WO2016180052A1 - 人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线 - Google Patents

人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线 Download PDF

Info

Publication number
WO2016180052A1
WO2016180052A1 PCT/CN2016/071539 CN2016071539W WO2016180052A1 WO 2016180052 A1 WO2016180052 A1 WO 2016180052A1 CN 2016071539 W CN2016071539 W CN 2016071539W WO 2016180052 A1 WO2016180052 A1 WO 2016180052A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic conductor
artificial magnetic
conductor structure
dielectric substrate
metal
Prior art date
Application number
PCT/CN2016/071539
Other languages
English (en)
French (fr)
Inventor
李融林
李伏云
崔悦慧
王博明
王鹏
傅焕展
杨程
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016180052A1 publication Critical patent/WO2016180052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the invention relates to the field of metamaterials of electromagnetic field technology, in particular to an artificial magnetic conductor structural unit, an artificial magnetic conductor structure and a corresponding polarized planar antenna.
  • the surface of the ideal electric conductor needs to satisfy the boundary condition that the tangential electric field is zero, when a plane wave is incident on the surface of the ideal electric conductor, there is a phase difference of 180 degrees between the electric field of the reflected wave and the electric field of the incident wave.
  • an artificial magnetic conductor structure In order to realize the electromagnetic characteristics of an ideal magnetic conductor, an artificial magnetic conductor structure has been proposed. This structure also has the same phase reflection characteristics of the ideal magnetic conductor to the plane wave; at present, there are many studies on the structure of the artificial magnetic conductor, but its broadband characteristic has been to study the inability of the artificial magnetic conductor structure to pass. The bottleneck.
  • the technical problem to be solved by the embodiments of the present invention is that the artificial magnetic conductor structure in the prior art cannot provide broadband characteristics.
  • an artificial magnetic conductor structural unit including a metal ground plate, a metal via, a dielectric substrate, and a periodic patch, wherein the periodic patch is Etching on the dielectric substrate, and the periodic patch is composed of a rectangular frame and a bending line, two ends of the bending line are electrically connected to the rectangular frame in the rectangular frame, and the bending line passes through the
  • the metal via is electrically connected to the metal ground plate, and a connection point of the metal via and the bend line is between the two ends of the bend line.
  • the metal ground plate and the dielectric substrate are air.
  • the metal via has a length of 21 mm and a diameter of 1.5 mm.
  • Another object of the present invention is to provide an artificial magnetic conductor structure including a plurality of the above-mentioned artificial magnetic conductor structural units, wherein a plurality of artificial magnetic conductor structural unit periodic patches are arranged on the dielectric substrate. And the bending line of each of the plurality of artificial magnetic conductor structural units is electrically connected to the metal ground plate through the metal via.
  • the periodic patches are periodically arranged on the dielectric substrate.
  • the metal ground plate and the dielectric substrate are air.
  • the metal via has a length of 21 mm and a diameter of 1.5 mm.
  • the distance between the antenna element of the polarization planar antenna and the artificial magnetic conductor structure is 9 mm.
  • the polarization type of the polarization plane antenna is one of the following: circular polarization, linear polarization, and dual polarization.
  • the polarized planar antenna provides a relatively wide working bandwidth, and at the same time, the height of the polarized planar antenna can be greatly reduced, that is, has a low profile.
  • FIG. 1 is a schematic view of a structural unit of an artificial magnetic conductor structure in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic view of an artificial magnetic conductor structure in accordance with an embodiment of the present invention.
  • Figure 3 is a plan view of a polarized planar antenna using an artificial magnetic conductor structure in accordance with the present invention
  • Figure 4a is a schematic cross-sectional view of a prior art polarized planar antenna
  • Figure 4b is a schematic cross-sectional view of a polarized planar antenna using an artificial magnetic conductor structure in accordance with the present invention
  • Figure 5 is a graph of S-parameters of a plan planar antenna using an artificial magnetic conductor structure in accordance with the present invention.
  • FIG. 1 A schematic diagram of a structural unit of the artificial magnetic conductor structure disclosed in the embodiment of the present invention is shown in FIG. It can be seen that one structural unit of the artificial magnetic conductor structure includes: a periodic patch 1, a metal via 2, a metal ground plate 3, and a dielectric substrate 4. Further, the periodic patch 1 includes a rectangular frame 5 and a bending line 6.
  • the periodic patch 1 is formed on the dielectric substrate 4 in an etched manner. Both ends of the bending line 6 of the periodic patch 1 are electrically connected to the rectangular frame 5 in the rectangular frame 5.
  • the bend line 6 is electrically connected to the metal ground plate 3 through the metal via 2, and the metal via 2 is electrically connected to the bend line 6 between both ends of the bend line 6.
  • the connection point of the metal via 2 and the bending line 6 is located at the midpoint of the bending line 6.
  • the metal via 2 forms an LC parallel equivalent circuit between the periodic patch 1 and the metal ground plate 3, wherein the periodic paste
  • the rectangular frame 5 of the sheet 1 can be equivalent to a capacitor
  • the bent line 6 can be equivalent to an inductor
  • the metal via 2 can be equivalent to an inductor. Therefore, the bending line 6 can take any shape while preliminarily ensuring the length of the bending line 6.
  • the rectangular frame 5 is a gray square ring portion shown in Fig. 1.
  • the medium filled between the metal ground plate 3 and the dielectric substrate 4 may be air. Further, a vacuum may be used between the metal ground plate 3 and the dielectric substrate 4.
  • the artificial magnetic conductor structure exhibits high impedance characteristics when the frequency of the electromagnetic wave incident on the artificial magnetic conductor structure is close to or even equal to the resonant frequency of the equivalent LC parallel equivalent circuit.
  • the phase difference that is, the reflection phase
  • the artificial magnetic conductor exhibits the characteristics of an ideal magnetic conductor. Therefore, the relative bandwidth of a polarized planar antenna using the artificial magnetic conductor structure is inversely proportional to its equivalent capacitance and proportional to the equivalent inductance. Therefore, in the case where the center frequency is constant, the larger the equivalent capacitance of the polarization plane antenna using the artificial magnetic conductor structure, the narrower the relative bandwidth; the larger the equivalent inductance, the wider the relative bandwidth.
  • FIG. 2 An artificial magnetic conductor structure in accordance with one embodiment of the present invention is shown in FIG.
  • the periodic patch 1 of the artificial magnetic conductor structure can adopt any arrangement manner, and preferably periodically, under the premise of suppressing cross polarization. Regular way.
  • 9 rows and 9 columns of periodic patches 1 are arranged on the surface of the artificial magnetic conductor structure, and the arrangement direction of the bending lines 6 of the periodic patches 1 can be obtained by simulation results.
  • the periodic patch 1 does not necessarily fill the dielectric substrate 4, but vacates the center of the dielectric substrate 4.
  • the blank portion therein facilitates the feeding of the antenna element through the coaxial line and does not affect the overall performance of the polarization plane antenna.
  • FIG. 1 A polarized planar antenna using an artificial magnetic conductor structure in accordance with the present invention is shown in FIG. It can be seen that the polarized planar antenna includes an antenna element and an artificial magnetic conductor structure located below the antenna element.
  • the antenna element includes an antenna dielectric substrate 7, a lower surface metal patch 8, and an upper surface metal patch 9.
  • the type of polarized planar antenna determined by the lower surface metal patch 8 and the upper surface metal patch 9 may be circular polarization, linear polarization or dual polarization, or the like.
  • Artificial permeance under the antenna element The body structure is used as a reflector.
  • the relative bandwidth of a polarized planar antenna using the artificial magnetic conductor structure of the present invention is inversely proportional to its equivalent capacitance and proportional to the equivalent inductance.
  • the change in the area of the rectangular frame 5 can cause a change in the relative bandwidth of the artificial magnetic conductor structure.
  • a change in the relative dielectric constant of the dielectric (or vacuum) between the dielectric substrate 4, the metal ground plane 3, and the dielectric substrate 4 may cause a change in the relative bandwidth of the artificial magnetic conductor structure.
  • the narrower the increase in the relative dielectric constant of the dielectric between the dielectric substrate 4 and/or the metal ground plate 3 and the dielectric substrate 4 may also result in a lower center frequency of the antenna and a narrower relative bandwidth, the polarized planar antenna. The gain is reduced.
  • the bend line 6 can be equivalent to an inductor, a change in the length and/or width of the bend line 6 can cause a change in the relative bandwidth of the artificial magnetic conductor structure.
  • the metal via 2 can be equivalent to an inductor, a change in the length and/or width of the metal via 2 can cause a change in the relative bandwidth of the artificial magnetic conductor structure.
  • the length of the metal via 2 determines the height of the artificial magnetic conductor structure, that is, the distance between the metal ground plate 3 and the dielectric substrate 4, thereby affecting the pole using the artificial magnetic conductor structure of the present invention.
  • the height of the planar antenna The height of the planar antenna.
  • the diameter of the metal via 2 is too small, which leads to an increase in manufacturing difficulty and an increase in cross polarization of the antenna. Therefore, it is necessary to make a reasonable selection of the length and diameter of the metal via 2, and the specific selection can be obtained by simulation.
  • the size of the dielectric substrate 4 is related to the size and number of cycles of the periodic patch 1.
  • Periodic patch 1 The larger the size, the lower the center frequency of the polarized planar antenna and the narrower the relative bandwidth. The larger the period of the periodic patch 1 is, the better the directivity of the polarized planar antenna is, but the whole of the polarized planar antenna will be The size is increased.
  • the periodic patch 1 is arranged in a 90 degree rotational symmetry manner, but may also be arranged in other ways while suppressing cross polarization. However, it should be noted that the cross-polarization performance of a polarized planar antenna may be degraded when using some other arrangement.
  • FIGS. 4a and 4b are respectively a polarized planar antenna in the prior art and a polarized planar antenna using the artificial magnetic conductor structure according to the present invention.
  • the polarized planar antenna using the artificial magnetic conductor structure of the present invention has a significantly reduced antenna height compared to the prior art polarized planar antenna using a metal reflector.
  • the medium between the antenna element and the artificial magnetic conductor structure may be air.
  • the antenna elements can be supported by posts 10 located at the four angular positions of the antenna elements.
  • the metal via 2 has a length of 21 mm and a diameter of 1.5 mm.
  • the dielectric substrate 4 is a Rogers R04003 substrate having a size of 360 mm ⁇ 360 mm ⁇ 0.76 mm, and a relative dielectric constant of 3.48, and a dielectric loss tangent value of 0.0027.
  • the size of the periodic patch 1 is 38 mm ⁇ 38 mm, and the period length (that is, the distance between the centers of two adjacent periodic patches 1 in the same row or the same column) is 40 mm.
  • the inner side of the rectangular frame 5 has a length of 20 mm, the length of the bent line 6 is about 108 mm, the width is 0.6 mm, and the width of the necklace portion with the metal via 2 is 1.5 mm.
  • the S-parameters of the polarized planar antenna of the artificial magnetic conductor structure using the parameters in the above preferred embodiment obtained by simulation are compared with the S-parameters of the polarized planar antenna using the ideal magnetic conductor.
  • the metal plane can be considered as an ideal magnetic conductor.
  • whether the curve of ⁇ S11 ⁇ is below the straight line of -15 dB is one of the performance indexes of the antenna of the mobile communication base station.
  • the intersection of the ⁇ S11 ⁇ curve and the -15dB line is at the frequency At 0.69 GHz and 0.96 GHz, and below the -15 dB line between 0.69 GHz and 0.96 GHz.
  • the -15 dB bandwidth of the polarization plane antenna using the artificial magnetic conductor structure of the present invention is 690 MHz-960 MHz.
  • the -15 dB relative bandwidth of the above polarized planar antenna is about 33%.
  • the -15 dB relative bandwidth of a polarized planar antenna using metal as a reflector is difficult to exceed 30%.
  • the distance between the two is preferably 9 mm, and the height of the artificial magnetic conductor structure is preferably 21 mm, so the height of the polarized planar antenna is about 30 mm.
  • the antenna oscillator and the center frequency of 820 MHz are The distance between the reflectors should be approximately 95 mm.
  • the overall height of the polarized planar antenna using the artificial magnetic conductor structure of the present invention is much smaller than the height of the polarized planar antenna using the metal reflector in the prior art when the same center frequency is used.
  • the technical solution provided by the embodiment of the present invention provides a relatively wide working bandwidth for the polarized planar antenna while maintaining the simple structure of the artificial magnetic conductor structure, and can greatly reduce the height of the polarized planar antenna, that is, Has a low profile.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明实施例公开了一种人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线,其中人工磁导体结构单元包括金属接地板、金属过孔、介质基板和周期贴片,所述周期贴片在所述介质基板上刻蚀形成,并且所述周期贴片由矩形框和弯折线组成,所述弯折线的两端在所述矩形框内与所述矩形框电连接,并且所述弯折线通过所述金属过孔与所述金属接地板电连接,所述金属过孔在所述弯折线的所述两端之间与所述弯折线电连接。

Description

人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线 技术领域
本发明涉及电磁场技术的超材料领域,尤其涉及一种人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线。
背景技术
软硬表面、电磁带隙结构、左手材料以及人工磁导体(Artificial Magnetic Conductor,AMC)等名词越来越多的出现在电磁场技术领域中。这些结构或者材料均具有在自然界中并不存在但极具价值的电磁特性,因此这些结构或材料也被称为超材料。而它们所具有的奇特的电磁特性已经在实现新型高性能天线与微波器件领域显示出强大的优势。
由于理想电导体表面需满足切向电场为零的边界条件,所以当一平面波入射到理想电导体表面时,反射波的电场与入射波的电场之间有180度的相位差。这使得在将金属用作天线的反射板以增强半空间辐射时,天线与反射板之间的距离需为大约四分之一波长。否则,反射波的反相电场会使天线的辐射性能大幅下降。这样就增大了天线的尺寸,在实际应用中造成不便。
由电磁场理论中的对偶性原理可知,当平面波入射到理想磁导体表面时,入射波与反射波的电场是同相的。因此,如果用理想磁导体(Perfect Electronic Conductor,PEC)做天线的反射板,就可以实现新型的低剖面天线。但是,理想磁导体在自然界中是不存在的。
为了实现理想磁导体的电磁特性,人们提出了人工磁导体结构。这种结构同样具有理想磁导体对平面波的同相位反射特性;目前,关于人工磁导体结构的研究很多,但其宽带特性一直是研究人工磁导体结构无法逾越 的瓶颈。
发明内容
有鉴于此,本发明实施例所要解决的技术问题就是现有技术中的人工磁导体结构无法提供宽带特性。
因此,本发明实施例的一个目的在于提供一种人工磁导体结构单元,所述人工磁导体结构单元包括金属接地板、金属过孔、介质基板和周期贴片,所述周期贴片在所述介质基板上刻蚀形成,并且所述周期贴片由矩形框和弯折线组成,所述弯折线的两端在所述矩形框内与所述矩形框电连接,并且所述弯折线通过所述金属过孔与所述金属接地板电连接,所述金属过孔与所述弯折线的连接点在所述弯折线的所述两端之间。
所述金属接地板与所述介质基板之间为空气。
所述金属过孔的长度为21mm,直径为1.5mm。
本发明实施例的另一目的在于提供一种人工磁导体结构,包括多个上述的人工磁导体结构单元,所述多个人工磁导体结构单元的周期贴片排布在所述介质基板上,并且所述多个人工磁导体结构单元中每个的所述弯折线通过所述金属过孔与所述金属接地板电连接。
其中,所述周期贴片在所述介质基板上周期性排布。
其中,所述金属接地板与所述介质基板之间为空气。
其中,所述金属过孔的长度为21mm,直径为1.5mm。
本发明实施例的又一目的在于提供一种极化平面天线,该极化平面天线将上述的人工磁导体结构用作反射板。
其中,所述极化平面天线的天线振子与所述人工磁导体结构之间的距离为9mm。其中,所述极化平面天线的极化类型为以下之一:圆形极化、线性极化、双极化。
通过本发明所提供的技术方案能够实现以下有益效果:在保持人工磁 导体结构的简单结构的前提下,为极化平面天线提供了相对较宽的工作带宽,同时能够大幅减小极化平面天线的高度,即具有低剖面。
附图说明
结合实施例并参考附图对本发明进行详细说明,在附图中:
图1为根据本发明的一个实施例的人工磁导体结构的一个结构单元的示意图;
图2为根据本发明的一个实施例的人工磁导体结构的示意图;
图3为使用根据本发明的人工磁导体结构的极化平面天线的平面示意图;
图4a现有技术中的极化平面天线的截面示意图;
图4b为使用根据本发明的人工磁导体结构的极化平面天线的截面示意图;
图5为使用根据本发明的人工磁导体结构的计划平面天线的S参数的曲线图。
具体实施方式
本发明实施例所公开的人工磁导体结构的一个结构单元的示意图如图1中所示。可以看出,人工磁导体结构的一个结构单元包括:周期贴片1、金属过孔2、金属接地板3、介质基板4。进一步地,周期贴片1包括矩形框5和弯折线6。
周期贴片1以刻蚀方式形成在介质基板4上。周期贴片1的弯折线6的两端在矩形框5内与矩形框5电连接。弯折线6通过金属过孔2电连接到金属接地板3上,金属过孔2在弯折线6的两端之间与弯折线6电连接。较优地,金属过孔2与弯折线6的连接点位于弯折线6的中点。金属过孔2使得周期贴片1与金属接地板3之间形成LC并联等效电路,其中,周期贴 片1的矩形框5可以等效为电容器,弯折线6可以等效为电感器,并且金属过孔2可以等效为电感器。因此,在保证弯折线6的长度的前提下,弯折线6可以采用任意形状。矩形框5是图1中所示灰色的方形环部分。
金属接地板3与介质基板4之间填充的介质可以是空气。另外,金属接地板3与介质基板4之间也可以为真空。
当入射到人工磁导体结构上的电磁波的频率与等效的LC并联等效电路的谐振频率相近甚至相等时,人工磁导体结构表现出高阻抗特性。此时,入射波与其反射波的相位差(也就是反射相位)大约为0度。当反射相位为0度时,人工磁导体呈现理想磁导体的特性。因此,使用该人工磁导体结构的极化平面天线的相对带宽与其等效电容成反比,与等效电感成正比。因此,在中心频率不变的情况下,使用该人工磁导体结构的极化平面天线的等效电容越大,相对带宽越窄;等效电感越大,相对带宽越宽。
图2中示出了根据本发明的一个实施例的人工磁导体结构。从图2中能够看出,在本发明的人工磁导体结构中,在抑制交叉极化的前提下,人工磁导体结构的周期贴片1可以采用任何排布方式,并且较优地以周期性规则方式布置。在图2中,该人工磁导体结构的表面上布置有9行9列的周期贴片1,周期贴片1的弯折线6的排布方向可通过仿真结果来得到。并且能够看到,周期贴片1并不一定填满介质基板4,而是空出介质基板4的中心。其中的空白部分可以便于由同轴线穿过向天线振子馈电,并且不会影响极化平面天线的整体性能。
图3中示出了使用根据本发明的人工磁导体结构的极化平面天线。可以看到,极化平面天线包括天线振子以及位于天线振子下方的人工磁导体结构。天线振子包括天线介质基板7、下表面金属贴片8和上表面金属贴片9。下表面金属贴片8和上表面金属贴片9所决定的极化平面天线的类型可以是圆形极化、线性极化或者双极化等等。位于天线振子下方的人工磁导 体结构被用作反射板。
从图1中可以知道,使用本发明人工磁导体结构的极化平面天线的相对带宽与其等效电容成反比,与等效电感成正比。
因为矩形框5与金属接地板3之间形成平板电容器,所以矩形框5的面积的改变可以引起人工磁导体结构的相对带宽的变化。矩形框5的面积越大,则其等效电容越大,因而人工磁导体结构的相对带宽越窄。
介质基板4、金属接地板3与介质基板4之间的介质(或真空)的相对介电常数的改变可以引起人工磁导体结构的相对带宽的变化。介质基板4和/或金属接地板3与介质基板4之间的介质的相对介电常数越大,则矩形框5的等效电容器的等效电容越大,从而使得人工磁导体结构的相对带宽越窄。除此以外,介质基板4和/或金属接地板3与介质基板4之间的介质的相对介电常数的增大,还会导致天线的中心频率越低,相对带宽越窄,极化平面天线的增益降低。
因为弯折线6可以等效为电感器,所以弯折线6的长度和/或宽度的改变可以引起人工磁导体结构的相对带宽的变化。弯折线6的长度越大、宽度越小,则其等效电感越大,因而人工磁导体结构的相对带宽越宽。
因为金属过孔2可以等效为电感器,所以金属过孔2的长度和/或宽度的改变可以引起人工磁导体结构的相对带宽的变化。金属过孔2的长度越大、直径越小,则其等效电感越大,因而人工磁导体结构的相对带宽越宽。但是应当注意,金属过孔2的长度在一定程度上决定了人工磁导体结构的高度,即金属接地板3与介质基板4之间的距离,从而影响到使用本发明的人工磁导体结构的极化平面天线的高度。除此以外,金属过孔2的直径过小也会导致制作难度增大,以及天线的交叉极化现象增强。因此,需要对金属过孔2的长度和直径进行合理选择,具体选择可以通过仿真得到。
介质基板4的尺寸与周期贴片1的尺寸和周期数有关。周期贴片1的 尺寸越大,则极化平面天线的中心频率越低,相对带宽越窄;周期贴片1的周期数越大,则极化平面天线的方向性越好,但是会使极化平面天线的整体尺寸增大。在本申请的文件中,周期贴片1采用90度旋转对称的方式布置,但是也可以在抑制交叉极化的前提下采用其他方式布置。但是需要注意,在使用某些其他的布置方式时,极化平面天线的交叉极化性能有可能变差。
图4a和图4b分别为现有技术中的极化平面天线以及使用根据本发明的人工磁导体结构的极化平面天线。通过图4a和图4b的对比可以看到,使用本发明的人工磁导体结构的极化平面天线与现有技术中使用金属反射板的极化平面天线相比,天线高度大幅减小。天线振子与人工磁导体结构之间的介质可以是空气。天线振子可以由位于天线振子的四个角位置的立柱10支撑。
通过仿真可以得到,在本发明的一个优选实施例中,金属过孔2的长度为21mm,直径为1.5mm。进一步地,介质基板4为Rogers R04003基板,其尺寸为360mm×360mm×0.76mm,并且相对介电常数为3.48,介质损耗正切值为0.0027。进一步地,周期贴片1的尺寸为38mm×38mm,周期长度(即同一行或同一列中相邻的两个周期贴片1的中心之间的距离)为40mm。进一步地,矩形框5的内边长为20mm,弯折线6的长度为大约108mm,宽度为0.6mm,与金属过孔2项链部分的宽度为1.5mm。
从图5中可以看出,将通过仿真得到的使用上述优选实施例中的参数的人工磁导体结构的极化平面天线的S参数与使用理想磁导体的极化平面天线的S参数进行对比。一般情况下,可以将金属平面看作理想磁导体。图5中,│S11│的曲线是否在-15dB的直线下方是移动通信基站天线的性能指标之一。
从图5中可以看到,│S11│曲线与-15dB直线的交汇点分别在频率为 0.69GHz和0.96GHz处,并且在0.69GHz和0.96GHz之间位于-15dB直线的下方。从而可以得知,对于中心频率在825MHz左右的目标应用(例如,GSM 800或者CDMA 850)中,使用本发明的人工磁导体结构的极化平面天线的-15dB带宽为690MHz-960MHz。从而可以得到,以上极化平面天线的-15dB相对带宽大约为33%。在现有技术中,使用金属作为反射板的极化平面天线的-15dB相对带宽很难超过30%。
经过仿真可知,天线振子与人工磁导体结构的上表面之间的距离的理论值为零。但是当两者之间的距离过于小时,两者之间的互耦现象非常严重。所以经过优化后,可以知道,两者之间的距离较优地为9mm,人工磁导体结构的高度较优地为21mm,因此极化平面天线的高度为大约30mm。
而对于现有技术中使用金属反射板的极化平面天线,由于天线振子与反射板之间的距离应当为中心频率对应波长的四分之一,所以对于820MHz的中心频率来说,天线振子与反射板之间的距离应当为大约95mm。
能够看出,在使用相同的中心频率时,使用本发明的人工磁导体结构的极化平面天线的整体高度远远小于现有技术中使用金属反射板的极化平面天线的高度。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例所提供的技术方案,在保持人工磁导体结构的简单结构的前提下,为极化平面天线提供了相对较宽的工作带宽,同时能够大幅减小极化平面天线的高度,即具有低剖面。

Claims (10)

  1. 一种人工磁导体结构单元,所述人工磁导体结构单元包括金属接地板、金属过孔、介质基板和周期贴片,所述周期贴片在所述介质基板上刻蚀形成,并且所述周期贴片由矩形框和弯折线组成,所述弯折线的两端在所述矩形框内与所述矩形框电连接,并且所述弯折线通过所述金属过孔与所述金属接地板电连接,所述金属过孔与所述弯折线的连接点在所述弯折线的所述两端之间。
  2. 根据权利要求1所述的人工磁导体结构单元,其中,所述金属接地板与所述介质基板之间为空气。
  3. 根据权利要求1或2所述的人工磁导体结构单元,其中,所述金属过孔的长度为21mm,直径为1.5mm。
  4. 一种人工磁导体结构,所述人工磁导体结构包括多个根据权利要求1中所述的人工磁导体结构单元,所述多个人工磁导体结构单元的周期贴片排布在所述介质基板上,并且所述多个人工磁导体结构单元中每个的所述弯折线通过所述金属过孔与所述金属接地板电连接。
  5. 根据权利要求4所述的人工磁导体结构,其中,所述周期贴片在所述介质基板上周期性排布。
  6. 根据权利要求4或5所述的人工磁导体结构,其中,所述金属接地板与所述介质基板之间为空气。
  7. 根据权利要求6所述的人工磁导体结构,其中,所述金属过孔的长度为21mm,直径为1.5mm。
  8. 一种极化平面天线,所述极化平面天线使用根据权利要求4至7任一所述的人工磁导体结构作为反射板。
  9. 根据权利要求8所述的极化平面天线,其中,所述极化平面天线的天线振子与所述人工磁导体结构之间的距离为9mm。
  10. 根据权利要求8或9所述的极化平面天线,其中,所述极化平面天线的极化类型为以下之一:圆形极化、线性极化、双极化。
PCT/CN2016/071539 2015-05-13 2016-01-20 人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线 WO2016180052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510241020.2A CN106299632A (zh) 2015-05-13 2015-05-13 人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线
CN201510241020.2 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016180052A1 true WO2016180052A1 (zh) 2016-11-17

Family

ID=57248702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071539 WO2016180052A1 (zh) 2015-05-13 2016-01-20 人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线

Country Status (2)

Country Link
CN (1) CN106299632A (zh)
WO (1) WO2016180052A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953171A (zh) * 2017-05-02 2017-07-14 深圳鲲鹏无限科技有限公司 一种天线和无线路由器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718599B (zh) * 2019-07-24 2021-02-11 台達電子工業股份有限公司 通訊裝置
CN113488776A (zh) * 2021-05-07 2021-10-08 维沃移动通信有限公司 超表面结构
CN114843725B (zh) * 2022-05-16 2023-11-03 江苏电子信息职业学院 一种超宽带大角度带阻型频率选择表面

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199273A1 (en) * 2008-10-27 2011-08-18 Electronics And Telecommunications Research Institute Planar meta-material having negative permittivity, negative permeability, and negative refractive index, planar meta-material structure including the planar meta-material, and antenna system including the planar meta-material structure
CN102349192A (zh) * 2009-03-30 2012-02-08 日本电气株式会社 谐振天线
CN103703612A (zh) * 2011-05-26 2014-04-02 德克萨斯仪器股份有限公司 高阻抗表面
JP2014216751A (ja) * 2013-04-24 2014-11-17 アルプス電気株式会社 基板及びアンテナ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451189B1 (en) * 2009-04-15 2013-05-28 Herbert U. Fluhler Ultra-wide band (UWB) artificial magnetic conductor (AMC) metamaterials for electrically thin antennas and arrays
KR101151379B1 (ko) * 2010-12-15 2012-06-08 연세대학교 산학협력단 다중대역 특성을 갖는 인공자기도체 및 이를 포함하는 안테나
CN204067569U (zh) * 2014-09-05 2014-12-31 华南理工大学 一种基于人工磁导体结构的宽频带偶极子天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199273A1 (en) * 2008-10-27 2011-08-18 Electronics And Telecommunications Research Institute Planar meta-material having negative permittivity, negative permeability, and negative refractive index, planar meta-material structure including the planar meta-material, and antenna system including the planar meta-material structure
CN102349192A (zh) * 2009-03-30 2012-02-08 日本电气株式会社 谐振天线
CN103703612A (zh) * 2011-05-26 2014-04-02 德克萨斯仪器股份有限公司 高阻抗表面
JP2014216751A (ja) * 2013-04-24 2014-11-17 アルプス電気株式会社 基板及びアンテナ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953171A (zh) * 2017-05-02 2017-07-14 深圳鲲鹏无限科技有限公司 一种天线和无线路由器
CN106953171B (zh) * 2017-05-02 2023-05-30 深圳鲲鹏无限科技有限公司 一种天线和无线路由器

Also Published As

Publication number Publication date
CN106299632A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN104993226B (zh) 一种人工磁导体单元、人工磁导体结构及平面天线
US8319689B2 (en) Patch antenna with wide bandwidth at millimeter wave band
CN106384883B (zh) 一种超材料交叉偶极子圆极化天线
US8947312B2 (en) Wide band array antenna
WO2016180052A1 (zh) 人工磁导体结构单元、人工磁导体结构以及相应的极化平面天线
JP2018519737A (ja) 三偏波の信号用のアンテナ素子
CN103972658B (zh) 宽带宽角扫描的双圆极化微带天线
CN104617383A (zh) 多波束扫描透镜天线
WO2018011635A1 (en) Microstrip antenna, antenna array and method of manufacturing microstrip antenna
TWI628858B (zh) 電子切換波束方向陣列天線
EP3201986A1 (en) Antenna device for a base station antenna system
WO2014011119A1 (en) Antenna enhancing structure for improving the performance of an antenna loaded thereon, antenna device and method of fabricating thereof
TW201635646A (zh) 天線及複合天線
WO2019047512A1 (zh) 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线
CN110233332A (zh) 基于枝节加载和寄生结构的基站天线
CN105206940A (zh) 基于人工磁导体的低剖面极化扭转反射板
CN204732528U (zh) 一种人工磁导体单元、人工磁导体结构及平面天线
CN209730160U (zh) 一种周期性类雪花结构超宽带天线
CN105356042A (zh) 小型双陷波超宽带天线
Gupta et al. Design of Rectangular Patch Antenna on the Hilbert Fractal-shaped High Impedance Surface
CN203859224U (zh) 宽带宽角扫描的双圆极化微带天线
CN110233353B (zh) 一种超材料单元及基于超材料的双层辐射天线装置
CN101707284B (zh) 一种用于射频前端系统的ltcc电小集成天线
CN115133277A (zh) 一种天线辐射臂、天线辐射单元及多频阵列天线
CN103762419B (zh) 一种用于泛在无线通信节点的双频宽带天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16791902

Country of ref document: EP

Kind code of ref document: A1