WO2016178545A1 - 3d printer - Google Patents

3d printer Download PDF

Info

Publication number
WO2016178545A1
WO2016178545A1 PCT/KR2016/004790 KR2016004790W WO2016178545A1 WO 2016178545 A1 WO2016178545 A1 WO 2016178545A1 KR 2016004790 W KR2016004790 W KR 2016004790W WO 2016178545 A1 WO2016178545 A1 WO 2016178545A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
printer
heating unit
injection nozzle
unit
Prior art date
Application number
PCT/KR2016/004790
Other languages
French (fr)
Korean (ko)
Inventor
이진규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017554556A priority Critical patent/JP6554740B2/en
Priority to US15/569,942 priority patent/US10974455B2/en
Priority to CN201680025954.5A priority patent/CN107614244B/en
Priority to EP16789651.3A priority patent/EP3292990B1/en
Priority claimed from KR1020160056080A external-priority patent/KR101819335B1/en
Publication of WO2016178545A1 publication Critical patent/WO2016178545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a 3D printer.
  • a 3D printer is a printer that outputs an object in three dimensions, and has various printing methods according to the material of the ink.
  • thermoplastic polymer fibers as an ink
  • photocurable resin as an ink
  • An object of the present invention is to provide a 3D printer capable of generating thermal curing or thermal fusion of ink through induction heating.
  • an object of the present invention is to provide a 3D printer including at least one coil structure located behind the spray nozzle and provided to form an alternating electromagnetic field focused on an ink coated area. do.
  • an object of the present invention is to provide a 3D printer that can adjust the interval between at least one of the interval between the injection nozzle and the substrate and the interval between the heating unit and the substrate, and capable of continuous 3D printing.
  • the ink tank, the ink containing the magnetic material is stored, connected to the ink tank, the injection nozzle for ejecting the ink, the substrate on which the ejected ink is deposited And a heating part provided to heat the ink applied on the substrate through induction heating, and arranged to be located behind the injection nozzle based on the conveying direction of the injection nozzle, a transfer part for transferring the injection nozzle and the heating part, and There is provided a 3D printer including a control unit for controlling the heating unit and the transfer unit.
  • the heating unit may be provided to apply an external alternating electromagnetic field to the ink deposited on the substrate.
  • the heating portion may be provided to form an alternating electromagnetic field concentrated in the ink deposited on the substrate.
  • the heating unit may include one or more coil structures.
  • the coil structure may have a cylindrical shape (solenoid), a spiral shape, or a pancake shape.
  • the coil structure may have a circular or square coil shape.
  • the heating unit may include two coil structures respectively disposed on both rear sides of the spray nozzle.
  • the heating unit may be provided to apply an external alternating electromagnetic field to the ink located in the space between the two coil structures.
  • the heating unit may be arranged to be located at the same height as the injection nozzle, the heating unit may be arranged to be located at a different height than the injection nozzle.
  • the heating unit may be disposed to be positioned about 1 mm below the spray nozzle.
  • the heating unit may be provided such that the center line of the nozzle head of the injection nozzle is located between the two coil structures.
  • the heating unit may be provided such that the two coil structures are symmetrically arranged along the centerline of the nozzle head of the injection nozzle.
  • the diameter of the nozzle head of the injection nozzle may be 100 ⁇ m or less, preferably 10 to 50 ⁇ m.
  • the two coil structures may be provided in a Helmholtz type, a bi-conical type, or a dual pancake type.
  • the transfer unit may be provided to integrally transfer the heating unit and the injection nozzle.
  • the transfer unit may be provided to transfer the heating unit and the injection nozzle separately.
  • the transfer unit may be provided to transfer the heating unit and the injection nozzle at different speeds.
  • the transfer unit may be provided to adjust the relative position of the heating unit relative to the substrate.
  • At least one of the heating unit and the substrate may be provided to be elevated.
  • the heating unit may be provided to be elevated relative to the substrate.
  • the transfer unit may be provided to adjust the distance between the substrate and the injection nozzle.
  • the injection nozzle may be provided to be elevated relative to the substrate.
  • control unit may be provided to operate the heating unit at the same time as the ink coating.
  • control unit may be provided to operate the heating unit after a predetermined time has passed after application of ink.
  • the magnetic body may include metal particles, metal oxides, or alloy particles having magnetic properties.
  • the ink may include a single molecule, an oligomer, or a polymer including a thermosetting group.
  • the ink may include a thermosetting polymer.
  • the ink may include ceramic particles, and the ceramic particles may include one or more oxides, nitrides, or carbides selected from the group consisting of silicon (Si), aluminum (Al), titanium (Ti), and zirconium (Zr).
  • the 3D printer related to at least one embodiment of the present invention has the following effects.
  • the 3D printer is capable of generating thermal curing or thermal fusion of the ink (or ink composition) through induction heating, and is provided to form a focused electromagnetic field focused on the area where the ink is applied. do.
  • the 3D printer is provided so that at least one of the gap between the injection nozzle and the substrate and the gap between the heating unit and the substrate is adjustable, it is possible to continuously 3D printing.
  • FIG. 1 is a block diagram showing a 3D printer according to an embodiment of the present invention.
  • FIGS. 2 to 5 are conceptual views illustrating various embodiments of a heating unit according to the present invention.
  • each component member may be exaggerated or reduced. Can be.
  • FIGS. 2 to 5 are conceptual views illustrating various embodiments of a heating unit according to the present invention.
  • the ink may mean an ink composition capable of thermal fusion or thermosetting by induction heating, and the term ink or ink composition may be used together in the same meaning.
  • a 3D printer 1 is connected to an ink tank 10 and an ink tank 10 in which ink I including magnetic material is stored, and sprays ink. It includes a spray nozzle 40 for.
  • the 3D printer 1 is provided to heat the ink I applied on the substrate 20 through the substrate 20 on which the ejected ink is deposited and the induction heating, and the injection nozzle ( And a heating part 50 provided to be located behind the injection nozzle 40 with respect to the conveying direction of 40.
  • the 3D printer 1 includes a transfer unit 60 for transferring the injection nozzle 40 and the heating unit 50.
  • the 3D printer 1 includes a control unit 70 for controlling the heating unit 50 and the transfer unit 50.
  • the heating part 50 is provided to apply an external alternating electromagnetic field to the ink composition C deposited on the substrate 20.
  • the ink composition (C) may be heated while induction heating occurs by the electromagnetic field.
  • the ink composition (C) may be cured according to the composition, or the metal particles may be thermally fused according to the composition, as described below, and thus three-dimensional printing may proceed.
  • the ink jetted from the jet nozzle 40 is represented by an English letter I
  • the ink heated through the heating unit 50 is represented by an English letter C.
  • the external AC electromagnetic field may have a frequency of 100 kHz to 1 Ghz and a current of 5 A to 500 A.
  • the ink composition can be completely cured within about 10 seconds to 1 hour.
  • the heating unit 50 may be provided to form a focused electromagnetic field concentrated in the ink composition C deposited on the substrate 20.
  • the heating unit 50 may include one or more coil structures.
  • the coil structure may have various structures such as a circle, a polygon, and a spiral.
  • the coil structure may be used for surface heating, inner surface heating, flat plate heating, and the like.
  • the shape, number and arrangement of the coil structures of the coil structure may be variously determined.
  • the coil structure may have a cylindrical shape, a spiral shape, or a pancake shape.
  • the coil structure may have a circular or square coil shape.
  • the heating unit 50 may be disposed adjacent to the injection nozzle 40.
  • the heating unit 50 is provided to be located behind the spray nozzle 40 with respect to the conveying direction of the spray nozzle 40. Specifically, as the heating unit 50 is provided in the rear of the injection direction of the injection nozzle 40, the injection of the ink through the injection nozzle 40 and the heating of the ink through the heating unit 50 simultaneously or sequentially Can be done.
  • the transfer unit 60 may be provided to transfer the heating unit 50 and the injection nozzle 40 integrally. In this case, the heating unit 50 and the injection nozzle 40 may be transferred at the same speed. Alternatively, the transfer unit 60 may be provided to transfer the heating unit 50 and the injection nozzle 40 separately. In this case, the heating unit 50 and the injection nozzle 40 may be provided to be transferred at different speeds.
  • the conveying part may include a driving source such as a motor, and may be composed of known elements used to convey ink nozzles in the printer art.
  • the transfer part 60 may be provided to adjust a gap between the substrate 20 and the heating part 50.
  • the heating unit 50 may be provided to be elevated relative to the substrate 20.
  • the substrate 20 may be provided to be elevated relative to the heating unit 50. That is, the transfer unit 60 may be provided to adjust a relative position of the heating unit 50 with respect to the substrate 20, and at least one of the heating unit 50 and the substrate 20 may be provided to be elevated. .
  • the transfer unit 60 may be provided to adjust the distance between the substrate 20 and the spray nozzle 40.
  • control unit 70 may be provided to operate the heating unit 50 simultaneously with the ink (I).
  • control unit 70 may be provided to operate the heating unit 50 after a predetermined time has passed after the ink application.
  • the heating unit 150 may include two coil structures 151 and 152 respectively disposed at both rear sides of the injection nozzle 40.
  • the heating unit 150 may be provided to apply an external alternating electromagnetic field to ink located in a space between two coil structures 151 and 152.
  • the heating unit 150 may be provided such that the center line L of the nozzle head of the injection nozzle 40 is positioned between the two coil structures 151 and 152.
  • the two coil structures 151, 152 may be of the Helmholtz type (see FIG. 3), the dual pancake type (see FIG. 4) or the bi-conical type. type) (see FIG. 5).
  • the magnetic body may include ferromagnetic metal particles, metal oxides, ferrites or alloy particles.
  • the magnetic material may include magnetic nanoparticles.
  • the ink composition (I) may comprise a thermosetting polymer and magnetic nanoparticles.
  • a magnetic field is formed in the magnetic nanoparticles, and the thermosetting polymer can be cured by the heat generated thereby. Therefore, the ink composition (I) can be cured only by applying an external alternating electromagnetic field, not by direct heat.
  • thermosetting polymer monomer or oligomer is not particularly limited, but monomers of epoxy resins, monomers of phenol resins, monomers of amino resins, monomers of unsaturated polyester resins, monomers of acrylic resins, monomers of maleimide resins, One or more types selected from the group consisting of monomers of cyanate resins can be used, and preferably one or more types selected from the group consisting of monomers of epoxy resins, monomers of acrylic resins and monomers of maleimide resins can be used. .
  • thermosetting polymer monomer or oligomer may be included in an amount of 80 to 99 parts by weight based on the total weight of the ink composition.
  • the magnetic nanoparticles have a diameter of 1 to 999 nm, preferably has a diameter of 30 to 300 nm, more preferably has a diameter of 50 to 100 nm, still more preferably 50 to 60 nm Has a diameter.
  • the ink composition may not secure dispersibility.
  • the magnetic nanoparticles may be one or more selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnFe 2 O 4 , CoFe 2 O 4 , Fe, CoPt, and FePt.
  • the ink composition (I) may include 80 to 99 parts by weight of the thermosetting polymer and 1 to 20 parts by weight of the magnetic nanoparticles based on the total weight.
  • the content of the magnetic nanoparticles is less than 1 part by weight, the time for curing the ink composition is long, and when the content of the magnetic nanoparticles exceeds 20 parts by weight, the color of the cured resin may be excessively dark due to the black magnetic nanoparticles.
  • agglomeration of magnetic nanoparticles may occur, so that empty spaces may occur in the cured resin, and cracks may occur.
  • the ink composition may further include one or more selected from the group consisting of a curing agent and a crosslinking agent.
  • the curing agent is not particularly limited in kind, but is, for example, a group consisting of an organic peroxide, a hydroperoxide, an azo compound, an imidazole series, an aliphatic amine, an aromatic amine, a tertiary amine, a polyamide resin, a phenol resin, and an acid anhydride.
  • One or more types selected from can be used.
  • the curing agent may be included in an amount of 1 to 10 parts by weight, preferably 1 to 5 parts by weight, based on the total weight of the ink composition.
  • the content of the curing agent When the content of the curing agent is less than 1 part by weight, it takes a long time to completely cure the ink composition. When the content of the curing agent exceeds 10 parts by weight, a large amount of polymer having a short chain length may be generated, thereby reducing thermal stability of the cured resin.
  • the kind of the crosslinking agent is not particularly limited, but for example, at least one selected from the group consisting of phenol novolak resins, phenolalkyl resins, allylated phenol novolak resins, and microcapsule type crosslinking agents can be used.
  • the crosslinking agent may be included in an amount of 1 to 10 parts by weight based on the total weight of the ink composition. If the content of the crosslinking agent is less than 1 part by weight, the crosslinking may not be sufficiently performed to melt the polymer at a high temperature, and may cause expansion by a solvent. If the content exceeds 10 parts by weight, the crosslinking may be excessive, leading to a brittle state of the cured resin.
  • the injection nozzle 40 connected to the ink tank 10 and the heating unit 50 for applying an external alternating electromagnetic field to the ink composition to the heat curing may constitute a printer head 30.
  • the transfer unit 60 adjusts the relative position of the print head 30 with respect to the substrate 20.
  • control unit 70 is provided to control the transfer unit 60 and the printer head 30.
  • controller 70 may control the injection of the ink composition I and the generation of an external alternating electromagnetic field to occur simultaneously.
  • the transfer unit 60 may be configured as a conventional transfer unit for transferring the nozzle head in the printer.
  • the transfer unit 60 may include a rail unit according to the injection trajectory and one or more motors for moving the printer head 30 on the rail unit.
  • the transfer unit 60 may include one or more motors (eg, step motors) for elevating the print head 30 and / or the substrate 20.
  • the ink composition related to the present invention may include micro-sized metal particles and additives (eg, organic components).
  • additives eg, organic components
  • the ink composition may contain a thermosetting resin and magnetic nanoparticles (thermosetting resin ink), or may contain metal particles and an additive (metallic ink).
  • thermosetting resin ink the thermosetting polymer is included as a main component based on the total weight of the ink composition, and the magnetic nanoparticle is included as an auxiliary component, whereas in the case of the metallic ink, the micro-sized metal particles are included as the main component.
  • the additive component may be removed by thermally fusion of the metal particles through induction heating.
  • the magnetic particles may include metal oxide, ferrite or alloy particles.
  • the metal oxide may include at least one oxide selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), yttrium (Y), samarium (Sm), and gadolinium (Gd). can do.
  • the ferrite may include MO ⁇ Fe 2 O 3 , and M may be a divalent metal ion.
  • divalent metal ions may include manganese, iron, cobalt, nickel or zinc.
  • the alloy particles may include FePt, CoPt, Ni-Zn or Mn-Zn.
  • the ink may include ceramic particles.
  • the ceramic may include at least one oxide, nitride, or carbide selected from the group consisting of silicon (Si), aluminum (Al), titanium (Ti), and zirconium (Zr).
  • the ink may include inorganic particles and ceramic particles having a core-shell structure.
  • the shell may include a ceramic.
  • the core may comprise a magnetic material or a metal powder, the core is iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), yttrium (Y), samarium (Sm) and gadolinium (Gd) It may include one or more oxides selected from the group consisting of.
  • the composition may comprise a ceramic sol solvent.
  • the composition may be a ceramic sol solution.
  • heat is generated from the magnetic material or the metal powder uniformly dispersed in the composition, thereby enabling uniform heat curing, and hardening of the ceramic particles may be accompanied with curing of the ceramic sol, thereby increasing the strength of the final cured product.
  • the curing may be by sintering between the ceramic materials, but is not limited thereto, and curing of the composition may be performed together with the curable resin described below.
  • the 3D printer according to the present invention can generate thermal curing or thermal fusion of an ink (or ink composition) through induction heating, and forms a focused electromagnetic field concentrated in the area where the ink is applied. It is prepared to do so.

Abstract

The present invention relates to a 3D printer, and according to one aspect of the present invention, the 3D printer which is provided comprises: an ink tank for storing ink comprising a magnetic body; an injection nozzle which is linked to the ink tank and is adapted to inject ink; a substrate on which the injected ink is deposited; a heating unit which is provided so as to heat the ink coated onto the substrate by means of induction heating, and which is provided positioned underneath the injection nozzle based on the direction of carriage of the injection nozzle; a carriage unit for carrying the injection nozzle and the heating unit; and a control unit for controlling the heating heat and the movement unit.

Description

3D 프린터3D printer
본 발명은 3D 프린터에 관한 것이다.The present invention relates to a 3D printer.
본 출원은 2015년 5월 7일자 한국 특허 출원 제10-2015-0063861호 및 2016년 5월 9일자 한국 특허 출원 제10-2016-0056080호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0063861 filed May 7, 2015 and Korean Patent Application No. 10-2016-0056080 filed May 9, 2016. All content disclosed in the literature is included as part of this specification.
3D 프린터는 대상을 입체적으로 출력해주는 프린터로, 잉크의 재료에 따라 다양한 인쇄방식을 갖는다.A 3D printer is a printer that outputs an object in three dimensions, and has various printing methods according to the material of the ink.
3D 인쇄 방식으로는, 예를 들어 열가소성 고분자 섬유를 잉크로 사용하여 가열된 프린터 헤드를 통해 잉크를 용융 및 압출시키는 방식 또는 광경화 수지를 잉크로 사용하여 레이저를 통해 잉크를 광경화시키는 방식이 사용되고 있다. 그러나, 열가소성 고분자 섬유를 잉크로 사용하는 경우에는 해상도가 낮은 단점이 있고, 광경화 수지를 잉크로 사용하는 경우에는 해상도는 높지만, 광학장비를 사용해야 하므로 장치의 부피가 커지는 단점이 있다.As the 3D printing method, for example, a method of melting and extruding ink through a heated printer head using thermoplastic polymer fibers as an ink or a method of photocuring ink through a laser using a photocurable resin as an ink is used. . However, when the thermoplastic polymer fiber is used as an ink, the resolution is low, and when the photocurable resin is used as the ink, the resolution is high, but the volume of the device is increased because optical equipment must be used.
또한, 각각의 인쇄 방식에 맞추어 3D 잉크가 제조되기 때문에 상호 교환성이 거의 없는 문제가 있다.In addition, since 3D ink is manufactured for each printing method, there is a problem that there is little interchangeability.
본 발명은 유도 가열(induction heating)을 통해 잉크의 열경화 또는 열융합을 발생시킬 수 있는 3D 프린터를 제공하는 것을 해결하고자 하는 과제로 한다.An object of the present invention is to provide a 3D printer capable of generating thermal curing or thermal fusion of ink through induction heating.
또한, 본 발명은 분사 노즐의 후방에 위치하고, 잉크가 도포된 영역에 집중된 교류 전자기장(focused electromagnetic field)을 형성할 수 있도록 마련된 하나 이상의 코일 구조체를 포함하는 3D 프린터를 제공하는 것을 해결하고자 하는 과제로 한다.In addition, an object of the present invention is to provide a 3D printer including at least one coil structure located behind the spray nozzle and provided to form an alternating electromagnetic field focused on an ink coated area. do.
또한, 본 발명은 분사노즐과 기판 사이의 간격 및 가열부와 기판 사이의 간격 중 적어도 하나의 간격이 조절 가능하고, 연속적으로 3D 인쇄가 가능한 3D 프린터를 제공하는 것을 해결하고자 하는 과제로 한다.In addition, an object of the present invention is to provide a 3D printer that can adjust the interval between at least one of the interval between the injection nozzle and the substrate and the interval between the heating unit and the substrate, and capable of continuous 3D printing.
상기한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 자성체를 포함하는 잉크가 저장되는 잉크 탱크와, 잉크 탱크와 연결되며, 잉크를 분사하기 위한 분사노즐과, 분사된 잉크가 퇴적되는 기판과, 유도 가열을 통해 기판 상에 도포된 잉크를 가열시키도록 마련되고, 분사노즐의 이송방향을 기준으로 분사노즐의 후방에 위치하도록 마련된 가열부와, 분사노즐 및 가열부를 이송하기 위한 이송부, 및 가열부 및 이송부를 제어하기 위한 제어부를 포함하는 3D 프린터가 제공된다.In order to solve the above problems, according to an aspect of the present invention, the ink tank, the ink containing the magnetic material is stored, connected to the ink tank, the injection nozzle for ejecting the ink, the substrate on which the ejected ink is deposited And a heating part provided to heat the ink applied on the substrate through induction heating, and arranged to be located behind the injection nozzle based on the conveying direction of the injection nozzle, a transfer part for transferring the injection nozzle and the heating part, and There is provided a 3D printer including a control unit for controlling the heating unit and the transfer unit.
또한, 가열부는 기판 상에 퇴적된 잉크에 외부 교류 전자기장을 인가하도록 마련될 수 있다.In addition, the heating unit may be provided to apply an external alternating electromagnetic field to the ink deposited on the substrate.
또한, 가열부는 기판 상에 퇴적된 잉크에 집중된 교류 전자기장을 형성하도록 마련될 수 있다.In addition, the heating portion may be provided to form an alternating electromagnetic field concentrated in the ink deposited on the substrate.
또한, 가열부는 하나 이상의 코일 구조체를 포함할 수 있다.In addition, the heating unit may include one or more coil structures.
또한, 코일 구조체는, 원통 형상(솔레노이드), 나선 형상, 또는 팬케이크(pancake) 형상을 가질 수 있다.In addition, the coil structure may have a cylindrical shape (solenoid), a spiral shape, or a pancake shape.
또한, 코일 구조체는, 원형 또는 사각 코일 형상을 가질 수 있다.In addition, the coil structure may have a circular or square coil shape.
또한, 가열부는 분사 노즐을 기준으로 후방 양측에 각각 배치된 2개의 코일 구조체를 포함할 수 있다. 이때, 가열부는 2개의 코일 구조체 사이 공간에 위치하는 잉크에 외부 교류 전자기장을 인가하도록 마련될 수 있다.In addition, the heating unit may include two coil structures respectively disposed on both rear sides of the spray nozzle. In this case, the heating unit may be provided to apply an external alternating electromagnetic field to the ink located in the space between the two coil structures.
또한, 가열부는 분사노즐과 동일한 높이에 위치하도록 배치될 수 있고, 가열부는 분사노즐과 다른 높이에 위치하도록 배치될 수 있다. 예를 들어, 가열부는 분사노즐보다 약 1mm 정도 하방에 위치하도록 배치될 수 있다.In addition, the heating unit may be arranged to be located at the same height as the injection nozzle, the heating unit may be arranged to be located at a different height than the injection nozzle. For example, the heating unit may be disposed to be positioned about 1 mm below the spray nozzle.
또한, 가열부는 2개의 코일 구조체 사이에 분사노즐의 노즐헤드의 중심선이 위치하도록 마련될 수 있다. 특히, 가열부는 2개의 코일 구조체가 분사노즐의 노즐헤드의 중심선을 따라 대칭 배열되도록 마련될 수 있다.In addition, the heating unit may be provided such that the center line of the nozzle head of the injection nozzle is located between the two coil structures. In particular, the heating unit may be provided such that the two coil structures are symmetrically arranged along the centerline of the nozzle head of the injection nozzle.
또한, 분사노즐의 노즐헤드의 직경은 100㎛이하일 수 있고, 바람직하게, 10 내지 50㎛일 수 있다.In addition, the diameter of the nozzle head of the injection nozzle may be 100 μm or less, preferably 10 to 50 μm.
또한, 2개의 코일 구조체는, 헬름홀츠 타입(Helmholtz type), 바이-코니컬 타입(bi-conical type), 또는 듀얼 팬케이크 타입(dual pancake type)으로 마련될 수 있다.In addition, the two coil structures may be provided in a Helmholtz type, a bi-conical type, or a dual pancake type.
또한, 상기 이송부는 가열부와 분사노즐을 일체로 이송하도록 마련될 수 있다. In addition, the transfer unit may be provided to integrally transfer the heating unit and the injection nozzle.
또한, 상기 이송부는 가열부와 분사노즐을 개별적으로 이송하도록 마련될 수 있다. In addition, the transfer unit may be provided to transfer the heating unit and the injection nozzle separately.
또한, 이송부는 가열부와 분사노즐을 서로 다른 속도로 이송하도록 마련될 수 있다. In addition, the transfer unit may be provided to transfer the heating unit and the injection nozzle at different speeds.
또한, 이송부는 기판에 대한 가열부의 상대 위치를 조절하도록 마련될 수 있다.In addition, the transfer unit may be provided to adjust the relative position of the heating unit relative to the substrate.
또한, 가열부 및 기판 중 적어도 하나는 승강 가능하게 마련될 수 있다. 예를 들어, 가열부는 기판에 대하여 승강 가능하게 마련될 수 있다. In addition, at least one of the heating unit and the substrate may be provided to be elevated. For example, the heating unit may be provided to be elevated relative to the substrate.
또한, 이송부는 기판과 분사노즐 사이의 간격을 조절하도록 마련될 수 있다. 예를 들어, 분사노즐은 기판에 대하여 승강 가능하게 마련될 수 있다.In addition, the transfer unit may be provided to adjust the distance between the substrate and the injection nozzle. For example, the injection nozzle may be provided to be elevated relative to the substrate.
또한, 제어부는 잉크를 도포함과 동시에 가열부를 작동시키도록 마련될 수 있다. 이와는 다르게, 제어부는 잉크 도포 후 소정 시간이 경과한 이후에 가열부를 작동시키도록 마련될 수 있다.In addition, the control unit may be provided to operate the heating unit at the same time as the ink coating. Alternatively, the control unit may be provided to operate the heating unit after a predetermined time has passed after application of ink.
또한, 자성체는 자성을 갖는 금속 입자, 금속 산화물, 또는 합금 입자를 포함할 수 있다.In addition, the magnetic body may include metal particles, metal oxides, or alloy particles having magnetic properties.
또한, 잉크는 열경화기를 포함하는 단분자, 올리고머, 또는 고분자를 포함할 수 있다. 예를 들어, 상기 잉크는 열경화성 고분자를 포함할 수 있다.In addition, the ink may include a single molecule, an oligomer, or a polymer including a thermosetting group. For example, the ink may include a thermosetting polymer.
또한, 잉크는 세라믹 입자를 포함하며, 세라믹 입자는 실리콘(Si), 알루미늄(Al), 티타늄(Ti) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 하나 이상의 산화물, 질화물 또는 탄화물을 포함할 수 있다.In addition, the ink may include ceramic particles, and the ceramic particles may include one or more oxides, nitrides, or carbides selected from the group consisting of silicon (Si), aluminum (Al), titanium (Ti), and zirconium (Zr).
이상에서 살펴본 바와 같이, 본 발명의 적어도 일 실시예와 관련된 3D 프린터는 다음과 같은 효과를 갖는다.As described above, the 3D printer related to at least one embodiment of the present invention has the following effects.
3D 프린터는, 유도 가열(induction heating)을 통해 잉크(또는 잉크 조성물)의 열경화 또는 열융합을 발생시킬 수 있고, 잉크가 도포된 영역에 집중된 교류 전자기장(focused electromagnetic field)을 형성할 수 있도록 마련된다.The 3D printer is capable of generating thermal curing or thermal fusion of the ink (or ink composition) through induction heating, and is provided to form a focused electromagnetic field focused on the area where the ink is applied. do.
또한, 3D 프린터는, 분사노즐과 기판 사이의 간격 및 가열부와 기판 사이의 간격 중 적어도 하나의 간격이 조절 가능하도록 마련되고, 연속적으로 3D 인쇄가 가능하다.In addition, the 3D printer is provided so that at least one of the gap between the injection nozzle and the substrate and the gap between the heating unit and the substrate is adjustable, it is possible to continuously 3D printing.
도 1은 본 발명의 일 실시예와 관련된 3D 프린터를 나타내는 구성도이다.1 is a block diagram showing a 3D printer according to an embodiment of the present invention.
도 2 내지 도 5는 본 발명과 관련된 가열부의 다양한 실시예를 나타내는 개념도들이다.2 to 5 are conceptual views illustrating various embodiments of a heating unit according to the present invention.
이하, 본 발명의 일 실시예에 따른 3D 프린터를 첨부된 도면을 참고하여 상세히 설명한다.Hereinafter, a 3D printer according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일 또는 유사한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.In addition, irrespective of the reference numerals, the same or corresponding components will be given the same or similar reference numerals, and redundant description thereof will be omitted. For convenience of description, the size and shape of each component member may be exaggerated or reduced. Can be.
도 1은 본 발명의 일 실시예와 관련된 3D 프린터(1)를 나타내는 구성도이고, 도 2 내지 도 5는 본 발명과 관련된 가열부의 다양한 실시예를 나타내는 개념도들이다.1 is a block diagram illustrating a 3D printer 1 according to an embodiment of the present invention, and FIGS. 2 to 5 are conceptual views illustrating various embodiments of a heating unit according to the present invention.
본 문서에서, 잉크라 함은, 유도 가열에 의하여 열융합 또는 열경화가 이루어질 수 있는 잉크 조성물을 의미할 수 있으며, 잉크 또는 잉크 조성물이란 용어가 동일한 의미로 함께 사용될 수 있다.In the present document, the ink may mean an ink composition capable of thermal fusion or thermosetting by induction heating, and the term ink or ink composition may be used together in the same meaning.
도 1을 참조하면, 본 발명의 일 실시예와 관련된 3D 프린터(1)는 자성체를 포함하는 잉크(I)가 저장되는 잉크 탱크(10) 및 잉크 탱크(10)와 연결되며, 잉크를 분사하기 위한 분사노즐(40)을 포함한다. 또한, 상기 3D 프린터(1)는 분사된 잉크가 퇴적되는 기판(20) 및 유도 가열(induction heating)을 통해 기판(20) 상에 도포된 잉크(I)를 가열시키도록 마련되고, 분사노즐(40)의 이송방향을 기준으로 분사노즐(40)의 후방에 위치하도록 마련된 가열부(50)를 포함한다. 또한, 상기 3D 프린터(1)는 분사노즐(40)과 가열부(50)를 이송하기 위한 이송부(60)를 포함한다. 또한, 상기 3D 프린터(1)는 가열부(50)와 이송부(50)를 제어하기 위한 제어부(70)를 포함한다.Referring to FIG. 1, a 3D printer 1 according to an exemplary embodiment of the present invention is connected to an ink tank 10 and an ink tank 10 in which ink I including magnetic material is stored, and sprays ink. It includes a spray nozzle 40 for. In addition, the 3D printer 1 is provided to heat the ink I applied on the substrate 20 through the substrate 20 on which the ejected ink is deposited and the induction heating, and the injection nozzle ( And a heating part 50 provided to be located behind the injection nozzle 40 with respect to the conveying direction of 40. In addition, the 3D printer 1 includes a transfer unit 60 for transferring the injection nozzle 40 and the heating unit 50. In addition, the 3D printer 1 includes a control unit 70 for controlling the heating unit 50 and the transfer unit 50.
또한, 상기 가열부(50)는 기판(20) 상에 퇴적된 잉크 조성물(C)에 외부 교류 전자기장을 인가하도록 마련된다. 구체적으로, 전자기장에 의해 유도 가열이 발생하면서 잉크 조성물(C)이 가열될 수 있다.In addition, the heating part 50 is provided to apply an external alternating electromagnetic field to the ink composition C deposited on the substrate 20. Specifically, the ink composition (C) may be heated while induction heating occurs by the electromagnetic field.
여기서, 잉크 조성물(C)은 후술하는 바와 같이, 조성에 따라 열경화 수지가 경화되거나 금속 입자가 열융합될 수 있고, 이에 따라 3차원 인쇄가 진행될 수 있다. 또한, 도 1을 참조하면, 설명의 편의를 위하여, 분사노즐(40)로부터 분사된 잉크는 영문자 I로 표시하고, 가열부(50)를 통해 가열되는 잉크는 영문자 C로 표시한다.Here, the ink composition (C) may be cured according to the composition, or the metal particles may be thermally fused according to the composition, as described below, and thus three-dimensional printing may proceed. In addition, referring to FIG. 1, for convenience of description, the ink jetted from the jet nozzle 40 is represented by an English letter I, and the ink heated through the heating unit 50 is represented by an English letter C. FIG.
또한, 외부 교류 전자기장은 주파수가 100kHz 내지 1Ghz이고, 전류가 5A 내지 500A일 수 있다. 상기 범위 내의 주파수와 전류를 가해주었을 때, 잉크 조성물은 대략 10초 내지 1시간 이내에 경화가 완전히 이루어질 수 있다.In addition, the external AC electromagnetic field may have a frequency of 100 kHz to 1 Ghz and a current of 5 A to 500 A. When applied with a frequency and current within the above range, the ink composition can be completely cured within about 10 seconds to 1 hour.
도 1을 참조하면, 상기 가열부(50)는 상기 기판(20) 상에 퇴적된 잉크 조성물(C)에 집중된 교류 전자기장(focused electromagnetic field)을 형성하도록 마련될 수 있다. 또한, 상기 가열부(50)는 하나 이상의 코일 구조체를 포함할 수 있다. 여기서 상기 코일 구조체는 원형, 다각형, 나선형 등 다양한 구조를 가질 수 있다. 또한, 상기 코일 구조체는 표면 가열용, 내면 가열용, 평판 가열용 등으로 이용될 수 있다. 또한, 코일 구조체의 형상, 개수 및 코일 구조체 간의 배열은 다양하게 결정될 수 있다. 예를 들어, 코일 구조체는, 원통 형상, 나선 형상, 또는 팬케이크(pancake) 형상을 가질 수 있다. 또한, 코일 구조체는, 원형 또는 사각 코일 형상을 가질 수 있다.Referring to FIG. 1, the heating unit 50 may be provided to form a focused electromagnetic field concentrated in the ink composition C deposited on the substrate 20. In addition, the heating unit 50 may include one or more coil structures. Here, the coil structure may have various structures such as a circle, a polygon, and a spiral. In addition, the coil structure may be used for surface heating, inner surface heating, flat plate heating, and the like. In addition, the shape, number and arrangement of the coil structures of the coil structure may be variously determined. For example, the coil structure may have a cylindrical shape, a spiral shape, or a pancake shape. In addition, the coil structure may have a circular or square coil shape.
또한, 가열부(50)는 분사 노즐(40)에 인접하게 배치될 수 있다. 또한, 상기 가열부(50)는 분사 노즐(40)의 이송방향을 기준으로 분사 노즐(40)의 후방에 위치하도록 마련된다. 구체적으로, 분사노즐(40)의 이송 방향의 후방에 가열부(50)가 마련됨에 따라, 분사노즐(40)을 통한 잉크의 분사와 가열부(50)를 통한 잉크의 가열이 동시 또는 순차적으로 이루어질 수 있다.In addition, the heating unit 50 may be disposed adjacent to the injection nozzle 40. In addition, the heating unit 50 is provided to be located behind the spray nozzle 40 with respect to the conveying direction of the spray nozzle 40. Specifically, as the heating unit 50 is provided in the rear of the injection direction of the injection nozzle 40, the injection of the ink through the injection nozzle 40 and the heating of the ink through the heating unit 50 simultaneously or sequentially Can be done.
상기와 같은 배치 상태에서, 상기 이송부(60)는 상기 가열부(50)와 분사노즐(40)을 일체로 이송하도록 마련될 수 있다. 이때, 가열부(50)와 분사노즐(40)은 동일한 속도로 이송될 수 있다. 이와는 다르게, 이송부(60)는 가열부(50)와 분사노즐(40)을 개별적으로 이송하도록 마련될 수 있다. 이때, 가열부(50)와 분사노즐(40)은 서로 다른 속도로 이송되도록 마련될 수 있다. 상기 이송부는 모터와 같은 구동원을 포함할 수 있으며, 프린터 기술분야에서 잉크 노즐을 이송시키기 위해 사용되는 공지의 요소로 구성될 수 있다.In the arrangement state as described above, the transfer unit 60 may be provided to transfer the heating unit 50 and the injection nozzle 40 integrally. In this case, the heating unit 50 and the injection nozzle 40 may be transferred at the same speed. Alternatively, the transfer unit 60 may be provided to transfer the heating unit 50 and the injection nozzle 40 separately. In this case, the heating unit 50 and the injection nozzle 40 may be provided to be transferred at different speeds. The conveying part may include a driving source such as a motor, and may be composed of known elements used to convey ink nozzles in the printer art.
한편, 상기 이송부(60)는 기판(20)과 가열부(50) 사이의 간격을 조절하도록 마련될 수 있다. 예를 들어, 상기 가열부(50)는 기판(20)에 대하여 승강 가능하게 마련될 수 있다. 이와는 다르게, 상기 기판(20)은 가열부(50)에 대하여 승강 가능하게 마련될 수 있다. 즉, 이송부(60)는 기판(20)에 대한 가열부(50)의 상대 위치를 조절하도록 마련될 수 있고, 가열부(50) 및 기판(20) 중 적어도 하나는 승강 가능하게 마련될 수 있다. 또한, 이송부(60)는 기판(20)과 분사 노즐(40) 사이의 간격을 조절하도록 마련될 수 있다.Meanwhile, the transfer part 60 may be provided to adjust a gap between the substrate 20 and the heating part 50. For example, the heating unit 50 may be provided to be elevated relative to the substrate 20. Alternatively, the substrate 20 may be provided to be elevated relative to the heating unit 50. That is, the transfer unit 60 may be provided to adjust a relative position of the heating unit 50 with respect to the substrate 20, and at least one of the heating unit 50 and the substrate 20 may be provided to be elevated. . In addition, the transfer unit 60 may be provided to adjust the distance between the substrate 20 and the spray nozzle 40.
또한, 제어부(70)는 잉크(I)를 도포함과 동시에 가열부(50)를 작동시키도록 마련될 수 있다. 이와는 다르게, 제어부(70)는 잉크 도포 후 소정 시간이 경과한 이후에 가열부(50)를 작동시키도록 마련될 수 있다.In addition, the control unit 70 may be provided to operate the heating unit 50 simultaneously with the ink (I). Alternatively, the control unit 70 may be provided to operate the heating unit 50 after a predetermined time has passed after the ink application.
도 2를 참조하면, 가열부(150)는 분사노즐(40)을 기준으로 후방 양측에 각각 배치된 2개의 코일 구조체(151, 152)를 포함할 수 있다. 또한, 상기 가열부(150)는 2개의 코일 구조체(151, 152) 사이 공간에 위치하는 잉크에 외부 교류 전자기장을 인가하도록 마련될 수 있다. 또한, 상기 가열부(150)는 2개의 코일 구조체(151, 152) 사이에 분사노즐(40)의 노즐헤드의 중심선(L)이 위치하도록 마련될 수 있다. 예를 들어, 2개의 코일 구조체(151, 152)는, 헬름홀츠 타입(Helmholtz type)(도 3 참조), 듀얼 팬케이크 타입(dual pancake type)(도 4 참조) 또는 바이-코니컬 타입(bi-conical type)(도 5 참조)으로 마련될 수 있다.Referring to FIG. 2, the heating unit 150 may include two coil structures 151 and 152 respectively disposed at both rear sides of the injection nozzle 40. In addition, the heating unit 150 may be provided to apply an external alternating electromagnetic field to ink located in a space between two coil structures 151 and 152. In addition, the heating unit 150 may be provided such that the center line L of the nozzle head of the injection nozzle 40 is positioned between the two coil structures 151 and 152. For example, the two coil structures 151, 152 may be of the Helmholtz type (see FIG. 3), the dual pancake type (see FIG. 4) or the bi-conical type. type) (see FIG. 5).
이하, 본 문서에서 설명하는 잉크(잉크 조성물)에 대하여 구체적으로 설명한다.Hereinafter, the ink (ink composition) described in this document is demonstrated concretely.
상기 자성체는 강자성을 갖는 금속 입자, 금속 산화물, 페라이트 또는 합금 입자를 포함할 수 있다.The magnetic body may include ferromagnetic metal particles, metal oxides, ferrites or alloy particles.
또한, 상기 자성체는 자성 나노 입자를 포함할 수 있다.In addition, the magnetic material may include magnetic nanoparticles.
예를 들어, 잉크 조성물(I)은 열경화성 고분자 및 자성 나노 입자를 포함할 수 있다. 잉크 조성물(I)에 외부 교류 전자기장을 인가함으로써, 자성 나노 입자에 자기장이 형성되고, 그로 인해 발생하는 열에 의하여 열경화성 고분자를 경화시킬 수 있다. 따라서, 잉크 조성물(I)은 직접적인 열에 의한 경화가 아닌, 외부 교류 전자기장을 인가시키는 것만으로도 경화시킬 수 있다. For example, the ink composition (I) may comprise a thermosetting polymer and magnetic nanoparticles. By applying an external alternating electromagnetic field to the ink composition (I), a magnetic field is formed in the magnetic nanoparticles, and the thermosetting polymer can be cured by the heat generated thereby. Therefore, the ink composition (I) can be cured only by applying an external alternating electromagnetic field, not by direct heat.
또한, 열경화성 고분자 단량체 또는 올리고머는 그 종류가 특별히 한정되지는 않으나, 에폭시 수지의 단량체, 페놀 수지의 단량체, 아미노 수지의 단량체, 불포화 폴리에스테르 수지의 단량체, 아크릴 수지의 단량체, 말레이미드 수지의 단량체 및 시아네이트 수지의 단량체로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있고, 바람직하게는 에폭시 수지의 단량체, 아크릴 수지의 단량체 및 말레이미드 수지의 단량체로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.In addition, the type of thermosetting polymer monomer or oligomer is not particularly limited, but monomers of epoxy resins, monomers of phenol resins, monomers of amino resins, monomers of unsaturated polyester resins, monomers of acrylic resins, monomers of maleimide resins, One or more types selected from the group consisting of monomers of cyanate resins can be used, and preferably one or more types selected from the group consisting of monomers of epoxy resins, monomers of acrylic resins and monomers of maleimide resins can be used. .
또한, 상기 열경화성 고분자 단량체 또는 올리고머는 잉크 조성물 총 중량에 대하여 80 내지 99 중량부로 포함될 수 있다. In addition, the thermosetting polymer monomer or oligomer may be included in an amount of 80 to 99 parts by weight based on the total weight of the ink composition.
한편, 상기 자성 나노 입자는 1 내지 999 nm의 직경을 가지며, 바람직하게는, 30 내지 300 nm의 직경을 가지고, 보다 바람직하게는 50 내지 100 nm의 직경을 가지며, 더욱 바람직하게는 50 내지 60 nm의 직경을 갖는다. 여기서, 자성 나노 입자의 직경이 나노 크기를 초과한다면, 잉크 조성물은 분산성을 확보하지 못할 수도 있다. 또한, 자성 나노 입자는, Fe3O4, Fe2O3, MnFe2O4, CoFe2O4, Fe, CoPt, 및 FePt로 이루어진 군으로부터 선택된 1종 이상일 수 있다.On the other hand, the magnetic nanoparticles have a diameter of 1 to 999 nm, preferably has a diameter of 30 to 300 nm, more preferably has a diameter of 50 to 100 nm, still more preferably 50 to 60 nm Has a diameter. Here, if the diameter of the magnetic nanoparticles exceeds the nano size, the ink composition may not secure dispersibility. In addition, the magnetic nanoparticles may be one or more selected from the group consisting of Fe 3 O 4 , Fe 2 O 3 , MnFe 2 O 4 , CoFe 2 O 4 , Fe, CoPt, and FePt.
또한, 잉크 조성물(I)은 총 중량에 대하여 열경화성 고분자 80 내지 99 중량부 및 자성 나노 입자 1 내지 20 중량부를 포함할 수 있다. 자성 나노 입자의 함량이 1중량부 미만이면, 잉크 조성물을 경화시키는 시간이 길어지고, 20 중량부를 초과하면, 검은색을 띄는 자성 나노 입자로 인하여 경화된 수지의 색이 자나치게 어두워질 수 있다. 또한, 자성 나노 입자의 뭉침 현상이 일어날 수 있어, 경화된 수지 내에 빈 공간이 발생할 수도 있고, 이로 인해 균열이 발생할 수도 있다.In addition, the ink composition (I) may include 80 to 99 parts by weight of the thermosetting polymer and 1 to 20 parts by weight of the magnetic nanoparticles based on the total weight. When the content of the magnetic nanoparticles is less than 1 part by weight, the time for curing the ink composition is long, and when the content of the magnetic nanoparticles exceeds 20 parts by weight, the color of the cured resin may be excessively dark due to the black magnetic nanoparticles. In addition, agglomeration of magnetic nanoparticles may occur, so that empty spaces may occur in the cured resin, and cracks may occur.
또한, 잉크 조성물은 경화제 및 가교제로 이루어진 군으로부터 선택되는 1종 이상을 추가로 포함할 수 있다. 상기 경화제는 그 종류를 특별히 한정하지는 않으나, 예를 들어 유기과산화물, 하이드로과산화물, 아조화합물, 이미다졸계, 지방족 아민, 방향족 아민, 제 3급 아민, 폴리아미드 수지, 페놀 수지 및 산무수물로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다. 상기 경화제는 잉크 조성물 총 중량에 대하여 1 내지 10 중량부로 포함될 수 있고, 바람직하게는 1 내지 5 중량부로 포함될 수 있다. 상기 경화제의 함량이 1 중량부 미만이면 잉크 조성물을 완전히 경화시키는 시간이 오래 걸리게 되고, 10 중량부를 초과하면 사슬 길이가 짧은 고분자가 다량 생성되어 경화된 수지의 열적 안정성이 감소될 수 있다. In addition, the ink composition may further include one or more selected from the group consisting of a curing agent and a crosslinking agent. The curing agent is not particularly limited in kind, but is, for example, a group consisting of an organic peroxide, a hydroperoxide, an azo compound, an imidazole series, an aliphatic amine, an aromatic amine, a tertiary amine, a polyamide resin, a phenol resin, and an acid anhydride. One or more types selected from can be used. The curing agent may be included in an amount of 1 to 10 parts by weight, preferably 1 to 5 parts by weight, based on the total weight of the ink composition. When the content of the curing agent is less than 1 part by weight, it takes a long time to completely cure the ink composition. When the content of the curing agent exceeds 10 parts by weight, a large amount of polymer having a short chain length may be generated, thereby reducing thermal stability of the cured resin.
또한, 상기 가교제의 종류는 특별히 한정하지는 않으나, 예를 들어 페놀노볼락 수지, 페놀알킬 수지, 알릴화 페놀노볼락 수지 및 마이크로캅셀형 가교제로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다. 상기 가교제를 추가로 사용함으로써, 잉크 조성물의 경도 및 열적 안정성을 증가시킬 수 있다. 상기 가교제는 잉크 조성물 총 중량에 대하여 1 내지 10 중량부로 포함될 수 있으며, 가교제의 함량이 1 중량부 미만이면 가교가 충분히 이루어지지 않아 높은 온도에서 고분자가 녹아 흐르게 되고, 용매에 의한 팽창이 일어날 수 있으며, 10 중량부를 초과하면 가교가 지나치게 많이 되어 경화된 수지가 부서지기 쉬운 상태가 될 수 있다In addition, the kind of the crosslinking agent is not particularly limited, but for example, at least one selected from the group consisting of phenol novolak resins, phenolalkyl resins, allylated phenol novolak resins, and microcapsule type crosslinking agents can be used. By further using the crosslinking agent, it is possible to increase the hardness and thermal stability of the ink composition. The crosslinking agent may be included in an amount of 1 to 10 parts by weight based on the total weight of the ink composition. If the content of the crosslinking agent is less than 1 part by weight, the crosslinking may not be sufficiently performed to melt the polymer at a high temperature, and may cause expansion by a solvent. If the content exceeds 10 parts by weight, the crosslinking may be excessive, leading to a brittle state of the cured resin.
한편, 잉크 탱크(10)와 연결된 분사노즐(40) 및 열경화가 이루어지도록 잉크 조성물에 외부 교류 전자기장을 인가하기 위한 가열부(50)는 프린터 헤드(30)를 구성할 수 있다. 이때, 전술한 이송부(60)는 기판(20)에 대한 프린터 헤드(30)의 상대 위치를 조절한다. On the other hand, the injection nozzle 40 connected to the ink tank 10 and the heating unit 50 for applying an external alternating electromagnetic field to the ink composition to the heat curing may constitute a printer head 30. At this time, the transfer unit 60 adjusts the relative position of the print head 30 with respect to the substrate 20.
또한, 제어부(70)는 이송부(60) 및 프린터 헤드(30)를 제어하도록 마련된다. 또한, 제어부(70)는 잉크 조성물(I)의 분사와 외부 교류 전자기장의 발생이 동시에 이루어지도록 제어할 수 있다.In addition, the control unit 70 is provided to control the transfer unit 60 and the printer head 30. In addition, the controller 70 may control the injection of the ink composition I and the generation of an external alternating electromagnetic field to occur simultaneously.
상기 이송부(60)는 프린터에서 노즐 헤드를 이송시키기 위한 통상의 이송부로 구성될 수 있다. 예를 들어, 상기 이송부(60)는 분사 궤적에 따른 레일부 및 레일부 상에서 프린터 헤드(30)를 이동시키기 위한 하나 이상의 모터를 포함할 수 있다. 또한, 상기 이송부(60)는 프린터 헤드(30) 및/또는 기판(20)을 승강시키기 위한 하나 이상의 모터(예를 들어, 스텝 모터)를 포함할 수 있다.The transfer unit 60 may be configured as a conventional transfer unit for transferring the nozzle head in the printer. For example, the transfer unit 60 may include a rail unit according to the injection trajectory and one or more motors for moving the printer head 30 on the rail unit. In addition, the transfer unit 60 may include one or more motors (eg, step motors) for elevating the print head 30 and / or the substrate 20.
또한, 본 발명과 관련된 잉크 조성물은 마이크로 사이즈의 금속 입자 및 첨가제(예를 들어, 유기 성분)를 포함할 수 있다. 이러한 경우, 유도 가열을 통해 금속 입자가 열용합됨으로써 3D 인쇄를 진행시킬 수 있다. 정리하면, 잉크 조성물은 열경화 수지와 자성 나노 입자를 포함(열경화 수지 잉크)할 수도 있고, 금속 입자와 첨가제를 포함(금속성 잉크)할 수도 있다. 열경화 수지 잉크의 경우, 잉크 조성물 총중량을 기준으로 열경화성 고분자가 주된 성분으로 포함되고, 자성 나노입자가 보조 성분으로 포함되는 반면에, 금속성 잉크의 경우, 마이크로 사이즈의 금속 입자가 주된 성분으로 포함된다. 특히, 금속성 잉크의 경우, 유도 가열을 통해 금속 입자를 열융합시키는 과정을 통해 첨가제 성분이 제거되도록 할 수 있다.In addition, the ink composition related to the present invention may include micro-sized metal particles and additives (eg, organic components). In this case, 3D printing can be advanced by thermally fusion of the metal particles through induction heating. In summary, the ink composition may contain a thermosetting resin and magnetic nanoparticles (thermosetting resin ink), or may contain metal particles and an additive (metallic ink). In the case of the thermosetting ink, the thermosetting polymer is included as a main component based on the total weight of the ink composition, and the magnetic nanoparticle is included as an auxiliary component, whereas in the case of the metallic ink, the micro-sized metal particles are included as the main component. . In particular, in the case of the metallic ink, the additive component may be removed by thermally fusion of the metal particles through induction heating.
또한, 자성체 입자는 금속 산화물, 페라이트 또는 합금 입자를 포함할 수 있다. 또한, 상기 금속 산화물은 철(Fe), 코발트(Co), 니켈(Ni), 크롬(Cr), 이트륨(Y), 사마륨(Sm) 및 가돌리늄(Gd)로 이루어진 군에서 선택된 1 이상의 산화물을 포함할 수 있다. 또한, 상기 페라이트는 MO·Fe2O3를 포함하고, 상기 M은 2가의 금속 이온일 수 있다. 또한, 2가의 금속 이온은 망간, 철, 코발트, 니켈 또는 아연을 포함할 수 있다. 또한, 합금 입자는 FePt, CoPt, Ni-Zn 또는 Mn-Zn을 포함할 수 있다.In addition, the magnetic particles may include metal oxide, ferrite or alloy particles. In addition, the metal oxide may include at least one oxide selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), yttrium (Y), samarium (Sm), and gadolinium (Gd). can do. In addition, the ferrite may include MO · Fe 2 O 3 , and M may be a divalent metal ion. In addition, divalent metal ions may include manganese, iron, cobalt, nickel or zinc. In addition, the alloy particles may include FePt, CoPt, Ni-Zn or Mn-Zn.
또한, 상기 잉크는 세라믹 입자를 포함할 수 있다. 구체적으로, 상기 세라믹은 실리콘(Si), 알루미늄(Al), 티타늄(Ti) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 1 이상의 산화물, 질화물 또는 탄화물을 포함할 수 있다. 또한, 상기 잉크는, 코어-쉘 구조의 무기 입자 및 세라믹 입자를 포함할 수 있다. 이때, 상기 쉘은 세라믹을 포함할 수 있다. 또한, 코어는 자성체 또는 금속 파우더를 포함할 수 있고, 상기 코어는 철(Fe), 코발트(Co), 니켈(Ni), 크롬(Cr), 이트륨(Y), 사마륨(Sm) 및 가돌리늄(Gd)로 이루어진 군에서 선택된 1 이상의 산화물을 포함할 수 있다.In addition, the ink may include ceramic particles. Specifically, the ceramic may include at least one oxide, nitride, or carbide selected from the group consisting of silicon (Si), aluminum (Al), titanium (Ti), and zirconium (Zr). In addition, the ink may include inorganic particles and ceramic particles having a core-shell structure. In this case, the shell may include a ceramic. In addition, the core may comprise a magnetic material or a metal powder, the core is iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), yttrium (Y), samarium (Sm) and gadolinium (Gd) It may include one or more oxides selected from the group consisting of.
또한, 상기 조성물은 세라믹 졸 용매를 포함할 수 있다. 이에 따라 상기 조성물은 세라믹 졸 용액일 수 있다. 이러한 경우, 조성물 내부에 균일하게 분산된 자성체 또는 금속 파우더로부터 열이 발생하여 균일한 열경화가 가능하며, 세라믹 졸의 경화와 함께 세라믹 입자의 경화가 수반되어 최종 경화물의 강도가 증가될 수 있다. 상기 경화는 상기 세라믹 소재간의 소결에 의한 것일 수 있으나, 이에 한정되는 것은 아니고, 후술하는 경화성 수지와 함께 조성물의 경화가 진행될 수 있다.In addition, the composition may comprise a ceramic sol solvent. Accordingly, the composition may be a ceramic sol solution. In this case, heat is generated from the magnetic material or the metal powder uniformly dispersed in the composition, thereby enabling uniform heat curing, and hardening of the ceramic particles may be accompanied with curing of the ceramic sol, thereby increasing the strength of the final cured product. The curing may be by sintering between the ceramic materials, but is not limited thereto, and curing of the composition may be performed together with the curable resin described below.
위에서 설명된 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.Preferred embodiments of the present invention described above are disclosed for purposes of illustration, and those skilled in the art having various ordinary knowledge of the present invention may make various modifications, changes, and additions within the spirit and scope of the present invention. And additions should be considered to be within the scope of the following claims.
본 발명과 관련된 3D 프린터는, 유도 가열(induction heating)을 통해 잉크(또는 잉크 조성물)의 열경화 또는 열융합을 발생시킬 수 있고, 잉크가 도포된 영역에 집중된 교류 전자기장(focused electromagnetic field)을 형성할 수 있도록 마련된다.The 3D printer according to the present invention can generate thermal curing or thermal fusion of an ink (or ink composition) through induction heating, and forms a focused electromagnetic field concentrated in the area where the ink is applied. It is prepared to do so.

Claims (20)

  1. 자성체를 포함하는 잉크가 저장되는 잉크 탱크;An ink tank in which ink including a magnetic body is stored;
    잉크 탱크와 연결되며, 잉크를 분사하기 위한 분사노즐;A spray nozzle connected to the ink tank, for ejecting ink;
    분사된 잉크가 퇴적되는 기판;A substrate on which ejected ink is deposited;
    유도 가열을 통해 기판 상에 도포된 잉크를 가열시키도록 마련되고, 분사노즐의 이송방향을 기준으로 분사노즐의 후방에 위치하도록 마련된 가열부;A heating unit provided to heat the ink applied on the substrate through induction heating, and positioned to be rearward of the injection nozzle with respect to the conveying direction of the injection nozzle;
    분사노즐 및 가열부를 이송하기 위한 이송부; 및A transfer unit for transferring the injection nozzle and the heating unit; And
    가열부 및 이송부를 제어하기 위한 제어부를 포함하는 3D 프린터.3D printer including a control unit for controlling the heating unit and the transfer unit.
  2. 제 1 항에 있어서,The method of claim 1,
    가열부는 기판 상에 퇴적된 잉크에 외부 교류 전자기장을 인가하도록 마련된 3D 프린터.The heating unit is a 3D printer provided to apply an external alternating electromagnetic field to the ink deposited on the substrate.
  3. 제 2 항에 있어서,The method of claim 2,
    가열부는 기판 상에 퇴적된 잉크에 집중된 교류 전자기장을 형성하도록 마련된 3D 프린터.The heating portion is a 3D printer arranged to form an alternating electromagnetic field concentrated in ink deposited on a substrate.
  4. 제 2 항에 있어서,The method of claim 2,
    가열부는 하나 이상의 코일 구조체를 포함하는 3D 프린터.3D printer, wherein the heating portion includes one or more coil structures.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    코일 구조체는, 원통 형상, 나선 형상, 또는 팬케이크(pancake) 형상을 갖는 3D 프린터.The coil structure has a cylindrical shape, a spiral shape, or a pancake shape.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    코일 구조체는, 원형 또는 사각 코일 형상을 갖는 3D 프린터.The coil structure is a 3D printer which has a circular or square coil shape.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    가열부는 분사 노즐을 기준으로 후방 양측에 각각 배치된 2개의 코일 구조체를 포함하며,The heating unit includes two coil structures respectively disposed on both rear sides of the spray nozzle,
    가열부는 2개의 코일 구조체 사이 공간에 위치하는 잉크에 외부 교류 전자기장을 인가하도록 마련된 3D 프린터.The heating unit is a 3D printer provided to apply an external alternating electromagnetic field to the ink located in the space between the two coil structures.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    가열부는 2개의 코일 구조체 사이에 분사노즐의 노즐헤드의 중심선이 위치하도록 마련된 3D 프린터.The heating unit is a 3D printer provided so that the center line of the nozzle head of the injection nozzle is located between the two coil structure.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    2개의 코일 구조체는, 헬름홀츠 타입(Helmholtz type), 바이-코니컬 타입(bi-conical type), 또는 듀얼 팬케이크 타입(dual pancake type)으로 마련된 3D 프린터.The two coil structures are provided in a Helmholtz type, a bi-conical type, or a dual pancake type.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 이송부는 가열부와 분사노즐을 일체로 이송하도록 마련된 3D 프린터.The transfer unit is a 3D printer provided to transfer the heating unit and the injection nozzle integrally.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 이송부는 가열부와 분사노즐을 개별적으로 이송하도록 마련된 3D 프린터.The transfer unit is a 3D printer provided to transfer the heating unit and the injection nozzle separately.
  12. 제 11 항에 있어서,The method of claim 11,
    이송부는 가열부와 분사노즐을 서로 다른 속도로 이송하도록 마련된 3D 프린터.The transfer unit is a 3D printer provided to transfer the heating unit and the injection nozzle at different speeds.
  13. 제 1 항에 있어서,The method of claim 1,
    이송부는 기판에 대한 가열부의 상대 위치를 조절하도록 마련된 3D 프린터.3D printer provided with a conveyance part for adjusting the relative position of a heating part with respect to a board | substrate.
  14. 제 13 항에 있어서,The method of claim 13,
    가열부 및 기판 중 적어도 하나는 승강 가능하게 마련된 3D 프린터.At least one of the heating unit and the substrate is provided to be elevated.
  15. 제 1 항에 있어서,The method of claim 1,
    이송부는 기판과 분사노즐 사이의 간격을 조절하도록 마련된 3D 프린터.The transfer unit is a 3D printer provided to adjust the distance between the substrate and the injection nozzle.
  16. 제 1 항에 있어서,The method of claim 1,
    제어부는 잉크를 도포함과 동시에 가열부를 작동시키도록 마련된 3D 프린터.The control unit is a 3D printer provided to operate the heating unit at the same time to include the ink.
  17. 제 1 항에 있어서,The method of claim 1,
    제어부는 잉크 도포 후 소정 시간이 경과한 이후에 가열부를 작동시키도록 마련된 3D 프린터.The control unit is a 3D printer provided to operate the heating unit after a predetermined time has passed after application of ink.
  18. 제 1 항에 있어서,The method of claim 1,
    자성체는 자성을 갖는 금속 입자, 금속 산화물, 또는 합금 입자를 포함하는 3D 프린터.The magnetic body includes a magnetic metal particle, metal oxide, or alloy particles.
  19. 제 1 항에 있어서,The method of claim 1,
    잉크는 열경화기를 포함하는 단분자, 올리고머, 또는 고분자를 포함하는 3D 프린터.An ink is a 3D printer comprising a single molecule, oligomer, or polymer comprising a thermoset.
  20. 제 1 항에 있어서,The method of claim 1,
    잉크는 세라믹 입자를 포함하며,The ink contains ceramic particles,
    세라믹 입자는 실리콘(Si), 알루미늄(Al), 티타늄(Ti) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 하나 이상의 산화물, 질화물 또는 탄화물을 포함하는 3D 프린터.3D printer comprising at least one oxide, nitride or carbide selected from the group consisting of silicon (Si), aluminum (Al), titanium (Ti) and zirconium (Zr).
PCT/KR2016/004790 2015-05-07 2016-05-09 3d printer WO2016178545A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017554556A JP6554740B2 (en) 2015-05-07 2016-05-09 3D printer
US15/569,942 US10974455B2 (en) 2015-05-07 2016-05-09 3D printer
CN201680025954.5A CN107614244B (en) 2015-05-07 2016-05-09 3D printer
EP16789651.3A EP3292990B1 (en) 2015-05-07 2016-05-09 3d printer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0063861 2015-05-07
KR20150063861 2015-05-07
KR10-2016-0056080 2016-05-09
KR1020160056080A KR101819335B1 (en) 2015-05-07 2016-05-09 3-D printer

Publications (1)

Publication Number Publication Date
WO2016178545A1 true WO2016178545A1 (en) 2016-11-10

Family

ID=57218294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004790 WO2016178545A1 (en) 2015-05-07 2016-05-09 3d printer

Country Status (1)

Country Link
WO (1) WO2016178545A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107053653A (en) * 2017-03-30 2017-08-18 大连理工大学 The electrojet 3D printing device and method being combined based on electric field thermal field
WO2018196868A1 (en) * 2017-04-29 2018-11-01 南京钛陶智能系统有限责任公司 Three-dimensional printing method
CN109177157A (en) * 2018-07-11 2019-01-11 深圳市奈士迪技术研发有限公司 A kind of 3D printer with regulatory function
WO2019177535A1 (en) * 2018-03-12 2019-09-19 Nanyang Technological University Method of sintering a printed pattern
CN110573322A (en) * 2017-04-26 2019-12-13 株式会社Lg化学 Nozzle assembly and 3D printer including same
JP2019536890A (en) * 2016-11-21 2019-12-19 エルジー・ケム・リミテッド Composition for 3D printing
US11872623B2 (en) 2016-11-04 2024-01-16 Lg Chem, Ltd. Thermosetting composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094530A (en) * 1998-09-25 2000-04-04 Canon Inc Apparatus and method for shaping
US20040151978A1 (en) * 2003-01-30 2004-08-05 Huang Wen C. Method and apparatus for direct-write of functional materials with a controlled orientation
WO2007114895A2 (en) * 2006-04-06 2007-10-11 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
US20100171792A1 (en) * 2007-06-01 2010-07-08 Jagjit Sidhu Direct Write and Additive Manufacturing Processes
US20140363327A1 (en) * 2013-06-10 2014-12-11 Grid Logic Incorporated Inductive Additive Manufacturing System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094530A (en) * 1998-09-25 2000-04-04 Canon Inc Apparatus and method for shaping
US20040151978A1 (en) * 2003-01-30 2004-08-05 Huang Wen C. Method and apparatus for direct-write of functional materials with a controlled orientation
WO2007114895A2 (en) * 2006-04-06 2007-10-11 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
US20100171792A1 (en) * 2007-06-01 2010-07-08 Jagjit Sidhu Direct Write and Additive Manufacturing Processes
US20140363327A1 (en) * 2013-06-10 2014-12-11 Grid Logic Incorporated Inductive Additive Manufacturing System

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11872623B2 (en) 2016-11-04 2024-01-16 Lg Chem, Ltd. Thermosetting composition
JP2019536890A (en) * 2016-11-21 2019-12-19 エルジー・ケム・リミテッド Composition for 3D printing
US11232891B2 (en) 2016-11-21 2022-01-25 Lg Chem, Ltd. Composition for 3 dimensional printing
CN107053653A (en) * 2017-03-30 2017-08-18 大连理工大学 The electrojet 3D printing device and method being combined based on electric field thermal field
CN110573322A (en) * 2017-04-26 2019-12-13 株式会社Lg化学 Nozzle assembly and 3D printer including same
CN110573322B (en) * 2017-04-26 2021-10-22 株式会社Lg化学 Nozzle assembly and 3D printer including same
US11203152B2 (en) 2017-04-26 2021-12-21 Lg Chem, Ltd. Nozzle assembly and 3D printer comprising the same
WO2018196868A1 (en) * 2017-04-29 2018-11-01 南京钛陶智能系统有限责任公司 Three-dimensional printing method
WO2019177535A1 (en) * 2018-03-12 2019-09-19 Nanyang Technological University Method of sintering a printed pattern
CN109177157A (en) * 2018-07-11 2019-01-11 深圳市奈士迪技术研发有限公司 A kind of 3D printer with regulatory function
CN109177157B (en) * 2018-07-11 2020-10-23 永康市普方铝业有限公司 3D printer with regulatory function

Similar Documents

Publication Publication Date Title
WO2016178545A1 (en) 3d printer
JP6554740B2 (en) 3D printer
JP6544920B2 (en) Pattern forming method, pattern manufacturing apparatus, three-dimensional object forming method and manufacturing apparatus
WO2020211656A1 (en) Three-dimensional object molding method and molding device
KR102126705B1 (en) Composition
TW293099B (en)
WO2017052337A1 (en) Composition for 3d printing
US20170217105A1 (en) Method and apparatus for manufacturing three-dimensional object
WO2018093230A2 (en) Composition for 3d printing
EP2535200B1 (en) Printing method, transfer material, and inkjet discharge device
JP2011046115A (en) Image recorder
WO2002086563A2 (en) Optical fiber encoded with data signal
US10350925B2 (en) Method of forming pattern, pattern-producing apparatus, and stereoscopic object-producing apparatus
WO2017052339A1 (en) Composition for 3d printing
CN114953433A (en) Magnetic software robot 3D printing method
WO2023101357A1 (en) Nozzle assembly, three-dimensional printer comprising same, three-dimensional printing method, and electronic component case manufactured using same
WO2018199621A2 (en) Nozzle assembly and 3d printer comprising same
KR102041812B1 (en) Thermosetting composition
US20230173812A1 (en) Printing method and printing apparatus for improving visibility and printed matter printed using the printing method
US20220254552A1 (en) Rare earth magnet assembly and preparation method
JP2016010914A (en) Method for manufacturing three-dimensional molded article, three-dimensional molded article, and composition for three-dimensional molding
JP2009042286A (en) Magnetic sealing member and method for manufacturing the same
CN107652759A (en) A kind of aluminum products surface printing ink
Mit'kin et al. Magnetic applicator for depositing polymer coatings on quartz light guides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016789651

Country of ref document: EP