo. In other words, in the same figure, if the surge limit DS on the surge region S side is exceeded, the operation cannot be performed due to surging due to the stall of the compressor wheel, and if the limit DR on the region R side exceeding the allowable rotation number is exceeded, turbo damage Therefore, when the choke limit C on the choke region C side is exceeded, the operation cannot be performed due to choking.
 そこで、ターボチャージャでは、コンプレッサ翼車の回転速度が低速となる低流量域でのサージ限界DSのワイドレンジ化(空気流量レンジの拡大)のために、IGV(Inlet Guide Vane)が採用されている(IGVについて、例えば特許文献1ないし2参照)。
 IGVは、コンプレッサ室の入口に複数のベーンを設置し、この複数のベーンにより、コンプレッサ翼車と同方向の予旋回を吸入空気に与えることで、コンプレッサ翼車への吸入空気の入射角を増加させる。これにより、IGVを備えるターボチャージャによれば、低流量域において、コンプレッサ翼車の失速によるサージングを防止または抑制することができ、低流量域での空気流量レンジを拡大することができる。
Therefore, IGV (Inlet Guide Vane) is adopted in the turbocharger to widen the surge limit DS (expansion of the air flow range) in the low flow rate range where the rotation speed of the compressor wheel is low. (For IGV, see Patent Documents 1 and 2, for example).
IGV installs multiple vanes at the inlet of the compressor chamber, and these multiple vanes increase the incident angle of the intake air to the compressor wheel by giving the intake air a pre-turn in the same direction as the compressor wheel. Let Thereby, according to the turbocharger provided with IGV, the surging due to the stall of the compressor wheel can be prevented or suppressed in the low flow rate range, and the air flow range in the low flow rate range can be expanded.
特開平7-305698号公報Japanese Patent Laid-Open No. 7-305698 特開2010-216373号公報JP 2010-216373 A
 しかしながら、IGVを備えるターボチャージャは、高流量域においては、コンプレッサ室の入口に設けた複数のベーン自体が吸入空気に抵抗を与えることになり、チョーク領域側の性能が低下する。そのため、高流量域での空気流量レンジが減少するという問題がある。
 そこで、本発明は、このような問題点に着目してなされたものであって、低流量域での空気流量レンジを拡大するとともに、高流量域においても空気流量レンジの減少を抑えることができる圧縮空気製造装置、およびこれを備えるターボチャージャ並びに内燃機関を提供することを課題とする。
However, in a turbocharger equipped with an IGV, in a high flow rate region, a plurality of vanes provided at the inlet of the compressor chamber themselves provide resistance to the intake air, and the performance on the choke region side is degraded. Therefore, there is a problem that the air flow rate range in the high flow rate region is reduced.
Therefore, the present invention has been made paying attention to such problems, and can expand the air flow range in the low flow range and suppress the decrease in the air flow range even in the high flow range. It is an object of the present invention to provide a compressed air manufacturing apparatus, a turbocharger including the apparatus, and an internal combustion engine.
 上記課題を解決するために、本発明の一態様に係る圧縮空気製造装置は、コンプレッサ翼車が内装されたコンプレッサ室と、前記コンプレッサ室の入口に連通する二つの空気供給通路と、吸入空気を前記二つの空気供給通路に振り分ける空気振分手段とを備え、前記二つの空気供給通路は、複数のベーンを設置してなるIGV(Inlet Guide Vane)を有する低速用空気供給通路と、IGVを有しない高速用空気供給通路とを有し、前記空気振分手段は、前記吸入空気を、サージ領域側では、前記低速用空気供給通路に優先して振り分け、チョーク領域側では、前記高速用空気供給通路に優先して振り分けることを特徴とする。 In order to solve the above-described problem, a compressed air production apparatus according to an aspect of the present invention includes a compressor chamber in which a compressor impeller is installed, two air supply passages communicating with an inlet of the compressor chamber, and intake air. Air distribution means for distributing the air to the two air supply passages, and the two air supply passages have an IGV (Inlet Guide Vane) having a plurality of vanes and an IGV. A high-speed air supply passage, and the air distribution means distributes the intake air in preference to the low-speed air supply passage on the surge region side, and the high-speed air supply on the choke region side. It is characterized by sorting in preference to the passage.
 ここで、本発明の一態様に係る圧縮空気製造装置において、前記高速用空気供給通路は、前記コンプレッサ室への空気供給通路入口が、前記コンプレッサ翼車と同一軸心上に配置された円筒状通路を有し、前記低速用空気供給通路は、前記コンプレッサ室への空気供給通路入口が、前記高速用空気供給通路の空気供給通路入口を囲繞して前記高速用空気供給通路の外周から前記吸入空気を流入させる円環状通路を有することは好ましい。
 また、本発明の一態様に係る圧縮空気製造装置において、前記低速用空気供給通路は、前記円環状通路が、前記コンプレッサ翼車の側に向かうにつれて縮径していることは好ましい。また、前記高速用空気供給通路は、前記円筒状通路の横断面積が、前記低速用空気供給通路の前記円環状通路の横断面積よりも広いことは好ましい。
Here, in the compressed air manufacturing apparatus according to one aspect of the present invention, the high-speed air supply passage has a cylindrical shape in which an air supply passage inlet to the compressor chamber is disposed on the same axis as the compressor impeller. An air supply passage inlet to the compressor chamber surrounds the air supply passage inlet of the high-speed air supply passage, and the suction from the outer periphery of the high-speed air supply passage. It is preferable to have an annular passage through which air flows.
In the compressed air manufacturing apparatus according to one aspect of the present invention, it is preferable that the low-speed air supply passage is reduced in diameter as the annular passage moves toward the compressor impeller. In the high-speed air supply passage, the cross-sectional area of the cylindrical passage is preferably larger than the cross-sectional area of the annular passage of the low-speed air supply passage.
 さらに、本発明の一態様に係る圧縮空気製造装置において、前記空気振分手段は、前記高速用空気供給通路に設けられた空気振分弁と、該空気振分弁の開閉状態を制御するコントローラとを有し、前記コントローラは、現在の運転状態における空気量と圧力比とから現在の作動点位置を算出し、現在の作動点位置が、空気流量と圧力比とから規定されるコンプレッサマップ上の、前記サージ領域側寄りの位置か前記チョーク領域側寄りの位置かを判定して、サージ領域側であれば、前記吸入空気を前記低速用空気供給通路に優先して振り分けるように前記空気振分弁の開閉状態を切り換え、チョーク領域側であれば、前記吸入空気を前記高速用空気供給通路に優先して振り分けるように前記空気振分弁の開閉状態を切り換えることは好ましい。 Furthermore, in the compressed air manufacturing apparatus according to one aspect of the present invention, the air distribution means includes an air distribution valve provided in the high-speed air supply passage, and a controller that controls an open / close state of the air distribution valve. The controller calculates a current operating point position from the air amount and pressure ratio in the current operating state, and the current operating point position is on a compressor map defined by the air flow rate and pressure ratio. It is determined whether the position is closer to the surge area side or closer to the choke area side, and if it is the surge area side, the air vibrations are distributed so that the intake air is distributed with priority over the low-speed air supply passage. It is preferable to switch the open / close state of the air distribution valve so that the intake air is preferentially distributed to the high-speed air supply passage if it is on the choke area side. .
 さらに、上記課題を解決するために、本発明の一態様に係るターボチャージャは、排気ガスによりタービン翼車を回して、該タービン翼車と同軸上の遠心コンプレッサを駆動するターボチャージャであって、前記遠心コンプレッサとして、本発明の一態様に係る圧縮空気製造装置を備えることを特徴とする。
 また、上記課題を解決するために、本発明の一態様に係る内燃機関は、本発明の一態様に係るターボチャージャを備えることを特徴とする。
Furthermore, in order to solve the above problems, a turbocharger according to an aspect of the present invention is a turbocharger that rotates a turbine impeller with exhaust gas and drives a centrifugal compressor coaxial with the turbine impeller. The centrifugal compressor includes a compressed air manufacturing apparatus according to an aspect of the present invention.
In order to solve the above problem, an internal combustion engine according to an aspect of the present invention includes the turbocharger according to an aspect of the present invention.
 本発明によれば、IGVを有する低速用空気供給通路と、IGVを有しない高速用空気供給通路と、吸入空気をこれら二つの空気供給通路に振り分ける空気振分手段とを備え、空気振分手段は、吸入空気を、サージ領域側では、低速用空気供給通路に優先して振り分け、チョーク領域側では、高速用空気供給通路に優先して振り分けるので、サージ領域側では、IGVを有する低速用空気供給通路により、コンプレッサ室への吸入空気に予旋回を与えることができる。よって、低流量域でのサージングを防止または抑制して、空気流量レンジを拡大することができる。
 また、チョーク領域側では、IGVを有しない高速用空気供給通路を優先して用いることにより、複数のベーン自体が吸入空気に抵抗を与えることがない。そのため、高流量域においては、高速用空気供給通路を用いることで、コンプレッサ室への通気抵抗の悪化を最小限に抑えることができる。よって、高流量域での空気流量レンジの減少を抑えることができる。
According to the present invention, it is provided with a low-speed air supply passage having an IGV, a high-speed air supply passage not having an IGV, and an air distribution means for distributing intake air to these two air supply passages. Since the intake air is distributed on the surge region side in preference to the low-speed air supply passage, and the choke region side is distributed in preference to the high-speed air supply passage, the low-speed air having IGV is distributed on the surge region side. The supply passage can give a pre-swirl to the intake air to the compressor chamber. Therefore, surging in the low flow rate region can be prevented or suppressed, and the air flow range can be expanded.
Further, on the choke region side, the high speed air supply passage having no IGV is preferentially used, so that the plurality of vanes themselves do not give resistance to the intake air. For this reason, in the high flow rate region, the deterioration of the ventilation resistance to the compressor chamber can be minimized by using the high-speed air supply passage. Therefore, a decrease in the air flow range in the high flow rate region can be suppressed.
 上述のように、本発明によれば、低流量域での空気流量レンジを拡大するとともに、高流量域においても空気流量レンジの減少を抑えることができる。 As described above, according to the present invention, it is possible to expand the air flow rate range in the low flow rate region and suppress the decrease in the air flow rate range even in the high flow rate region.
本発明の一態様に係る圧縮空気製造装置の一実施形態であるターボチャージャを備えた自動車用のエンジンの模式図である。It is a schematic diagram of the engine for motor vehicles provided with the turbocharger which is one Embodiment of the compressed air manufacturing apparatus which concerns on 1 aspect of this invention. 図1のターボチャージャの要部の説明図であり、同図(a)は図1の要部の模式的断面図、(b)は(a)でのA-A断面図である。2A and 2B are explanatory diagrams of a main part of the turbocharger of FIG. 1, in which FIG. 1A is a schematic cross-sectional view of the main part of FIG. 1, and FIG. コントローラが実行する流路振り分け処理の一実施形態のフローチャートである。It is a flowchart of one Embodiment of the flow-path distribution process which a controller performs. 図1のターボチャージャにおける空気流量と圧力比との関係を示すコンプレッサマップである。2 is a compressor map showing a relationship between an air flow rate and a pressure ratio in the turbocharger of FIG. 1. 現在の運転状態に応じたサージ領域側での流路振り分け制御を説明する図(コンプレッサマップ)である。It is a figure (compressor map) explaining the flow path distribution control by the side of a surge area according to the present driving | running state. ターボチャージャにおける空気流量と圧力比との関係を示すコンプレッサマップの一例である。It is an example of the compressor map which shows the relationship between the air flow rate and pressure ratio in a turbocharger. 従来のターボチャージャの一例を示す模式図である。It is a schematic diagram which shows an example of the conventional turbocharger.
 以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。なお、各図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate. Each drawing is schematic. For this reason, it should be noted that the relationship between the thickness and the planar dimension, the ratio, and the like are different from the actual ones, and the dimensional relationship and the ratio are different between the drawings. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, and arrangement of components. Etc. are not specified in the following embodiments.
 本実施形態は、図1に示すように、内燃機関であるエンジン1の過給機として、ターボチャージャ10を備える例である。エンジン1には、排気通路3に連通する排気マニホールド2と、吸気通路5に連通する吸気マニホールド4とが設けられている。排気通路3の下流側は、ターボチャージャ10のタービン室20に接続されている。また、吸気通路5の上流側は、ターボチャージャ10のコンプレッサ室30に接続されている。なお、吸気通路5には、コンプレッサ室30と吸気マニホールド4との間にインタークーラ6が設けられている。 This embodiment is an example in which a turbocharger 10 is provided as a supercharger of an engine 1 that is an internal combustion engine, as shown in FIG. The engine 1 is provided with an exhaust manifold 2 communicating with the exhaust passage 3 and an intake manifold 4 communicating with the intake passage 5. The downstream side of the exhaust passage 3 is connected to the turbine chamber 20 of the turbocharger 10. The upstream side of the intake passage 5 is connected to the compressor chamber 30 of the turbocharger 10. In the intake passage 5, an intercooler 6 is provided between the compressor chamber 30 and the intake manifold 4.
 タービン室20には、タービン翼車21が内装されるとともに、コンプレッサ室30には、コンプレッサ翼車31が内装されている。タービン翼車21とコンプレッサ翼車31とは、相互に回転軸12で同軸上に連結され、回転軸12は、ベアリング部11により回転自在に支持されている。コンプレッサ室30の入口には、空気供給通路50が接続されており、空気供給通路50の上流側には、エアクリーナ7が設けられている。
 ここで、このターボチャージャ10は、コンプレッサ室30の入口に連通する空気供給通路50として、二つの空気供給通路51、52を備えている。本実施形態の二つの空気供給通路51、52は、主管路50Mから二分岐するように、主管路50Mの先端側に連通している。
A turbine impeller 21 is internally provided in the turbine chamber 20, and a compressor impeller 31 is internally provided in the compressor chamber 30. The turbine impeller 21 and the compressor impeller 31 are coaxially connected to each other by the rotation shaft 12, and the rotation shaft 12 is rotatably supported by the bearing portion 11. An air supply passage 50 is connected to the inlet of the compressor chamber 30, and an air cleaner 7 is provided on the upstream side of the air supply passage 50.
Here, the turbocharger 10 includes two air supply passages 51 and 52 as the air supply passage 50 communicating with the inlet of the compressor chamber 30. The two air supply passages 51 and 52 of this embodiment are connected to the front end side of the main pipeline 50M so as to be bifurcated from the main pipeline 50M.
 詳しくは、図2に要部を拡大図示するように、空気供給通路50は、複数のベーン41を設置してなるIGV40を有する低速用空気供給通路51と、IGVを有しない高速用空気供給通路52とを有する。高速用空気供給通路52は、主管路50Mと同軸上に設けられており、コンプレッサ室30への空気供給通路入口52sが、コンプレッサ翼車31の軸線CLと同一軸心上に配置された円筒状通路である。
 一方、低速用空気供給通路51は、上流側が、主管路50Mの途中部分から側方に分岐して形成され、途中の中間部分の管路が高速用空気供給通路52と並行して配置されている。そして、この低速用空気供給通路51は、下流側となるコンプレッサ室30への空気供給通路入口51sが、高速用空気供給通路52の空気供給通路入口52sを囲繞しており、高速用空気供給通路52の外周から吸入空気Aが流入するように円環状に配置されている。なお、本実施形態では、上記高速用空気供給通路52は、円筒状通路の横断面積が、低速用空気供給通路51の円環状通路の横断面積よりも広く設定されている。
Specifically, as shown in the enlarged view of the main part in FIG. 2, the air supply passage 50 includes a low-speed air supply passage 51 having an IGV 40 in which a plurality of vanes 41 are installed, and a high-speed air supply passage having no IGV. 52. The high-speed air supply passage 52 is provided coaxially with the main pipeline 50M, and a cylindrical shape in which the air supply passage inlet 52s to the compressor chamber 30 is arranged on the same axis as the axis CL of the compressor impeller 31. It is a passage.
On the other hand, the low-speed air supply passage 51 is formed such that the upstream side is branched from the middle portion of the main pipeline 50M to the side, and the middle middle pipeline is arranged in parallel with the high-speed air supply passage 52. Yes. In the low-speed air supply passage 51, the air supply passage inlet 51s to the compressor chamber 30 on the downstream side surrounds the air supply passage inlet 52s of the high-speed air supply passage 52, and the high-speed air supply passage 51 It is arranged in an annular shape so that the intake air A flows from the outer periphery of 52. In the present embodiment, the high-speed air supply passage 52 is set such that the cross-sectional area of the cylindrical passage is wider than the cross-sectional area of the annular passage of the low-speed air supply passage 51.
 低速用空気供給通路51は、円環状通路として形成された空気供給通路入口51sが、コンプレッサ翼車31の側に向かうにつれて縮径している。上記IGV40は、低速用空気供給通路51のコンプレッサ室30への空気供給通路入口51sの円環状通路の部分に設けられている。
 複数のベーン41は、同図(b)に示すように、コンプレッサ翼車31と同方向の予旋回を吸入空気Aに与えるように、放射状に配置されている。これにより、低速用空気供給通路51を用いることにより、低流量域において、コンプレッサ翼車31に導入される吸入空気Aの入射角が大きくなり、コンプレッサ翼車31の失速によるサージングを防止して空気流量レンジを拡大可能になっている。
The low-speed air supply passage 51 is reduced in diameter as the air supply passage inlet 51 s formed as an annular passage moves toward the compressor impeller 31. The IGV 40 is provided in the annular passage portion of the air supply passage inlet 51 s to the compressor chamber 30 of the low speed air supply passage 51.
The plurality of vanes 41 are arranged radially so as to give the intake air A a pre-turn in the same direction as the compressor impeller 31 as shown in FIG. Accordingly, by using the low-speed air supply passage 51, the incident angle of the intake air A introduced into the compressor impeller 31 is increased in the low flow rate region, and surging due to the stall of the compressor impeller 31 is prevented to prevent the air from flowing. The flow range can be expanded.
 さらに、このターボチャージャ10は、吸入空気Aを、上記二つの空気供給通路51、52に振り分ける空気振分手段を備えている。
 本実施形態の空気振分手段は、高速用空気供給通路52の上流側の入り口部分に設けられた空気振分弁70と、空気振分弁70の開閉状態を制御するコントローラ(ECU)80とを備える。空気振分弁70は、高速用空気供給通路52の内部に配置されたバタフライ弁体を有する弁本体71と、弁本体71を開閉するアクチュエータ(例えばステッピングモータ)72とを有する。
 そして、コントローラ80は、空気振分弁70のアクチュエータ72を制御して弁本体71の開度を調整し、二つの空気供給通路51、52に流す吸入空気Aを、サージ領域S側では、低速用空気供給通路51に優先して振り分け、チョーク領域C側では、高速用空気供給通路52に優先して振り分けるように構成されている。
Further, the turbocharger 10 includes air distribution means for distributing the intake air A to the two air supply passages 51 and 52.
The air distribution means of the present embodiment includes an air distribution valve 70 provided at the upstream inlet portion of the high-speed air supply passage 52, and a controller (ECU) 80 that controls the open / closed state of the air distribution valve 70; Is provided. The air distribution valve 70 includes a valve body 71 having a butterfly valve body disposed inside the high-speed air supply passage 52, and an actuator (for example, a stepping motor) 72 that opens and closes the valve body 71.
Then, the controller 80 controls the actuator 72 of the air distribution valve 70 to adjust the opening degree of the valve main body 71, and the intake air A flowing through the two air supply passages 51, 52 is slow on the surge region S side. The air supply passage 51 is preferentially distributed, and the choke region C side is preferentially distributed to the high-speed air supply passage 52.
 詳しくは、エンジン1が駆動されると、コントローラ80は、図3に示す流路振り分け処理を実行する。流路振り分け処理が実行されると、図3に示すように、まず、ステップS1に移行して現在の「振り分け管理情報」を取得してステップS2に移行する。「振り分け管理情報」とは、吸入空気Aを振り分ける判断をする上で必要な情報(データ)であって、本実施形態では、コンプレッサ翼車31の回転数、並びに、コンプレッサ室30を通過する空気流量情報およびコンプレッサ室30の吸気側と吐出側の圧力情報が取得される。
 なお、コンプレッサ翼車31の回転数、コンプレッサ室30を通過する空気流量情報およびコンプレッサ室30の吸気側と吐出側の圧力情報は、不図示の複数のセンサにより随時にそれぞれ測定され、測定された「振り分け管理情報」がコントローラ80に入力されるようになっている。
Specifically, when the engine 1 is driven, the controller 80 executes a flow path distribution process shown in FIG. When the flow path distribution process is executed, as shown in FIG. 3, first, the process proceeds to step S1, the current “distribution management information” is acquired, and the process proceeds to step S2. The “distribution management information” is information (data) necessary for determining the distribution of the intake air A, and in this embodiment, the rotation speed of the compressor impeller 31 and the air passing through the compressor chamber 30. Flow rate information and pressure information on the intake side and discharge side of the compressor chamber 30 are acquired.
The rotational speed of the compressor wheel 31, the information on the air flow rate passing through the compressor chamber 30, and the pressure information on the intake side and the discharge side of the compressor chamber 30 were respectively measured and measured by a plurality of sensors (not shown). “Distribution management information” is input to the controller 80.
 ステップS2では、取得された振り分け管理情報から、測定された空気流量情報および圧力情報に基づき、空気流量および圧力比を算出するとともに、現在の運転状態に対応する作動点を算出する。そして、算出した現在の作動点位置と、コントローラ80の記憶装置に予め格納されているコンプレッサマップのデータから、コンプレッサマップ上でのサージ領域側、チョーク領域側の位置関係を特定する。
 ここで、図4に本実施形態のターボチャージャ10のコンプレッサマップを示す。同図のコンプレッサマップは、空気流量を横軸にとるとともに、コンプレッサ室30の吸気側と吐出側との圧力比(吐出側圧力/吸気側圧力)を縦軸にとり、サージ領域S側、チョーク領域C側および許容回転数を超える領域R側それぞれの制約から運転可能な作動線の限界DS、DC、DR、が図示され、運転状態に対応する作動線の変化の一例(この例は、全開加速時の作動例)として、作動線Dを太い実線で示している。
In step S2, the air flow rate and pressure ratio are calculated from the acquired distribution management information based on the measured air flow rate information and pressure information, and the operating point corresponding to the current operating state is calculated. Then, the positional relationship between the surge region side and the choke region side on the compressor map is specified from the calculated current operating point position and the compressor map data stored in the storage device of the controller 80 in advance.
Here, the compressor map of the turbocharger 10 of this embodiment is shown in FIG. The compressor map in the figure has the air flow rate on the horizontal axis and the pressure ratio (discharge side pressure / intake side pressure) between the intake side and the discharge side of the compressor chamber 30 on the vertical axis, and the surge region S side, choke region Limits DS, DC, DR of operation lines that can be operated from the constraints on the C side and the region R side that exceeds the permissible rotational speed are illustrated, and an example of changes in the operation line corresponding to the operation state (this example is a full-open acceleration) As an example of operation at the time, the operation line D is indicated by a thick solid line.
 また、同図において、細線の一点鎖線で示す作動可能範囲M1は、低速用空気供給通路51のみを空気供給通路として用いた場合に運転可能な作動線の範囲を示し、細線の実線で示す作動可能範囲M2は、高速用空気供給通路52のみを空気供給通路として用いた場合に運転可能な作動線の範囲を示し、太い二点鎖線で示す作動可能範囲M3は、吸入空気Aを、サージ領域S側では、低速用空気供給通路51に優先して振り分け、チョーク領域C側では、高速用空気供給通路52に優先して振り分けた場合に運転可能な作動線の範囲を示している。 Further, in the same figure, an operable range M1 indicated by a one-dot chain line of a thin line indicates an operating line range that can be operated when only the low-speed air supply passage 51 is used as an air supply passage, and an operation indicated by a thin solid line. The possible range M2 indicates the range of operating lines that can be operated when only the high-speed air supply passage 52 is used as the air supply passage, and the operable range M3 indicated by a thick two-dot chain line indicates the intake air A in the surge region. On the S side, the range of operating lines that can be operated when the low-speed air supply passage 51 is preferentially allocated and the choke region C side is preferentially allocated to the high-speed air supply passage 52 is shown.
 続くステップS3では、コントローラ80の記憶装置に予め格納されているコンプレッサマップのデータと、上記ステップS2で算出された現在の作動点位置とから、現在の作動点位置が、図4に示す、コンプレッサマップのサージ側判定領域SRであれば(Yes)ステップS6に移行し、そうでなければ(No)ステップS4に移行する。
 ステップS4では、コントローラ80の記憶装置に予め格納されているコンプレッサマップのデータとステップS2で算出された現在の作動点位置とから、現在の作動点位置が、コンプレッサマップの中間領域MRであれば(Yes)ステップS7に移行し、そうでなければ(No)ステップS5に移行する。
In the subsequent step S3, the current operating point position is shown in FIG. 4 from the compressor map data stored in advance in the storage device of the controller 80 and the current operating point position calculated in step S2. If it is the surge side determination area SR of the map (Yes), the process proceeds to Step S6, and if not (No), the process proceeds to Step S4.
In step S4, if the current operating point position is the intermediate region MR of the compressor map from the compressor map data stored in advance in the storage device of the controller 80 and the current operating point position calculated in step S2. (Yes) Move to step S7, otherwise (No) move to step S5.
 ステップS5では、コントローラ80の記憶装置に予め格納されているコンプレッサマップのデータとステップS2で算出された現在の作動点位置とから、現在の作動点位置が、コンプレッサマップのチョーク側判定領域CRであれば(Yes)ステップS8に移行し、そうでなければ(No)ステップS3に処理を戻す。
 ステップS6では、現在の作動点位置が、サージ側判定領域SRに位置しているので、吸入空気Aを、低速用空気供給通路51に優先して振り分けるように空気振分弁70の開閉状態を切り換える。本実施形態では、第一切換ポイントP1よりもサージ領域S側に位置しているときは、空気振分弁70の開度を全閉とし、主管路50Mから空気供給通路50に流れる吸入空気Aの全てを低速用空気供給通路51に振り分けて処理をステップS1に戻す。
In step S5, from the compressor map data stored in advance in the storage device of the controller 80 and the current operating point position calculated in step S2, the current operating point position is determined in the choke side determination area CR of the compressor map. If there is (Yes), the process proceeds to step S8. If not (No), the process returns to step S3.
In step S6, since the current operating point position is located in the surge side determination region SR, the open / close state of the air distribution valve 70 is set so that the intake air A is distributed with priority over the low-speed air supply passage 51. Switch. In the present embodiment, when it is located on the surge region S side with respect to the first switching point P1, the opening of the air distribution valve 70 is fully closed, and the intake air A that flows from the main pipeline 50M to the air supply passage 50 Are allotted to the low-speed air supply passage 51, and the process returns to step S1.
 また、ステップS7では、現在の作動点位置が、中間領域MRに位置しているので、過渡制御を実行する。過渡制御は、サージ領域S側とチョーク領域C側とに対する現在の作動点位置の割合を算出し、その算出した割合に対応する振り分け量になるように、吸入空気Aを、低速用空気供給通路51と高速用空気供給通路52とに振り分けるように空気振分弁70の開閉状態を切り換えて処理をステップS1に戻す。
 本実施形態では、サージ領域S側とチョーク領域C側とに対する現在の作動点位置の割合に応じ、サージ領域S側からチョーク領域C側に向かうにつれて、低速用空気供給通路51よりも高速用空気供給通路52への吸入空気Aの振り分け量が多くなるように、空気振分弁70の開閉状態を切り換える。
In step S7, since the current operating point position is located in the intermediate region MR, transient control is executed. In the transient control, the ratio of the current operating point position with respect to the surge region S side and the choke region C side is calculated, and the intake air A is changed to a low-speed air supply passage so that the distribution amount corresponds to the calculated ratio. The process returns to step S1 by switching the open / close state of the air distribution valve 70 so as to be distributed between the air supply passage 51 and the high-speed air supply passage 52.
In the present embodiment, high-speed air is supplied from the low-speed air supply passage 51 toward the choke region C side from the surge region S side according to the ratio of the current operating point position to the surge region S side and the choke region C side. The open / close state of the air distribution valve 70 is switched so that the distribution amount of the intake air A to the supply passage 52 increases.
 さらに、ステップS8では、現在の作動点位置がチョーク領域C側に位置しているので、吸入空気Aを、高速用空気供給通路52に優先して振り分けるように空気振分弁70の開閉状態を切り換える。本実施形態では、第二切換ポイントP2よりもチョーク領域C側に位置しているときは、空気振分弁70の開度を全開とし、主管路50Mから空気供給通路50に流れる吸入空気Aのほぼ全量を高速用空気供給通路52に振り分けて処理をステップS1に戻す。 Further, in step S8, since the current operating point position is located on the choke region C side, the open / close state of the air distribution valve 70 is set so that the intake air A is distributed preferentially to the high-speed air supply passage 52. Switch. In the present embodiment, when it is located on the choke region C side with respect to the second switching point P2, the opening of the air distribution valve 70 is fully opened, and the intake air A flowing from the main pipeline 50M to the air supply passage 50 is Almost the entire amount is distributed to the high-speed air supply passage 52, and the process returns to step S1.
 次に、上記ターボチャージャ10の動作および作用効果について説明する。
 上述したターボチャージャ10は、図1に示したように、エンジン1の排気通路3から排出された排気ガスGがタービン室20に導入されると、タービン室20内のタービン翼車21が高速回転し、その回転力で同軸上のコンプレッサ翼車31を回し、コンプレッサ室30では、空気供給通路50からの吸入空気Aを遠心圧縮する。これにより、ターボチャージャ10は、その圧縮空気を吸気通路5からインタークーラ6を介してエンジン1に送り込むことで、エンジン1の高出力を得ることができる。なお、タービン室20に導入される排気ガス量は、エンジン1とタービン室20との間に設けられたバイパスバルブ(不図示)の制御により過給圧が規定値になるように調整される。
Next, the operation and effect of the turbocharger 10 will be described.
In the turbocharger 10 described above, when the exhaust gas G discharged from the exhaust passage 3 of the engine 1 is introduced into the turbine chamber 20 as shown in FIG. 1, the turbine impeller 21 in the turbine chamber 20 rotates at high speed. Then, the compressor wheel 31 on the same axis is rotated by the rotational force, and in the compressor chamber 30, the intake air A from the air supply passage 50 is centrifugally compressed. Thereby, the turbocharger 10 can obtain the high output of the engine 1 by sending the compressed air from the intake passage 5 to the engine 1 via the intercooler 6. The amount of exhaust gas introduced into the turbine chamber 20 is adjusted so that the supercharging pressure becomes a specified value by controlling a bypass valve (not shown) provided between the engine 1 and the turbine chamber 20.
 ここで、本実施形態のターボチャージャ10は、IGV40を有する低速用空気供給通路51と、IGVを有しない高速用空気供給通路52と、これら二つの空気供給通路51、52に流す吸入空気Aを振り分ける空気振分手段として、空気振分弁70およびコントローラ80とを備えているので、低流量域でのサージングを防止または抑制して空気流量レンジを拡大するとともに、高流量域においても空気流量レンジの減少を抑えることができる。
 すなわち、本実施形態のターボチャージャ10では、エンジン1が駆動されると、コントローラ(ECU)80は、上記流路振り分け処理を実行し、例えばアクセルペダルが踏み込まれて車両が加速される場合、取得された振り分け管理情報に基づいて、現在の運転状態に対応する作動点を算出する。
Here, the turbocharger 10 of the present embodiment has a low-speed air supply passage 51 having an IGV 40, a high-speed air supply passage 52 having no IGV, and intake air A flowing through these two air supply passages 51 and 52. Since the air distribution valve 70 and the controller 80 are provided as the air distribution means for distribution, the air flow range is expanded by preventing or suppressing surging in the low flow range, and also in the high flow range. Can be reduced.
That is, in the turbocharger 10 of the present embodiment, when the engine 1 is driven, the controller (ECU) 80 executes the above-described flow path allocating process, for example, when the accelerator pedal is depressed and the vehicle is accelerated. Based on the assigned distribution management information, an operating point corresponding to the current operating state is calculated.
 そして、コントローラ80は、現在の作動点位置が第一切換ポイントP1に達していないときは、サージ領域S側と判定し、空気振分弁70を全閉にして空気供給通路50を低速用空気供給通路51に切り換えて運転を開始する。これにより、サージ領域S側では、図4に示した、低流量域側のマップである作動可能範囲M1に設定されてコンプレッサ翼車31の加速が開始される。
 そのため、このターボチャージャ10によれば、サージ領域S側では、IGV40を有する低速用空気供給通路51が優先して用いられるので、低速用空気供給通路51のIGV40によって、コンプレッサ室30への吸入空気Aに予旋回を与えることができる。したがって、本実施形態のターボチャージャ10によれば、図4に網掛け部分にて示すサージ側判定領域SRがレンジ拡大領域となり、低流量域でのサージングを防止または抑制して空気流量レンジを拡大することができる。
 これに対し、IGVを有しないターボチャージャ、または、本実施形態での高速用空気供給通路52のみを使用する制御とした場合には、図5に破線で比較例の作動線Dhを示すように、低流量域でのサージングにより空気流量レンジを拡大することが困難であることがわかる(網掛け部分にてレンジ拡大領域を示す。)。
Then, when the current operating point position has not reached the first switching point P1, the controller 80 determines that it is the surge region S side, fully closes the air distribution valve 70, and sets the air supply passage 50 to the low speed air. The operation is started by switching to the supply passage 51. Thus, on the surge region S side, the compressor impeller 31 is started to be accelerated by setting the operable range M1 that is the map on the low flow rate region side shown in FIG.
Therefore, according to the turbocharger 10, the low-speed air supply passage 51 having the IGV 40 is preferentially used on the surge region S side, so that the intake air to the compressor chamber 30 is taken by the IGV 40 of the low-speed air supply passage 51. A pre-turn can be given to A. Therefore, according to the turbocharger 10 of the present embodiment, the surge side determination region SR shown by the shaded portion in FIG. 4 becomes the range expansion region, and the surging in the low flow region is prevented or suppressed to expand the air flow range. can do.
On the other hand, when the turbocharger not having the IGV or the control using only the high-speed air supply passage 52 in this embodiment is used, the operation line Dh of the comparative example is shown by a broken line in FIG. It can be seen that it is difficult to expand the air flow rate range by surging in the low flow rate region (the range expansion region is indicated by the shaded portion).
 次いで、車両が更に加速される場合、コントローラ80は、取得された空気流量情報および圧力情報に基づいて、現在の作動点位置と二つの切換ポイントP1、P2との位置関係を監視し、現在の作動点位置が、空気流量および圧力比が増加してくる第一切換ポイントP1に達したときに空気振分弁70を開き始める。
 さらに、コントローラ80は、現在の作動点位置が、二つの切換ポイントP1、P2の間にあるときは、上記過渡制御により、サージ領域S側とチョーク領域C側とに対する現在の作動点位置の割合に対応する振り分け量になるように、空気振分弁70の開閉状態を切り換えていく。
Then, when the vehicle is further accelerated, the controller 80 monitors the positional relationship between the current operating point position and the two switching points P1, P2 based on the acquired air flow rate information and pressure information, When the operating point position reaches the first switching point P1 where the air flow rate and pressure ratio increase, the air distribution valve 70 starts to open.
Further, when the current operating point position is between the two switching points P1 and P2, the controller 80 performs the transient control so that the ratio of the current operating point position to the surge region S side and the choke region C side is determined. The air distribution valve 70 is switched between open and closed states so that the distribution amount corresponds to.
 次いで、車両が更に加速される場合、コントローラ80は、取得された空気流量情報および圧力情報等に基づいて、第二切換ポイントP2に達したと判断したときに、空気振分弁70を全開にして空気供給通路50を高速用空気供給通路52に切り換える。
 これにより、所定以上の高流量域では、チョーク領域C側のマップである作動可能範囲M2に設定される。そのため、チョーク領域C側では、IGVを有しない高速用空気供給通路52を優先して用いることにより、複数のベーン41自体が吸入空気Aに抵抗を与えることがない。したがって、高流量域において、コンプレッサ室30への通気抵抗の悪化を最小限に抑えることができる。
Next, when the vehicle is further accelerated, the controller 80 fully opens the air distribution valve 70 when determining that the second switching point P2 has been reached based on the acquired air flow rate information and pressure information. Thus, the air supply passage 50 is switched to the high-speed air supply passage 52.
As a result, in a high flow rate region above a predetermined level, the operable range M2 that is a map on the choke region C side is set. Therefore, on the choke region C side, the plurality of vanes 41 themselves do not give resistance to the intake air A by preferentially using the high-speed air supply passage 52 having no IGV. Therefore, the deterioration of the ventilation resistance to the compressor chamber 30 can be minimized in the high flow rate region.
 ここで、図4に一点鎖線でサージ領域S側で設定されるマップである作動可能範囲M1を示したように、IGV付き空気供給通路のみ有するターボチャージャ、または、本実施形態での低速用空気供給通路51のみを使用する制御とした場合、サージ領域S側の空気流量レンジを拡大し得るものの、IGVのベーン自体が抵抗となり、コンプレッサマップ全体がサージ領域S側にシフトするため、高流量域においては、空気流量レンジが減少していることがわかる。 Here, the turbocharger having only the air supply passage with the IGV, or the low-speed air in the present embodiment, as shown in the operable range M1 which is a map set on the surge region S side by the one-dot chain line in FIG. When control is performed using only the supply passage 51, the air flow range on the surge region S side can be expanded, but the vane of the IGV itself becomes a resistance, and the entire compressor map shifts to the surge region S side. It can be seen that the air flow range is decreasing.
 これに対し、本実施形態のターボチャージャ10によれば、チョーク領域C側においては、高速用空気供給通路52を用いることにより、高流量域においても空気流量レンジの減少を抑えることができる。すなわち、本実施形態のターボチャージャ10によれば、サージ領域S側では、低速用空気供給通路51を用いるので、低流量域でのサージングを防止または抑制して空気流量レンジを拡大することができ、チョーク領域C側では、高速用空気供給通路52を用いるので、高流量域においても空気流量レンジの減少を抑え、空気流量レンジの広い作動可能範囲M3が得られるのである。 On the other hand, according to the turbocharger 10 of the present embodiment, on the choke region C side, by using the high-speed air supply passage 52, it is possible to suppress a decrease in the air flow range even in a high flow rate region. That is, according to the turbocharger 10 of the present embodiment, since the low-speed air supply passage 51 is used on the surge region S side, surging in the low flow region can be prevented or suppressed and the air flow range can be expanded. Since the high-speed air supply passage 52 is used on the choke region C side, the reduction of the air flow rate range is suppressed even in the high flow rate region, and an operable range M3 having a wide air flow rate range is obtained.
 なお、上記の動作説明は、アクセルペダルが踏み込まれて車両が加速される場合を例に説明したが、上記流路振り分け処理は、運転中は常に実行される。例えば、図4に減速時の作動線D2を併せて示す。
 すなわち、コントローラ80は、車両の減速時においても流路振り分け処理を実行し、測定された空気流量情報および圧力情報等の振り分け管理情報に基づき、空気流量および圧力比を算出するとともに、現在の作動点位置を設定する。
In the above description of the operation, the case where the accelerator pedal is depressed and the vehicle is accelerated has been described as an example. However, the flow path distribution process is always executed during operation. For example, FIG. 4 also shows an operation line D2 during deceleration.
That is, the controller 80 executes the flow path distribution process even when the vehicle is decelerating, calculates the air flow rate and pressure ratio based on the distribution management information such as the measured air flow rate information and pressure information, and the current operation. Set the point position.
 そして、車両が次第に減速される場合、例えば図4において、作動点がコンプレッサマップの中間領域MRに達したと判断した時に(この例では符号P4の位置)、空気振り分け弁70を閉じ始め、以降、サージ領域S側とチョーク領域C側とに対する現在の作動点位置の割合に対応する振り分け量になるように、空気振り分け弁70の開閉状態を切り替えていき、さらに、サージ側判定領域SRに達したと判断した時に(この例では符号P3の位置)、空気振り分け弁70を全閉とする。これにより、車両の減速時においても作動可能範囲M3が得られ、低流量域でのサージングを防止または抑制して、サージ領域S側での空気流量レンジを拡大するとともに、チョーク領域C側においても空気流量レンジの減少を抑えることができる。 When the vehicle is gradually decelerated, for example, in FIG. 4, when it is determined that the operating point has reached the intermediate region MR of the compressor map (in this example, the position of the symbol P4), the air distribution valve 70 starts to be closed. The air distribution valve 70 is switched between open and closed states so that the distribution amount corresponds to the ratio of the current operating point position to the surge region S side and the choke region C side, and further reaches the surge side determination region SR. When it is determined that the air distribution valve 70 is fully closed (in this example, the position indicated by symbol P3), the air distribution valve 70 is fully closed. As a result, an operable range M3 is obtained even when the vehicle is decelerating, and surging in the low flow rate region is prevented or suppressed, the air flow range on the surge region S side is expanded, and also on the choke region C side. Reduction of the air flow range can be suppressed.
 以上説明したように、本実施形態のターボチャージャ10を備えるエンジン1によれば、空気供給通路50として、IGV40を有する低速用空気供給通路51と、IGVを有しない高速用空気供給通路52と、吸入空気Aを低速用空気供給通路51と高速用空気供給通路52とに振り分ける空気振分手段とを備え、空気振分手段は、サージ領域S側では、低速用空気供給通路51を優先し、チョーク領域C側では、高速用空気供給通路52を優先して吸入空気Aを振り分けるので、低流量域でのサージングを防止または抑制して空気流量レンジを拡大するとともに、高流量域においても空気流量レンジの減少を抑えることができる。
 なお、本発明に係る圧縮空気製造装置は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能なことは勿論である。
As described above, according to the engine 1 including the turbocharger 10 of the present embodiment, as the air supply passage 50, the low-speed air supply passage 51 having the IGV 40, the high-speed air supply passage 52 having no IGV, Air distribution means for distributing the intake air A to the low-speed air supply passage 51 and the high-speed air supply passage 52; the air distribution means gives priority to the low-speed air supply passage 51 on the surge region S side; On the choke region C side, the intake air A is distributed with priority given to the high-speed air supply passage 52, so that the surging is prevented or suppressed in the low flow region to expand the air flow range, and the air flow rate is also used in the high flow region. Range reduction can be suppressed.
In addition, the compressed air manufacturing apparatus which concerns on this invention is not limited to the said embodiment, Of course, a various deformation | transformation is possible if it does not deviate from the meaning of this invention.
 例えば、上記実施形態では、本発明の一態様に係る圧縮空気製造装置の例として、内燃機関の過給機として用いられるターボチャージャを例に説明したが、ターボチャージャに限定されず、本発明に係る圧縮空気製造装置は、種々の遠心コンプレッサに対し適用可能である。例えば、遠心コンプレッサをモータで駆動する装置に適用可能である。
 また、上記実施形態では、空気振分手段の例として、空気振分弁70と、空気振分弁70の開閉状態を制御するコントローラ80とを有する例で説明したが、これに限らず、二つの空気供給通路51、52に流す吸入空気Aを、サージ領域S側では低速用空気供給通路51に、チョーク領域C側では高速用空気供給通路52に優先して振り分け可能であれば、コンプレッサ室30の吐出側圧力に応じて開閉量が可変する機械的な弁機構を用いてもよい。
For example, in the above-described embodiment, a turbocharger used as a supercharger for an internal combustion engine has been described as an example of a compressed air production apparatus according to one aspect of the present invention. However, the present invention is not limited to a turbocharger and is not limited to a turbocharger. Such a compressed air production apparatus can be applied to various centrifugal compressors. For example, the present invention can be applied to a device that drives a centrifugal compressor with a motor.
In the above-described embodiment, the example of having the air distribution valve 70 and the controller 80 for controlling the open / closed state of the air distribution valve 70 has been described as an example of the air distribution unit. If the intake air A flowing through the two air supply passages 51 and 52 can be distributed in priority to the low-speed air supply passage 51 on the surge region S side and the high-speed air supply passage 52 on the choke region C side, the compressor chamber A mechanical valve mechanism whose opening / closing amount is variable according to the discharge side pressure of 30 may be used.
 また、空気振分手段にコントローラを用いる場合に、上記実施形態では、コントローラ80で実行される流路振り分け処理において、取得された振り分け管理情報に基づき、現在の運転状態に対応する作動点位置を算出し、算出した現在の作動点位置と、コントローラ80の記憶装置に予め格納されているコンプレッサマップのデータとから、コンプレッサマップ上でのサージ領域S側、チョーク領域C側の位置関係を判定して、サージ領域S側であれば、低速用空気供給通路51に優先して吸入空気Aを振り分け、チョーク領域C側であれば、高速用空気供給通路52に優先して吸入空気Aを振り分ける例で説明したが、流路振り分け処理はこれに限定されない。 Further, when a controller is used for the air distribution means, in the above embodiment, in the flow path distribution processing executed by the controller 80, the operating point position corresponding to the current operating state is determined based on the acquired distribution management information. The positional relationship between the surge region S side and the choke region C side on the compressor map is determined from the calculated current operating point position and the compressor map data stored in advance in the storage device of the controller 80. In the case of the surge region S side, the intake air A is preferentially distributed over the low speed air supply passage 51, and in the choke region C side, the intake air A is preferentially distributed over the high speed air supply passage 52. However, the flow path distribution process is not limited to this.
 1  エンジン(内燃機関)
 2  排気マニホールド
 3  排気通路
 4  吸気マニホールド
 5  吸気通路
 6  インタークーラ
 7  エアクリーナ
 10  ターボチャージャ(圧縮空気製造装置)
 11  ベアリング部
 12  回転軸
 20  タービン室
 21  タービン翼車
 30  コンプレッサ室
 31  コンプレッサ翼車
 40  IGV
 41  ベーン
 50  空気供給通路
 51  低速用空気供給通路
 52  高速用空気供給通路
 70  空気振分弁(空気振分手段)
 71  弁本体
 72  アクチュエータ
 80  コントローラ(空気振分手段)
1 engine (internal combustion engine)
2 Exhaust Manifold 3 Exhaust Passage 4 Intake Manifold 5 Intake Passage 6 Intercooler 7 Air Cleaner 10 Turbocharger (Compressed Air Production Equipment)
DESCRIPTION OF SYMBOLS 11 Bearing part 12 Rotating shaft 20 Turbine chamber 21 Turbine impeller 30 Compressor chamber 31 Compressor impeller 40 IGV
41 Vane 50 Air supply passage 51 Low-speed air supply passage 52 High-speed air supply passage 70 Air distribution valve (air distribution means)
71 Valve body 72 Actuator 80 Controller (Air distribution means)

Claims (7)

  1.  コンプレッサ翼車が内装されたコンプレッサ室と、前記コンプレッサ室の入口に連通する二つの空気供給通路と、吸入空気を前記二つの空気供給通路に振り分ける空気振分手段とを備え、
     前記二つの空気供給通路は、複数のベーンを設置してなるIGV(Inlet Guide Vane)を有する低速用空気供給通路と、IGVを有しない高速用空気供給通路とを有し、
     前記空気振分手段は、前記吸入空気を、サージ領域側では、前記低速用空気供給通路に優先して振り分け、チョーク領域側では、前記高速用空気供給通路に優先して振り分けることを特徴とする圧縮空気製造装置。
    A compressor chamber in which a compressor impeller is installed; two air supply passages communicating with an inlet of the compressor chamber; and air distribution means for distributing intake air to the two air supply passages,
    The two air supply passages have a low-speed air supply passage having an IGV (Inlet Guide Vane) in which a plurality of vanes are installed, and a high-speed air supply passage having no IGV,
    The air distribution means distributes the intake air preferentially to the low-speed air supply passage on the surge region side and preferentially distributes the high-speed air supply passage on the choke region side. Compressed air production equipment.
  2.  前記高速用空気供給通路は、前記コンプレッサ室への空気供給通路入口が、前記コンプレッサ翼車と同一軸心上に配置された円筒状通路を有し、
     前記低速用空気供給通路は、前記コンプレッサ室への空気供給通路入口が、前記高速用空気供給通路の空気供給通路入口を囲繞して前記高速用空気供給通路の外周から前記吸入空気を流入させる円環状通路を有する請求項1に記載の圧縮空気製造装置。
    The high-speed air supply passage has a cylindrical passage in which an air supply passage inlet to the compressor chamber is disposed on the same axis as the compressor wheel,
    The low-speed air supply passage is a circle in which an air supply passage inlet to the compressor chamber surrounds the air supply passage inlet of the high-speed air supply passage and allows the intake air to flow from the outer periphery of the high-speed air supply passage. The compressed air manufacturing apparatus according to claim 1, which has an annular passage.
  3.  前記低速用空気供給通路は、前記円環状通路が、前記コンプレッサ翼車の側に向かうにつれて縮径している請求項2に記載の圧縮空気製造装置。 3. The compressed air production apparatus according to claim 2, wherein the low-speed air supply passage has a diameter reduced as the annular passage moves toward the compressor wheel.
  4.  前記高速用空気供給通路は、前記円筒状通路の横断面積が、前記低速用空気供給通路の前記円環状通路の横断面積よりも広い請求項2または3に記載の圧縮空気製造装置。 The compressed air production apparatus according to claim 2 or 3, wherein the high-speed air supply passage has a larger cross-sectional area of the cylindrical passage than a cross-sectional area of the annular passage of the low-speed air supply passage.
  5.  前記空気振分手段は、前記高速用空気供給通路に設けられた空気振分弁と、該空気振分弁の開閉状態を制御するコントローラとを有し、
     前記コントローラは、現在の運転状態における空気量と圧力比とから現在の作動点位置を算出し、
     現在の作動点位置が、空気流量と圧力比とから規定されるコンプレッサマップ上の、前記サージ領域側寄りの位置か前記チョーク領域側寄りの位置かを判定して、サージ領域側であれば、前記吸入空気を前記低速用空気供給通路に優先して振り分けるように前記空気振分弁の開閉状態を切り換え、チョーク領域側であれば、前記吸入空気を前記高速用空気供給通路に優先して振り分けるように前記空気振分弁の開閉状態を切り換える請求項1~4のいずれか一項に記載の圧縮空気製造装置。
    The air distribution means has an air distribution valve provided in the high-speed air supply passage, and a controller for controlling the open / closed state of the air distribution valve,
    The controller calculates the current operating point position from the air amount and pressure ratio in the current operating state,
    If the current operating point position is a position near the surge area side or a position near the choke area side on the compressor map defined by the air flow rate and the pressure ratio, and if it is the surge area side, The open / close state of the air distribution valve is switched so that the intake air is distributed preferentially to the low-speed air supply passage. If it is on the choke region side, the intake air is preferentially distributed to the high-speed air supply passage. The compressed air production apparatus according to any one of claims 1 to 4, wherein the open / close state of the air distribution valve is switched as described above.
  6.  排気ガスによりタービン翼車を回して、該タービン翼車と同軸上の遠心コンプレッサを駆動するターボチャージャであって、
     前記遠心コンプレッサとして、請求項1~5のいずれか一項に記載の圧縮空気製造装置を備えることを特徴とするターボチャージャ。
    A turbocharger that rotates a turbine impeller with exhaust gas and drives a centrifugal compressor coaxial with the turbine impeller,
    A turbocharger comprising the compressed air production apparatus according to any one of claims 1 to 5 as the centrifugal compressor.
  7.  請求項6に記載のターボチャージャを備えることを特徴とする内燃機関。 An internal combustion engine comprising the turbocharger according to claim 6.
PCT/JP2015/002452 2015-05-14 2015-05-14 Compressed air production device, and turbocharger and internal combustion engine equipped with same WO2016181427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002452 WO2016181427A1 (en) 2015-05-14 2015-05-14 Compressed air production device, and turbocharger and internal combustion engine equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002452 WO2016181427A1 (en) 2015-05-14 2015-05-14 Compressed air production device, and turbocharger and internal combustion engine equipped with same

Publications (1)

Publication Number Publication Date
WO2016181427A1 true WO2016181427A1 (en) 2016-11-17

Family

ID=57247864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002452 WO2016181427A1 (en) 2015-05-14 2015-05-14 Compressed air production device, and turbocharger and internal combustion engine equipped with same

Country Status (1)

Country Link
WO (1) WO2016181427A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125116A (en) * 1974-03-18 1975-10-01
US4789300A (en) * 1983-06-16 1988-12-06 Rotoflow Corporation Variable flow turbine expanders
JP2004044576A (en) * 2002-07-13 2004-02-12 Aisin Seiki Co Ltd Compressor
WO2005100798A1 (en) * 2004-04-13 2005-10-27 Integral Powertrain Ltd A pre-whirl generator, a compressor and a method of imparting pre-whirl to a gas flow
JP2006112323A (en) * 2004-10-14 2006-04-27 Toyota Motor Corp Variable displacement compressor and internal combustion engine
JP2010168916A (en) * 2009-01-20 2010-08-05 Otics Corp Compressor for supercharger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125116A (en) * 1974-03-18 1975-10-01
US4789300A (en) * 1983-06-16 1988-12-06 Rotoflow Corporation Variable flow turbine expanders
JP2004044576A (en) * 2002-07-13 2004-02-12 Aisin Seiki Co Ltd Compressor
WO2005100798A1 (en) * 2004-04-13 2005-10-27 Integral Powertrain Ltd A pre-whirl generator, a compressor and a method of imparting pre-whirl to a gas flow
JP2006112323A (en) * 2004-10-14 2006-04-27 Toyota Motor Corp Variable displacement compressor and internal combustion engine
JP2010168916A (en) * 2009-01-20 2010-08-05 Otics Corp Compressor for supercharger

Similar Documents

Publication Publication Date Title
US8210793B2 (en) Radial flow compressor for a turbo-supercharger
JP4909405B2 (en) Centrifugal compressor
EP1704330B1 (en) Recirculation port
EP1985865B1 (en) Compressor and compressor housing
US9528431B2 (en) Compressor stage of a turbocharger with flow amplifier
US20160238013A1 (en) Compressor with Variable Compressor Inlet
JP5369723B2 (en) Centrifugal compressor
CN103174470B (en) Throttling assembly of a throttling gear for controlling and/or adjusting brake operation of motor
CN111148903A (en) Radial compressor for a charging device of an internal combustion engine having an iris diaphragm arrangement, charging device and vane of an iris diaphragm arrangement
US20170292381A1 (en) Exhaust turbine for turbocharger
US20200208652A1 (en) Radial compressor comprising an iris diaphragm mechanism for a charging device of an internal combustion engine, charging device, and lamella for the iris diaphragm mechanism
JP2012052508A (en) Variable supercharger and control method thereof
JP2008540892A (en) Supercharging control for internal combustion engines
US10858986B2 (en) Turbocharger, two-stage turbo system, and control method for two-stage turbo system
JP2000087752A (en) Centrifugal compressor
US20030115870A1 (en) Exhaust-gas turbocharger in an internal combustion engine
US10787955B2 (en) Two-stage turbo system and control method for two-stage turbo system
JPWO2011108093A1 (en) Control device for internal combustion engine having supercharger
WO2016181427A1 (en) Compressed air production device, and turbocharger and internal combustion engine equipped with same
JP2016053352A (en) Exhaust gas turbine of turbocharger
KR20150082223A (en) Compression assembly for a turbine engine
US20040062638A1 (en) Turbine for an exhaust gas turbocharger
WO2018200611A1 (en) Compressor with variable compressor inlet
JP2010190162A (en) Supercharger
US20200011230A1 (en) Method of operating an internal combustion engine, an internal combustion engine and a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP