WO2016178536A2 - Varistor ceramic and method for producing same - Google Patents

Varistor ceramic and method for producing same Download PDF

Info

Publication number
WO2016178536A2
WO2016178536A2 PCT/KR2016/004758 KR2016004758W WO2016178536A2 WO 2016178536 A2 WO2016178536 A2 WO 2016178536A2 KR 2016004758 W KR2016004758 W KR 2016004758W WO 2016178536 A2 WO2016178536 A2 WO 2016178536A2
Authority
WO
WIPO (PCT)
Prior art keywords
varistor ceramic
varistor
mixture
zinc oxide
praseodymia
Prior art date
Application number
PCT/KR2016/004758
Other languages
French (fr)
Korean (ko)
Other versions
WO2016178536A3 (en
Inventor
이승철
강승진
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2016178536A2 publication Critical patent/WO2016178536A2/en
Publication of WO2016178536A3 publication Critical patent/WO2016178536A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • the present invention relates to a varistor ceramic and a manufacturing method thereof, and more particularly, to a varistor ceramic and a method for manufacturing the same, which can improve ESD resistance, have excellent capacitance, and exhibit stability in heterojunction.
  • zinc oxide varistors are surge protection devices that protect the protected devices by releasing abnormal voltages, currents, and energies, ie, surges, drawn from the front end of the protected devices including electronic devices to ground. Or modularized and widely used throughout the industry.
  • Zinc oxide varistors which are polycrystalline ceramics, are characterized by having a sorption-absorbing ability by showing that the grain boundaries of the zinc oxide grain pairs are selectively converted into insulating or conductive depending on the applied voltage, thereby exhibiting nonlinear electrical behavior. .
  • zinc oxide varistors are non-linear resistors whose resistance varies with voltage, and are connected in parallel to the protector, and normally operate as an insulator that exhibits high impedance. The discharge of high energy protects the protected group.
  • Zinc oxide varistors prepared by adding a small amount of non-linear inducing oxides and oxides for improving properties to zinc oxide, which occupy most of ceramics, are classified into various types according to the types of non-linear inducing oxides. ), followeded by praseodymium (Pr).
  • ZnO-based varistors formed of ZnO-Bi-based or ZnO-Pr-based materials in the varistor material composition system have better voltage nonlinearity and better surge current resistance than SiC-based varistors and SrTiO3-based varistors. It is used as a material of surge protection device because of its ability to protect electronic devices.
  • the ZnO-Bi varistor is composed of Bi 2 O 3 , Sb 2 O 3 , Mn, Co, Ni, Cr, glass frit, Al, K, etc.
  • the Bi 2 O component is ESD (Electro-Static) Since the discharge resistance is weak, ZnO-Bi-based varistors including the same have disadvantages of poor ESD characteristics.
  • the Sb 2 O 3 component is classified as a carcinogen and the concentration is regulated, the ZnO-Bi-based varistor including the same has a disadvantage in that it is not free to manufacture.
  • ZnO-Pr-based varistors have a good voltage non-linearity, but have a disadvantage in that leakage current is greater than that of ZnO-Bi-based varistors. There is a disadvantage in that the manufacturing cost is high because it requires a large amount of expensive components (Pd and the like).
  • ZnO-type varistors have high dielectric constants of up to several hundreds, in order to have a small capacitance, the electrode area must be considerably reduced. However, reducing the electrode area to have a small capacitance results in a reduction in surge resistance, which also leads to a problem that the varistor manufacturing process is quite difficult. Therefore, there is a need for a ZnO type varistor having a low dielectric constant.
  • the present invention has been made in view of the above, and provides an varistor ceramic and a method for manufacturing the same, which exhibit improved ESD resistance, excellent capacitance, and stability in heterojunction.
  • the present invention comprises praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ), the atomic percentage ratio of praseodymia-based zinc oxide and titanium strontium oxide is 92 ⁇ 99: 8 It provides a varistor ceramic, characterized in that ⁇ 1.
  • the praseodymia-based zinc oxide comprises ZnO, Pr 6 O 11 , Co 3 O 4 and Nd 2 O 3 , the total weight of the praseodymia-based zinc oxide ZnO 90 ⁇ 95 wt%, Pr 6 O 11 0.5 to 1% by weight, Co 3 O 4 2 to 5% by weight and Nd 2 O 3 0.5 to 1% by weight.
  • varistor ceramic may be sintered at 1300 ⁇ 1400 °C.
  • the varistor ceramic may have a breakdown voltage of 100 to 900 V at 1 mA when measured by a curve tracer.
  • the varistor ceramic may have a capacitance of 1 to 10 pF and a dielectric constant of 100 to 500 at 1 kW.
  • the varistor ceramic may have a capacitance of 1 to 50 pF and a dielectric constant of 200 to 500 at 1 MHz.
  • the present invention also provides a thin film comprising the varistor ceramic according to the present invention.
  • the thin film may be heterojunction with the capacitor layer.
  • the present invention is a step of preparing a mixture by mixing the praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ) in an atomic ratio of 92 ⁇ 99: 8 ⁇ 1; Grinding and filtering the mixture and drying the mixture; Pulverizing and filtering the dried mixture to three steps; Adding granulated polyvinyl butyral (PVB) powder to the powdered mixture, followed by granulation; And a step 5 of sintering the granulated mixture under pressure molding.
  • PrTiO 3 titanium strontium oxide
  • the drying in the second step may be performed for 1 to 3 hours at 70 °C ⁇ 90 °C.
  • polyvinyl butyral (PVB) powder may be mixed in an amount of 5 wt% to 10 wt% with respect to the mixture powdered in step 3.
  • the five steps of sintering may be performed at 1300 ⁇ 1400 °C.
  • the varistor ceramic according to the present invention is very excellent in ESD resistance, excellent in capacitance, and may exhibit stability in heterojunction.
  • ESD resistance excellent in capacitance
  • stability in heterojunction According to the trend of light and short size miniaturization of electronic devices can be widely applied to a variety of electronic devices, such as to have a resistance to the surge voltage of the high voltage introduced into the chip.
  • FIG. 1 is an image showing a mold of the varistor ceramic according to the present invention.
  • Figure 3 is an image of the fracture surface of the varistor ceramic prepared by sintering at 1200 °C.
  • FIG. 6 is a graph showing breakdown voltages of Comparative Examples 3 to 6.
  • FIG. 7 is a graph showing breakdown voltages of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the present invention includes praseodymium-based zinc oxide and titanium strontium oxide (SrTiO 3 ), and the atomic percentage ratio of praseodymium-based zinc oxide and titanium strontium oxide is 92 to 99: 8 to 1, varistor characterized in that Provide ceramic.
  • PrTiO 3 praseodymium-based zinc oxide and titanium strontium oxide
  • the varistor ceramic according to the present invention has an effect of improving the electrostatic discharge (ESD) resistance, excellent capacitance, and stability in heterojunction by mixing in the above ratio.
  • the atomic percentage ratio of the praseodymia-based zinc oxide and titanium strontium oxide is preferably 92 to 99: 8 to 1, more preferably 96 to 98: 4 to 2.
  • the atomic percentage ratio of the praseodymia-based zinc oxide and titanium strontium oxide exceeds 99: 1, the dielectric constant of the manufactured varistor ceramic is high, but the capacitance is lowered, so that the function as a varistor is lost. In this case, there is a problem due to high break down voltage.
  • the praseodymia-based zinc oxide can be used as long as it can be generally purchased or manufactured, and is not particularly limited, but preferably includes ZnO, Pr 6 O 11 , Co 3 O 4 and Nd 2 O 3 , ZnO 90 ⁇ 95% by weight, Pr 6 O 11 based on the total weight of the praseodymia zinc oxide 0.5 to 1% by weight, Co 3 O 4 2 to 5% by weight and Nd 2 O 3 0.5 to 1% by weight. If the content ratio is not satisfied as described above, it may not be easy to achieve the desired physical properties of the present invention.
  • the varistor ceramic may be sintered at 1300 ⁇ 1400 °C.
  • the varistor ceramic is sintered at a temperature of less than 1300 °C there is a problem that can lose the varistor characteristics, if the sintered at a temperature exceeding 1400 °C there is a problem that the function of the varistor is deteriorated and leakage current may increase .
  • the varistor ceramic may have a breakdown voltage of 100 to 900 V at 1 mA, and a breakdown voltage of 500 to 900 V at 1 mA, as measured by a curve tracer. Can be represented.
  • the varistor ceramic may have a capacitance of 1 to 10 pF, a dielectric constant of 100 to 500, a capacitance of 1 to 50 pF, and a dielectric constant of 200 to 500 at 1 MHz.
  • Varistor ceramics according to the present invention can exhibit the physical properties as described above can be manufactured to exhibit a wide range of voltage and capacitance. In addition, by applying a relatively simple addition method can exhibit the effect of artificially controlling a variety of electrical properties based on the same composition.
  • the present invention also provides a thin film comprising the varistor ceramic described above.
  • the thin film may be heterojunction with the capacitor layer to be disposed at an appropriate position according to the desired characteristics, thereby controlling the dielectric constant and voltage to implement the desired characteristics.
  • the present invention is a step 1 of preparing a mixture by mixing the praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ) in an atomic ratio of 92 to 99: 1 to 8; Grinding and filtering the mixture and drying the mixture; Pulverizing and filtering the dried mixture to three steps; Adding granulated polyvinyl butyral (PVB) powder to the powdered mixture, followed by granulation; And a step 5 of sintering the granulated mixture under pressure molding.
  • PVB polyvinyl butyral
  • the first step is to prepare a mixture by mixing the praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ) in an atomic ratio of 92 ⁇ 99: 8 ⁇ 1
  • the atomic percentage ratio of praseodymia zinc oxide and titanium strontium oxide is preferably 92 to 99: 8 to 1, more preferably 96 to 98: 4 to 2.
  • the atomic percentage ratio of titanium strontium oxide to praseodymia-based zinc oxide exceeds 99: 1, the dielectric constant of the produced varistor ceramic is high, but the capacitance decreases, so that the function as a varistor is lost. If less, there is a problem due to high break down voltage.
  • the praseodymia-based zinc oxide can be used as long as it can be generally purchased or manufactured and is not particularly limited, but preferably includes ZnO, Pr 6 O 11 , Co 3 O 4 and Nd 2 O 3 , ZnO 90 ⁇ 95% by weight, Pr 6 O 11 based on the total weight of the praseodymia zinc oxide 0.5 to 1% by weight, Co 3 O 4 2 to 5% by weight and Nd 2 O 3 It may include 0.5 to 1% by weight, through which the present invention can more easily express the desired physical properties.
  • the second step is a step of pulverizing, filtering and drying the mixture, which may be pulverized by milling the mixture in order to powder the mixture.
  • the drying in the second step is preferably carried out for 1 to 3 hours at 70 °C ⁇ 90 °C, more preferably it is carried out for 2 to 3 hours at 80 °C ⁇ 90 °C.
  • the three step is to pulverize the powder mixture by pulverization and filtration, the pulverization may be carried out through a mortar and filtration through a standard mesh Can be.
  • the step 4 is a step of granulating after adding a polyvinyl butyral (PVB) powder to the powdered mixture, wherein the PVB for the mixture powdered in the step 4 (Polyvinyl butyral) powder can be mixed in 5 to 10% by weight, preferably 5 to 8% by weight.
  • PVB polyvinyl butyral
  • the PVB is introduced for the purpose of maintaining the desired shape and securing the adhesiveness between the raw materials when uniaxial pressure molding is introduced when less than 5% by weight does not maintain the shape of the corner portion after uniaxial pressure molding cracking or crushing This, when introduced in excess of 10% by weight is difficult to drop off the molding mold due to excessive adhesive strength and there is a problem in that the sinterability is poor due to excessive volume increase.
  • the step 5 is a step of sintering the granulated mixture after pressing, the electrical properties of the varistor ceramic according to the present invention can be controlled through the sintering temperature.
  • the sintering of the five steps may be carried out at 1300 ⁇ 1400 °C, preferably 1340 ⁇ 1400 °C can be easier to implement a varistor ceramic expressing the desired physical properties of the present invention.
  • the granules were weighed in a predetermined amount into a 8.5 molding die, and then subjected to uniaxial pressure molding by applying a pressure of 1000 kg / cm 3. After the molding was completed, the thickness was measured, and then charged into a sintering furnace, which was sintered at 1350 ° C. for 4 hours to prepare a varistor ceramic.
  • a varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 95: 5.
  • a varistor ceramic was manufactured in the same manner as in Example 1, except that only praseodymia-based zinc oxide was used.
  • a varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 90:10.
  • a varistor ceramic was manufactured in the same manner as in Example 1, except that only praseodymia-based zinc oxide was used and sintered at 1200 ° C.
  • a varistor ceramic was prepared in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 97: 3 and sintered at 1200 ° C.
  • a varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 95: 5, and sintered at 1200 ° C.
  • a varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 90:10 and sintered at 1200 ° C.
  • the breakdown voltage indicated as unmeasured exceeded 2000 V which is the measurement limit voltage of the curve tracer.
  • the breakdown voltage is 100 to 900 V and the atomic percentage ratio of titanium strontium oxide to the praseodymia zinc oxide is 92 to 99: 1 to 8. It was confirmed that the capacitance at 1 mA is 10 to 60 pF, and the dielectric constant is 100 to 500. In addition, at 1 MHz, it was confirmed that the capacitance was 10 to 50 pF, and the dielectric constant was 200 to 500 (unit).
  • Comparative Examples 3 to 6 are varistor ceramics manufactured by sintering at 1200 ° C., but there is a problem that varistor characteristics disappear, but the breakdown voltage is remarkably high, and thus it can be used as an insulator.
  • FIGS. 2 to 5 The microstructures of the varistor ceramics prepared in Examples 1 to 2 and Comparative Examples 1 to 6 were observed by a scanning electron microscope, and the results are shown in FIGS. 2 to 5.
  • Figure 2 is an image of the surface of the varistor ceramic prepared by sintering at 1200 °C
  • Figure 3 is an image of the fracture surface of the varistor ceramic prepared by sintering at 1200 °C.
  • 4 is an image observing the surface of the varistor ceramic produced by sintering at 1350 °C
  • Figure 5 is an image of the fracture surface of the varistor ceramic produced by sintering at 1350 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Provided is varistor ceramic. The varistor ceramic according to one embodiment of the present invention comprises praseodymia-based zinc oxide and strontium titanate (SrTiO3), wherein the atomic percent of strontium titanate ratio with respect to praseodymia-based zinc oxide is 92-99:8-1. Accordingly, the present invention improves ESD tolerance, has superb electrostatic capacity, and can exhibit stability in a heterojunction.

Description

바리스터 세라믹 및 이의 제조방법Varistor ceramic and its manufacturing method
본 발명은 바리스터 세라믹 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 ESD 내성이 향상되고, 정전용량이 우수하며, 이종접합시 안정성을 나타낼 수 있는 바리스터 세라믹 및 이의 제조방법에 대하여 제공한다. The present invention relates to a varistor ceramic and a manufacturing method thereof, and more particularly, to a varistor ceramic and a method for manufacturing the same, which can improve ESD resistance, have excellent capacitance, and exhibit stability in heterojunction.
현대의 정보기술(IT) 산업은 반도체 산업의 발달에 힘입어 나날이 진보하고 있으며, 전기, 전자, 정보통신 장치는 고집적화되는 전자정보통신소자를 이용함으로써 외형적으로는 경박단소화되고 기능적으로는 복합화, 다기능성을 추구하는 방향으로 첨단화되어가고 있다.Modern information technology (IT) industry is progressing day by day with the development of semiconductor industry. Electric, electronic, and information communication devices are made thin and small in appearance and functionally complex by using highly integrated electronic information and communication devices. It is being advanced in the direction of multifunctionality.
반면에 전자정보통신소자의 고집적화는 과도 상황에서 더욱 민감하게 반응할 가능성을 야기하는데, 이는 시스템 전체의 신뢰성 확보에 치명적인 약점으로 작용할 수 있다. 이런 과도 상황을 일으키는 원인으로는 번개나 낙뢰, 핵전자기파, 고에너지 스위칭 또는 정전방전(ESD) 등을 들 수 있으며, 그 중 전자회로 보호를 위해 가장 우선적으로 고려해야 하는 것은 정전방전(ESD)과 유도성 부하(inductive loads)의 두 가지를 꼽을 수 있다. 이러한 이유로 전자정보통신소자의 고집적화와 발맞추어 과도 상황으로부터 전자회로를 보호하기 위한 다양한 방법들이 강구되어 왔는데, 성능 및 경제성 측면에서 최적의 방법은 써지(surge) 보호소자의 사용이라 할 수 있다.On the other hand, high integration of electronic information communication devices causes a possibility to react more sensitively in a transient situation, which can be a fatal weakness in securing the reliability of the entire system. The causes of such transients include lightning, lightning, nuclear electromagnetic waves, high-energy switching, or electrostatic discharge (ESD), among which electrostatic discharge (ESD) and induction are the first considerations for protecting electronic circuits. There are two types of inductive loads. For this reason, in line with the high integration of electronic information communication devices, various methods for protecting electronic circuits from transient situations have been devised. The best method in terms of performance and economics is the use of surge protection devices.
이 중에서도 산화아연 바리스터(ZnO Varistor)는 전자장치를 포함한 피보호기의 전단에서 인입된 이상 전압, 전류 및 에너지, 즉 써지를 접지로 방출시켜 피보호기를 보호하는 써지 보호소자로서, 소자 단독으로 사용되거나 또는 모듈화되어 산업 전반에 광범위하게 사용되고 있다. 다결정성 세라믹스인 산화아연 바리스터는 산화아연 결정립쌍의 입계가 인가전압에 따라 선택적으로 절연성 또는 도전성으로 변환되어 비선형적인 전압-전류 특성(nonlinear electrical behavior)을 나타냄으로써 써지 흡수 능력을 가지는 것을 특징으로 한다.Among these, zinc oxide varistors (ZnO varistors) are surge protection devices that protect the protected devices by releasing abnormal voltages, currents, and energies, ie, surges, drawn from the front end of the protected devices including electronic devices to ground. Or modularized and widely used throughout the industry. Zinc oxide varistors, which are polycrystalline ceramics, are characterized by having a sorption-absorbing ability by showing that the grain boundaries of the zinc oxide grain pairs are selectively converted into insulating or conductive depending on the applied voltage, thereby exhibiting nonlinear electrical behavior. .
즉, 산화아연 바리스터는 전압에 따라 저항이 변화하는 비선형 저항체로서 피보호기에 병렬로 결선되어 평상시에는 고임피던스를 나타내는 절연체로 동작하다가 고에너지 침입시에는 저항이 급격히 감소함으로써 마치 단락된 것과 같이 동작하여 고에너지를 방전시킴으로써 피보호기를 보호하게 된다.In other words, zinc oxide varistors are non-linear resistors whose resistance varies with voltage, and are connected in parallel to the protector, and normally operate as an insulator that exhibits high impedance. The discharge of high energy protects the protected group.
세라믹스의 대부분을 차지하는 산화아연에 비선형성 유발산화물과 특성 개선용 산화물을 미량 첨가하여 제조된 산화아연 바리스터는 비선형성 유발산화물의 종류에 따라 여러 가지로 분류되며, 가장 일반적이고, 대표적인 것으로 비스무스(Bi)계이며, 그 다음으로 프라세오디뮴(Pr)계가 있다. 바리스터의 재료 조성계 중 ZnO-Bi계 재료나 ZnO-Pr계 재료로 형성된 ZnO계 바리스터는, SiC계 바리스터나 SrTiO3계 바리스터에 비해서 전압 비선형성이 뛰어나고 서지(serge) 전류내량이 양호하기 때문에, 서지 전류에서 전자기기를 보호하는 능력이 우수하여 서지 방호(防護)소자의 재료로 많이 사용되고 있다.Zinc oxide varistors prepared by adding a small amount of non-linear inducing oxides and oxides for improving properties to zinc oxide, which occupy most of ceramics, are classified into various types according to the types of non-linear inducing oxides. ), Followed by praseodymium (Pr). ZnO-based varistors formed of ZnO-Bi-based or ZnO-Pr-based materials in the varistor material composition system have better voltage nonlinearity and better surge current resistance than SiC-based varistors and SrTiO3-based varistors. It is used as a material of surge protection device because of its ability to protect electronic devices.
그러나 상기 ZnO-Bi계 바리스터는 Bi2O3, Sb2O3, Mn, Co, Ni, Cr, glass frit, Al, K 등의 성분으로 구성되는데, 상기 Bi2O 성분은 ESD(Electro-Static Discharge) 내성이 약하기 때문에, 이를 포함하는 ZnO-Bi계 바리스터도 ESD 특성이 좋지 못한 단점을 갖는다. 또한, Sb2O3성분은 발암물질로 분류되어 농도가 규제되고 있기 때문에, 이를 포함하는 ZnO-Bi계 바리스터는 제조가 자유롭지 못한 단점을 갖는다. 또한, ZnO-Pr계 바리스터는 전압 비선 형성은 양호하나, ZnO-Bi계 바리스터에 비해서 누설전류가 크다는 결점이 있으며, 귀금속 계열의 원료인 Pr계 성분을 포함하고 있어 고온소결(1200℃ 이상)이 요구되고, 고가의 성분(Pd 등)을 다량 사용하므로 제조 단가가 높다는 단점이 있다.However, the ZnO-Bi varistor is composed of Bi 2 O 3 , Sb 2 O 3 , Mn, Co, Ni, Cr, glass frit, Al, K, etc. The Bi 2 O component is ESD (Electro-Static) Since the discharge resistance is weak, ZnO-Bi-based varistors including the same have disadvantages of poor ESD characteristics. In addition, since the Sb 2 O 3 component is classified as a carcinogen and the concentration is regulated, the ZnO-Bi-based varistor including the same has a disadvantage in that it is not free to manufacture. In addition, ZnO-Pr-based varistors have a good voltage non-linearity, but have a disadvantage in that leakage current is greater than that of ZnO-Bi-based varistors. There is a disadvantage in that the manufacturing cost is high because it requires a large amount of expensive components (Pd and the like).
한편, 최근에 전자기기의 경박 단소화 및 고기능화 추세에 따른 전자부품의 표면실장화(SMD, Surface-Mount Device)화 및 소형화에 의하여 고밀도 실장이 급속히 진행되고 있다. SMD화된 전자제품에서 회로의 신호 속도는 수백 MHz 내지 수 GHz 이므로 이와 같은 빠른 신호속도에서는 신호지연을 방지하기 위해서 바리스터의 정전용량을 상당히 낮출 필요성도 있다.On the other hand, in recent years, high-density mounting is rapidly progressing due to the miniaturization and miniaturization of surface-mount devices (SMDs) and miniaturization of electronic components according to the trend of lighter and shorter and higher functionalization of electronic devices. Since the signal rates of circuits in SMD electronics range from several hundred MHz to several GHz, it is necessary to significantly lower the capacitance of the varistor to prevent signal delays at such high signal rates.
ZnO형 바리스터의 경우 수백에 이르는 높은 비유전율을 갖기 때문에, 작은 정전용량을 갖기 위해서는 전극면적을 상당히 감소시켜야 한다. 그러나, 작은 정전용량을 갖도록 전극면적을 감소시키면 서지저항이 감소되는 결과를 초래하며, 바리스터 제조 공정도 상당히 까다로워지는 문제가 초래된다. 따라서, 저유전율을 갖는 ZnO형 바리스터의 필요성이 대두되고 있다.Since ZnO-type varistors have high dielectric constants of up to several hundreds, in order to have a small capacitance, the electrode area must be considerably reduced. However, reducing the electrode area to have a small capacitance results in a reduction in surge resistance, which also leads to a problem that the varistor manufacturing process is quite difficult. Therefore, there is a need for a ZnO type varistor having a low dielectric constant.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로, ESD 내성이 향상되고, 정전용량이 우수하며, 이종접합시 안정성을 나타낼 수 있는 바리스터 세라믹 및 이의 제조방법을 제공하는데 있다. SUMMARY OF THE INVENTION The present invention has been made in view of the above, and provides an varistor ceramic and a method for manufacturing the same, which exhibit improved ESD resistance, excellent capacitance, and stability in heterojunction.
상술한 과제를 해결하기 위하여 본 발명은, 프라세오디미아계 산화아연 및 티탄스트론튬 산화물(SrTiO3)을 포함하고, 프라세오디미아계 산화아연 및 티탄스트론튬 산화물의 원자백분율 비가 92 ~ 99: 8 ~ 1인 것을 특징으로 하는 바리스터 세라믹을 제공한다.In order to solve the above problems, the present invention comprises praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ), the atomic percentage ratio of praseodymia-based zinc oxide and titanium strontium oxide is 92 ~ 99: 8 It provides a varistor ceramic, characterized in that ~ 1.
본 발명의 일실시예에 있어서, 상기 프라세오디미아계 산화아연은 ZnO, Pr6O11, Co3O4 및 Nd2O3를 포함하고, 상기 프라세오디미아계 산화아연의 총 중량을 기준으로 ZnO 90 ~ 95 중량%, Pr6O11 0.5 ~ 1 중량%, Co3O4 2 ~ 5 중량% 및 Nd2O3 0.5 ~ 1 중량%를 포함할 수 있다.In one embodiment of the present invention, the praseodymia-based zinc oxide comprises ZnO, Pr 6 O 11 , Co 3 O 4 and Nd 2 O 3 , the total weight of the praseodymia-based zinc oxide ZnO 90 ~ 95 wt%, Pr 6 O 11 0.5 to 1% by weight, Co 3 O 4 2 to 5% by weight and Nd 2 O 3 0.5 to 1% by weight.
또한, 상기 바리스터 세라믹은 1300 ~ 1400℃에서 소결된 것일 수 있다. In addition, the varistor ceramic may be sintered at 1300 ~ 1400 ℃.
또한, 상기 바리스터 세라믹은 커브 트레이서(curve tracer)로 측정시, 1 mA에서 항복 전압이 100 ~ 900 V일 수 있다. In addition, the varistor ceramic may have a breakdown voltage of 100 to 900 V at 1 mA when measured by a curve tracer.
또한, 상기 바리스터 세라믹은 1㎑에서의 정전용량은 10 ~ 60 pF이고, 유전율은 100 ~ 500일 수 있다. In addition, the varistor ceramic may have a capacitance of 1 to 10 pF and a dielectric constant of 100 to 500 at 1 kW.
또한, 상기 바리스터 세라믹은 1㎒에서의 정전용량이 10 ~ 50 pF이고, 유전율이 200 ~ 500일 수 있다. In addition, the varistor ceramic may have a capacitance of 1 to 50 pF and a dielectric constant of 200 to 500 at 1 MHz.
또한, 본 발명은 본 발명에 따른 바리스터 세라믹을 포함하는 박막을 제공한다.The present invention also provides a thin film comprising the varistor ceramic according to the present invention.
본 발명의 일실시예에 있어서, 상기 박막은 캐패시터층과 이종접합할 수 있다.In one embodiment of the present invention, the thin film may be heterojunction with the capacitor layer.
또한, 본 발명은 프라세오디미아계 산화아연 및 티탄스트론튬 산화물(SrTiO3)을 92 ~ 99: 8 ~ 1의 원자비율로 혼합하여 혼합물을 제조하는 1단계; 상기 혼합물을 분쇄 및 여과하고 이를 건조하는 2단계; 상기 건조된 혼합물을 분쇄 및 여과하여 분말화하는 3단계; 상기 분말화된 혼합물에 PVB(polyvinyl butyral) 분말을 첨가한 후 과립화 하는 4단계; 및 상기 과립화된 혼합물을 가압성형한 후 소결하는 5단계;를 포함하는 바리스터 세라믹 제조방법을 제공한다.In addition, the present invention is a step of preparing a mixture by mixing the praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ) in an atomic ratio of 92 ~ 99: 8 ~ 1; Grinding and filtering the mixture and drying the mixture; Pulverizing and filtering the dried mixture to three steps; Adding granulated polyvinyl butyral (PVB) powder to the powdered mixture, followed by granulation; And a step 5 of sintering the granulated mixture under pressure molding.
본 발명의 일실시예에 있어서, 상기 2단계에서 건조는 70℃ ~ 90℃에서 1 ~ 3 시간 동안 수행할 수 있다. In one embodiment of the present invention, the drying in the second step may be performed for 1 to 3 hours at 70 ℃ ~ 90 ℃.
또한, 상기 3단계에서 분말화된 혼합물에 대하여 PVB(polyvinyl butyral) 분말을 5 ~ 10 중량%로 혼합할 수 있다. In addition, the polyvinyl butyral (PVB) powder may be mixed in an amount of 5 wt% to 10 wt% with respect to the mixture powdered in step 3.
또한, 상기 5단계의 소결은 1300 ~ 1400℃에서 수행할 수 있다. In addition, the five steps of sintering may be performed at 1300 ~ 1400 ℃.
본 발명에 따른 바리스터 세라믹은 ESD 내성이 매우 뛰어나며, 정전용량이 우수하고, 이종접합시 안정성을 나타낼 수 있다. 또한, 전자기기의 경박단소형화 추세에 따라서 소형화된 칩으로 구현되어도 유입되는 고전압의 서지전압에 대하여 내성을 가질 수 있음에 따라서 각종 전자기기 등에 널리 응용될 수 있다.The varistor ceramic according to the present invention is very excellent in ESD resistance, excellent in capacitance, and may exhibit stability in heterojunction. In addition, according to the trend of light and short size miniaturization of electronic devices can be widely applied to a variety of electronic devices, such as to have a resistance to the surge voltage of the high voltage introduced into the chip.
도 1은 본 발명에 따른 바리스터 세라믹의 몰드를 나타낸 이미지이다.1 is an image showing a mold of the varistor ceramic according to the present invention.
도 2는 1200℃에서 소결하여 제조한 바리스터 세라믹의 표면을 관찰한 이미지이다. 2 is an image observing the surface of the varistor ceramic prepared by sintering at 1200 ℃.
도 3은 1200℃에서 소결하여 제조한 바리스터 세라믹의 파단면을 관찰한 이미지이다. Figure 3 is an image of the fracture surface of the varistor ceramic prepared by sintering at 1200 ℃.
도 4는 1350℃에서 소결하여 제조한 바리스터 세라믹의 표면을 관찰한 이미지이다. 4 is an image observing the surface of the varistor ceramic prepared by sintering at 1350 ℃.
도 5는 1350℃에서 소결하여 제조한 바리스터 세라믹의 파단면을 관찰한 이미지이다.5 is an image of the fracture surface of the varistor ceramic produced by sintering at 1350 ℃.
도 6은 비교예3 ~6의 항복전압을 나타낸 그래프이다.6 is a graph showing breakdown voltages of Comparative Examples 3 to 6. FIG.
도 7은 실시예 1~2 및 비교예 1~2의 항복전압을 나타낸 그래프이다.7 is a graph showing breakdown voltages of Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
도 8은 실시예 1~2 및 비교예 1~2의 유전율을 나타낸 그래프이다.8 is a graph showing the dielectric constant of Examples 1-2 and Comparative Examples 1-2.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
본 발명은 프라세오디미아계 산화아연 및 티탄스트론튬 산화물(SrTiO3)을 포함하고, 프라세오디미아계 산화아연 및 티탄스트론튬 산화물의 원자백분율 비가 92 ~ 99: 8 ~ 1 인 것을 특징으로 하는 바리스터 세라믹을 제공한다. 이하, 본 발명을 보다 상세하게 설명한다.The present invention includes praseodymium-based zinc oxide and titanium strontium oxide (SrTiO 3 ), and the atomic percentage ratio of praseodymium-based zinc oxide and titanium strontium oxide is 92 to 99: 8 to 1, varistor characterized in that Provide ceramic. Hereinafter, the present invention will be described in more detail.
본 발명에 따른 바리스터 세라믹은 상기와 같은 비율로 혼합됨으로써 정전기(ESD, electrostatic discharge) 내성이 향상되고, 정전용량이 우수하며, 이종접합시 안정성을 나타낼 수 있는 효과가 있다. The varistor ceramic according to the present invention has an effect of improving the electrostatic discharge (ESD) resistance, excellent capacitance, and stability in heterojunction by mixing in the above ratio.
이때, 상기 프라세오디미아계 산화아연 및 티탄스트론튬 산화물의 원자백분율 비가 92 ~ 99: 8 ~ 1인 것이 바람직하고, 더욱 바람직하게는 96 ~ 98 : 4 ~ 2인 것이 좋다. 상기 프라세오디미아계 산화아연 및 티탄스트론튬 산화물의 원자백분율 비가 99 : 1 을 초과하는 경우 제조되는 바리스터 세라믹의 유전율은 높으나 정전용량은 저하되어 바리스터로서의 기능은 상실하는 문제점이 있고, 92 : 8 미만인 경우 높은 항복전압(break down voltage)으로 인한 문제점이 있다. At this time, the atomic percentage ratio of the praseodymia-based zinc oxide and titanium strontium oxide is preferably 92 to 99: 8 to 1, more preferably 96 to 98: 4 to 2. When the atomic percentage ratio of the praseodymia-based zinc oxide and titanium strontium oxide exceeds 99: 1, the dielectric constant of the manufactured varistor ceramic is high, but the capacitance is lowered, so that the function as a varistor is lost. In this case, there is a problem due to high break down voltage.
이때, 상기 프라세오디미아계 산화아연은 일반적으로 구입 또는 제조할 수 있는 것이라면 사용가능하며 특별히 한정되지 않으나 바람직하게는 ZnO, Pr6O11, Co3O4 및 Nd2O3를 포함하고, 상기 프라세오디미아계 산화아연의 총 중량을 기준으로 ZnO 90 ~ 95 중량%, Pr6O11 0.5 ~ 1 중량%, Co3O4 2 ~ 5 중량% 및 Nd2O3 0.5 ~ 1 중량%를 포함할 수 있다. 만일 위와 같은 함량비율을 만족하지 않는 경우 본 발명이 목적하는 물성의 달성이 용이하지 않을 수 있다.In this case, the praseodymia-based zinc oxide can be used as long as it can be generally purchased or manufactured, and is not particularly limited, but preferably includes ZnO, Pr 6 O 11 , Co 3 O 4 and Nd 2 O 3 , ZnO 90 ~ 95% by weight, Pr 6 O 11 based on the total weight of the praseodymia zinc oxide 0.5 to 1% by weight, Co 3 O 4 2 to 5% by weight and Nd 2 O 3 0.5 to 1% by weight. If the content ratio is not satisfied as described above, it may not be easy to achieve the desired physical properties of the present invention.
본 발명에 따른 바리스터 세라믹에 있어서, 상기 바리스터 세라믹은 1300 ~ 1400℃에서 소결된 것일 수 있다. 상기 바리스터 세라믹이 1300℃ 미만의 온도에서 소결되는 경우 바리스터 특성을 상실할 수 있는 문제점이 있고, 1400℃를 초과하는 온도에서 소결되는 경우 바리스터의 기능이 저하되고 누설전류가 증가할 수 있는 문제점이 있다. In the varistor ceramic according to the present invention, the varistor ceramic may be sintered at 1300 ~ 1400 ℃. When the varistor ceramic is sintered at a temperature of less than 1300 ℃ there is a problem that can lose the varistor characteristics, if the sintered at a temperature exceeding 1400 ℃ there is a problem that the function of the varistor is deteriorated and leakage current may increase .
본 발명에 따른 바리스터 세라믹에 있어서, 상기 바리스터 세라믹은 커브 트레이서(curve tracer)로 측정시, 1 mA에서 항복 전압이 100 ~ 900 V일 수 있고, 바람직하게는 1 mA에서 항복 전압이 500 ~ 900 V를 나타낼 수 있다. In the varistor ceramic according to the present invention, the varistor ceramic may have a breakdown voltage of 100 to 900 V at 1 mA, and a breakdown voltage of 500 to 900 V at 1 mA, as measured by a curve tracer. Can be represented.
또한, 상기 바리스터 세라믹은 1㎑에서의 정전용량은 10 ~ 60 pF이고, 유전율은 100 ~ 500 일 수 있고, 1㎒에서의 정전용량은 10 ~ 50 pF이고, 유전율은 200 ~ 500 일 수 있다. In addition, the varistor ceramic may have a capacitance of 1 to 10 pF, a dielectric constant of 100 to 500, a capacitance of 1 to 50 pF, and a dielectric constant of 200 to 500 at 1 MHz.
본 발명에 따른 바리스터 세라믹은 상기와 같은 물성을 나타낼 수 있어 다양한 범위의 전압 및 정전용량을 나타내도록 제조할 수 있다. 또한, 비교적 간단한 첨가방식을 적용하여 동일 조성을 기초로 다양한 전기적 특성을 인위적으로 제어할 수 있는 효과를 나타낼 수 있다. Varistor ceramics according to the present invention can exhibit the physical properties as described above can be manufactured to exhibit a wide range of voltage and capacitance. In addition, by applying a relatively simple addition method can exhibit the effect of artificially controlling a variety of electrical properties based on the same composition.
또한, 본 발명은 상기의 바리스터 세라믹을 포함하는 박막을 제공한다. 상기 박막은 캐패시터층과 이종접합하여 원하는 특성에 맞게 적절한 위치에 배치함으로써 원하는 특성을 구현할 수 있도록 유전율 및 전압을 조절할 수 있다. The present invention also provides a thin film comprising the varistor ceramic described above. The thin film may be heterojunction with the capacitor layer to be disposed at an appropriate position according to the desired characteristics, thereby controlling the dielectric constant and voltage to implement the desired characteristics.
또한, 본 발명은 프라세오디미아계 산화아연 및 티탄스트론튬 산화물(SrTiO3)을 92 ~ 99: 1 ~ 8의 원자비율로 혼합하여 혼합물을 제조하는 1단계; 상기 혼합물을 분쇄 및 여과하고 이를 건조하는 2단계; 상기 건조된 혼합물을 분쇄 및 여과하여 분말화하는 3단계; 상기 분말화된 혼합물에 PVB(polyvinyl butyral) 분말을 첨가한 후 과립화하는 4단계; 및 상기 과립화된 혼합물을 가압성형한 후 소결하는 5단계;를 포함하는 바리스터 세라믹의 제조방법을 제공한다. 이하, 본 발명을 단계별로 보다 상세하게 설명한다.In addition, the present invention is a step 1 of preparing a mixture by mixing the praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ) in an atomic ratio of 92 to 99: 1 to 8; Grinding and filtering the mixture and drying the mixture; Pulverizing and filtering the dried mixture to three steps; Adding granulated polyvinyl butyral (PVB) powder to the powdered mixture, followed by granulation; And a step 5 of sintering the granulated mixture under pressure molding. Hereinafter, the present invention will be described in more detail step by step.
본 발명에 따른 바리스터 세라믹의 제조방법에 있어서, 상기 1단계는 프라세오디미아계 산화아연 및 티탄스트론튬 산화물(SrTiO3)을 92 ~ 99: 8 ~ 1의 원자비율로 혼합하여 혼합물을 제조하는 단계로서, 상기 혼합물에 있어서, 프라세오디미아계 산화아연 및 티탄스트론튬 산화물의 원자백분율 비가 92 ~ 99: 8 ~ 1 인 것이 바람직하고, 더욱 바람직하게는 96 ~ 98 : 4 ~ 2인 것이 좋다. 상기 프라세오디미아계 산화아연에 대한 티탄스트론튬 산화물의 원자백분율 비가 99 : 1 를 초과하는 경우 제조되는 바리스터 세라믹의 유전율은 높으나 정전용량은 저하되어 바리스터로서의 기능은 상실하는 문제점이 있고, 92 : 8 미만인 경우 높은 항복전압(break down voltage)으로 인한 문제점이 있다. In the method of manufacturing a varistor ceramic according to the present invention, the first step is to prepare a mixture by mixing the praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ) in an atomic ratio of 92 ~ 99: 8 ~ 1 In the above mixture, the atomic percentage ratio of praseodymia zinc oxide and titanium strontium oxide is preferably 92 to 99: 8 to 1, more preferably 96 to 98: 4 to 2. When the atomic percentage ratio of titanium strontium oxide to praseodymia-based zinc oxide exceeds 99: 1, the dielectric constant of the produced varistor ceramic is high, but the capacitance decreases, so that the function as a varistor is lost. If less, there is a problem due to high break down voltage.
또한, 상기 프라세오디미아계 산화아연은 일반적으로 구입 또는 제조할 수 있는 것이라면 사용가능하며 특별히 한정되지 않으나 바람직하게는 ZnO, Pr6O11, Co3O4 및 Nd2O3를 포함하고, 상기 프라세오디미아계 산화아연의 총 중량을 기준으로 ZnO 90 ~ 95 중량%, Pr6O11 0.5 ~ 1 중량%, Co3O4 2 ~ 5 중량% 및 Nd2O3 0.5 ~ 1 중량%를 포함할 수 있고, 이를 통한 본 발명이 목적하는 물성을 보다 용이하게 발현할 수 있다.In addition, the praseodymia-based zinc oxide can be used as long as it can be generally purchased or manufactured and is not particularly limited, but preferably includes ZnO, Pr 6 O 11 , Co 3 O 4 and Nd 2 O 3 , ZnO 90 ~ 95% by weight, Pr 6 O 11 based on the total weight of the praseodymia zinc oxide 0.5 to 1% by weight, Co 3 O 4 2 to 5% by weight and Nd 2 O 3 It may include 0.5 to 1% by weight, through which the present invention can more easily express the desired physical properties.
본 발명에 따른 바리스터 세라믹의 제조방법에 있어서, 상기 2단계는 상기 혼합물을 분쇄 및 여과하고 이를 건조하는 단계로서, 상기 혼합물을 분말화하기 위하여 혼합물을 밀링을 통해 분쇄할 수 있다. 이때, 상기 2단계에서 건조는 70℃ ~ 90℃에서 1 ~ 3 시간 동안 수행하는 것이 바람직하고, 더욱 바람직하게는 80℃ ~ 90℃에서 2 ~ 3 시간 동안 수행하는 것이 좋다.In the method of manufacturing a varistor ceramic according to the present invention, the second step is a step of pulverizing, filtering and drying the mixture, which may be pulverized by milling the mixture in order to powder the mixture. At this time, the drying in the second step is preferably carried out for 1 to 3 hours at 70 ℃ ~ 90 ℃, more preferably it is carried out for 2 to 3 hours at 80 ℃ ~ 90 ℃.
본 발명에 따른 바리스터 세라믹의 제조방법에 있어서, 상기 3단계는 상기 건조된 혼합물을 분쇄 및 여과하여 분말화하는 단계로, 상기 분쇄는 막자사발을 통해 수행할 수 있고 여과는 표준망체를 통해 수행할 수 있다. In the method of manufacturing a varistor ceramic according to the present invention, the three step is to pulverize the powder mixture by pulverization and filtration, the pulverization may be carried out through a mortar and filtration through a standard mesh Can be.
본 발명에 따른 바리스터 세라믹의 제조방법에 있어서, 상기 4단계는 상기 분말화된 혼합물에 PVB(polyvinyl butyral) 분말을 첨가한 후 과립화하는 단계로서, 이때 상기 4단계에서 분말화된 혼합물에 대하여 PVB(polyvinyl butyral) 분말을 5 ~ 10 중량%로 혼합할 수 있고, 바람직하게는 5 ~ 8 중량%인 것이 좋다. 상기 PVB는 일축가압 성형시 원하는 형태 유지 및 각 원료간의 접착성을 확보하기 위한 목적으로 도입되는 것으로 5 중량% 미만으로 도입되는 경우 일축가압 성형 후에 모서리 부분의 형상이 유지되지 않고 깨지거나 뭉그러지는 문제점이 있고, 10 중량%를 초과하여 도입되는 경우 지나친 접착력으로 인해 성형몰드와 탈락이 어렵고 과도한 부피증가로 인해 소결성이 떨어지는 문제점이 있다.In the method of manufacturing a varistor ceramic according to the present invention, the step 4 is a step of granulating after adding a polyvinyl butyral (PVB) powder to the powdered mixture, wherein the PVB for the mixture powdered in the step 4 (Polyvinyl butyral) powder can be mixed in 5 to 10% by weight, preferably 5 to 8% by weight. The PVB is introduced for the purpose of maintaining the desired shape and securing the adhesiveness between the raw materials when uniaxial pressure molding is introduced when less than 5% by weight does not maintain the shape of the corner portion after uniaxial pressure molding cracking or crushing This, when introduced in excess of 10% by weight is difficult to drop off the molding mold due to excessive adhesive strength and there is a problem in that the sinterability is poor due to excessive volume increase.
본 발명에 따른 바리스터 세라믹의 제조방법에 있어서, 상기 5단계는 상기 과립화된 혼합물을 가압성형한 후 소결하는 단계로서, 상기 소결 온도를 통해 본 발명에 따른 바리스터 세라믹의 전기적 특성이 조절될 수 있다. 상기 5단계의 소결은 1300 ~ 1400℃에서 수행할 수 있고, 바람직하게는 1340 ~ 1400℃에서 수행됨으로써 본 발명이 목적하는 물성을 발현하는 바리스터 세라믹을 구현하기에 보다 용이할 수 있다.In the method for manufacturing a varistor ceramic according to the present invention, the step 5 is a step of sintering the granulated mixture after pressing, the electrical properties of the varistor ceramic according to the present invention can be controlled through the sintering temperature. . The sintering of the five steps may be carried out at 1300 ~ 1400 ℃, preferably 1340 ~ 1400 ℃ can be easier to implement a varistor ceramic expressing the desired physical properties of the present invention.
이하, 본 발명을 하기 실시예들을 통해 보다 상세하게 설명한다. 하기 실시예들은 본 발명을 예시하기 위하여 제시된 것일 뿐 본 발명의 권리범위가 하기 실시예들에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. The following examples are presented to illustrate the present invention, but the scope of the present invention is not limited by the following examples.
[[ 실시예Example ]]
실시예Example 1.  One. 바리스터Varistor 세라믹의 제조 Manufacture of ceramic
(1) ZnO(90~95중량%), Pr6O11 (0.5~1중량%), Co3O4 (2~5중량%), Nd2O3 (0.5~1중량%)를 혼합한 후 800℃에서 2시간 동안 하소하여 준비한 프라세오디미아계 산화아연 및 페로브스카이트 산화물인 티탄스트론튬 산화물(SrTiO3)을 250 ml 용량의 플라스틱 병에 97:3의 원자비율로 혼합하였다. (1) ZnO (90 to 95% by weight), Pr 6 O 11 (0.5 to 1% by weight), Co 3 O 4 (2 to 5% by weight), Nd 2 O 3 (0.5 to 1% by weight) mixed Then, prepared by calcining at 800 ° C. for 2 hours, Praseodymia-based zinc oxide and perovskite oxide titanium strontium oxide (SrTiO 3 ) were mixed in a 250 ml plastic bottle at an atomic ratio of 97: 3.
(2) 상기 혼합물에 ZrO2 볼을 도입한 후 밀링기(milling M/C)에 24시간, 250 rpm의 속도로 볼밀 분쇄를 수행하였다. 상기 볼밀 분쇄를 통해 혼합물을 제조하고, 이를 회수하여 200 mesh의 체로 여과하여 걸러진 슬러리에 대하여 전기오븐으로 80℃에서 2시간 동안 건조하였다. (2) After introducing ZrO 2 balls into the mixture, milling was performed for 24 hours at a speed of 250 rpm in a milling machine (milling M / C). The mixture was prepared through the ball mill pulverization, and the mixture was recovered, filtered through a 200 mesh sieve, and dried for 2 hours at 80 ° C. using an electric oven for the filtered slurry.
(3) 건조된 분말을 막자 사발을 이용하여 분쇄한 후 표준망체(ASTM mesh No.500 = 25㎛)를 사용하여 걸러내었다. (3) The dried powder was ground using a mortar and pestle, and then filtered using a standard mesh (ASTM mesh No. 500 = 25 μm).
(4) 상기 혼합물에 대하여 6 중량%의 PVB를 혼합하였고, 이를 플라스틱 주걱 및 표준망체(ASTM mesh No.325 = 45㎛)를 사용하여 과립화하였다. (4) 6% by weight of PVB was mixed with the mixture, which was granulated using a plastic spatula and a standard mesh (ASTM mesh No. 325 = 45 μm).
(5) 상기 과립물을 직경 8.5 성형 몰드에 일정량 계량하여 투입한 후, 1000 kg/cm3의 압력을 가하여 일축가압 성형을 실시하였다. 성형이 완료되면 두께를 측정한 후 소결로에 장입하고, 이를 1350 ℃에서 4시간 동안 소결하여 바리스터 세라믹을 제조하였다. (5) The granules were weighed in a predetermined amount into a 8.5 molding die, and then subjected to uniaxial pressure molding by applying a pressure of 1000 kg / cm 3. After the molding was completed, the thickness was measured, and then charged into a sintering furnace, which was sintered at 1350 ° C. for 4 hours to prepare a varistor ceramic.
실시예 2. 바리스터 세라믹의 제조Example 2 Preparation of Varistor Ceramics
프라세오디미아계 산화아연 및 티탄스트론튬 산화물을 95:5의 원자비율로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바리스터 세라믹을 제조하였다.A varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 95: 5.
비교예 1. 바리스터 세라믹의 제조Comparative Example 1. Fabrication of Varistor Ceramic
프라세오디미아계 산화아연만을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바리스터 세라믹을 제조하였다.A varistor ceramic was manufactured in the same manner as in Example 1, except that only praseodymia-based zinc oxide was used.
비교예 2. 바리스터 세라믹의 제조Comparative Example 2. Fabrication of Varistor Ceramic
프라세오디미아계 산화아연 및 티탄스트론튬 산화물을 90:10의 원자비율로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바리스터 세라믹을 제조하였다.A varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 90:10.
비교예 3. 바리스터 세라믹의 제조Comparative Example 3. Fabrication of Varistor Ceramic
프라세오디미아계 산화아연만을 사용하고, 1200℃에서 소결한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바리스터 세라믹을 제조하였다.A varistor ceramic was manufactured in the same manner as in Example 1, except that only praseodymia-based zinc oxide was used and sintered at 1200 ° C.
비교예 4. 바리스터 세라믹의 제조Comparative Example 4. Fabrication of Varistor Ceramic
프라세오디미아계 산화아연 및 티탄스트론튬 산화물을 97:3의 원자비율로 혼합하고, 1200℃에서 소결한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바리스터 세라믹을 제조하였다.A varistor ceramic was prepared in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 97: 3 and sintered at 1200 ° C.
비교예 5. 바리스터 세라믹의 제조Comparative Example 5. Fabrication of Varistor Ceramic
프라세오디미아계 산화아연 및 티탄스트론튬 산화물을 95:5의 원자비율로 혼합하고, 1200℃에서 소결한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바리스터 세라믹을 제조하였다.A varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 95: 5, and sintered at 1200 ° C.
비교예 6. 바리스터 세라믹의 제조Comparative Example 6. Preparation of Varistor Ceramic
프라세오디미아계 산화아연 및 티탄스트론튬 산화물을 90:10의 원자비율로 혼합하고, 1200℃에서 소결한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 바리스터 세라믹을 제조하였다.A varistor ceramic was manufactured in the same manner as in Example 1, except that the praseodymia-based zinc oxide and titanium strontium oxide were mixed at an atomic ratio of 90:10 and sintered at 1200 ° C.
[실험예]Experimental Example
실험예 1. 바리스터 세라믹의 전기적 특성 분석Experimental Example 1. Analysis of electrical characteristics of varistor ceramic
상기 실시예 1 ~ 2 및 비교예 1 ~ 6에서 제조한 바리스터 세라믹의 두께 및 직경을 측정한 후, 이를 통해 밀도를 측정하였다. 또한, 상기 바리스터 세라믹의 앞 뒷면에 각각 전극인쇄를 실시한 후 전극 소부를 실시하였고, 전극 소부가 완료되면 이를 회수하여 커브 트레이서(programmable curve tracer, Tektronix 370B)를 이용하여 항복 전압, 누설 전류 및 유전 특성을 측정하였다. 그 결과를 하기 표 1에 나타내었다. 또한, 하기 실시예 1~2 및 비교예 1~6의 항복전압을 도 6 및 도 7에 나타내었고, 유전율을 하기 도 8에 나타내었다.After measuring the thickness and diameter of the varistor ceramic prepared in Examples 1 to 2 and Comparative Examples 1 to 6, the density was measured. In addition, after the electrode printing was performed on the front and back of the varistor ceramic, the electrode baking was performed, and when the electrode baking was completed, it was recovered and the breakdown voltage, the leakage current, and the dielectric characteristics were obtained using a programmable curve tracer (Tektronix 370B). Was measured. The results are shown in Table 1 below. In addition, the breakdown voltages of Examples 1 to 2 and Comparative Examples 1 to 6 are shown in FIGS. 6 and 7, and dielectric constants are shown in FIG. 8.
이때, 측정불가로 나타낸 항복전압은 커브트레이서의 측정한계전압인 2000 V를 초과한 것을 나타낸다.At this time, the breakdown voltage indicated as unmeasured exceeded 2000 V which is the measurement limit voltage of the curve tracer.
Pr-Zn:SrTiO3Pr-Zn: SrTiO3 밀도(g/cm3)Density (g / cm3) VnVn V/mmV / mm ILIL Cp(pF@1㎑)Cp (pF @ 1㎑) 유전율(1㎑)Permittivity (1㎑) Cp(pF@1㎒)Cp (pF @ 1MHz) 유전율(1㎒)Dielectric constant (1MHz)
실시예 1Example 1 97 : 397: 3 5.345.34 555.8555.8 512.81512.81 7.777.77 39.5639.56 327.64327.64 29.6629.66 245.65245.65
실시예 2Example 2 97 : 597: 5 5.475.47 808.4808.4 782.77782.77 0.520.52 53.6853.68 408.08408.08 40.7840.78 309.66309.66
비교예 1Comparative Example 1 100 : 0100: 0 5.275.27 5959 5252 38.0438.04 1195.91195.9 9269.759269.75 476476 3713.383713.38
비교예 2Comparative Example 2 90 : 1090: 10 5.345.34 측정불가Not measurable -- -- 8.728.72 69.469.4 7.867.86 62.5662.56
비교예 3Comparative Example 3 100 : 0100: 0 5.245.24 10931093 10661066 0.120.12 23.5423.54 164.09164.09 13.3413.34 9393
비교예 4Comparative Example 4 97 : 397: 3 5.45.4 측정불가Not measurable -- -- 3.573.57 23.8823.88 2.482.48 16.616.6
비교예 5Comparative Example 5 95 : 595: 5 5.395.39 측정불가Not measurable -- -- 3.593.59 26.3126.31 2.562.56 18.7318.73
비교예 6Comparative Example 6 90 : 1090: 10 5.235.23 측정불가Not measurable -- -- 5.145.14 36.1436.14 4.084.08 28.6928.69
상기 표 1에 따르면, 상기 프라세오디미아계 산화아연에 대한 티탄스트론튬 산화물의 원자백분율 비가 92 ~ 99: 1 ~ 8 가 되도록 포함되는 실시예 1 ~ 2의 경우, 항복 전압이 100 ~ 900 V이고 1㎑에서의 정전용량은 10 ~ 60 pF이고, 유전율은 100 ~ 500 인 것을 확인할 수 있었다. 또한, 1 ㎒에서는 정전용량이 10 ~ 50 pF이고, 유전율이 200 ~ 500 (단위)인 것을 확인할 수 있었다. 그러나 상기 범위를 벗어나는 비교예 1 ~ 2의 경우 1㎑ 및 1㎒에서 유전율이 현저히 감소하거나 현저히 증가하며, 항복 전압이 100V 이하의 현저히 낮은 수치를 나타내거나 2000 V를 넘어 측정이 불가능하여 바리스터의 기능을 상실하는 문제점을 나타내었다. According to Table 1, in Examples 1 to 2, the breakdown voltage is 100 to 900 V and the atomic percentage ratio of titanium strontium oxide to the praseodymia zinc oxide is 92 to 99: 1 to 8. It was confirmed that the capacitance at 1 mA is 10 to 60 pF, and the dielectric constant is 100 to 500. In addition, at 1 MHz, it was confirmed that the capacitance was 10 to 50 pF, and the dielectric constant was 200 to 500 (unit). However, in the case of Comparative Examples 1 to 2 outside the above range, the dielectric constant decreased or increased significantly at 1 ㎑ and 1 MHz, and the breakdown voltage showed a significantly lower value of 100 V or less, or was impossible to measure beyond 2000 V, so that the function of the varistor It showed a problem of losing.
또한, 비교예 3 ~ 6은 1200℃에서 소결하여 제조한 바리스터 세라믹으로서, 바리스터 특성이 사라지는 문제가 있으나 항복 전압이 현저히 높아 절연체로서 사용가능하다. In addition, Comparative Examples 3 to 6 are varistor ceramics manufactured by sintering at 1200 ° C., but there is a problem that varistor characteristics disappear, but the breakdown voltage is remarkably high, and thus it can be used as an insulator.
실험예 2. 바리스터 세라믹의 미세구조 관찰Experimental Example 2 Observation of Microstructure of Varistor Ceramic
상기 실시예 1 ~ 2 및 비교예 1 ~ 6에서 제조한 바리스터 세라믹의 미세구조를 주사전자현미경으로 관찰하였고, 그 결과를 하기 도 2 ~ 5에 나타내었다. 이때, 하기 도 2는 1200℃에서 소결하여 제조한 바리스터 세라믹의 표면을 관찰한 이미지이고, 도 3은 1200℃에서 소결하여 제조한 바리스터 세라믹의 파단면을 관찰한 이미지이다. 도 4는 1350℃에서 소결하여 제조한 바리스터 세라믹의 표면을 관찰한 이미지이고, 도 5는 1350℃에서 소결하여 제조한 바리스터 세라믹의 파단면을 관찰한 이미지이다.The microstructures of the varistor ceramics prepared in Examples 1 to 2 and Comparative Examples 1 to 6 were observed by a scanning electron microscope, and the results are shown in FIGS. 2 to 5. At this time, Figure 2 is an image of the surface of the varistor ceramic prepared by sintering at 1200 ℃, Figure 3 is an image of the fracture surface of the varistor ceramic prepared by sintering at 1200 ℃. 4 is an image observing the surface of the varistor ceramic produced by sintering at 1350 ℃, Figure 5 is an image of the fracture surface of the varistor ceramic produced by sintering at 1350 ℃.
하기 도 2 ~ 5에 따르면, 티탄스트론튬 산화물의 함량이 증가할수록 미세입자의 크기가 감소하는 것을 확인할 수 있었고, 이를 통해 바리스터 세라믹에 포함되는 티탄스트론튬 산화물의 함량에 따라 미세구조가 영향을 받는 것을 알 수 있었다. 2 to 5, it was confirmed that the size of the microparticles decreases as the content of titanium strontium oxide increases, and through this, the microstructure is affected by the content of the titanium strontium oxide contained in the varistor ceramic. Could.

Claims (12)

  1. 프라세오디미아계 산화아연 및 티탄스트론튬 산화물(SrTiO3)을 포함하고, Praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ),
    프라세오디미아계 산화아연 및 티탄스트론튬 산화물의 원자백분율 비가 92 ~ 99: 8 ~ 1 인 바리스터 세라믹.A varistor ceramic having an atomic percentage ratio of praseodymia zinc oxide and titanium strontium oxide of 92 to 99: 8 to 1.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 프라세오디미아계 산화아연은 ZnO, Pr6O11, Co3O4 및 Nd2O3를 포함하고,The praseodymia zinc oxide comprises ZnO, Pr 6 O 11 , Co 3 O 4 and Nd 2 O 3 ,
    상기 프라세오디미아계 산화아연의 총 중량을 기준으로 ZnO 90 ~ 95 중량%, Pr6O11 0.5 ~ 1 중량%, Co3O4 2 ~ 5 중량% 및 Nd2O3 0.5 ~ 1 중량%를 포함하는 바리스터 세라믹.ZnO 90 to 95% by weight, Pr 6 O 11 0.5 to 1% by weight, Co 3 O 4 2 to 5% by weight and Nd 2 O 3 0.5 to 1% by weight based on the total weight of the praseodymia zinc oxide Varistor ceramic comprising a.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 바리스터 세라믹은 1300 ~ 1400℃에서 소결된 바리스터 세라믹.The varistor ceramic is a varistor ceramic sintered at 1300 ~ 1400 ℃.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 바리스터 세라믹은 커브 트레이서(curve tracer)로 측정시, 1 mA에서 항복 전압이 100 ~ 900 V인 바리스터 세라믹.The varistor ceramic is a varistor ceramic having a breakdown voltage of 100 ~ 900 V at 1 mA, measured by a curve tracer.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 바리스터 세라믹은 1㎑에서의 정전용량은 10 ~ 60 pF이고, 유전율은 100 ~ 500 인 바리스터 세라믹.The varistor ceramic is a varistor ceramic having a capacitance of 1 ~ 10 ~ 60 pF, the dielectric constant of 100 ~ 500.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 바리스터 세라믹은 1㎒에서의 정전용량이 10 ~ 50 pF이고, 유전율이 200 ~ 500 인 바리스터 세라믹.The varistor ceramic has a capacitance of 1 to 50 pF and a dielectric constant of 200 to 500 varistor ceramic at 1 MHz.
  7. 제1항에 따른 바리스터 세라믹;을 포함하는 박막.Thin film comprising a varistor ceramic according to claim 1.
  8. 제7항에 있어서, 상기 박막은 캐패시터층과 이종접합하는 박막.The thin film of claim 7, wherein the thin film is heterojunction with a capacitor layer.
  9. 프라세오디미아계 산화아연 및 티탄스트론튬 산화물(SrTiO3)을 92 ~ 99: 8 ~ 1의 원자비율로 혼합하여 혼합물을 제조하는 1단계;Praseodymia-based zinc oxide and titanium strontium oxide (SrTiO 3 ) 1 to 92 by mixing in an atomic ratio of 99: 8 to 1 step to prepare a mixture;
    상기 혼합물을 분쇄 및 여과하고 이를 건조하는 2단계;Grinding and filtering the mixture and drying the mixture;
    상기 건조된 혼합물을 분쇄 및 여과하여 분말화하는 3단계;Pulverizing and filtering the dried mixture to three steps;
    상기 분말화된 혼합물에 PVB(polyvinyl butyral) 분말을 첨가한 후 과립화하는 4단계; 및Adding granulated polyvinyl butyral (PVB) powder to the powdered mixture, followed by granulation; And
    상기 과립화된 혼합물을 가압성형한 후 소결하는 5단계;를 포함하는 바리스터 세라믹의 제조방법.Method for producing a varistor ceramic comprising a; 5 step of sintering the granulated mixture by pressing.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 2단계에서 건조는 70℃ ~ 90℃에서 1 ~ 3 시간 동안 수행하는 바리스터 세라믹의 제조방법.Drying in the second step is a method for producing a varistor ceramic for 1 to 3 hours at 70 ℃ ~ 90 ℃.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 3단계에서 분말화된 혼합물에 대하여 PVB(polyvinyl butyral) 분말을 5 ~ 10 중량%로 혼합하는 바리스터 세라믹의 제조방법.Method for producing a varistor ceramic for mixing the polyvinyl butyral (PVB) powder in 5 to 10% by weight with respect to the mixture powdered in step 3.
  12. 제 9 항에 있어서,The method of claim 9,
    상기 5단계의 소결은 1300 ~ 1400℃에서 수행하는 바리스터 세라믹의 제조방법.The sintering of the five steps is a method for producing a varistor ceramic to be carried out at 1300 ~ 1400 ℃.
PCT/KR2016/004758 2015-05-04 2016-05-04 Varistor ceramic and method for producing same WO2016178536A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0062710 2015-05-04
KR1020150062710A KR101948164B1 (en) 2015-05-04 2015-05-04 Varistor ceramic and the preparing method thereof

Publications (2)

Publication Number Publication Date
WO2016178536A2 true WO2016178536A2 (en) 2016-11-10
WO2016178536A3 WO2016178536A3 (en) 2017-01-05

Family

ID=57218160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004758 WO2016178536A2 (en) 2015-05-04 2016-05-04 Varistor ceramic and method for producing same

Country Status (2)

Country Link
KR (1) KR101948164B1 (en)
WO (1) WO2016178536A2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127801A (en) * 1983-01-11 1984-07-23 マルコン電子株式会社 Varistor and method of producing same
US5635433A (en) * 1995-09-11 1997-06-03 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric composite material-BSTO-ZnO
JP3631341B2 (en) * 1996-10-18 2005-03-23 Tdk株式会社 Multilayer composite functional element and method for manufacturing the same
JP4292901B2 (en) * 2002-08-20 2009-07-08 株式会社村田製作所 Barista
KR100605531B1 (en) * 2004-07-30 2006-07-28 학교법인 동의학원 Dysprosia-doped Praseodymia-based Zinc Oxide Varistors And The Manufacturing Method
KR100666188B1 (en) * 2004-11-17 2007-01-09 학교법인 동의학원 Praseodymia-based Zinc Oxide Varistors for High Voltage and Method for Manufacturing the same
JP5088029B2 (en) * 2007-07-19 2012-12-05 Tdk株式会社 Barista
KR101823162B1 (en) * 2012-10-05 2018-01-29 삼성전기주식회사 Dielectric composition and multi-layer ceramic electronic parts fabricated by using the same
JP5782646B2 (en) * 2012-12-13 2015-09-24 Tdk株式会社 Voltage nonlinear resistor ceramic composition and electronic component

Also Published As

Publication number Publication date
KR101948164B1 (en) 2019-04-22
KR20160130652A (en) 2016-11-14
WO2016178536A3 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2011025283A9 (en) Zno-based varistor composition
US8421582B2 (en) ESD protection device and manufacturing method therefor
KR101411519B1 (en) Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
US8934205B2 (en) ESD protection device
CN101350241B (en) Varistor
KR101159241B1 (en) Zinc-oxide surge arrester for high-temperature operation
EP2729942A2 (en) Overvoltage protection component
WO2016178537A2 (en) Varistor ceramic and method for producing same
CN104341146A (en) Zinc oxide voltage-sensitive ceramic material for high-performance lightning arrester
WO2016178536A2 (en) Varistor ceramic and method for producing same
JP6089220B2 (en) Voltage nonlinear resistor composition and multilayer varistor using the same
CN102184913B (en) Anti-static device
US8263432B2 (en) Material composition having core-shell microstructure used for varistor
KR101775921B1 (en) Surge protection device, manufacturing method therefor, and electronic component including same
KR100295282B1 (en) Fabrication method of the low-breakdown voltage disk and chip varistor
CN102220109B (en) Preparation method of sizing applied to electrostatic devices
KR101099243B1 (en) ZnO-based varistor composition
KR101978426B1 (en) Circuit protection device and mobile electronic device with the same
JPH0442855A (en) Porcelain composition and its production
KR20090109385A (en) Esd protective device possible low capacitance and stability special quality and thereof
KR102656353B1 (en) ZPCCASm-based varistor and manufacturing method for the same
CN108878082B (en) Ultralow-capacitance electrostatic suppressor and preparation method thereof
KR101236766B1 (en) Multi-layered complex chip device
US20230162896A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP4847918B2 (en) ESD protection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789642

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789642

Country of ref document: EP

Kind code of ref document: A2