WO2016177127A1 - 单板升级方法及装置 - Google Patents

单板升级方法及装置 Download PDF

Info

Publication number
WO2016177127A1
WO2016177127A1 PCT/CN2016/076642 CN2016076642W WO2016177127A1 WO 2016177127 A1 WO2016177127 A1 WO 2016177127A1 CN 2016076642 W CN2016076642 W CN 2016076642W WO 2016177127 A1 WO2016177127 A1 WO 2016177127A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
upgrade
upgraded
version
service
Prior art date
Application number
PCT/CN2016/076642
Other languages
English (en)
French (fr)
Inventor
方波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177127A1 publication Critical patent/WO2016177127A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications

Definitions

  • the present invention relates to the field of communications, and in particular to a method and an apparatus for upgrading a single board.
  • the upgrade is an indispensable operation in the operation and maintenance management of the communication device.
  • the upgrade of the communication device is embodied in the upgrade of the board in the communication device.
  • the complexity of the communication system easily leads to the manual upgrade of the board operation cost and The probability of failure is higher than expected, mainly with the following problems:
  • the present invention provides a method and an apparatus for upgrading a single board, so as to at least solve the problem that the manual upgrade is required when the board of the communication device is upgraded in the related art, thereby causing cumbersome operation and high error rate.
  • a method for upgrading a board includes: a first board in an active state and a second board in a standby state in which the device to be upgraded is thermally isolated; and the second board is Remotely upgrading to a predetermined version, and controlling the upgraded second board to be in a power-on state; switching the service on the first board to the upgraded second board; releasing the first board The thermal isolation between the second board and the upgraded second board is synchronized to the first board.
  • the first board in the active state and the second board in the standby state of the hot-isolated device include the following operations: prohibiting the first board and the second board from performing data
  • the master switchover is performed between the first board and the second board; the check of the first board and/or the second board is disabled.
  • controlling the upgraded second board to be in a power-on and suspend state includes: controlling the upgraded second board to load a process other than the service process.
  • the method further includes: upgrading The service board is connected to the predetermined version, wherein the peripheral service board communicates with the board in the active state, and performs processing of the communication service.
  • the remotely upgrading the second board to the predetermined version, and controlling the upgraded second board to be in the power-on suspension state includes: remotely upgrading the second board to the predetermined version; The upgraded second board is verified; if the version of the second board after the upgrade is inconsistent with the version of the first board, the upgraded version is controlled. The second board is reset; the second board after the control reset enters the power-on suspension state.
  • the method further includes: after thermally isolating the first board in the active state of the device to be upgraded and the second board in a standby state, the method further includes: If the second board is remotely upgraded to the predetermined version, the second board is restored to the version before the upgrade; after the second board is remotely upgraded to the predetermined version, The method further includes: controlling, after the switching of the service on the first board to the upgrade of the second board, the second board to be restored to the version before the upgrade; After the service on the board is upgraded to the second board, the method further includes: controlling, after the upgrade of the version of the second board to the first board fails, The board and the second board are restored to the version before the upgrade.
  • a board upgrade apparatus including: a thermal isolation module, configured to thermally isolate a first board in an active state and a second board in a standby state;
  • the first processing module is configured to remotely upgrade the second board to a predetermined version, and control the upgraded second board to be in a power-on and suspend state; and the switching module is configured to switch the first board.
  • the service is upgraded to the second board;
  • the second processing module is configured to remove thermal isolation between the first board and the second board, and the upgraded second board is The version is synchronized to the first board.
  • the thermal isolation module includes: a first prohibiting unit configured to prohibit data synchronization between the first board and the second board; and a second prohibiting unit configured to disable the first unit An active/standby switchover is performed between the board and the second board; and the closing unit is configured to close the verification of the first board and/or the second board.
  • the first processing module includes: a first control unit, configured to control the upgrade of the second board after the upgrade of the second board is in a power-on state. A process outside of a business process.
  • the device further includes: an upgrade module, configured to upgrade the peripheral service board to the predetermined version after switching the service on the first board to the upgraded second board, where The peripheral service board communicates with the board in the active state, and performs processing of the communication service.
  • an upgrade module configured to upgrade the peripheral service board to the predetermined version after switching the service on the first board to the upgraded second board, where The peripheral service board communicates with the board in the active state, and performs processing of the communication service.
  • the first processing module includes: an upgrade unit, configured to remotely upgrade the second board to the predetermined version; and a verification unit configured to perform the upgrade of the upgraded second board
  • the reset unit is configured to control the upgraded second board to be reset if the version of the second board that is the upgrade result is inconsistent with the version of the first board;
  • the second control unit is configured to control the second board after the reset to enter a power-on suspension state.
  • the device further includes: a first control module, configured to: thermally isolate the first board in an active state of the device to be upgraded, and the second one in a standby state After the board fails to remotely upgrade the second board to the predetermined version, the second board is controlled to be restored to the version before the upgrade;
  • the second control mode is a block, configured to: after the remotely upgrading the second board to the predetermined version, failing to switch the service on the first board to the upgraded second board, The second board is restored to the version before the upgrade;
  • the third control module is configured to: after switching the service on the first board to the upgraded second board, after the upgraded second When the version of the board is synchronized to the failure of the first board, the first board and the second board are controlled to be restored to the version before the upgrade.
  • the first board in the active state and the second board in the standby state of the device to be upgraded are thermally isolated; the second board is remotely upgraded to a predetermined version, and the upgraded version is controlled.
  • the second board is in a power-on state; the service of the first board is switched to the upgraded second board; and the thermal isolation between the first board and the second board is released.
  • the upgraded version of the second board is synchronized to the first board, and the manual upgrade is required when the board of the communication device is upgraded in the related art, which results in cumbersome operation and error rate.
  • the high problem achieves the remote upgrade of the board of the communication device, reducing the difficulty of operation and reducing the error rate.
  • FIG. 2 is a structural block diagram of a single board upgrading apparatus according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a thermal isolation module 22 in a single board upgrading apparatus according to an embodiment of the present invention
  • FIG. 4 is a block diagram 1 of a first processing module 24 in a board upgrade apparatus according to an embodiment of the present invention
  • FIG. 5 is a first structural block diagram of a single board upgrading apparatus according to an embodiment of the present invention.
  • FIG. 6 is a second structural block diagram of a first processing module 24 in a board upgrade apparatus according to an embodiment of the present invention.
  • FIG. 7 is a block diagram 2 of a preferred structure of a single board upgrading apparatus according to an embodiment of the present invention.
  • Figure 8 is a flow chart of the overall framework core according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a remote isolation device based on thermal isolation according to an embodiment of the present invention.
  • FIG. 10 is a detailed block diagram of an upgrade process according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a combination of a main control board and a peripheral service board and a separate upgrade scenario according to an embodiment of the present invention
  • FIG. 12 is a network structure diagram of a centralized batch upgrade network element scenario according to an embodiment of the present invention.
  • FIG. 13 is a flow chart of a scenario of maintaining an isolated state for a long time according to an embodiment of the present invention.
  • a method and a device for upgrading a single board are provided in the embodiment of the present invention, wherein the method and device for upgrading the single board in the embodiment of the present invention may be It is a method and device capable of realizing a board for remotely upgrading a communication device.
  • the hot backup is implemented based on the thermal isolation, and the interrupted service time is short, which can be quickly rolled back, and the stability and reliability of the upgrade operation of the communication device are improved.
  • the method and device for upgrading a single board in the embodiment of the present invention are described below:
  • FIG. 1 is a flowchart of a board upgrade according to an embodiment of the present invention. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 thermally isolating the first board in the active state and the second board in the standby state of the device to be upgraded;
  • step S104 the second board is remotely upgraded to a predetermined version, and the upgraded second board is in a power-on suspension state.
  • Step S106 switching the service on the first card to the second board after the upgrade
  • step S108 the thermal isolation between the first board and the second board is released, and the version of the upgraded second board is synchronized to the first board.
  • the above-mentioned device to be upgraded is the above-mentioned communication device.
  • the board of the communication device is upgraded by means of thermal isolation, which can effectively reduce the impact on the communication service and ensure the normal operation of the service, and the above operation can be performed by a predetermined upgrade control system, so that no manual is required.
  • the manual upgrade is required when upgrading the board of the communication device in the related art, resulting in troublesome operation and high error rate, thereby achieving remote upgrade of the communication device.
  • the board reduces the difficulty of operation and reduces the effect of error rate.
  • the first board in the active state and the second board in the standby state of the device to be upgraded are in the following operations: the first board and the second board are prohibited from being data synchronized.
  • the master/slave switchover between the first board and the second board is prohibited; the check of the first board and/or the second board is disabled. Therefore, the board in the active state is not upgraded, which effectively reduces service interruption time and ensures normal service.
  • controlling the upgraded second board to be in a power-on suspension state includes: controlling the upgraded second board to load a process other than the service process.
  • the method further includes: upgrading the peripheral service board to the predetermined version, where the peripheral service board is in the main service
  • the board in the state communicates and processes the communication service.
  • the peripheral service board including two or more peripheral service boards, one of the two or more peripheral service boards is in the main service peripheral board, and the remaining peripheral service boards are in standby state, and the version of the peripheral service board is upgraded.
  • the peripheral service version can be upgraded by upgrading the first board and the second board in the foregoing and the following embodiments.
  • the remotely upgrading the second board to the predetermined version and controlling the upgraded second board to be in the power-on suspension state includes: remotely upgrading the second board to the predetermined version; After the second board of the upgrade is inconsistent with the version of the first board, the second board after the upgrade is reset. After the control is reset. The second board enters the power-on suspension state.
  • the method further includes: remotely upgrading the second board to the predetermined version. In the case of a failure, the second board is restored to the version before the upgrade; in another optional embodiment, after the second board is remotely upgraded to the predetermined version, the method further includes: switching the first board In the case that the upgraded second board fails, the second board is restored to the version before the upgrade; in another optional embodiment, the service on the first board is switched to the upgrade. After the second board is replaced, the first board and the second board are restored to the pre-upgrade version when the version of the upgraded second board fails to be synchronized to the first board. As a result, the board fails to be upgraded or the first board fails to be upgraded. The board is in the power-on state. The time is faster than the restart, so the rollback speed is better than the traditional way to restart the entire network element. Thereby improving the stability and reliability of the communication device upgrade operation.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a storage medium (such as a read-only memory (Read-Only).
  • a storage medium such as a read-only memory (Read-Only).
  • Memory referred to as ROM)/Random Access Memory (RAM, disk, CD)
  • RAM Random Access Memory
  • terminal device can be a mobile phone, computer, server, or network device, etc.
  • a board upgrade device is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of a single board upgrading apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes a thermal isolation module 22, a first processing module 24, a switching module 26, and a second processing module 28. The device is described.
  • the thermal isolation module 22 is configured to thermally isolate the first board in the active state and the second board in the standby state;
  • the first processing module 24 is connected to the thermal isolation module 22, and is configured to be The second board is remotely upgraded to the predetermined version, and the upgraded second board is in the power-on suspension state;
  • the switching module 26 is connected to the first processing module 24, and is configured to switch the service on the first board to the upgrade.
  • the second processing module 28 is connected to the switching module 26, and is configured to remove thermal isolation between the first board and the second board, and synchronize the version of the upgraded second board to The first board.
  • FIG. 3 is a structural block diagram of a thermal isolation module 22 in a single board upgrading apparatus according to an embodiment of the present invention.
  • the thermal isolation module 22 includes a first prohibiting unit 32, a second prohibiting unit 34, and a closing unit 36.
  • the thermal isolation module 22 will be described below.
  • the first prohibiting unit 32 is configured to prohibit the first board and the second board from performing data synchronization;
  • the second prohibiting unit 34 is configured to prohibit the active/standby switching between the first board and the second board; Set to disable the verification of the first board and/or the second board.
  • FIG. 4 is a structural block diagram 1 of a first processing module 24 in a board upgrade apparatus according to an embodiment of the present invention.
  • the first The processing module 24 includes: a first control unit 42 configured to control the upgraded second board to load processes other than the service process.
  • FIG. 5 is a block diagram of a preferred structure of a single board upgrading apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes an upgrade module 52 in addition to all the modules shown in FIG. Description.
  • the upgrade module 52 is connected to the switch module 26, and is configured to upgrade the peripheral service board to a predetermined version after switching the service on the first board to the upgraded second board, where the peripheral service board is in the active state.
  • the board in the state communicates and processes the communication service.
  • FIG. 6 is a second structural block diagram of a first processing module 24 in a board upgrade apparatus according to an embodiment of the present invention.
  • the first processing module 24 includes an upgrade unit 62, a check unit 64, a reset unit 66, and The second control unit 68, the first processing module 24 will be described below.
  • the upgrade unit 62 is configured to remotely upgrade the second board to the predetermined version; the verification unit 64 is connected to the upgrade unit 62, and is configured to check the upgraded second board; and the reset unit 66 is connected to The verification unit 64 is configured to control the upgraded second board to be reset if the version of the upgraded second board is different from the version of the first board, and the second control unit 68 is configured. And connected to the reset unit 66, and configured to control the second board after the reset to enter the power-on suspension state.
  • FIG. 7 is a block diagram of a preferred structure of a single board upgrading apparatus according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes one of the following modules in addition to all the modules shown in FIG. 2: a first control module 72. The second control module 74 and the third control module 76 are described below.
  • the first control module 72 is connected to the first processing module 24, and is configured to: after thermally isolating the first board in the active state of the device to be upgraded and the second board in the standby state, If the remote upgrade of the board fails to the foregoing predetermined version, the second board is controlled to be restored to the version before the upgrade; the second control module 74 is connected to the switching module 26, and is configured to remotely upgrade the second board to the second board.
  • the second board is controlled to be restored to the version before the upgrade;
  • the third control module 76 is connected to the foregoing
  • the second processing module 28 is configured to control the synchronization of the upgraded second board to the first board after the service of the first board is switched to the upgraded second board. The first board and the second board are restored to the version before the upgrade.
  • the present invention is improved on the basis of the traditional manual upgrade communication device.
  • a remote upgrade method based on thermal isolation, so that the target communication device can be upgraded remotely and the main control board (ie, the first board or the second board mentioned above) can be remotely upgraded.
  • the main control board ie, the first board or the second board mentioned above
  • As a hot backup hangs keeps the power-on suspend state, and can automatically roll back automatically if the upgrade is abnormal.
  • the thermal isolation in the foregoing embodiment is to block the active/standby boards by software in the case of an uninterrupted power supply.
  • the main board is the first board or the second board in the main state.
  • the standby board is in the real-time synchronization function of the second board or the first board in the standby state, and the standby board is in the power-on suspension state.
  • the main board and the peripheral service board with the active and standby boards are powered on.
  • the standby board is powered on.
  • the business will not be interrupted in this state.
  • the power-on hang in the above embodiment means that the board only loads the basic process, does not load the service process, and can only perform some state of the control plane basic command response.
  • FIG. 8 is a core flow chart of the overall frame according to an embodiment of the present invention
  • FIG. 9 is a remote control based on thermal isolation according to an embodiment of the present invention.
  • the structural block diagram of the upgrade device wherein the connection relationship between the upgrade control system, the main control board, the standby main control board, and the peripheral service board can be referred to FIG. 9.
  • the upgrade control system in FIG. 9 is responsible for executing and transmitting related commands to the upgrade target.
  • Network element FIG. 10 is a specific block diagram of an upgrade process according to an embodiment of the present invention. The present invention will be described below with reference to FIG. 8, FIG. 9, and FIG.
  • Step S800 starting;
  • Step S802 the hot isolation upgrade standby board is enabled.
  • step S802 mainly includes FIG. The following steps are shown:
  • Step S1002 The new version of the configuration data is transmitted to the right main control board through a File Transfer Protocol (FTP);
  • FTP File Transfer Protocol
  • step S1004 the thermal isolation is turned on, and the upgrade mode is enabled.
  • the real-time synchronization of the left and right main control boards is prohibited, the data is prohibited from being transmitted to the main control board, the active/standby switchover is prohibited (data inconsistency is prevented), and various checks are disabled to prevent accidental resetting of the board.
  • Step S1006 switching the right main control board and the peripheral board (the same peripheral service board as above) to a new version
  • step S1008 the version of the main control board is verified to verify that the version of the right main control board and the left main control board are the same.
  • the right main control board that is inconsistent with the version of the left main control board (the main control board) is reset. Then enter the power-on suspend state.
  • the above steps indicate that the upgrade mode is entered. If the board is reset, the active and standby boards can only be powered on, and the other ones are powered on. The other one is in power-on and is inconsistent with the main control board. The board is reset. At this point, the right board is reset. Since the left board is still in the main power-on state, the service will not be interrupted, and then the left board is reset. The right board is used as the main service and the service is handed over to the right board. The board that is powered on is faster than the board that is restarted. Therefore, the result of competitive power-on can basically ensure that the right board that was originally powered on hangs to compete with the motherboard.
  • Step S804 it is determined whether the upgrade is successful, if the upgrade is successful, go to step S806, otherwise, go to step S814;
  • Step S806 the standby board is switched to the mainboard operation, that is, the right main control board enters the main control state;
  • Step S806 mainly includes step S1010, resetting the left main control board, and causing the right main control board to become the active state.
  • the new version runs, and the left main control board becomes the power-on suspension state; Verify that the version of the peripheral board and the version of the main control board are the same. After all the peripheral boards that are inconsistent with the version of the main control board are reset, the peripheral board that competes for power-on success needs the version from the right main control board, thus making the new The version runs, and other similar peripheral boards remain powered on and suspended;
  • Step S808 it is determined whether the system is running normally, if the determination result is yes, go to step S810, otherwise, go to step S814;
  • Step S810 the upgrade confirms, and upgrades the left main control board
  • Step S812 it is determined whether the upgrade of the left main control board is successful, if the determination result is yes, the process goes to step S816, the process ends, otherwise, the process goes to step S814;
  • Step S814 fast rewinding
  • step S816 the process ends.
  • the step S1012 when the left main control board is upgraded, the step S1012 may be included, the version of the left main control board is switched to the new version, the isolation is released, and various verification functions are turned off; the left main control board can be powered on normally, and the new data can be The board is synchronized from the right main control board to the left main control board. The board that is in the power-on state is also released from the thermal isolation to restore the normal power-on state. The system returns to the normal state and the upgrade is complete.
  • a fallback step is designed for each judgment node, so that the effect of modular multiplexing can be achieved. If the hot-isolation upgrade is complete, the corresponding rollback step is: S1, the thermal isolation is disabled, the main control board is checked, and the right board is switched to the pre-upgrade version.
  • the corresponding retreat step is: S2
  • the peripheral board is checked off, and all the peripheral service boards are restored to the normal working state to ensure that the left main control board is in the main control state.
  • the failure step corresponding to the upgrade confirmation step is: S3, switch the left main control board to the pre-upgrade version.
  • the failback step corresponding to each step is a reverse operation corresponding to the upgrade operation, and can be reused. That is, when the standby board fails to switch to the mainboard running step, the failback steps of S2 and S1 are sequentially performed; when the upgrade confirming step fails, the failback steps of S3, S2, and S1 are sequentially performed. Because the power-on state is available, the rollback board is switched from this state to the normal power-on state faster than the restart. Therefore, the rollback speed is better than the traditional method of restarting the entire network element.
  • the thermal isolation based remote upgrade device shown in FIG. 9 includes an active main control board, a standby main control board, a peripheral service board, and an upgrade control system.
  • the main control board is the board that is responsible for version storage, data operation, direct communication with the upgrade control system and the peripheral board, and is in the normal working state of the main board.
  • the standby main control board is a board that is in standby mode when it is in the non-upgrade state and is consistent with the data and version of the active main control board.
  • the peripheral service board is a collection of function boards that are responsible for processing communication services. It only communicates with the main control board.
  • the version is determined by the main control board.
  • the upgrade control system refers to a software system that communicates only with the active main control board and can issue system commands to the upgrade target according to the current state of the system.
  • the solution in the embodiment of the present invention can be applied to a remote upgrade of a Radio Network Controller (RNC) of a Telecommunication Management Network (TMN), and the overall framework of the specific implementation can also refer to the figure.
  • RNC Radio Network Controller
  • TTN Telecommunication Management Network
  • the state of each module in each step can be as shown in Fig. 10.
  • the upgrade process can be:
  • the minimum pre-condition of the upgrade requires two boards of the main control board and the upgrade control system.
  • the original board becomes the initial state
  • the original board becomes the active state
  • the new version becomes the running version
  • Upgrade confirmation upgrade the original main control board.
  • the board is still in the initial state. At this time, the thermal isolation is turned off.
  • the original main control board loads the service process and becomes the standby normal working state.
  • the active/standby synchronization function is enabled.
  • a corresponding back-off step is given.
  • step an abnormality is required to make an evaluation by the upgrade control system, and a corresponding back-off instruction can be issued.
  • the back-off step should include the previous back-off step.
  • the upgrade personnel should check the Key Performance Indication (KPI), drive test, and check the status of each node, which takes a certain amount of time.
  • KPI Key Performance Indication
  • the upgrade preparations, the upgrade preparation steps include the pre-upgrade check and some necessary backup operations.
  • the pre-upgrade check is performed to check whether the upgrade target NE can be upgraded. For example, the disk space check is performed to prevent the version from being downloaded to the NE. Run the status check to ensure that all boards are available. This step will ensure the correctness of the next upgrade step.
  • the necessary backup operation is to save the current status of the upgrade target NE, such as the version and data information before the upgrade, and the KPI indicator that the operator cares about.
  • the purpose is to compare and process the same indicators after the upgrade.
  • the Remote Upgrade section contains the Open Thermal Isolation Upgrades standby board and the standby board switches to run on the motherboard.
  • Data comparison after the upgrade, the status check means that when the upgrade is in the active/standby isolation state, the version and data before and after the upgrade are automatically compared, and the upgrade success or failure is automatically determined to reduce the isolation time.
  • the main control board and the service board can be upgraded in combination or the main control board can be upgraded separately to shorten the upgrade time.
  • the key difference is that only the main control board is verified when the main control board is upgraded. If the main control board and the service board are upgraded, you need to open the peripheral board check.
  • FIG. 11 is a flowchart of a combination of a main control board and a peripheral service board, and a separate upgrade scenario according to an embodiment of the present invention, which is described below with reference to FIG. 11 (taking the main control board as a left main right standby as an example), and the present embodiment. Irrelevant steps are omitted.
  • step S1102 the version of the main control board is verified. At this time, the right main control board that is inconsistent with the version of the left main control board (the main control board) is reset, and then enters the power-on suspension state;
  • Step S1104 it is determined whether the operation of step S1102 is successful, if the determination result is yes, go to step S1106, otherwise, go to step S1116;
  • Step S1106 resetting the left main control board, so that the right main control board becomes the active state, and the new version runs, and the left main control board becomes the power-on suspension state;
  • Step S1108 it is determined whether the peripheral service board is to be upgraded, if the determination result is yes, go to step S1110, otherwise, go to step S1114;
  • step S1110 when the peripheral service board needs to be upgraded, it is necessary to open the peripheral board check, and all the peripheral boards that are inconsistent with the version of the main control board are reset, and the peripheral board that competes for the successful power-on is from the right main control board, so that the new The version runs, and other similar peripheral boards remain powered on and suspended;
  • Step S1112 it is determined whether the operation of step S1110 is successful, if the determination result is yes, go to step S1114, otherwise, go to step S1116;
  • Step S1114 The scenario of upgrading the main control board ignores S1110. Perform this step directly. Switch the version of the left main control board to the new version, release the isolation, and disable various verification functions.
  • the left main control board can be powered on normally.
  • the board can be synchronized from the right main control board to the left main control board, and the board in which the peripheral board is in the power-on state is also released from the thermal isolation to restore the normal power-on state.
  • Step S1116 it is determined whether the operation of step S1114 is successful, if the determination result is yes, go to step S1120, otherwise, go to step S1118;
  • step S1120 the system returns to the normal state, and the upgrade is completed.
  • FIG. 12 is a network structure diagram of a centralized batch upgrade network element scenario according to an embodiment of the present invention.
  • each upgrade control system may manage multiple network elements in the planned self-network segment B, and in the network segment.
  • the upgrade control system task management server can be connected to multiple upgrade control systems, and can simultaneously deliver upgrade tasks to the upgrade control system for multiple network elements. Upgrade and summary, and feedback to the operation and maintenance personnel.
  • the parameter settings when the task is delivered by the centralized upgrade control server can be suspended before the upgrade confirmation to ensure sufficient time to verify the service.
  • all the active and standby boards start at least one board, and the other board is in the power-on state.
  • the service can run normally.
  • the active/standby switchover is disabled, the board is not damaged. You can keep it until the operation and maintenance personnel determine that the upgrade result is acceptable, and then perform the upgrade confirmation.
  • FIG. 13 the process includes the following steps:
  • Step S1302 remotely upgrading the communication device
  • step S1304 it is determined whether the upgrade pause is required. If necessary, go to step S1306. Otherwise, go to step S1310. If the centralized upgrade task is delivered with the parameter of automatic confirmation, the same as the second embodiment, if it is necessary to pause, The upgrade task is suspended until the upgrade is confirmed;
  • Step S1306 manually checking the upgrade result, such as performing road test, long-term KPI observation and other measurement evaluation;
  • Step S1308 by manual inspection, to determine whether there is a problem, if there is no problem, go to step S1310, if there is a problem, go to step S1314;
  • Step S1310 proceeding to perform an upgrade confirmation step
  • Step S1312 it is determined whether the upgrade confirmation is successful, if successful, go to step S1316, otherwise, go to step S1314;
  • step S1316 the flow ends.
  • the upgrade personnel can remotely operate, upgrade with one button or roll back, without manual intervention, and can upgrade and upgrade network elements in batches, greatly saving upgrade costs.
  • the standby main control board is in the power-on suspend state, and the switching to the working state is more rapid than the complete power-on process of the restart mode, which makes the whole process more rapid regardless of the upgrade and the retraction.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be Set to store the program code used to perform the following steps:
  • the second board is remotely upgraded to a predetermined version, and the upgraded second board is in a power-on state;
  • the foregoing storage medium may include, but is not limited to, a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the processor executes steps S11-S14 according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the method and apparatus for upgrading a single board according to the embodiment of the present invention have the following beneficial effects: the manual upgrade is required when upgrading a board of a communication device in the related art, thereby causing cumbersome operation.
  • the problem of high error rate has reached the goal of remotely upgrading the board of the communication device, reducing the difficulty of operation and reducing the error rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stored Programmes (AREA)

Abstract

本发明提供了一种单板升级方法及装置,其中,该方法包括:热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态;切换第一单板上的业务至升级后的第二单板;解除上述第一单板和第二单板之间的热隔离,将升级后的第二单板的版本同步到第一单板。通过本发明,解决了相关技术中存在的在对通信设备的单板进行升级时,需要人工升级,从而导致操作繁琐,错误率高的问题,进而达到了远程升级通信设备的单板,降低操作难度,降低错误率的效果。

Description

单板升级方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种单板升级方法及装置。
背景技术
随着科技的发展,通讯设备在人们的生活中占据着越来越重要的位置,因此,对通讯设备进行管理也是人们需要处理的操作。其中,升级是通讯设备运维管理中必不可少的操作,其中,对通讯设备进行升级具体体现在对通讯设备中的单板进行升级,但是通信系统的复杂容易导致人工升级单板操作成本和失败概率高于预期,主要有以下问题:
需要通过网管下发命令到终端,还需要使用版本管理、文件管理等多个网管工具,操作繁琐;
人工操作步骤过多,出错几率大;
需要操作人员到现场拔插单板,人工复位全部单板,费时费力,从而造成业务中断时间长,影响业务处理的问题。
针对相关技术中存在的在对通信设备的单板进行升级时,需要人工升级,从而导致操作繁琐,影响业务处理的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种单板升级方法及装置,以至少解决相关技术中存在的在对通信设备的单板进行升级时,需要人工升级,从而导致操作繁琐,错误率高的问题。
根据本发明的一个方面,提供了一种单板升级方法,包括:热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;将所述第二单板远程升级到预定版本,并控制升级后的所述第二单板处于上电挂起状态;切换第一单板上的业务至升级后的所述第二单板;解除所述第一单板和所述第二单板之间的热隔离,将升级后的所述第二单板的版本同步到所述第一单板。
可选地,所述热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板包括以下操作:禁止所述第一单板和所述第二单板进行数据同步;禁止所述第一单板和所述第二单板之间进行主备倒换;关闭对所述第一单板和/或所述第二单板的校验。
可选地,所述控制升级后的第二单板处于上电挂起状态包括:控制升级后的所述第二单板加载除业务进程之外的进程。
可选地,在所述切换第一单板上的业务至升级后的所述第二单板之后,还包括:升级外 围业务板至所述预定版本,其中,所述外围业务板与处于主用状态的单板进行通信,并进行通信业务的处理。
可选地,所述将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态包括:将所述第二单板远程升级到所述预定版本;对升级后的所述第二单板进行校验;在校验结果为升级后的所述第二单板的版本与所述第一单板的版本不一致的情况下,控制升级后的所述第二单板进行复位;控制复位后的所述第二单板进入上电挂起状态。
可选地,所述方法还包括以下之一:在热隔离所述待升级设备的处于主用状态的所述第一单板和处于备用状态的所述第二单板之后,还包括:在将所述第二单板远程升级到所述预定版本失败的情况下,控制所述第二单板恢复至升级之前的版本;在将所述第二单板远程升级到所述预定版本之后,还包括:在切换所述第一单板上的业务至升级后的所述第二单板失败的情况下,控制所述第二单板恢复至升级之前的版本;在切换所述第一单板上的业务至升级后的所述第二单板之后,还包括:在将升级后的所述第二单板的版本同步到所述第一单板失败的情况下,控制所述第一单板和所述第二单板恢复至升级之前的版本。
根据本发明的另一方面,提供了一种单板升级装置,包括:热隔离模块,设置为热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;第一处理模块,设置为将所述第二单板远程升级到预定版本,并控制升级后的所述第二单板处于上电挂起状态;切换模块,设置为切换第一单板上的业务至升级后的所述第二单板;第二处理模块,设置为解除所述第一单板和所述第二单板之间的热隔离,将升级后的所述第二单板的版本同步到所述第一单板。
可选地,所述热隔离模块包括以下单元:第一禁止单元,设置为禁止所述第一单板和所述第二单板进行数据同步;第二禁止单元,设置为禁止所述第一单板和所述第二单板之间进行主备倒换;关闭单元,设置为关闭对所述第一单板和/或所述第二单板的校验。
可选地,在控制升级后的所述第二单板处于上电挂起状态时,所述第一处理模块包括:第一控制单元,设置为控制升级后的所述第二单板加载除业务进程之外的进程。
可选地,所述装置还包括:升级模块,设置为在切换所述第一单板上的业务至升级后的所述第二单板之后,升级外围业务板至所述预定版本,其中,所述外围业务板与处于主用状态的单板进行通信,并进行通信业务的处理。
可选地,所述第一处理模块包括:升级单元,设置为将所述第二单板远程升级到所述预定版本;校验单元,设置为对升级后的所述第二单板进行校验;复位单元,设置为在校验结果为升级后的所述第二单板的版本与所述第一单板的版本不一致的情况下,控制升级后的所述第二单板进行复位;第二控制单元,设置为控制复位后的所述第二单板进入上电挂起状态。
可选地,所述装置还包括以下之一:第一控制模块,设置为在热隔离所述待升级设备的处于主用状态的所述第一单板和处于备用状态的所述第二单板之后,在将所述第二单板远程升级到所述预定版本失败的情况下,控制所述第二单板恢复至升级之前的版本;第二控制模 块,设置为在将所述第二单板远程升级到所述预定版本之后,在切换所述第一单板上的业务至升级后的所述第二单板失败的情况下,控制所述第二单板恢复至升级之前的版本;第三控制模块,设置为在切换所述第一单板上的业务至升级后的所述第二单板之后,在将升级后的所述第二单板的版本同步到所述第一单板失败的情况下,控制所述第一单板和所述第二单板恢复至升级之前的版本。
通过本发明,采用热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;将所述第二单板远程升级到预定版本,并控制升级后的所述第二单板处于上电挂起状态;切换第一单板上的业务至升级后的所述第二单板;解除所述第一单板和所述第二单板之间的热隔离,将升级后的所述第二单板的版本同步到所述第一单板,解决了相关技术中存在的在对通信设备的单板进行升级时,需要人工升级,从而导致操作繁琐,错误率高的问题,进而达到了远程升级通信设备的单板,降低操作难度,降低错误率的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的单板升级的流程图;
图2是根据本发明实施例的单板升级装置的结构框图;
图3是根据本发明实施例的单板升级装置中热隔离模块22的结构框图;
图4是根据本发明实施例的单板升级装置中第一处理模块24的结构框图一;
图5是根据本发明实施例的单板升级装置的优选结构框图一;
图6是根据本发明实施例的单板升级装置中第一处理模块24的结构框图二;
图7是根据本发明实施例的单板升级装置的优选结构框图二;
图8是根据本发明实施例的整体框架核心流程图;
图9是根据本发明实施例的基于热隔离的远程升级装置的结构框图;
图10是根据本发明实施例的升级流程的具体框图;
图11是根据本发明实施例的主控板和外围业务板组合、单独升级场景的流程图;
图12是根据本发明实施例的集中批量升级网元场景的网络结构图;
图13是根据本发明实施例的长时间保持隔离状态场景的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为了解决相关技术中的人工升级通信设备的单板所产生的问题,在本发明实施例中提出了一种单板升级方法及装置,其中,本发明实施例中的单板升级方法和装置可以是一种能够实现远程升级通信设备的单板的方法和装置。相比较传统人工操作升级,在本发明实施例中,以热隔离为基础,实现热备份,有中断业务时间短,可以快速回退,提高了通信设备的单板升级操作的稳定性和可靠性。下面对本发明实施例中的单板升级的方法和装置进行说明:
在本实施例中提供了一种单板升级方法,图1是根据本发明实施例的单板升级的流程图,如图1所示,该流程包括如下步骤:
步骤S102,热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;
步骤S104,将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态;
步骤S106,切换第一单板上的业务至升级后的第二单板;
步骤S108,解除上述第一单板和第二单板之间的热隔离,将升级后的第二单板的版本同步到第一单板。
其中,上述的待升级设备即上述的通信设备。通过上述步骤,采用热隔离的方式升级通信设备的单板,能够有效降低对通信业务的影响,保证业务的正常进行,并且,执行上述操作的可以是预定的升级控制系统,从而可以在无需人工的情况下,实现单板的升级,解决了相关技术中存在的在对通信设备的单板进行升级时,需要人工升级,从而导致操作繁琐,错误率高的问题,进而达到了远程升级通信设备的单板,降低操作难度,降低错误率的效果。
在一个可选的实施例中,热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板包括以下操作:禁止第一单板和第二单板进行数据同步;禁止第一单板和第二单板之间进行主备倒换;关闭对第一单板和/或第二单板的校验。从而可以保证,处于主用状态的单板不会进行升级,有效降低了业务中断时间,保证业务的正常进行。
在一个可选的实施例中,控制升级后的第二单板处于上电挂起状态包括:控制升级后的第二单板加载除业务进程之外的进程。
在一个可选的实施例中,在切换上述第一单板上的业务至升级后的第二单板之后,还包括:升级外围业务板至预定版本,其中,该外围业务板与处于主用状态的单板进行通信,并进行通信业务的处理。其中,在外围业务板中,包括两个以上外围业务板,该两个以上外围业务板中有一个处于主用状态的外围业务板,其余外围业务板处于备用状态,将外围业务板的版本升级至与上述的第二单板相同的版本,可以保证第二单板和外围业务板之间业务的配 合处理。其中,在升级外围业务版时,可以采用前述和后面实施例中的升级第一单板和第二单板的方式升级外围业务版。
在一个可选的实施例中,将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态包括:将第二单板远程升级到预定版本;对升级后的第二单板进行校验;在校验结果为升级后的第二单板的版本与第一单板的版本不一致的情况下,控制升级后的第二单板进行复位;控制复位后的第二单板进入上电挂起状态。
在一个可选的实施例中,在热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板之后,还包括:在将第二单板远程升级到预定版本失败的情况下,控制第二单板恢复至升级之前的版本;在另一个可选的实施例中,在将第二单板远程升级到预定版本之后,还包括:在切换第一单板上的业务至升级后的第二单板失败的情况下,控制该第二单板恢复至升级之前的版本;在另一个可选的实施例中,在切换上述第一单板上的业务至升级后的第二单板之后,还包括:在将升级后的第二单板的版本同步到第一单板失败的情况下,控制第一单板和第二单板恢复至升级之前的版本。从而实现了在升级第二单板失败或者升级第一单板失败的情况下,可以实现单板版本的快速回退,并且,由于处于上电挂起状态的单板切换到正常上电工作状态的时间要比重启快,所以回退速度也优于传统的重启整个网元的方式。从而提高了通信设备升级操作的稳定性和可靠性。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,简称为ROM)/随机存取存储器(Random Access Memory,简称为RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种单板升级装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的单板升级装置的结构框图,如图2所示,该装置包括热隔离模块22、第一处理模块24、切换模块26和第二处理模块28,下面对该装置进行说明。
热隔离模块22,设置为热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;第一处理模块24,连接至上述热隔离模块22,设置为将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态;切换模块26,连接至上述第一处理模块24,设置为切换第一单板上的业务至升级后的第二单板;第二处理模块28,连接至上述切换模块26,设置为解除第一单板和第二单板之间的热隔离,将升级后的第二单板的版本同步到第一单板。
图3是根据本发明实施例的单板升级装置中热隔离模块22的结构框图,如图3所示,该热隔离模块22包括第一禁止单元32、第二禁止单元34和关闭单元36,下面对该热隔离模块22进行说明。
第一禁止单元32,设置为禁止第一单板和第二单板进行数据同步;第二禁止单元34,设置为禁止第一单板和第二单板之间进行主备倒换;关闭单元36,设置为关闭对第一单板和/或第二单板的校验。
图4是根据本发明实施例的单板升级装置中第一处理模块24的结构框图一,如图4所示,在控制升级后的第二单板处于上电挂起状态时,该第一处理模块24包括:第一控制单元42,设置为控制升级后的第二单板加载除业务进程之外的进程。
图5是根据本发明实施例的单板升级装置的优选结构框图一,如图5所示,该装置除包括图2所示的所有模块外,还包括升级模块52,下面对该装置进行说明。
升级模块52,连接至上述切换模块26,设置为在切换第一单板上的业务至升级后的第二单板之后,升级外围业务板至预定版本,其中,该外围业务板与处于主用状态的单板进行通信,并进行通信业务的处理。
图6是根据本发明实施例的单板升级装置中第一处理模块24的结构框图二,如图6所示,该第一处理模块24包括升级单元62、校验单元64、复位单元66和第二控制单元68,下面对该第一处理模块24进行说明。
升级单元62,设置为将第二单板远程升级到上述预定版本;校验单元64,连接至上述升级单元62,设置为对升级后的第二单板进行校验;复位单元66,连接至上述校验单元64,设置为在校验结果为升级后的第二单板的版本与第一单板的版本不一致的情况下,控制升级后的第二单板进行复位;第二控制单元68,连接至上述复位单元66,设置为控制复位后的第二单板进入上电挂起状态。
图7是根据本发明实施例的单板升级装置的优选结构框图二,如图7所示,该装置除包括图2所示的所有模块外,还包括以下模块之一:第一控制模块72、第二控制模块74、第三控制模块76,下面对该装置进行说明。
第一控制模块72,连接至上述第一处理模块24,设置为在热隔离上述待升级设备的处于主用状态的第一单板和处于备用状态的第二单板之后,在将第二单板远程升级到上述预定版本失败的情况下,控制该第二单板恢复至升级之前的版本;第二控制模块74,连接至上述切换模块26,设置为在将上述第二单板远程升级到预定版本之后,在切换该第一单板上的业务至升级后的第二单板失败的情况下,控制该第二单板恢复至升级之前的版本;第三控制模块76,连接至上述第二处理模块28,设置为在切换上述第一单板上的业务至升级后的第二单板之后,在将升级后的第二单板的版本同步到第一单板失败的情况下,控制该第一单板和第二单板恢复至升级之前的版本。
通过上述实施例可知,本发明是在传统的手工升级通信设备的基础上进行了改进,提出 了一种基于热隔离的远程升级方法,从而可以在中断业务时间尽可能少的情况下,远程升级目标通信设备,并且将一块主控板(即,上述的第一单板或者第二单板)当做热备份挂起,保持上电挂起状态,能够在升级异常的情况下自动快速回退。
其中,上述实施例中的热隔离是指在不断电的情况下,通过软件方式阻断主备单板(其中,主单板为上述的处于主用状态的第一单板或者第二单板,备单板为上述的处于备用状态的第二单板或者第一单板)的实时同步功能,同时让备用单板处于上电挂起状态。此时主单板和有主备板的外围业务板都处于主板正常上电,备单板上电挂起状态。这个状态下业务不会中断。上述实施例中的上电挂起,是指单板只加载基本进程,不加载业务进程,只能够进行一些控制面基本指令应答的状态。
通过本发明实施例中的技术方案能够有效提高通信设备升级的效率和可靠性,图8是根据本发明实施例的整体框架核心流程图,图9是根据本发明实施例的基于热隔离的远程升级装置的结构框图,其中,升级控制系统、主用主控板、备用主控板、外围业务板的连接关系可参考图9,图9中的升级控制系统负责执行和发送相关命令到升级目标网元,图10是根据本发明实施例的升级流程的具体框图,下面结合图8、图9、图10对本发明进行说明。
图8所示的流程图包括如下步骤:
步骤S800,开始;
步骤S802,开启热隔离升级备板;
为了描述方便,假设此时主控单板保持左主用右备用状态(左主控板同上述的第一单板,右主控板同上述的第二单板),步骤S802主要包括图10中所示的如下步骤:
步骤S1002,将新版本的配置数据通过文件传输协议(File Transfer Protocol,简称为FTP)传输到右主控板上;
步骤S1004,打开热隔离,进入升级模式,禁止左右主控板实时同步,禁止往主控板上传递数据,禁止主备倒换(防止数据不一致),关闭各种校验,防止意外复位单板;
步骤S1006,切换右主控板和外围板(同上述的外围业务板)为新版本;
步骤S1008,打开主控板版本校验以校验右主控板和左主控板的版本是否一致,此时与左主控板(主用主控板)版本不一致的右主控板复位,然后进入上电挂起状态。上述步骤标志着进入升级模式,此时如果有单板复位,主备配置的单板只能上电一块,而且是竞争上电,另一块处于上电挂起,跟主用主控单板不一致的单板复位。此时让右板复位,由于左板还处于主用上电状态,所以不会中断业务,之后复位左板,右板作为主用起来业务就移交给右板了。处于上电挂起的单板要比重新启动的单板上电快,所以竞争上电结果基本就能保证原来处于上电挂起的右板竞争到了主板了。
步骤S804,判断是否升级成功,在升级成功的情况下,转至步骤S806,否则,转至步骤S814;
步骤S806,备板切换为主板运行,即,右主控板进入主用主控状态;
步骤S806主要包括步骤S1010,复位左主控板,让右主控板变为主用状态,此时新版本运行,而左主控板变为上电挂起状态;打开外围板版本校验以校验外围板的版本和主用主控板的版本是否一致,所有跟主用主控板版本不一致的外围板复位后,竞争上电成功的外围板从右主控板要版本,从而让新版本运行,其他同类外围板则保持上电挂起状态;
步骤S808,判断系统运行是否正常,在判断结果为是的情况下,转至步骤S810,否则,转至步骤S814;
步骤S810,升级确认,升级左主控板;
步骤S812,判断左主控板升级是否成功,在判断结果为是的情况下,转至步骤S816,流程结束,否则,转至步骤S814;
步骤S814,快速回退;
步骤S816,流程结束。
其中,步骤S810中在升级左主控板时可以包括步骤S1012,切换左主控板的版本到新版本,解除隔离,关闭各种校验功能;左主控板可以正常上电,新数据可以从右主控板同步到左主控板,外围板处于上电挂起状态的单板也解除热隔离恢复正常上电状态,系统回到正常状态,升级完成;
其中,为每个判断节点设计回退步骤,这样可以达到模块化复用的效果。开启热隔离升级备板步骤失败对应的回退步骤为:S1,关闭热隔离,关闭主控板校验,切换右单板为升级前版本。
备板切换为主板运行步骤失败对应的回退步骤为:S2,关闭外围板校验,所有外围业务板恢复正常工作状态,保证左主控板为主控状态。
升级确认步骤对应的失败步骤为:S3,切换左主控板到升级前版本。
这样每个步骤对应的失败回退步骤是对应升级操作的反向操作,可以复用。即在备板切换为主板运行步骤失败时要依次执行S2、S1的失败回退步骤;在升级确认步骤失败时要依次执行S3、S2、S1的失败回退步骤。由于有上电挂起的状态存在,回退单板从此状态切换到正常上电工作状态要比重启快,所以回退速度也要优于传统的重启整个网元的方式。
如上所示,图9中所示的基于热隔离的远程升级装置包括主用主控板,备用主控板,外围业务板,升级控制系统。其中,主用主控板,是指负责版本存储,数据运行,跟升级控制系统和外围板直接通讯,处于主用正常工作状态的单板。备用主控板,是指在非升级状态下跟主用主控板的数据、版本保持一致的,不跟其他装置通信的处于备用工作状态的单板。外围业务板,是指负责处理通信业务的功能单板的集合,只跟主用主控板通信,其版本由主用主控板决定。升级控制系统是指只跟主用主控板通信且可以根据系统当前状态向升级目标发出系统指令的软件系统。
下面结合具体的应用场景对本发明进行举例说明:
实施方式一
本发明实施例中的方案可以应用于电信管理网(Telecommunication Management Network,简称为TMN)的无线网络控制器(Radio Network Controller,简称为RNC)的远程升级中,具体实施的整体框架也可以参考图8所示,各个步骤中各模块的状态可以如图10所示。该升级过程可以为:
升级的前置最小条件需要设备具有主备状态的在线主控板单板两块和升级控制系统。
开启热隔离,升级备板。此时主备单板的同步功能被关闭,备用主控板进入初始状态。
切换备板为主板,此时原主板变为初始状态,原备板变为主用状态,且新版本生效为运行版本。
升级确认,升级原主用主控板。此时此单板还处于初始状态。此时关闭热隔离,原主用主控板加载业务进程,变为备用正常工作状态,主备同步功能开启。
对于前述每个步骤都给出了对应的回退步骤,哪一步出现异常需要升级控制系统做出判断,发出相应的回退指令即可。靠后的回退步骤要包含靠前的回退步骤。
实施方式二
一般在升级确认前,升级人员要查看关键业绩指标(Key Performance Indication,简称为KPI),路测,检查各节点状态,需要耗费一定时间。为了减少隔离时间和整个升级流程的时间,可以增加升级准备和隔离状态数据自动上报对比,然后自动解除隔离。可以参照图8进行升级,下面对必要的步骤进行说明:
升级准备,升级准备步骤主要包括升级前检查和一些必要的备份操作,升级前检查主要是对升级目标网元进行是否可以升级的检查,比如磁盘空间检查,防止版本无法下载到网元;单板运行状态检查,保证所有单板有主有备。此步骤可以保证接下来升级步骤的正确性。
必要的备份操作是指保存升级对象网元当前状态,比如升级前运行版本和数据信息,运营商关心的KPI指标,目的是和升级后的相同指标进行对比和处理。
远程升级部分包含打开热隔离升级备板和备板切换为主板运行。升级后数据对比,状态检查是指此时在升级处于主备隔离状态时,自动对比升级前后版本和数据,自动判断升级成功与否,减少隔离时间。
实施方式三
根据实际情况,主控板和业务板可以组合升级也可以单独升级主控板,缩短升级时间。 关键区别是打开校验时,只升级主控板的场景只打开主控板校验,如果是主控板和业务板组合升级的场景需要打开外围板校验。
图11是根据本发明实施例的主控板和外围业务板组合、单独升级场景的流程图,下面参照图11进行说明(以主控板为左主用右备用为例),与本实施方式不相关步骤省略。
步骤S1102,打开主控板版本校验,此时与左主控板(主用主控板)版本不一致的右主控板复位,然后进入上电挂起状态;
步骤S1104,判断步骤S1102的操作是否成功,在判断结果为是的情况下,转至步骤S1106,否则,转至步骤S1116;
步骤S1106,复位左主控板,让右主控板变为主用状态,此时新版本运行,而左主控板变为上电挂起状态;
步骤S1108,判断是否要升级外围业务板,在判断结果为是的情况下,转至步骤S1110,否则,转至步骤S1114;
步骤S1110,当需要升级外围业务板时,需要打开外围板校验,所有跟主用主控板版本不一致的外围板复位,竞争上电成功的外围板从右主控板要版本,从而让新版本运行,其他同类外围板则保持上电挂起状态;
步骤S1112,判断步骤S1110的操作是否成功,在判断结果为是的情况下,转至步骤S1114,否则,转至步骤S1116;
步骤S1114,只升级主控板的场景忽略S1110,直接执行本步骤,切换左主控板的版本到新版本,解除隔离,关闭各种校验功能,左主控板可以正常上电,新数据可以从右主控板同步到左主控板,外围板处于上电挂起状态的单板也解除热隔离恢复正常上电状态;
步骤S1116,判断步骤S1114的操作是否成功,在判断结果为是的情况下,转至步骤S1120,否则,转至步骤S1118;
步骤S1118,快速回退;
步骤S1120,系统回到正常状态,升级完成。
实施方式四
根据实际升级需要,可以通过升级控制系统级联组网方式批量、并发地升级网元,可以极大提高升级效率。
图12是根据本发明实施例的集中批量升级网元场景的网络结构图,如图12所示,每个升级控制系统可以在规划的自网段B中管理多个网元,而在网段A中,升级控制系统任务管理服务器可以连接多个升级控制系统,可以同时下发升级任务给升级控制系统进行多网元的 升级和汇总,集中反馈给运维人员。
实施方式五
根据运行商升级指标要求,通过集中升级控制服务器下发任务时的参数设置,可以在升级确认前暂停,以确保有足够的时间来验证业务。此时由于所有主备单板都会至少一块单板启动,另一块单板处于上电挂起状态,业务可以正常运行,同时由于禁止主备倒换,所以只要单板无损坏,理论上这种状态可以一直保持下去,直到运维人员确定升级结果可以接受,再执行升级确认。下面结合图13进行说明,图13是根据本发明实施例的长时间保持隔离状态场景的流程图,如图13所示,该流程包括如下步骤:
步骤S1302,远程升级通信设备;
步骤S1304,判断是否需要升级暂停,若需要,转至步骤S1306,否则,转至不是S1310,其中,集中升级任务下发如果带自动确认的参数,则同实施方式二,如果是需要暂停,则在升级确认前,升级任务暂停;
步骤S1306,人工检查升级结果,比如进行路测,长时间KPI观察等测量评估;
步骤S1308,通过人工检查,判断是否有问题,若没有问题,转至步骤S1310,若出现问题,转至步骤S1314;
步骤S1310,继续执行升级确认步骤;
步骤S1312,判断升级确认是否成功,若成功,转至步骤S1316,否则,转至步骤S1314;
步骤S1314,快速回退;
步骤S1316,流程结束。
通过本发明的上述实施例,可以达到如下效果:
通过升级控制系统,升级人员可以远程操作,一键升级或者回退,不需要人工干预,可以组合升级和批量升级网元,极大节省升级成本。
可以针对关键步骤的回退设计,封装性好,让回退控制模块化,代码复用率高。
通过热隔离状态的设计,让备用主控板处于上电挂起状态,相比重启方式的完全上电过程,切换到工作状态更加迅速,这就使得无论升级和回退,整个过程更加迅速。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被 设置为存储用于执行以下步骤的程序代码:
S11,热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;
S12,将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态;
S13,切换第一单板上的业务至升级后的第二单板;
S14,解除上述第一单板和第二单板之间的热隔离,将升级后的第二单板的版本同步到第一单板。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行步骤S11-S14。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种单板升级方法及装置具有以下有益效果:解决了相关技术中存在的在对通信设备的单板进行升级时,需要人工升级,从而导致操作繁琐,错误率高的问题,进而达到了远程升级通信设备的单板,降低操作难度,降低错误率的效果。

Claims (12)

  1. 一种单板升级方法,包括:
    热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;
    将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态;
    切换第一单板上的业务至升级后的所述第二单板;
    解除所述第一单板和所述第二单板之间的热隔离,将升级后的所述第二单板的版本同步到所述第一单板。
  2. 根据权利要求1所述的方法,其中,所述热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板包括以下操作:
    禁止所述第一单板和所述第二单板进行数据同步;
    禁止所述第一单板和所述第二单板之间进行主备倒换;
    关闭对所述第一单板和/或所述第二单板的校验。
  3. 根据权利要求1所述的方法,其中,所述控制升级后的第二单板处于上电挂起状态包括:
    控制升级后的所述第二单板加载除业务进程之外的进程。
  4. 根据权利要求1所述的方法,其中,在所述切换第一单板上的业务至升级后的所述第二单板之后,还包括:
    升级外围业务板至所述预定版本,其中,所述外围业务板与处于主用状态的单板进行通信,并进行通信业务的处理。
  5. 根据权利要求1所述的方法,其中,所述将第二单板远程升级到预定版本,并控制升级后的第二单板处于上电挂起状态包括:
    将所述第二单板远程升级到所述预定版本;
    对升级后的所述第二单板进行校验;
    在校验结果为升级后的所述第二单板的版本与所述第一单板的版本不一致的情况下,控制升级后的所述第二单板进行复位;
    控制复位后的所述第二单板进入上电挂起状态。
  6. 根据权利要求1至5中任一项所述的方法,其中,包括以下之一:
    在热隔离所述待升级设备的处于主用状态的所述第一单板和处于备用状态的所述第二单板之后,还包括:在将所述第二单板远程升级到所述预定版本失败的情况下,控制所述第二单板恢复至升级之前的版本;
    在将所述第二单板远程升级到所述预定版本之后,还包括:在切换所述第一单板上的业务至升级后的所述第二单板失败的情况下,控制所述第二单板恢复至升级之前的版本;
    在切换所述第一单板上的业务至升级后的所述第二单板之后,还包括:在将升级后的所述第二单板的版本同步到所述第一单板失败的情况下,控制所述第一单板和所述第二单板恢复至升级之前的版本。
  7. 一种单板升级装置,包括:
    热隔离模块,设置为热隔离待升级设备的处于主用状态的第一单板和处于备用状态的第二单板;
    第一处理模块,设置为将所述第二单板远程升级到预定版本,并控制升级后的所述第二单板处于上电挂起状态;
    切换模块,设置为切换第一单板上的业务至升级后的所述第二单板;
    第二处理模块,设置为解除所述第一单板和所述第二单板之间的热隔离,将升级后的所述第二单板的版本同步到所述第一单板。
  8. 根据权利要求7所述的装置,其中,所述热隔离模块包括以下单元:
    第一禁止单元,设置为禁止所述第一单板和所述第二单板进行数据同步;
    第二禁止单元,设置为禁止所述第一单板和所述第二单板之间进行主备倒换;
    关闭单元,设置为关闭对所述第一单板和/或所述第二单板的校验。
  9. 根据权利要求7所述的装置,其中,在控制升级后的所述第二单板处于上电挂起状态时,所述第一处理模块包括:
    第一控制单元,设置为控制升级后的所述第二单板加载除业务进程之外的进程。
  10. 根据权利要求7所述的装置,其中,还包括:
    升级模块,设置为在切换所述第一单板上的业务至升级后的所述第二单板之后,升级外围业务板至所述预定版本,其中,所述外围业务板与处于主用状态的单板进行通信,并进行通信业务的处理。
  11. 根据权利要求7所述的装置,其中,所述第一处理模块包括:
    升级单元,设置为将所述第二单板远程升级到所述预定版本;
    校验单元,设置为对升级后的所述第二单板进行校验;
    复位单元,设置为在校验结果为升级后的所述第二单板的版本与所述第一单板的版本不一致的情况下,控制升级后的所述第二单板进行复位;
    第二控制单元,设置为控制复位后的所述第二单板进入上电挂起状态。
  12. 根据权利要求7至11中任一项所述的装置,其中,还包括以下之一:
    第一控制模块,设置为在热隔离所述待升级设备的处于主用状态的所述第一单板和处于备用状态的所述第二单板之后,在将所述第二单板远程升级到所述预定版本失败的情况下,控制所述第二单板恢复至升级之前的版本;
    第二控制模块,设置为在将所述第二单板远程升级到所述预定版本之后,在切换所述第一单板上的业务至升级后的所述第二单板失败的情况下,控制所述第二单板恢复至升级之前的版本;
    第三控制模块,设置为在切换所述第一单板上的业务至升级后的所述第二单板之后,在将升级后的所述第二单板的版本同步到所述第一单板失败的情况下,控制所述第一单板和所述第二单板恢复至升级之前的版本。
PCT/CN2016/076642 2015-10-09 2016-03-17 单板升级方法及装置 WO2016177127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510648784.3A CN106571939A (zh) 2015-10-09 2015-10-09 单板升级方法及装置
CN201510648784.3 2015-10-09

Publications (1)

Publication Number Publication Date
WO2016177127A1 true WO2016177127A1 (zh) 2016-11-10

Family

ID=57218472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076642 WO2016177127A1 (zh) 2015-10-09 2016-03-17 单板升级方法及装置

Country Status (2)

Country Link
CN (1) CN106571939A (zh)
WO (1) WO2016177127A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459869A (zh) * 2017-12-28 2018-08-28 新华三技术有限公司 Issu升级方法及装置
CN111077764A (zh) * 2019-11-26 2020-04-28 山东航天电子技术研究所 一种兼顾上电和复位的冷热备负载交叉控制方法及电路
CN113220507A (zh) * 2021-04-28 2021-08-06 杭州迪普科技股份有限公司 双主控系统的版本一致性检验方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895469A (zh) * 2019-11-29 2020-03-20 深信服科技股份有限公司 双机热备系统的升级方法、装置及电子设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119188A (zh) * 2007-09-25 2008-02-06 中兴通讯股份有限公司 一种实现业务不中断的单板升级方法
CN101997708A (zh) * 2009-08-11 2011-03-30 中兴通讯股份有限公司 一种主备板远程升级方法及装置
CN102148709A (zh) * 2011-02-25 2011-08-10 中兴通讯股份有限公司 一种实现主备单板升级的方法及装置
CN102195796A (zh) * 2010-03-19 2011-09-21 杭州华三通信技术有限公司 分布式双主控设备的软件版本更新方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8359929B2 (en) * 2009-04-01 2013-01-29 Setra Systems, Inc. Surface mounted instrument
CN101969384B (zh) * 2010-10-11 2012-07-25 北京星网锐捷网络技术有限公司 针对主备主控板切换的兼容性判断方法、装置及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119188A (zh) * 2007-09-25 2008-02-06 中兴通讯股份有限公司 一种实现业务不中断的单板升级方法
CN101997708A (zh) * 2009-08-11 2011-03-30 中兴通讯股份有限公司 一种主备板远程升级方法及装置
CN102195796A (zh) * 2010-03-19 2011-09-21 杭州华三通信技术有限公司 分布式双主控设备的软件版本更新方法及设备
CN102148709A (zh) * 2011-02-25 2011-08-10 中兴通讯股份有限公司 一种实现主备单板升级的方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459869A (zh) * 2017-12-28 2018-08-28 新华三技术有限公司 Issu升级方法及装置
CN111077764A (zh) * 2019-11-26 2020-04-28 山东航天电子技术研究所 一种兼顾上电和复位的冷热备负载交叉控制方法及电路
CN111077764B (zh) * 2019-11-26 2023-10-20 山东航天电子技术研究所 一种兼顾上电和复位的冷热备负载交叉控制方法及电路
CN113220507A (zh) * 2021-04-28 2021-08-06 杭州迪普科技股份有限公司 双主控系统的版本一致性检验方法及装置
CN113220507B (zh) * 2021-04-28 2023-08-22 杭州迪普科技股份有限公司 双主控系统的版本一致性检验方法及装置

Also Published As

Publication number Publication date
CN106571939A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
EP3493471B1 (en) Data disaster recovery method, apparatus and system
WO2016177127A1 (zh) 单板升级方法及装置
CN100407638C (zh) 一种软件升级及回退方法
CN101192970A (zh) 以太网无源光网络系统中用户端设备版本自动同步的方法
CN104615511B (zh) 一种基于双中心的主机批量恢复处理方法及装置
WO2016045439A1 (zh) 一种vnfm容灾保护的方法、装置和nfvo、存储介质
CN104917630A (zh) 对虚拟网络进行恢复的方法和系统
CN100428155C (zh) 通信设备的升级方法
CN114079615B (zh) 一种多集群环境下的应用同步方法、系统、介质和电子设备
CN104320475A (zh) 一种设备升级方法及装置
WO2011018027A1 (zh) 一种主备板升级方法、装置以及一种通信单板
WO2012155630A1 (zh) 一种容灾的方法、装置及系统
CN104516796A (zh) 一种基于命令集的网元备份与恢复方法及装置
CN102300239B (zh) 一种基站及其自启动方法
JP5056504B2 (ja) 制御装置、情報処理システム、情報処理システムの制御方法および情報処理システムの制御プログラム
CN104158906A (zh) 一种服务器代理操控系统及操控方法
CN116010174A (zh) 切换服务器的方法及装置、存储介质、电子装置
JP2006113754A (ja) ソフトウェア更新装置及び方法
CN101316190A (zh) 一种减少业务中断次数的设备软件升级方法
JP2002123398A (ja) 通信装置におけるソフトウェアのバージョンアップ処理装置及び通信装置におけるソフトウェアのバージョンアップ処理方法
CN109032765A (zh) 一种虚拟机双机热备部署方法、装置及设备
CN114095946A (zh) 一种5gc服务网元管理系统及其管理方法
WO2016177202A1 (zh) 一种补丁维护的方法及装置
JP6569247B2 (ja) 障害検証装置及び障害検証方法、検証対象装置、無線通信システム、コンピュータ・プログラム
CN103188087A (zh) 升级处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789121

Country of ref document: EP

Kind code of ref document: A1