WO2016177096A1 - 一种大规模多入多出系统中天线接收的方法和装置 - Google Patents

一种大规模多入多出系统中天线接收的方法和装置 Download PDF

Info

Publication number
WO2016177096A1
WO2016177096A1 PCT/CN2016/076073 CN2016076073W WO2016177096A1 WO 2016177096 A1 WO2016177096 A1 WO 2016177096A1 CN 2016076073 W CN2016076073 W CN 2016076073W WO 2016177096 A1 WO2016177096 A1 WO 2016177096A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
processing module
radio frequency
channel
sounding signal
Prior art date
Application number
PCT/CN2016/076073
Other languages
English (en)
French (fr)
Inventor
张玉杰
宋连坡
李刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16789090.4A priority Critical patent/EP3340485B1/en
Publication of WO2016177096A1 publication Critical patent/WO2016177096A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and apparatus for antenna reception in a large-scale multiple input multiple output system.
  • the middle RF processing module is connected to the baseband receiving processing module, and the central RF processing module receives the RF signal through multiple antennas, and the RF The signal is transmitted to the baseband receiving processing module; the baseband receiving processing module processes the radio frequency signal, and the processing comprises performing MRC (Maximum Ratio Combining) antenna combining in the baseband processing module, using the pilot DMRS (De Modulation Reference Signal, the channel estimation H-weighting to obtain a sufficiently high MRC gain.
  • MRC Maximum Ratio Combining
  • Embodiments of the present invention provide a method and apparatus for receiving antennas in a large-scale MIMO system to solve the problem that the baseband processing chip DSP of the prior art cannot receive or demodulate all antenna channels because of resource constraints.
  • an embodiment of the present invention provides a method for receiving an antenna in a large-scale multiple input multiple output system, where the method includes:
  • the central radio frequency processing module receives the radio frequency signal through multiple antennas
  • the radio frequency signal is transmitted to the baseband receiving processing module through the combined antenna channel for processing.
  • the plurality of antennas are arranged in an antenna array, the antenna arrays forming an M*N matrix, wherein M is a vertical dimension of the antenna, and N is a horizontal dimension of the antenna;
  • the antenna combining mode is selected according to the application scenario; in the scenario where the horizontal beam width is narrow, the horizontal merge mode is selected; in the wide coverage scenario, the vertical merge is selected. mode.
  • the amplitude phase deviation generated by the RF channel and/or the spacing of the antenna elements and the amplitude phase deviation generated by the incident angle are compensated.
  • the method further includes: performing compensation by using a sounding signal compensation factor, including: generating a compensation factor according to a channel estimation of the sounding signal received by the uplink, multiplying the relevant channel by The compensation factor for each channel.
  • the sounding signal compensation factor is the sounding The conjugate of the channel estimate of the signal.
  • step B further comprising determining, according to channel conditions, whether the sounding signal compensation factor needs to be used for compensation.
  • the merging is performed according to the resource block.
  • the processing by the baseband receiving processing module includes: combining the antennas by using a maximum ratio combining algorithm.
  • the embodiment of the present invention further provides an apparatus for receiving an antenna in a large-scale multiple-input multiple-output system, where the apparatus includes a medium-frequency processing module, an antenna combining processing module, and a baseband receiving processing module, wherein the antenna combining processing
  • the module is respectively connected to the central radio frequency processing module and the baseband receiving processing module;
  • the central radio frequency processing module is configured to receive radio frequency signals through multiple antennas;
  • the antenna combining processing module is configured to merge multiple antenna channels and pass
  • the combined antenna channel transmits the radio frequency signal to the baseband receiving processing module;
  • the baseband receiving processing module processes the radio frequency signal transmitted by the antenna combining processing module.
  • the antenna combining processing module includes an amplitude and phase deviation compensation submodule configured to perform amplitude phase deviation generated by the RF channel and/or a spacing of the antenna elements and a phase difference generated by the incident angle. make up.
  • the antenna combining processing module further includes a sounding signal compensation factor compensation submodule configured to compensate by using a sounding signal compensation factor generated according to a channel estimation of the sounding signal of the uplink received signal.
  • the sounding signal compensation factor is a conjugate of a channel estimation value of the sounding signal.
  • an antenna combining processing module is added between the central radio frequency processing module and the baseband receiving processing module, wherein the radio frequency processing module receives the radio frequency signal through multiple antennas, and the antenna combines The processing module first combines the multiple antenna channels, and then transmits the RF signal to the baseband receiving processing module through the combined antenna channel for processing.
  • FIG. 1 is a schematic structural view of an antenna receiving apparatus in a large-scale multi-input and multi-out system of the prior art
  • FIG. 2 is a schematic structural diagram of an antenna receiving apparatus in a large-scale multi-input and multi-out system according to an embodiment of the present invention.
  • the present invention provides a method and a device for receiving antennas in a large-scale multi-input and multi-out system, which are described below with reference to the accompanying drawings. And the embodiments further explain the technical solutions of the present invention in detail. It should be understood that the embodiments described herein are merely illustrative of the technical solutions of the present invention and are not intended to limit the scope of the invention.
  • FIG. 2 An antenna receiving apparatus in a large-scale multi-input and multi-out system according to an embodiment of the present invention is as shown in FIG. 2, where the apparatus includes a medium radio frequency processing module, an antenna combining processing module, and a baseband receiving processing module, wherein the antenna combining processing module Connected to the middle radio frequency processing module and the baseband receiving processing module respectively; the middle radio frequency processing module is configured to receive radio frequency signals through multiple antennas; the antenna combining processing module is configured to combine multiple antenna channels and merge The latter antenna channel transmits the radio frequency signal to the baseband receiving processing module; the baseband receiving processing module processes the radio frequency signal transmitted by the antenna combining processing module.
  • the apparatus includes a medium radio frequency processing module, an antenna combining processing module, and a baseband receiving processing module, wherein the antenna combining processing module Connected to the middle radio frequency processing module and the baseband receiving processing module respectively; the middle radio frequency processing module is configured to receive radio frequency signals through multiple antennas; the antenna combining processing module is configured to combine multiple antenna channels and merge The latter
  • the antenna combining processing module includes an amplitude and phase offset compensation submodule, and the configuration Compensating for the amplitude and phase deviation generated by the RF channel and/or the spacing of the antenna elements and the amplitude and phase deviation produced by the incident angle.
  • the antenna combining processing module further includes a sounding signal compensation factor compensation submodule configured to compensate by using a sounding signal compensation factor generated according to a channel estimation of the sounding signal of the sounding signal received by the uplink, wherein the sounding signal compensation factor is the sounding The conjugate of the channel estimate of the signal.
  • an antenna combining processing module is added between the traditional radio frequency processing module and the baseband receiving processing module, and the antenna combining processing module does not need to process too complicated operations, and only needs to multiply the receiving data by some amplitude compensation factors. .
  • the compensation factor calculated by using the channel estimation value of the uplink sounding signal needs to be transmitted back to the antenna combining processing module.
  • the antenna merging processing module does not need to acquire complex scheduling parameters and does not need to perform complex matrix operations
  • the antenna merging processing module can be implemented by using a chip such as an FPGA (Field-Programmable Gate Array). .
  • FPGA Field-Programmable Gate Array
  • the DMRS channel estimation and the MRC antenna combination in the baseband receiving and processing module are equalized, the parameter scheduling is complicated, and the matrix operation amount is also very large.
  • a high-speed processor such as a DSP is selected.
  • the invention is not easy to use the DMRS signal for estimating each channel in the antenna combining processing module stage, because the calculation amount is still huge, and the real-time DMRS scheduling information parameter is acquired, and then all users of all antenna channels are performed according to the scheduling information parameter.
  • the DMRS channel estimation is much more complicated than the present invention.
  • the method for receiving the antenna in the large-scale multi-input and multi-out system of the embodiment is as follows: first, the radio frequency processing module passes through multiple antennas. Receiving a radio frequency signal; then the antenna combining processing module combines the plurality of antenna channels, and transmits the radio frequency signal to the baseband receiving processing module through the combined antenna channel, and finally the radio frequency signal transmitted by the baseband receiving processing module to the antenna combining processing module Carry out Reason.
  • the antenna emission array is typically two-dimensional, including vertical and horizontal dimensions.
  • the multiple antennas are arranged in an antenna array, and the antenna arrays form an M*N matrix, where M is a vertical dimension of the antenna, N is a horizontal dimension of the antenna, and steps of combining multiple antenna channels are performed.
  • the antenna combining processing module receives signals of 64 antenna channels, the input rate needs at least 64 Gbps, and then performs different combining according to different merge mode configurations.
  • This embodiment selects different antenna combining modes according to different application scenarios. For example, high-rise coverage, where the horizontal beam width is narrow, the amplitude difference of the channel in the horizontal direction is smaller than the vertical direction, and the antenna combining processing module selects the horizontal combination to obtain a higher gain.
  • the transmission link capability to enter the baseband at this time requires only 16 gigabits per second (Gbps).
  • the antenna combining processing module combines the antenna channels in the vertical direction before entering the baseband, for example, the vertical 4 channels in the 64 antenna channels are directly combined to form 16 A baseband channel, at which point the transmission link capability into the baseband requires only 16 Gbps.
  • the amplitude phase deviation generated by the RF channel and/or the spacing of the antenna elements and the amplitude and phase deviation generated by the incident angle are compensated.
  • the amplitude and phase deviation generated by the RF channel needs to be compensated.
  • the compensation factor is A1
  • the angle at which the signal arrives at the antenna oscillator is different, and the antenna spacing is different from the phase difference of the antenna. Compensation is also generated.
  • the factor is A2.
  • the RB Resource Block
  • the sounding signal compensation factor A3 calculated by the channel estimation H of the sounding signal of the uplink received signal is transmitted back to the antenna combining module, and the sounding signal compensation factor A3 is the sounding signal.
  • the baseband needs to separately separate the sounding received signals in order to obtain the information of each antenna, so each channel has a sounding signal compensation factor for each user. , that is, there are M*N different A3 factor values.
  • the relevant channel is multiplied by the corresponding A3 compensation factor for each channel, and then combined.
  • the sounding signal compensation factor can be determined before the sounding signal compensation factor is returned.
  • the channel compensation factor can be directly zero.
  • the partial antenna channel compensation factor is set to 1, it is equivalent to antenna selection.
  • the compensation factor can also be 1, that is, no compensation is performed, so that the performance degradation due to the compensation factor calculation error is avoided.
  • the sounding signal compensation factor A3 of the user's sounding channel estimation H may be used for compensation, and the implementation process is as follows:
  • the antenna combining processing module determines, according to the scheduling parameter, whether there is an empty allocation pair user on the RB. If there is an RB, the compensation factors of the merged channel are determined as A1 and A2. If the RB is only allocated by a single user, the compensation factors of the merged channel are determined as A1, A2, and A3.
  • the baseband receiving end demodulation processing module needs to sort out the channel estimation information of the sounding on the RB of the user by the non-empty allocation of the frame, generate a sounding signal compensation factor A3, and transmit the A3 to the antenna combining processing module.
  • the antenna combining processing module extracts the A3 compensation factor on the corresponding RB of the corresponding user for the non-empty allocation pair user RB, and performs the RB receiving signal compensation.
  • the antenna combining processing module combines the compensated RBs with the relevant compensation channels, and then transmits the combined signals to the baseband receiving end demodulation processing module.
  • the present invention does not exclude other compensation parameters that are passed to the antenna combining processing module, such as the antenna active phase channel compensation factor of the antenna calibration.
  • the antenna combining processing module After the antenna combining processing module, the IQ signal of the matrix dimension of K*L is transmitted to the baseband receiving processing module, and in the baseband receiving processing module, channel estimation H is performed on the K*L-dimensional signal, and then MRC (Maximum Ratio Combining, MRC) is performed. Maximum ratio combining) Antenna combining, and finally equalizing and demodulating user data of 1 stream or streams.
  • MRC Maximum Ratio Combining
  • the invention adds an antenna combining processing module between the middle radio frequency processing module and the baseband receiving processing module. After the radio frequency processing module receives the radio frequency signal through multiple antennas, the antenna combining processing module first combines the multiple antenna channels, and then merges The latter antenna channel transmits the RF signal to the baseband receiving processing module for processing. Thereby, the complexity of the baseband receiving system is simplified, and the calculation amount of the baseband processing is reduced, so that the baseband processing chip DSP can receive or demodulate all the antenna channels.
  • an antenna combining processing module is added between the central radio frequency processing module and the baseband receiving processing module. After the radio frequency processing module receives the radio frequency signal through multiple antennas, the antenna combining processing module first combines the multiple antenna channels. Then, the RF signal is transmitted to the baseband receiving processing module through the combined antenna channel for processing. Thereby, the complexity of the baseband receiving system is simplified, and the calculation amount of the baseband processing is reduced, so that the baseband processing chip DSP can receive or demodulate all the antenna channels.

Abstract

本发明实施例公开了一种大规模多入多出系统中天线接收的方法及装置,其中,所述方法包括以下步骤:A、中射频处理模块通过多个天线接收射频信号;B、将多个天线通道进行合并;C、通过合并后的天线通道将射频信号传输给基带接收处理模块进行处理。

Description

一种大规模多入多出系统中天线接收的方法和装置 技术领域
本发明涉及无线通信技术领域,特别是涉及一种大规模多入多出系统中天线接收的方法和装置。
背景技术
在LTE(Long Term Evolution,长期演进)物理层技术平台上新兴的大规模多入多出技术的接收机系统中,存在着大量的接收天线。现有的一种大规模多入多出系统中天线接收装置如图1所示,其中,中射频处理模块和基带接收处理模块连接,中射频处理模块通过多个天线接收射频信号,并将射频信号传输给基带接收处理模块;基带接收处理模块对所述射频信号进行处理,该处理包括在基带处理模块中进行MRC(Maximum Ratio Combining,最大比合并)天线合并,利用的是导频DMRS(De Modulation Reference Signal,解调参考信号)信道估计H加权来获取到足够高的MRC增益。
但是,虽然理论上来说更多的接收天线可以带来更多的接收增益,但是也给基带的处理带来了巨大的运算量。在整个接收机中,利用DMRS进行信道估计并完成合并占到整个接收机系统处理资源的一半以上。比如业界通常将64根天线通道以上配置才称为大规模多入多出技术天线系统,而做64根天线通道的解调对基带处理器DSP(Digital Signal Processor,数字信号处理器)来说是巨大的,同时对基带处理器的接口速率的需求也巨大,仅仅进入基带的传输链路就需要有接近64Gbps的传输能力,从而造成基带处理芯片DSP因为资源受限而无法接收或解调所有天线通道。
发明内容
本发明实施例提供一种大规模多入多出系统中天线接收的方法和装置,用以解决现有技术基带处理芯片DSP因为资源受限而无法接收或解调所有天线通道的问题。
本发明实施例提供以下的技术方案:
第一方面,本发明实施例提供一种大规模多入多出系统中天线接收的方法,所述方法包括:
A、中射频处理模块通过多个天线接收射频信号;
B、将多个天线通道进行合并;
C、通过合并后的天线通道将射频信号传输给基带接收处理模块进行处理。
在本发明的一种实施例中,所述多个天线布置成天线阵列,所述天线阵列组成一个M*N矩阵,其中M为天线的垂直维度,N为天线的水平维度;所述步骤B包括:
将M*N矩阵合并为K*L矩阵,其中K为天线的垂直维度,且K<=M;L为天线的水平维度,且L<=N。
在本发明的一种实施例中,在所述步骤B中,包括根据应用场景选择天线合并模式;在水平方向波束宽度窄的场景下,选择水平合并模式;在广覆盖场景下,选择垂直合并模式。
在本发明的一种实施例中,在所述步骤B中,包括对射频通道产生的幅相偏差和/或天线振子的间距和入射角度产生的幅相偏差进行补偿。
在本发明的一种实施例中,在所述步骤B中,还包括利用sounding信号补偿因子进行补偿,包括:根据上行接收到的探测信号sounding信号的信道估计生成补偿因子,将相关通道乘以每个通道对应的补偿因子。
在本发明的一种实施例中,所述sounding信号补偿因子为所述sounding 信号的信道估计值的共轭。
在本发明的一种实施例中,在所述步骤B中,还包括根据信道条件判断是否需要利用sounding信号补偿因子进行补偿。
在本发明的一种实施例中,在所述步骤B中,按照资源块为粒度进行合并。
在本发明的一种实施例中,在所述步骤C中,所述基带接收处理模块进行处理包括:利用最大比合并算法对天线进行合并。
第二方面,本发明实施例还提供一种大规模多入多出系统中天线接收的装置,所述装置包括中射频处理模块、天线合并处理模块和基带接收处理模块,其中所述天线合并处理模块分别与所述中射频处理模块和基带接收处理模块连接;所述中射频处理模块配置为通过多个天线接收射频信号;所述天线合并处理模块配置为将多个天线通道进行合并,并通过合并后的天线通道将射频信号传输给基带接收处理模块;所述基带接收处理模块对所述天线合并处理模块传输的射频信号进行处理。
在本发明的一种实施例中,所述天线合并处理模块包括幅相偏差补偿子模块,配置为对射频通道产生的幅相偏差和/或天线振子的间距和入射角度产生的幅相偏差进行补偿。
在本发明的一种实施例中,所述天线合并处理模块还包括sounding信号补偿因子补偿子模块,配置为利用根据上行接收到的探测信号sounding信号的信道估计生成的sounding信号补偿因子进行补偿。
在本发明的一种实施例中,所述sounding信号补偿因子为所述sounding信号的信道估计值的共轭。
本发明实施例有益效果如下:
本发明实施例在中射频处理模块与基带接收处理模块之间添加天线合并处理模块,当中射频处理模块通过多个天线接收到射频信号后,天线合 并处理模块先将多个天线通道进行合并,然后通过合并后的天线通道将射频信号传输给基带接收处理模块进行处理。从而简化了基带接收系统的复杂度,降低了基带处理的运算量,使得基带处理芯片DSP可以接收或解调所有天线通道。
附图说明
图1是现有技术的一种大规模多入多出系统中天线接收装置的结构示意图;
图2是本发明实施例的一种大规模多入多出系统中天线接收装置的结构示意图。
具体实施方式
为了解决现有技术基带处理芯片DSP因为资源受限而无法接收或解调所有天线通道的问题,本发明提供了一种大规模多入多出系统中天线接收的方法和装置,以下结合附图以及实施例,对本发明的技术方案进行进一步详细说明。应当理解,此处所描述的实施例仅仅用以解释本发明的技术方案,并不限定本发明的保护范围。
实施例1
本发明实施例的一种大规模多入多出系统中天线接收装置如图2所示,所述装置包括中射频处理模块、天线合并处理模块和基带接收处理模块,其中所述天线合并处理模块分别与所述中射频处理模块和基带接收处理模块连接;所述中射频处理模块配置为通过多个天线接收射频信号;所述天线合并处理模块配置为将多个天线通道进行合并,并通过合并后的天线通道将射频信号传输给基带接收处理模块;所述基带接收处理模块对所述天线合并处理模块传输的射频信号进行处理。
本实施例中,所述天线合并处理模块包括幅相偏差补偿子模块,配置 为对射频通道产生的幅相偏差和/或天线振子的间距和入射角度产生的幅相偏差进行补偿。所述天线合并处理模块还包括sounding信号补偿因子补偿子模块,配置为利用根据上行接收到的探测信号sounding信号的信道估计生成的sounding信号补偿因子进行补偿,所述sounding信号补偿因子为所述sounding信号的信道估计值的共轭。
本实施例在传统中射频处理模块与基带接收处理模块之间添加一个天线合并处理模块,此天线合并处理模块不需要处理太过复杂的运算,只需将接收数据乘一些幅相补偿因子即可。并且为提高天线合并处理模块的合并增益,需要将利用上行探测sounding信号的信道估计值计算的补偿因子回传给天线合并处理模块。
因为天线合并处理模块不需要获取复杂的调度参数,也不需要进行复杂的矩阵运算,因此天线合并处理模块可以使用FPGA(Field-Programmable Gate Array,现场可编程门阵列)这一类的芯片来实现。而基带接收处理模块中的DMRS信道估计以及MRC天线合并进行均衡处理,参数调度复杂,矩阵运算量也非常大,实际系统中选择DSP这样的高速处理器来实现。
本发明不易在天线合并处理模块阶段将每根通道利用DMRS信号来进行估计,因为这样运算量仍然很巨大,而且要获取到实时的DMRS调度信息参数,然后根据调度信息参数进行所有天线通道所有用户的DMRS信道估计,相对本发明来说要复杂的多。
实施例2
当采用实施例的大规模多入多出系统中天线接收的装置时,本实施例的一种大规模多入多出系统中天线接收的方法的过程为:首先中射频处理模块通过多个天线接收射频信号;然后天线合并处理模块将多个天线通道进行合并,并通过合并后的天线通道将射频信号传输给基带接收处理模块,最后基带接收处理模块对所述天线合并处理模块传输的射频信号进行处 理。
在大规模多入多出技术天线系统中,天线排放阵列通常是两维的,包括垂直维度和水平维度。本实施例中,所述多个天线布置成天线阵列,所述天线阵列组成一个M*N矩阵,其中M为天线的垂直维度,N为天线的水平维度;将多个天线通道进行合并的步骤包括将M*N矩阵合并为K*L矩阵,其中K为天线的垂直维度,且K<=M;L为天线的水平维度,且L<=N。例如如果做垂直维度的合并,天线阵列可以变成一个1*N的矩阵,如果做了水平维度的合并,则天线阵列变成了一个M*1的矩阵。
在进行合并时,可以根据应用场景选择天线合并模式;在水平方向波束宽度窄的场景下,选择水平合并模式;在广覆盖场景下,选择垂直合并模式。本实施例中,比如对于M=4,N=16的大规模多入多出接收机系统。天线合并处理模块接收到64个天线通道的信号,输入速率至少需要64Gbps,然后根据不同的合并模式配置进行不同的合并。本实施例根据不同的应用场景选择不同的天线合并模式。比如高楼覆盖,此时水平方向波束宽度窄,信道在水平方向的幅相差异相比垂直方向更小,天线合并处理模块选择水平合并会获得较高的增益。即可以将同一行的N列的天线通道进行合并,从而输出K=4,L=1的K*L天线通道,也就是4根天线通道传输给基带处理模块,然后基带处理模块进行4天线的MRC合并或者IRC合并即可。此时进入基带的传输链路能力仅需要4Gbps。如果不同高楼覆盖场景,而是广覆盖场景,那么进行垂直方向的四合一相对增益更好。也就是将同一列的M行天线通道进行合并,从而输出K=1,L=16的K*L天线通道,也就是16根天线的MRC合并或者IRC合并。此时进入基带的传输链路能力仅需要16吉比特每秒(Gbps)。
本实施例以天线合并处理模块将进入基带之前的垂直方向的天线通道进行合并为例,比如将64天线通道中的垂直4通道直接合一从而形成16 个基带通道,此时进入基带的传输链路能力仅需要16Gbps。
在合并过程中,包括对射频通道产生的幅相偏差和/或天线振子的间距和入射角度产生的幅相偏差进行补偿。本实施例为了做到幅相对齐,射频通道产生的幅相偏差需要补偿,假定补偿因子为A1,信号到达天线振子的角度不同和天线间距综合差生幅相偏差也需要补偿,由此产生的补偿因子为A2。
由于不同的载波上通道幅相影响不一样,因此在合并的时候,通常是按照RB(Resource Block,资源块)为粒度进行合并。不同的RB被加权不同的幅相补偿因子。
为了增加天线合并处理模块的合并增益,将上行接收到的探测信号sounding信号的信道估计H计算的sounding信号补偿因子A3,回传给天线合并模块,所述sounding信号补偿因子A3为所述sounding信号的信道估计值的共轭。基于在大规模多入多出系统中,基带为了获取到每根天线的信息,而需要将sounding接收信号单独分离开来不进行合并,因此每个通道针对每个用户都有一个sounding信号补偿因子,即有M*N个不同A3因子数值。天线合并处理模块在进行合并的时候,将相关通道乘以每个通道对应A3补偿因子,然后进行合并。
同时,在回传sounding信号补偿因子之前,可以对sounding信号补偿因子进行判决。对于功率非常低的通道,可以直接令通道补偿因子为0。部分天线通道补偿因子设置为1,则等同进行天线选择。对于近点用户,信道条件非常理想的时候,也可以令补偿因子为1,即不进行补偿,免得因为补偿因子计算误差而引起性能下降。
本实施例中,对于某个用户的RB,可以使用此用户的sounding的信道估计H计算sounding信号补偿因子A3来进行补偿,实现过程如下:
天线合并处理模块根据调度参数,确定RB上是否存在空分配对用户。 如果RB上存在,则将合并通道的补偿因子确定为A1和A2。如果RB仅是单用户分配的,则将合并通道的补偿因子确定为A1、A2、A3。
基带接收端解调处理模块需要将本帧非空分配对用户的RB上的sounding的信道估计信息整理出来,生成sounding信号补偿因子A3,将A3传递给天线合并处理模块。
天线合并处理模块对于非空分配对用户RB,提取对应用户的对应RB上的A3补偿因子,进行本RB接收信号补偿。
天线合并处理模块对补偿后的RB进行相关补偿通道的合并,然后将合并后的信号,传输给基带接收端解调处理模块。
本发明不排除传递给天线合并处理模块其他的补偿参数,比如天线校准的接收有源通道幅相补偿因子等。
经过天线合并处理模块后,K*L的矩阵维度的IQ信号传输给基带接收处理模块,在基带接收处理模块中,对K*L维的信号进行信道估计H,然后进行MRC(Maximum Ratio Combining,最大比合并)天线合并,最后均衡解调1流或多流的用户数据。
本发明在中射频处理模块与基带接收处理模块之间添加天线合并处理模块,当中射频处理模块通过多个天线接收到射频信号后,天线合并处理模块先将多个天线通道进行合并,然后通过合并后的天线通道将射频信号传输给基带接收处理模块进行处理。从而简化了基带接收系统的复杂度,降低了基带处理的运算量,使得基带处理芯片DSP可以接收或解调所有天线通道。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。
工业实用性
本发明实施例中,在中射频处理模块与基带接收处理模块之间添加天线合并处理模块,当中射频处理模块通过多个天线接收到射频信号后,天线合并处理模块先将多个天线通道进行合并,然后通过合并后的天线通道将射频信号传输给基带接收处理模块进行处理。从而简化了基带接收系统的复杂度,降低了基带处理的运算量,使得基带处理芯片DSP可以接收或解调所有天线通道。

Claims (13)

  1. 一种大规模多入多出系统中天线接收的方法,所述方法包括以下步骤:
    A、射频处理模块通过多个天线接收射频信号;
    B、将多个天线通道进行合并;
    C、通过合并后的天线通道将射频信号传输给基带接收处理模块进行处理。
  2. 如权利要求1所述的方法,其中,所述多个天线布置成天线阵列,所述天线阵列组成一个M*N矩阵,其中M为天线的垂直维度,N为天线的水平维度;所述步骤B包括:
    将M*N矩阵合并为K*L矩阵,其中K为天线的垂直维度,且K<=M;L为天线的水平维度,且L<=N。
  3. 如权利要求2所述的方法,其中,在所述步骤B中,包括根据应用场景选择天线合并模式;在水平方向波束宽度窄的场景下,选择水平合并模式;在广覆盖场景下,选择垂直合并模式。
  4. 如权利要求1所述的方法,其中,在所述步骤B中,包括对射频通道产生的幅相偏差和/或天线振子的间距和入射角度产生的幅相偏差进行补偿。
  5. 如权利要求4所述的方法,其中,在所述步骤B中,还包括利用sounding信号补偿因子进行补偿,包括:根据上行接收到的探测信号sounding信号的信道估计生成补偿因子,将相关通道乘以每个通道对应的补偿因子。
  6. 如权利要求5所述的方法,其中,所述sounding信号补偿因子为所述sounding信号的信道估计值的共轭。
  7. 如权利要求5所述的方法,其中,在所述步骤B中,还包括根据 信道条件判断是否需要利用sounding信号补偿因子进行补偿。
  8. 如权利要求1所述的方法,其中,在所述步骤B中,按照资源块为粒度进行合并。
  9. 如权利要求1至8任一项所述的方法,其中,在所述步骤C中,所述基带接收处理模块进行处理包括:利用最大比合并算法对天线进行合并。
  10. 一种大规模多入多出系统中天线接收的装置,所述装置包括中射频处理模块、天线合并处理模块和基带接收处理模块,其中所述天线合并处理模块分别与所述中射频处理模块和基带接收处理模块连接;所述中射频处理模块配置为通过多个天线接收射频信号;所述天线合并处理模块配置为将多个天线通道进行合并,并通过合并后的天线通道将射频信号传输给基带接收处理模块;所述基带接收处理模块对所述天线合并处理模块传输的射频信号进行处理。
  11. 如权利要求10所述的装置,其中,所述天线合并处理模块包括幅相偏差补偿子模块,配置为对射频通道产生的幅相偏差和/或天线振子的间距和入射角度产生的幅相偏差进行补偿。
  12. 如权利要求11所述的装置,其中,所述天线合并处理模块还包括sounding信号补偿因子补偿子模块,配置为利用根据上行接收到的探测信号sounding信号的信道估计生成的sounding信号补偿因子进行补偿。
  13. 如权利要求12所述的装置,其中,所述sounding信号补偿因子为所述sounding信号的信道估计值的共轭。
PCT/CN2016/076073 2015-09-28 2016-03-10 一种大规模多入多出系统中天线接收的方法和装置 WO2016177096A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16789090.4A EP3340485B1 (en) 2015-09-28 2016-03-10 Antenna receiving method and device in large-scale multiple-input multiple-output system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510627387.8 2015-09-28
CN201510627387.8A CN106559108B (zh) 2015-09-28 2015-09-28 一种大规模多入多出系统中天线接收的方法和装置

Publications (1)

Publication Number Publication Date
WO2016177096A1 true WO2016177096A1 (zh) 2016-11-10

Family

ID=57218437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076073 WO2016177096A1 (zh) 2015-09-28 2016-03-10 一种大规模多入多出系统中天线接收的方法和装置

Country Status (3)

Country Link
EP (1) EP3340485B1 (zh)
CN (1) CN106559108B (zh)
WO (1) WO2016177096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108234001A (zh) * 2016-12-14 2018-06-29 中国电信股份有限公司 大规模天线设备和大规模天线设备数据传输方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017925B (zh) * 2017-04-13 2020-06-23 京信通信系统(中国)有限公司 一种有源阵列天线的信号处理方法和装置
CN111082873B (zh) * 2019-12-17 2022-02-11 北京邮电大学 一种超长距离光纤高精度射频信号传递系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759617A (zh) * 2003-05-01 2006-04-12 美国博通公司 利用基于射频和基带传输信号加权与合并的多天线通信系统权重生成方法
CN101015138A (zh) * 2004-09-10 2007-08-08 皇家飞利浦电子股份有限公司 具有多天线的无线通信装置及其方法
CN101350647A (zh) * 2007-07-16 2009-01-21 大唐移动通信设备有限公司 一种处理多天线信号的方法及系统
CN103236970A (zh) * 2013-03-27 2013-08-07 安徽海聚信息科技有限责任公司 一种基于Zigbee技术的以太网无线接收网关

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667715B1 (en) * 1999-08-18 2003-12-23 Hughes Electronics Corporation Signal processing circuit for communicating with a modular mobile satellite terminal and method therefor
US7339979B1 (en) * 2003-02-11 2008-03-04 Calamp Corp. Adaptive beamforming methods and systems that enhance performance and reduce computations
CA2553678C (en) * 2004-01-30 2014-07-08 Universite Laval Multi-user adaptive array receiver and method
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759617A (zh) * 2003-05-01 2006-04-12 美国博通公司 利用基于射频和基带传输信号加权与合并的多天线通信系统权重生成方法
CN101015138A (zh) * 2004-09-10 2007-08-08 皇家飞利浦电子股份有限公司 具有多天线的无线通信装置及其方法
CN101350647A (zh) * 2007-07-16 2009-01-21 大唐移动通信设备有限公司 一种处理多天线信号的方法及系统
CN103236970A (zh) * 2013-03-27 2013-08-07 安徽海聚信息科技有限责任公司 一种基于Zigbee技术的以太网无线接收网关

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108234001A (zh) * 2016-12-14 2018-06-29 中国电信股份有限公司 大规模天线设备和大规模天线设备数据传输方法

Also Published As

Publication number Publication date
EP3340485A4 (en) 2018-08-29
CN106559108A (zh) 2017-04-05
CN106559108B (zh) 2020-05-22
EP3340485B1 (en) 2020-08-19
EP3340485A1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
Paul et al. A Statistical Channel Modeling for MIMO-OFDM Beamforming System in 5G mmWave Communications
US10070453B2 (en) Radio base station apparatus and scheduling method
EP3128680B1 (en) Method and apparatus for implementing transparent multi-user multiple-input multiple-output transmission
JP5518649B2 (ja) 無線通信制御方法、無線通信システム、無線基地局および移動端末
EP3402105B1 (en) Method by which terminal receives downlink signal from base station in wireless communication system, and device therefor
JP5757994B2 (ja) ワイヤレス通信の方法及びシステム、対応するネットワーク及びコンピュータプログラム製品
JP5685217B2 (ja) 無線通信システム、無線基地局および移動端末
US9125074B2 (en) Coordinated multi-point transmission and multi-user MIMO
KR101935782B1 (ko) 다중 셀룰러 네트워크에서 신호의 송수신 방법 및 장치
CN110166088B (zh) 以用户为中心的无小区mimo系统的功率控制算法
WO2015184918A1 (zh) 一种发送和接收参考信号的方法和通信节点
WO2016177096A1 (zh) 一种大规模多入多出系统中天线接收的方法和装置
US10212714B2 (en) Method for processing received signal of MIMO receiver
JP2011193469A (ja) 多重受信アンテナ受信機での線形マルチユーザプリコーディング
Zhang et al. NOMA-based cell-free massive MIMO over spatially correlated Rician fading channels
EP3117531B1 (en) Method for processing received signal of mimo receiver
WO2015199252A1 (ko) 무선 통신 시스템에서 고주파 대역을 통하여 신호를 전송하는 방법 및 이를 위한 장치
CN106716856B (zh) 闭环大规模mimo系统架构
US11411632B2 (en) Method to estimate SNR for MU-MIMO based on channel orthogonality
CN107302385B (zh) 虚拟多输入多输出通信方法、装置及系统
WO2015100939A1 (zh) 一种实现空分复用的方法、基站及终端
WO2018115966A1 (zh) 用于对上行大规模mim0信号进行预合并处理的方法和装置
Wang et al. Beam-superposition-based multi-beam RSMA for hybrid mmWave systems
JP6336229B2 (ja) 無線通信装置および送信ストリーム数決定方法
KR100905549B1 (ko) 다중 입력 다중 출력 무선 통신 시스템의 상향링크에서의송신 안테나 선택 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016789090

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE