WO2019047512A1 - 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线 - Google Patents

一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线 Download PDF

Info

Publication number
WO2019047512A1
WO2019047512A1 PCT/CN2018/081547 CN2018081547W WO2019047512A1 WO 2019047512 A1 WO2019047512 A1 WO 2019047512A1 CN 2018081547 W CN2018081547 W CN 2018081547W WO 2019047512 A1 WO2019047512 A1 WO 2019047512A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance surface
antenna
conformal
cylindrical
vertical polarization
Prior art date
Application number
PCT/CN2018/081547
Other languages
English (en)
French (fr)
Inventor
蒋之浩
洪伟
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2019047512A1 publication Critical patent/WO2019047512A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the invention belongs to the field of electronic devices of wireless communication systems, and particularly relates to a vertically polarized ultra-wideband omnidirectional antenna with a conformal impedance surface, which provides stable omnidirectional radiation characteristics and high radiation efficiency in a wide bandwidth with controllable bandwidth. It is used in the fields of fifth generation mobile communication, car network wireless communication and so on.
  • the electromagnetic impedance surface is a planar electromagnetic structure composed of planar sub-wavelength metal or dielectric elements arranged in a periodic arrangement. By designing its electrical and magnetic response, it can be used to artificially control the electromagnetic field interface characteristics, thereby effectively controlling the electromagnetic wave propagation. And radiation. Planar electromagnetic impedance surfaces are widely used in the field of antennas. High-impedance surfaces are used to realize low-profile antennas, anisotropic impedance surfaces are proposed to realize circularly polarized antennas, and partially reflective surfaces are used to form cavities to obtain high-gain antennas. However, since the previously proposed antenna with an impedance surface mostly operates near the resonance frequency of the impedance surface unit, the operating bandwidth of the antenna is greatly limited. The impedance surface is still an area that has not been explored in terms of increasing the operating bandwidth of the antenna.
  • the present invention proposes a compact vertically polarized ultra-wideband omnidirectional antenna comprising a conformal impedance surface.
  • the structure uses a coaxial waveguide to feed a cylindrical narrow-band monopole antenna and surrounds the monopole antenna with a conformal impedance surface having a sub-wavelength radius to change the input impedance of the antenna by changing the metal surface of the impedance surface.
  • the dispersion characteristics and anisotropy of the chip unit enable a bandwidth-controlled ultra-wideband antenna.
  • the invention has the advantages of compact structure, small volume, stable omnidirectional radiation characteristics, low cross polarization, high radiation efficiency, etc., and has the field of the fifth generation mobile communication, vehicle networking communication and the like in the future. Important prospects.
  • An object of the present invention is to provide a compact vertical-polarized ultra-wideband omnidirectional antenna including a conformal impedance surface, which has a lightweight and compact antenna structure, and realizes an ultra-wide impedance bandwidth and a stable omnidirectional radiation direction.
  • a compact vertical polarization ultra-wideband omnidirectional antenna with a conformal impedance surface of the present invention comprising a circular metal floor with a circular hole in the middle, a cylindrical monopole antenna, and a coaxial waveguide feed line And a circular ring-shaped impedance surface;
  • the cylindrical monopole antenna is vertically disposed at an intermediate circular hole on the circular metal floor, and the coaxial waveguide feed wire is located at a middle circular hole at the bottom of the circular metal floor, the coaxial waveguide feed line
  • the inner conductor is connected to the cylindrical monopole antenna, and the outer conductor of the coaxial waveguide feed line is connected to the circular metal floor, and the toroidal impedance surface is concentrically surrounded by the periphery of the cylindrical monopole antenna.
  • the cylindrical monopole antenna includes a section of a thick cylindrical metal column and a section of a thin cylindrical metal column, the coarse cylindrical metal column being on the upper portion of the thin cylindrical metal column.
  • the toroidal impedance surface is comprised of equally sized, equally spaced metal patch units printed on a flexible dielectric substrate.
  • the coaxial waveguide feed line is a 50 ohm coaxial waveguide.
  • the height of the toroidal impedance surface is the same as or different from the height of the cylindrical monopole antenna.
  • the radius of the toroidal impedance surface is less than 1/5 of the height of the cylindrical monopole antenna.
  • the toroidal impedance surface contains three metal patch units in the axial direction and multiple metal patch units in the tangential direction.
  • a compact vertical polarization ultra-wideband omnidirectional antenna with a conformal impedance surface proposed by the present invention has the following advantages:
  • (1) Has a controllable impedance bandwidth. This is because the conformal impedance surface is located at the near field of the monopole antenna, which can control the current distribution on the monopole antenna, thereby changing the input impedance of the antenna. By controlling the dispersion characteristics and anisotropy of the impedance surface, it can be maintained. In the case where the structure and size of the monopole antenna are constant, the impedance bandwidth of the antenna is adjusted only by changing the structure of the impedance surface unit.
  • the monopole antenna consists of a two-stage cylindrical structure with a conformal impedance surface having a multiple of 4 in the tangential direction, typically 8, 12, or 16, and a conformal impedance surface and a monopole antenna. Concentric placement allows the overall antenna structure to have high rotational symmetry.
  • the conformal impedance surface uses an ultra-thin dielectric substrate, which can be fabricated by a conventional printed circuit board process and operates at the resonant frequency of the metal patch unit. other than.
  • Figure 1 shows a schematic side view of an antenna of the present invention.
  • Figure 2 shows a top plan view of the antenna of the present invention.
  • the figure shows: a circular metal floor 1; a cylindrical monopole antenna 2, a thick cylindrical metal column 2a, a thin cylindrical metal column 2b; a coaxial waveguide feed line 3; a toroidal impedance surface 4, on a flexible dielectric substrate 4a; metal patch unit 4b.
  • Figure 3 shows the surface impedance curve of the conformal impedance surface
  • Figure 4 shows the simulation and test of the standing wave voltage ratio of the compact vertically polarized ultra-wideband omnidirectional antenna with a conformal impedance surface
  • Figure 5 shows the simulated and measured normalized far-field radiation pattern of the compact vertically polarized ultra-wideband omnidirectional antenna with a conformal impedance surface; where a is a 2.5 GHz pattern and b is a 4.5 GHz pattern , c is a 6.5 GHz pattern;
  • Figure 6 shows the simulated and measured gain curves and efficiency curves for a compact vertically polarized UWB omnidirectional antenna with a conformal impedance surface.
  • a compact vertical polarization ultra-wideband omnidirectional antenna with a conformal impedance surface of the present invention uses a conventional coaxial waveguide feed mode with a characteristic impedance of 50 ohms to feed a monopole antenna from the bottom of the metal floor.
  • a circular hole with a radius of 2 mm is opened in the middle of the metal floor for the inner conductor of the coaxial feed line having a radius of 0.6 mm.
  • a unequal-radius monopole antenna is used, and a thin cylindrical metal column is placed under a thick cylindrical metal column to appropriately increase the inductance.
  • the thicker cylindrical metal column has a radius of 2 mm and a length of 25 mm.
  • the thinner cylindrical metal column has a radius of 0.6 mm and a length of 3 mm.
  • the height of the monopole antenna is a quarter wavelength, which determines the low end of the proposed UWB antenna operating band.
  • a layer of conformal impedance surface consisting of equally sized, equally spaced metal patch units printed on a flexible dielectric substrate.
  • the flexible dielectric substrate is Taconic TLY-5 with a relative dielectric constant of 2.2 and a loss tangent equal to 0.0009.
  • the height of the impedance surface is 30 mm, which should be substantially the same as that of the monopole antenna, and the radius is 4.8 mm, and the element is smaller than the working wavelength. Therefore, in the vertical direction, three metal patch units are used, and in the tangential direction, in order to ensure better rotational symmetry, 12 metal patch units are used.
  • the geometry of the metal patch unit may be rectangular or other shape. For a rectangular metal patch unit, the height is 9.6 mm and the width is 1.9 mm.
  • the electromagnetic response can be modeled as a series connection of distributed inductance and distributed capacitance. The resonant circuit is connected in parallel in the vacuum.
  • the surface impedance of the conformal impedance surface can be controlled, thereby changing the current distribution on the monopole antenna to achieve regulation of the input impedance of the antenna.
  • the input impedance of different frequency bands of the antenna can be independently designed to achieve different impedance bandwidths.
  • the capacitive impedance surface is introduced, which enables the integrated antenna to generate a new resonant mode at high frequencies, thereby achieving widening of the impedance bandwidth.
  • Figure 1 and Figure 2 show a schematic diagram of a compact vertically polarized ultra-wideband omnidirectional antenna with a conformal impedance surface.
  • the conformal impedance surface is placed concentrically with the cylinder of the monopole antenna.
  • Figure 3 shows the surface impedance plot of the conformal impedance surface. It can be seen that the surface impedance of the impedance surface is capacitive in the 2.1-8.2 GHz target band. Its resonant frequency is much higher than the target operating frequency band, so the loss in the target frequency band is very low.
  • Figure 4 shows the simulated and tested standing wave voltage ratio for a compact vertically polarized ultra-wideband omnidirectional antenna with a conformal impedance surface. It can be seen that the results of the simulation and experiment are very consistent. In the ultra-wide frequency range (2.12-8.2 GHz), the standing wave voltage ratio is less than 2, which proves that impedance matching is well achieved in this frequency range.
  • Figure 5 shows the H-plane simulation and the measured normalized far-field radiation pattern of the compact vertical-polarized ultra-wideband omnidirectional antenna with conformal impedance surface. It can be seen from the figure that the antenna maintains stable omnidirectional radiation over an ultra-wide operating frequency range, and the radiation gain in the horizontal plane varies with horizontal angles resulting in a drift of less than 1.2 dB. At the same time, the antenna cross-polarizes less than -23 dB over an ultra-wide operating frequency range.
  • Figure 6 shows the simulated and measured gain curves for a compact vertically polarized UWB omnidirectional antenna with a conformal impedance surface.
  • the compact vertical polarization ultra-wideband omnidirectional antenna having a conformal impedance surface increases in gain over the operating frequency band from 3.7 dBi to 6.6 dBi, and the radiation efficiency is greater than 95%, indicating that the increased conformal impedance surface is There is almost no negative impact on the radiation performance of the antenna in the case of effective regulation of the antenna impedance.
  • a compact vertical polarization ultra-wideband omnidirectional antenna comprising a conformal impedance surface, the antenna comprising a circular metal floor with a circular hole in the middle, a cylindrical monopole antenna 2, a coaxial waveguide a feed line 3, and a toroidal impedance surface 4;
  • the cylindrical monopole antenna 2 is vertically disposed at an intermediate circular hole on the circular metal floor 1, and the coaxial waveguide feed line 3 is located at the middle of the bottom of the circular metal floor 1
  • the inner conductor of the coaxial waveguide feed line 3 is connected to the cylindrical monopole antenna 2
  • the outer conductor of the coaxial waveguide feed line 3 is connected to the circular metal floor 1
  • the circular ring-shaped impedance surface 4 is concentrically surrounded by the cylindrical monopole Sub-antenna 2 periphery.
  • the cylindrical monopole antenna 2 includes a section of a thick cylindrical metal column 2a and a section of a thin cylindrical metal column 2b, and a thick cylindrical metal column 2a is at an upper portion of the thin cylindrical metal column 2b;
  • the toroidal impedance surface 4 is composed of metal patch units 4b of equal size and equally spaced printed on the flexible medium substrate 4a.
  • the present invention provides a compact vertical-polarized ultra-wideband omnidirectional antenna including a conformal impedance surface, which can achieve an ultra-wide impedance bandwidth and stable omnidirectional radiation performance with low cross-polarization.
  • the utility model has the advantages of simple design, easy processing, small volume, light weight, replaceability and high radiation efficiency, and has important application prospects in the fields of the fifth generation mobile communication and the wireless communication of the vehicle network.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明公开一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线。所述天线包括一个中间带有圆孔的圆形金属地板(1)、圆柱形单极子天线(2)、同轴波导馈电线(3)、以及圆环形阻抗表面(4);圆柱形单极子天线(2)垂直设置在圆形金属地板(1)上的中间圆孔处,同轴波导馈电线(3)位于圆形金属地板(1)底部的中间圆孔处,同轴波导馈电线(3)内导体与圆柱形单极子天线(2)相连,圆环形阻抗表面(4)同心环绕于圆柱形单极子天线(2)外围。利用本发明的结构,可以实现超宽带垂直极化天线,且在整个工作频带内保持全向辐射特性稳定、交叉极化低和辐射效率高。

Description

一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线 技术领域
本发明属于无线通信系统电子器件领域,具体涉及一种含有共形阻抗表面的垂直极化超宽带全向天线,在带宽可控的宽频带内提供稳定的全向辐射特性和高辐射效率,可被应用于第五代移动通信、车联网无线通信等领域。
背景技术
电磁阻抗表面是一种由平面亚波长金属或介质单元按周期排列组合而成的平面电磁结构,通过设计其电、磁响应,可以用于人为地调控电磁场界面特性,进而有效地控制电磁波的传播和辐射。平面电磁阻抗表面在天线领域被广泛应用,人们利用高阻抗表面实现了低剖面天线、提出各向异性阻抗表面实现圆极化天线、以及采用部分反射表面形成腔体获得高增益天线。然而,由于之前提出的含有阻抗表面的天线大多工作于阻抗表面单元的谐振频率附近,所以天线的工作带宽受到了极大限制。阻抗表面在提升天线工作带宽方面仍是一个未被深入探索的领域。
垂直极化单极子天线在无线通信中有着广泛应用,传统的单极子天线存在带宽窄的问题,只能提供10%左右的工作带宽。为了拓展其带宽,寄生单元被放置于单极子天线附近,可将带宽扩展至接近一个倍频程。此外,人们通过设计含有渐变结构的单极子印刷天线,从而获得带宽超过一个倍频程的阻抗带宽。然而,由于此类印刷天线具有非旋转对称性结构,其辐射方向图易随频率变化而产生畸变,进而不能在一个超宽的频带内保持稳定的全向辐射特性。同时,在高频段,由于此类天线结构工作于较复杂的高阶模式,具有非均匀的电流分布,因此,天线辐射方向图的交叉极化会变高。
本发明提出了一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线。该结构利用同轴波导进行馈电一个圆柱形窄带单极子天线,并利用一个具有亚波长半径的共形阻抗表面环绕此单极子天线进而改变天线的输入阻抗,通过改变阻抗表面的金属贴片单元的色散特性和各向异性,实现带宽可控的超宽带天线。相比于已有的超宽带天线结构,本发明具有结构紧凑、体积小、全向辐射特性稳定、交叉极化低、辐射效率高等优点,在未来第五代移动通信、车联网通信等领域有着重要的前景。
发明内容
技术问题:本发明的目的是提供一种含有共形阻抗表面的紧凑型垂直极化超宽带全向 天线,具有轻便、紧凑的天线结构,实现了超宽的阻抗带宽和稳定的全向辐射方向图。
技术方案:本发明的一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,包括一个中间带有圆孔的圆形金属地板、圆柱形单极子天线、同轴波导馈电线、以及圆环形阻抗表面;圆柱形单极子天线垂直设置在圆形金属地板上的中间圆孔处,同轴波导馈电线位于圆形金属地板底部的中间圆孔处,同轴波导馈电线内导体与圆柱形单极子天线相连,同轴波导馈电线外导体与圆形金属地板相连,圆环形阻抗表面同心环绕于圆柱形单极子天线外围。
所述圆柱形单极子天线包括一段粗圆柱形金属柱和一段细圆柱形金属柱,粗圆柱形金属柱在细圆柱形金属柱上部。
所述圆环形阻抗表面由印刷在柔性介质基片上的大小相等、等间距排列的金属贴片单元组成。
所述的同轴波导馈电线为50欧姆同轴波导。
所述的圆环形阻抗表面的高度与圆柱形单极子天线的高度相同或不相同。
所述的圆环形阻抗表面的半径小于圆柱形单极子天线高度的1/5。
圆环形阻抗表面在轴向含有3个金属贴片单元,在切向含有4的倍数个金属贴片单元。
有益效果:本发明提出的一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其优势在于:
(1)具有可控的阻抗带宽。这是因为共形阻抗表面位于单极子天线的近场处,可以控制单极子天线上的电流分布,进而改变天线的输入阻抗,通过控制阻抗表面的色散特性和各向异性,可以在保持单极子天线结构和尺寸不变的情况下仅依靠改变阻抗表面单元的结构调节天线的阻抗带宽。
(2)具有稳定的全向辐射特性。这是由于单极子天线由两段圆柱形结构组成,共形阻抗表面在切向方向具有4的倍数个单元,通常为8、12、或16个,且共形阻抗表面和单极子天线同心放置,使得整体天线结构具有很高的旋转对称性。
(3)具有很低的交叉极化辐射。这是由于单极子天线和共形阻抗表面的半径远小于波长,且组成共形阻抗表面的金属贴片单元在切向方向的尺寸为深亚波长,因此,阻抗表面和单极子天线上的切向电流很小,保证了低交叉极化辐射。
(4)具有轻便、低损耗、可替换性、低成本,这是因为共形阻抗表面采用了超薄的介质基片,可用传统印刷电路板工艺制作,且工作在金属贴片单元的谐振频率以外。
附图说明
图1给出了本发明天线的侧视示意图。
图2给出了本发明天线的俯视示意图。
图中有:圆形金属地板1;圆柱形单极子天线2,粗圆柱形金属柱2a,细圆柱形金属柱2b;同轴波导馈电线3;圆环形阻抗表面4,柔性介质基片上4a;金属贴片单元4b。
图3给出了共形阻抗表面的表面阻抗曲线图;
图4给出了所述含有共形阻抗表面的紧凑型垂直极化超宽带全向天线的仿真和测试的驻波电压比;
图5给出了所述含有共形阻抗表面的紧凑型垂直极化超宽带全向天线的仿真和实测归一化远场辐射方向图;其中a是2.5GHz方向图,b是4.5GHz方向图,c是6.5GHz方向图;
图6给出了含有共形阻抗表面的紧凑型垂直极化超宽带全向天线的仿真和实测增益曲线、以及效率曲线。
具体实施方式
下面结合附图对本发明做进一步说明。
本发明的一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,采用传统同轴波导馈电方式,特征阻抗为50欧姆,从金属地板底部给单极子天线馈电。金属地板中间开有半径为2mm的圆孔,以供半径为0.6mm的同轴馈电线内导体穿过。在传统圆柱形单极子天线的基础上,采用不等半径单极子天线,在一段较粗的圆柱形金属柱下方有一段较细的圆柱形金属柱,以适当增加电感。较粗的圆柱形金属柱半径为2mm,长度为25mm。较细的圆柱形金属柱半径为0.6mm,长度为3mm。单极子天线的高度为四分之一波长,其决定了所提出的超宽带天线工作频段的低端。在单极子天线周围近场处,同心围绕一层共形阻抗表面,由印刷在柔性介质基片上的大小相等、等间距排列的金属贴片单元组成。柔性介质基片为Taconic TLY-5,相对介电常数为2.2,损耗角正切等于0.0009。为了不增加天线结构的尺寸,阻抗表面的高度为30mm,与单极子天线应当基本一致,且半径为4.8mm,元小于工作波长。因此,在垂直方向上,采用3个金属贴片单元,而在切向方向上,为了保证较好的旋转对称性,采用12个金属贴片单元。金属贴片单元的几何形状可以是矩形或其它形状,对于矩形金属贴片单元,其高为9.6mm,宽为1.9mm,在电磁响应上可以被建模为由分布电感和分布电容构成的串联谐振电路并联于真空中。通过设计金属贴片单元的尺寸,可以控制共形阻抗表面的表面阻抗,进而改变单极子天线上的电流分布,达到对天线输入 阻抗的调控。并通过控制共形阻抗表面的表面阻抗的色散特性,可以对天线不同频段的输入阻抗独立进行设计,从而实现不同的阻抗带宽。从原理上,由于单极子天线在其基础谐振模式高频处的阻抗呈感性,引入容性阻抗表面,可以使得集成天线在高频产生一个新的谐振模式,进而实现阻抗带宽的拓宽。
图1、图2给出了含有共形阻抗表面的紧凑型垂直极化超宽带全向天线的示意图。共形阻抗表面与单极子天线的圆柱体同心放置。
图3给出了共形阻抗表面的表面阻抗曲线图,可以看出,阻抗表面的表面阻抗在2.1-8.2GHz目标频段内呈容性。其谐振频率远高于目标工作频段,因此在目标频段损耗非常低。
图4给出了所述含有共形阻抗表面的紧凑型垂直极化超宽带全向天线的仿真和测试的驻波电压比。可以看出,仿真和实验的结果非常吻合。在超宽的频带范围内(2.12-8.2 GHz)驻波电压比小于2,证明了在该频率范围内很好的实现了阻抗匹配。
图5给出了所述含有共形阻抗表面的紧凑型垂直极化超宽带全向天线的H面仿真和实测归一化远场辐射方向图。由图可以看到,天线在超宽的工作频带范围内保持稳定的全向辐射,在水平面内辐射增益沿水平角度变化而产生的浮动小于1.2 dB。同时,天线在超宽的工作频带范围内交叉极化小于-23 dB。
图6给出了所述含有共形阻抗表面的紧凑型垂直极化超宽带全向天线的仿真和实测增益曲线。由图可以看到,仿真和实验的结果非常吻合。所述所述含有共形阻抗表面的紧凑型垂直极化超宽带全向天线在工作频带范围内的增益从3.7 dBi增长到6.6 dBi,且辐射效率大于95%,说明增加的共形阻抗表面在对天线阻抗实现有效调控的情况下对天线的辐射性能几乎没有负面影响。
本发明的一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,所述天线包括一个中间带有圆孔的圆形金属地板1、圆柱形单极子天线2、同轴波导馈电线3、以及圆环形阻抗表面4;圆柱形单极子天线2垂直设置在圆形金属地板1上的中间圆孔处,同轴波导馈电线3位于圆形金属地板1底部的中间圆孔处,同轴波导馈电线3内导体与圆柱形单极子天线2相连,同轴波导馈电线3外导体与圆形金属地板1相连,圆环形阻抗表面4同心环绕于圆柱形单极子天线2外围。
所述圆柱形单极子天线2包括一段粗圆柱形金属柱2a和一段细圆柱形金属柱2b,粗圆柱形金属柱2a在细圆柱形金属柱2b上部;
所述圆环形阻抗表面4由印刷在柔性介质基片上4a的大小相等、等间距排列的金属贴片单元4b组成。
综上所述,本发明提供了一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,可以实现超宽的阻抗带宽和稳定的全向辐射性能,且具有交叉极化低。并具有设计简单,易于加工,体积小,轻便,可替换,辐射效率高等优点,在第五代移动通信、车联网无线通信等领域有着重要的应用前景。
以上所述仅是本发明的优选实施方式。应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其特征在于,所述天线包括一个中间带有圆孔的圆形金属地板(1)、圆柱形单极子天线(2)、同轴波导馈电线(3)、以及圆环形阻抗表面(4);圆柱形单极子天线(2)垂直设置在圆形金属地板(1)上的中间圆孔处,同轴波导馈电线(3)位于圆形金属地板(1)底部的中间圆孔处,同轴波导馈电线(3)内导体与圆柱形单极子天线(2)相连,同轴波导馈电线(3)外导体与圆形金属地板(1)相连,圆环形阻抗表面(4)同心环绕于圆柱形单极子天线(2)外围。
  2. 根据权利要求1所述的含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其特征在于,所述圆柱形单极子天线(2)包括一段粗圆柱形金属柱(2a)和一段细圆柱形金属柱(2b),粗圆柱形金属柱(2a)在细圆柱形金属柱(2b)上部。
  3. 根据权利要求1所述的含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其特征在于,所述圆环形阻抗表面(4)由印刷在柔性介质基片(4a)上的大小相等、等间距排列的金属贴片单元(4b)组成。
  4. 根据权利要求1所述的含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其特征在于,所述的同轴波导馈电线(3)为50欧姆同轴波导。
  5. 根据权利要求1所述的含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其特征在于,所述的圆环形阻抗表面(4)的高度与圆柱形单极子天线(2)的高度相同或不相同。
  6. 根据权利要求1或5所述的含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其特征在于,所述的圆环形阻抗表面(4)的半径小于圆柱形单极子天线(2)高度的1/5。
  7. 根据权利要求1或3所述的含有共形阻抗表面的紧凑型垂直极化超宽带全向天线,其特征在于,圆环形阻抗表面(4)在轴向含有3个金属贴片单元(4b),在切向含有4的倍数个金属贴片单元(4b)。
PCT/CN2018/081547 2017-09-11 2018-04-02 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线 WO2019047512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710811514.9 2017-09-11
CN201710811514.9A CN107645057A (zh) 2017-09-11 2017-09-11 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线

Publications (1)

Publication Number Publication Date
WO2019047512A1 true WO2019047512A1 (zh) 2019-03-14

Family

ID=61111193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081547 WO2019047512A1 (zh) 2017-09-11 2018-04-02 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线

Country Status (2)

Country Link
CN (1) CN107645057A (zh)
WO (1) WO2019047512A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013597A (zh) * 2021-03-04 2021-06-22 西安电子科技大学 一种柱状宽带液体天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645057A (zh) * 2017-09-11 2018-01-30 东南大学 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线
CN108767433B (zh) * 2018-04-25 2020-09-29 东南大学 一种小型化三频段单向辐射天线
CN114069242A (zh) * 2021-11-26 2022-02-18 东南大学 一种含有圆环形阻抗表面的悬置贴片天线
CN114336033B (zh) * 2022-01-24 2023-07-04 南通大学 一种超宽带叶片状垂直极化全向天线

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469551A1 (en) * 2003-04-15 2004-10-20 Hewlett-Packard Development Company, L.P. Single-mode antenna assembly with planar monopole and grounded parasitic elements
CN102683809A (zh) * 2012-03-02 2012-09-19 四川大学 一种宽带小型化共形单极子天线
JP2013055407A (ja) * 2011-09-01 2013-03-21 Mitsubishi Electric Corp アンテナ装置
CN103956583A (zh) * 2014-04-23 2014-07-30 泰兴市迅达通讯器材有限公司 一种超宽带高增益全向天线
CN105161832A (zh) * 2015-08-12 2015-12-16 桂林电子科技大学 基于石墨烯覆层的可重构天线
CN105186137A (zh) * 2015-09-29 2015-12-23 深圳爱新自动化有限公司 一种基于多谐振结构的单馈电抗多径自适应天线
CN105609958A (zh) * 2016-01-29 2016-05-25 北京邮电大学 一种基于加载周期性超材料单元的紧凑型宽带单极子天线
CN105720361A (zh) * 2016-01-26 2016-06-29 电子科技大学 一种基于人工磁导体结构的宽带低剖面双极化全向天线
WO2017119223A1 (ja) * 2016-01-07 2017-07-13 株式会社村田製作所 ルネベルグレンズアンテナ装置
CN107645057A (zh) * 2017-09-11 2018-01-30 东南大学 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9900411D0 (en) * 1999-01-08 1999-02-24 Cambridge Ind Ltd Multi-frequency antenna feed

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469551A1 (en) * 2003-04-15 2004-10-20 Hewlett-Packard Development Company, L.P. Single-mode antenna assembly with planar monopole and grounded parasitic elements
JP2013055407A (ja) * 2011-09-01 2013-03-21 Mitsubishi Electric Corp アンテナ装置
CN102683809A (zh) * 2012-03-02 2012-09-19 四川大学 一种宽带小型化共形单极子天线
CN103956583A (zh) * 2014-04-23 2014-07-30 泰兴市迅达通讯器材有限公司 一种超宽带高增益全向天线
CN105161832A (zh) * 2015-08-12 2015-12-16 桂林电子科技大学 基于石墨烯覆层的可重构天线
CN105186137A (zh) * 2015-09-29 2015-12-23 深圳爱新自动化有限公司 一种基于多谐振结构的单馈电抗多径自适应天线
WO2017119223A1 (ja) * 2016-01-07 2017-07-13 株式会社村田製作所 ルネベルグレンズアンテナ装置
CN105720361A (zh) * 2016-01-26 2016-06-29 电子科技大学 一种基于人工磁导体结构的宽带低剖面双极化全向天线
CN105609958A (zh) * 2016-01-29 2016-05-25 北京邮电大学 一种基于加载周期性超材料单元的紧凑型宽带单极子天线
CN107645057A (zh) * 2017-09-11 2018-01-30 东南大学 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013597A (zh) * 2021-03-04 2021-06-22 西安电子科技大学 一种柱状宽带液体天线

Also Published As

Publication number Publication date
CN107645057A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2019047512A1 (zh) 一种含有共形阻抗表面的紧凑型垂直极化超宽带全向天线
Emadian et al. Very small dual band-notched rectangular slot antenna with enhanced impedance bandwidth
CN107615588B (zh) 贴片天线系统
US9431712B2 (en) Electrically-small, low-profile, ultra-wideband antenna
Wong et al. Small-size stacked inverted-F antenna with two hybrid shorting strips for the LTE/WWAN tablet device
US20150303576A1 (en) Miniaturized Patch Antenna
Lotfi-Neyestanak Ultra wideband rose leaf microstrip patch antenna
US20090051611A1 (en) Antenna with active elements
Elsherbini et al. Very low-profile top-loaded UWB coupled sectorial loops antenna
Alibakhshi-Kenari et al. A new miniature ultra wide band planar microstrip antenna based on the metamaterial transmission line
JP2015521822A (ja) 電磁ダイポールアンテナ
Civerolo et al. Aperture coupled patch antenna design methods
CN103618138B (zh) 小型化差分微带天线
Wang et al. A novel reversed T-match antenna with compact size and low profile for ultrawideband applications
KR20140015114A (ko) 라디오 파들의 송신 및 수신을 위한 콤팩트 울트라 광대역 안테나
Kim et al. Compact ultrawideband antenna on folded ground plane
Trimukhe et al. Compact ultra-wideband antenna with triple band notch characteristics using EBG structures
Feng et al. U‐shaped bow‐tie magneto‐electric dipole antenna with a modified horned reflector for ultra‐wideband applications
KR102048997B1 (ko) 미앤더 단락 핀을 이용한 uhf 광대역 모노콘 안테나
Feng et al. A printed dual-wideband magneto-electric dipole antenna for WWAN/LTE applications
Zhang et al. A compact ultra‐wideband receiving antenna for monitoring applications
Tiang et al. Compact and wideband wide-slot antenna for microwave imaging system
Osaretin et al. A novel compact dual-linear polarized UWB antenna for VHF/UHF applications
Chou et al. A novel LTE MIMO antenna with decoupling element for mobile phone application
Ansari et al. Analysis of disk patch antenna with parasitic elements in single and multilayer structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854085

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18854085

Country of ref document: EP

Kind code of ref document: A1