WO2016178427A1 - ポリ(p-フェニレンベンゾビスオキサゾール)結晶体及びその製造方法、並びに複合材料及びその製造方法 - Google Patents

ポリ(p-フェニレンベンゾビスオキサゾール)結晶体及びその製造方法、並びに複合材料及びその製造方法 Download PDF

Info

Publication number
WO2016178427A1
WO2016178427A1 PCT/JP2016/063600 JP2016063600W WO2016178427A1 WO 2016178427 A1 WO2016178427 A1 WO 2016178427A1 JP 2016063600 W JP2016063600 W JP 2016063600W WO 2016178427 A1 WO2016178427 A1 WO 2016178427A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbo
solution
nanofibers
poly
phenylenebenzobisoxazole
Prior art date
Application number
PCT/JP2016/063600
Other languages
English (en)
French (fr)
Inventor
内田 哲也
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to JP2017516619A priority Critical patent/JP6588538B2/ja
Publication of WO2016178427A1 publication Critical patent/WO2016178427A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials

Definitions

  • the present invention relates to a poly (p-phenylenebenzobisoxazole) crystal and a method for producing the same, and further relates to a composite material containing the poly (p-phenylenebenzobisoxazole) crystal and a method for producing the same.
  • fiber reinforced composite materials fiber reinforced composite materials using poly (p-phenylenebenzobisoxazole) fibers are known (for example, see Patent Document 1).
  • Poly (p-phenylenebenzobisoxazole) fibers are known to have excellent mechanical properties and high heat resistance due to their rigid molecular chains.
  • Bisoxazole) fibers, or poly (p-phenylenebenzobisoxazole) fibers and other appropriate fibers are alternately arranged, impregnated with an epoxy resin mixed solution, and then at 100 ° C. for 10 minutes. Used as a prepreg by drying.
  • the poly (p-phenylenebenzobisoxazole) fiber is generally formed into a thread shape because it is formed by a continuous extrusion method from a spinneret. Therefore, it is impossible to form fine fibers such as so-called nanofibers by a continuous extrusion method, and a method for forming fibers by other methods has not been known.
  • the present inventor has succeeded in producing nano (fiber) poly (p-phenylenebenzobisoxazole) fibers by conducting intensive research and development.
  • the nanofiber refers to a nanofiber having a dimension in the direction perpendicular to the longitudinal direction of the longitudinal fiber body of 1 nm to 1 ⁇ m.
  • the nano-fiberized poly (p-phenylenebenzobisoxazole) fiber is prepared by dissolving poly (p-phenylenebenzobisoxazole) completely in sulfuric acid or the like to prepare a solution, and this solution is 0.2 ° C./min or more. It can be produced by rapid cooling at a speed (see, for example, Patent Document 2).
  • PBO poly (p-phenylenebenzobisoxazole)
  • PBO nanofibers of poly (p-phenylenebenzobisoxazole) or poly (p-phenylenebenzobenzoxazole) made into nanofibers Bisoxazole) fiber will be referred to as “PBO nanofiber”.
  • the present inventor has found a method for producing PBO nanofibers.
  • the present inventors have found that the crystalline state becomes a characteristic crystal during the development process, and have achieved the present invention.
  • PBO nanofibers having a longitudinal length dimension of 0.01 ⁇ m or more and a dimension perpendicular to the longitudinal direction of 1 nm to 1 ⁇ m are parallel to each other in the longitudinal direction. It is a PBO crystal body that is accumulated in a bundle by bonding in a direction orthogonal to the direction.
  • the PBO nanofibers having a length dimension in the longitudinal direction of 0.01 ⁇ m or more and a dimension in the direction perpendicular to the longitudinal direction of 1 nm to 1 ⁇ m are parallel to each other in the longitudinal direction. It is a composite material containing a PBO crystal body accumulated in a bundle by bonding in a direction perpendicular to the longitudinal direction and a matrix resin.
  • the method for producing a PBO crystal of the present invention includes a step of preparing a solution in which PBO is completely dissolved, and depositing the solution as PBO nanofibers by cooling the solution at a rate of 0.2 ° C./min or less. And depositing the elongated PBO nanofibers in parallel to each other in the longitudinal direction and bonding them in a direction perpendicular to the longitudinal direction to accumulate them in a bundle.
  • PBO nanofibers having a length in the longitudinal direction of 0.01 ⁇ m or more and a dimension in a direction perpendicular to the longitudinal direction of 1 nm to 1 ⁇ m are mutually aligned in the longitudinal direction.
  • the PBO crystal body precipitates the dissolved PBO nanofibers as a PBO nanofiber by cooling a solution in which PBO is completely dissolved at a rate of 0.2 ° C./min or less. It is also characterized by being bundled in a bundle by being parallel to each other in the direction and being coupled in a direction perpendicular to the longitudinal direction.
  • PBO crystal fibers in which PBO nanofibers are parallel to each other in the longitudinal direction and bonded in a direction orthogonal to the longitudinal direction to be bundled together, and a composite material containing the PBO crystal body Can provide.
  • FIG. 1 is a graph of measurement results of UV-Vis spectrophotometry (UV-Vis) of a polycarbonate film containing PBO nanofibers.
  • FIG. 2 is a graph showing the results of thermogravimetric analysis of a polycarbonate film (PC film) not containing PBO nanofibers and a polycarbonate film (PC / PBO (0.2 wt%) film) containing PBO nanofibers at 0.1 wt%.
  • FIG. 3 is an explanatory diagram of a method for measuring the orientation state of PBO nanofibers by X-ray diffraction, where (a) shows a measurement state in the thickness direction, and (b) shows a measurement state in the in-plane direction.
  • FIG. 1 is a graph of measurement results of UV-Vis spectrophotometry (UV-Vis) of a polycarbonate film containing PBO nanofibers.
  • FIG. 2 is a graph showing the results of thermogravimetric analysis of a polycarbonate film (PC film
  • FIG. 4 is a graph of X-ray diffraction results of a polycarbonate film containing no PBO nanofibers and a polycarbonate film containing PBO nanofibers at 0.1 wt%.
  • FIG. 5 is a graph of X-ray diffraction results of a polycarbonate film containing no PBO nanofibers, a polycarbonate film containing PBO nanofibers at 0.1 wt%, and a polycarbonate film containing PBO nanosheets at 0.1 wt%.
  • PBO nanofibers having a longitudinal length dimension of 0.01 ⁇ m or more and a dimension perpendicular to the longitudinal direction of 1 nm to 1 ⁇ m are parallel to each other in the longitudinal direction and perpendicular to the longitudinal direction.
  • the present invention relates to PBO crystals that are accumulated in a bundle by bonding in a direction, and a composite material containing the PBO crystals.
  • the present inventor has found a production method for producing PBO nanofibers by rapidly cooling a solution in which PBO is dissolved. Investigations have been made on producing composite materials by adding them to the resin.
  • the PBO nanofibers are bonded to each other in the longitudinal direction to become long fibers, and in order to contain them in the synthetic resin, it is necessary to shorten them by a separate shearing process or the like. There was a risk of becoming.
  • Bundled PBO nanofibers are crystallized, and in particular macroscopically plate-like, the crystal state in such a PBO crystal is called a plate-like crystal.
  • the thickness is not uniform.
  • this plate-like PBO crystal can be dispersed in tetrahydrofuran (THF), water, toluene, or N, N-dimethylacetamide (DMAc).
  • THF tetrahydrofuran
  • DMAc N, N-dimethylacetamide
  • the constituent matrix resin is also dispersed in the same solution, mixed with each other, and the solution used for dispersion is dried, whereby a composite material with the matrix resin can be produced.
  • plate-like PBO crystals can be uniformly dispersed, and a composite material having uniform characteristics can be obtained.
  • the composite material can be produced not only by using a plate-like PBO crystal body but also by using PBO nanofibers.
  • PBO nanofibers are prepared by dissolving PBO in sulfuric acid while heating in a nitrogen atmosphere to prepare a solution, and then cooling the solution at a rate of 0.2 ° C / min or more to precipitate it as nanofibers. is doing.
  • the PBO used as a raw material may be synthesized by a known synthesis method, or a commercially available PBO such as a trade name “Zylon” manufactured by Toyobo Co., Ltd. may be used.
  • PBO synthesized by condensation polymerization of 4,6-diaminoresorcinol and terephthalic acid using polyphosphoric acid as a polymerization catalyst was used.
  • This PBO had an intrinsic viscosity of 10.7 [dL / g], a weight average molecular weight of 16,600, a degree of polymerization of 71, and an average molecular chain of 73 [nm].
  • sulfuric acid is used here, methanesulfonic acid, chlorosulfonic acid, trifluoroacetic acid, polyphosphoric acid, or metal halide Lewis acid can be used instead of sulfuric acid.
  • sulfuric acid is added in two stages by dissolving PBO with as high a concentration of sulfuric acid as possible so that PBO can be dissolved in a short time, while after dissolution, the concentration of sulfuric acid is lowered and dissolved. This is to prevent the molecular weight of PBO from being lowered.
  • the precipitate can be dissolved again by heating in a 120 ° C. oil bath in a nitrogen atmosphere.
  • PBO nanofibers can be precipitated by rapidly cooling the solution in which PBO is dissolved.
  • rapid cooling it is desirable to first cool the solution after cooling it slowly until the solution becomes white turbid.
  • the slow cooling before the rapid cooling is desirably a cooling rate of about 0.1 ° C./min, and the rapid cooling is desirably a cooling rate of 0.2 ° C./min or more.
  • the white turbidity generated in the solution is due to the precipitation of PBO nanofibers.
  • a sulfuric acid-resistant substrate that does not dissolve in sulfuric acid such as a glass plate at least at room temperature or lower is immersed in a solution in which PBO is dissolved.
  • PBO nanofibers can be deposited on the surface of the sulfuric acid resistant substrate.
  • the sulfuric acid-resistant substrate should have a larger temperature difference from the PBO solution, and the sulfuric acid-resistant substrate may be sufficiently cooled in an ice bath or the like in advance.
  • Tetrahydrofuron (THF) was used as a dispersion solution.
  • 30 g of THF was injected into the eggplant flask, 9 mg of PBO nanofibers were further added, and ultrasonic irradiation was performed for 1 hour to prepare a first solution that was a dispersion of PBO nanofibers. This is the step of producing the first solution.
  • the first solution was added to the eggplant flask containing the second solution to obtain a mixed solution in which the first solution and the second solution were mixed.
  • This mixed solution was also a dispersion solution of PBO nanofibers, and the PBO nanofibers were sufficiently dispersed.
  • the concentration of the PBO nanofiber with respect to the polycarbonate after drying is 0.1 wt%.
  • the above mixed solution was poured into a glass petri dish and dried at room temperature.
  • a transparent polycarbonate film was obtained by drying.
  • this polycarbonate film was observed with an optical microscope, no aggregation of PBO nanofibers was observed, and it was found that the PBO nanofibers maintained high dispersibility even in the film.
  • UV-Vis ultraviolet-visible spectrophotometric
  • the measurement results of the elastic modulus, yield strength, breaking strength and breaking elongation of the polycarbonate film are shown in the following table.
  • a polycarbonate film not containing PBO nanofibers is prepared, and similarly the elastic modulus, yield strength, breaking strength and breaking elongation are measured.
  • PC is a polycarbonate film not containing PBO nanofibers
  • PC / PBO nanofiber is a polycarbonate film containing 0.1 wt% PBO nanofibers.
  • FIG. 2 is a graph showing the results of thermogravimetric analysis of a polycarbonate film containing no PBO nanofibers and a polycarbonate film containing PBO nanofibers at 0.1 wt%. From this result, it was confirmed that heat resistance is improved by including PBO nanofibers.
  • the orientation state of the PBO nanofibers was examined by X-ray diffraction. That is, it is confirmed whether PBO nanofibers exist along the thickness direction of the polycarbonate film formed into a sheet with a predetermined thickness, or whether PBO nanofibers exist along the in-plane direction of the polycarbonate film. did.
  • the measurement in the thickness direction is performed in a direction that forms an angle with the surface of the polycarbonate film, with the X-ray irradiation direction orthogonal to the thickness direction of the polycarbonate film. As shown in FIG.
  • the direction is measured with the X-ray irradiation direction orthogonal to the thickness direction of the polycarbonate film and in a direction that forms an angle with the X-ray irradiation direction in the plane of the polycarbonate film. It was.
  • the following table shows the measurement results of thermal diffusivity and thermal conductivity of a polycarbonate film not containing PBO nanofibers and a polycarbonate film containing PBO nanofibers at 0.1 wt%.
  • the PBO nanofibers are oriented in the in-plane direction, so that the thermal diffusivity and thermal conductivity are improved in the in-plane direction.
  • the content of PBO nanofibers is desirably 0.3 wt% or less.
  • polycarbonate is used as the matrix resin constituting the composite material, but the same functional improvement can be expected even with resins other than polycarbonate.
  • the plate-like PBO crystal is prepared by dissolving PBO in sulfuric acid while heating in a nitrogen atmosphere while preparing a solution, and then cooling the solution at a rate of 0.2 ° C./min or less to obtain PBO nanofibers.
  • the deposited PBO nanofibers are accumulated in a bundle by being bonded in a direction parallel to each other in the longitudinal direction and perpendicular to the longitudinal direction.
  • the PBO used as a raw material may be synthesized by a known synthesis method, or a commercially available PBO such as a trade name “Zylon” manufactured by Toyobo Co., Ltd. may be used.
  • PBO synthesized by condensation polymerization of 4,6-diaminoresorcinol and terephthalic acid using polyphosphoric acid as a polymerization catalyst was used.
  • This PBO had an intrinsic viscosity of 10.7 [dL / g], a weight average molecular weight of 16,600, a degree of polymerization of 71, and an average molecular chain of 73 [nm].
  • sulfuric acid is used here, methanesulfonic acid, chlorosulfonic acid, trifluoroacetic acid, polyphosphoric acid, or metal halide Lewis acid can be used instead of sulfuric acid.
  • the solution in which PBO is dissolved at a rate of 0.2 ° C./min or less By cooling the solution in which PBO is dissolved at a rate of 0.2 ° C./min or less, it is precipitated as PBO nanofibers, and the precipitated PBO nanofibers are parallel to each other in the longitudinal direction and orthogonal to the longitudinal direction.
  • the plate-like PBO crystal body was produced by stacking in a bundle shape. At this time, it is desirable to carry out in a nitrogen atmosphere in order to suppress the moisture absorption of sulfuric acid.
  • PBO nanofibers are precipitated in the solution and become cloudy. After such turbidity occurs, 0.1 ° C./min or less. By cooling at, a larger PBO crystal can be obtained.
  • the PBO nanofibers deposited in the solution have a length in the longitudinal direction of 0.01 ⁇ m or more and a dimension in the direction perpendicular to the longitudinal direction of 1 nm to 1 ⁇ m.
  • the temperature is lowered by 10 ° C. or more from the temperature at which white turbidity is generated, and then the suspension is diluted with water, and then the PBO crystals are separated by filtration. And washed.
  • THF Tetrahydrofuron
  • the first solution was added to the eggplant flask containing the second solution to obtain a mixed solution in which the first solution and the second solution were mixed.
  • This mixed solution is also a dispersion solution of the PBO crystal, and the PBO crystal is sufficiently dispersed.
  • the concentration of the PBO crystal with respect to the polycarbonate after drying is 0.1 wt%.
  • the above mixed solution was poured into a glass petri dish and dried at room temperature.
  • a transparent polycarbonate film was obtained by drying.
  • this polycarbonate film was observed with an optical microscope, no aggregation of the PBO crystal was observed, and it was found that the PBO crystal maintained high dispersibility even in the film.
  • the longitudinal direction of each PBO nanofiber constituting the PBO crystal is the thickness direction of the polycarbonate film, based on the result of X-ray diffraction shown in FIG. It was confirmed that
  • the thermal diffusivity and thermal conductivity were improved in the orientation direction of PBO nanofibers, that is, in the thickness direction of the polycarbonate film.
  • a plate-like PBO crystal may be contained.
  • polycarbonate as the matrix resin constituting the composite material
  • resins other than polycarbonate examples include polyethylene, polypropylene, polystyrene, polyvinyl chloride, poloacrylonitrile, polyvinyl acetate, polyacrylic acid, polymethyl methacrylate, polyvinylidene chloride, polybutadiene, polyisobutylene, polyoxymethylene, polyamide resin, polyethylene terephthalate, Polybutylene terephthalate, phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, vinyl ester resin, polyphenylene sulfide, aromatic polyamide, polyarylate, polyether ether ketone, polyimide, polyparaphenylene oxide, Examples thereof include polysulfone, rubber, and a thermosetting resin such as a thermoplastic resin having a melting point of 50 to 270 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

特徴的な結晶状態となるポリ(p-フェニレンベンゾビスオキサゾール)結晶体及びその製造方法、並びに複合材料及びその製造方法を提供する。 ポリ(p-フェニレンベンゾビスオキサゾール)を完全に溶解させて作製した溶解液を0.2℃/分以下の速度で冷却することでポリ(p-フェニレンベンゾビスオキサゾール)のナノファイバーとして析出させるとともに、析出した長手状のPBOナノファイバー同士を、長手方向に向けて互いに平行として、長手方向と直交する方向に結合させることで束状に集積させて、板状結晶のポリ(p-フェニレンベンゾビスオキサゾール)結晶体とする。

Description

ポリ(p-フェニレンベンゾビスオキサゾール)結晶体及びその製造方法、並びに複合材料及びその製造方法
 本発明は、ポリ(p-フェニレンベンゾビスオキサゾール)結晶体及びその製造方法に関し、さらにはポリ(p-フェニレンベンゾビスオキサゾール)結晶体を含有する複合材料及びその製造方法に関する。
 従来、繊維強化複合材料の一つとして、ポリ(p-フェニレンベンゾビスオキサゾール)繊維を用いた繊維強化複合材料が知られている(例えば、特許文献1参照。)。
 ポリ(p-フェニレンベンゾビスオキサゾール)繊維は、剛直分子鎖となっていることで、優れた力学的性質及び高耐熱性を有していることが知られており、このポリ(p-フェニレンベンゾビスオキサゾール)繊維同士、あるいはポリ(p-フェニレンベンゾビスオキサゾール)繊維と他の適宜の繊維とを交互に配置して、これにエポキシ樹脂の混合溶液に含浸させた後、100℃で10分間、乾燥させることでプリプレグとして使用されている。
 ポリ(p-フェニレンベンゾビスオキサゾール)繊維は、一般的に、紡糸口金からの連続押出法で形成することから糸状としている。そのため、いわゆるナノファイバーと呼ばれるような微細繊維を連続押出法で形成することは不可能であり、また、それ以外の方法で繊維化する方法も知られていなかった。
 そこで、本発明者は、鋭意研究開発を行うことで、ナノファイバー化したポリ(p-フェニレンベンゾビスオキサゾール)繊維を作製することに成功した。ここで、ナノファイバーとは、長手状となっている繊維体の長手方向と直交する方向の寸法が1nm~1μmであるものをいうこととする。
 ナノファイバー化したポリ(p-フェニレンベンゾビスオキサゾール)繊維は、ポリ(p-フェニレンベンゾビスオキサゾール)を硫酸等に完全に溶解させて溶解液を作製し、この溶解液を0.2℃/分以上の速度で急冷することで作製することができる(例えば、特許文献2参照。)。
 以下において、説明の便宜上、ポリ(p-フェニレンベンゾビスオキサゾール)を「PBO」と呼ぶこととし、ポリ(p-フェニレンベンゾビスオキサゾール)のナノファイバー、またはナノファイバー化されたポリ(p-フェニレンベンゾビスオキサゾール)繊維を「PBOナノファイバー」と呼ぶこととする。
特開2009-242810号公報 特開2015-110854号公報
 上記したように、本発明者は、PBOナノファイバーの製造方法を見出したが、その開発過程において特徴的な結晶状態となることを見出して、本発明を成すに至ったものである。
 本発明のPBO結晶体は、長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmであるPBOナノファイバー同士が、長手方向に向けて互いに平行で、長手方向と直交する方向に結合することで束状に集積したPBO結晶体である。
 また、本発明の複合材料は、長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmであるPBOナノファイバー同士が、長手方向に向けて互いに平行で、長手方向と直交する方向に結合することで束状に集積したPBO結晶体と、マトリックス樹脂とを含有する複合材料である。
 また、本発明のPBO結晶体の製造方法は、PBOを完全に溶解させた溶解液を作製する工程と、溶解液を0.2℃/分以下の速度で冷却することでPBOナノファイバーとして析出させるとともに、析出した長手状のPBOナノファイバー同士を、長手方向に向けて互いに平行として、長手方向と直交する方向に結合させることで束状に集積させる工程とを有するものである。
 また、本発明の複合材料の製造方法は、長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmであるPBOナノファイバー同士が、長手方向に向けて互いに平行で、長手方向と直交する方向に結合することで束状に集積したPBO結晶体と、マトリックス樹脂とを含有する複合材料の製造方法であって、分散溶液にPBO結晶体を分散させて第1の溶液を作製する工程と、第1の溶液に用いた分散溶液と同一の溶液にマトリックス樹脂を溶解させて第2の溶液を作製する工程と、第1の溶液と第2の溶液とを混合して混合溶液を作製する工程と、混合溶液を所定の容器に注入して乾燥させる工程とを有するものである。さらに、PBO結晶体は、PBOを完全に溶解させた溶解液を、0.2℃/分以下の速度で冷却することでPBOナノファイバーとして析出させるとともに、析出した長手状のPBOナノファイバー同士を、長手方向に向けて互いに平行として、長手方向と直交する方向に結合させることで束状に集積させていることにも特徴を有するものである。
 本発明によれば、PBOナノファイバーが、長手方向に向けて互いに平行で、長手方向と直交する方向に結合することで束状に集積したPBO結晶体、及びこのPBO結晶体を含有する複合材料を提供できる。
図1は、PBOナノファイバーを含有するポリカーボネートフィルムの紫外可視分光光度(UV-Vis)測定結果のグラフである。 図2は、PBOナノファイバーを含まないポリカーボネートフィルム(PCフィルム)と、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルム(PC/PBO(0.2wt%)フィルム)の熱重量分析結果のグラフである。 図3は、X線回折によるPBOナノファイバーの配向状態の測定方法の説明図であり、(a)は厚み方向の測定状態、(b)は面内方向の測定状態である。 図4は、PBOナノファイバーを含まないポリカーボネートフィルムと、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルムのX線回折結果のグラフである。 図5は、PBOナノファイバーを含まないポリカーボネートフィルムと、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルムと、PBOナノシートを0.1wt%で含有するポリカーボネートフィルムのX線回折結果のグラフである。
 本発明は、長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmであるPBOナノファイバー同士が、長手方向に向けて互いに平行で、長手方向と直交する方向に結合することで束状に集積したPBO結晶体、及びこのPBO結晶体を含有する複合材料に係る発明である。
 本発明者は、上述したように、PBOを溶解させた溶解液を急冷することでPBOナノファイバーを作製する製造方法を見出したが、作製したPBOナノファイバーの使用形態を検討する中で、合成樹脂に含有させることで複合材料を作製することの検討を行っていた。
 しかしながら、先に見出した製造方法では、PBOナノファイバー同士が長手方向に結合することで長繊維化してしまい、合成樹脂に含有させるためには別途の剪断処理等で、短くしておくことが必要になるおそれがあった。
 そこで、PBOを溶解させた溶解液を冷却することでPBOナノファイバーを作製する際に、長繊維化しない条件を見出すなかで、PBOナノファイバー同士が、長手方向に向けて互いに平行で、かつ長手方向と直交する方向に結合することで束状に集積する現象を見出した。
 束状に集積したPBOナノファイバーは結晶化しており、特に巨視的には板状となることで、このようなPBO結晶体における結晶状態を板状結晶と呼んでいる。なお、板状結晶のPBO結晶体では、各PBOナノファイバーの長さがランダムとなっているために、厚みが不均一となっている。
 しかも、この板状結晶のPBO結晶体は、テトラヒドロフラン(THF)や水、あるいはトルエンやN,N-ジメチルアセトアミド(DMAc)にも分散可能であって、これらの溶液に分散させるとともに、合成樹脂を構成するマトリックス樹脂も同じ溶液に分散させて互いに混合し、分散させるために用いた溶液を乾燥させることで、マトリックス樹脂との複合材料を作製することができる。特に、複合材料においては、板状結晶のPBO結晶体が均一に分散した状態とすることができ、一様な特性を有する複合材料とすることができる。
 複合材料は、板状結晶のPBO結晶体を用いて構成する場合だけでなく、PBOナノファイバーを用いて同様に作製することもできる。
 以下において、最初にPBOナノファイバーを含有する複合材料の説明を行い、次いで板状結晶のPBO結晶体を含有する複合材料の説明を行う。なお、以下の説明において、必要に応じて具体的な数値条件等を示しながら説明を行うが、溶解液を冷却する際の冷却速度の限界値以外は提示した条件に限定するものではなく、状況等に応じて適宜調整してよい。
<PBOナノファイバーの製造方法>
 PBOナノファイバーは、窒素雰囲気下で硫酸にPBOを加熱しながら溶解させて溶解液を作製した後に、この溶解液を0.2℃/分以上の速度で冷却することで、ナノファイバーとして析出させて作製している。
 原料となるPBOは、既知の合成方法で合成してもよいし、東洋紡株式会社製の商品名「ザイロン」等の市販のPBOを用いてもよい。ここでは、ポリリン酸を重合触媒として用いて、4,6-ジアミノレゾルシノールとテレフタル酸とを縮合重合させることで合成したPBOを用いた。このPBOは、固有粘度10.7[dL/g]、重量平均分子量16600、重合度71、平均分子鎖73[nm]であった。
 このPBO100mgを100mlのナスフラスコに入れ、このナスフラスコに56.25gの98重量%硫酸を注入し、窒素雰囲気下で、120℃のオイルバスで加熱することでPBOを完全に溶解させた。窒素雰囲気とするのは、硫酸の吸湿を防止するためである。
 また、ここでは硫酸を用いているが、硫酸ではなく、メタンスルホン酸、クロロスルホン酸、トリフルオロ酢酸、ポリリン酸あるいは金属ハロゲン化物ルイス酸を用いることもできる。
 PBOを完全に溶解させた後、さらに、ナスフラスコに43.75gの90重量%硫酸を加えて、ナスフラスコ内の硫酸濃度を94.5重量%とし、PBO濃度を0.1重量%とした。
 このように硫酸を二段階に分けて加えているのは、できるだけ高濃度の硫酸でPBOを溶解させることで、PBOを短時間で溶解させる一方で、溶解後には硫酸濃度を下げて、溶解されたPBOの分子量低下が生じることを抑制するためである。なお、低濃度の硫酸を加えた際にPBOの析出が生じた場合には、再度、窒素雰囲気下で、120℃のオイルバスで加熱することで析出物を溶解させることができる。
 PBOが溶解された溶解液を急冷することで、PBOナノファイバーを析出させることができる。なお、急冷するに当り、まず、溶解液をゆっくりと冷却することで溶解液が白い濁りが生じた状態となった後に急冷することが望ましい。ここで、急冷前のゆっくりとした冷却は、0.1℃/分程度の冷却速度が望ましく、急冷は、0.2℃/分以上の冷却速度とすることが望ましい。溶解液に生じる白い濁りは、PBOナノファイバーの析出によるものである。
 溶解液の冷却時には、硫酸の吸湿を抑制するために窒素雰囲気下で行うことが望ましい。このようにPBOが溶解された溶解液を急冷することで、長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmのPBOナノファイバーを作製することができる。
 なお、単にPBOナノファイバーを得たいだけの場合には、少なくとも室温以下の温度としたガラス板等の硫酸に対して溶解の生じない耐硫酸基体を、PBOが溶解されている溶解液に浸漬させることで、耐硫酸基体の表面にPBOナノファイバーを析出させることもできる。このとき、耐硫酸基体は、PBOの溶解液と温度差が大きければ大きいほどよく、耐硫酸基体を予め氷浴等で十分に冷却しておいてもよい。
<PBOナノファイバーを用いた複合材料の作製>
 分散溶液としてテトラヒドロフロン(THF)を用いた。ナスフラスコに30gのTHFを注入し、さらに9mgのPBOナノファイバーを加えて超音波照射を1時間行ってPBOナノファイバーの分散液である第1溶液を作製した。これが、第1の溶液を作製する工程である。
 次いで、別のナスフラスコに20gのTHFを注入し、さらに240mgのポリカーボネートを加えて、オイルバスで60℃に加熱してポリカーボネートを溶解させることで、ポリカーボネート溶解液である第2溶液を作製した。これが、第2の溶液を作製する工程である。使用したポリカーボネートは、帝人社製のpanlite K-1300Yとした。
 次いで、第2溶液を収容しているナスフラスコに第1溶液を加えて、第1溶液と第2溶液とを混合した混合溶液とした。これが、混合溶液を作製する工程である。この混合溶液も、PBOナノファイバーの分散溶液となっており、PBOナノファイバーを十分に分散させた。ここで、PBOナノファイバーは、乾燥後のポリカーボネートに対するPBOナノファイバーの濃度が0.1wt%としている。
 上記の混合溶液をガラスシャーレに注ぎ入れ、室温で乾燥させた。乾燥させることで透明なポリカーボネートフィルムを得た。このポリカーボネートフィルムを光学顕微鏡で観察したところ、PBOナノファイバーの凝集はみられず、PBOナノファイバーがフィルム中でも高い分散性を維持していることが分かった。
 上記のポリカーボネートフィルムの紫外可視分光光度(UV-Vis)測定結果を図1に示す。図1に示すように、ポリカーボネートフィルムは、50%以上の透過率を示した。
 上記のポリカーボネートフィルムの弾性率、降伏強度、破断強度及び破断伸度の測定結果を下表に示す。比較として、PBOナノファイバーを含まないポリカーボネートフィルムを準備し、同様に弾性率、降伏強度、破断強度及び破断伸度を測定している。表中、「PC」は、PBOナノファイバーを含まないポリカーボネートフィルムであり、「PC/PBOナノファイバー」は、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルムである。
Figure JPOXMLDOC01-appb-T000001
 上表から明らかなように、PBOナノファイバーを含有させることで、力学特性が向上することが確認された。
 図2は、PBOナノファイバーを含まないポリカーボネートフィルムと、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルムの熱重量分析結果のグラフである。この結果から、PBOナノファイバーを含有させることで、耐熱性が向上することが確認された。
 PBOナノファイバーを含有させたポリカーボネートフィルムにおいて、PBOナノファイバーの配向状態をX線回折によって調べた。すなわち、所定の厚みのシート状となったポリカーボネートフィルムの厚み方向に沿ってPBOナノファイバーが存在しているのか、それともポリカーボネートフィルムの面内方向に沿ってPBOナノファイバーが存在しているのかを確認した。ここで、厚み方向の測定は、図3(a)に示すように、X線の照射方向をポリカーボネートフィルムの厚み方向と直交する方向として、ポリカーボネートフィルムの面と角度をなす方向で行い、面内方向の測定は、図3(b)に示すように、X線の照射方向をポリカーボネートフィルムの厚み方向と直交する方向として、ポリカーボネートフィルムの面内でX線の照射方向と角度をなす方向で行った。
 測定結果を図4に示す。図4に示すように、PBOナノファイバーは面内方向に配向していることが確認できた。
 下表に、PBOナノファイバーを含まないポリカーボネートフィルムと、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルムの熱拡散率及び熱伝導率の測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 上述したように、PBOナノファイバーを含有するポリカーボネートフィルムにおいて、PBOナノファイバーは面内方向に配向していることから、面内方向において熱拡散率及び熱伝導率が向上した。
 PBOナノファイバーを含有するポリカーボネートフィルムにおいて、PBOナノファイバーの含有量を増やした場合の影響を確認した。PBOナノファイバーを0.3wt%で含有するポリカーボネートフィルムでは、一応、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルムと同等程度の透明度を有していたが、PBOナノファイバーの凝集物が確認された。したがって、PBOナノファイバーの含有量は、0.3wt%以下が望ましい。
 ここまでにおいて、複合材料を構成するマトリックス樹脂としてポリカーボネートの場合を説明したが、ポリカーボネート以外の樹脂であっても同様の機能向上が期待できる。具体的には、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポロアクリロニトリル、ポリ酢酸ビニル、ポリアクリル酸、ポリメタクリル酸メチル、ポリ塩化ビニリデン、ポリブタジエン、ポリイソブチレン、ポリオキシメチレン、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ビニルエステル樹脂、ポリフェニレンスルフィド、芳香族ポリアミド、ポリアリレート、ポリエーテルエーテルケトン、ポリイミド、ポリパラフェニレンオキシド、ポリスルホン、ゴム、融点が50~270℃の熱可塑性樹脂等、熱硬化性樹脂等が挙げられる。
<板状結晶のPBO結晶体の製造方法>
 板状結晶のPBO結晶体は、窒素雰囲気下で硫酸にPBOを加熱しながら溶解させて溶解液を作製した後に、この溶解液を0.2℃/分以下の速度で冷却することで、PBOナノファイバーとして析出させるとともに、析出したPBOナノファイバー同士を長手方向に向けて互いに平行で、かつ長手方向と直交する方向に結合させることで束状に集積させて作製している。
 原料となるPBOは、既知の合成方法で合成してもよいし、東洋紡株式会社製の商品名「ザイロン」等の市販のPBOを用いてもよい。ここでは、ポリリン酸を重合触媒として用いて、4,6-ジアミノレゾルシノールとテレフタル酸とを縮合重合させることで合成したPBOを用いた。このPBOは、固有粘度10.7[dL/g]、重量平均分子量16600、重合度71、平均分子鎖73[nm]であった。
 このPBO100mgを100mlのナスフラスコに入れ、このナスフラスコに56.25gの98重量%硫酸を注入し、窒素雰囲気下で、120℃のオイルバスで加熱することでPBOを完全に溶解させた。窒素雰囲気とするのは、硫酸の吸湿を防止するためである。
 また、ここでは硫酸を用いているが、硫酸ではなく、メタンスルホン酸、クロロスルホン酸、トリフルオロ酢酸、ポリリン酸あるいは金属ハロゲン化物ルイス酸を用いることもできる。
 PBOを完全に溶解させた後、さらに、ナスフラスコに43.75gの90重量%硫酸を加えて、ナスフラスコ内の硫酸濃度を94.5重量%とし、PBO濃度を0.1重量%とした。
 PBOが溶解された溶解液を0.2℃/分以下の速度で冷却することで、PBOナノファイバーとして析出させるとともに、析出したPBOナノファイバー同士を長手方向に向けて互いに平行で、かつ長手方向と直交する方向に結合させることで束状に集積させて板状結晶のPBO結晶体を作製した。このとき、硫酸の吸湿を抑制するために窒素雰囲気下で行うことが望ましい。
 特に、PBOが溶解された溶解液を0.2℃/分以下の速度で冷却すると、溶解液中にPBOナノファイバーが析出することで白く濁り、このような濁りが発生した後は0.1℃/分以下で冷却することで、より大きなPBO結晶体とすることができる。溶解液中に析出したPBOナノファイバーは、長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmとなっている。
 PBOが溶解された溶解液を冷却することで白い濁りが生じた温度から10℃以上低い温度になった後、その懸濁液を水で希釈して、その後、PBO結晶体を濾別することで取り出し、洗浄した。
<PBO結晶体を用いた複合材料の作製>
 分散溶液としてテトラヒドロフロン(THF)を用いた。ナスフラスコに30gのTHFを注入し、さらに9mgのPBO結晶体を加えて超音波照射を1時間行ってPBO結晶体の分散液である第1溶液を作製した。これが、第1の溶液を作製する工程である。
 次いで、別のナスフラスコに20gのTHFを注入し、さらに240mgのポリカーボネートを加えて、オイルバスで60℃に加熱してポリカーボネートを溶解させることで、ポリカーボネート溶解液である第2溶液を作製した。これが、第2の溶液を作製する工程である。使用したポリカーボネートは、帝人社製のpanlite K-1300Yとした。
 次いで、第2溶液を収容しているナスフラスコに第1溶液を加えて、第1溶液と第2溶液とを混合した混合溶液とした。これが、混合溶液を作製する工程である。この混合溶液も、PBO結晶体の分散溶液となっており、PBO結晶体を十分に分散させた。ここで、PBO結晶体は、乾燥後のポリカーボネートに対するPBO結晶体の濃度が0.1wt%としている。
 上記の混合溶液をガラスシャーレに注ぎ入れ、室温で乾燥させた。乾燥させることで透明なポリカーボネートフィルムを得た。このポリカーボネートフィルムを光学顕微鏡で観察したところ、PBO結晶体の凝集はみられず、PBO結晶体がフィルム中でも高い分散性を維持していることが分かった。
 板状結晶のPBO結晶体を含有したポリカーボネートフィルムでは、図5に示すX線回折の結果から、PBO結晶体を構成している各PBOナノファイバーの長手方向が、ポリカーボネートフィルムの厚み方向となっていることが確認できた。
 PBOナノファイバーを含まないポリカーボネートフィルムと、PBOナノファイバーを0.1wt%で含有するポリカーボネートフィルムと、板状結晶のPBO結晶体を0.1wt%で含有するポリカーボネートフィルムの熱拡散率及び熱伝導率の測定結果を下表に示す。
Figure JPOXMLDOC01-appb-T000003
 P板状結晶のPBO結晶体を0.1wt%で含有するポリカーボネートフィルムでは、PBOナノファイバーの配向方向、すなわちポリカーボネートフィルムの厚み方向で熱拡散率及び熱伝導率が向上した。
 このことから、ポリカーボネートフィルムで厚み方向の熱拡散率及び熱伝導率を向上させたい場合には、板状結晶のPBO結晶体を含有させるとよい。
 複合材料を構成するマトリックス樹脂としてポリカーボネートの場合を説明したが、ポリカーボネート以外の樹脂であっても同様の機能向上が期待できる。具体的には、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポロアクリロニトリル、ポリ酢酸ビニル、ポリアクリル酸、ポリメタクリル酸メチル、ポリ塩化ビニリデン、ポリブタジエン、ポリイソブチレン、ポリオキシメチレン、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ビニルエステル樹脂、ポリフェニレンスルフィド、芳香族ポリアミド、ポリアリレート、ポリエーテルエーテルケトン、ポリイミド、ポリパラフェニレンオキシド、ポリスルホン、ゴム、融点が50~270℃の熱可塑性樹脂等、熱硬化性樹脂等が挙げられる。

Claims (5)

  1.  長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmであるポリ(p-フェニレンベンゾビスオキサゾール)のナノファイバー同士が、前記長手方向に向けて互いに平行で、前記長手方向と直交する方向に結合することで束状に集積したポリ(p-フェニレンベンゾビスオキサゾール)結晶体。
  2.  長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmであるポリ(p-フェニレンベンゾビスオキサゾール)のナノファイバー同士が、前記長手方向に向けて互いに平行で、前記長手方向と直交する方向に結合することで束状に集積したポリ(p-フェニレンベンゾビスオキサゾール)結晶体と、
     マトリックス樹脂と
    を含有する複合材料。
  3.  ポリ(p-フェニレンベンゾビスオキサゾール)が完全に溶解した溶解液を作製する工程と、
     前記溶解液を0.2℃/分以下の速度で冷却することで前記ポリ(p-フェニレンベンゾビスオキサゾール)をナノファイバーとして析出させるとともに、析出した長手状の前記ナノファイバー同士を、前記長手方向に向けて互いに平行として、前記長手方向と直交する方向に結合させることで束状に集積させる工程と
    を有するポリ(p-フェニレンベンゾビスオキサゾール)結晶体の製造方法。
  4.  長手方向の長さ寸法が0.01μm以上で、長手方向と直交する方向の寸法が1nm~1μmであるポリ(p-フェニレンベンゾビスオキサゾール)のナノファイバー同士が、前記長手方向に向けて互いに平行で、前記長手方向と直交する方向に結合することで束状に集積したポリ(p-フェニレンベンゾビスオキサゾール)結晶体と、
     マトリックス樹脂と
    を含有する複合材料の製造方法であって、
     分散溶液に前記ポリ(p-フェニレンベンゾビスオキサゾール)結晶体を分散させて第1の溶液を作製する工程と、
     前記第1の溶液に用いた分散溶液と同一の溶液にマトリックス樹脂を溶解させて第2の溶液を作製する工程と、
     前記第1の溶液と前記第2の溶液とを混合して混合溶液を作製する工程と、
     前記混合溶液を所定の容器に注入して乾燥させる工程と
    を有する複合材料の製造方法。
  5.  前記ポリ(p-フェニレンベンゾビスオキサゾール)結晶体は、ポリ(p-フェニレンベンゾビスオキサゾール)を完全に溶解させた溶解液を、0.2℃/分以下の速度で冷却することで前記ポリ(p-フェニレンベンゾビスオキサゾール)をナノファイバーとして析出させるとともに、析出した長手状の前記ナノファイバー同士を、前記長手方向に向けて互いに平行として、前記長手方向と直交する方向に結合させることで束状に集積させている請求項4に記載の複合材料の製造方法。
PCT/JP2016/063600 2015-05-07 2016-05-02 ポリ(p-フェニレンベンゾビスオキサゾール)結晶体及びその製造方法、並びに複合材料及びその製造方法 WO2016178427A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017516619A JP6588538B2 (ja) 2015-05-07 2016-05-02 複合材料の製造方法及びフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-095243 2015-05-07
JP2015095243 2015-05-07

Publications (1)

Publication Number Publication Date
WO2016178427A1 true WO2016178427A1 (ja) 2016-11-10

Family

ID=57217663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063600 WO2016178427A1 (ja) 2015-05-07 2016-05-02 ポリ(p-フェニレンベンゾビスオキサゾール)結晶体及びその製造方法、並びに複合材料及びその製造方法

Country Status (2)

Country Link
JP (2) JP6588538B2 (ja)
WO (1) WO2016178427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131125A1 (ja) * 2017-12-26 2019-07-04 東レ株式会社 繊維強化熱可塑性樹脂成形材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037260A1 (ja) * 2005-09-29 2007-04-05 Toray Industries, Inc. 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
JP2014062144A (ja) * 2012-09-19 2014-04-10 Teijin Ltd 繊維強化プラスチック
JP2015110854A (ja) * 2013-10-29 2015-06-18 国立大学法人 岡山大学 ポリ(p−フェニレンベンゾビスオキサゾール)繊維、その製造方法及びそれを含むマット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037260A1 (ja) * 2005-09-29 2007-04-05 Toray Industries, Inc. 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
JP2014062144A (ja) * 2012-09-19 2014-04-10 Teijin Ltd 繊維強化プラスチック
JP2015110854A (ja) * 2013-10-29 2015-06-18 国立大学法人 岡山大学 ポリ(p−フェニレンベンゾビスオキサゾール)繊維、その製造方法及びそれを含むマット

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAORU SHIMAMURA ET AL.: "Crystallization of poly (p-phenylene benzobis-oxazole)from dilute solution", JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 54, no. 7, July 1998 (1998-07-01), pages 374 - 378 *
TETSUYA UCHIDA ET AL.: "Preparation and Properties of Rigid PBO Polymer Nanofibers Prepared via Crystallization From a Dilute Solution in Sulfuric Acid", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 27, no. 2, 23 August 2014 (2014-08-23), pages 177 - 180, XP055326215 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131125A1 (ja) * 2017-12-26 2019-07-04 東レ株式会社 繊維強化熱可塑性樹脂成形材料
CN111263696A (zh) * 2017-12-26 2020-06-09 东丽株式会社 纤维增强热塑性树脂成型材料
CN111263696B (zh) * 2017-12-26 2022-06-07 东丽株式会社 纤维增强热塑性树脂成型材料

Also Published As

Publication number Publication date
JP6681100B2 (ja) 2020-04-15
JP6588538B2 (ja) 2019-10-09
JPWO2016178427A1 (ja) 2018-06-14
JP2019206727A (ja) 2019-12-05

Similar Documents

Publication Publication Date Title
Tran et al. Understanding the self‐assembly of cellulose nanocrystals—toward Chiral photonic materials
Dong et al. Strong and tough conductive organo‐hydrogels via freeze‐casting assisted solution substitution
Chen et al. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes
Huang Fabrication and properties of carbon fibers
Dormanns et al. Solvent infusion processing of all-cellulose composite laminates using an aqueous NaOH/urea solvent system
Lu et al. Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip
CN110818920B (zh) 一种纤维素纳米晶/聚乳酸复合材料及其制备方法和应用
Vijay Kumar et al. Electrospun nanofiber interleaving in fiber reinforced composites—Recent trends
CN111087765A (zh) 一种低密度液晶聚合物及其制备方法
CN111138815A (zh) 一种低介电常数液晶聚合物及其制备方法
KR20120009978A (ko) 배향 조정된 탄소나노튜브를 이용한 고분자 나노복합 성형물의 제조방법
CN114702789B (zh) 一种高透光率聚酯薄膜及其制造方法
CN106592000B (zh) 一种生产芳纶ⅲ沉析纤维的方法
JP6541099B2 (ja) ポリ(p−フェニレンベンゾビスオキサゾール)繊維の製造方法及びそれを含むマットの製造方法
KR101868679B1 (ko) 탄소섬유 강화 열가소성 복합재 및 이의 제조방법
Xia et al. Desired properties and corresponding improvement measures of electrospun nanofibers for membrane distillation, reinforcement, and self‐healing applications
JP6588538B2 (ja) 複合材料の製造方法及びフィルム
Zheng et al. High-strength and high-modulus polyimide fibers with excellent UV and ozone resistance
CN109749373B (zh) 一种改性液晶聚酯树脂复合物及其制备方法
Vaganov et al. High‐performance crystallized composite carbon nanoparticles/polyimide fibers
Liu et al. Preparation of high-performance cellulose composite membranes from LiOH/urea solvent system
JP2015098573A (ja) 高結晶ポリイミド微粒子およびその製造方法
Surov et al. Cellulose nanocrystals as a compatibilizer for improved miscibility of water‐soluble polymer binary blends
CN110343364A (zh) 一种增韧环氧树脂复合材料及其制备和应用
CN101906677B (zh) 抗紫外光老化聚亚苯基苯并二噁唑纤维的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017516619

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16789563

Country of ref document: EP

Kind code of ref document: A1