WO2016178555A1 - Lng optimum control reliquefaction system for recovering lng low-temperature waste heat generated during lng vaporization - Google Patents

Lng optimum control reliquefaction system for recovering lng low-temperature waste heat generated during lng vaporization Download PDF

Info

Publication number
WO2016178555A1
WO2016178555A1 PCT/KR2016/004973 KR2016004973W WO2016178555A1 WO 2016178555 A1 WO2016178555 A1 WO 2016178555A1 KR 2016004973 W KR2016004973 W KR 2016004973W WO 2016178555 A1 WO2016178555 A1 WO 2016178555A1
Authority
WO
WIPO (PCT)
Prior art keywords
lng
heat
reliquefaction
storage tank
liquid
Prior art date
Application number
PCT/KR2016/004973
Other languages
French (fr)
Korean (ko)
Inventor
양원돈
이성춘
이동건
이대진
Original Assignee
유진초저온(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유진초저온(주) filed Critical 유진초저온(주)
Priority to CN201680001344.1A priority Critical patent/CN107124894B/en
Publication of WO2016178555A1 publication Critical patent/WO2016178555A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG

Definitions

  • the present invention relates to a LNG optimum control reliquefaction system for LNG low temperature waste heat recovery generated during the LNG vaporization process.
  • LNG is being used as environmentally friendly energy, and LNG bases are being constructed on the coast where a number of LNG liquefied gas storage tanks are installed.
  • the LNG liquefied gas storage tank stores liquefied LNG gas, and vaporizes the liquefied gas in order to supply an appropriate amount of LNG gas to the demand destination (pipes such as city gas).
  • a vaporizer In order to vaporize LNG liquefied gas, a vaporizer is generally used, and a vaporizer is largely divided into a seawater vaporizer and a combustion vaporizer.
  • the most economical seawater vaporizer is a liquid LNG that is formed by exchanging heat by receiving water (sea water) from the outside. After the change, the gas is sent out at room temperature.
  • a separate water tank may be provided and water stored in the water tank may be circulated to the carburetor, but most of the water is directly vaporized using the sea water.
  • Republic of Korea Patent No. 10-0981398 Logistics warehouse cooling system using the LNG gas liquefied heat
  • the prior art is the heat of vaporization generated from LNG liquefied gas, cooling the warehouse It is proposed that it can be used as a cold heat source.
  • the prior art can be applied only to an area requiring a large amount of LNG (specifically, NG gas, which is a meteorological LNG), difficult to be introduced in an area requiring a small amount of LNG, and also a system using a liquid LNG by vaporizing basically. to be.
  • the present invention has been made in order to solve the problems of the prior art as described above, and supplies a small amount of LENG to the meteorological LENG demand through the meteorological LENG demand supply line, at this time, to supply a sufficient amount of meteorological LENG within the LNG storage tank.
  • the present invention is to provide a LNG optimum control reliquefaction system to recover the low temperature waste heat of LNG generated during the LNG vaporization process.
  • the LENG storage tank in which the LENG is stored;
  • a meteorological LNG discharge line having one end connected to the LNG storage tank and configured to discharge a vapor phase LNG from the LNG storage tank;
  • the first-first heat medium passing through the first-first heat medium flow path and the first-second heat medium passing through the 1-2th heat medium flow path are formed to heat exchange with each other, and one end of the first-first heat medium flow path is the gas phase EL engine.
  • a heat exchanger for condensation connected to the other end of the discharge line;
  • a gas phase LCD customer demand supply line one end of which is connected to the other end of the first-first heat medium flow path of the heat exchanger for condensation, and a plurality of gaseous LGE demand destinations connected to the other end;
  • a liquid LNG discharge line having one end connected to the LNG storage tank and provided to discharge the liquid LNG from the LENG storage tank;
  • a cold storage supply unit for the warehouse configured to absorb cold heat of the liquid LNG by providing at least one load heat exchanger to the other end of the liquid LENG discharge line and supply the cold heat to the distribution warehouse;
  • An elevated LNG flow line provided with an LNG in which cold heat is absorbed by the load heat exchanger of the cold warehouse supply unit for the warehouse;
  • a reliquefaction device provided to cool the temperature rising LG engine past the temperature rising LG engine flow line;
  • a cooler for a reliquefaction machine configured to supply cold heat for cooling the reliquefaction liquid;
  • An L engine return line for a reliquefaction
  • Refrigerant circulation pipe for power generation provided to circulate the evaporator for;
  • a power generation refrigerant circulation pump provided in the power generation refrigerant circulation pipe;
  • a turbine generator provided in the power generation refrigerant circulation pipe between the rear end of the power generation evaporator and the front end of the heat exchanger for condensation and generated by the power generation refrigerant;
  • a first control valve provided between the gas phase EL engine discharge line and the first-first heat medium flow path of the heat exchanger for condensation;
  • a second control valve provided between the gaseous LENG discharge line and the gaseous LENG return line;
  • a third control valve disposed between the first-first heat medium flow path of the heat exchanger for condensation and the supply line to the gas phase EL engine;
  • a fourth control valve provided between the first-first heat medium flow path of the heat exchanger for condensation and the gas phase EL return line; Characterized in that comprises a.
  • the coolant for the reliquefaction liquid is controlled to supply or not supply cold heat to the reliquefaction liquid;
  • the liquid LENG flows through the liquid LENG discharge line, the load heat exchanger for the cold heat supply unit of the warehouse, the temperature rising L flow line, the reliquefaction machine, the L liquid return line for the reliquefaction unit, the reliquefaction of the cooler May stop running and not cool down past the reliquefaction machine;
  • the first, second, third, and fourth control valves are controlled to be opened and closed according to the flow rate of the gaseous-phase engine, supplied to the demand for the gas-phase engine, and whether or not the turbine generator is driven, and the pressure of the engine storage tank.
  • the present invention is to supply a small amount of LNG to the meteorological LENG demand through the supply line of the meteorological LENG demand, in this case, in order to be able to supply a sufficient amount of the LNG in the LNG storage tank liquid LNG cold warehouse for the warehouse
  • the cooling heat is discharged through the load heat exchanger of the supply unit so that the temperature of the liquid LENG is elevated or vaporized, and thus the elevated or vaporized LEN can be supplied to the supply line of the LNG LG. It is possible to expand the supply.
  • the present invention is to economically recover the low-temperature waste heat of LNG generated during the LNG vaporization process by the optimum controlled reliquefaction of the flow rate of the liquid and gaseous LENG.
  • FIG. 1 is a schematic diagram of an LNG optimum control reliquefaction system for LNG low temperature waste heat recovery generated during the LNG vaporization process according to an embodiment of the present invention
  • Pipe or line in the present embodiment means a pipe line for guiding the flow of the fluid, pumps, valves and the like provided in the pipe or line should be understood as part of the pipe without any description.
  • LENG is defined as the LGE of the gas phase and liquid LENG
  • gaseous LENG such as BOG or NG gas
  • liquid LENG or liquefied LENG is called liquid LENG do.
  • FIG. 1 is a schematic diagram of an LNG optimum control reliquefaction system for LNG low temperature waste heat recovery generated during the LNG vaporization process according to an embodiment of the present invention.
  • the LNG storage tank 100 stores the LENG.
  • the LNG is transported using the tank lorry to fill the LNG in the LNG storage tank 100.
  • the L engine In the lower part of the L engine storage tank 100, the L engine is stored in a liquid state of about -160 ⁇ -130 °C.
  • the inner upper portion of the LNG storage tank 100 is filled with a gaseous LNG such as BOG gas.
  • the gaseous LENG and the liquid LNG may be discharged from the LNG storage tank 100 as described above.
  • the gaseous LNG discharge line 110 is provided to discharge the gaseous LNG from the LNG storage tank 100.
  • meteorological LNG discharge line 110 is connected to the LNG storage tank 100 so that the weather LNG is discharged from the LNG storage tank 110.
  • liquid LENG discharge line 160 is provided to discharge the liquid LEN from the LNG storage tank 100.
  • Liquid LENG discharge line 160 is one end is connected to the LENG storage tank 100 is provided so that the liquid LENG is discharged from the LENG storage tank (100).
  • the first load heat exchanger 201 and the second load heat exchanger 202 of the warehouse cold heat supply unit 200 are sequentially provided at the other ends of the liquid LENG discharge line 160.
  • the first load heat exchanger 201 and the second load heat exchanger 202 absorb cold heat of the liquid LENG, and the cold heat supply unit 200 for the warehouse is provided to supply the absorbed cold heat to the warehouse. .
  • the cold heat supply unit 200 for the distribution warehouse will be described later.
  • liquid phase L cells passing through the first and second load heat exchangers 201 and 202 may be cooled by releasing cold heat, and some or all of them may be vaporized.
  • the rear end of the first and second load heat exchangers (201, 202) is provided with a temperature increase L-engine flow line 170 is provided by the heat exchangers (201, 202) of the load of the cold heat supply unit 200 for the warehouse warehouse to absorb the cold heat Guide the LNG to flow to the reliquefaction unit 180.
  • the reliquefaction unit 180 is provided at the rear end of the temperature rising LNG flow line 170.
  • the reliquefaction unit 180 is provided to cool the temperature rising LG engine past the temperature rising LG engine flow line 170 to liquefy the gas phase EL or to cool the high temperature liquid EL to the low temperature liquid EL.
  • the operating time of the reliquefaction machine 180 should be minimized in the control method of the present embodiment.
  • the reliquefaction unit 180 cools the gas phase L / G or the high temperature liquid LG, thereby liquefying the gas phase L / L into the liquid LG, or cools the high temperature liquid LG to the low temperature liquid LJ.
  • a reliquefaction cooler 181 is provided.
  • the reliquefaction cooler 181 may be integrated with the reliquefaction unit 180 or may be provided separately from the reliquefaction unit 180.
  • the L ENG cooled in the reliquefaction unit 180 is returned to the L ENG storage tank 100 by the L ENG return line 190 for the reliquefaction unit. That is, the L NG return line 190 for the reliquefaction unit is provided to connect the reliquefaction unit 180 and the L ENG storage tank 100.
  • the liquid LENG is the liquid LENG discharge line 160, the first and second load heat exchangers (201, 202) of the cold heat supply unit 200 for the warehouse, the temperature rise LENG flow line 170, the reliquefaction unit 180, ash It flows along the LENG return line 190 for the liquefier.
  • the system basically stops driving of the reliquefaction cooler 181, so that the LNG is passed through the reliquefaction unit 180 and is driven in a gaseous phase LG generation mode in which the LNG is not cooled. That is, in this system, the operation of the reliquefaction unit 180 is stopped, so that the liquid LENG discharges cold heat to the first and second load heat exchangers 201 and 202 of the cold heat supply unit 200 for the warehouse and converts it to a gas phase LNC. Mode.
  • the system is driven in a manner that the driving of the reliquefaction cooler 181 is controlled.
  • the coolant 181 for the reliquefaction machine in the present embodiment is controlled to operate when the pressure of the LENG storage tank 100 is excessively increased to supply cold heat.
  • the coolant 181 and the reliquefaction device 180 for the reliquefaction apparatus are selectively controlled not to supply or supply cold heat to the circulation pipe of the liquid LENG.
  • the other end of the gas phase LG discharge line 110 is connected to the heat exchanger for condensation 120 and the gas phase LG return line 140, respectively.
  • the heat exchanger 120 for condensation is performed such that the first-first heat medium passing through the first-first heat medium flow path and the first-second heat medium passing through the 1-2th heat medium flow path exchange heat with each other, and the first-first heat medium.
  • One end of the flow path is connected to the other end of the gas phase LG discharge line 110.
  • the gaseous L / N passing through the gaseous L / N discharge line 110 flows in the 1-1 heat medium flow path of the heat exchanger 120 for condensation.
  • the gas phase L engine flowing through the 1-1 heat medium flow path of the heat exchanger 120 for condensation is heated to a temperature required for use by heat exchange with the 1-2 heat medium flowing through the 1-2 heat medium flow path.
  • gas phase L engine return line 140 is connected to the second end of the first and second heat medium flow path of the heat exchanger 120 for condensation, and the second end of the first and second heat exchanger 120, 2- It has a second end and a 2-3 end connected to the reliquefaction unit 180, the second-first end, the second-second end and the second-end end is made to communicate with each other.
  • the gaseous LNG return line 140 is the gaseous LENG discharge line 110 or the gaseous LNG flows from the 1-1 heat medium flow path of the heat exchanger 120 for condensation flows out to the reliquefaction unit 180.
  • the weather LNG return line 140 by sending the weather LENG to the reliquefaction unit 180 to liquefy the weather LENG, but if the pressure of the LENG storage tank 100 excessively liquefied a part of the weather LENG. To be used.
  • the other end of the first-first heat medium flow path of the heat exchanger 120 for condensation is connected to the second-second end of the gas phase L / N return line 140, and also supplies the gaseous LNG demand source connected to a plurality of gaseous LNG demand destinations.
  • Line 130 is connected.
  • the meteorological LNG demand source supply line 130 is provided to supply the meteorological LNG to the demand destination.
  • the meteorological LNG demand source supply line 130 is provided with a plurality of proportional control valves 130-1, 2, 3, 4, 5, 6, and 7 for supplying the meteorological LNG to each demand destination in a proportional control manner.
  • defrosting water generation (131-1) for removing defrosting of the evaporator provided in the frozen or refrigerated distribution warehouse, 2) heat source (131-2), 3 for hot water supply, hot water, etc. of the factory ) Heat source (131-3) of gas heat pump (GHP) located in offices and laboratories, 4) Emergency generator operation in logistics center (131-4), 5) City gas piping (131-5), 6) Logistics center The plant 131-6, 7) for fuel 131-7, etc. of the fuel cell may be exemplified.
  • a first control valve 111 is provided between the gaseous LNG discharge line 110 and the first-first heat medium flow path of the heat exchanger 120 for condensation, and the gaseous LNG discharge line 110 and the gaseous LNG return line
  • a second control valve 112 is provided between the first and second control valves 112
  • a third control valve 113 is provided between the first-first heat medium flow path of the condensation heat exchanger 120 and the gaseous supply and demand destination line 130.
  • a fourth control valve 114 is provided between the first-first heat medium flow path of the heat exchanger 120 for condensation and the gas phase L engine return line 140.
  • the first, second, third, and fourth control valves 111, 112, 113, and 114 are controlled to open and close according to the flow rate of the gaseous-phase engine, supplied to the demand for the gas-phase engine, whether or not the turbine generator is to be described later, and the pressure of the engine storage tank. .
  • the cold storage supply unit for the warehouse warehouse for supplying cold heat to the various warehouses, including the refrigerated warehouse.
  • the first load heat exchanger 201 discharges the cold heat while the temperature of the -Engine at about -160 ° C is raised to about -100 ° C, and the second load heat exchanger 202 has the -100 ° C at about -60 ° C. As the temperature rises, the cold heat is discharged.
  • a first refrigerant circulation pipe is provided in order to exchange heat with the L & G passing through the first load heat exchanger 201 to transmit cold heat to the warehouse.
  • the first refrigerant circulation pipe includes a first load heat exchanger 201, a first refrigerant storage tank 211, a first refrigerant circulation pump 212, a 1-1 heat exchanger 213, and a first load.
  • a pipe circulating through the heat exchanger 201 is formed.
  • the first refrigerant is propane (R-290), and the temperature of the first refrigerant immediately before flowing into the first load heat exchanger 201 is -70 ° C, and from the first load heat exchanger 201.
  • the temperature of the first refrigerant is -80 ° C. That is, the temperature of the first refrigerant immediately before flowing into the 1-1 heat exchanger 213 is -80 ° C, and the temperature of the first refrigerant immediately after flowing out of the 1-1 heat exchanger 213 is -70 ° C. It is the same meaning.
  • Such a first refrigerant is provided to extract the coldest cold heat from LENG.
  • the first auxiliary refrigerant circulation pipe is connected to the first refrigerant circulation pipe via the first-first heat exchanger 213.
  • the first auxiliary refrigerant circulation pipe includes the first-first heat exchanger 213, the first auxiliary refrigerant storage tank 221, the first auxiliary refrigerant circulation pump 222, the first unit cooler 223, and the first.
  • a pipe circulating through the -1 heat exchanger 213 is formed.
  • the first auxiliary refrigerant may be R-407c, R-507a, or the like as a secondary refrigerant, and the temperature of the first auxiliary refrigerant immediately before flowing into the 1-1 heat exchanger 213 is -65 ° C.
  • the temperature of the first auxiliary refrigerant immediately after flowing out of the 1-1 heat exchanger 213 is -75 ° C. This means that the temperature of the first auxiliary coolant immediately before flowing into the first unit cooler 223 is -75 ° C, and the temperature of the first auxiliary coolant immediately after flowing out of the first unit cooler 223 is -65 ° C. .
  • the first unit cooler 223 is used as a load of the first auxiliary refrigerant for cooling the inside of the warehouse and is a kind of cold load.
  • the plurality of first unit coolers 223 may supply cooling heat to an ice cream storage warehouse, an F-class refrigerator, an SF-class refrigerator (for ultra low temperature), a processing plant refrigerator, a cryogenic laboratory, and the like in a warehouse.
  • the first refrigerant circulation pipe delivers the coolest cold heat to the warehouse through the first auxiliary refrigerant circulation pipe.
  • a second refrigerant circulation pipe is provided to exchange heat with the L & G passing through the second load heat exchanger 202 to transfer the cold heat to the warehouse.
  • the second refrigerant circulation pipe includes a second load heat exchanger 202, a second refrigerant storage tank 231, a second refrigerant circulation pump 232, a second unit cooler 233, and a second load heat exchanger.
  • a pipe circulating the machine 202 is formed.
  • the second refrigerant may be carbon dioxide (CO2), R-407c, R-507a, or the like, and the temperature of the second refrigerant immediately before flowing into the second load heat exchanger 202 is -10 ° C.
  • the temperature of the second refrigerant immediately after flowing out from the second load heat exchanger 202 is -15 ° C. That is, the temperature of the second refrigerant immediately before flowing into the second unit cooler 233 is ⁇ 15 ° C., and the temperature of the second refrigerant immediately after flowing out of the second unit cooler 233 is ⁇ 10 ° C.
  • the second unit cooler 233 is used as a load of the first auxiliary refrigerant for cooling the inside of the warehouse and is a kind of cold load, and the plurality of second unit coolers 233 are used for storing documents and processing in the warehouse.
  • Cold air can be supplied to the air conditioning of the factory, C2 refrigerators.
  • the second refrigerant circulation pipe directly transmits cold heat to the warehouse.
  • the cooling water storage tank 450 and the auxiliary cooling heat supply unit 400 are provided.
  • the cooling water storage tank 450 includes a low temperature cooling tank 451 in which low temperature cooling water is stored, and a high temperature cooling tank 452 in which high temperature cooling water is stored.
  • the auxiliary cold heat supply unit 400 supplies the auxiliary cold heat to the cold heat supply unit 200 for the warehouse using the low temperature cooling water of the low temperature cooling tank 451 as the condensation heat source, and the low temperature cooling water used as the condensation heat source is high temperature. It is made to convey to the cooling tank 452.
  • the auxiliary cooling heat supply unit 400 As the auxiliary cooling heat supply unit 400, the 1-2 coolant circulation unit, the first coolant circulation unit, the 2-2 refrigerant circulation unit and the second coolant circulation unit are respectively provided.
  • the 1-2 refrigerant circulation section includes the 1-2 refrigerant storage tank 411, the 1-2 refrigerant circulation pipe 412, and the first unit cooler 223.
  • the 1-2 refrigerant is stored in the 1-2 refrigerant storage tank 411.
  • the 1-2 refrigerant circulation pipe 412 is provided, and the 1-2 refrigerant circulation pipe 412 is provided with logistics.
  • the first unit cooler 223 is connected as a load of the first refrigerant for cooling the inside of the warehouse.
  • the first unit cooler 223 may be connected to the first-second refrigerant circulation part and also connected to the first auxiliary refrigerant circulation pipe to supply the first-second refrigerant or the first auxiliary refrigerant.
  • a first coolant circulation part is provided to cool the 1-2 refrigerant used as the refrigerant of the 1-2 refrigerant circulation part.
  • the first cooling water circulation unit includes a first water cooling refrigerator 431, a first cooling water circulation pipe 432, and a cooling water storage tank 450.
  • the first water-cooled refrigerator 431 receives the 1-2 refrigerant stored in the 1-2 refrigerant storage tank 411, cools it, and returns the same to the 1-2 refrigerant storage tank 411.
  • the first water-cooled refrigerator 431 performs the compression and condensation process for the 1-2 refrigerant, and in particular, the cooling water is used as the condensation heat source. That is, the first water-cooled refrigerator 431 needs to continuously supply cooling water for compression and condensation of the refrigerant, particularly for condensation.
  • the first cooling water circulation pipe 432 is provided to supply the cooling water to be used as the condensation heat source of the first water cooling refrigerator 431 and to recover the cooling water used as the condensation heat source to the cooling water storage tank 450.
  • the first water-cooled refrigerator 431 uses the cooling water of the low temperature cooling tank 451 and then conveys it to the high temperature cooling tank 452.
  • the second-second refrigerant circulation unit includes a second-second refrigerant storage tank 421, a second-second refrigerant circulation pipe 422, and a second unit cooler 233.
  • the second-2 refrigerant is stored in the second-2 refrigerant storage tank 421.
  • a second-two refrigerant circulation pipe 422 is provided, and the second-two refrigerant circulation pipe 422 is provided with logistics.
  • the second unit cooler 233 is connected as a load of the second-two refrigerant for cooling the inside of the warehouse.
  • a second coolant circulation part is provided to cool the second-2 refrigerant used as the refrigerant of the second-2 refrigerant circulation part.
  • the second cooling water circulation unit includes a second water cooling refrigerator 441, a second cooling water circulation pipe 442, and a cooling water storage tank 450.
  • the second water-cooled refrigerator 441 receives the second-two refrigerant stored in the second-two refrigerant storage tank 421, cools it, and returns the same to the second-two refrigerant storage tank 421.
  • the second water-cooled refrigerator 441 performs the compression and condensation process for the second-two refrigerants, and in particular, the cooling water is used as the condensation heat source. That is, the second water-cooled refrigerator 441 needs to continuously supply cooling water.
  • the second cooling water circulation pipe 442 is provided to supply the cooling water to be used as the condensation heat source of the second water cooling refrigerator 441 and to recover the cooling water used as the condensation heat source to the cooling water storage tank 450.
  • the 2nd water-cooled refrigerator 441 uses the cooling water of the low temperature cooling tank 451, and returns to the high temperature cooling tank 452.
  • the first water-cooled refrigerator 431 receives the first refrigerant stored in the first refrigerant storage tank 211, cools the first refrigerant, and then returns the refrigerant to the first refrigerant storage tank 211. ) Is prepared.
  • the second water-cooled refrigerator 441 receives a second refrigerant stored in the second refrigerant storage tank 231, cools the second refrigerant, and then returns the refrigerant to the second refrigerant storage tank 231 to return the refrigerant to the second refrigerant storage tank 231. ) Is prepared.
  • the cooling water storage tank 450 is provided with a cooling water circulation pipe 453 for the storage tank.
  • the storage tank cooling water circulation pipe 453 is provided to transfer the high temperature cooling water of the high temperature cooling tank 452 to the low temperature cooling tank 451.
  • a power generation evaporator 320 configured to evaporate and expand the power generation refrigerant by the high temperature cooling water passing through the storage tank cooling water circulation pipe 453 is provided.
  • the cooling water circulation pipe 453 for the storage tank supplies the high temperature cooling water of the high temperature cooling tank 452 to the power generation evaporator 320 to use the evaporation heat source, and uses the coolant cooled while passing through the power generation evaporator 320.
  • the low temperature cooling tank 451 is recovered.
  • the refrigerant for power generation is condensed while passing through the 1-2 heat medium flow path of the heat exchanger 120 for condensation, and the refrigerant for power generation is evaporated and expanded through the evaporator 320 for power generation.
  • a power generation refrigerant circulation pipe 330 is provided to circulate the 1-2 heat medium flow path and the power generation evaporator 320.
  • the power generation refrigerant circulation pipe 330 is provided with a power generation refrigerant circulation pump 331 for circulating the power generation refrigerant.
  • a turbine generator 310 is provided in the power generation refrigerant circulation pipe 330 between the rear end of the power generation evaporator 320 and the front end of the condensation heat exchanger 120, and the turbine generator 310 is formed by a power generation refrigerant. Generate power.
  • the power generation refrigerant circulation pipe 330 is a power generation refrigerant condensation heat exchanger 120, power generation refrigerant circulation pump 331, power generation evaporator 320, turbine generator 310, heat exchanger for condensation It is formed to circulate 120.
  • the refrigerant for power generation is condensed using the gaseous phase L engine as a condensation heat source in the heat exchanger 120 for condensation, and the refrigerant for power generation evaporates the high temperature cooling water passing through the cooling water circulation pipe 453 for the storage tank in the power generation evaporator 320. Evaporated using the heat source, the refrigerant evaporated and expanded in this way is to rotate the turbine generator 310 while passing through the turbine generator 310 to produce power.
  • the heat exchanger 120 for condensation raises the temperature of the gas phase LN to a temperature suitable for the demand, and the power generation evaporator 320 converts the high temperature cooling water of the high temperature cooling tank 452 into low temperature cooling water.
  • the Stirling cooler 181 is adopted as the coolant 181 for the reliquefaction machine provided to supply cold heat to the reliquefaction machine 180.
  • the Stirling cooler uses a thermodynamic property that releases and absorbs heat from the gas to the surroundings during the compression or expansion of the ideal gas (usually using H or He). It is a device for pumping heat into a furnace.
  • the heat pipe 182 is provided to receive the cold heat generated in the Stirling Cooler 181, that is, the cold heat from the low temperature part of the Stirling Cooler 181, and deliver it to the reliquefaction unit 180.
  • one end of the heat pipe 182 is arranged to receive the cold heat from the low temperature part of the Stirling cooler 181, and supplies the cold heat for liquefaction to the reliquefaction unit 180 at the other end.
  • Such an arrangement allows the cooling heat to be transmitted only by the arrangement of the heat pipes without using the refrigerant, thereby simplifying the structure.
  • the sterling cooler 181 supplies cold heat at the low temperature portion (that is, absorbs heat) during the cooling process and releases heat to the outside at the high temperature portion. In this way, by using the waste heat (181a) emitted to the outside in the cooling process can be used as an evaporation heat source of the power generation evaporator 320 can be produced additional power.
  • a multistage or turbo compression expansion cryogenic freezer may be utilized depending on the embodiment, and a helium, hydrogen, nitrogen, oxygen, hydrocarbon refrigerant, or the like may be adopted as the refrigerant.
  • 2 to 5 are flowcharts for explaining an operating state of the present system.
  • the LNG storage tank 100 functions as a buffer tank for storing the gaseous LNG in which the liquid LNG is converted. That is, the reliquefaction unit 180 is not operated, and the liquid LENG is converted into the gas phase LEN.
  • FIG 3 illustrates that both the liquid LG and the gaseous LGE are discharged, the second and fourth control valves 112 and 114 are closed, and the first and third control valves 111 and 113 are open.
  • the reliquefaction unit 180 is basically not operated.
  • the liquid LENG is vaporized while passing through the load heat exchangers 201 and 202, and a large amount of gaseous LNG generated by the vaporization is discharged and heated up through the heat exchanger 120 for condensation. 130 is supplied to each source.
  • the liquid LENG is vaporized while passing through the load heat exchangers 201 and 202, while a large amount of gaseous LNG generated by the vaporization is discharged while a part of the gaseous LNG is heated while passing through the heat exchanger 120 for condensation. While it is supplied to each customer through the LENG demand source supply line 130, a part of the weather LNG is transferred to the reliquefaction unit 180 to be liquefied.
  • first and second control valves 111 and 112 may be proportionally controlled.
  • the liquid LENG is vaporized while passing through the heat exchangers 201 and 202 for load, and a large amount of gaseous LNG generated by the vaporization is discharged from the LNG storage tank 110, and the gaseous LNG is used to discharge the heat exchanger 120 for condensation. After the temperature rises, the liquid is transferred to the reliquefaction unit 180 to be reliquefaction.
  • the system heats the gaseous phase L engine through the heat exchanger 120 for condensation and supplies it to various gas phase LG energy demand destinations.
  • the LG discharges the cold heat through the first and second load heat exchangers 201 and 202 of the cold storage supply part of the warehouse, thereby allowing the temperature of the liquid LG to be raised or vaporized, so that a sufficient amount of the gaseous LNG is required for the gas phase LGE demand. To be supplied.
  • the cold storage supply unit for the warehouse 200 can supply the cold heat to the warehouse by using the cold heat generated by the vaporization of the liquid L ENG, it can operate a refrigerated frozen warehouse, and also the cold heat generated during the temperature rising process of the weather L ENG Optimized energy recovery is achieved by generating power from the turbine generator using high-temperature coolant from the and sub-cooling supplies.
  • Such a system will expand the spread of LNG by constructing LNG storage tanks of sufficient size in each region, discharging a small amount of gas LNG from the demand, and actively utilizing the full cooling and cooling of liquid LNG. Renewable energy can be used most efficiently.
  • the present invention can be used to recover the LNG low temperature waste heat generated during the LNG vaporization process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention is configured to: supply gaseous LNG to a gaseous LNG consumer while allowing liquid LNG to discharge cold energy through a heat exchanger for a load of a cold energy supply unit for a warehouse, so as to supply a sufficient amount of the gaseous LNG within an LNG storage tank, thereby increasing the temperature of or vaporizing the liquid LNG; allow the LNG with an elevated temperature or vaporized to be supplied to a gaseous LNG consumer supply line, thereby expanding the cold energy use and dissemination of the LNG; and optimally control and reliquefy the flux of the liquid LNG and gaseous LNG, thereby economically recovering the low-temperature waste heat of the LNG generated during LNG vaporization.

Description

LNG 기화공정 중 발생되는 LNG 저온 폐열 회수를 위한 LNG 최적제어 재액화 시스템LNG optimal control reliquefaction system for LNG low temperature waste heat recovery generated during LNG vaporization process
본 발명은 LNG 기화공정 중 발생되는 LNG 저온 폐열 회수를 위한 LNG 최적제어 재액화 시스템에 관한 것이다.The present invention relates to a LNG optimum control reliquefaction system for LNG low temperature waste heat recovery generated during the LNG vaporization process.
친환경 에너지로서 LNG가 이용되고 있으며, LNG의 이용을 위하여 해안에는 다수의 엘엔지 액화가스 저장탱크가 설치되어 있는 LNG 기지가 건설되고 있다.LNG is being used as environmentally friendly energy, and LNG bases are being constructed on the coast where a number of LNG liquefied gas storage tanks are installed.
엘엔지 액화가스 저장탱크는 액화된 LNG 가스를 저장하고 있으며, 수요처에 적절한 양의 엘엔지 가스를 공급하기 위하여 액화 가스를 기화시킨 후 수요처(도시가스 등의 배관)에 공급하고 있다.The LNG liquefied gas storage tank stores liquefied LNG gas, and vaporizes the liquefied gas in order to supply an appropriate amount of LNG gas to the demand destination (pipes such as city gas).
엘엔지 액화가스를 기화시키기 위하여 통상 기화기가 사용되며, 기화기는 크게 해수식 기화기와 연소식 기화기로 구분되며, 가장 경제적인 해수식 기화기는 외부로부터 물(해수)을 공급받아 열교환함으로써 액상의 엘엔지를 상변화를 거쳐 상온의 가스 상태로 송출하게 된다.In order to vaporize LNG liquefied gas, a vaporizer is generally used, and a vaporizer is largely divided into a seawater vaporizer and a combustion vaporizer. The most economical seawater vaporizer is a liquid LNG that is formed by exchanging heat by receiving water (sea water) from the outside. After the change, the gas is sent out at room temperature.
이와 같은 기화기를 운영하기 위하여는 막대한 양의 물이 필요하게 되며, 또한 이러한 많은 양의 물을 공급하기 위한 펌프가 필요하여 막대한 전력 소모가 발생하게 된다.In order to operate such a carburetor, a huge amount of water is required, and a pump for supplying such a large amount of water is required, resulting in enormous power consumption.
상기와 같이 기화기에 물을 공급하기 위한 방안으로서, 별도의 수조를 마련하고 이 수조에 저장된 물을 기화기로 순환시킬 수도 있지만, 대부분은 직접 바다물을 이용하여 엘엔지를 기화시키게 된다.As a method for supplying water to the carburetor as described above, a separate water tank may be provided and water stored in the water tank may be circulated to the carburetor, but most of the water is directly vaporized using the sea water.
아울러 수조에 저장된 물을 기화기로 순환시키는 경우에도 수조에 저장된 물을 가열하기 위한 히터가 필요하게 되며, 아울러 히터의 구동을 위한 전력이 필요하게 되어, 기화기의 운영에 막대한 전력 소모가 발생하게 된다는 문제점이 있다.In addition, even when circulating the water stored in the tank to the carburetor, a heater for heating the water stored in the tank is required, and the power required to drive the heater, a problem that the enormous power consumption is generated in the operation of the carburetor There is this.
한편 대한민국 등록특허 제10-0981398호 "엘엔지 액화가스 기화열을 이용한 물류창고 냉각 시스템"(2010.9.3 등록)이 제안된 바 있으며, 이 종래 기술은 엘엔지 액화가스로부터 발생하는 기화열을, 물류창고를 냉각하기 위한 냉열원으로 이용할 수 있음을 제안하고 있다. 그러나 상기 종래 기술은 대량의 엘엔지(구체적으로는 기상의 엘엔지인 NG가스)가 필요한 지역에 적용될 수 있을 뿐이며, 소량의 기상 엘엔지가 필요한 지역에는 도입하기 어려우며, 아울러 기본적으로 액상 엘엔지를 기화시켜 이용하는 시스템이다.On the other hand, Republic of Korea Patent No. 10-0981398 "Logistics warehouse cooling system using the LNG gas liquefied heat" (2010.9.3 registered) has been proposed, the prior art is the heat of vaporization generated from LNG liquefied gas, cooling the warehouse It is proposed that it can be used as a cold heat source. However, the prior art can be applied only to an area requiring a large amount of LNG (specifically, NG gas, which is a meteorological LNG), difficult to be introduced in an area requiring a small amount of LNG, and also a system using a liquid LNG by vaporizing basically. to be.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 소량의 엘엔지를 기상 엘엔지 수요처 공급라인을 통하여 기상 엘엔지 수요처에 공급하게 되며, 이때 엘엔지 저장탱크내에서 충분한 양의 기상 엘엔지를 공급할 수 있도록 하기 위하여 액상 엘엔지가 물류창고용 냉열 공급부의 부하용 열교환기를 통하여 냉열을 배출하도록 하고 이에 의하여 액상 엘엔지의 온도가 승온되거나 혹은 기화되도록 하며, 이와 같이 승온되거나 기화된 엘엔지는 기상 엘엔지 수요처 공급라인에 공급할 수 있게 되어, 엘엔지의 냉열 이용과 보급을 확대할 수 있도록 하는 것을 목적으로 한다.The present invention has been made in order to solve the problems of the prior art as described above, and supplies a small amount of LENG to the meteorological LENG demand through the meteorological LENG demand supply line, at this time, to supply a sufficient amount of meteorological LENG within the LNG storage tank. In order to ensure that the liquid LNG discharges the cold heat through the load heat exchanger of the cold storage supply for the warehouse and thereby the temperature of the liquid LENG is raised or vaporized, and thus the elevated temperature or vaporized LENG is supplied to the meteorological LGE It is aimed to be able to supply to, and to expand the use and dissemination of cold heat of LENG.
또한 본 발명은 LNG 기화공정 중 발생되는 LNG의 저온 폐열을 회수할 수 있도록 하는 LNG 최적제어 재액화 시스템을 제공하고자 한다.In another aspect, the present invention is to provide a LNG optimum control reliquefaction system to recover the low temperature waste heat of LNG generated during the LNG vaporization process.
상기의 과제를 해결하기 위하여 본 발명은, 엘엔지가 저장되는 엘엔지 저장탱크 ; 일단부가 상기 엘엔지 저장탱크에 연결되어 상기 엘엔지 저장탱크로부터 기상 엘엔지를 배출하도록 마련되는 기상 엘엔지 배출라인 ; 제1-1열매체 유동로를 지나는 제1-1열매체와 제1-2열매체 유동로를 지나는 제1-2열매체가 서로 열교환하도록 이루어지며, 상기 제1-1열매체 유동로의 일단부가 상기 기상 엘엔지 배출라인의 타단부에 연결되는 응축용 열교환기 ; 일단부가 상기 응축용 열교환기의 제1-1열매체 유동로의 타단부에 연결되며 타단부에 복수의 기상 엘엔지 수요처가 연결되는 기상 엘엔지 수요처 공급라인 ; 일단부가 상기 엘엔지 저장탱크에 연결되어 상기 엘엔지 저장탱크로부터 액상 엘엔지를 배출하도록 마련되는 액상 엘엔지 배출라인 ; 상기 액상 엘엔지 배출라인의 타단부에 마련되어 적어도 하나 이상의 부하용 열교환기에 의하여 상기 액상 엘엔지의 냉열을 흡수하여 그 냉열을 물류창고에 공급하도록 이루어진 물류창고용 냉열 공급부 ; 상기 물류창고용 냉열 공급부의 부하용 열교환기에 의하여 냉열이 흡수되어 승온된 엘엔지가 유동하도록 마련되는 승온 엘엔지 유동라인 ; 상기 승온 엘엔지 유동라인을 지난 승온 엘엔지를 냉각하기 위하여 마련되는 재액화기 ; 상기 재액화기에 냉각에 필요한 냉열을 공급하도록 이루어진 재액화기용 냉각기 ; 상기 재액화기와 상기 엘엔지 저장탱크를 연결하여 상기 재액화기를 지난 엘엔지를 상기 엘엔지 저장탱크로 환수하기 위하여 마련되는 재액화기용 엘엔지 환수라인 ; 상기 기상 엘엔지 배출라인과 연결되는 제2-1단부와, 상기 응축용 열교환기의 제1-1열매체 유동로의 타단부에 연결되는 제2-2단부와, 상기 재액화기에 연결되는 제2-3단부를 가지며, 상기 제2-1단부와 상기 제2-2단부와 상기 제2-3단부는 서로 연통되도록 이루어진 기상 엘엔지 환수라인 ; 고온의 냉각수가 저장되는 고온 냉각조 ; 저온의 냉각수가 저장되는 저온 냉각조 ; 상기 저온 냉각조의 저온의 냉각수를 응축 열원으로 이용하여 상기 물류창고용 냉열 공급부에 보조적인 냉열을 공급하며, 응축 열원으로 이용된 저온의 냉각수는 상기 고온 냉각조로 반송하도록 이루어진 보조 냉열 공급부 ; 상기 고온 냉각조의 고온의 냉각수를 상기 저온 냉각조로 이송하기 위하여 마련되는 저장조용 냉각수 순환 배관 ; 상기 저장조용 냉각수 순환 배관을 지나는 고온의 냉각수에 의하여 발전용 냉매가 증발팽창하도록 이루어진 발전용 증발기 ; 상기 발전용 냉매가 상기 제1-2열매체 유동로를 지나면서 응축되며 상기 발전용 증발기를 지나면서 증발팽창되기 위하여 상기 발전용 냉매가 상기 응축용 열교환기의 제1-2열매체 유동로와 상기 발전용 증발기를 순환하도록 마련되는 발전용 냉매 순환 배관 ; 상기 발전용 냉매 순환 배관에 마련되는 발전용 냉매 순환 펌프 ; 상기 발전용 증발기의 후단과 상기 응축용 열교환기의 전단 사이의 상기 발전용 냉매 순환 배관에 마련되어 상기 발전용 냉매에 의하여 발전하는 터빈 발전기 ; 상기 기상 엘엔지 배출라인과 상기 응축용 열교환기의 제1-1열매체 유동로 사이에 마련되는 제1제어밸브 ; 상기 기상 엘엔지 배출라인과 상기 기상 엘엔지 환수라인 사이에 마련되는 제2제어밸브 ; 상기 응축용 열교환기의 제1-1열매체 유동로와 상기 기상 엘엔지 수요처 공급라인 사이에 마련되는 제3제어밸브 ; 상기 응축용 열교환기의 제1-1열매체 유동로와 상기 기상 엘엔지 환수라인 사이에 마련되는 제4제어밸브 ; 를 포함하여 이루어지는 것을 특징으로 한다.In order to solve the above problems, the present invention, the LENG storage tank in which the LENG is stored; A meteorological LNG discharge line having one end connected to the LNG storage tank and configured to discharge a vapor phase LNG from the LNG storage tank; The first-first heat medium passing through the first-first heat medium flow path and the first-second heat medium passing through the 1-2th heat medium flow path are formed to heat exchange with each other, and one end of the first-first heat medium flow path is the gas phase EL engine. A heat exchanger for condensation connected to the other end of the discharge line; A gas phase LCD customer demand supply line, one end of which is connected to the other end of the first-first heat medium flow path of the heat exchanger for condensation, and a plurality of gaseous LGE demand destinations connected to the other end; A liquid LNG discharge line having one end connected to the LNG storage tank and provided to discharge the liquid LNG from the LENG storage tank; A cold storage supply unit for the warehouse configured to absorb cold heat of the liquid LNG by providing at least one load heat exchanger to the other end of the liquid LENG discharge line and supply the cold heat to the distribution warehouse; An elevated LNG flow line provided with an LNG in which cold heat is absorbed by the load heat exchanger of the cold warehouse supply unit for the warehouse; A reliquefaction device provided to cool the temperature rising LG engine past the temperature rising LG engine flow line; A cooler for a reliquefaction machine configured to supply cold heat for cooling the reliquefaction liquid; An L engine return line for a reliquefaction machine, which is connected to the reliquefaction machine and the LNG storage tank and is provided to return the LNG passing through the reliquefaction machine to the LNG storage tank; A second-first end connected to the gas phase EL discharge line, a second-second end connected to the other end of the first-first heat medium flow path of the heat exchanger for condensation, and a second second connected to the reliquefaction machine A gas phase LCD return line having three ends, wherein the second-first end, the second-second end, and the second-three end communicate with each other; A high temperature cooling tank in which high temperature cooling water is stored; A low temperature cooling tank in which low temperature cooling water is stored; An auxiliary cold heat supply unit configured to supply auxiliary cooling heat to the cold heat supply unit for the warehouse using the low temperature cooling water of the low temperature cooling tank as the condensation heat source, and to supply the low temperature cooling water to the high temperature cooling tank; A cooling water circulation pipe for a storage tank provided to transfer the high temperature cooling water of the high temperature cooling tank to the low temperature cooling tank; A power generation evaporator configured to evaporate and expand the power generation refrigerant by the high temperature cooling water passing through the storage tank cooling water circulation pipe; The refrigerant for power generation is condensed while passing through the 1-2 heat medium flow path, and the power generation refrigerant is flowed through the 1-2 heat medium flow path of the heat exchanger for condensation so as to evaporate and expand through the power generation evaporator. Refrigerant circulation pipe for power generation provided to circulate the evaporator for; A power generation refrigerant circulation pump provided in the power generation refrigerant circulation pipe; A turbine generator provided in the power generation refrigerant circulation pipe between the rear end of the power generation evaporator and the front end of the heat exchanger for condensation and generated by the power generation refrigerant; A first control valve provided between the gas phase EL engine discharge line and the first-first heat medium flow path of the heat exchanger for condensation; A second control valve provided between the gaseous LENG discharge line and the gaseous LENG return line; A third control valve disposed between the first-first heat medium flow path of the heat exchanger for condensation and the supply line to the gas phase EL engine; A fourth control valve provided between the first-first heat medium flow path of the heat exchanger for condensation and the gas phase EL return line; Characterized in that comprises a.
상기에 있어서 : 상기 재액화기용 냉각기는 상기 재액화기에 냉열을 공급하거나 공급하지 않도록 제어되며 ; 상기 액상 엘엔지가 상기 액상 엘엔지 배출라인, 상기 물류창고용 냉열 공급부의 부하용 열교환기, 상기 승온 엘엔지 유동라인, 상기 재액화기, 상기 재액화기용 엘엔지 환수라인을 따라 유동하되, 상기 재액화기용 냉각기의 구동이 정지되어 상기 재액화기를 지나면서도 냉각되지 않을 수 있으며 ; 상기 제1,2,3,4제어밸브는 상기 기상 엘엔지 수요처에 공급되는 기상 엘엔지의 유량과 상기 터빈 발전기의 구동 여부, 상기 엘엔지 저장탱크의 압력에 따라 그 개폐가 제어되는 것이 바람직하다.In the above: the coolant for the reliquefaction liquid is controlled to supply or not supply cold heat to the reliquefaction liquid; The liquid LENG flows through the liquid LENG discharge line, the load heat exchanger for the cold heat supply unit of the warehouse, the temperature rising L flow line, the reliquefaction machine, the L liquid return line for the reliquefaction unit, the reliquefaction of the cooler May stop running and not cool down past the reliquefaction machine; Preferably, the first, second, third, and fourth control valves are controlled to be opened and closed according to the flow rate of the gaseous-phase engine, supplied to the demand for the gas-phase engine, and whether or not the turbine generator is driven, and the pressure of the engine storage tank.
상기와 같이 본 발명은, 소량의 엘엔지를 기상 엘엔지 수요처 공급라인을 통하여 기상 엘엔지 수요처에 공급하게 되며, 이때 엘엔지 저장탱크내에서 충분한 양의 기상 엘엔지를 공급할 수 있도록 하기 위하여 액상 엘엔지가 물류창고용 냉열 공급부의 부하용 열교환기를 통하여 냉열을 배출하도록 하고 이에 의하여 액상 엘엔지의 온도가 승온되거나 혹은 기화되도록 하며, 이와 같이 승온되거나 기화된 엘엔지는 기상 엘엔지 수요처 공급라인에 공급할 수 있게 되어, 엘엔지의 냉열 이용과 보급을 확대할 수 있게 된다.As described above, the present invention is to supply a small amount of LNG to the meteorological LENG demand through the supply line of the meteorological LENG demand, in this case, in order to be able to supply a sufficient amount of the LNG in the LNG storage tank liquid LNG cold warehouse for the warehouse The cooling heat is discharged through the load heat exchanger of the supply unit so that the temperature of the liquid LENG is elevated or vaporized, and thus the elevated or vaporized LEN can be supplied to the supply line of the LNG LG. It is possible to expand the supply.
또한 본 발명은 액상 엘엔지와 기상 엘엔지의 유동량을 최적 제어 재액화함으로써 LNG 기화공정 중 발생되는 LNG의 저온 폐열을 경제적으로 회수할 수 있게 된다.In addition, the present invention is to economically recover the low-temperature waste heat of LNG generated during the LNG vaporization process by the optimum controlled reliquefaction of the flow rate of the liquid and gaseous LENG.
도 1은 본 발명의 일 실시예에 의한 LNG 기화공정 중 발생되는 LNG 저온 폐열 회수를 위한 LNG 최적제어 재액화 시스템의 모식도,1 is a schematic diagram of an LNG optimum control reliquefaction system for LNG low temperature waste heat recovery generated during the LNG vaporization process according to an embodiment of the present invention,
도 2 내지 도 5는 본 시스템의 작동 상태를 설명하기 위한 흐름도.2 to 5 are flowcharts for explaining the operating state of the present system.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
상기 및 이하에서 냉매의 구체적인 종류는 하나의 실시예에 불과하며, 실시예에 따라 다양한 종류의 냉매가 적용될 수 있다.Specific types of the coolant above and below are just one embodiment, and various types of coolant may be applied according to the embodiment.
본 실시예에서 배관, 혹은 라인 등은 유체의 유동을 안내하는 배관라인을 의미하는 것으로, 배관 혹은 라인에 마련되는 펌프, 밸브 등은 별도의 설명이 없어도 배관의 일부로서 이해되어야 한다.Pipe or line in the present embodiment means a pipe line for guiding the flow of the fluid, pumps, valves and the like provided in the pipe or line should be understood as part of the pipe without any description.
상기 및 이하에서 엘엔지란 기상의 엘엔지와 액상의 엘엔지를 통칭하는 것으로 정의하며, BOG나 NG가스 등과 같은 기체 상태의 엘엔지는 기상 엘엔지라 지칭하며, 액체 상태의 엘엔지 혹은 액화된 엘엔지는 액상 엘엔지라 지칭한다.In the above and hereinafter, LENG is defined as the LGE of the gas phase and liquid LENG, and gaseous LENG such as BOG or NG gas is referred to as gaseous LENG, and liquid LENG or liquefied LENG is called liquid LENG do.
도 1은 본 발명의 일 실시예에 의한 LNG 기화공정 중 발생되는 LNG 저온 폐열 회수를 위한 LNG 최적제어 재액화 시스템의 모식도이다.1 is a schematic diagram of an LNG optimum control reliquefaction system for LNG low temperature waste heat recovery generated during the LNG vaporization process according to an embodiment of the present invention.
엘엔지 저장탱크(100)에는 엘엔지가 저장되어 있다. 본 실시예에서는 탱크로리를 이용하여 엘엔지를 운반하여 엘엔지 저장탱크(100)에 엘엔지를 채우는 것으로 한다.The LNG storage tank 100 stores the LENG. In this embodiment, the LNG is transported using the tank lorry to fill the LNG in the LNG storage tank 100.
엘엔지 저장탱크(100)의 내부 하부에서 엘엔지는 약 -160 ~ -130 ℃의 액체 상태로 저장된다.In the lower part of the L engine storage tank 100, the L engine is stored in a liquid state of about -160 ~ -130 ℃.
엘엔지 저장탱크(100)의 내부 상부는 비오지(BOG) 가스와 같은 기상 엘엔지로 채워진다.The inner upper portion of the LNG storage tank 100 is filled with a gaseous LNG such as BOG gas.
이와 같은 엘엔지 저장탱크(100)로부터 기상 엘엔지와 액상 엘엔지가 각각 배출될 수 있다.The gaseous LENG and the liquid LNG may be discharged from the LNG storage tank 100 as described above.
엘엔지 저장탱크(100)로부터 기상 엘엔지를 배출하기 위하여 기상 엘엔지 배출라인(110)이 마련된다.The gaseous LNG discharge line 110 is provided to discharge the gaseous LNG from the LNG storage tank 100.
기상 엘엔지 배출라인(110)은 일단부가 엘엔지 저장탱크(100)에 연결되어 엘엔지 저장탱크(110)로부터 기상 엘엔지가 배출되도록 된다.One end of the meteorological LNG discharge line 110 is connected to the LNG storage tank 100 so that the weather LNG is discharged from the LNG storage tank 110.
또한 엘엔지 저장탱크(100)로부터 액상 엘엔지를 배출하기 위하여 액상 엘엔지 배출라인(160)이 마련된다.In addition, the liquid LENG discharge line 160 is provided to discharge the liquid LEN from the LNG storage tank 100.
액상 엘엔지 배출라인(160)은 일단부가 엘엔지 저장탱크(100)에 연결되어 엘엔지 저장탱크(100)로부터 액상 엘엔지가 배출되도록 마련된다.Liquid LENG discharge line 160 is one end is connected to the LENG storage tank 100 is provided so that the liquid LENG is discharged from the LENG storage tank (100).
액상 엘엔지 배출라인(160)의 타단부에 물류창고용 냉열 공급부(200)의 제1부하용 열교환기(201) 및 제2부하용 열교환기(202)가 순차적으로 마련된다.The first load heat exchanger 201 and the second load heat exchanger 202 of the warehouse cold heat supply unit 200 are sequentially provided at the other ends of the liquid LENG discharge line 160.
제1부하용 열교환기(201) 및 제2부하용 열교환기(202)는 액상 엘엔지의 냉열을 흡수하며, 물류창고용 냉열 공급부(200)는 그 흡수된 냉열을 물류창고에 공급하도록 마련되는 것이다.The first load heat exchanger 201 and the second load heat exchanger 202 absorb cold heat of the liquid LENG, and the cold heat supply unit 200 for the warehouse is provided to supply the absorbed cold heat to the warehouse. .
물류창고용 냉열 공급부(200)에 대하여는 후술한다.The cold heat supply unit 200 for the distribution warehouse will be described later.
따라서 제1,2부하용 열교환기(201, 202)를 지나는 액상 엘엔지는 냉열을 방출함으로써 그 온도가 상승하게 되며 일부 또는 전부가 기화될 수 있다.Therefore, the liquid phase L cells passing through the first and second load heat exchangers 201 and 202 may be cooled by releasing cold heat, and some or all of them may be vaporized.
제1,2부하용 열교환기(201, 202)의 후단에는 승온 엘엔지 유동라인(170)이 마련되어 물류창고용 냉열 공급부(200)의 부하용 열교환기(201, 202)에 의하여 냉열이 흡수되어 승온된 엘엔지가 재액화기(180)로 유동하도록 안내하게 된다.The rear end of the first and second load heat exchangers (201, 202) is provided with a temperature increase L-engine flow line 170 is provided by the heat exchangers (201, 202) of the load of the cold heat supply unit 200 for the warehouse warehouse to absorb the cold heat Guide the LNG to flow to the reliquefaction unit 180.
승온 엘엔지 유동라인(170)의 후단에 재액화기(180)가 마련된다.The reliquefaction unit 180 is provided at the rear end of the temperature rising LNG flow line 170.
재액화기(180)는 승온 엘엔지 유동라인(170)을 지난 승온 엘엔지를 냉각하여 기상 엘엔지를 액화시키거나 혹은 높은 온도의 액상 엘엔지를 낮은 온도의 액상 엘엔지로 냉각하기 위하여 마련되는 것이다. 그러나 후술하는 바와 같이 본 실시예의 제어 방식에서 재액화기(180)의 가동 시간은 최소화되어야 한다.The reliquefaction unit 180 is provided to cool the temperature rising LG engine past the temperature rising LG engine flow line 170 to liquefy the gas phase EL or to cool the high temperature liquid EL to the low temperature liquid EL. However, as described below, the operating time of the reliquefaction machine 180 should be minimized in the control method of the present embodiment.
즉 재액화기(180)는 기상 엘엔지 혹은 높은 온도의 액상 엘엔지를 냉각시켜, 기상 엘엔지를 액상 엘엔지로 액화시키거나 높은 온도의 액상 엘엔지를 낮은 온도의 액상 엘엔지로 냉각시키게 된다.In other words, the reliquefaction unit 180 cools the gas phase L / G or the high temperature liquid LG, thereby liquefying the gas phase L / L into the liquid LG, or cools the high temperature liquid LG to the low temperature liquid LJ.
이와 같은 재액화기(180)에 냉각을 위한 냉열을 공급하기 위하여 재액화기용 냉각기(181)가 마련된다.In order to supply cooling heat for cooling to the reliquefaction unit 180, a reliquefaction cooler 181 is provided.
재액화기용 냉각기(181)는 재액화기(180)에 일체화되거나 혹은 재액화기(180)와는 별개로 마련될 수 있다.The reliquefaction cooler 181 may be integrated with the reliquefaction unit 180 or may be provided separately from the reliquefaction unit 180.
재액화기(180)에서 냉각된 엘엔지는 재액화기용 엘엔지 환수라인(190)에 의하여 엘엔지 저장탱크(100)로 환수된다. 즉 재액화기용 엘엔지 환수라인(190)은 재액화기(180)와 엘엔지 저장탱크(100)를 연결하도록 마련된다.The L ENG cooled in the reliquefaction unit 180 is returned to the L ENG storage tank 100 by the L ENG return line 190 for the reliquefaction unit. That is, the L NG return line 190 for the reliquefaction unit is provided to connect the reliquefaction unit 180 and the L ENG storage tank 100.
상기와 같이 액상 엘엔지는 액상 엘엔지 배출라인(160), 물류창고용 냉열 공급부(200)의 제1,2부하용 열교환기(201,202), 승온 엘엔지 유동라인(170), 재액화기(180), 재액화기용 엘엔지 환수라인(190)을 따라 유동한다.As described above, the liquid LENG is the liquid LENG discharge line 160, the first and second load heat exchangers (201, 202) of the cold heat supply unit 200 for the warehouse, the temperature rise LENG flow line 170, the reliquefaction unit 180, ash It flows along the LENG return line 190 for the liquefier.
이때 본 시스템은 기본적으로 재액화기용 냉각기(181)의 구동이 정지되어 엘엔지가 재액화기(180)를 지나면서도 엘엔지가 냉각되지 않는 기상 엘엔지 생성 모드로 구동하게 된다. 즉 본 시스템은 재액화기(180)의 구동이 정지되어 액상 엘엔지가 물류창고용 냉열 공급부(200)의 제1,2부하용 열교환기(201,202)에 냉열을 배출하고 기상 엘엔지로 변환되는 것이 기본적인 동작 모드이다.At this time, the system basically stops driving of the reliquefaction cooler 181, so that the LNG is passed through the reliquefaction unit 180 and is driven in a gaseous phase LG generation mode in which the LNG is not cooled. That is, in this system, the operation of the reliquefaction unit 180 is stopped, so that the liquid LENG discharges cold heat to the first and second load heat exchangers 201 and 202 of the cold heat supply unit 200 for the warehouse and converts it to a gas phase LNC. Mode.
즉 재액화기용 냉각기(181)의 구동은 자제되는 방식으로 본 시스템이 구동된다.That is, the system is driven in a manner that the driving of the reliquefaction cooler 181 is controlled.
물론 본 실시예에서 재액화기용 냉각기(181)는 엘엔지 저장탱크(100)의 압력이 과다하게 상승하면 가동되어 냉열을 공급하도록 제어된다. Of course, the coolant 181 for the reliquefaction machine in the present embodiment is controlled to operate when the pressure of the LENG storage tank 100 is excessively increased to supply cold heat.
이와 같이 본 실시예의 재액화기용 냉각기(181) 및 재액화기(180)는 액상 엘엔지의 순환 배관에 냉열을 공급하거나 공급하지 않도록 선택적으로 제어된다.As described above, the coolant 181 and the reliquefaction device 180 for the reliquefaction apparatus are selectively controlled not to supply or supply cold heat to the circulation pipe of the liquid LENG.
한편 기상 엘엔지 배출라인(110)의 타단부에는 응축용 열교환기(120)와 기상 엘엔지 환수라인(140)이 각각 연결된다.On the other hand, the other end of the gas phase LG discharge line 110 is connected to the heat exchanger for condensation 120 and the gas phase LG return line 140, respectively.
응축용 열교환기(120)는, 제1-1열매체 유동로를 지나는 제1-1열매체와 제1-2열매체 유동로를 지나는 제1-2열매체가 서로 열교환하도록 이루어지며, 제1-1열매체 유동로의 일단부가 기상 엘엔지 배출라인(110)의 타단부에 연결된다.The heat exchanger 120 for condensation is performed such that the first-first heat medium passing through the first-first heat medium flow path and the first-second heat medium passing through the 1-2th heat medium flow path exchange heat with each other, and the first-first heat medium. One end of the flow path is connected to the other end of the gas phase LG discharge line 110.
따라서 응축용 열교환기(120)의 제1-1열매체 유동로에는 기상 엘엔지 배출라인(110)을 지나는 기상 엘엔지가 유동하게 된다. 또한 응축용 열교환기(120)의 제1-1열매체 유동로를 유동하는 기상 엘엔지는 제1-2열매체 유동로를 유동하는 제1-2열매체와 열교환하여 사용에 필요한 온도로 승온된다.Therefore, the gaseous L / N passing through the gaseous L / N discharge line 110 flows in the 1-1 heat medium flow path of the heat exchanger 120 for condensation. In addition, the gas phase L engine flowing through the 1-1 heat medium flow path of the heat exchanger 120 for condensation is heated to a temperature required for use by heat exchange with the 1-2 heat medium flowing through the 1-2 heat medium flow path.
또한 기상 엘엔지 환수라인(140)은 기상 엘엔지 배출라인(110)과 연결되는 제2-1단부와, 응축용 열교환기(120)의 제1-1열매체 유동로의 타단부에 연결되는 제2-2단부와, 재액화기(180)에 연결되는 제2-3단부를 가지며, 제2-1단부와 제2-2단부와 제2-3단부는 서로 연통되도록 이루어진다.In addition, the gas phase L engine return line 140 is connected to the second end of the first and second heat medium flow path of the heat exchanger 120 for condensation, and the second end of the first and second heat exchanger 120, 2- It has a second end and a 2-3 end connected to the reliquefaction unit 180, the second-first end, the second-second end and the second-end end is made to communicate with each other.
따라서 기상 엘엔지 환수라인(140)은 기상 엘엔지 배출라인(110) 또는 응축용 열교환기(120)의 제1-1열매체 유동로로부터 기상 엘엔지가 유입되어 재액화기(180)로 유출된다.Therefore, the gaseous LNG return line 140 is the gaseous LENG discharge line 110 or the gaseous LNG flows from the 1-1 heat medium flow path of the heat exchanger 120 for condensation flows out to the reliquefaction unit 180.
즉 기상 엘엔지 환수라인(140)은, 기상 엘엔지를 재액화기(180)로 보내 기상 엘엔지가 액화될 수 있도록 하는 것으로, 다만 엘엔지 저장탱크(100)의 압력이 과다하게 상승할 경우 기상 엘엔지 일부를 액화하기 위하여 이용된다.That is, the weather LNG return line 140, by sending the weather LENG to the reliquefaction unit 180 to liquefy the weather LENG, but if the pressure of the LENG storage tank 100 excessively liquefied a part of the weather LENG. To be used.
또한 응축용 열교환기(120)의 제1-1열매체 유동로의 타단부에는 기상 엘엔지 환수라인(140)의 제2-2단부가 연결될 뿐만 아니라, 복수의 기상 엘엔지 수요처와 연결되는 기상 엘엔지 수요처 공급라인(130)이 연결된다.In addition, the other end of the first-first heat medium flow path of the heat exchanger 120 for condensation is connected to the second-second end of the gas phase L / N return line 140, and also supplies the gaseous LNG demand source connected to a plurality of gaseous LNG demand destinations. Line 130 is connected.
기상 엘엔지 수요처 공급라인(130)은 기상 엘엔지를 수요처에 공급하기 위하여 마련되는 것이다. The meteorological LNG demand source supply line 130 is provided to supply the meteorological LNG to the demand destination.
기상 엘엔지 수요처 공급라인(130)에는 각 수요처에 비례제어 방식으로 기상 엘엔지를 공급하도록 하는 복수의 비례제어밸브(130-1,2,3,4,5,6,7)가 마련된다.The meteorological LNG demand source supply line 130 is provided with a plurality of proportional control valves 130-1, 2, 3, 4, 5, 6, and 7 for supplying the meteorological LNG to each demand destination in a proportional control manner.
아울러 기상 엘엔지의 수요처로서는 1) 냉동 또는 냉장 물류창고에 마련된 증발기의 착상을 제거하기 위한 제상수 생성용(131-1), 2) 공장의 급탕, 온수 등을 위한 열원(131-2), 3) 사무실 및 연구소에 위치한 가스히트펌프(GHP)의 열원(131-3), 4) 물류센터 내의 비상 발전기 가동용(131-4), 5) 도시가스 배관(131-5), 6) 물류센터의 주위 공장(131-6), 7) 연료전지의 연료용(131-7) 등이 예시될 수 있다.In addition, as a demand source for the weather LENG, 1) defrosting water generation (131-1) for removing defrosting of the evaporator provided in the frozen or refrigerated distribution warehouse, 2) heat source (131-2), 3 for hot water supply, hot water, etc. of the factory ) Heat source (131-3) of gas heat pump (GHP) located in offices and laboratories, 4) Emergency generator operation in logistics center (131-4), 5) City gas piping (131-5), 6) Logistics center The plant 131-6, 7) for fuel 131-7, etc. of the fuel cell may be exemplified.
한편 기상 엘엔지 배출라인(110)과 응축용 열교환기(120)의 제1-1열매체 유동로 사이에는 제1제어밸브(111)가 마련되며, 기상 엘엔지 배출라인(110)과 기상 엘엔지 환수라인(140) 사이에는 제2제어밸브(112)가 마련되며, 응축용 열교환기(120)의 제1-1열매체 유동로와 기상 엘엔지 수요처 공급라인(130) 사이에는 제3제어밸브(113)가 마련되며, 응축용 열교환기(120)의 제1-1열매체 유동로와 기상 엘엔지 환수라인(140) 사이에는 제4제어밸브(114)가 마련된다.Meanwhile, a first control valve 111 is provided between the gaseous LNG discharge line 110 and the first-first heat medium flow path of the heat exchanger 120 for condensation, and the gaseous LNG discharge line 110 and the gaseous LNG return line ( A second control valve 112 is provided between the first and second control valves 112, and a third control valve 113 is provided between the first-first heat medium flow path of the condensation heat exchanger 120 and the gaseous supply and demand destination line 130. A fourth control valve 114 is provided between the first-first heat medium flow path of the heat exchanger 120 for condensation and the gas phase L engine return line 140.
제1,2,3,4제어밸브(111,112,113,114)는 기상 엘엔지 수요처에 공급되는 기상 엘엔지의 유량, 후술하는 터빈 발전기의 구동 여부, 엘엔지 저장탱크의 압력 등에 따라 개폐가 제어되어 유로 등을 변경하게 된다.The first, second, third, and fourth control valves 111, 112, 113, and 114 are controlled to open and close according to the flow rate of the gaseous-phase engine, supplied to the demand for the gas-phase engine, whether or not the turbine generator is to be described later, and the pressure of the engine storage tank. .
이하에서는 냉동냉장 물류창고를 포함하는 각종 물류창고에 냉열을 공급하는 물류창고용 냉열 공급부(200)에 관하여 설명한다.Hereinafter, a description will be given of the cold storage supply unit for the warehouse warehouse for supplying cold heat to the various warehouses, including the refrigerated warehouse.
제1부하용 열교환기(201)는 약 -160℃의 엘엔지가 약 -100℃로 승온되면서 냉열을 배출하도록 하고, 제2부하용 열교환기(202)는 -100℃의 엘엔지가 약 -60℃로 승온되면서 냉열을 배출하도록 한다.The first load heat exchanger 201 discharges the cold heat while the temperature of the -Engine at about -160 ° C is raised to about -100 ° C, and the second load heat exchanger 202 has the -100 ° C at about -60 ° C. As the temperature rises, the cold heat is discharged.
상기와 같이 제1부하용 열교환기(201)를 지나는 엘엔지와 열교환하여 물류창고에 냉열을 전달하기 위하여 제1냉매 순환 배관이 마련된다.As described above, a first refrigerant circulation pipe is provided in order to exchange heat with the L & G passing through the first load heat exchanger 201 to transmit cold heat to the warehouse.
제1냉매 순환 배관은, 제1부하용 열교환기(201), 제1냉매 저장 탱크(211)와, 제1냉매 순환 펌프(212)와, 제1-1열교환기(213), 제1부하용 열교환기(201)를 순환하는 배관을 이루게 된다.The first refrigerant circulation pipe includes a first load heat exchanger 201, a first refrigerant storage tank 211, a first refrigerant circulation pump 212, a 1-1 heat exchanger 213, and a first load. A pipe circulating through the heat exchanger 201 is formed.
본 실시예에서 제1냉매는 프로판(R-290)으로서, 제1부하용 열교환기(201)에 유입되기 직전 제1냉매의 온도는 -70℃이며, 제1부하용 열교환기(201)로부터 유출된 직후 제1냉매의 온도는 -80℃이다. 이는 제1-1열교환기(213)에 유입되기 직전의 제1냉매의 온도는 -80℃이며, 제1-1열교환기(213)로부터 유출된 직후 제1냉매의 온도는 -70℃라는 것과 동일한 의미이다.In the present embodiment, the first refrigerant is propane (R-290), and the temperature of the first refrigerant immediately before flowing into the first load heat exchanger 201 is -70 ° C, and from the first load heat exchanger 201. Immediately after the outflow, the temperature of the first refrigerant is -80 ° C. That is, the temperature of the first refrigerant immediately before flowing into the 1-1 heat exchanger 213 is -80 ° C, and the temperature of the first refrigerant immediately after flowing out of the 1-1 heat exchanger 213 is -70 ° C. It is the same meaning.
이와 같은 제1냉매는 엘엔지로부터 가장 차가운 냉열을 추출하기 위하여 마련되는 것이다.Such a first refrigerant is provided to extract the coldest cold heat from LENG.
제1-1열교환기(213)를 매개하여 제1냉매 순환 배관에 제1보조 냉매 순환 배관이 연결된다.The first auxiliary refrigerant circulation pipe is connected to the first refrigerant circulation pipe via the first-first heat exchanger 213.
제1보조 냉매 순환 배관은, 제1-1열교환기(213), 제1보조 냉매 저장 탱크(221)와, 제1보조 냉매 순환 펌프(222)와, 제1유니트 쿨러(223), 제1-1열교환기(213)을 순환하는 배관을 이루게 된다.The first auxiliary refrigerant circulation pipe includes the first-first heat exchanger 213, the first auxiliary refrigerant storage tank 221, the first auxiliary refrigerant circulation pump 222, the first unit cooler 223, and the first. A pipe circulating through the -1 heat exchanger 213 is formed.
본 실시예에서 제1보조 냉매는 2차냉매로서 R-407c, R-507a 등이 채택될 수 있으며, 제1-1열교환기(213)에 유입되기 직전 제1보조 냉매의 온도는 -65℃이며, 제1-1열교환기(213)로부터 유출된 직후 제1보조 냉매의 온도는 -75℃이다. 이는 제1유니트 쿨러(223)에 유입되기 직전 제1보조 냉매의 온도는 -75℃이며, 제1유니트 쿨러(223)로부터 유출된 직후 제1보조 냉매의 온도는 -65℃라는 것과 동일한 의미이다.In the present embodiment, the first auxiliary refrigerant may be R-407c, R-507a, or the like as a secondary refrigerant, and the temperature of the first auxiliary refrigerant immediately before flowing into the 1-1 heat exchanger 213 is -65 ° C. The temperature of the first auxiliary refrigerant immediately after flowing out of the 1-1 heat exchanger 213 is -75 ° C. This means that the temperature of the first auxiliary coolant immediately before flowing into the first unit cooler 223 is -75 ° C, and the temperature of the first auxiliary coolant immediately after flowing out of the first unit cooler 223 is -65 ° C. .
이와 같은 제1유니트 쿨러(223)는 물류창고 내부를 냉각하기 위한 제1보조 냉매의 부하로서 이용되는 것으로 냉열부하의 일종이다.The first unit cooler 223 is used as a load of the first auxiliary refrigerant for cooling the inside of the warehouse and is a kind of cold load.
즉 복수의 제1유니트 쿨러(223)는 물류창고 중 아이스크림 저장창고, F급 냉장고, SF급 냉장고(초저온용), 가공공장 냉장고, 극저온 연구실 등에 냉열을 공급할 수 있다.That is, the plurality of first unit coolers 223 may supply cooling heat to an ice cream storage warehouse, an F-class refrigerator, an SF-class refrigerator (for ultra low temperature), a processing plant refrigerator, a cryogenic laboratory, and the like in a warehouse.
상기와 같이 제1냉매 순환 배관은 제1보조 냉매 순환 배관을 매개하여 물류창고에 가장 차가운 냉열을 전달하게 된다.As described above, the first refrigerant circulation pipe delivers the coolest cold heat to the warehouse through the first auxiliary refrigerant circulation pipe.
제2부하용 열교환기(202)를 지나는 엘엔지와 열교환하여 물류창고에 냉열을 전달하기 위하여 제2냉매 순환 배관이 마련된다.A second refrigerant circulation pipe is provided to exchange heat with the L & G passing through the second load heat exchanger 202 to transfer the cold heat to the warehouse.
제2냉매 순환 배관은, 제2부하용 열교환기(202), 제2냉매 저장 탱크(231)와, 제2냉매 순환 펌프(232)와, 제2유니트 쿨러(233), 제2부하용 열교환기(202)를 순환하는 배관을 이루게 된다.The second refrigerant circulation pipe includes a second load heat exchanger 202, a second refrigerant storage tank 231, a second refrigerant circulation pump 232, a second unit cooler 233, and a second load heat exchanger. A pipe circulating the machine 202 is formed.
본 실시예에서 제2냉매는 이산화탄소(CO2), R-407c, R-507a 등이 채택될 수 있으며, 제2부하용 열교환기(202)에 유입되기 직전 제2냉매의 온도는 -10℃이며, 제2부하용 열교환기(202)로부터 유출된 직후 제2냉매의 온도는 -15℃이다. 즉 제2유니트 쿨러(233)에 유입되기 직전 제2냉매의 온도는 -15℃이며, 제2유니트 쿨러(233)로부터 유출된 직후 제2냉매의 온도는 -10℃이다. In the present embodiment, the second refrigerant may be carbon dioxide (CO2), R-407c, R-507a, or the like, and the temperature of the second refrigerant immediately before flowing into the second load heat exchanger 202 is -10 ° C. The temperature of the second refrigerant immediately after flowing out from the second load heat exchanger 202 is -15 ° C. That is, the temperature of the second refrigerant immediately before flowing into the second unit cooler 233 is −15 ° C., and the temperature of the second refrigerant immediately after flowing out of the second unit cooler 233 is −10 ° C.
이와 같은 제2유니트 쿨러(233)는 물류창고 내부를 냉각하기 위한 제1보조 냉매의 부하로서 이용되는 것으로서 냉열부하의 일종이며, 복수의 제2유니트 쿨러(233)는 물류창고 중 문서 보관고, 가공공장의 공조, C2급 냉장고 등에 냉열을 공급할 수 있다.The second unit cooler 233 is used as a load of the first auxiliary refrigerant for cooling the inside of the warehouse and is a kind of cold load, and the plurality of second unit coolers 233 are used for storing documents and processing in the warehouse. Cold air can be supplied to the air conditioning of the factory, C2 refrigerators.
상기와 같이 제2냉매 순환 배관는 직접 물류창고에 냉열을 전달하게 된다.As described above, the second refrigerant circulation pipe directly transmits cold heat to the warehouse.
한편 본 시스템이 더욱 경제적으로 운전되기 위하여 냉각수 저장조(450)와, 보조 냉열 공급부(400)가 마련된다.Meanwhile, in order to operate the system more economically, the cooling water storage tank 450 and the auxiliary cooling heat supply unit 400 are provided.
냉각수 저장조(450)는 저온의 냉각수가 저장되는 저온 냉각조(451)와, 고온의 냉각수가 저장되는 고온 냉각조(452)를 구비하고 있다.The cooling water storage tank 450 includes a low temperature cooling tank 451 in which low temperature cooling water is stored, and a high temperature cooling tank 452 in which high temperature cooling water is stored.
보조 냉열 공급부(400)는, 저온 냉각조(451)의 저온의 냉각수를 응축 열원으로 이용하여 물류창고용 냉열 공급부(200)에 보조적인 냉열을 공급하며, 응축 열원으로 이용된 저온의 냉각수는 고온 냉각조(452)로 반송하도록 이루어진다.The auxiliary cold heat supply unit 400 supplies the auxiliary cold heat to the cold heat supply unit 200 for the warehouse using the low temperature cooling water of the low temperature cooling tank 451 as the condensation heat source, and the low temperature cooling water used as the condensation heat source is high temperature. It is made to convey to the cooling tank 452.
보조 냉열 공급부(400)로서 제1-2냉매 순환부, 제1냉각수 순환부, 제2-2냉매 순환부 및 제2냉각수 순환부가 각각 마련된다.As the auxiliary cooling heat supply unit 400, the 1-2 coolant circulation unit, the first coolant circulation unit, the 2-2 refrigerant circulation unit and the second coolant circulation unit are respectively provided.
제1-2냉매 순환부는 제1-2냉매 저장 탱크(411), 제1-2냉매 순환 배관(412), 제1유니트 쿨러(223)로 이루어진다.The 1-2 refrigerant circulation section includes the 1-2 refrigerant storage tank 411, the 1-2 refrigerant circulation pipe 412, and the first unit cooler 223.
제1-2냉매 저장 탱크(411)에는 제1-2냉매가 저장된다.The 1-2 refrigerant is stored in the 1-2 refrigerant storage tank 411.
제1-2냉매 저장 탱크(411)에 저장된 제1-2냉매를 공급 및 회수하기 위하여 제1-2냉매 순환 배관(412)이 마련되며, 아울러 제1-2냉매 순환 배관(412)에는 물류창고 내부를 냉각하기 위한 제1냉매의 부하로서 제1유니트 쿨러(223)가 연결된다.In order to supply and recover the 1-2 refrigerant stored in the 1-2 refrigerant storage tank 411, the 1-2 refrigerant circulation pipe 412 is provided, and the 1-2 refrigerant circulation pipe 412 is provided with logistics. The first unit cooler 223 is connected as a load of the first refrigerant for cooling the inside of the warehouse.
즉 제1유니트 쿨러(223)는 제1-2냉매 순환부와 연결되는 한편 제1보조 냉매 순환 배관에도 연결되어 제1-2냉매 혹은 제1보조 냉매가 공급될 수 있다.That is, the first unit cooler 223 may be connected to the first-second refrigerant circulation part and also connected to the first auxiliary refrigerant circulation pipe to supply the first-second refrigerant or the first auxiliary refrigerant.
제1-2냉매 순환부의 냉매로서 이용되는 제1-2냉매를 냉각하기 위하여 제1냉각수 순환부가 마련된다.A first coolant circulation part is provided to cool the 1-2 refrigerant used as the refrigerant of the 1-2 refrigerant circulation part.
제1냉각수 순환부는 제1수냉식 냉동기(431), 제1냉각수 순환 배관(432), 냉각수 저장조(450)로 이루어진다.The first cooling water circulation unit includes a first water cooling refrigerator 431, a first cooling water circulation pipe 432, and a cooling water storage tank 450.
제1수냉식 냉동기(431)는 제1-2냉매 저장 탱크(411)에 저장된 제1-2냉매를 공급받아 이를 냉각한 후 제1-2냉매 저장 탱크(411)로 반송하게 된다.The first water-cooled refrigerator 431 receives the 1-2 refrigerant stored in the 1-2 refrigerant storage tank 411, cools it, and returns the same to the 1-2 refrigerant storage tank 411.
이와 같은 제1수냉식 냉동기(431)는 제1-2냉매에 대한 압축과 응축 공정을 수행하게 되며, 특히 응축 열원으로 냉각수를 이용하게 된다. 즉 제1수냉식 냉동기(431)는 냉매의 압축과 응축, 특히 응축을 위하여 냉각수의 지속적인 보급이 필요하게 된다.The first water-cooled refrigerator 431 performs the compression and condensation process for the 1-2 refrigerant, and in particular, the cooling water is used as the condensation heat source. That is, the first water-cooled refrigerator 431 needs to continuously supply cooling water for compression and condensation of the refrigerant, particularly for condensation.
제1냉각수 순환 배관(432)은 제1수냉식 냉동기(431)의 응축 열원으로 이용되기 위하여 냉각수를 공급하고 응축 열원으로 이용된 냉각수를 냉각수 저장조(450)로 회수하기 위하여 마련된다.The first cooling water circulation pipe 432 is provided to supply the cooling water to be used as the condensation heat source of the first water cooling refrigerator 431 and to recover the cooling water used as the condensation heat source to the cooling water storage tank 450.
제1수냉식 냉동기(431)는 저온 냉각조(451)의 냉각수를 이용한 후 고온 냉각조(452)로 반송하게 된다.The first water-cooled refrigerator 431 uses the cooling water of the low temperature cooling tank 451 and then conveys it to the high temperature cooling tank 452.
제2-2냉매 순환부는 제2-2냉매 저장 탱크(421), 제2-2냉매 순환 배관(422), 제2유니트 쿨러(233)로 이루어진다.The second-second refrigerant circulation unit includes a second-second refrigerant storage tank 421, a second-second refrigerant circulation pipe 422, and a second unit cooler 233.
제2-2냉매 저장 탱크(421)에는 제2-2냉매가 저장된다.The second-2 refrigerant is stored in the second-2 refrigerant storage tank 421.
제2-2냉매 저장 탱크(421)에 저장된 제2-2냉매를 공급 및 회수하기 위하여 제2-2냉매 순환 배관(422)이 마련되며, 아울러 제2-2냉매 순환 배관(422)에는 물류창고 내부를 냉각하기 위한 제2-2냉매의 부하로서 제2유니트 쿨러(233)가 연결된다.In order to supply and recover the second-two refrigerant stored in the second-two refrigerant storage tank 421, a second-two refrigerant circulation pipe 422 is provided, and the second-two refrigerant circulation pipe 422 is provided with logistics. The second unit cooler 233 is connected as a load of the second-two refrigerant for cooling the inside of the warehouse.
제2-2냉매 순환부의 냉매로서 이용되는 제2-2냉매를 냉각하기 위하여 제2냉각수 순환부가 마련된다.A second coolant circulation part is provided to cool the second-2 refrigerant used as the refrigerant of the second-2 refrigerant circulation part.
제2냉각수 순환부는 제2수냉식 냉동기(441), 제2냉각수 순환 배관(442), 냉각수 저장조(450)로 이루어진다.The second cooling water circulation unit includes a second water cooling refrigerator 441, a second cooling water circulation pipe 442, and a cooling water storage tank 450.
제2수냉식 냉동기(441)는 제2-2냉매 저장 탱크(421)에 저장된 제2-2냉매를 공급받아 이를 냉각한 후 제2-2냉매 저장 탱크(421)로 반송하게 된다.The second water-cooled refrigerator 441 receives the second-two refrigerant stored in the second-two refrigerant storage tank 421, cools it, and returns the same to the second-two refrigerant storage tank 421.
이와 같은 제2수냉식 냉동기(441)는 제2-2냉매에 대한 압축과 응축 공정을 수행하게 되며, 특히 응축 열원으로 냉각수를 이용하게 된다. 즉 제2수냉식 냉동기(441)는 냉각수의 지속적인 보급이 필요하게 된다.The second water-cooled refrigerator 441 performs the compression and condensation process for the second-two refrigerants, and in particular, the cooling water is used as the condensation heat source. That is, the second water-cooled refrigerator 441 needs to continuously supply cooling water.
제2냉각수 순환 배관(442)은 제2수냉식 냉동기(441)의 응축 열원으로 이용되기 위하여 냉각수를 공급하고 응축 열원으로 이용된 냉각수를 냉각수 저장조(450)로 회수하기 위하여 마련된다.The second cooling water circulation pipe 442 is provided to supply the cooling water to be used as the condensation heat source of the second water cooling refrigerator 441 and to recover the cooling water used as the condensation heat source to the cooling water storage tank 450.
즉 제2수냉식 냉동기(441)는 저온 냉각조(451)의 냉각수를 이용한 후 고온 냉각조(452)로 반송하게 된다.That is, the 2nd water-cooled refrigerator 441 uses the cooling water of the low temperature cooling tank 451, and returns to the high temperature cooling tank 452. FIG.
한편 제1수냉식 냉동기(431)에는 제1냉매 저장 탱크(211)에 저장된 제1냉매를 공급받아 이를 냉각한 후 제1냉매 저장 탱크(211)로 반송하기 위한 제1냉동기용 냉매 순환 배관(433)이 마련된다.Meanwhile, the first water-cooled refrigerator 431 receives the first refrigerant stored in the first refrigerant storage tank 211, cools the first refrigerant, and then returns the refrigerant to the first refrigerant storage tank 211. ) Is prepared.
아울러 제2수냉식 냉동기(441)에는 제2냉매 저장 탱크(231)에 저장된 제2냉매를 공급받아 이를 냉각한 후 제2냉매 저장 탱크(231)로 반송하기 위한 제2냉동기용 냉매 순환 배관(443)이 마련된다.In addition, the second water-cooled refrigerator 441 receives a second refrigerant stored in the second refrigerant storage tank 231, cools the second refrigerant, and then returns the refrigerant to the second refrigerant storage tank 231 to return the refrigerant to the second refrigerant storage tank 231. ) Is prepared.
한편 냉각수 저장조(450)에는 저장조용 냉각수 순환 배관(453)이 마련된다.Meanwhile, the cooling water storage tank 450 is provided with a cooling water circulation pipe 453 for the storage tank.
저장조용 냉각수 순환 배관(453)은 고온 냉각조(452)의 고온의 냉각수를 저온 냉각조(451)로 이송하기 위하여 마련된다.The storage tank cooling water circulation pipe 453 is provided to transfer the high temperature cooling water of the high temperature cooling tank 452 to the low temperature cooling tank 451.
또한 저장조용 냉각수 순환 배관(453)을 지나는 고온의 냉각수에 의하여 발전용 냉매가 증발팽창하도록 이루어진 발전용 증발기(320)가 마련된다.In addition, a power generation evaporator 320 configured to evaporate and expand the power generation refrigerant by the high temperature cooling water passing through the storage tank cooling water circulation pipe 453 is provided.
따라서 저장조용 냉각수 순환 배관(453)은 고온 냉각조(452)의 고온의 냉각수를 발전용 증발기(320)에 공급하여 증발 열원으로 이용하도록 하고, 발전용 증발기(320)를 지나면서 냉각된 냉각수를 저온 냉각조(451)로 회수한다.Therefore, the cooling water circulation pipe 453 for the storage tank supplies the high temperature cooling water of the high temperature cooling tank 452 to the power generation evaporator 320 to use the evaporation heat source, and uses the coolant cooled while passing through the power generation evaporator 320. The low temperature cooling tank 451 is recovered.
발전용 냉매가 응축용 열교환기(120)의 제1-2열매체 유동로를 지나면서 응축되며 발전용 증발기(320)를 지나면서 증발팽창되기 위하여 발전용 냉매가 응축용 열교환기(120)의 제1-2열매체 유동로와 발전용 증발기(320)를 순환하도록 발전용 냉매 순환 배관(330)이 마련된다.The refrigerant for power generation is condensed while passing through the 1-2 heat medium flow path of the heat exchanger 120 for condensation, and the refrigerant for power generation is evaporated and expanded through the evaporator 320 for power generation. A power generation refrigerant circulation pipe 330 is provided to circulate the 1-2 heat medium flow path and the power generation evaporator 320.
발전용 냉매 순환 배관(330)에는 발전용 냉매를 순환시키기 위한 발전용 냉매 순환 펌프(331)가 마련된다.The power generation refrigerant circulation pipe 330 is provided with a power generation refrigerant circulation pump 331 for circulating the power generation refrigerant.
아울러 발전용 증발기(320)의 후단과 응축용 열교환기(120)의 전단 사이의 발전용 냉매 순환 배관(330)에 터빈 발전기(310)가 마련되며, 터빈 발전기(310)는 발전용 냉매에 의하여 전력을 발생시킨다.In addition, a turbine generator 310 is provided in the power generation refrigerant circulation pipe 330 between the rear end of the power generation evaporator 320 and the front end of the condensation heat exchanger 120, and the turbine generator 310 is formed by a power generation refrigerant. Generate power.
결과적으로 발전용 냉매 순환 배관(330)은, 발전용 냉매가 응축용 열교환기(120), 발전용 냉매 순환 펌프(331), 발전용 증발기(320), 터빈 발전기(310), 응축용 열교환기(120)를 순환하도록 형성된다.As a result, the power generation refrigerant circulation pipe 330 is a power generation refrigerant condensation heat exchanger 120, power generation refrigerant circulation pump 331, power generation evaporator 320, turbine generator 310, heat exchanger for condensation It is formed to circulate 120.
또한 발전용 냉매는 응축용 열교환기(120)에서 기상 엘엔지를 응축 열원으로 이용하여 응축되며, 발전용 냉매는 발전용 증발기(320)에서 저장조용 냉각수 순환 배관(453)을 지나는 고온의 냉각수를 증발 열원으로 이용하여 증발되며, 이와 같이 증발 팽창된 발전용 냉매는 터빈 발전기(310)를 지나면서 터빈 발전기(310)를 회전시켜 전력을 생산하게 된다.In addition, the refrigerant for power generation is condensed using the gaseous phase L engine as a condensation heat source in the heat exchanger 120 for condensation, and the refrigerant for power generation evaporates the high temperature cooling water passing through the cooling water circulation pipe 453 for the storage tank in the power generation evaporator 320. Evaporated using the heat source, the refrigerant evaporated and expanded in this way is to rotate the turbine generator 310 while passing through the turbine generator 310 to produce power.
또한 이에 의하여 응축용 열교환기(120)는 기상 엘엔지를 수요처에 적합한 온도로 승온시키며, 아울러 발전용 증발기(320)는 고온 냉각조(452)의 고온의 냉각수를 저온의 냉각수로 변환시키게 된다.In addition, the heat exchanger 120 for condensation raises the temperature of the gas phase LN to a temperature suitable for the demand, and the power generation evaporator 320 converts the high temperature cooling water of the high temperature cooling tank 452 into low temperature cooling water.
한편 본 실시예는 재액화기(180)에 냉열을 공급하기 위하여 마련되는 재액화기용 냉각기(181)로서 스털링 냉각기(181)를 채택하였다.Meanwhile, in the present embodiment, the Stirling cooler 181 is adopted as the coolant 181 for the reliquefaction machine provided to supply cold heat to the reliquefaction machine 180.
스털링 냉각기(stirling cooler)는, 이상기체(통상 H 또는 He을 이용함.)의 압축 또는 팽창시 기체에서 주위로 열을 방출 및 흡수하는 열역학적 성질을 이용하여 저온부(팽창공간)에서 고온부(압축공간)로 열을 펌핑하는 기기이다.The Stirling cooler uses a thermodynamic property that releases and absorbs heat from the gas to the surroundings during the compression or expansion of the ideal gas (usually using H or He). It is a device for pumping heat into a furnace.
스털링 냉각기(181)에서 발생한 냉열, 즉 스털링 냉각기(181)의 저온부로부터 냉열을 전달받아 이를 재액화기(180)에 전달하기 위하여 히트파이프(182)를 마련하였다.The heat pipe 182 is provided to receive the cold heat generated in the Stirling Cooler 181, that is, the cold heat from the low temperature part of the Stirling Cooler 181, and deliver it to the reliquefaction unit 180.
즉 히트파이프(182)는 일단부가 스털링 냉각기(181)의 저온부로부터 냉열을 전달받도록 배치되며, 타단부에서 재액화기(180)에 액화를 위한 냉열을 공급하게 된다. 이와 같은 배치는 냉매를 이용하지 않고 히트파이프의 배치에 의해서만 냉열이 전달되도록 하여 그 구조가 매우 간단하게 된다.That is, one end of the heat pipe 182 is arranged to receive the cold heat from the low temperature part of the Stirling cooler 181, and supplies the cold heat for liquefaction to the reliquefaction unit 180 at the other end. Such an arrangement allows the cooling heat to be transmitted only by the arrangement of the heat pipes without using the refrigerant, thereby simplifying the structure.
이와 같은 스털링 냉각기(181)는 냉각 과정에서 저온부에서 냉열을 공급하는 한편(즉 열을 흡수함.) 고온부에서 열을 외부로 방출하게 된다. 이와 같이 냉각 과정에서 외부로 방출되는 폐열(181a)을 이용하여 발전용 증발기(320)의 증발 열원으로 활용하여 추가적인 전력을 생산할 수 있다.The sterling cooler 181 supplies cold heat at the low temperature portion (that is, absorbs heat) during the cooling process and releases heat to the outside at the high temperature portion. In this way, by using the waste heat (181a) emitted to the outside in the cooling process can be used as an evaporation heat source of the power generation evaporator 320 can be produced additional power.
재액화용 냉각기(181)로서는 실시예에 따라서는 다단 혹은 터보 압축 팽창 극저온 냉동기가 활용될 수 있으며, 아울러 냉매로서는 헬륨, 수소, 질소, 산소, 탄화수소 냉매 등이 채택될 수 있다.As the reliquefaction cooler 181, a multistage or turbo compression expansion cryogenic freezer may be utilized depending on the embodiment, and a helium, hydrogen, nitrogen, oxygen, hydrocarbon refrigerant, or the like may be adopted as the refrigerant.
상기와 같은 본 시스템의 작동을 설명한다.The operation of the present system as described above will be described.
도 2 내지 도 5는 본 시스템의 작동 상태를 설명하기 위한 흐름도이다.2 to 5 are flowcharts for explaining an operating state of the present system.
도 2 내지 도 5에서는 액상 엘엔지와 기상 엘엔지의 흐름을 도시하였다.2 to 5 illustrate the flow of the liquid and gaseous LENG.
도 2에서는 액상 엘엔지만 배출되어 유동하며, 기상 엘엔지는 배출되지 않는다. 따라서 제1,2,3,4제어밸브(111,112,113,114)는 모두 닫힌 상태이다.In FIG. 2, only the liquid LENG is discharged and flows, and the gaseous LEN is not discharged. Therefore, the first, second, third and fourth control valves 111, 112, 113 and 114 are all closed.
도 2에서 엘엔지 저장탱크(100)는 액상 엘엔지가 변환된 기상 엘엔지를 저장하는 버퍼 탱크로서 기능하게 된다. 즉 재액화기(180)는 가동되지 않으며, 액상 엘엔지가 기상 엘엔지로 변환된다.In FIG. 2, the LNG storage tank 100 functions as a buffer tank for storing the gaseous LNG in which the liquid LNG is converted. That is, the reliquefaction unit 180 is not operated, and the liquid LENG is converted into the gas phase LEN.
이는 언제든지 기상 엘엔지를 충분히 배출할 수 있도록 준비하는 단계라고 볼 수 있다.This can be seen as a step to prepare enough to discharge the weather LENG at any time.
다만 엘엔지 저장탱크(100)의 압력이 과다 상승하면 재액화용 냉각기(181)가 가동하게 된다. However, when the pressure of the LNG storage tank 100 rises excessively, the reliquefaction cooler 181 is operated.
도 3은 액상 엘엔지와 기상 엘엔지가 모두 배출되며, 제2,4제어밸브(112,114)는 닫힌 상태이며, 제1,3제어밸브(111,113)은 열린 상태이다.3 illustrates that both the liquid LG and the gaseous LGE are discharged, the second and fourth control valves 112 and 114 are closed, and the first and third control valves 111 and 113 are open.
아울러 도 3에서는 기본적으로 재액화기(180)가 가동되지 않는다.In addition, in FIG. 3, the reliquefaction unit 180 is basically not operated.
따라서 액상 엘엔지는 부하용 열교환기(201, 202)를 거치면서 기화되고, 이렇게 기화되어 발생된 대량의 기상 엘엔지가 배출되어 응축용 열교환기(120)를 거치면서 승온된 후 기상 엘엔지 수요처 공급라인(130)을 통하여 각 수요처로 공급된다.Therefore, the liquid LENG is vaporized while passing through the load heat exchangers 201 and 202, and a large amount of gaseous LNG generated by the vaporization is discharged and heated up through the heat exchanger 120 for condensation. 130 is supplied to each source.
이 상태에서는 액상 엘엔지가 기상 엘엔지로 변환된 양과, 배출되는 기상 엘엔지의 양이 균형을 맞출 수 있으므로 가장 바람직한 상태이며, 아울러 대부분의 작동은 도 2와 도 3의 상태를 번갈아가며 시행된다.In this state, the amount of liquid LNG is converted to the gaseous LENG, and the amount of the gaseous LGE discharged is the most desirable state, and most of the operation is performed alternately the state of FIG. 2 and FIG.
도 4는 액상 엘엔지와 기상 엘엔지가 모두 배출되며, 제4제어밸브(114)는 닫힌 상태이며, 제1,2,3제어밸브(111,112,113)은 열린 상태이다.4 illustrates that both the liquid LG and the gaseous LGE are discharged, the fourth control valve 114 is closed, and the first, second, and third control valves 111, 112, and 113 are open.
따라서 액상 엘엔지는 부하용 열교환기(201, 202)를 거치면서 기화되고, 이렇게 기화되어 발생된 대량의 기상 엘엔지가 배출되면서 기상 엘엔지의 일부는 응축용 열교환기(120)를 거치면서 승온된 후 기상 엘엔지 수요처 공급라인(130)을 통하여 각 수요처로 공급되는 한편 기상 엘엔지의 일부는 재액화기(180)로 이송되어 재액화되도록 한다.Therefore, the liquid LENG is vaporized while passing through the load heat exchangers 201 and 202, while a large amount of gaseous LNG generated by the vaporization is discharged while a part of the gaseous LNG is heated while passing through the heat exchanger 120 for condensation. While it is supplied to each customer through the LENG demand source supply line 130, a part of the weather LNG is transferred to the reliquefaction unit 180 to be liquefied.
이때 제1,2제어밸브(111,112)는 비례제어되도록 하는 것이 바람직하다.In this case, the first and second control valves 111 and 112 may be proportionally controlled.
도 5는 액상 엘엔지와 기상 엘엔지가 모두 배출되며, 제2,3제어밸브(112,113)는 닫힌 상태이며, 제1,4제어밸브(111,114)는 열린 상태이다.5 shows that both the liquid and gaseous LNG are discharged, the second and third control valves 112 and 113 are in a closed state, and the first and fourth control valves 111 and 114 are in an open state.
따라서 액상 엘엔지는 부하용 열교환기(201, 202)를 거치면서 기화되고, 이렇게 기화되어 발생된 대량의 기상 엘엔지가 엘엔지 저장탱크(110)로부터 배출되며, 기상 엘엔지는 응축용 열교환기(120)를 거치면서 승온된 후 재액화기(180)로 이송되어 재액화되도록 한다.Accordingly, the liquid LENG is vaporized while passing through the heat exchangers 201 and 202 for load, and a large amount of gaseous LNG generated by the vaporization is discharged from the LNG storage tank 110, and the gaseous LNG is used to discharge the heat exchanger 120 for condensation. After the temperature rises, the liquid is transferred to the reliquefaction unit 180 to be reliquefaction.
이는 기상 엘엔지가 기상 엘엔지 수요처로 공급될 필요가 없으면서 터빈 발전기(310)로 발전을 하는 상태일 때를 도시한 것이다.This shows when the weather LENG is generating power to the turbine generator 310 without the need to be supplied to the weather LENG demand.
상기와 같이 본 시스템은 기상 엘엔지를 응축용 열교환기(120)를 통하여 가열한 후 각종 기상 엘엔지 수요처에 공급하게 되며, 이때 엘엔지 저장탱크(100)에서 액상 엘엔지의 기상 엘엔지로의 변환율을 높이기 위하여 액상 엘엔지가 물류창고용 냉열 공급부의 제1,2부하용 열교환기(201, 202)를 통하여 냉열을 배출하도록 하고 이에 의하여 액상 엘엔지의 온도가 승온되거나 혹은 기화되도록 하여 충분한 양의 기상 엘엔지가 기상 엘엔지 수요처에 공급될 수 있도록 한다.As described above, the system heats the gaseous phase L engine through the heat exchanger 120 for condensation and supplies it to various gas phase LG energy demand destinations. The LG discharges the cold heat through the first and second load heat exchangers 201 and 202 of the cold storage supply part of the warehouse, thereby allowing the temperature of the liquid LG to be raised or vaporized, so that a sufficient amount of the gaseous LNG is required for the gas phase LGE demand. To be supplied.
또한 물류창고용 냉열 공급부(200)는 액상 엘엔지의 기화로 인하여 발생하는 냉열을 이용하여 물류창고에 냉열을 공급하여, 냉장 냉동 물류창고를 운영할 수 있으며, 아울러 기상 엘엔지의 승온 과정에서 발생하는 냉열과 보조 냉열 공급부에서 생성되는 고온의 냉각수를 활용하여 터빈 발전기에서 전력을 생산하도록 하여 최적화된 에너지 회수가 가능하도록 하였다.In addition, the cold storage supply unit for the warehouse 200 can supply the cold heat to the warehouse by using the cold heat generated by the vaporization of the liquid L ENG, it can operate a refrigerated frozen warehouse, and also the cold heat generated during the temperature rising process of the weather L ENG Optimized energy recovery is achieved by generating power from the turbine generator using high-temperature coolant from the and sub-cooling supplies.
이와 같은 시스템은 각 지역에 충분한 크기의 엘엔지 저장탱크를 건설하고 이로부터 소량의 기상 엘엔지를 수요처에 배출하는 한편, 액상 엘엔지의 넘치는 냉열을 적극적으로 활용할 수 있도록 함으로써 엘엔지의 보급을 확대할 수 있게 되고 재생에너지를 가장 효율적으로 이용할 수 있다.Such a system will expand the spread of LNG by constructing LNG storage tanks of sufficient size in each region, discharging a small amount of gas LNG from the demand, and actively utilizing the full cooling and cooling of liquid LNG. Renewable energy can be used most efficiently.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것일 뿐 한정적이 아닌 것으로 이해되어야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above are to be understood in all respects as illustrative and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
본 발명은 LNG 기화공정 중 발생되는 LNG 저온 폐열을 회수하기 위하여 이용될 수 있다.The present invention can be used to recover the LNG low temperature waste heat generated during the LNG vaporization process.

Claims (2)

  1. 엘엔지가 저장되는 엘엔지 저장탱크 ;LNG storage tank where LNG is stored;
    일단부가 상기 엘엔지 저장탱크에 연결되어 상기 엘엔지 저장탱크로부터 기상 엘엔지를 배출하도록 마련되는 기상 엘엔지 배출라인 ;A meteorological LNG discharge line having one end connected to the LNG storage tank and configured to discharge a vapor phase LNG from the LNG storage tank;
    제1-1열매체 유동로를 지나는 제1-1열매체와 제1-2열매체 유동로를 지나는 제1-2열매체가 서로 열교환하도록 이루어지며, 상기 제1-1열매체 유동로의 일단부가 상기 기상 엘엔지 배출라인의 타단부에 연결되는 응축용 열교환기 ;The first-first heat medium passing through the first-first heat medium flow path and the first-second heat medium passing through the 1-2th heat medium flow path are formed to heat exchange with each other, and one end of the first-first heat medium flow path is the gas phase EL engine. A heat exchanger for condensation connected to the other end of the discharge line;
    일단부가 상기 응축용 열교환기의 제1-1열매체 유동로의 타단부에 연결되며 타단부에 복수의 기상 엘엔지 수요처가 연결되는 기상 엘엔지 수요처 공급라인 ;A gas phase LCD customer demand supply line, one end of which is connected to the other end of the first-first heat medium flow path of the heat exchanger for condensation, and a plurality of gaseous LGE demand destinations connected to the other end;
    일단부가 상기 엘엔지 저장탱크에 연결되어 상기 엘엔지 저장탱크로부터 액상 엘엔지를 배출하도록 마련되는 액상 엘엔지 배출라인 ;A liquid LNG discharge line having one end connected to the LNG storage tank and provided to discharge the liquid LNG from the LENG storage tank;
    상기 액상 엘엔지 배출라인의 타단부에 마련되어 적어도 하나 이상의 부하용 열교환기에 의하여 상기 액상 엘엔지의 냉열을 흡수하여 그 냉열을 물류창고에 공급하도록 이루어진 물류창고용 냉열 공급부 ;A cold storage supply unit for the warehouse configured to absorb cold heat of the liquid LNG by providing at least one load heat exchanger to the other end of the liquid LENG discharge line and supply the cold heat to the distribution warehouse;
    상기 물류창고용 냉열 공급부의 부하용 열교환기에 의하여 냉열이 흡수되어 승온된 엘엔지가 유동하도록 마련되는 승온 엘엔지 유동라인 ;An elevated LNG flow line provided with an LNG in which cold heat is absorbed by the load heat exchanger of the cold warehouse supply unit for the warehouse;
    상기 승온 엘엔지 유동라인을 지난 승온 엘엔지를 냉각하기 위하여 마련되는 재액화기 ;A reliquefaction device provided to cool the temperature rising LG engine past the temperature rising LG engine flow line;
    상기 재액화기에 냉각에 필요한 냉열을 공급하도록 이루어진 재액화기용 냉각기 ;A cooler for a reliquefaction machine configured to supply cold heat for cooling the reliquefaction liquid;
    상기 재액화기와 상기 엘엔지 저장탱크를 연결하여 상기 재액화기를 지난 엘엔지를 상기 엘엔지 저장탱크로 환수하기 위하여 마련되는 재액화기용 엘엔지 환수라인 ;An L engine return line for a reliquefaction machine, which is connected to the reliquefaction machine and the LNG storage tank and is provided to return the LNG passing through the reliquefaction machine to the LNG storage tank;
    상기 기상 엘엔지 배출라인과 연결되는 제2-1단부와, 상기 응축용 열교환기의 제1-1열매체 유동로의 타단부에 연결되는 제2-2단부와, 상기 재액화기에 연결되는 제2-3단부를 가지며, 상기 제2-1단부와 상기 제2-2단부와 상기 제2-3단부는 서로 연통되도록 이루어진 기상 엘엔지 환수라인 ;A second-first end connected to the gas phase EL discharge line, a second-second end connected to the other end of the first-first heat medium flow path of the heat exchanger for condensation, and a second second connected to the reliquefaction machine A gas phase LCD return line having three ends, wherein the second-first end, the second-second end, and the second-three end communicate with each other;
    고온의 냉각수가 저장되는 고온 냉각조 ;A high temperature cooling tank in which high temperature cooling water is stored;
    저온의 냉각수가 저장되는 저온 냉각조 ;A low temperature cooling tank in which low temperature cooling water is stored;
    상기 저온 냉각조의 저온의 냉각수를 응축 열원으로 이용하여 상기 물류창고용 냉열 공급부에 보조적인 냉열을 공급하며, 응축 열원으로 이용된 저온의 냉각수는 상기 고온 냉각조로 반송하도록 이루어진 보조 냉열 공급부 ;An auxiliary cold heat supply unit configured to supply auxiliary cooling heat to the cold heat supply unit for the warehouse using the low temperature cooling water of the low temperature cooling tank as the condensation heat source, and to supply the low temperature cooling water to the high temperature cooling tank;
    상기 고온 냉각조의 고온의 냉각수를 상기 저온 냉각조로 이송하기 위하여 마련되는 저장조용 냉각수 순환 배관 ;A cooling water circulation pipe for a storage tank provided to transfer the high temperature cooling water of the high temperature cooling tank to the low temperature cooling tank;
    상기 저장조용 냉각수 순환 배관을 지나는 고온의 냉각수에 의하여 발전용 냉매가 증발팽창하도록 이루어진 발전용 증발기 ;A power generation evaporator configured to evaporate and expand the power generation refrigerant by the high temperature cooling water passing through the storage tank cooling water circulation pipe;
    상기 발전용 냉매가 상기 제1-2열매체 유동로를 지나면서 응축되며 상기 발전용 증발기를 지나면서 증발팽창되기 위하여 상기 발전용 냉매가 상기 응축용 열교환기의 제1-2열매체 유동로와 상기 발전용 증발기를 순환하도록 마련되는 발전용 냉매 순환 배관 ;The refrigerant for power generation is condensed while passing through the 1-2 heat medium flow path, and the power generation refrigerant is flowed through the 1-2 heat medium flow path of the heat exchanger for condensation so as to evaporate and expand through the power generation evaporator. Refrigerant circulation pipe for power generation provided to circulate the evaporator for;
    상기 발전용 냉매 순환 배관에 마련되는 발전용 냉매 순환 펌프 ;A power generation refrigerant circulation pump provided in the power generation refrigerant circulation pipe;
    상기 발전용 증발기의 후단과 상기 응축용 열교환기의 전단 사이의 상기 발전용 냉매 순환 배관에 마련되어 상기 발전용 냉매에 의하여 발전하는 터빈 발전기 ;A turbine generator provided in the power generation refrigerant circulation pipe between the rear end of the power generation evaporator and the front end of the heat exchanger for condensation and generated by the power generation refrigerant;
    상기 기상 엘엔지 배출라인과 상기 응축용 열교환기의 제1-1열매체 유동로 사이에 마련되는 제1제어밸브 ;A first control valve provided between the gas phase EL engine discharge line and the first-first heat medium flow path of the heat exchanger for condensation;
    상기 기상 엘엔지 배출라인과 상기 기상 엘엔지 환수라인 사이에 마련되는 제2제어밸브 ;A second control valve provided between the gaseous LENG discharge line and the gaseous LENG return line;
    상기 응축용 열교환기의 제1-1열매체 유동로와 상기 기상 엘엔지 수요처 공급라인 사이에 마련되는 제3제어밸브 ; A third control valve disposed between the first-first heat medium flow path of the heat exchanger for condensation and the supply line to the gas phase EL engine;
    상기 응축용 열교환기의 제1-1열매체 유동로와 상기 기상 엘엔지 환수라인 사이에 마련되는 제4제어밸브 ; A fourth control valve provided between the first-first heat medium flow path of the heat exchanger for condensation and the gas phase EL return line;
    를 포함하여 이루어지는 것을 특징으로 하는 LNG 기화공정 중 발생되는 LNG 저온 폐열 회수를 위한 LNG 최적제어 재액화 시스템.LNG optimum control reliquefaction system for LNG low temperature waste heat recovery generated during the LNG vaporization process comprising a.
  2. 제 1 항에 있어서 : According to claim 1:
    상기 재액화기용 냉각기는 상기 재액화기에 냉열을 공급하거나 공급하지 않도록 제어되며 ;The coolant for the reliquefaction liquid is controlled to supply or not supply cold heat to the reliquefaction liquid;
    상기 액상 엘엔지가 상기 액상 엘엔지 배출라인, 상기 물류창고용 냉열 공급부의 부하용 열교환기, 상기 승온 엘엔지 유동라인, 상기 재액화기, 상기 재액화기용 엘엔지 환수라인을 따라 유동하되, 상기 재액화기용 냉각기의 구동이 정지되어 상기 재액화기를 지나면서도 냉각되지 않을 수 있으며 ;The liquid LENG flows through the liquid LENG discharge line, the load heat exchanger for the cold heat supply unit of the warehouse, the temperature rising L flow line, the reliquefaction machine, the L liquid return line for the reliquefaction unit, the reliquefaction of the cooler May stop running and not cool down past the reliquefaction machine;
    상기 제1,2,3,4제어밸브는 상기 기상 엘엔지 수요처에 공급되는 기상 엘엔지의 유량과 상기 터빈 발전기의 구동 여부, 상기 엘엔지 저장탱크의 압력에 따라 그 개폐가 제어되는 것을 특징으로 하는 LNG 기화공정 중 발생되는 LNG 저온 폐열 회수를 위한 LNG 최적제어 재액화 시스템.The first, second, third, and fourth control valves of the LNG vaporization, characterized in that the opening and closing is controlled in accordance with the flow rate of the gaseous LENG supplied to the demand for the gaseous LENG, the driving of the turbine generator, the pressure of the LNG storage tank. LNG optimal control reliquefaction system for recovery of LNG low temperature waste heat generated during the process.
PCT/KR2016/004973 2015-12-12 2016-05-12 Lng optimum control reliquefaction system for recovering lng low-temperature waste heat generated during lng vaporization WO2016178555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680001344.1A CN107124894B (en) 2015-12-12 2016-05-12 For recycling the re-liquefied system of LNG Optimal Control of the LNG low-temperature waste heat generated in LNG gasification process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0177545 2015-12-12
KR1020150177545A KR101621933B1 (en) 2015-12-12 2015-12-12 Lng reliquefaction system with optimization control for waste heat recovering

Publications (1)

Publication Number Publication Date
WO2016178555A1 true WO2016178555A1 (en) 2016-11-10

Family

ID=56109755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004973 WO2016178555A1 (en) 2015-12-12 2016-05-12 Lng optimum control reliquefaction system for recovering lng low-temperature waste heat generated during lng vaporization

Country Status (3)

Country Link
KR (1) KR101621933B1 (en)
CN (1) CN107124894B (en)
WO (1) WO2016178555A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102275026B1 (en) * 2017-09-25 2021-07-08 한국조선해양 주식회사 Gas Treatment System and Vessel having the same
KR101996558B1 (en) * 2018-06-20 2019-07-04 티이컴퍼니 유한회사 Refrigerating system utilizing cold heat of liquified gas
CN111188996B (en) * 2020-02-12 2024-03-19 中海石油气电集团有限责任公司 Low-temperature waste heat recovery device of LNG receiving station submerged combustion type gasifier
CN115823482B (en) * 2023-02-15 2023-05-12 济南华信流体控制有限公司 Pipeline system for gas filling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070081882A (en) * 2006-02-14 2007-08-20 대우조선해양 주식회사 Reliquefaction gas storage system for reliquefaction system of lng carrier
JP2009191945A (en) * 2008-02-14 2009-08-27 Ihi Corp Liquefied gas storage system and operating method thereof
KR100981398B1 (en) * 2010-08-02 2010-09-10 이동건 Refrigerating system for cold store using evaporation heat of lng liquid gas
KR20140143029A (en) * 2013-06-05 2014-12-15 현대중공업 주식회사 A Treatment System of Liquefied Natural Gas
KR20150042405A (en) * 2013-10-11 2015-04-21 삼성중공업 주식회사 System having re-liquefaction device to supply dual pressure fuel gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY117068A (en) * 1998-10-23 2004-04-30 Exxon Production Research Co Reliquefaction of pressurized boil-off from pressurized liquid natural gas
MX2011000428A (en) * 2008-07-17 2011-02-23 Fluor Tech Corp Configurations and methods for waste heat recovery and ambient air vaporizers in lng regasification.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070081882A (en) * 2006-02-14 2007-08-20 대우조선해양 주식회사 Reliquefaction gas storage system for reliquefaction system of lng carrier
JP2009191945A (en) * 2008-02-14 2009-08-27 Ihi Corp Liquefied gas storage system and operating method thereof
KR100981398B1 (en) * 2010-08-02 2010-09-10 이동건 Refrigerating system for cold store using evaporation heat of lng liquid gas
KR20140143029A (en) * 2013-06-05 2014-12-15 현대중공업 주식회사 A Treatment System of Liquefied Natural Gas
KR20150042405A (en) * 2013-10-11 2015-04-21 삼성중공업 주식회사 System having re-liquefaction device to supply dual pressure fuel gas

Also Published As

Publication number Publication date
CN107124894B (en) 2019-02-15
KR101621933B1 (en) 2016-05-17
CN107124894A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2016178512A1 (en) System for cold energy use through lng reliquefaction
US10488085B2 (en) Thermoelectric energy storage system and an associated method thereof
WO2016178555A1 (en) Lng optimum control reliquefaction system for recovering lng low-temperature waste heat generated during lng vaporization
KR20100123302A (en) A fuel gas supply system and a lng carrier with the same
KR20140075582A (en) Reliquefaction System And Method For Boiled-Off Gas
KR100981398B1 (en) Refrigerating system for cold store using evaporation heat of lng liquid gas
KR102336892B1 (en) Hydrogen reliquefaction system
US20160272331A1 (en) Air conditioning method and system for aircraft
KR102148680B1 (en) Improvements in refrigeration
Jin et al. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling
KR102005157B1 (en) Apparatus for cooling working fluid and Power generation plant using the same
JP2005090636A (en) Transportation system for liquefied hydrogen
WO2019245097A1 (en) Convergence cooling system for utilizing cold energy of liquified gas
KR20210108186A (en) Refrigerator System for both refrigeration and freezing
US20230194160A1 (en) Liquefied gas storage facility
KR20100107875A (en) Apparatus for cooling cycle for multi-stage compressor
KR102382796B1 (en) Brine indirect cooling system for freezing chamber and refrigerating chamber
ES2264059T3 (en) PROCEDURE FOR NITROGEN LICUEFACTION THROUGH COLD RECOVERY DERIVED FROM LIQUID GASIFICATION.
WO2021187693A1 (en) Air-conditioning system and method using liquefied air
KR102135056B1 (en) Receiver for refrigerant storage using membrane and cooling system
KR101563856B1 (en) System for supplying fuel gas in ships
JP7352441B2 (en) Cooling system and method
ES2967994T3 (en) Device for the recovery of LNG refrigeration units used as fuel in vehicles
KR102359689B1 (en) Hydrogen liquefaction device capable of multi-operation
WO2022225387A1 (en) System for utilizing coldness from lng regasification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789661

Country of ref document: EP

Kind code of ref document: A1