WO2016177076A1 - 数据传输方法、客户端设备及服务端设备 - Google Patents

数据传输方法、客户端设备及服务端设备 Download PDF

Info

Publication number
WO2016177076A1
WO2016177076A1 PCT/CN2016/075659 CN2016075659W WO2016177076A1 WO 2016177076 A1 WO2016177076 A1 WO 2016177076A1 CN 2016075659 W CN2016075659 W CN 2016075659W WO 2016177076 A1 WO2016177076 A1 WO 2016177076A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
sub
downlink
transmission area
uplink
Prior art date
Application number
PCT/CN2016/075659
Other languages
English (en)
French (fr)
Inventor
梁春丽
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/743,046 priority Critical patent/US20180270848A1/en
Publication of WO2016177076A1 publication Critical patent/WO2016177076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to, but is not limited to, the field of data transmission technologies, and in particular, to a data transmission method, a client device, and a server device.
  • LTE Long Term Evolution
  • data transmission is in units of subframes.
  • the subframe of the LTE system is in units of 1 ms in the time domain, and 10 subframes constitute an LTE radio frame.
  • the radio frame structure of the LTE is as shown in FIG. 1 .
  • the LTE system has three types of subframes, one is a downlink subframe, one is an uplink subframe, and one is a special subframe. The following is introduced separately.
  • the existing downlink subframe structure, and all time-frequency resources of the subframe are used for downlink transmission.
  • FIG. 2A, FIG. 2B and FIG. 2C a schematic diagram of a conventional downlink subframe structure is shown.
  • the subframe only the physical downlink control channel (PDCCH: Physical Downlink Control Channel) is configured, and the first three orthogonal frequency division multiplexing (OFDM) symbols are used for the PDCCH, and the following OFDM is used.
  • the symbol is used to transmit a Physical Downlink Shared Channel (PDSCH), and the PDCCH and the PDSCH are multiplexed by time division.
  • the subframe is configured with a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel (EPDCCH: Enhanced PDCCH), where the EPDCCH and the PDSCH occupy the same OFDM symbol, and are multiplexed by frequency division, PDSCH.
  • PDCCH Physical Downlink Control Channel
  • EPDCCH enhanced physical downlink control channel
  • FIG. 3A, FIG. 3B and FIG. 3C a schematic diagram of a structure of an existing uplink subframe is respectively shown.
  • the uplink subframe structure of FIG. 3A, FIG. 3B, and FIG. 3C all time-frequency resources of the subframe are also used for uplink transmission.
  • FIG. 3A is used for transmitting a physical uplink shared channel (PUSCH: Physical).
  • PUSCH Physical uplink shared channel
  • FIGS. 3B and 3C A schematic diagram of a subframe structure of a reference signal of an Uplink Shared Channel, wherein a patterned OFDM symbol is a reference signal (the same time domain symbol is a reference signal in FIGS. 3B and 3C), and FIG. 3B and FIG. 3C are physical uplinks.
  • PUCCH Physical Uplink Control Channel
  • the PUCCH format 2/2a/2b/3 adopts a schematic diagram of the reference signal structure as shown in FIG. 3C.
  • FIG. 4 is a structural diagram of a special subframe in the prior art.
  • the special subframe set in a TDD (Time Division Duplex) system can be used for downlink transmission or uplink. Transmission, but the uplink transmission in the special subframe only includes the transmission of the SRS (Sounding Reference Signal), and does not include the transmission of the uplink service data.
  • SRS Sounding Reference Signal
  • three special time slots are included: a downlink pilot time slot (DwPTS: Downlink Pilot Time Slot), a guard interval (GP: Guard Period), and an uplink pilot time slot (UpPTS).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS uplink pilot time slot
  • Uplink Pilot Time Slot wherein DwPTS is used for downlink transmission, the downlink transmission includes downlink control channel, downlink traffic channel transmission, GP is used as protection interval for uplink and downlink handover, and UpPTS can be used for transmitting measurement reference signal ( SRS) and Physical Random Access Channel (PRACH), UpPTS cannot transmit PUCCH and PUSCH.
  • SRS measurement reference signal
  • PRACH Physical Random Access Channel
  • LTE is a centralized control system, which means that all uplink and downlink transmissions are controlled by the base station.
  • the control information related to the downlink transmission is sent in the same subframe as the data (referred to as the current frame scheduling), and for the uplink transmission, the control information related to the uplink transmission needs to be sent in advance, and is sent on the subframe n.
  • the control information related to the uplink transmission indicates the uplink transmission on the subframe n+K (referred to as early scheduling).
  • the value of K is 4, and
  • the uplink transmission of the LTE system needs to be pre-scheduled, after successively scheduling m uplink subframes, there will be consecutive m subframes to be used for uplink transmission, and if the existing subframe structure is used, then consecutive m subframes are It cannot be used for downlink transmission. In this case, if there is a demand for downlink transmission, it must wait for m subframes before transmission. The following is described in conjunction with a specific example.
  • FIG. 5 is a schematic diagram of an uplink transmission advance scheduling.
  • K is set to 4
  • the base station is When the uplink scheduling information (downlink control information related to the uplink transmission) is transmitted on the subframes #0 to #3, the terminal performs uplink transmission on the subframes #4 to #7.
  • the uplink subframe can only perform uplink transmission. If the base station also has downlink transmission in subframe #4, the subframe resource is not available, because the subframe #4 passes the subframe #0.
  • the uplink scheduling information is determined to be used for uplink transmission. Since three consecutive subframes are also scheduled for uplink transmission in advance, the base station must wait until subframe #8 for resource transmission, so that delay-sensitive downlink is performed. In terms of business, the impact is greater. Therefore, the existing data transmission method cannot meet the low delay requirement, so that the service with low delay requirement cannot be smoothly performed.
  • the embodiment of the invention provides a data transmission method, a client device and a server device, which can meet the requirements of low latency requirements.
  • the embodiment of the invention provides a data transmission method, and the method includes:
  • n is an integer.
  • the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink reception;
  • the uplink and downlink transmission area indication information includes: related information of an uplink transmission area, and related information of a downlink transmission area;
  • the obtaining the uplink and downlink transmission area indication information includes:
  • the performing the uplink transmission in the uplink transmission area of the subframe n and the downlink transmission in the downlink transmission area of the subframe n according to the received first downlink control information and the obtained uplink and downlink transmission area indication information including:
  • downlink reception is performed in the downlink transmission area of the subframe n.
  • the acquiring information about the uplink transmission area of the subframe n is implemented in one of the following manners:
  • the related information of the uplink transmission area includes at least one of the following content:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • the acquiring information about the downlink transmission area of the subframe n is implemented in one of the following manners:
  • the related information of the downlink transmission area includes at least one of the following content:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • the structures of the uplink transmission area and the downlink transmission area in the subframe include:
  • the downlink control region, the downlink data region, the uplink special region, and the uplink data region are configured in a subframe, where the uplink special region includes at least one of an uplink control region, a measurement reference signal region, and a random access region.
  • the components of the downlink control region, the downlink data region, the uplink special region, and the uplink data region in the subframe include one of the following manners, where each data region or control region is in a sub-frame sequence They are:
  • a downlink control area a downlink data area, and an uplink special area
  • a downlink control area a downlink data area, an uplink data area, and an uplink special area
  • a downlink control region a downlink data region, and an uplink data region
  • Downlink control area uplink data area, and uplink special area.
  • the uplink and downlink transmission area indication information includes: first sub-subframe indication information and second sub-subframe indication information;
  • the first sub-subframe indication information is used to indicate that one or more sub-frames in the radio frame are divided into N sub-subframes;
  • the obtaining the uplink and downlink transmission area indication information includes:
  • the performing the uplink transmission in the uplink transmission area of the subframe n and the downlink transmission in the downlink transmission area of the subframe n according to the received first downlink control information and the obtained uplink and downlink transmission area indication information including:
  • uplink transmission is performed on N1 sub-subframes
  • downlink reception is performed on N2 sub-subframes according to the corresponding second sub-subframe indication information.
  • the first sub-subframe indication information is obtained by using one of the following manners:
  • the second sub-subframe indication information is obtained by using one of the following manners:
  • the embodiment of the invention further provides a data transmission method, the method comprising:
  • the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink transmission;
  • n is an integer.
  • the method before the uplink transmission area of the subframe n receives the uplink transmission of the terminal, the method further includes:
  • Downlink transmission is performed in the downlink transmission area of subframe n.
  • the data transmission method before the uplink transmission area of the subframe n receives the uplink transmission of the terminal, the data transmission method further includes:
  • the uplink and downlink transmission area indication information includes: related information of the uplink transmission area and/or related information of the downlink transmission area.
  • the sending the uplink and downlink transmission area indication information to the terminal includes:
  • the second downlink control information and the third downlink control information are sent on the same downlink control information format.
  • the related information of the uplink transmission area includes at least one of the following content:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • the related information of the downlink transmission area includes at least one of the following content:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • the data transmission method before the uplink transmission area of the subframe n receives the uplink transmission of the terminal, the data transmission method further includes:
  • the uplink and downlink transmission area indication information includes: first sub-subframe indication information and second sub-subframe indication information;
  • the first sub-subframe indication information is used to indicate that one or more sub-frames in the radio frame are divided into N sub-subframes; the second sub-subframe indication information is used to indicate that the N1 is divided into the sub-frames.
  • the sending the uplink and downlink transmission area indication information to the terminal includes:
  • the second sub-subframe indication information is sent to the terminal by using the sixth downlink control information.
  • the embodiment of the present invention further provides a client device, which is disposed on the terminal, where the client device includes:
  • a first receiving unit configured to receive first downlink control information related to uplink transmission
  • the uplink and downlink transmission area acquiring unit is configured to acquire uplink and downlink transmission area indication information
  • the first transmission unit is configured to perform uplink transmission in an uplink transmission region of the subframe n and downlink in a downlink transmission region of the subframe n according to the received first downlink control information and the obtained uplink and downlink transmission region indication information.
  • Receive where n is an integer.
  • the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink reception;
  • the uplink and downlink transmission area indication information includes: related information of an uplink transmission area and related information of a downlink transmission area;
  • the uplink and downlink transmission area acquisition list includes:
  • An uplink transmission area acquiring module is configured to acquire related information of an uplink transmission area of the subframe n;
  • a downlink transmission area acquiring module configured to acquire related information of a downlink transmission area of the subframe n;
  • the first transmission unit includes:
  • the first downlink transmission module is configured to: perform downlink reception in a downlink transmission area of the subframe n according to the obtained related information of the downlink transmission area;
  • the first uplink transmission module is configured to: perform uplink transmission in an uplink transmission area of the subframe n according to the received first downlink control information and related information of the acquired uplink transmission area.
  • the uplink transmission area obtaining module includes one or more of the following submodules:
  • the first obtaining submodule is configured to obtain related information of a fixedly set uplink transmission area
  • a second acquiring submodule configured to acquire, according to the received high layer signaling, information about an uplink transmission area that is semi-statically configured
  • the third acquiring submodule is configured to acquire related information of the dynamically configured uplink transmission area according to the received second downlink control information.
  • the downlink transmission area obtaining module includes one or more of the following submodules:
  • the fourth obtaining submodule is configured to obtain related information of a fixedly set downlink transmission area
  • a fifth obtaining submodule configured to acquire, according to the received high layer signaling, information about a downlink transmission area that is semi-statically configured
  • the sixth obtaining submodule is configured to acquire related information of the dynamically configured downlink transmission area according to the received third downlink control information:
  • the seventh acquiring submodule is configured to acquire related information of the downlink transmission area according to the related information of the uplink transmission area.
  • the uplink and downlink transmission area indication information includes: first sub-subframe indication information and second sub-subframe indication information;
  • the first sub-subframe indication information is used to indicate that one or more sub-frames in the radio frame are divided into N sub-subframes;
  • the uplink and downlink transmission area acquiring unit includes:
  • a first sub-subframe acquiring module configured to acquire first sub-subframe indication information
  • a second sub-subframe obtaining module configured to acquire second sub-subframe indication information
  • the first transmission unit is configured to: according to the first sub-subframe indication information, divide one or more subframes in the radio frame into N sub-subframes; and, for the divided subframes, according to the corresponding second sub-subframes Instructing information, in which uplink transmission is performed on N1 sub-subframes, in which N2 sub-subframes are advanced Line downlink reception.
  • the first sub-subframe acquisition module includes at least one of the following sub-modules:
  • a first sub-subframe acquisition sub-module configured to obtain a first sub-subframe indication information that is fixedly set
  • a second sub-subframe acquisition sub-module configured to acquire a semi-statically configured first sub-subframe indication information according to the received high-layer signaling
  • the third sub-subframe acquisition sub-module is configured to acquire the dynamically configured first sub-subframe indication information according to the received fifth downlink control information;
  • the second sub-frame acquisition module includes at least one of the following sub-modules:
  • a fourth sub-subframe obtaining sub-module configured to obtain a second sub-subframe indication information that is fixedly set
  • a fifth sub-subframe obtaining sub-module configured to obtain a semi-statically configured second sub-subframe indication information according to the received high-layer signaling
  • the sixth sub-subframe acquisition sub-module is configured to obtain the dynamically configured second sub-subframe indication information according to the received sixth downlink control information.
  • the embodiment of the invention further provides a server device, which is set on the network side, and the server device includes:
  • the first sending unit is configured to: send first downlink control information related to uplink transmission;
  • a second transmission unit configured to: receive an uplink transmission of the terminal in an uplink transmission area of the subframe n; wherein the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink transmission; wherein n is Integer.
  • the second transmission unit is further configured to: perform downlink transmission in a downlink transmission area of the subframe n.
  • the server device further includes: an uplink and downlink transmission area sending unit, configured to: send uplink and downlink transmission area indication information to the terminal, where the uplink and downlink transmission area sending unit includes at least one of the following modules:
  • the uplink transmission area sending module is configured to send related information of the uplink transmission area
  • a downlink transmission area sending module configured to send related information of a downlink transmission area
  • the second transmission unit includes:
  • the second downlink transmission module is configured to perform downlink transmission in a downlink transmission area of the subframe n;
  • the second uplink transmission module is configured to perform uplink reception in an uplink transmission area of the subframe n.
  • the server device further includes: an uplink and downlink transmission area sending unit, configured to send uplink and downlink transmission area indication information to the terminal, where the uplink and downlink transmission area sending unit includes the following modules:
  • a first sub-subframe sending module configured to send first sub-subframe indication information
  • a second sub-subframe sending module configured to send the second sub-subframe indication information
  • the first sub-subframe indication information is used to indicate that one or more sub-frames in the radio frame are divided into N sub-subframes;
  • the second transmission unit is configured to: perform uplink reception on the N1 sub-subframes, and perform downlink transmission on the N2 sub-subframes according to the first sub-subframe indication information and the second sub-subframe indication information.
  • the uplink transmission area sending module includes one or more of the following submodules:
  • the first sending submodule is configured to send related information of the uplink transmission area to the terminal by using high layer signaling
  • the second sending submodule is configured to send, by using the second downlink control information, related information of the uplink transmission area to the terminal;
  • the downlink transmission area sending module includes one or more of the following submodules:
  • the third sending submodule is configured to send, by using the high layer signaling, information about the downlink transmission area to the terminal:
  • the fourth sending submodule is configured to send related information of the downlink transmission area to the terminal by using the third downlink control information.
  • the first sub-subframe transmitting module includes one or more of the following sub-modules:
  • the first sub-subframe transmitting sub-module is configured to send the first sub-subframe indication information to the terminal by using high-layer signaling;
  • the second sub-subframe transmitting sub-module is configured to send the first sub-subframe indication information to the terminal by using the fifth downlink control information;
  • the second sub-subframe transmitting module includes one or more of the following submodules:
  • the third sub-subframe transmitting sub-module is configured to send the second sub-subframe indication information to the terminal by using high-layer signaling:
  • the fourth sub-subframe transmitting sub-module is configured to send the second sub-subframe indication information to the terminal by using the sixth downlink control information.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a data transmission method applied to a client side when executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to be applied to a data transmission method on a server side when executed.
  • the embodiment of the present invention further provides a subframe structure, including: an uplink transmission area for uplink transmission and a downlink transmission area for downlink transmission.
  • the technical solution provided by the embodiment of the present invention includes: receiving first downlink control information related to uplink transmission; acquiring uplink and downlink transmission area indication information; and receiving, according to the received first downlink control information, and the obtained uplink and downlink transmission area indication information And performing uplink transmission in the uplink transmission area of the subframe n; and performing downlink reception in the downlink transmission area of the subframe n; wherein n is an integer.
  • the downlink transmission area for downlink transmission is further included in the pre-scheduled subframe for uplink transmission, and the downlink service may be transmitted in time through the downlink transmission area when the downlink transmission is required, based on the existing
  • the LTE framework implements a low-latency data transmission scheme that can meet the requirements of low latency requirements.
  • FIG. 1 is a structural diagram of a radio frame of LTE in the prior art
  • FIGS. 2A, 2B, and 2C are schematic diagrams showing a structure of a downlink subframe in the prior art
  • 3A, 3B, and 3C are schematic diagrams showing the structure of an uplink subframe in the prior art
  • FIG. 5 is a schematic diagram of an uplink transmission advance scheduling in the prior art
  • FIG. 6 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of configuring a DCI format X according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another configuration DCI format X according to an embodiment of the present invention.
  • 9A, 9B, and 9C are schematic structural diagrams of an uplink subframe according to an embodiment of the present invention.
  • 10A, 10B, and 10C are schematic diagrams of a downlink subframe according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an improved uplink subframe according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a method for transmitting a PUCCH and a PUSCH in an uplink transmission area by using a time division manner according to an embodiment of the present disclosure
  • FIGS. 13A to 13L are schematic structural diagrams of a subframe according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a special uplink and downlink subframe according to an embodiment of the present disclosure.
  • FIG. 14B is a schematic diagram of a design for supporting uplink and downlink transmission of an MBSFN subframe according to an embodiment of the present invention.
  • 15A is a schematic structural diagram of a reference signal design of an uplink service/control channel according to an embodiment of the present invention.
  • 15B is a schematic diagram of the number of reference signal symbols provided by an embodiment of the present invention.
  • 15C is a schematic diagram of two reference signal symbols provided by an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a subframe including a sub-subframe according to an embodiment of the present disclosure
  • FIG. 17A is a schematic diagram of a sub-frame according to an existing radio frame configuration according to an embodiment of the present invention.
  • 17B is a schematic diagram of a bitmap provided by an embodiment of the present invention.
  • FIG. 18 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present invention.
  • 19A is a schematic structural diagram of a client device according to an embodiment of the present invention.
  • FIG. 19B is a schematic structural diagram of a server device according to an embodiment of the present invention.
  • an embodiment of the present invention provides a data transmission method. As shown in FIG. 6, the method includes:
  • Step 110 Receive first downlink control information related to uplink transmission.
  • the first downlink control information related to the uplink transmission that is, the uplink scheduling information. According to the scheduling of the first downlink control information, the terminal performs uplink transmission on the subframe n.
  • the base station sends the first downlink control information related to the uplink transmission on the subframe n-K. Where n and K are both integers.
  • the K is carried in the downlink control information related to the uplink transmission; or the K is a value agreed by the base station and the terminal, and is specified in the protocol.
  • Step 120 Acquire uplink and downlink transmission area indication information.
  • the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink reception; and the uplink and downlink transmission area indication information includes: Information about the transmission area of the line and related information of the downlink transmission area.
  • the obtaining the uplink and downlink transmission area indication information may include:
  • Step 121 Obtain information about an uplink transmission area of the subframe n, and,
  • Step 122 Acquire related information of a downlink transmission area of the subframe n.
  • step 121 the acquiring information about the uplink transmission area of the subframe n is implemented in one of the following manners:
  • the related information of the uplink transmission area that is fixedly set is obtained.
  • the related information of the uplink transmission area that is semi-statically configured is obtained according to the received high layer signaling.
  • the related information of the dynamically configured uplink transmission area is obtained according to the received second downlink control information.
  • the related information of the uplink transmission area may be set in a data area such as a PDSCH, and if the second downlink control information carries the uplink transmission area, Related information, set in the PDCCH.
  • the information about the uplink transmission area may be transmitted in two manners.
  • One is: mode 1-3-1, and the first downlink control information and the second downlink control information format are used. Different downlink control information formats; the other is: mode 1-3-2, the first downlink control information and the second downlink control information format adopt the same downlink control information format.
  • the mode 1-3-2 the related information of the uplink transmission area is transmitted in the subframe nK, and in the mode 1-3-1, the first downlink control information related to the uplink transmission may be transmitted on the subframe nK, Information about the uplink transmission area is transmitted on the subframe nK or on the subframe before the subframe nK.
  • the mode of the downlink control information corresponding to the second downlink control information is DCI format X
  • the format of the downlink control information corresponding to the first downlink control information is an existing DCI format
  • the DCI format X is The size of the DCI format is the same as the size of the existing DCI format.
  • the DCI format X and the existing DCI format are scrambled by different Radio Network Temporary Identity (RNTI) to distinguish the DCI format X for indicating Information about the uplink transmission area.
  • RNTI Radio Network Temporary Identity
  • the subframe in which the DCI format X is transmitted may be configured in a higher layer manner.
  • One configuration is to configure the transmit period of DCI format X, as well as the subframe offset within the period.
  • FIG. 7 is a schematic diagram of configuring a DCI format X according to an embodiment of the present invention.
  • the transmission period of the DCI format X is 10 milliseconds, and the subframe offset is 0. Therefore, the DCI format X is transmitted on the subframe #0 of each radio frame, and the terminal acquires the uplink transmission by demodulating the DCI format X.
  • the related information of the area, the related information of the acquired uplink transmission area may be used for subframes #4 to #9 of the current radio frame #p and subframes #0 to #3 of the next radio frame #p+1.
  • the transmission period of the DCI format X can be configured according to the requirement of the uplink service, thereby dynamically adjusting the transmission area for uplink transmission in one subframe.
  • Reasonable configuration of the transmission period of the DCI format X can better adapt to the changing requirements of the uplink and downlink services, and at the same time ensure the timely transmission of downlink services, which is beneficial to the improvement of system performance.
  • the first downlink control information and the second downlink control information are sent in the same DCI format 0/4.
  • One way is to add a new control field in DCI format 0/4 to indicate the relevant information of the uplink transmission area; another way is to reuse or redefine the existing control domain in DCI format 0/4, one This may be the reuse or redefinition of the resource allocation indication field.
  • the uplink transmission area of each subframe in which uplink transmission is performed can be dynamically changed. This method can better realize the adaptation of the uplink service and make full use of resources.
  • the resource allocation indication field is adopted, the resource allocation may impose certain restrictions.
  • the subframe to which the indication information acts is based on the uplink hybrid automatic repeat request (HARQ, Hybrid Automatic) Repeat reQuest) determines the DCI associated with the uplink transmission sent on subframe nK in the relevant system, and will instruct the terminal to perform uplink transmission on subframe n.
  • HARQ Hybrid Automatic Repeat request
  • the terminal when the subframe has an uplink transmission to be transmitted, the terminal performs uplink transmission according to the related information of the uplink transmission area indicated by the DCI format X; when the subframe has no uplink transmission to be transmitted, the terminal according to the default manner. Perform downlink reception.
  • the downlink receiving by the terminal according to a default manner includes but is not limited to the following manners:
  • the terminal performs receiving according to the traditional downlink subframe.
  • FIG. 2A, FIG. 2B, and FIG. 2C respectively show a schematic structure of a current downlink subframe.
  • the terminal receives according to the modified downlink subframe, where the downlink subframe and the uplink transmission region are included in the improved downlink subframe, where the uplink transmission region occupies the last OFDM of the subframe agreed with the base station. symbol.
  • OFDM symbols are used for uplink control information or transmission of SRS or PRACH.
  • 9A, 9B, and 9C are schematic structural diagrams of an uplink subframe according to an embodiment of the present invention.
  • the downlink control information (DCI) related to the uplink transmission includes DCI format 0/4. Assuming that the terminal receives DCI format 0 or 4 on subframe n-K, the terminal shall perform PUSCH transmission on subframe n.
  • the terminal When performing the PUSCH transmission on the subframe n, the terminal first determines an uplink transmission area that can be used for the PUSCH transmission, where the uplink transmission area is determined according to the acquisition manner provided by the embodiment of the present invention. The following is specifically described in conjunction with the drawings.
  • the subframe n includes two slots of the slot #0 and the slot #1, wherein the slot #0 is a downlink transmission area, and the slot #1 is an uplink transmission area.
  • the base station performs downlink transmission on the slot #0 of the subframe n, and the terminal performs downlink transmission reception on the slot #0 of the subframe n, and the terminal transmits the uplink transmission on the slot #1 of the subframe n.
  • the base station performs reception of uplink transmission on slot #1 of subframe n.
  • the related information of the uplink transmission area is obtained by using the mode 1-1, as long as the subframe n is to be uplinked, the related information of the uplink transmission area is fixed, so the proportion and position of the uplink transmission area in the subframe are fixed.
  • the terminal can only perform uplink transmission in a fixed uplink transmission area. If the current base station has a downlink transmission to be transmitted, the downlink transmission can be performed in the corresponding downlink transmission area, which solves the problem in the prior art that the uplink transmission is pre-scheduled.
  • the sub-frame can only perform uplink transmission, and the resulting downlink transmission cannot be sent in time.
  • the uplink transmission area and the downlink transmission area are fixed, and there is a case that the uplink and downlink services cannot be well adapted, and there is also a certain waste of resources, which has the advantage that no additional signaling is needed. To indicate.
  • the information about the uplink transmission area can also be obtained by using mode 1-2 or mode 1-3.
  • the related information of the uplink transmission area may be specified, so that the size of the uplink transmission area is flexibly set according to the uplink service requirement.
  • FIG. 10A, 10B, and 10C are schematic diagrams of a modified downlink subframe according to an embodiment of the present invention.
  • the last OFDM symbols of a subframe are reserved for use.
  • Uplink control information or SRS or PRACH transmission where the number of OFDM symbols reserved is a good agreement between the base station and the terminal, and may be 1 to 2 OFDM symbols.
  • the improved downlink subframe can ensure timely transmission of uplink control information and SRS. It is beneficial to reduce the delay and obtain channel state related information in time.
  • the improved uplink subframe includes a downlink control region and an uplink transmission region, and the downlink control region is used for sending necessary downlink control information.
  • FIG. 11 is a schematic diagram of an improved uplink subframe according to an embodiment of the present invention.
  • the terminal performs uplink transmission in an uplink transmission area, where the uplink transmission includes, but is not limited to, transmission of a physical uplink channel and/or a physical uplink signal, where the physical uplink channel includes a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • SRS measurement reference signal
  • whether the PUCCH and the PUSCH are simultaneously transmitted in the same subframe can be configured by using the high layer signaling.
  • the PUCCH and the PUSCH are simultaneously transmitted in a frequency division manner.
  • the information dynamically indicates whether the two are supported simultaneously.
  • the simultaneous transmission of PUCCH and PUSCH can be implemented in a time division manner or by frequency division.
  • the frequency division method is similar to the existing system and will not be described here.
  • the PUCCH and PUSCH are set to be transmitted in a time division manner in the uplink transmission area.
  • FIG. 12 is a schematic diagram showing how PUCCH and PUSCH are transmitted in a time division manner in an uplink transmission area.
  • the downlink control information indicating whether the PUCCH transmission area exists and the downlink control information indicating the uplink transmission area are sent on the same DCI format, and the terminal is transmitting the PUSCH. And determining, according to the indication information of the uplink transmission area and the indication information of whether the PUCCH transmission area exists, determining a transmission area of the PUSCH.
  • the downlink control information indicating whether the PUCCH transmission area exists may be indicated by 1 bit.
  • the related information of the uplink transmission area includes at least one of the following contents:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • step 122 the related information of the downlink transmission area of the subframe n is obtained, specifically, the related information of the downlink transmission area is acquired on the subframe before the subframe n.
  • Step 130 Perform uplink transmission in the uplink transmission area of the subframe n and downlink reception in the downlink transmission area of the subframe n according to the received first downlink control information and the acquired uplink and downlink transmission area indication information.
  • step 130 may include:
  • step 131 downlink reception is performed in the downlink transmission area of the subframe n.
  • the downlink reception is performed in the downlink transmission area of the subframe n according to the obtained related information of the downlink transmission area.
  • the downlink receiving information needs to acquire the fourth downlink control information, that is, the downlink scheduling information, sent by the base station.
  • Step 132 Perform uplink transmission in an uplink transmission area of the subframe n according to the received first downlink control information and related information of the acquired uplink transmission area.
  • step 122 the acquiring information about the downlink transmission area of the subframe n is implemented in one of the following manners:
  • the related information of the downlink transmission area that is fixedly set is obtained.
  • step 2-2 the information about the downlink transmission area of the semi-static configuration is obtained according to the received high layer signaling.
  • the related information of the dynamically configured downlink transmission area is obtained according to the received third downlink control information:
  • the related information of the downlink transmission area is obtained according to the related information of the uplink transmission area.
  • the terminal After the terminal acquires the related information of the uplink transmission area of the subframe n, the terminal also obtains related information of the downlink transmission area of the subframe n, because the related information of the uplink transmission area is mainly Refers to the information in the time domain. When the information related to the uplink transmission area is obtained, the rest of the time in the subframe is used for downlink reception.
  • the subframe n further includes an uplink and downlink conversion area, and the uplink and downlink conversion area is reserved in the downlink transmission area or reserved in the uplink transmission area.
  • the terminal needs to perform downlink transmission in the same subframe, and also performs uplink transmission. Therefore, the uplink and downlink conversion time is required in the subframe.
  • the information about the downlink transmission area can be transmitted in two manners.
  • One is: mode 2-3-1, and the third downlink control information and the first downlink control information format are used.
  • the indication uplink transmission may share one control domain.
  • the shared control field indicates both in a subframe
  • the time ratio information is that the downlink transmission area is in the front part of the subframe, and the uplink transmission area is in the back part of the subframe.
  • the time ratio information is a ratio of the number of OFDM symbols occupied by the downlink transmission area and the downlink transmission area, and the optional ratio includes but is not limited to:
  • the ratio of the number of OFDM symbols occupied by the downlink transmission region and the downlink transmission region is (12:2), (11:3), (10:4), (9:5), (7). Any of: 7), (6:8), (3:11), (2:12);
  • the ratio of the number of OFDM symbols occupied by the downlink transmission region and the downlink transmission region is (10:2), (9:3), (8:4), (6:6), (3) : 9), (2:10).
  • the protection interval of the uplink and downlink handover may be implemented by deleting the last symbol of the downlink transmission area, or by deleting the first symbol of the uplink transmission area, as long as the terminal and the base station agree on each other,
  • the application is not restricted.
  • the base station may refer to the design of the DwPTS in the special time slot in the existing TDD system when performing downlink transmission in the downlink transmission region.
  • the related information of the downlink transmission area includes at least one of the following contents:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • the structures of the uplink transmission area and the downlink transmission area in the subframe specifically include:
  • the downlink control region, the downlink data region, the uplink special region, and the uplink data region are configured in a subframe, where the uplink special region includes at least one of an uplink control region, a measurement reference signal region, and a random access region.
  • composition of the downlink control region, the downlink data region, the uplink special region, and the uplink data region in the subframe specifically includes one of the following combinations, where each data region or control region is in the sub- The frames are in order:
  • Combination 2 a downlink control area, a downlink data area, an uplink data area, and an uplink special area;
  • FIG. 10A, FIG. 10B and FIG. 10C wherein PUCCH, SRS and PRACH transmission can be performed on the uplink special area.
  • FIG. 13A, FIG. 13B, FIG. 13C, FIG. 13D, FIG. 13E and FIG. 13F In the uplink data area, PUSCH, SRS, and PRACH transmission may be performed, and PUCCH transmission may be performed on the uplink special area.
  • PUSCH transmission may be performed on the uplink data area, and PUCCH, SRS, and PRACH transmission may be performed on the uplink special area. See FIG. 13G, FIG. 13H, and FIG. 13I for one specific example of combination three; FIG. 13J for one specific example of combination four; and FIG. 13K and FIG. 13L for one specific example of combination five.
  • the special subframe in the existing TDD frame structure may be improved, and the improved special uplink and downlink subframes are used to implement uplink and downlink. Downlink transmission.
  • FIG. 14A shows a schematic structural diagram of a special uplink and downlink subframe.
  • the configuration in which the DwPTS contains only 3 OFDM symbols in the special subframe is adopted, and the UpPTS occupies 1 or 2 symbols, and the remaining symbols are GP.
  • the GP in the original special subframe is used for the transmission of the PDSCH/PUSCH/PUCCH.
  • the uplink transmission area and the downlink transmission area in the GP may be fixed or semi-statically configured.
  • the physical downlink control information is dynamically indicated.
  • FIG. 14B shows a schematic diagram of a design of an MBSFN subframe supporting uplink and downlink transmission.
  • the first two symbols of the MBSFN subframe are used for PDCCH transmission
  • the remaining symbols of slot 0 are used for uplink transmission
  • slot 1 is used for downlink transmission.
  • the uplink transmission area and the downlink transmission area of the remaining symbols may be fixed, or semi-statically configured, or dynamically indicated by physical downlink control information, for example, in the MBSFN subframe.
  • a setting manner of a terminal when performing uplink transmission in an uplink transmission area of a subframe is provided. Since there is no corresponding design in the existing system, it is necessary to consider the new design.
  • the terminal transmits an SRS or a physical random access channel (PRACH) in the one or two symbols, the SRS transmission and the PRACH.
  • the transmission can refer to the design of the UpPTS in the special time slot in the existing TDD system.
  • the terminal may also send uplink control information on the 1 or 2 symbols, where the uplink control information is mainly HARQ-ACK. Used to feedback the downlink transmission in time.
  • the existing PUCCH channel carrying the uplink control information is one subframe in the time domain. When the uplink control information is sent in only one or two symbols, a new design needs to be considered.
  • FIG. 15A shows a structure of a reference signal structure of the uplink service/control channel design.
  • the number of reference signal symbols is one, and the data symbols are used to carry uplink service data or uplink control information.
  • the number of reference signal symbols is set in the middle of the data symbol.
  • FIG. 15B and FIG. 15C respectively give reference signals for the uplink traffic/control channel design. Schematic. The uplink transmission area does not support slot hopping. FIG. 15B shows a schematic diagram of the number of reference signal symbols, and FIG. 15C shows a schematic diagram of two reference signal symbols. The data symbols are used to carry uplink services. Data or uplink control information.
  • the subframe is divided into a plurality of sub-subframes, and each of the sub-subframes includes an uplink transmission area and a downlink transmission area.
  • step 120 the obtaining the uplink and downlink transmission area indication information includes:
  • Step 125 Acquire first sub-subframe indication information.
  • Step 126 Acquire second sub-subframe indication information.
  • step 130 the uplink transmission is performed in the uplink transmission area of the subframe n and the downlink transmission is performed in the downlink transmission area of the subframe n according to the received first downlink control information and the acquired uplink and downlink transmission area indication information.
  • 16A and 16B are schematic structural diagrams of a subframe including a sub-subframe.
  • a sub-frame of 1 millisecond is divided into 4 or 5 sub-subframes with smaller time lengths, each sub-frame has a duration of 0.25 milliseconds or 0.2 milliseconds, and each sub-subframe can be used for uplink transmission and/or downlink. transmission.
  • FIG. 17A is a schematic diagram showing a configuration of a sub-subframe based on a radio frame of an existing TDD uplink and downlink configuration 0.
  • the uplink subframe may be configured to be composed of sub-subframes, such as subframe #4 and subframe #9 may be configured to be composed of 5 sub-subframes.
  • the terminal obtains the first sub-subframe indication information in one of the following manners:
  • the high-level signaling semi-static configuration or the fifth downlink control information When the high-level signaling semi-static configuration or the fifth downlink control information is dynamically configured, it may be indicated by a bitmap containing 10 bits, and the 10-bit bitmap corresponds to 10 subframes in one radio frame. When the corresponding bit in the figure is "1", it indicates that the subframe can be configured to be composed of sub-subframes.
  • Fig. 17B shows a specific bitmap diagram. In Fig. 17B, the bits corresponding to the subframe 4 and the subframe 9 are set to "1", and therefore, the subframe 4 and the subframe 9 are configured to be composed of sub-subframes. .
  • the terminal obtains the second sub-subframe indication information in one of the following manners:
  • the bitmap may be indicated by a bitmap containing 5 bits, and the 5-bit bitmap corresponds to 5 in one subframe.
  • a sub-subframe when the corresponding bit in the bitmap is "1", indicates that the sub-subframe is used for uplink transmission.
  • the corresponding bit in the bitmap is "0", it indicates that the sub-subframe is used for downlink transmission.
  • the size of the bitmap depends on the subframe being divided into several sub-frames, in this example, the subframe is divided into 5 sub-subframes.
  • the terminal determines the related information of the uplink transmission area corresponding to the terminal according to the cell, and when the terminal enters a certain cell, the terminal acquires related information of the uplink transmission area from the base station.
  • the storage is stored in its own storage unit.
  • the terminal needs to configure the uplink transmission area of the subframe, the terminal acquires related information of the stored uplink transmission area from the storage unit.
  • the related information of the downlink transmission area can be stored and acquired in the same manner as described above.
  • the storage and acquisition may be performed in the same manner as described above.
  • PUSCH, SRS, and PRACH transmission may be performed on the uplink data area
  • PUCCH transmission may be performed on the uplink special area
  • PUSCH transmission may be performed on the uplink data area
  • PUCCH, SRS, and PRACH may be performed on the uplink special area. transmission.
  • the embodiment of the present invention provides another Data transmission method, referring to FIG. 18, another data transmission method proposed by the embodiment of the present invention includes:
  • Step 210 Send first downlink control information related to uplink transmission.
  • the first downlink control information related to the uplink transmission is sent on the subframe n-K;
  • Step 240 Receive uplink transmission of the terminal in an uplink transmission area of the subframe n.
  • the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink transmission.
  • n and K are integers.
  • the method further includes the step 230: performing downlink transmission in the downlink transmission area of the subframe n.
  • the data transmission method further includes: before step 230, the data transmission method further includes:
  • Step 220 Send uplink and downlink transmission area indication information to the terminal.
  • the uplink and downlink transmission area indication information includes related information of an uplink transmission area and/or related information of a downlink transmission area.
  • step 220 the sending the uplink and downlink transmission area indication information to the terminal includes:
  • Step 221 Send information about an uplink transmission area to the terminal.
  • Step 222 Send related information of the downlink transmission area to the terminal.
  • the base station sends the related information of the uplink transmission area to the terminal by using the high layer signaling; or the base station sends the related information of the uplink transmission area to the terminal by using the second downlink control information.
  • the base station sends the first downlink control information and the second downlink control information on different downlink control information formats; or, the base station sends the first downlink in the same downlink control information format. Row control information and the second downlink control information.
  • the new control is set in the downlink control information format corresponding to the first downlink control information. And sending the second downlink control information on the newly added control domain; or sending the second downlink control information by using a control domain existing in the downlink control information format.
  • the related information of the uplink transmission area includes at least one of the following contents:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • the sequence of the step 221 and the step 222 can be replaced.
  • the related information of the uplink transmission area and the related information of the downlink transmission area can also be simultaneously transmitted.
  • the base station sends the related information of the downlink transmission area to the terminal by using the high layer signaling; or the base station sends the related information of the downlink transmission area to the terminal by using the third downlink control information.
  • the base station when acquiring the information about the dynamically configured downlink transmission area according to the received third downlink control information, the base station sends the third downlink control information and the downlink transmission related information on different downlink control information formats.
  • the fourth downlink control information or, the base station sends the third downlink control information and the fourth downlink control information on the same downlink control information format.
  • a new control domain is set in the downlink control information format corresponding to the fourth downlink control information, and Sending the third downlink control information on the newly added control domain; or sending the third downlink control information by using a control domain existing in the downlink control information format.
  • the base station may be configured to send the second downlink control information and the third downlink control information in the same downlink control information format.
  • the related information of the downlink transmission area includes at least one of the following contents:
  • the structure of the uplink transmission area and the downlink transmission area in the subframe is the structure of the uplink transmission area and the downlink transmission area in the subframe.
  • the embodiment of the present invention further provides a client device, which is disposed on the terminal.
  • the client device includes:
  • the first receiving unit 10 is configured to: receive first downlink control information related to uplink transmission;
  • the uplink and downlink transmission area acquiring unit 20 is configured to acquire uplink and downlink transmission area indication information
  • the first transmission unit 30 is configured to perform uplink transmission in an uplink transmission area of the subframe n according to the received first downlink control information and the acquired uplink and downlink transmission area indication information, and perform the downlink transmission area in the subframe n. Downlink reception; where n is an integer.
  • the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink reception
  • the uplink and downlink transmission area indication information includes: information about an uplink transmission area and a downlink transmission area. Related information;
  • the uplink and downlink transmission area acquisition list 20 includes:
  • An uplink transmission area acquiring module is configured to acquire related information of an uplink transmission area of the subframe n;
  • a downlink transmission area acquiring module configured to acquire related information of a downlink transmission area of the subframe n;
  • the first transmission unit 30 includes:
  • the first downlink transmission module is configured to: perform downlink reception in a downlink transmission area of the subframe n according to the obtained related information of the downlink transmission area;
  • the first uplink transmission module is configured to: perform uplink transmission in an uplink transmission area of the subframe n according to the received first downlink control information and related information of the acquired uplink transmission area.
  • the uplink transmission area acquiring module includes one or more of the following submodules:
  • the first obtaining submodule is configured to obtain related information of a fixedly set uplink transmission area
  • a second acquiring submodule configured to acquire, according to the received high layer signaling, information about an uplink transmission area that is semi-statically configured
  • the third acquiring submodule is configured to acquire related information of the dynamically configured uplink transmission area according to the received second downlink control information.
  • the downlink transmission area acquiring module includes one or more of the following submodules:
  • the fourth obtaining submodule is configured to obtain related information of a fixedly set downlink transmission area
  • the fifth obtaining submodule is configured to obtain a downlink transmission of the semi-static configuration according to the received high layer signaling Information about the transmission area;
  • a sixth acquiring sub-module configured to acquire, according to the received third downlink control information, related information of the dynamically configured downlink transmission area
  • the seventh acquiring submodule is configured to acquire related information of the downlink transmission area according to the related information of the uplink transmission area.
  • the uplink and downlink transmission area indication information includes: first sub-subframe indication information and second sub-subframe indication information;
  • the first sub-subframe indication information is used to indicate that one or more sub-frames in the radio frame are divided into N sub-subframes;
  • the uplink and downlink transmission area acquiring unit 20 includes:
  • a first sub-subframe acquiring module configured to acquire first sub-subframe indication information
  • a second sub-subframe obtaining module configured to acquire second sub-subframe indication information
  • the first transmission unit 30 is configured to: according to the first sub-subframe indication information, divide one or more subframes in the radio frame into N sub-subframes; and, for the divided subframes, according to the corresponding second sub-sub-frame
  • the frame indication information is that uplink transmission is performed on N1 sub-subframes, and downlink reception is performed on N2 sub-subframes.
  • the first sub-subframe obtaining module includes at least one of the following sub-modules:
  • a first sub-subframe acquisition sub-module configured to obtain a first sub-subframe indication information that is fixedly set
  • a second sub-subframe acquisition sub-module configured to acquire a semi-statically configured first sub-subframe indication information according to the received high-layer signaling
  • the third sub-subframe acquisition sub-module is configured to acquire the dynamically configured first sub-subframe indication information according to the received fifth downlink control information;
  • the second sub-frame acquisition module includes at least one of the following sub-modules:
  • a fourth sub-subframe obtaining sub-module configured to obtain a second sub-subframe indication information that is fixedly set
  • a fifth sub-subframe obtaining sub-module configured to obtain a semi-statically configured second sub-subframe indication information according to the received high-layer signaling
  • the sixth sub-subframe acquisition sub-module is configured to obtain the dynamically configured second sub-subframe indication information according to the received sixth downlink control information.
  • FIG. 19B is a schematic structural diagram of a server device according to an embodiment of the present invention, as shown in FIG. 19B.
  • the server device includes:
  • the first sending unit 50 is configured to send first downlink control information related to uplink transmission
  • the second transmission unit 70 is configured to receive an uplink transmission of the terminal in an uplink transmission area of the subframe n; wherein the subframe n includes an uplink transmission area for uplink transmission and a downlink transmission area for downlink transmission; wherein n is Integer.
  • the second transmission unit 70 is further configured to perform downlink transmission in a downlink transmission area of the subframe n.
  • the server device further includes:
  • the uplink and downlink transmission area sending unit 60 is configured to send uplink and downlink transmission area indication information to the terminal, where the uplink and downlink transmission area sending unit 60 includes at least one of the following modules:
  • the uplink transmission area sending module is configured to send related information of the uplink transmission area
  • a downlink transmission area sending module configured to send related information of a downlink transmission area
  • the second transmission unit 70 includes:
  • the second downlink transmission module is configured to perform downlink transmission in a downlink transmission area of the subframe n;
  • the second uplink transmission module is configured to perform uplink reception in an uplink transmission area of the subframe n.
  • the uplink and downlink transmission area sending unit 60 includes the following modules:
  • a first sub-subframe sending module configured to send first sub-subframe indication information
  • a second sub-subframe sending module configured to send the second sub-subframe indication information
  • the first sub-subframe indication information is used to indicate that one or more sub-frames in the radio frame are divided into N sub-subframes; the second sub-subframe indication information is used to indicate that the N1 is divided into the sub-frames.
  • the second transmission unit 70 is configured to perform uplink reception on the N1 sub-subframes and downlink transmission on the N2 sub-subframes according to the first sub-subframe indication information and the second sub-subframe indication information.
  • the uplink transmission area sending module includes one or more of the following submodules:
  • the first sending submodule is configured to send related information of the uplink transmission area to the terminal by using high layer signaling
  • the second sending submodule is configured to send, by using the second downlink control information, related information of the uplink transmission area to the terminal;
  • the downlink transmission area sending module includes one or more of the following submodules:
  • the third sending submodule is configured to send, by using the high layer signaling, information about the downlink transmission area to the terminal:
  • the fourth sending submodule is configured to send related information of the downlink transmission area to the terminal by using the third downlink control information.
  • the first sub-subframe transmitting module includes one or more of the following submodules:
  • the first sub-subframe transmitting sub-module is configured to send the first sub-subframe indication information to the terminal by using high-layer signaling;
  • the second sub-subframe transmitting sub-module is configured to send the first sub-subframe indication information to the terminal by using the fifth downlink control information;
  • the second sub-subframe transmitting module includes one or more of the following submodules:
  • the third sub-subframe transmitting sub-module is configured to send the second sub-subframe indication information to the terminal by using high-layer signaling:
  • the fourth sub-subframe transmitting sub-module is configured to send the second sub-subframe indication information to the terminal by using the sixth downlink control information.
  • the embodiment of the present invention further provides a subframe structure, including: an uplink transmission area for uplink transmission and a downlink transmission area for downlink transmission.
  • a subframe structure including: an uplink transmission area for uplink transmission and a downlink transmission area for downlink transmission.
  • the embodiment of the invention further provides a computer readable storage medium, which stores computer executable instructions, and when the computer executable instructions are executed, implements the data transmission method on the client side.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any specific combination of hardware and software.
  • the embodiment of the present invention provides a data transmission method, a client device, and a server device.
  • the pre-scheduled subframe for uplink transmission further includes a downlink transmission region for downlink transmission, and when downlink transmission is required,
  • the downlink service can be transmitted in time through the downlink transmission area.
  • a low-latency data transmission scheme can be implemented, which can meet the service with low delay requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法,包括:接收与上行传输相关的第一下行控制信息;获取上下行传输区域指示信息;根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输;在子帧n的下行传输区域进行下行接收;其中,n为整数。通过上述方案,在预先调度的用于上行传输的子帧中,还包括用于下行传输的下行传输区域,在需要进行下行传输时,可以通过下行传输区域及时对下行业务进行传输,基于现有的LTE框架,实现了一种低时延数据传输方案,能够满足低时延要求的业务。

Description

数据传输方法、客户端设备及服务端设备 技术领域
本申请涉及但不限于数据传输技术领域,尤指一种数据传输方法、客户端设备及服务端设备。
背景技术
在长期演进(LTE,Long Term Evolution)系统中,数据传输以子帧为单位。LTE系统的子帧在时域上以1ms为单位,10个子帧组成一个LTE的无线帧,LTE的无线帧结构如图1所示。
通常来说,LTE系统的子帧分别三种,一种是下行子帧,一种是上行子帧,一种是特殊子帧。下面分别进行介绍。
其中,现有的下行子帧结构,子帧的全部时频资源都是用于下行传输的。
参见图2A、图2B和图2C,分别给出了一种现有的下行子帧结构示意图。
如图2A所示,其中子帧只配置了物理下行控制信道(PDCCH:Physical Downlink Control Channel),前面3个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号用于PDCCH,后面的OFDM符号用于发送物理下行共享信道(PDSCH:Physical Downlink Shared Channel),PDCCH与PDSCH通过时分的方式复用。如图2B所示,其中子帧配置了物理下行控制信道(PDCCH)以及增强物理下行控制信道(EPDCCH:Enhanced PDCCH),其中EPDCCH与PDSCH占用相同的OFDM符号,通过频分的方式复用,PDSCH与PDCCH通过时分的方式复用。如图2C所示,其中的子帧只配置了EPDCCH,其中EPDCCH与PDSCH占用相同的OFDM符号,通过频分的方式复用。
参见图3A、图3B和图3C,分别给出了一种现有的上行子帧结构示意图。图3A、图3B和图3C的上行子帧结构中,子帧的全部时频资源也都是用于上行传输的。
如图3A所示,其中图3A为用于发送物理上行共享信道(PUSCH:Physical  Uplink Shared Channel)的参考信号的子帧结构示意图,其中有图案的OFDM符号为参考信号(图3B和图3C中同样是有图案的时域符号为参考信号),图3B和图3C为物理上行控制信道(PUCCH:Physical Uplink Control Channel)的参考信号结构示意图,现有协议中有多种PUCCH格式(format),其中PUCCH格式1/1a/1b采用的是如图3B所示的参考信号结构示意图,PUCCH format 2/2a/2b/3采用的是如图3C所示的参考信号结构示意图。
参见图4,图4为现有技术中特殊子帧的结构图,对于在TDD(Time Division Duplex,时分双工)系统中设置的该特殊子帧,既可以用于下行传输也可以用于上行传输,但是特殊子帧中的上行传输只包括了测量参考信号(SRS:Sounding Reference Signal)的发送,并不包含上行业务数据的发送。如图4所示,在特殊子帧中,包含了三个特殊时隙:下行导频时隙(DwPTS:Downlink Pilot Time Slot)、保护间隔(GP:Guard Period)以及上行导频时隙(UpPTS:Uplink Pilot Time Slot),其中,DwPTS用于下行传输,所述的下行传输包括下行控制信道、下行业务信道的传输,GP用作上下行切换的保护间隔,而UpPTS可用于发送测量参考信号(SRS)以及物理随机接入信道(PRACH),UpPTS不能发送PUCCH和PUSCH。
LTE是一个集中控制的系统,也就是说所有的上行和下行传输都是由基站控制的。对于下行传输,与下行传输相关的控制信息与数据在相同的子帧上发送(称为本帧调度),而对于上行传输,与上行传输相关的控制信息需要提前发送,在子帧n上发送的与上行传输相关的控制信息,指示子帧n+K上的上行传输(称为提前调度),在FDD(Frequency Division Duplex,频分双工)系统中,K的取值为4,而在TDD系统中,对于不同的上下行配比,K值在不同的下行子帧上有不同的取值,一般有K>=4,具体见相关协议的描述。
由于LTE系统的上行传输是需要预先调度的,在连续调度m个上行子帧后,将有连续m个子帧都将用作上行传输,如果采用现有的子帧结构,则连续m个子帧都不能用于下行传输,此时,如果有下行传输的需求,则也必须等到m个子帧后才能进行传输。下面结合一个具体的例子进行说明。
参见图5,图5为一个上行传输提前调度的示意图。K设置为4,基站在 子帧#0~#3上都发送了上行调度信息(与上行传输相关的下行控制信息),则终端将在子帧#4~#7上进行上行传输。根据现有子帧结构,上行子帧只能进行上行传输,如果基站在子帧#4也有下行传输想要发送,则没有可用的子帧资源可以发送,因为子帧#4通过子帧#0的上行调度信息确定为要用于上行传输了,由于后面连续3个子帧也都被提前调度用于上行传输了,基站必须等到子帧#8才能有资源发送,这样,对于时延敏感的下行业务而言,影响较大。因此,现有的数据传输方法不能满足低时延要求,使得有低时延要求的业务不能顺利进行。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提出了一种数据传输方法、客户端设备及服务端设备,能够满足低时延要求的业务。
本发明实施例提出了一种数据传输方法,所述方法包括:
接收与上行传输相关的第一下行控制信息;
获取上下行传输区域指示信息;
根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收;
其中,n为整数。
可选地,
所述子帧n包括用于上行传输的上行传输区域和用于下行接收的下行传输区域;所述上下行传输区域指示信息包括:上行传输区域的相关信息、以及下行传输区域的相关信息;
所述获取上下行传输区域指示信息包括:
获取子帧n的上行传输区域的相关信息,以及,获取子帧n的下行传输区域的相关信息;
所述根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收,包括:
根据接收的第一下行控制信息、以及获取的上行传输区域的相关信息,在子帧n的上行传输区域进行上行传输;
根据获取的下行传输区域的相关信息,在子帧n的下行传输区域进行下行接收。
可选地,所述获取子帧n的上行传输区域的相关信息采用如下方式中的一种实现:
获取固定设置的上行传输区域的相关信息;
根据接收的高层信令获取半静态配置的上行传输区域的相关信息;
根据接收的第二下行控制信息获取动态配置的上行传输区域的相关信息。
可选地,所述上行传输区域的相关信息包括如下内容的至少一种:
所述上行传输区域在子帧中持续的时间;
所述上行传输区域在子帧中持续的时间以及在子帧中的位置;
所述上行传输区域在子帧中占的比例以及在子帧中的位置;
所述上行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
可选地,所述获取子帧n的下行传输区域的相关信息采用如下方式中的一种实现:
获取固定设置的下行传输区域的相关信息;
根据接收的高层信令获取半静态配置的下行传输区域的相关信息;
根据接收的第三下行控制信息获取动态配置的下行传输区域的相关信息;
根据所述上行传输区域的相关信息获取下行传输区域的相关信息。
可选地,所述下行传输区域的相关信息包括如下内容的至少一种:
所述下行传输区域在子帧中持续的时间;
所述下行传输区域在子帧中持续的时间以及在子帧中的位置;
所述下行传输区域在子帧中占的比例以及在子帧中的位置;
所述下行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
可选地,所述子帧中上行传输区域和下行传输区域的结构包括:
下行控制区域、下行数据区域、上行特殊区域以及上行数据区域在子帧中的组成,其中,所述上行特殊区域包括上行控制区域、测量参考信号区域以及随机接入区域中的至少一种。
可选地,所述下行控制区域、下行数据区域、上行特殊区域以及上行数据区域在子帧中的组成包括如下组成方式中的一种,其中,每个数据区域或控制区域在子帧按顺序分别为:
下行控制区域、下行数据区域和上行特殊区域;
下行控制区域、下行数据区域、上行数据区域和上行特殊区域;
下行控制区域、下行数据区域和上行数据区域;
下行控制区域和上行数据区域;
下行控制区域、上行数据区域和上行特殊区域。
可选地,
所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;
其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
所述获取上下行传输区域指示信息包括:
获取第一子子帧指示信息,以及,获取第二子子帧指示信息;
所述根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收,包括:
根据第一子子帧指示信息,将无线帧中一个或多个子帧分割为N个子子帧;
对于被分割的子帧,根据对应的第二子子帧指示信息,在其中N1个子子帧上进行上行传输,在其中N2个子子帧上进行下行接收。
可选地,采用如下方式中的一种获取第一子子帧指示信息:
获取固定设置的第一子子帧指示信息;
根据接收的高层信令获取半静态配置的第一子子帧指示信息;
根据接收的第五下行控制信息获取动态配置的第一子子帧指示信息。
可选地,采用如下方式中的一种获取第二子子帧指示信息:
获取固定设置的第二子子帧指示信息;
根据接收的高层信令获取半静态配置的第二子子帧指示信息;
根据接收的第六下行控制信息获取动态配置的第二子子帧指示信息。
本发明实施例还提出了一种数据传输方法,所述方法包括:
发送与上行传输相关的第一下行控制信息;
在子帧n的上行传输区域接收终端的上行传输;其中,子帧n包括用于上行传输的上行传输区域和用于下行传输的下行传输区域;
其中,n为整数。
可选地,所述在子帧n的上行传输区域接收终端的上行传输之前,所述方法还包括:
在子帧n的下行传输区域进行下行传输。
可选地,所述在子帧n的上行传输区域接收终端的上行传输之前,所述数据传输方法还包括:
向终端发送上下行传输区域指示信息;其中,所述上下行传输区域指示信息包括:上行传输区域的相关信息和/或下行传输区域的相关信息。
可选地,所述向终端发送上下行传输区域指示信息,包括:
通过高层信令向终端发送所述上行传输区域的相关信息;或,
通过第二下行控制信息向终端发送所述上行传输区域的相关信息;或,
通过高层信令向终端发送所述下行传输区域的相关信息;或
通过第三下行控制信息向终端发送所述下行传输区域的相关信息。
可选地,
在不同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息;或,
在相同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息。
可选地,
当在相同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息时,
在第一下行控制信息所对应的下行控制信息格式中设置新增的控制域,并在所述新增的控制域上发送所述第二下行控制信息;或,
利用所述下行控制信息格式中已有的控制域发送所述第二下行控制信息。
可选地,
当通过第三下行控制信息向终端发送所述下行传输区域的相关信息时,
在不同的下行控制信息格式上发送所述第三下行控制信息和与下行传输相关的第四下行控制信息;或,
在相同的下行控制信息格式上发送所述第三下行控制信息和第四下行控制信息。
可选地,
当在相同的下行控制信息格式上发送所述第三下行控制信息和第四下行控制信息时,
在第四下行控制信息所对应的下行控制信息格式中设置新增的控制域,并在所述新增的控制域上发送所述第三下行控制信息;或,
利用所述下行控制信息格式中已有的控制域发送所述第三下行控制信息。
可选地,在相同的下行控制信息格式上发送所述第二下行控制信息和第三下行控制信息。
可选地,所述上行传输区域的相关信息包括如下内容的至少一种:
所述上行传输区域在子帧中持续的时间;
所述上行传输区域在子帧中持续的时间以及在子帧中的位置;
所述上行传输区域在子帧中占的比例以及在子帧中的位置;
所述上行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
可选地,所述下行传输区域的相关信息包括如下内容的至少一种:
所述下行传输区域在子帧中持续的时间;
所述下行传输区域在子帧中持续的时间以及在子帧中的位置;
所述下行传输区域在子帧中占的比例以及在子帧中的位置;
所述下行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
可选地,所述在子帧n的上行传输区域接收终端的上行传输之前,所述数据传输方法还包括:
向终端发送上下行传输区域指示信息;其中,所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;
其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1 个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
可选地,所述向终端发送上下行传输区域指示信息,包括:
通过高层信令向终端发送所述第一子子帧指示信息;或,
通过第五下行控制信息向终端发送所述第一子子帧指示信息;或,
通过高层信令向终端发送所述第二子子帧指示信息;或
通过第六下行控制信息向终端发送所述第二子子帧指示信息。
本发明实施例还提出了一种客户端设备,设置在终端上,所述客户端设备包括:
第一接收单元,设置为接收与上行传输相关的第一下行控制信息;
上下行传输区域获取单元,设置为获取上下行传输区域指示信息;
第一传输单元,设置为:根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收;其中,n为整数。
可选地,
所述子帧n包括用于上行传输的上行传输区域和用于下行接收的下行传输区域;所述上下行传输区域指示信息包括:上行传输区域的相关信息以及下行传输区域的相关信息;
所述上下行传输区域获取单包括:
上行传输区域获取模块,设置为获取子帧n的上行传输区域的相关信息;
下行传输区域获取模块,设置为获取子帧n的下行传输区域的相关信息;
所述第一传输单元包括:
第一下行传输模块,设置为:根据获取的下行传输区域的相关信息,在子帧n的下行传输区域进行下行接收;
第一上行传输模块,设置为:根据接收的第一下行控制信息、以及获取的上行传输区域的相关信息,在子帧n的上行传输区域进行上行传输。
可选地,所述上行传输区域获取模块包括如下子模块中的一个或多个:
第一获取子模块,设置为获取固定设置的上行传输区域的相关信息;
第二获取子模块,设置为根据接收的高层信令获取半静态配置的上行传输区域的相关信息;
第三获取子模块,设置为根据接收的第二下行控制信息获取动态配置的上行传输区域的相关信息。
可选地,所述下行传输区域获取模块包括如下子模块中的一个或多个:
第四获取子模块,设置为获取固定设置的下行传输区域的相关信息;
第五获取子模块,设置为根据接收的高层信令获取半静态配置的下行传输区域的相关信息;
第六获取子模块,设置为根据接收的第三下行控制信息获取动态配置的下行传输区域的相关信息:
第七获取子模块,设置为根据所述上行传输区域的相关信息获取下行传输区域的相关信息。
可选地,
所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;
其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
所述上下行传输区域获取单元包括:
第一子子帧获取模块,设置为获取第一子子帧指示信息;
第二子子帧获取模块,设置为获取第二子子帧指示信息;
所述第一传输单元是设置为:根据第一子子帧指示信息,将无线帧中一个或多个子帧分割为N个子子帧;对于被分割的子帧,根据对应的第二子子帧指示信息,在其中N1个子子帧上进行上行传输,在其中N2个子子帧上进 行下行接收。
可选地,
所述第一子子帧获取模块包括如下子模块中的至少一个:
第一子子帧获取子模块,设置为获取固定设置的第一子子帧指示信息;
第二子子帧获取子模块,设置为根据接收的高层信令获取半静态配置的第一子子帧指示信息;
第三子子帧获取子模块,设置为根据接收的第五下行控制信息获取动态配置的第一子子帧指示信息;
所述第二子子帧获取模块包括如下子模块中的至少一个:
第四子子帧获取子模块,设置为获取固定设置的第二子子帧指示信息;
第五子子帧获取子模块,设置为根据接收的高层信令获取半静态配置的第二子子帧指示信息;
第六子子帧获取子模块,设置为根据接收的第六下行控制信息获取动态配置的第二子子帧指示信息。
本发明实施例还提出了一种服务端设备,设置在网络侧,所述服务端设备包括:
第一发送单元,设置为:发送与上行传输相关的第一下行控制信息;
第二传输单元,设置为:在子帧n的上行传输区域接收终端的上行传输;其中,子帧n包括用于上行传输的上行传输区域和用于下行传输的下行传输区域;其中,n为整数。
可选地,所述第二传输单元还设置为:在子帧n的下行传输区域进行下行传输。
可选地,
所述服务端设备还包括:上下行传输区域发送单元,设置为:向终端发送上下行传输区域指示信息;其中,所述上下行传输区域发送单元包括如下模块的至少一个:
上行传输区域发送模块,设置为发送上行传输区域的相关信息;
下行传输区域发送模块,设置为发送下行传输区域的相关信息;
所述第二传输单元包括:
第二下行传输模块,设置为在子帧n的下行传输区域进行下行发送;
第二上行传输模块,设置为在子帧n的上行传输区域进行上行接收。
可选地,
所述服务端设备还包括:上下行传输区域发送单元,设置为向终端发送上下行传输区域指示信息;其中,所述上下行传输区域发送单元包括如下模块:
第一子子帧发送模块,设置为发送第一子子帧指示信息;
第二子子帧发送模块,设置为发送第二子子帧指示信息;
其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
所述第二传输单元是设置为:根据第一子子帧指示信息和第二子子帧指示信息,在其中N1个子子帧上进行上行接收,在其中N2个子子帧上进行下行发送。
可选地,所述上行传输区域发送模块包括如下子模块中的一个或多个:
第一发送子模块,设置为通过高层信令向终端发送所述上行传输区域的相关信息;
第二发送子模块,设置为通过第二下行控制信息向终端发送所述上行传输区域的相关信息;
所述下行传输区域发送模块包括如下子模块中的一个或多个:
第三发送子模块,设置为通过高层信令向终端发送所述下行传输区域的相关信息:
第四发送子模块,设置为通过第三下行控制信息向终端发送所述下行传输区域的相关信息。
可选地,
所述第一子子帧发送模块包括如下子模块中的一个或多个:
第一子子帧发送子模块,设置为通过高层信令向终端发送所述第一子子帧指示信息;
第二子子帧发送子模块,设置为通过第五下行控制信息向终端发送所述第一子子帧指示信息;
所述第二子子帧发送模块包括如下子模块中的一个或多个:
第三子子帧发送子模块,设置为通过高层信令向终端发送所述第二子子帧指示信息:
第四子子帧发送子模块,设置为通过第六下行控制信息向终端发送所述第二子子帧指示信息。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于客户端侧的数据传输方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于服务端侧的数据传输方法。
此外,本发明实施例还提供一种子帧结构,包括:用于上行传输的上行传输区域和用于下行传输的下行传输区域。
本发明实施例提供的技术方案包括:接收与上行传输相关的第一下行控制信息;获取上下行传输区域指示信息;根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输;在子帧n的下行传输区域进行下行接收;其中,n为整数。通过上述方案,在预先调度的用于上行传输的子帧中,还包括用于下行传输的下行传输区域,在需要进行下行传输时,可以通过下行传输区域及时对下行业务进行传输,基于现有的LTE框架,实现了一种低时延数据传输方案,能够满足低时延要求的业务。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
下面对本发明实施例中的附图进行说明,实施例中的附图是用于对本申请的进一步理解,与说明书一起用于解释本申请,并不构成对本申请保护范围的限制。
图1为现有技术中LTE的无线帧结构图;
图2A、图2B和图2C分别给出了现有技术中一种下行子帧结构示意图;
图3A、图3B和图3C分别给出了现有技术中一种上行子帧结构示意图;
图4为现有技术中特殊子帧的结构图;
图5为现有技术中一个上行传输提前调度的示意图;
图6为本发明实施例提出的一种数据传输方法的流程示意图;
图7为本发明实施例提供的配置DCI格式X的示意图;
图8为本发明实施例提供的另一种配置DCI格式X的示意图;
图9A、图9B和图9C分别为本发明实施例提供的一种上行子帧的结构示意图;
图10A、图10B和图10C分别为本发明实施例提供的一种下行子帧的示意图;
图11为本发明实施例提供的一种改进型上行子帧的示意图;
图12为本发明实施例提供的PUCCH和PUSCH在上行传输区域通过时分的方式发送的一个示意图;
图13A~图13L分别为本发明实施例提供的一种子帧的结构示意图;
图14A为本发明实施例提供的特殊上下行子帧的结构示意图;
图14B为本发明实施例提供的MBSFN子帧支持上下行传输的设计的一个示意图;
图15A为本发明实施例提供的上行业务/控制信道设计的一个参考信号结构示意图;
图15B为本发明实施例提供的参考信号符号数为1个的示意图;
图15C为本发明实施例提供的参考信号符号数为2个的示意图;
图16A和图16B分别为本发明实施例提供的包含子子帧的子帧的结构示意图;
图17A为本发明实施例提供的基于现有的无线帧配置子子帧的一个示意图;
图17B为本发明实施例提供的位图的示意图;
图18为本发明实施例提出的另一种数据传输方法的流程示意图;
图19A为本发明实施例提出的一种客户端设备的结构示意图;
图19B为本发明实施例提出的一种服务端设备的结构示意图。
本发明的实施方式
为了便于本领域技术人员的理解,下面结合附图对本申请作进一步的描述,并不能用来限制本申请的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
参见图6,本发明实施例提出了一种数据传输方法,如图6所示,所述方法包括:
步骤110,接收与上行传输相关的第一下行控制信息。
其中,与上行传输相关的第一下行控制信息,即上行调度信息。根据第一下行控制信息的调度,终端将在子帧n上进行上行传输。
其中,基站会在子帧n-K上发送与上行传输相关的第一下行控制信息。其中,n和K均为整数。
其中,所述K携带在所述与上行传输相关的下行控制信息中;或,所述K是基站与终端约定好的值,在协议中规定好即可。
步骤120,获取上下行传输区域指示信息。
在本发明的一个实施例中,所述子帧n包括用于上行传输的上行传输区域和用于下行接收的下行传输区域;所述上下行传输区域指示信息包括:上 行传输区域的相关信息以及下行传输区域的相关信息。
在步骤120中,所述获取上下行传输区域指示信息可以包括:
步骤121,获取子帧n的上行传输区域的相关信息,以及,
步骤122,获取子帧n的下行传输区域的相关信息。
在步骤121中,所述获取子帧n的上行传输区域的相关信息采用如下方式中的一种实现:
方式1-1,获取固定设置的上行传输区域的相关信息;
方式1-2,根据接收的高层信令获取半静态配置的上行传输区域的相关信息;
方式1-3,根据接收的第二下行控制信息获取动态配置的上行传输区域的相关信息。
其中,示例性地,如果是通过高层信令半静态配置上行传输区域的相关信息,可以将上行传输区域的相关信息设置在PDSCH等数据区域中,如果通过第二下行控制信息携带上行传输区域的相关信息,设置在PDCCH中。
其中,在方式1-3中,具体可以采用两种方式传输上行传输区域的相关信息,一种是:方式1-3-1,所述第一下行控制信息和第二下行控制信息格式采用不同的下行控制信息格式;另一种是:方式1-3-2,所述第一下行控制信息和第二下行控制信息格式采用同一个下行控制信息格式。在方式1-3-2中,在子帧n-K传送上行传输区域的相关信息,在方式1-3-1中,可以在子帧n-K上传输与上行传输相关的第一下行控制信息,在子帧n-K上或子帧n-K之前的子帧上传输上行传输区域的相关信息。
其中,方式1-3-1中,第二下行控制信息对应的下行控制信息格式为DCI格式X,第一下行控制信息对应的下行控制信息格式为现有的DCI格式,所述DCI格式X的大小与现有的DCI格式大小相同,DCI格式X和现有的DCI格式通过不同的无线网络临时标识(RNTI,Radio Network Temporary Identity)来加扰,以区分所述DCI格式X是用来指示上行传输区域的相关信息的。
其中,发送DCI格式X的子帧可以通过高层的方式配置。一种配置方式是配置DCI格式X的发送周期,以及在周期内的子帧偏置。
参见图7,图7为本发明实施例提供的配置DCI格式X的示意图。如图7所示,DCI格式X的发送周期为10毫秒,子帧偏置为0,因此在每一个无线帧的子帧#0上发送DCI格式X,终端通过解调DCI格式X获取上行传输区域的相关信息,所述获取的上行传输区域的相关信息可以用于当前无线帧#p的子帧#4~#9以及下一个无线帧#p+1的子帧#0~#3。
在方式1-3-1中,可以根据上行业务的需求,配置DCI格式X的发送周期,从而动态调整一个子帧中用于上行传输的传输区域。合理配置DCI格式X的发送周期,可以比较好地适应上下行业务的变化需求,且同时保证了下行业务及时发送,有利于系统性能的提高。
在方式1-3-2中,第一下行控制信息和第二下行控制信息在同一个DCI格式0/4中发送。一种方式是在DCI格式0/4中增加一个新的控制域,用于指示上行传输区域的相关信息;另一种方式是重用或重新定义DCI格式0/4中已有的控制域,一种可能是重用或重新定义资源分配指示域。采用这种方式,对于每个进行上行传输的子帧,其上行传输区域都是可以动态变化的,这种方式能够更好地实现上行业务的自适应,充分利用资源。当指示上行传输区域的相关信息是重用已有的控制域时,并不需要增加额外的信令,不过如果是采用资源分配指示域的话,对于资源分配会带来一定的限制。
当指示上行传输区域的相关信息在与上行传输相关的第一下行控制信息在DCI格式0/4中发送时,所述指示信息作用的子帧根据上行混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)定时关系来确定,在相关系统中,子帧n-K上发送的与上行传输相关的DCI,将指示终端在子帧n上进行上行传输。图8给出了相应的示意图。如图8所示,当基站在无线帧#p的子帧#0上发送DCI格式0/4时,将指示在无线帧#p的子帧#4上进行上行传输;当基站在无线帧#p的子帧#2上发送DCI格式0/4时,将指示在无线帧#p的子帧#6上进行上行传输。
本发明实施例中,当子帧有上行传输要发送时,终端根据DCI格式X指示的上行传输区域的相关信息来进行上行传输;当上述子帧没有上行传输要发送时,终端根据默认的方式进行下行接收。
其中,所述终端根据默认的方式进行下行接收包括但不限于以下方式:
方式3-1,终端根据传统下行子帧进行接收,例如,图2A、图2B和图2C分别给出了一种现有的下行子帧结构示意图。
方式3-2,终端根据改进型的下行子帧进行接收,在改进型的下行子帧中,包括下行传输区域和上行传输区域,其中,上行传输区域占用与基站约定的子帧最后几个OFDM符号。这些OFDM符号用于上行控制信息或者SRS或者PRACH的发送。
参见图9A、图9B和图9C,分别为本发明实施例提供的一种上行子帧的结构示意图。
在相关协议中,与上行传输相关的下行控制信息(DCI)包括DCI格式0/4。假设终端在子帧n-K上接收到了DCI格式0或4,则终端要在子帧n上进行PUSCH传输。
终端在子帧n上进行PUSCH传输时,先确定可用于PUSCH传输的上行传输区域,其中所述的上行传输区域根据本发明实施例提供的获取方式进行确定。下面结合附图具体说明。
如图9A、图9B和图9C所示,子帧n包括时隙#0和时隙#1两个时隙,其中时隙#0为下行传输区域,时隙#1为上行传输区域。基站在子帧n的时隙#0上进行下行传输,终端要在子帧n的时隙#0上进行下行传输的接收,终端要在子帧n的时隙#1上进行上行传输的发送,基站在子帧n的时隙#1上进行上行传输的接收。
当上行传输区域的相关信息时采用方式1-1获取时,只要子帧n要进行上行传输,上行传输区域的相关信息是固定的,因此上行传输区域在子帧中的比例和位置都是固定的,终端就只能在固定的上行传输区域进行上行传输,如果当前基站有下行传输要发送,则可以在相应的下行传输区域进行下行传输,解决了现有技术中由于预先调度为上行传输的子帧只能进行上行传输,所造成的下行传输不能及时发送的问题。然而,在这种方式中,上行传输区域和下行传输区域是固定的,存在不能很好地适应上下行业务的变化的情况,也会存在一定的资源浪费,其优点在于不需要额外的信令来指示。
上行传输区域的相关信息也可以采用方式1-2或方式1-3获取,在这两种 方式中,可以指定上行传输区域的相关信息,从而根据上行业务需求灵活的设置上行传输区域的大小。
图10A、图10B和图10C分别为本发明实施例提供的一种改进型的下行子帧的示意图,如图10A、图10B和图10C所示,子帧最后几个OFDM符号预留用作上行控制信息或者SRS或者PRACH的发送,其中预留的OFDM符号数是基站与终端约定好的,可选为1~2个OFDM符号。采用所述的改进型的下行子帧,可以保证上行控制信息和SRS的及时发送,对于减少时延,及时获取信道状态相关的信息是有好处的。
本发明实施例中,还提供另一种改进型的上行子帧,改进型的上行子帧包括下行控制区域和上行传输区域,下行控制区域用于必要的下行控制信息的发送。
当上行业务较多时,可以采用上述改进型的上行子帧进行上行业务的传输,图11为本发明实施例提供的一种改进型上行子帧的示意图。采用这种改进型的上行子帧结构,一方面可以保证上行业务的传输,另一方面,由于保留了下行控制区域,因此,也保证了一些必要的下行控制信息的及时发送。
本发明实施例中,终端在上行传输区域进行上行传输,所述的上行传输包括但不限于物理上行信道和/或物理上行信号的传输,其中,所述物理上行信道包括物理上行共享信道(PUSCH)、物理上行控制信道(PUCCH)、物理随机接入信道(PRACH),所述的物理上行信号包括测量参考信号(SRS)。
现有系统中,可以通过高层信令配置PUCCH和PUSCH是否在同一个子帧上同时发送,当配置二者同时发送时,PUCCH和PUSCH通过频分的方式实现同传。
终端在本发明实施例提供的上行传输区域进行传输时,可以通过高层信令配置PUCCH和PUSCH是否能同时发送,也可以默认支持二者同传或不支持二者同传,还可以通过下行控制信息动态指示是否支持二者同传。
当允许二者同传时,PUCCH和PUSCH的同传可以通过时分的方式或者通过频分的方式来实现。频分的方式与现有系统类似,这里不再赘述。
PUCCH和PUSCH设置为在上行传输区域通过时分的方式发送。
当PUCCH和PUSCH在上行传输区域通过时分的方式发送时,所述上行传输区域预留一个固定的PUCCH传输区域,其余的上行传输区域作为PUSCH传输区域。图12给出了PUCCH和PUSCH在上行传输区域通过时分的方式发送的一个示意图。
当所述PUCCH传输区域是否存在通过物理下行控制信息指示时,所述指示PUCCH传输区域是否存在的下行控制信息与指示上行传输区域的下行控制信息在同一个DCI格式上发送,终端在发送PUSCH时,根据所述上行传输区域的指示信息以及所述PUCCH传输区域是否存在的指示信息,确定PUSCH的传输区域。所述指示PUCCH传输区域是否存在的下行控制信息可以通过1比特来指示。
本发明实施例中,所述上行传输区域的相关信息包括如下内容的至少一种:
所述上行传输区域在子帧中持续的时间;
所述上行传输区域在子帧中持续的时间以及在子帧中的位置;
所述上行传输区域在子帧中占的比例以及在子帧中的位置;
所述上行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
在步骤122中,获取子帧n的下行传输区域的相关信息,具体为:在子帧n之前的子帧上获取上述下行传输区域的相关信息。
步骤130,根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收。
其中,步骤130可以包括:
步骤131,在子帧n的下行传输区域进行下行接收。
其中,根据获取的下行传输区域的相关信息,在子帧n的下行传输区域进行下行接收。此外,下行接收还需要获取基站发送的第四下行控制信息,即下行调度信息。
步骤132,根据接收的第一下行控制信息、以及获取的上行传输区域的相关信息,在子帧n的上行传输区域进行上行传输。
在步骤122中,所述获取子帧n的下行传输区域的相关信息采用如下方式中的一种实现:
方式2-1,获取固定设置的下行传输区域的相关信息;
方式2-2,根据接收的高层信令获取半静态配置的下行传输区域的相关信息;
方式2-3,根据接收的第三下行控制信息获取动态配置的下行传输区域的相关信息:
方式2-4,根据所述上行传输区域的相关信息获取下行传输区域的相关信息。
在方式2-4中,当终端获取了子帧n的上行传输区域的相关信息后,其实终端也获得了子帧n的下行传输区域的相关信息,因为所述的上行传输区域的相关信息主要指时域上的信息,当获得了上行传输区域相关的信息后,子帧中其余的时间就用作下行接收。
本发明实施例中,子帧n还包括上下行转换区域,上下行转换区域在下行传输区域中预留,或者在上行传输区域中预留。其中,考虑到终端在同一子帧上既要进行下行接收,也要进行上行传输,因此,子帧中需要有上下行转换的时间。
其中,在方式2-3中,具体可以采用两种方式传输下行传输区域的相关信息,一种是:方式2-3-1,所述第三下行控制信息和第一下行控制信息格式采用不同的下行控制信息格式;另一种是:方式2-3-2,所述第三下行控制信息和第一下行控制信息采用同一个下行控制信息格式。
对于方式2-3-1,当所述上行传输区域和下行传输区域在时域上持续的时间以及在子帧中的位置通过同一个单独的下行控制信息格式来携带时,所述指示上行传输区域在时域上持续的时间以及在子帧中的位置的下行控制信息和所述指示下行传输区域在时域上持续的时间以及在子帧中的位置的下行控制信息可以共用一个控制域,例如,所述共用的控制域指示二者在子帧中的 时间比例信息,同时约定下行传输区域在子帧的前面部分,上行传输区域在子帧的后面部分。
可选地,所述的时间比例信息为下行传输区域和下行传输区域所占的OFDM符号数的比值,可选的比值包括但不限于:
子帧采用常规循环前缀时:下行传输区域和下行传输区域所占的OFDM符号数的比值为(12:2)、(11:3)、(10:4)、(9:5)、(7:7)、(6:8)、(3:11)、(2:12)中的任一种;
子帧采用扩展循环前缀时:下行传输区域和下行传输区域所占的OFDM符号数的比值为(10:2)、(9:3)、(8:4)、(6:6)、(3:9)、(2:10)中的任一种。
其中,上下行切换的保护间隔可以通过打掉下行传输区域的最后的符号来实现,或者是通过打掉上行传输区域的最前面的符号来实现,这个只要终端与基站双方约定好即可,本申请不做限制。
特别地,当上下行切换的保护间隔通过打掉上行传输区域的最前面的符号来实现时,基站在下行传输区域进行下行传输时,可以参考现有TDD系统中特殊时隙中的DwPTS的设计。
本发明实施例中,所述下行传输区域的相关信息包括如下内容的至少一种:
所述下行传输区域在子帧中持续的时间
所述下行传输区域在子帧中持续的时间以及在子帧中的位置;
所述下行传输区域在子帧中占的比例以及在子帧中的位置;
所述下行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
本发明实施例中,所述子帧中上行传输区域和下行传输区域的结构具体包括:
下行控制区域、下行数据区域、上行特殊区域以及上行数据区域在子帧中的组成,其中,所述上行特殊区域包括上行控制区域、测量参考信号区域以及随机接入区域中的至少一种。
本发明实施例中,所述下行控制区域、下行数据区域、上行特殊区域以及上行数据区域在子帧中的组成具体包括如下组合方式中的一种,其中,每个数据区域或控制区域在子帧按顺序分别为:
组合一,下行控制区域、下行数据区域和上行特殊区域;
组合二,下行控制区域、下行数据区域、上行数据区域和上行特殊区域;
组合三,下行控制区域、下行数据区域和上行数据区域;
组合四,下行控制区域和上行数据区域;
组合五,下行控制区域、上行数据区域和上行特殊区域。
其中,组合一的一个具体示例请参见图10A、图10B和图10C;其中上行特殊区域上可以进行PUCCH、SRS以及PRACH传输。组合二的一个具体示例请参见图13A、图13B、图13C、图13D、图13E和图13F;其中,上行数据区域上可以进行PUSCH、SRS以及PRACH传输,上行特殊区域上可以进行PUCCH传输,或者,上行数据区域上可以进行PUSCH传输,上行特殊区域上可以进行PUCCH、SRS以及PRACH传输。组合三的一个具体示例请参见图13G、图13H和图13I;组合四的一个具体示例请参见图13J;组合五的一个具体示例请参见图13K和图13L。
下面结合具体的示例进行说明。
在本发明实施例提供的一个示例中,为了减少对现有系统的影响,可以对现有的TDD帧结构中的特殊子帧进行改进,并利用改进后的特殊上下行子帧来实现上行与下行的传输。
图14A给出了特殊上下行子帧的结构示意图。在该示意图中,采用了特殊子帧中DwPTS只包含3个OFDM符号的配置,UpPTS占用1个或2个符号,其余符号为GP。在本发明实施例中,利用原来特殊子帧中的GP来进行PDSCH/PUSCH/PUCCH的传输,可选地,GP中的上行传输区域和下行传输区域可以是固定的,或者半静态配置的,或者是物理下行控制信息动态指示的。
为了减少对现有系统的影响,可以利用现有帧结构中的多播/组播单频网络(MBSFN,Multimedia Broadcast Single Frequency Network)子帧来实现上 行与下行的传输。图14B给出了MBSFN子帧支持上下行传输的设计的一个示意图。在该示意图中,MBSFN子帧的前两个符号用于PDCCH传输,时隙0的剩余符号用于上行传输,时隙1用于下行传输。对于MBSFN子帧中除了前两个符号用于PDCCH传输外,其余符号中上行传输区域和下行传输区域可以是固定的,或者半静态配置的,或者是物理下行控制信息动态指示的,具体实现如上述实施例所述。
在本发明实施例提供的一个示例中,提供终端在子帧的上行传输区域进行上行传输时的设置方式。由于现有系统中并没有相应的设计,因此需要考虑新的设计。
当上行传输区域除去保护间隔后包含的符号数为1个或2个时,终端在所述1个或2个符号发送SRS,或者物理随机接入信道(PRACH),所述的SRS发送和PRACH的发送可以参考现有TDD系统中特殊时隙中UpPTS的设计。
当上行传输区域除去保护间隔后包含的符号数为1个或2个时,终端还可以在所述的1个或2个符号上发送上行控制信息,所述上行控制信息主要是HARQ-ACK,用于及时对下行传输进行反馈。现有的承载上行控制信息的PUCCH信道在时域上是持续1个子帧的,当上行控制信息只在1~2个符号发送,需要考虑新的设计。
当上行传输区域(除去保护间隔后)包含的符号数为3个到7个(扩展循环前缀为6个)时,图15A给出了上行业务/控制信道设计的一个参考信号结构示意图。图15A中,参考信号符号数为1个,数据符号用于承载上行业务数据或上行控制信息。其中,参考信号符号数设置在数据符号的中间位置。
当上行传输区域(除去保护间隔后)包含的符号数为8个到12个(扩展循环前缀为7到10个)时,图15B和图15C分别给出了上行业务/控制信道设计的参考信号结构示意图。上行传输区域不支持时隙跳频,其中图15B给出的是参考信号符号数为1个的示意图,图15C给出的是参考信号符号数为2个的示意图,数据符号用于承载上行业务数据或上行控制信息。
在本发明的另一个实施例中,将子帧分割为多个子子帧,每个子子帧中均包括上行传输区域和下行传输区域。下面进行详细说明。
在本发明的另一个实施例中,所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N。
在步骤120中,所述获取上下行传输区域指示信息包括:
步骤125,获取第一子子帧指示信息;
步骤126,获取第二子子帧指示信息。
在步骤130中,所述根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收,包括:
根据第一子子帧指示信息,将无线帧中一个或多个子帧分割为N个子子帧;对于被分割的子帧,根据对应的第二子子帧指示信息,在其中N1个子子帧上进行上行传输,在其中N2个子子帧上进行下行接收。
如图16A和图16B所示,为包含子子帧的子帧的结构示意图。1毫秒的子帧被划分为4个或5个时间长度更小的子子帧,每个子子帧的持续时间为0.25毫秒或0.2毫秒,每个子子帧都可以用于上行传输和/或下行传输。
子子帧的设计主要是针对低时延业务需求的,为了能够现有的系统兼容,一种解决方法是在现有的无线帧中的一个或多个子帧中配置子子帧,其余子帧用于传统的业务传输,这样就能够既保证传统业务的需求,同时还能满足低时延业务的需求。图17A给出了一个基于现有TDD上下行配置0的无线帧,配置子子帧的一个示意图。在该示意图中,上行子帧可以被配置成由子子帧组成,如子帧#4和子帧#9可以被配置成由5个子子帧组成。
其中,终端采用如下方式中的一种获取第一子子帧指示信息:
获取固定设置的第一子子帧指示信息;
根据接收的高层信令获取半静态配置的第一子子帧指示信息;
根据接收的第五下行控制信息获取动态配置的第一子子帧指示信息。
其中,当采用高层信令半静态配置或者第五下行控制信息动态配置时,可以通过一个包含10比特的位图来指示,10比特的位图对应着一个无线帧中的10个子帧,当位图中对应的比特为“1”时,表明该子帧可以被配置成由子子帧组成。图17B给出了一个具体的位图示意图,在图17B中,与子帧4和子帧9对应的比特位被设置为“1”,因此,子帧4和子帧9被配置为由子子帧组成。
其中,终端采用如下方式中的一种获取第二子子帧指示信息:
获取固定设置的第二子子帧指示信息;
根据接收的高层信令获取半静态配置的第二子子帧指示信息;
根据接收的第六下行控制信息获取动态配置的第二子子帧指示信息。
当采用高层信令半静态配置或者第五下行控制信息动态指示第二子子帧指示信息时,可以通过一个包含5比特的位图来指示,5比特的位图对应着一个子帧中的5个子子帧,当位图中对应的比特为“1”时,表示该子子帧用于上行传输,当位图中对应的比特为“0”时,表示该子子帧用于下行传输。其中位图的大小取决于子帧被划分为几个子子帧,在该示例中,子帧被划分为5个子子帧。
本发明实施例中,在方式1-1中,可选地,终端根据小区确定终端对应的上行传输区域的相关信息,在终端进入某个小区时,终端从基站获取上行传输区域的相关信息并进行存储在自身的存储单元中,终端在需要配置子帧的上行传输区域时,从存储单元中获取存储的上行传输区域的相关信息。同样地,在方式2-1中,可以采取和上述同样的方式存储和获取下行传输区域的相关信息。同样地,对于获取固定设置的第一子子帧指示信息和第二子子帧指示信息,可以采用上述同样的方式进行存储和获取。
本发明实施例中,上行数据区域上可以进行PUSCH、SRS以及PRACH传输,上行特殊区域上可以进行PUCCH传输,或者,上行数据区域上可以进行PUSCH传输,上行特殊区域上可以进行PUCCH、SRS以及PRACH传输。
基于与上述方法实施例相同或相似的构思,本发明实施例还提供另一种 数据传输方法,参见图18,本发明实施例提出的另一种数据传输方法包括:
步骤210,发送与上行传输相关的第一下行控制信息。
可选地,在子帧n-K上发送与上行传输相关的第一下行控制信息;
步骤240,在子帧n的上行传输区域接收终端的上行传输。其中,子帧n包括用于上行传输的上行传输区域和用于下行传输的下行传输区域。其中,n和K为整数。
在步骤240之前,上述方法还包括步骤230:在子帧n的下行传输区域进行下行传输。
其中,在步骤230之前,所述数据传输方法还包括:
步骤220,向终端发送上下行传输区域指示信息。
在本发明的一个示例性实施例中,所述上下行传输区域指示信息包括:上行传输区域的相关信息和/或下行传输区域的相关信息。
在步骤220中,所述向终端发送上下行传输区域指示信息包括:
步骤221,向终端发送上行传输区域的相关信息;
步骤222,向终端发送下行传输区域的相关信息。
其中,基站通过高层信令向终端发送所述上行传输区域的相关信息;或,基站通过第二下行控制信息向终端发送所述上行传输区域的相关信息。
本发明实施例中,基站在不同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息;或,基站在相同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息。
其中,当在相同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息时,在第一下行控制信息所对应的下行控制信息格式中设置新增的控制域,并在所述新增的控制域上发送所述第二下行控制信息;或,利用所述下行控制信息格式中已有的控制域发送所述第二下行控制信息。
本发明实施例中,所述上行传输区域的相关信息包括如下内容的至少一种:
所述上行传输区域在子帧中持续的时间;
所述上行传输区域在子帧中持续的时间以及在子帧中的位置;
所述上行传输区域在子帧中占的比例以及在子帧中的位置;
所述上行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
其中,步骤221和步骤222的先后顺序可以更换,此外,上行传输区域的相关信息和下行传输区域的相关信息也可以同时发送。
其中,基站通过高层信令向终端发送所述下行传输区域的相关信息;或,基站通过第三下行控制信息向终端发送所述下行传输区域的相关信息。
本发明实施例中,当根据接收的第三下行控制信息获取动态配置的下行传输区域的相关信息时,基站在不同的下行控制信息格式上发送所述第三下行控制信息和与下行传输相关的第四下行控制信息;或,基站在相同的下行控制信息格式上发送所述第三下行控制信息和第四下行控制信息。
其中,当在相同的下行控制信息格式上发送所述第三下行控制信息和第四下行控制信息时,在第四下行控制信息所对应的下行控制信息格式中设置新增的控制域,并在所述新增的控制域上发送所述第三下行控制信息;或,利用所述下行控制信息格式中已有的控制域发送所述第三下行控制信息。
本发明实施例中,基站也可以设置为在相同的下行控制信息格式上发送所述第二下行控制信息和第三下行控制信息。
本发明实施例中,所述下行传输区域的相关信息包括如下内容的至少一种:
所述下行传输区域在子帧中持续的时间
所述下行传输区域在子帧中持续的时间以及在子帧中的位置;
所述下行传输区域在子帧中占的比例以及在子帧中的位置;
所述下行传输区域在子帧中占的比例;
所述子帧中上行传输区域和下行传输区域的结构。
基于与上述方法实施例相同或相似的构思,本发明实施例还提供一种客户端设备,设置在终端上,参见图19A,该客户端设备包括:
第一接收单元10,设置为:接收与上行传输相关的第一下行控制信息;
上下行传输区域获取单元20,设置为获取上下行传输区域指示信息;
第一传输单元30,设置为:根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收;其中,n为整数。
本发明实施例中,所述子帧n包括用于上行传输的上行传输区域和用于下行接收的下行传输区域;所述上下行传输区域指示信息包括:上行传输区域的相关信息以及下行传输区域的相关信息;
所述上下行传输区域获取单20包括:
上行传输区域获取模块,设置为获取子帧n的上行传输区域的相关信息;
下行传输区域获取模块,设置为获取子帧n的下行传输区域的相关信息;
所述第一传输单元30包括:
第一下行传输模块,设置为:根据获取的下行传输区域的相关信息,在子帧n的下行传输区域进行下行接收;
第一上行传输模块,设置为:根据接收的第一下行控制信息、以及获取的上行传输区域的相关信息,在子帧n的上行传输区域进行上行传输。
本发明实施例中,所述上行传输区域获取模块包括如下子模块中的一个或多个:
第一获取子模块,设置为获取固定设置的上行传输区域的相关信息;
第二获取子模块,设置为根据接收的高层信令获取半静态配置的上行传输区域的相关信息;
第三获取子模块,设置为根据接收的第二下行控制信息获取动态配置的上行传输区域的相关信息。
本发明实施例中,所述下行传输区域获取模块包括如下子模块中的一个或多个:
第四获取子模块,设置为获取固定设置的下行传输区域的相关信息;
第五获取子模块,设置为根据接收的高层信令获取半静态配置的下行传 输区域的相关信息;
第六获取子模块,设置为根据接收的第三下行控制信息获取动态配置的下行传输区域的相关信息;
第七获取子模块,设置为根据所述上行传输区域的相关信息获取下行传输区域的相关信息。
本发明实施例中,所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;
其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
所述上下行传输区域获取单元20包括:
第一子子帧获取模块,设置为获取第一子子帧指示信息;
第二子子帧获取模块,设置为获取第二子子帧指示信息;
所述第一传输单元30是设置为:根据第一子子帧指示信息,将无线帧中一个或多个子帧分割为N个子子帧;对于被分割的子帧,根据对应的第二子子帧指示信息,在其中N1个子子帧上进行上行传输,在其中N2个子子帧上进行下行接收。
本发明实施例中,所述第一子子帧获取模块包括如下子模块中的至少一个:
第一子子帧获取子模块,设置为获取固定设置的第一子子帧指示信息;
第二子子帧获取子模块,设置为根据接收的高层信令获取半静态配置的第一子子帧指示信息;
第三子子帧获取子模块,设置为根据接收的第五下行控制信息获取动态配置的第一子子帧指示信息;
所述第二子子帧获取模块包括如下子模块中的至少一个:
第四子子帧获取子模块,设置为获取固定设置的第二子子帧指示信息;
第五子子帧获取子模块,设置为根据接收的高层信令获取半静态配置的第二子子帧指示信息;
第六子子帧获取子模块,设置为根据接收的第六下行控制信息获取动态配置的第二子子帧指示信息。
基于与上述实施例相同或相似的构思,本发明实施例还提供一种服务端设备,设置在网络侧,图19B为本发明实施例提出的一种服务端设备的结构示意图,如图19B所示,所述服务端设备包括:
第一发送单元50,设置为发送与上行传输相关的第一下行控制信息;
第二传输单元70,设置为在子帧n的上行传输区域接收终端的上行传输;其中,子帧n包括用于上行传输的上行传输区域和用于下行传输的下行传输区域;其中,n为整数。
本发明实施例中,所述第二传输单元70还设置为:在子帧n的下行传输区域进行下行传输。
本发明实施例中,服务端设备还包括:
上下行传输区域发送单元60,设置为向终端发送上下行传输区域指示信息;其中,所述上下行传输区域发送单元60包括如下模块的至少一个:
上行传输区域发送模块,设置为发送上行传输区域的相关信息;
下行传输区域发送模块,设置为发送下行传输区域的相关信息;
所述第二传输单元70包括:
第二下行传输模块,设置为在子帧n的下行传输区域进行下行发送;
第二上行传输模块,设置为在子帧n的上行传输区域进行上行接收。
本发明实施例中的另一个示例中,所述上下行传输区域发送单元60包括如下模块:
第一子子帧发送模块,设置为发送第一子子帧指示信息;
第二子子帧发送模块,设置为发送第二子子帧指示信息;
其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1 个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
所述第二传输单元70是设置为:根据第一子子帧指示信息和第二子子帧指示信息,在其中N1个子子帧上进行上行接收,在其中N2个子子帧上进行下行发送。
本发明实施例中,所述上行传输区域发送模块包括如下子模块中的一个或多个:
第一发送子模块,设置为通过高层信令向终端发送所述上行传输区域的相关信息;
第二发送子模块,设置为通过第二下行控制信息向终端发送所述上行传输区域的相关信息;
所述下行传输区域发送模块包括如下子模块中的一个或多个:
第三发送子模块,设置为通过高层信令向终端发送所述下行传输区域的相关信息:
第四发送子模块,设置为通过第三下行控制信息向终端发送所述下行传输区域的相关信息。
本发明实施例中,所述第一子子帧发送模块包括如下子模块中的一个或多个:
第一子子帧发送子模块,设置为通过高层信令向终端发送所述第一子子帧指示信息;
第二子子帧发送子模块,设置为通过第五下行控制信息向终端发送所述第一子子帧指示信息;
所述第二子子帧发送模块包括如下子模块中的一个或多个:
第三子子帧发送子模块,设置为通过高层信令向终端发送所述第二子子帧指示信息:
第四子子帧发送子模块,设置为通过第六下行控制信息向终端发送所述第二子子帧指示信息。
此外,本发明实施例还提供一种子帧结构,包括:用于上行传输的上行传输区域和用于下行传输的下行传输区域。关于所述子帧结构的具体内容如上述方法实施例所述,故于此不再赘述。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现客户端侧的上述数据传输方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现服务端侧的上述数据传输方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
需要说明的是,以上所述的实施例仅是为了便于本领域的技术人员理解而已,并不用于限制本申请的保护范围,在不脱离本申请的发明构思的前提下,本领域技术人员对本申请所做出的任何显而易见的替换和改进等均在本申请的保护范围之内。
工业实用性
本发明实施例提供一种数据传输方法、客户端设备以及服务端设备,在预先调度的用于上行传输的子帧中,还包括用于下行传输的下行传输区域,在需要进行下行传输时,可以通过下行传输区域及时对下行业务进行传输,基于现有的LTE框架,实现了一种低时延数据传输方案,能够满足低时延要求的业务。

Claims (38)

  1. 一种数据传输方法,包括:
    接收与上行传输相关的第一下行控制信息;
    获取上下行传输区域指示信息;
    根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收;
    其中,n为整数。
  2. 根据权利要求1所述的数据传输方法,其中,
    所述子帧n包括用于上行传输的上行传输区域和用于下行接收的下行传输区域;所述上下行传输区域指示信息包括:上行传输区域的相关信息、以及下行传输区域的相关信息;
    所述获取上下行传输区域指示信息包括:
    获取子帧n的上行传输区域的相关信息,以及,获取子帧n的下行传输区域的相关信息;
    所述根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收,包括:
    根据接收的第一下行控制信息、以及获取的上行传输区域的相关信息,在子帧n的上行传输区域进行上行传输;
    根据获取的下行传输区域的相关信息,在子帧n的下行传输区域进行下行接收。
  3. 根据权利要求2所述的数据传输方法,其中,所述获取子帧n的上行传输区域的相关信息采用如下方式中的一种实现:
    获取固定设置的上行传输区域的相关信息;
    根据接收的高层信令获取半静态配置的上行传输区域的相关信息;
    根据接收的第二下行控制信息获取动态配置的上行传输区域的相关信 息。
  4. 根据权利要求2所述的数据传输方法,其中,所述上行传输区域的相关信息包括如下内容的至少一种:
    所述上行传输区域在子帧中持续的时间;
    所述上行传输区域在子帧中持续的时间以及在子帧中的位置;
    所述上行传输区域在子帧中占的比例以及在子帧中的位置;
    所述上行传输区域在子帧中占的比例;
    所述子帧中上行传输区域和下行传输区域的结构。
  5. 根据权利要求2所述的数据传输方法,其中,所述获取子帧n的下行传输区域的相关信息采用如下方式中的一种实现:
    获取固定设置的下行传输区域的相关信息;
    根据接收的高层信令获取半静态配置的下行传输区域的相关信息;
    根据接收的第三下行控制信息获取动态配置的下行传输区域的相关信息:
    根据所述上行传输区域的相关信息获取下行传输区域的相关信息。
  6. 根据权利要求2所述的数据传输方法,其中,所述下行传输区域的相关信息包括如下内容的至少一种:
    所述下行传输区域在子帧中持续的时间;
    所述下行传输区域在子帧中持续的时间以及在子帧中的位置;
    所述下行传输区域在子帧中占的比例以及在子帧中的位置;
    所述下行传输区域在子帧中占的比例;
    所述子帧中上行传输区域和下行传输区域的结构。
  7. 根据权利要求4或6所述的数据传输方法,其中,所述子帧中上行传输区域和下行传输区域的结构包括:
    下行控制区域、下行数据区域、上行特殊区域以及上行数据区域在子帧中的组成,其中,所述上行特殊区域包括上行控制区域、测量参考信号区域 以及随机接入区域中的至少一种。
  8. 根据权利要求7所述的数据传输方法,其中,所述下行控制区域、下行数据区域、上行特殊区域以及上行数据区域在子帧中的组成包括如下组成方式中的一种,其中,每个数据区域或控制区域在子帧按顺序分别为:
    下行控制区域、下行数据区域和上行特殊区域;
    下行控制区域、下行数据区域、上行数据区域和上行特殊区域;
    下行控制区域、下行数据区域和上行数据区域;
    下行控制区域和上行数据区域;
    下行控制区域、上行数据区域和上行特殊区域。
  9. 根据权利要求1所述的数据传输方法,其中,
    所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;
    其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
    所述获取上下行传输区域指示信息包括:
    获取第一子子帧指示信息,以及,获取第二子子帧指示信息;
    所述根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收,包括:
    根据第一子子帧指示信息,将无线帧中一个或多个子帧分割为N个子子帧;
    对于被分割的子帧,根据对应的第二子子帧指示信息,在其中N1个子子帧上进行上行传输,在其中N2个子子帧上进行下行接收。
  10. 根据权利要求9所述的数据传输方法,其中,采用如下方式中的一种获取第一子子帧指示信息:
    获取固定设置的第一子子帧指示信息;
    根据接收的高层信令获取半静态配置的第一子子帧指示信息;
    根据接收的第五下行控制信息获取动态配置的第一子子帧指示信息。
  11. 根据权利要求9所述的数据传输方法,其中,采用如下方式中的一种获取第二子子帧指示信息:
    获取固定设置的第二子子帧指示信息;
    根据接收的高层信令获取半静态配置的第二子子帧指示信息;
    根据接收的第六下行控制信息获取动态配置的第二子子帧指示信息。
  12. 一种数据传输方法,包括:
    发送与上行传输相关的第一下行控制信息;
    在子帧n的上行传输区域接收终端的上行传输;其中,子帧n包括用于上行传输的上行传输区域和用于下行传输的下行传输区域;
    其中,n为整数。
  13. 根据权利要求12所述的数据传输方法,所述在子帧n的上行传输区域接收终端的上行传输之前,所述方法还包括:
    在子帧n的下行传输区域进行下行传输。
  14. 根据权利要求12所述的数据传输方法,所述在子帧n的上行传输区域接收终端的上行传输之前,所述方法还包括:
    向终端发送上下行传输区域指示信息;其中,所述上下行传输区域指示信息包括:上行传输区域的相关信息和/或下行传输区域的相关信息。
  15. 根据权利要求14所述的数据传输方法,其中,所述向终端发送上下行传输区域指示信息,包括:
    通过高层信令向终端发送所述上行传输区域的相关信息;或者,
    通过第二下行控制信息向终端发送所述上行传输区域的相关信息;或者,
    通过高层信令向终端发送所述下行传输区域的相关信息;或者,
    通过第三下行控制信息向终端发送所述下行传输区域的相关信息。
  16. 根据权利要求15所述的数据传输方法,其中,
    在不同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息;或者,
    在相同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息。
  17. 根据权利要求16所述的数据传输方法,其中,
    当在相同的下行控制信息格式上发送所述第一下行控制信息和所述第二下行控制信息时,
    在第一下行控制信息所对应的下行控制信息格式中设置新增的控制域,并在所述新增的控制域上发送所述第二下行控制信息;或者,
    利用所述下行控制信息格式中已有的控制域发送所述第二下行控制信息。
  18. 根据权利要求15所述的数据传输方法,其中,当通过第三下行控制信息向终端发送所述下行传输区域的相关信息时,
    在不同的下行控制信息格式上发送所述第三下行控制信息和与下行传输相关的第四下行控制信息;或者,
    在相同的下行控制信息格式上发送所述第三下行控制信息和第四下行控制信息。
  19. 根据权利要求18所述的数据传输方法,其中,
    当在相同的下行控制信息格式上发送所述第三下行控制信息和第四下行控制信息时,
    在第四下行控制信息所对应的下行控制信息格式中设置新增的控制域,并在所述新增的控制域上发送所述第三下行控制信息;或,
    利用所述下行控制信息格式中已有的控制域发送所述第三下行控制信息。
  20. 根据权利要求16或18所述的数据传输方法,其中,
    在相同的下行控制信息格式上发送所述第二下行控制信息和第三下行控 制信息。
  21. 根据权利要求14所述的数据传输方法,其中,所述上行传输区域的相关信息包括如下内容的至少一种:
    所述上行传输区域在子帧中持续的时间;
    所述上行传输区域在子帧中持续的时间以及在子帧中的位置;
    所述上行传输区域在子帧中占的比例以及在子帧中的位置;
    所述上行传输区域在子帧中占的比例;
    所述子帧中上行传输区域和下行传输区域的结构。
  22. 根据权利要求14所述的数据传输方法,其中,所述下行传输区域的相关信息包括如下内容的至少一种:
    所述下行传输区域在子帧中持续的时间;
    所述下行传输区域在子帧中持续的时间以及在子帧中的位置;
    所述下行传输区域在子帧中占的比例以及在子帧中的位置;
    所述下行传输区域在子帧中占的比例;
    所述子帧中上行传输区域和下行传输区域的结构。
  23. 根据权利要求12所述的数据传输方法,所述在子帧n的上行传输区域接收终端的上行传输之前,所述数据传输方法还包括:
    向终端发送上下行传输区域指示信息;其中,所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;
    其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N。
  24. 根据权利要求23所述的数据传输方法,其中,所述向终端发送上下行传输区域指示信息,包括:
    通过高层信令向终端发送所述第一子子帧指示信息;或者,
    通过第五下行控制信息向终端发送所述第一子子帧指示信息;或者,
    通过高层信令向终端发送所述第二子子帧指示信息;或者,
    通过第六下行控制信息向终端发送所述第二子子帧指示信息。
  25. 一种客户端设备,设置在终端上,所述客户端设备包括:
    第一接收单元,设置为:接收与上行传输相关的第一下行控制信息;
    上下行传输区域获取单元,设置为获取上下行传输区域指示信息;
    第一传输单元,设置为:根据接收的第一下行控制信息、以及获取的上下行传输区域指示信息,在子帧n的上行传输区域进行上行传输,在子帧n的下行传输区域进行下行接收;其中,n为整数。
  26. 根据权利要求25所述的客户端设备,其中,
    所述子帧n包括用于上行传输的上行传输区域和用于下行接收的下行传输区域;所述上下行传输区域指示信息包括:上行传输区域的相关信息、以及下行传输区域的相关信息;
    所述上下行传输区域获取单包括:
    上行传输区域获取模块,设置为获取子帧n的上行传输区域的相关信息;
    下行传输区域获取模块,设置为获取子帧n的下行传输区域的相关信息;
    所述第一传输单元包括:
    第一下行传输模块,设置为:根据获取的下行传输区域的相关信息,在子帧n的下行传输区域进行下行接收;
    第一上行传输模块,设置为:根据接收的第一下行控制信息、以及获取的上行传输区域的相关信息,在子帧n的上行传输区域进行上行传输。
  27. 根据权利要求26所述的客户端设备,其中,所述上行传输区域获取模块包括如下子模块中的一个或多个:
    第一获取子模块,设置为获取固定设置的上行传输区域的相关信息;
    第二获取子模块,设置为根据接收的高层信令获取半静态配置的上行传输区域的相关信息;
    第三获取子模块,设置为根据接收的第二下行控制信息获取动态配置的上行传输区域的相关信息。
  28. 根据权利要求26所述的客户端设备,其中,所述下行传输区域获取模块包括如下子模块中的一个或多个:
    第四获取子模块,设置为获取固定设置的下行传输区域的相关信息;
    第五获取子模块,设置为根据接收的高层信令获取半静态配置的下行传输区域的相关信息;
    第六获取子模块,设置为根据接收的第三下行控制信息获取动态配置的下行传输区域的相关信息:
    第七获取子模块,设置为根据所述上行传输区域的相关信息获取下行传输区域的相关信息。
  29. 根据权利要求25所述的客户端设备,其中,
    所述上下行传输区域指示信息包括:第一子子帧指示信息和第二子子帧指示信息;
    其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
    所述上下行传输区域获取单元包括:
    第一子子帧获取模块,设置为获取第一子子帧指示信息;
    第二子子帧获取模块,设置为获取第二子子帧指示信息;
    所述第一传输单元是设置为:根据第一子子帧指示信息,将无线帧中一个或多个子帧分割为N个子子帧;对于被分割的子帧,根据对应的第二子子帧指示信息,在其中N1个子子帧上进行上行传输,在其中N2个子子帧上进行下行接收。
  30. 根据权利要求29所述的客户端设备,其中,
    所述第一子子帧获取模块包括如下子模块中的至少一个:
    第一子子帧获取子模块,设置为获取固定设置的第一子子帧指示信息;
    第二子子帧获取子模块,设置为根据接收的高层信令获取半静态配置的第一子子帧指示信息;
    第三子子帧获取子模块,设置为根据接收的第五下行控制信息获取动态配置的第一子子帧指示信息;
    所述第二子子帧获取模块包括如下子模块中的至少一个:
    第四子子帧获取子模块,设置为获取固定设置的第二子子帧指示信息;
    第五子子帧获取子模块,设置为根据接收的高层信令获取半静态配置的第二子子帧指示信息;
    第六子子帧获取子模块,设置为根据接收的第六下行控制信息获取动态配置的第二子子帧指示信息。
  31. 一种服务端设备,设置在网络侧,所述服务端设备包括:
    第一发送单元,设置为:发送与上行传输相关的第一下行控制信息;
    第二传输单元,设置为:在子帧n的上行传输区域接收终端的上行传输;其中,子帧n包括用于上行传输的上行传输区域和用于下行传输的下行传输区域;其中,n为整数。
  32. 根据权利要求31所述的服务端设备,其中,所述第二传输单元还设置为:在子帧n的下行传输区域进行下行传输。
  33. 根据权利要求32所述的服务端设备,该服务端设备还包括:
    上下行传输区域发送单元,设置为:向终端发送上下行传输区域指示信息;其中,所述上下行传输区域发送单元包括如下模块的至少一个:
    上行传输区域发送模块,设置为发送上行传输区域的相关信息;
    下行传输区域发送模块,设置为发送下行传输区域的相关信息;
    所述第二传输单元包括:
    第二下行传输模块,设置为在子帧n的下行传输区域进行下行发送;
    第二上行传输模块,设置为在子帧n的上行传输区域进行上行接收。
  34. 根据权利要求32所述的服务端设备,该服务端设备还包括:
    上下行传输区域发送单元,设置为向终端发送上下行传输区域指示信息;其中,所述上下行传输区域发送单元包括如下模块:
    第一子子帧发送模块,设置为发送第一子子帧指示信息;
    第二子子帧发送模块,设置为发送第二子子帧指示信息;
    其中,第一子子帧指示信息用于指示将无线帧中一个或多个子帧分割为N个子子帧;第二子子帧指示信息用于指示对于被分割的子帧,将其中N1个子子帧作为用于上行传输的上行传输区域,将其中N2个子子帧作为用于下行传输的下行传输区域,其中N1+N2<=N;
    所述第二传输单元是设置为:根据第一子子帧指示信息和第二子子帧指示信息,在其中N1个子子帧上进行上行接收,在其中N2个子子帧上进行下行发送。
  35. 根据权利要求33所述的服务端设备,其中,
    所述上行传输区域发送模块包括如下子模块中的一个或多个:
    第一发送子模块,设置为通过高层信令向终端发送所述上行传输区域的相关信息;
    第二发送子模块,设置为通过第二下行控制信息向终端发送所述上行传输区域的相关信息;
    所述下行传输区域发送模块包括如下子模块中的一个或多个:
    第三发送子模块,设置为通过高层信令向终端发送所述下行传输区域的相关信息:
    第四发送子模块,设置为通过第三下行控制信息向终端发送所述下行传输区域的相关信息。
  36. 根据权利要求34所述的服务端设备,其中,
    所述第一子子帧发送模块包括如下子模块中的一个或多个:
    第一子子帧发送子模块,设置为通过高层信令向终端发送所述第一子子帧指示信息;
    第二子子帧发送子模块,设置为通过第五下行控制信息向终端发送所述第一子子帧指示信息;
    所述第二子子帧发送模块包括如下子模块中的一个或多个:
    第三子子帧发送子模块,设置为通过高层信令向终端发送所述第二子子帧指示信息:
    第四子子帧发送子模块,设置为通过第六下行控制信息向终端发送所述第二子子帧指示信息。
  37. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现权利要求1至11任一项所述的数据传输方法。
  38. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现权利要求12至24任一项所述的数据传输方法。
PCT/CN2016/075659 2015-07-10 2016-03-04 数据传输方法、客户端设备及服务端设备 WO2016177076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/743,046 US20180270848A1 (en) 2015-07-10 2016-03-04 Data transmission method, client device and serving end device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510408187.3 2015-07-10
CN201510408187.3A CN106341891A (zh) 2015-07-10 2015-07-10 数据传输方法、客户端设备及服务端设备

Publications (1)

Publication Number Publication Date
WO2016177076A1 true WO2016177076A1 (zh) 2016-11-10

Family

ID=57218431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075659 WO2016177076A1 (zh) 2015-07-10 2016-03-04 数据传输方法、客户端设备及服务端设备

Country Status (3)

Country Link
US (1) US20180270848A1 (zh)
CN (1) CN106341891A (zh)
WO (1) WO2016177076A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190126129A (ko) * 2017-03-16 2019-11-08 후아웨이 테크놀러지 컴퍼니 리미티드 전송 방향 구성 방법, 장치, 및 시스템

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024559A1 (zh) * 2015-08-12 2017-02-16 华为技术有限公司 数据传输的方法、终端设备、基站和通信系统
US10756868B2 (en) * 2016-07-01 2020-08-25 Qualcomm Incorporated Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot
US10985899B2 (en) * 2016-08-11 2021-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein relating to time division duplex configurations for narrowband Internet of Things
US10764871B2 (en) 2017-01-16 2020-09-01 Qualcomm Incorporated Extension of data transmission from ULRB to ULCB
KR102321890B1 (ko) 2017-04-21 2021-11-03 후아웨이 테크놀러지 컴퍼니 리미티드 시간-주파수 자원의 송신 방향을 구성하는 방법, 및 장치
WO2018203396A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10904909B2 (en) * 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
US10986506B2 (en) * 2018-02-16 2021-04-20 Lenovo (Singapore) Pte. Ltd. Network slice selection assistance information configuration
CN111147220B (zh) * 2019-12-27 2021-09-03 京信网络系统股份有限公司 Srs传输方法、装置、设备、系统和存储介质
CN114846885A (zh) * 2022-03-29 2022-08-02 北京小米移动软件有限公司 确定传输方向的方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400128A (zh) * 2007-09-26 2009-04-01 大唐移动通信设备有限公司 时分双工移动通信系统中无线帧时隙分配的方法及装置
WO2011025333A2 (ko) * 2009-08-28 2011-03-03 엘지전자 주식회사 무선 통신 시스템에서 단말이 소정의 tdd 프레임 구조를 이용하여 신호를 송수신하는 방법
CN103703708A (zh) * 2011-07-22 2014-04-02 Lg电子株式会社 用于在无线通信系统中设定子帧的方法
CN104380622A (zh) * 2012-06-17 2015-02-25 Lg电子株式会社 在无线通信系统中使用tdd(时分双工)帧结构收发信号的设备及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400128A (zh) * 2007-09-26 2009-04-01 大唐移动通信设备有限公司 时分双工移动通信系统中无线帧时隙分配的方法及装置
WO2011025333A2 (ko) * 2009-08-28 2011-03-03 엘지전자 주식회사 무선 통신 시스템에서 단말이 소정의 tdd 프레임 구조를 이용하여 신호를 송수신하는 방법
CN103703708A (zh) * 2011-07-22 2014-04-02 Lg电子株式会社 用于在无线通信系统中设定子帧的方法
CN104380622A (zh) * 2012-06-17 2015-02-25 Lg电子株式会社 在无线通信系统中使用tdd(时分双工)帧结构收发信号的设备及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190126129A (ko) * 2017-03-16 2019-11-08 후아웨이 테크놀러지 컴퍼니 리미티드 전송 방향 구성 방법, 장치, 및 시스템
KR102342599B1 (ko) 2017-03-16 2021-12-22 후아웨이 테크놀러지 컴퍼니 리미티드 전송 방향 구성 방법, 장치, 및 시스템

Also Published As

Publication number Publication date
CN106341891A (zh) 2017-01-18
US20180270848A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US11785614B2 (en) Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
US11818078B2 (en) Method for performing sidelink communication and device therefor
WO2016177076A1 (zh) 数据传输方法、客户端设备及服务端设备
US11546804B2 (en) Data transmission method and apparatus
AU2018208953B2 (en) System and method for co-existence of low-latency and latency-tolerant communication resources
US20180042015A1 (en) Systems and methods for pucch resource allocation and harq-ack reporting with processing time reduction
EP3668215B1 (en) Method for transmitting or receiving signal in wireless communication system and device therefor
KR102056198B1 (ko) 무선 통신 시스템에서 단말의 확인 응답 정보 전송 방법 및 이를 지원하는 장치
US8989079B2 (en) Apparatus for transmitting and receiving uplink backhaul signal in wireless communication system and method thereof
US20210274494A1 (en) Uplink control information transmission method and apparatus
KR102586632B1 (ko) Nr v2x 시스템을 위한 harq 동작을 수행하는 방법 및 장치
EP2728780B1 (en) Response information sending method, receiving method and device
US20140307597A1 (en) Method and apparatus for controlling transceiving of physical channels in time division duplex communication system
US20110103272A1 (en) Method for transmitting the pdcch signal
JP2019519994A (ja) 無線通信システムにおいて無線信号の送受信方法及び装置
US20180338306A1 (en) Uplink information transmission method and apparatus
EP3258637A1 (en) Communication method in wireless communication system on basis of carrier aggregation
JP2018520591A (ja) 無線通信システムにおける信号送信方法及び装置
US11689342B2 (en) Method for performing sidelink communication and device therefor
WO2012134115A2 (ko) Tdd 기반 무선 통신 시스템에서 mbsfn 서브프레임을 이용한 통신 방법 및 장치
KR102410281B1 (ko) 이동통신 시스템에서의 전송 시간 구간 구성 방법 및 장치
KR20240062114A (ko) 통신 시스템에서 v2x 단말의 사이드링크 피드백 채널 구성 방법 및 장치
KR20170113760A (ko) 저지연 시스템에서의 데이터 전송 방법 및 장치, 그리고 자원 할당 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743046

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789070

Country of ref document: EP

Kind code of ref document: A1