WO2016176899A1 - 用于舵机的多对极永磁直流无刷电机及舵机 - Google Patents

用于舵机的多对极永磁直流无刷电机及舵机 Download PDF

Info

Publication number
WO2016176899A1
WO2016176899A1 PCT/CN2015/082081 CN2015082081W WO2016176899A1 WO 2016176899 A1 WO2016176899 A1 WO 2016176899A1 CN 2015082081 W CN2015082081 W CN 2015082081W WO 2016176899 A1 WO2016176899 A1 WO 2016176899A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
pole
motor
pole permanent
Prior art date
Application number
PCT/CN2015/082081
Other languages
English (en)
French (fr)
Inventor
刘国生
刘心念
毛建瓴
Original Assignee
长沙美福沛林电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙美福沛林电子科技有限公司 filed Critical 长沙美福沛林电子科技有限公司
Publication of WO2016176899A1 publication Critical patent/WO2016176899A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to the field of remote control devices, and in particular to a multi-pair permanent magnet DC brushless motor for a steering gear. Further, the present invention relates to a steering gear including the above-described multi-pole permanent magnet DC brushless motor for a steering gear.
  • the steering gear is an automatic control system consisting of a DC drive motor, a reduction gear set, a sensor and a control circuit.
  • the steering gear can accurately control the output end to rotate at a certain speed under the set rotation angle and load condition according to the received external control signal or command. Angle or position.
  • the invention provides a multi-pole permanent magnet DC brushless motor and a steering gear for a steering gear, so as to solve the limitation of the rotation angle of the output shaft of the existing steering gear motor by the controllable rotation angle of the motor.
  • the steering angle of the steering gear is low; the single-pole structure is adopted, and the output power is low; and when the permanent magnet is integrally magnetized (that is, the pole arc coefficient is 1), the magnetic flux leakage is easy, and when the partial magnetization is used, it is easy to cause The technical problem of large magnetization curvature and rotational crushing.
  • a multi-pair permanent magnet DC brushless motor for a steering gear comprising a stator fixed in a motor housing, a rotor disposed in the stator, and circumferentially disposed along the rotor for sensing A sensor that emits a signal when a magnetic pole is changed during rotation of a rotor.
  • the rotor includes a rotor shaft and a plurality of tile-type permanent magnets for improving the magnetic induction density of the steering gear to improve the rotation control precision of the steering gear, and the plurality of tile-type permanent magnets are along the rotor.
  • the circumferential direction is equidistantly arranged and fixed on the rotor shaft of the rotor.
  • the shape of the tile-type permanent magnets is the same.
  • the tile-type permanent magnets are South Pole permanent magnets or Arctic permanent magnets, a South Pole permanent magnet and an Arctic permanent magnet.
  • a pair of magnetic poles, the rotor comprising at least two pairs of magnetic poles.
  • the rotor shaft and the tile type permanent magnet are connected by a dovetail groove and a dovetail, and the dovetail groove is arranged along the axial direction of the rotor shaft; and/or the rotor shaft and the tile type permanent magnet are gluedly connected; And/or the rotor shaft and the tile-type permanent magnet are connected by a whole jacket fixing sleeve; and/or the rotor shaft and the tile-type permanent magnet pass through a positioning groove formed on the outer surface of the tile permanent magnet and are disposed at the positioning The fixing hoops in the slots are connected.
  • each of the South Pole permanent magnets and/or each of the North Pole permanent magnets is a separately assembled permanent magnet that is separately assembled to the rotor shaft.
  • the total number, Z p is the number of magnetic poles, m is the number of phases; the number of slots per phase per pole is q ⁇ 1.
  • the magnetic pole pole coefficient of the rotor is 0.6-0.85 to improve the air gap magnetic density of the motor, the south pole permanent magnet and the arctic permanent The utilization of the magnet and the torque density of the motor.
  • the inner wall surface of the stator is provided with a plurality of winding grooves arranged along the axial direction of the stator and used for inserting the electromagnetic wires, and the adjacent groove walls of the adjacent two winding grooves are uniformly embedded by hand or a winding machine.
  • a plurality of sets of electromagnetic coils arranged along the circumference of the stator are formed around the electromagnetic wires.
  • an insulating layer for avoiding damage of the paint film on the outer surface of the electromagnetic wire is provided on both end faces of the stator and in the winding groove of the stator.
  • the rotor employs two pairs of pole rotors, three pairs of pole rotors or four pairs of pole rotors.
  • the south pole permanent magnet is arranged with the north pole permanent magnet; or two south pole permanent magnets are adjacent to each other and arranged with the north pole permanent magnet; or two north pole permanent magnets are adjacent to each other and are arranged with the south pole permanent magnet. Cloth; or two South Pole permanent magnets are adjacently grouped and arranged with two adjacent North Pole permanent magnets.
  • a steering gear comprising the above-described multi-pole permanent magnet DC brushless motor for a steering gear.
  • the multi-pole permanent magnet DC brushless motor for the steering gear of the present invention improves the magnetic induction precision and the rotation control precision of the steering gear by setting the circumferential permanent magnets arranged at equal intervals in the circumferential direction; the rotor is composed of a plurality of single bodies
  • the structure consists of a tile-type permanent magnet, which reduces the structural weakness caused by the manufacturing process by fixing the permanent magnet (tile permanent magnet), and reduces the probability of the permanent magnet (tile permanent magnet) falling off and breaking from the rotor shaft.
  • the tile-type permanent magnet can be magnetized once in the circumferential direction of the rotor after assembly to form a multi-pair structure composed of regularly arranged South Pole permanent magnets and Arctic permanent magnets; it can also be assembled after separately magnetizing.
  • the assembly process is simple, the pass rate is high, the magnetic flux leakage coefficient is small, the air gap magnetic density is high, the utilization rate of the permanent magnets is higher, and the utilization is improved.
  • the torque density of the motor Suitable for all types of model sports. Suitable for use in sports models, remote motion models, drones, robots, etc.
  • FIG. 1 is a schematic structural view of a multi-pole permanent magnet DC brushless motor for a steering gear according to a preferred embodiment of the present invention
  • FIG. 2 is a second structural schematic view of a multi-pole permanent magnet DC brushless motor for a steering gear according to a preferred embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a multi-pole permanent magnet DC brushless motor for a steering gear according to a preferred embodiment of the present invention
  • FIG. 2 is a multi-pole permanent magnet DC for a steering gear according to a preferred embodiment of the present invention.
  • the multi-pole permanent magnet DC brushless motor for a steering gear of the present embodiment includes a stator 1 fixed in a motor housing, a rotor 2 disposed in the stator 1, and a circumferential direction along the rotor 2.
  • a sensor 3 is provided for inducing a magnetic pole change during the rotation of the rotor 2
  • the rotor 2 includes a rotor shaft 203 and a plurality of tile-type permanent magnets for improving the magnetic induction density of the steering gear to improve the rotation control precision, and a plurality of tiles.
  • the permanent magnets are arranged equidistantly along the circumferential direction of the rotor 2 and fixed to the rotor shaft 203 of the rotor 2.
  • tile-type permanent magnets are the South Pole permanent magnet 201 or the Arctic permanent magnet 202.
  • a south pole permanent magnet 201 and a north pole permanent magnet 202 form a pair of magnetic poles, and the rotor 2 includes at least two pairs of magnetic poles.
  • the multi-pair permanent magnet DC brushless motor for the steering gear of the present invention improves the magnetic induction precision and the rotation control precision of the steering gear by setting the tile-type permanent magnets arranged at equal intervals in the circumferential direction; the rotor 2 is composed of a plurality of single bodies
  • the structure consists of a tile-type permanent magnet, which reduces the structural weakness caused by the manufacturing process by fixing the permanent magnet (tile permanent magnet), and reduces the probability of the permanent magnet (tile permanent magnet) falling off and breaking from the rotor shaft.
  • the tile-type permanent magnet can be magnetized once in the circumferential direction of the rotor after assembly to form a multi-pair structure composed of regularly arranged South Pole permanent magnets and Arctic permanent magnets; it can also be assembled after separately magnetizing.
  • the assembly process is simple, the pass rate is high, the magnetic flux leakage coefficient is small, the air gap magnetic density is high, the utilization rate of the permanent magnets is higher, and the utilization is improved.
  • the torque density of the motor Suitable for all types of model sports. Suitable for use in sports models, remote motion models, drones, robots, etc.
  • the south pole permanent magnet 201 of the same pair of magnetic poles and the north pole permanent magnet 202 are symmetrically arranged along the central axis of the rotor 2.
  • the south pole permanent magnet 201 of the same pair of magnetic poles is disposed adjacent to the north pole permanent magnet 202.
  • the stator yoke can select a shorter yoke than the single-pole stator yoke, thereby reducing the weight of the core, reducing the iron loss, improving the efficiency of the motor, and increasing the drive system. usage time.
  • a plurality of sensors 3 are arranged at equal intervals along the circumference of the rotor 2, and the angle between the adjacent sensors 3 is related to the number of pole pairs. The angle between the adjacent sensors 3 is the same. Optionally, the angle is 120° dipole logarithm.
  • the rotor shaft 203 and the tile-type permanent magnet are connected by a dovetail groove and a dovetail, and the dovetail groove is arranged along the axial direction of the rotor shaft 203; and/or the rotor shaft 203 and the tile type permanent magnet adopt an adhesive connection; and/or the rotor shaft 203 and the tile type permanent magnet are connected by a whole jacket fixing sleeve; and/or the rotor shaft 203 and the tile type permanent magnet pass through The positioning groove formed on the outer surface of the tile type permanent magnet and the fixing hoop provided in the positioning groove are connected.
  • the manufacturing process difficulty can be reduced, the structural stability between the rotor shaft 203 and the tile type permanent magnet can be improved, the assembly process is simple, the qualification rate is high, and the leakage magnetic coefficient is small, and the air gap magnetic
  • the rotor shaft 203 and the south pole permanent magnet 201 are connected by a dovetail groove and a dovetail.
  • the dovetail groove is disposed along the axial direction of the rotor shaft 203.
  • the rotor shaft 203 and the north pole permanent magnet 202 are connected by a dovetail groove and a dovetail.
  • the dovetail groove is disposed along the axial direction of the rotor shaft 203.
  • the permanent magnet of the rotor is independently magnetized, segmented and magnetized, or integrally magnetized after assembly.
  • the permanent magnet is press-fitted on the rotor shaft by press-fitting, and the mechanical strength is higher. Magnetization and assembly are more convenient, and the magnetic flux leakage coefficient is small, the air gap magnetic density is high, the utilization rate of the permanent magnet is higher, and the torque density of the motor is improved.
  • each of the south pole permanent magnets 201 is separately magnetized and independently magnetized forever. magnet.
  • Each of the north pole permanent magnets 202 is a separate magnetized permanent magnet that is separately magnetized.
  • Each of the South Pole permanent magnets 201 and each of the North Pole permanent magnets 202 are individually magnetized permanent magnets that are magnetized separately. The use of polarization independent magnetization, magnetization and assembly is more convenient, and the magnetic flux leakage coefficient is small, the air gap magnetic density is high, the utilization rate of the permanent magnet is higher, and the torque density of the motor is improved.
  • each of the north pole permanent magnets 202 is a separately assembled permanent magnet that is separately assembled to the rotor shaft 203.
  • Each of the South Pole permanent magnets 201 and each of the North Pole permanent magnets 202 are individually assembled permanent magnets that are separately assembled to the rotor shaft 203.
  • the assembly is more convenient, and the assembly is followed by one-time magnetization along the circumferential direction of the rotor.
  • the assembly process is simple, the qualification rate is high, the magnetic leakage coefficient is small, the air gap magnetic density is high, the utilization rate of the permanent magnet is higher, and the rotation of the motor is improved. Moment density.
  • the motor adopts a magnetic circuit structure with a plurality of pairs of very small slots.
  • the number of slots per phase per pole is q ⁇ 1.
  • the leakage magnetic coefficient of the motor is small, the air gap magnetic density is high, the utilization rate of the permanent magnet is higher, and the torque density of the motor is improved.
  • the rotor pole arc coefficient of the rotor 2 is 0.6-0.85 to improve the air gap magnetic density of the motor, the utilization ratio of the south pole permanent magnet 201 and the north pole permanent magnet 202, and the motor. Torque density.
  • the magnetic pole pole coefficient of the rotor 2 adopts a value other than 0.6-0.85, which not only fails to improve the performance indexes of the motor, but reduces the various indexes of the motor and reduces the overall working efficiency.
  • the inner wall surface of the stator 1 is provided with a plurality of winding grooves 4 arranged along the axial direction of the stator 1 and used for winding electromagnetic wires.
  • electromagnetic wires are uniformly embedded by hand or a winding machine to form a plurality of sets of electromagnetic coil groups arranged in the circumferential direction of the stator 1.
  • the electromagnetic wire winding coil is regularly embedded in the winding groove 4, the fastening is reliable, the process is simple, and the qualification rate is high.
  • the winding groove 4 is a narrow groove having an outer narrow inner width to prevent the electromagnetic wire from slipping during the winding process.
  • the notch position of the winding groove 4 is provided with an inwardly overhanging edge to prevent the electromagnetic wire from slipping during the winding process.
  • both end faces of the stator 1 and the winding grooves 4 of the stator 1 are provided with an insulating layer for preventing damage to the paint film on the outer surface of the electromagnetic wire.
  • the rotor 2 employs two pairs of pole rotors, three pairs of pole rotors or four pairs of pole rotors.
  • the south pole permanent magnet 201 and the north pole permanent magnet 202 are arranged alternately.
  • Two south pole permanent magnets 201 are adjacently grouped and arranged with the north pole permanent magnets 202.
  • Two north pole permanent magnets 202 are adjacently grouped and arranged with the south pole permanent magnet 201.
  • Two south pole permanent magnets 201 are adjacently grouped and arranged with two adjacent north pole permanent magnets 202.
  • the steering gear of this embodiment includes the above-described multi-pole permanent magnet DC brushless motor for a steering gear.
  • the rotor magnet (permanent magnet) is independently or segmentally magnetized, and the magnet (permanent magnet) is press-fitted into the dovetail groove of the rotor core, and the rotor core and the magnet are pressed during the press-fitting process.
  • the glue is applied to each other, and after the assembly is completed, the curing is performed, so that the overall mechanical strength is high.
  • the rotor shaft 203 and the tile type permanent magnet are connected by using a whole jacket fixing sleeve.
  • the rotor shaft 203 and the tile type permanent magnet are connected by a positioning groove formed on the outer surface of the tile permanent magnet and a fixing hoop provided in the positioning groove.
  • the manufacturing process difficulty can be reduced, the structural stability between the rotor shaft 203 and the tile type permanent magnet can be improved, the assembly process is simple, the qualification rate is high, and the leakage magnetic coefficient is small, and the air gap magnetic
  • the high density, the utilization of permanent magnets is higher, and the torque density of the motor is increased.
  • the number of winding slots of the stator is large, and the slot is narrow.
  • the electromagnetic line paint film is not scratched, and the insulating layer of the slot is adopted to reduce the tank fullness.
  • each permanent magnet (tile permanent magnet) magnetic pole unit is separately manufactured and assembled to form a rotor, and each permanent magnet (tile permanent magnet) is assembled by a dovetail groove and a dovetail joint.
  • the rotor shaft 203 and the permanent magnet (tile permanent magnet) are glued together, and after assembly, curing is performed, so that the overall mechanical strength is high, and the permanent magnet (tile permanent magnet) ) It is evenly arranged along the axial direction of the rotor shaft to achieve the effect of increasing torque.
  • the method of arranging the outer circumference of the permanent magnet (tile permanent magnet) can reduce the manufacturing process difficulty, improve the structural stability between the rotor shaft 203 and the tile permanent magnet, and improve the structural strength of the rotor.
  • the permanent magnet (tile permanent magnet) and the rotor shaft are connected by gluing, and the connection is convenient and reliable. After the assembly is completed, only the curing and cutting off the excess glue can be completed, and the assembly can be completed.
  • the purpose of reducing the manufacturing process difficulty, increasing the torque, the rotor running stability, the rotor adaptability, and the permanent magnets are not easy to fall off and are not broken.
  • the magnetic circuit structure with multiple pairs of very small slots and the independent or segmented magnetization control the magnetic pole coefficient of the rotor to be between 0.6 and 0.85, so that the magnetic flux leakage coefficient is small, the air gap magnetic density is high, and the air gap is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种用于舵机的多对极永磁直流无刷电机及舵机,其中直流无刷电机包括固定于电机壳体内的定子(1)、设于定子(1)内的转子(2)以及沿转子(2)周向布设并用于感应转子(2)旋转过程中磁极变换而发出信号的传感器(3),转子(2)包括多块用于提高舵机磁感应密度以提高舵机旋转控制精度的瓦片式永磁体,多块瓦片式永磁体沿转子(2)的周向等距离排布并固接于转子(2)的转子轴(203)上,瓦片式永磁体的外形均相同,瓦片式永磁体为南极永磁体(201)或北极永磁体(202),一个南极永磁体(201)和一个北极永磁体(202)构成一对磁极,转子(2)包含有至少两对磁极。瓦片式永磁体可装配后沿转子(2)周向一次性充磁,也可分别充磁后再进行装配,装配工艺简单,漏磁系数小,气隙磁密高,永磁体的利用率更高。

Description

用于舵机的多对极永磁直流无刷电机及舵机 技术领域
本发明涉及遥控控制设备领域,特别地,涉及一种用于舵机的多对极永磁直流无刷电机。此外,本发明还涉及一种包括上述用于舵机的多对极永磁直流无刷电机的舵机。
背景技术
舵机,是由直流驱动电机、减速齿轮组、传感器和控制电路组成的一套自动控制系统。当舵机处于工作状态时,舵机按接收到的外部控制信号或指令,在设定的旋转角度内及荷载条件下,舵机的控制部分能准确控制输出端以一定的转速旋转所需的角度或位置。
现有舵机大多采用单对极电机,舵机输出轴的旋转角度的分辨率受到电机可控制转动角度的限制,舵机的转动角度精度低;此外,采用单对极结构,输出功率低;并且当对永磁体进行整体充磁(即极弧系数为1)时容易漏磁,采用分段充磁时,容易因磁化弧度大而旋转破碎。
发明内容
本发明提供了一种用于舵机的多对极永磁直流无刷电机及舵机,以解决现有舵机电机,舵机输出轴的旋转角度的分辨率受到电机可控制转动角度的限制,舵机的转动角度精度低;采用单对极结构,输出功率低;并且当对永磁体进行整体充磁(即极弧系数为1)时容易漏磁,采用分段充磁时,容易因磁化弧度大而旋转破碎的技术问题。
根据本发明的一个方面,提供一种用于舵机的多对极永磁直流无刷电机,包括固定于电机壳体内的定子、设于定子内的转子以及沿转子周向布设并用于感应转子旋转过程中磁极变换而发出信号的传感器,转子包括转子轴以及多块用于提高舵机磁感应密度从而提高舵机旋转控制精度的瓦片式永磁体,多块瓦片式永磁体沿转子的周向等距离排布并固接于转子的转子轴上,瓦片式永磁体的外形均相同,瓦片式永磁体为南极永磁体或北极永磁体,一个南极永磁体和一个北极永磁体构成一对磁极,转子包含有至少两对磁极。
进一步地,转子轴与瓦片式永磁体之间采用燕尾槽和燕尾榫配合连接,燕尾槽沿转子轴的轴向布设;和/或转子轴与瓦片式永磁体之间采用胶粘连接;和/或转子轴与瓦片式永磁体采用整体外套设固定套进行连接;和/或转子轴与瓦片式永磁体之间通过开设于瓦片式永磁体外表面的定位槽以及设于定位槽内的固定箍进行连接。
进一步地,每一个南极永磁体和/或每一个北极永磁体均为单独装配至转子轴上的独立装配式永磁体。
进一步地,电机采用多对极少槽的磁路结构,每极每相槽数q=Z/(Zp*m),其中,q为每极每相槽数,Z为定子的绕线槽总数,Zp为磁极个数,m为相数;每极每相槽数q<1。
进一步地,转子的磁极极弧系数为0.6-0.85,以提高电机的气隙磁密、南极永磁体和北极永 磁体的利用率以及电机的转矩密度。
进一步地,定子的内壁面上开设有多个沿定子轴向布置并用于嵌绕电磁线的绕线槽,相邻两个绕线槽的相邻槽壁上通过手工或者绕线机均匀的嵌绕有电磁线,形成沿定子周向排布的多组电磁线圈组。
进一步地,定子的两端面均以及定子的绕线槽内均设有用于避免电磁线外表面漆膜损伤的绝缘层。
进一步地,转子采用两对极转子、三对极转子或者四对极转子。
进一步地,南极永磁体与北极永磁体相间排布;或者两块南极永磁体相邻成组并与北极永磁体相间排布;或者两块北极永磁体相邻成组并与南极永磁体相间排布;或者两块南极永磁体相邻成组并与同样由两块相邻成组的北极永磁体相间排布。
根据本发明的另一方面,还提供了一种舵机,其包括上述用于舵机的多对极永磁直流无刷电机。
本发明具有以下有益效果:
本发明用于舵机的多对极永磁直流无刷电机,通过设置沿周向等间距布置的瓦片式永磁体以提高舵机的磁感应精度以及旋转控制精度;转子由多个单体的瓦片式永磁体构成,通过永磁体(瓦片式永磁体)单体固接的方式减少制造工艺造成的结构薄弱点,降低永磁体(瓦片式永磁体)从转子轴脱落以及破碎的几率;瓦片式永磁体可以采用装配后沿转子周向一次性充磁,形成由规律排布的南极永磁体和北极永磁体构成的多对极结构;也可采用分别充磁后再进行装配,形成由规律排布的南极永磁体和北极永磁体构成的多对极结构,装配工艺简单,合格率高,且漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。适用于各类模型运动。适用于运动模型、遥控运动模型、无人机、机器人等的使用。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明优选实施例的用于舵机的多对极永磁直流无刷电机的结构示意图之一;
图2是本发明优选实施例的用于舵机的多对极永磁直流无刷电机的结构示意图之二。
图例说明:
1、定子;2、转子;201、南极永磁体;202、北极永磁体;203、转子轴;3、传感器;4、绕线槽。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由所限定和覆盖的多种不同方式实施。
图1是本发明优选实施例的用于舵机的多对极永磁直流无刷电机的结构示意图之一;图2是本发明优选实施例的用于舵机的多对极永磁直流无刷电机的结构示意图之二。
如图1所示,本实施例的用于舵机的多对极永磁直流无刷电机,包括固定于电机壳体内的定子1、设于定子1内的转子2以及沿转子2周向布设并用于感应转子2旋转过程中磁极变换而发出信号的传感器3,转子2包括转子轴203以及多块用于提高舵机磁感应密度以提高旋转控制精度的瓦片式永磁体,多块瓦片式永磁体沿转子2的周向等距离排布并固接于转子2的转子轴203上,瓦片式永磁体的外形均相同,瓦片式永磁体为南极永磁体201或北极永磁体202,一个南极永磁体201和一个北极永磁体202构成一对磁极,转子2包含有至少两对磁极。本发明用于舵机的多对极永磁直流无刷电机,通过设置沿周向等间距布置的瓦片式永磁体以提高舵机的磁感应精度以及旋转控制精度;转子2由多个单体瓦片式永磁体构成,通过永磁体(瓦片式永磁体)单体固接的方式减少制造工艺造成的结构薄弱点,降低永磁体(瓦片式永磁体)从转子轴脱落以及破碎的几率;瓦片式永磁体可以采用装配后沿转子周向一次性充磁,形成由规律排布的南极永磁体和北极永磁体构成的多对极结构;也可采用分别充磁后再进行装配,形成由规律排布的南极永磁体和北极永磁体构成的多对极结构,装配工艺简单,合格率高,且漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。适用于各类模型运动。适用于运动模型、遥控运动模型、无人机、机器人等的使用。可选地,同一对磁极的南极永磁体201与北极永磁体202之间沿转子2的中轴线对称布置。可选地,同一对磁极的南极永磁体201与北极永磁体202相邻布置。由于转子采用多对极结构,使得定子磁轭可以选择比单对极定子磁轭更短的磁轭,从而减少了铁芯重量、降低了铁耗,提高了电机的效率,增加了驱动系统的使用时间。可选地,多个传感器3沿转子2的周向等间距布置,相邻传感器3之间的间隔夹角与极对数有关。相邻传感器3之间的间隔夹角相同。可选地,夹角采用120°÷极对数。
如图1和图2所示,本实施例中,转子轴203与瓦片式永磁体之间采用燕尾槽和燕尾榫配合连接,燕尾槽沿转子轴203的轴向布设;和/或转子轴203与瓦片式永磁体之间采用胶粘连接;和/或转子轴203与瓦片式永磁体采用整体外套设固定套进行连接;和/或转子轴203与瓦片式永磁体之间通过开设于瓦片式永磁体外表面的定位槽以及设于定位槽内的固定箍进行连接。采用上述的至少一种连接方式,能够降低制作工艺难度,能够提高转子轴203与瓦片式永磁体之间的结构稳定性,装配工艺简单,合格率高,且漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。可选地,转子轴203与南极永磁体201之间采用燕尾槽和燕尾榫配合连接。燕尾槽沿转子轴203的轴向布设。转子轴203与北极永磁体202之间采用燕尾槽和燕尾榫配合连接。燕尾槽沿转子轴203的轴向布设。转子的永磁体进行独立充磁、分段充磁或者装配后整体充磁,通过压装的方式将永磁体压装在转子轴上,机械强度更高。充磁和装配更加方便,且漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。
如图1和图2所示,本实施例中,每一个南极永磁体201均为单独进行充磁的独立充磁式永 磁体。每一个北极永磁体202均为单独进行充磁的独立充磁式永磁体。每一个南极永磁体201和每一个北极永磁体202均为单独进行充磁的独立充磁式永磁体。采用分极独立充磁,充磁和装配更加方便,且漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。
如图1和图2所示,本实施例中,每一个北极永磁体202均为单独装配至转子轴203上的独立装配式永磁体。每一个南极永磁体201和每一个北极永磁体202均为单独装配至转子轴203上的独立装配式永磁体。装配更加方便,采用装配后沿转子周向一次性充磁,装配工艺简单,合格率高,且漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。
如图1和图2所示,本实施例中,电机采用多对极少槽的磁路结构。每极每相槽数q=Z/(Zp*m),其中,q为每极每相槽数,Z为定子的绕线槽总数,Zp为磁极个数,m为相数。每极每相槽数q<1。使电机的漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。
如图1和图2所示,本实施例中,转子2的磁极极弧系数为0.6-0.85,以提高电机的气隙磁密、南极永磁体201和北极永磁体202的利用率以及电机的转矩密度。转子2的磁极极弧系数采用0.6-0.85以外的值,不仅不能够提高电机的各个性能指标,反而会降低电机的各项指标、降低整体工作效率。
如图1和图2所示,本实施例中,定子1的内壁面上开设有多个沿定子1轴向布置并用于嵌绕电磁线的绕线槽4。相邻两个绕线槽4的相邻槽壁上通过手工或者绕线机均匀的嵌绕有电磁线,形成沿定子1周向排布的多组电磁线圈组。电磁线绕组线圈有规律的嵌在绕线槽4内,紧固可靠,工艺简单,合格率高。可选地,绕线槽4为外窄内宽的窄口槽,以防止电磁线在缠绕过程中滑脱。可选地,绕线槽4的槽口位置设置有向内悬挑的挑边,以防止电磁线在缠绕过程中滑脱。
如图1和图2所示,本实施例中,定子1的两端面以及定子1的绕线槽4内均设有用于避免电磁线外表面漆膜损伤的绝缘层。
如图1和图2所示,本实施例中,转子2采用两对极转子、三对极转子或者四对极转子。
如图1和图2所示,本实施例中,南极永磁体201与北极永磁体202相间排布。两块南极永磁体201相邻成组并与北极永磁体202相间排布。两块北极永磁体202相邻成组并与南极永磁体201相间排布。两块南极永磁体201相邻成组并与同样由两块相邻成组的北极永磁体202相间排布。
本实施例的舵机,包括上述用于舵机的多对极永磁直流无刷电机。
实施时,对转子磁钢(永磁体)进行独立或分段充磁,并将磁钢(永磁体)压装在转子铁芯的燕尾槽里,压装过程中对于转子铁芯与磁钢之间进行涂胶处理,装配完毕后进行固化,使得整体的机械强度高。可选地,采用转子轴203与瓦片式永磁体采用整体外套设固定套进行连接。可选地,采用转子轴203与瓦片式永磁体之间通过开设于瓦片式永磁体外表面的定位槽以及设于定位槽内的固定箍进行连接。采用上述的至少一种连接方式,能够降低制作工艺难度,能够提高转子轴203与瓦片式永磁体之间的结构稳定性,装配工艺简单,合格率高,且漏磁系数小,气隙磁密高,永磁体的利用率更高,并提高了电机的转矩密度。制作过程中,定子的绕线槽槽数较多,槽口窄,下线时以免划伤电磁线漆膜,对槽口采取垫绝缘层和降低槽满率的措施。
选择多对极是提高舵机性能的最佳方案,并具有以下特点:1、大幅度提高了准确度;2、增大了输出扭矩。但是,传统的微型电机制作工艺中认为采用多对极的制造工艺存在以下问题:1、扭矩不但不能增加,反而还有所下降;2、在高达2万-5万转/分钟转速的条件以及电机内高温环境下,转子的磁钢需要承受很大的离心力,易脱落且易碎。而通过采用本发明的技术,采用各个永磁体(瓦片式永磁体)磁极单体分别制造并装配形成转子,将各个永磁体(瓦片式永磁体)采用燕尾槽与燕尾榫配合连接方式装配于转子轴上,装配过程中对于转子轴203与永磁体(瓦片式永磁体)之间进行涂胶处理,装配完毕后进行固化,使得整体的机械强度高,永磁体(瓦片式永磁体)沿转子轴的轴向均匀排布,从而达到增加扭矩的作用。通过永磁体(瓦片式永磁体)单体固接的方式减少制造工艺造成的结构薄弱点,降低永磁体(瓦片式永磁体)从转子轴脱落以及破碎的几率。可选地,在永磁体(瓦片式永磁体)外周加套的方法,能够降低制作工艺难度,能够提高转子轴203与瓦片式永磁体之间的结构稳定性,提高转子的结构强度。可选地,永磁体(瓦片式永磁体)与转子轴之间采用胶粘的方式进行连接,连接方便可靠,装配完毕后只需进行固化和削除多余的胶,即可完成装配。通过上述装配方式中的至少一种,即达到降低制作工艺难度、增加扭矩、转子运转稳定性好、转子适应能力强、永磁体不易脱落不易碎的目的。
而采用多对极少槽的磁路结构,以及采用独立或分段充磁,将转子的磁极磁弧系数控制在0.6-0.85之间,从而达到漏磁系数小、气隙磁密高、永磁体利用率高的效果,并提高电机的转矩密度。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于舵机的多对极永磁直流无刷电机,包括固定于电机壳体内的定子(1)、设于所述定子(1)内的转子(2)以及沿所述转子(2)周向布设并用于感应所述转子(2)旋转过程中磁极变换而发出信号的传感器(3),其特征在于,所述转子(2)包括转子轴(203)以及多块用于提高舵机磁感应密度以提高舵机旋转控制精度的瓦片式永磁体,多块所述瓦片式永磁体沿所述转子(2)的周向等距离排布并固接于所述转子轴(203)上,所述瓦片式永磁体的外形均相同,所述瓦片式永磁体为南极永磁体(201)或北极永磁体(202),一个所述南极永磁体(201)和一个所述北极永磁体(202)构成一对磁极,所述转子(2)包含有至少两对磁极。
  2. 根据权利要求1所述的用于舵机的多对极永磁直流无刷电机,其特征在于,所述转子轴(203)与所述瓦片式永磁体之间采用燕尾槽和燕尾榫配合连接,燕尾槽沿所述转子轴(203)的轴向布设;和/或所述转子轴(203)与所述瓦片式永磁体之间采用胶粘连接;和/或所述转子轴(203)与所述瓦片式永磁体采用整体外套设固定套进行连接;和/或所述转子轴(203)与所述瓦片式永磁体之间通过开设于所述瓦片式永磁体外表面的定位槽以及设于定位槽内的固定箍进行连接。
  3. 根据权利要求2所述的用于舵机的多对极永磁直流无刷电机,其特征在于,每一个所述南极永磁体(201)和/或每一个所述北极永磁体(202)均为单独装配至所述转子轴(203)上的独立装配式永磁体。
  4. 根据权利要求1所述的用于舵机的多对极永磁直流无刷电机,其特征在于,电机采用多对极少槽的磁路结构,每极每相槽数q=Z/(Zp*m),其中,q为每极每相槽数,Z为定子的绕线槽总数,Zp为磁极个数,m为相数;每极每相槽数q<1。
  5. 根据权利要求1所述的用于舵机的多对极永磁直流无刷电机,其特征在于,所述转子(2)的磁极极弧系数为0.6-0.85,以提高电机的气隙磁密、所述南极永磁体(201)和所述北极永磁体(202)的利用率以及电机的转矩密度。
  6. 根据权利要求1至5中任一项所述的用于舵机的多对极永磁直流无刷电机,其特征在于,所述定子(1)的内壁面上开设有多个沿所述定子(1)轴向布置并用于嵌绕电磁线的绕线槽(4),相邻两个所述绕线槽(4)的相邻槽壁上通过手工或者绕线机均匀的嵌绕有电磁线,形成沿所述定子(1)周向排布的多组电磁线圈组。
  7. 根据权利要求6所述的用于舵机的多对极永磁直流无刷电机,其特征在于,所述定子(1)的两端面以及所述定子(1)的所述绕线槽(4)内均设有用于避免电磁线外表面漆膜损伤的绝缘层。
  8. 根据权利要求1至5中任一项所述的用于舵机的多对极永磁直流无刷电机,其特征在于,所述转子(2)采用两对极转子、三对极转子或者四对极转子。
  9. 根据权利要求1至5中任一项所述的用于舵机的多对极永磁直流无刷电机,其特征在于,所述南极永磁体(201)与所述北极永磁体(202)相间排布;或者两块所述南极永磁体(201)相邻成组并与所述北极永磁体(202)相间排布;或者两块所述北极永磁体(202)相邻成组并与所述南极永磁体(201)相间排布;或者两块所述南极永磁体(201)相邻成组并与同样由两块相邻成组的所述北极永磁体(202)相间排布。
  10. 一种舵机,其特征在于,包括权利要求1至10中任一项所述的用于舵机的多对极永磁直流无刷 电机。
PCT/CN2015/082081 2015-05-06 2015-06-23 用于舵机的多对极永磁直流无刷电机及舵机 WO2016176899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510226444.1 2015-05-06
CN201510226444.1A CN104795954B (zh) 2015-05-06 2015-05-06 用于舵机的多对极永磁直流无刷电机及舵机

Publications (1)

Publication Number Publication Date
WO2016176899A1 true WO2016176899A1 (zh) 2016-11-10

Family

ID=53560549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082081 WO2016176899A1 (zh) 2015-05-06 2015-06-23 用于舵机的多对极永磁直流无刷电机及舵机

Country Status (2)

Country Link
CN (1) CN104795954B (zh)
WO (1) WO2016176899A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696016A (zh) * 2018-05-29 2018-10-23 杭州精导智能科技有限公司 直驱电机
CN114189075B (zh) * 2021-11-12 2023-11-03 北京自动化控制设备研究所 一种高可靠高转矩密度永磁转子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013962A (en) * 1998-01-06 2000-01-11 Okuma Corporation Permanent magnet motor with specific magnets and magnetic circuit arrangement
CN101951103A (zh) * 2010-09-26 2011-01-19 杭州励磁自动化技术有限公司 大扭矩微型直流永磁同步伺服电机
CN202524184U (zh) * 2012-03-05 2012-11-07 德昌电机(深圳)有限公司 永磁电机及应用该永磁电机的无叶风扇
CN203562922U (zh) * 2012-11-16 2014-04-23 爱信精机株式会社 无刷电机
CN104052172A (zh) * 2013-03-15 2014-09-17 株式会社安川电机 旋转电机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2195822Y (zh) * 1994-06-24 1995-04-26 资阳内燃机车厂技工学校 永磁直流无刷电机
JPH1198791A (ja) * 1997-09-16 1999-04-09 Mitsubishi Heavy Ind Ltd ブラシレスdcモータ
CN201403039Y (zh) * 2009-03-10 2010-02-10 常州合泰微特电机有限公司 用于伺服系统的永磁无刷直流电机
CN201781399U (zh) * 2010-08-19 2011-03-30 中国航空工业第六一八研究所 无刷直流电动机
CN201893676U (zh) * 2010-11-25 2011-07-06 江苏超力电器有限公司 汽车电动助力转向永磁无刷直流电动机
JP6008228B2 (ja) * 2011-12-26 2016-10-19 日本電産株式会社 モータ
CN203301333U (zh) * 2013-06-19 2013-11-20 浙江三星机电股份有限公司 一种无刷直流的工业电机
CN203522488U (zh) * 2013-06-21 2014-04-02 东莞市朗亿机电科技有限公司 用于舵机中的空心杯直流无刷电机
CN103731077B (zh) * 2014-01-21 2016-04-27 上海新世纪机器人有限公司 电机转子位置和转速的检测装置及方法
CN204179902U (zh) * 2014-09-29 2015-02-25 瑞展动能股份有限公司 无刷直流马达
CN204652186U (zh) * 2015-05-06 2015-09-16 长沙美福沛林电子科技有限公司 用于舵机的多对极永磁直流无刷电机及舵机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013962A (en) * 1998-01-06 2000-01-11 Okuma Corporation Permanent magnet motor with specific magnets and magnetic circuit arrangement
CN101951103A (zh) * 2010-09-26 2011-01-19 杭州励磁自动化技术有限公司 大扭矩微型直流永磁同步伺服电机
CN202524184U (zh) * 2012-03-05 2012-11-07 德昌电机(深圳)有限公司 永磁电机及应用该永磁电机的无叶风扇
CN203562922U (zh) * 2012-11-16 2014-04-23 爱信精机株式会社 无刷电机
CN104052172A (zh) * 2013-03-15 2014-09-17 株式会社安川电机 旋转电机

Also Published As

Publication number Publication date
CN104795954A (zh) 2015-07-22
CN104795954B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
JP5309630B2 (ja) 永久磁石埋込形電動機
CN102487234A (zh) 旋转电机及其转子
CN106374702B (zh) 盘式无铁芯磁通调制电机
CN106877615A (zh) 电动机及搭载了该电动机的电气设备
CN101577448A (zh) 扇形电动机
CN107425626B (zh) 一种内置式切向励磁游标永磁电机
WO2016176899A1 (zh) 用于舵机的多对极永磁直流无刷电机及舵机
CN109149800A (zh) 一种9n/10n极分段转子开关磁阻电机
US20150380993A1 (en) Method for operating variable magnetic flux motor
CN204465161U (zh) 一种单相横向磁通发电机
CN110474510B (zh) 一种拼装式铁心集中绕组的有限转角力矩器
CN109038871B (zh) 一种分段转子开关磁阻电机
CN107332426A (zh) 一种永磁体安装于定子的混合式步进电动机
CN110581634A (zh) 螺旋永磁体电磁作动器
CN204652186U (zh) 用于舵机的多对极永磁直流无刷电机及舵机
US20120112598A1 (en) Electrical machine stator assembly
CN102347669A (zh) 一种有限转角力矩电动机及其制作方法
CN113300558B (zh) 双重集中绕组永磁同步电机
KR102291031B1 (ko) 외전형 bldc 모터
CN103618393B (zh) 转子
JP6346385B2 (ja) 回転発電機
CN112737175A (zh) 一种紧凑型无槽永磁主轴电机
CN206894464U (zh) 一种采用线圈永磁体组合定子的电机
CN203537092U (zh) 一种定子永磁式双转子电机的隔磁外转子结构
JP2020156259A (ja) 筒型リニアモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15891151

Country of ref document: EP

Kind code of ref document: A1