WO2016175455A1 - Dual battery package - Google Patents

Dual battery package Download PDF

Info

Publication number
WO2016175455A1
WO2016175455A1 PCT/KR2016/003011 KR2016003011W WO2016175455A1 WO 2016175455 A1 WO2016175455 A1 WO 2016175455A1 KR 2016003011 W KR2016003011 W KR 2016003011W WO 2016175455 A1 WO2016175455 A1 WO 2016175455A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
node
switching unit
boost converter
battery package
Prior art date
Application number
PCT/KR2016/003011
Other languages
French (fr)
Korean (ko)
Inventor
송동하
노정욱
Original Assignee
스마클(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스마클(주) filed Critical 스마클(주)
Publication of WO2016175455A1 publication Critical patent/WO2016175455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lightweight battery package for an electric bicycle.
  • the electric bicycle has a battery, a motor driven inverter and a motor.
  • An electric bicycle can use the power of the occupant to pedal, but it also uses the power of the motor.
  • Figure 1 shows the drive of a conventional electric bicycle using a battery power of 36V / 10A.
  • the battery 10 is implemented by connecting three battery cells of 12V / 10A in series so as to supply a voltage of 36V and a current of 10A.
  • the battery 10 is supplied to the inverter circuit 20 and supplies current.
  • the inverter circuit 20 drives the motor 30.
  • the current electric bicycle is very slow immediately after starting (starting), but the current supplied to the motor increases rapidly. Then, when the speed reaches maximum (in normal driving), the current supplied to the motor is reduced again.
  • the battery must be able to supply this maximum current. When the maximum current supplied from the battery is small, the acceleration of the electric bicycle is reduced. Therefore, use a battery with sufficient current supply to get the proper acceleration when starting the electric bike.
  • FIG. 3 is a conceptual diagram showing the configuration of an inverter circuit.
  • the inverter circuit 20 receives current from the battery 10 and supplies it to the motor 30.
  • the inverter circuit 20 includes a plurality of inverters 21 (for example, six).
  • the inverter 21 supplies a current to the motor 30 according to the signal of the PWM signal generator 22.
  • the inverter 21 supplies a small current to the motor 30 when the duty ratio of the signal generated by the PWM signal generator 22 is small and a large current when the duty ratio is large.
  • the process of generating a PWM signal is as follows.
  • the speed controller 25 multiplies the value by a certain constant to generate the target current signal.
  • the current controller 23 multiplies the value by another constant value to generate the target voltage signal.
  • the PWM signal generator 22 generates a PWM signal having a duty ratio according to the target voltage signal, and the inverter 21 supplies current to the motor by using the PWM signal generator 22.
  • Patent No. 10-1065309 discloses a technique for solving such a problem. Specifically, the capacitor is used to charge the current supplied by the battery in normal times, and when the maximum current is required, the capacitor current is supplied to the motor together with the battery current. This reduces the number of parallel connections of the batteries and reduces weight, volume and cost. Nevertheless, this technology still requires the use of high voltage capacitors, and the problem of reduced reliability due to the series connection of multiple batteries remains.
  • the present invention aims to solve the above-mentioned problems of the prior art.
  • One object of the present invention is to solve the problem of using a high voltage battery by using a capacitor, and to reduce the weight and cost of the battery.
  • Another object of the present invention is to integrate the charger or inverter circuit with the battery in the battery package to increase the reliability of the battery package, reduce the cost and ease of use.
  • a dual battery package includes a battery, a boost converter, and a capacitor, one end of which is connected to the anode and the boost converter of the battery at a first node and the other end of which is connected to the boost converter at a second node; The current is supplied to an external load through the second node.
  • a dual battery package includes a charger in addition to a battery, a boost converter and a capacitor.
  • the secondary coil of the transformer included in the charger may serve as an inductor of the boost converter.
  • a dual battery package includes an inverter circuit in addition to a battery, a boost converter and a capacitor.
  • a dual battery package can use a low voltage battery because it uses a battery and a capacitor together, which enables increased battery package reliability, reduced weight and volume, and reduced cost.
  • the dual battery package incorporates a charger, greatly increasing user convenience.
  • cost savings can be achieved by organically integrating some components of the charger with those of existing battery packages.
  • a dual battery package incorporates inverter circuits, which can be expected to increase reliability when compared to separate designs.
  • FIG. 1 is a conceptual diagram showing a driving unit of a conventional electric bicycle.
  • 2 is a graph showing the amount of current supplied to the motor of the electric bicycle.
  • FIG. 3 is a conceptual diagram showing the configuration of an inverter circuit.
  • FIG. 4 illustrates a dual battery package according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a configuration of a boost converter.
  • FIG. 6 illustrates a dual battery package according to another embodiment of the present invention.
  • FIG. 7 illustrates a dual battery package according to another embodiment of the present invention.
  • FIG. 4 illustrates a dual battery package according to an embodiment of the present invention.
  • the dual battery package 1 includes a battery 100, a capacitor 200, and a boost converter 300.
  • the dual battery package 1 supplies a current according to the user's control to the inverter circuit 400, in which both the capacitor 200 and the battery 100 are inverters when the electric bicycle is started or the output of the motor needs to be maximized.
  • the inverter circuit 400 in which both the capacitor 200 and the battery 100 are inverters when the electric bicycle is started or the output of the motor needs to be maximized.
  • the current is supplied to the circuit 400 and the motor does not have to maximize the output (for example, during normal driving), only the battery 100 supplies current.
  • the battery 100 may connect two 12V / 10A battery cells in parallel.
  • the positive electrode of the battery 100 is connected to node 1 and the negative electrode of the battery 100 is connected to the ground.
  • the battery 100 includes a boost converter 300 to supply current or voltage to various control circuits (not shown).
  • the voltage of 12V supplied through node 1 is boosted to 36V by boost converter 300. Therefore, the capacitor 200 connected between the node 1 and the node 2 is subjected to a voltage of 24V.
  • the inverter circuit 400 receives a current from the dual battery package 1 and supplies a current proportional thereto to the motor 500.
  • the inverter circuit 400 may include a plurality of inverters. You can also use a proven inverter circuit.
  • the inverter circuit 400 may be implemented as a step-down six-switch DC / AC inverter (which can be implemented with six Power MOSFETs) suitable for a brush-less direct current (BLDC) motor or a permanent-magnetic synchronous motor (PMSM). It can be implemented to include microprocessor and inverter control logic for on and off control of the MOSFET.
  • BLDC brush-less direct current
  • PMSM permanent-magnetic synchronous motor
  • a circuit generally used conventionally is employed.
  • the inverter circuit 400 may be implemented separately without being included in the dual battery package as in the embodiment of FIG. 4, the inverter circuit 400 may be implemented to be included in the dual battery package.
  • the price of the dual battery package increases, but it is possible to avoid the deterioration of reliability due to the integration of the two separately.
  • the price increase of the dual battery package can be offset by reducing the cost of implementing separate inverter circuits. The following other embodiments are described based on the fact that the inverter circuit is not implemented in the dual battery package, and the description of the integrated version is omitted.
  • the motor 500 receives a current from the inverter circuit 400 and rotates. Either a BLDC motor or a PMSM motor may be adopted. DC motors can be used to implement low-cost electric bicycles, in which case modifications to the inverter circuits are required.
  • part of the required current is supplied from the battery 100 to the inverter circuit 400 via the boost converter 300 via node 2.
  • the boost converter By appropriate control of the boost converter, it is possible to limit the maximum value of the current supplied from the battery 100, thereby reducing the capacity of the battery 100, that is, the number of parallel connected cells.
  • the insufficient current required for the inverter circuit 400 at startup is supplied from the capacitor 200 via node 2.
  • the battery 100 supplies all necessary inverter 400 circuit current through the boost converter 300. do. That is, since the capacitor 200 only supplies power for a short time during startup, it can be implemented with a small capacity. This results in a lighter and lower cost battery package.
  • the reverse current generated by the motor 500 is supplied to the capacitor 200 through the node 2 via the inverter 400 to partially charge the discharged capacitor 200 at startup.
  • the battery 100 is fully charged by the discharged capacitor 200 at start-up via the boost converter 300.
  • the boost converter used in the present invention may adopt a power circuit topology generally used.
  • the boost converter 300 includes an inductor Lb 320, a switching unit 330, and a switching unit 310 between the node 1 and the node 2 and the ground node, and the switching unit 330 in the converter control circuit 340. Repeat the conduction interruption according to the generated switch conduction / interruption signal
  • the switching unit 310 mainly uses a diode D6, and in some cases, SW1 may be added. However, SW1 should be turned on / off so that SW1 conduction only occurs when SW2 is interrupted and SW1 interruption occurs when SW2 is conducted.
  • the signal generated from the control circuit 340 is usually a signal of several tens of KHz or more, and when the conduction signal is generated, the switching unit 330 is turned on and the switching unit 310 is cut off. At this time, current flows through the path of the battery 100-inductor Lb-SW2 and energy is stored in the inductor.
  • the switching unit 330 When the blocking signal is generated, the switching unit 330 is cut off, and the energy stored in the inductor through the path of the battery 100-inductor-SW1 is added to the battery 100 and transferred to the inverter circuit 400. Therefore, the voltage between the node N2 and the ground node is boosted to be greater than the voltage of the battery 100 and is applied to the inverter circuit 400.
  • the conduction / blocking operation of the switch 330 is repeated in a period of Ts.
  • the ratio D may be defined as Ton / Ts.
  • the operation rate D is increased.
  • the conduction time of the switch 330 is long, and the energy stored in the inductor is increased, thereby providing the necessary power at the moment of startup.
  • the size of the fertilization rate D is limited and operated so that more than the allowable current of the battery 100 is supplied.
  • the power which is insufficient at the start-up is supplied by the capacitor 200 as described above.
  • the application rate D is lowered.
  • the rate D adjustment operation is performed such that the voltage between node 2 and the ground node is less than the inverter 400 allowable voltage. This helps the life of the battery 100.
  • FIG. 6 illustrates a dual battery package according to another embodiment of the present invention.
  • the dual battery package 2 like the dual battery package 1 of FIG. 4, includes not only the dual battery device 600, which is a circuit including a battery, a boost converter, and a capacitor, but also a charger 700.
  • the charger 700 is provided with a transformer 710 to lower the AC voltage of 220V to reduce damage that may occur to the battery during the charging process, as well as electrical insulation to ensure the safety of the user electric shock accidents. .
  • the inverter circuit 400 is not included in the dual battery package 1 but may be implemented to be included.
  • FIG. 7 illustrates a dual battery package according to another embodiment of the present invention.
  • the dual battery package 2 of FIG. 6 merely reduces the inconvenience of having the user carry the charger separately by including the charger 700 in the dual battery package.
  • the dual battery package 3 according to the present embodiment is conventional.
  • the inductor included in the boost converter is used as the secondary coil of the transformer 910 included in the charger 900. This can reduce parts, reduce cost and weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

The present invention relates to a lightweight battery package for an electric bicycle. A dual battery package comprises: a battery; a boost converter; and a capacitor of which one end is connected to the boost converter and a positive electrode of the battery at a first node, and of which the other end is connected to the boost converter at a second node, wherein an electric current is supplied to an external load through the second node. Such an implemented dual battery package can enhance reliability and reduce the weight, volume and cost of a battery, compared to existing products.

Description

이중 배터리 패키지Dual battery package
본 발명은 전기 자전거를 위한 경량화된 배터리 패키지에 관한 것이다.The present invention relates to a lightweight battery package for an electric bicycle.
전기 자전거는 배터리, 모터 구동 인버터 및 모터를 구비한다. 전기 자전거는 탑승자가 페달을 구르는 힘을 동력으로 사용할 수 있지만, 모터의 힘을 동력으로 사용하기도 한다.The electric bicycle has a battery, a motor driven inverter and a motor. An electric bicycle can use the power of the occupant to pedal, but it also uses the power of the motor.
강압형 인버터를 채용한 기존의 자전거는 모터 정격전압인 24V보다 배터리 전압이 높게(예를 들어 36V) 설정되어야 한다. 전기 자전거용 배터리로 주로 리튬계열의 2차 전지가 사용되는데 이러한 전압을 얻기 위하여 배터리 셀들을 직렬로 연결하여 사용한다. 배터리 셀들을 직렬로 연결하는 것은 배터리의 신뢰성을 전체적으로 저하시키는 요인이 되고 있다. 한편 모터에 순간적으로 최대 전류를 공급할 수 있도록 배터리의 방전 전류가 커야 하는데 이를 위해 여러 개의 배터리를 병렬로 연결하여 사용하기도 한다.Existing bicycles with step-down inverters must be set at a higher battery voltage (eg 36V) than the motor's rated voltage of 24V. As a battery for an electric bicycle, a lithium-based secondary battery is mainly used. In order to obtain such a voltage, battery cells are connected in series. Connecting battery cells in series has been a factor in lowering the overall reliability of the battery. On the other hand, the discharge current of the battery must be large so that the maximum current can be instantaneously supplied to the motor. To this end, several batteries may be connected in parallel.
이러한 요인들은 배터리의 신뢰성을 저하시키고 배터리의 무게와 부피를 증가시키고 나아가 전기 자전거의 원가 상승 요인이 되고 있다.These factors reduce the reliability of the battery, increase the weight and volume of the battery and further increase the cost of the electric bicycle.
도 1은 36V/10A의 배터리 전원을 사용하는 기존의 전기 자전거의 구동부를 보여준다.Figure 1 shows the drive of a conventional electric bicycle using a battery power of 36V / 10A.
배터리(10)는 36V의 전압과 10A의 전류를 공급할 수 있도록 12V/10A의 배터리 셀 3개를 직렬로 연결하여 구현한다.배터리(10)는 인버터 회로(20)에 공급되고, 전류를 공급하고 인버터 회로(20)는 모터(30)를 구동한다.The battery 10 is implemented by connecting three battery cells of 12V / 10A in series so as to supply a voltage of 36V and a current of 10A. The battery 10 is supplied to the inverter circuit 20 and supplies current. The inverter circuit 20 drives the motor 30.
도 2를 참조하면, 기존의 전기 자전거는 출발한 직후(기동 시)에는 속도가 매우 느리지만 모터에 공급되는 전류는 급격히 증가한다. 그러다가 속도가 최대에 도달할 무렵이면(정상 주행 시) 모터에 공급되는 전류는 다시 줄어든다. 배터리는 이러한 최대전류를 공급할 수 있어야 한다. 배터리에서 공급되는 최대전류가 작을 경우에 전기 자전거의 가속도는 줄어들게 된다. 따라서 전기 자전거를 기동할 때 적절한 가속도를 얻을 수 있도록 충분한 전류 공급능력을 갖는 배터리를 사용한다.Referring to FIG. 2, the current electric bicycle is very slow immediately after starting (starting), but the current supplied to the motor increases rapidly. Then, when the speed reaches maximum (in normal driving), the current supplied to the motor is reduced again. The battery must be able to supply this maximum current. When the maximum current supplied from the battery is small, the acceleration of the electric bicycle is reduced. Therefore, use a battery with sufficient current supply to get the proper acceleration when starting the electric bike.
도 3은 인버터 회로의 구성을 보여주는 개념도이다.3 is a conceptual diagram showing the configuration of an inverter circuit.
인버터 회로(20)는 배터리(10)에서 전류를 공급받아서 모터(30)로 공급한다. 통상적으로 인버터 회로(20)는 복수 개(예를 들면, 6개)의 인버터들(21)을 포함하고 있다.The inverter circuit 20 receives current from the battery 10 and supplies it to the motor 30. Typically, the inverter circuit 20 includes a plurality of inverters 21 (for example, six).
인버터(21)는 PWM 신호 발생기(22)의 신호에 따라 모터(30)에 전류를 공급한다. 인버터(21)는 PWM 신호 발생기(22)에서 발생한 신호의 듀티비(Duty Ratio)가 작을 경우에는 모터(30)에 적은 전류 공급하고 듀티비가 클 경우에는 많은 전류를 공급한다.The inverter 21 supplies a current to the motor 30 according to the signal of the PWM signal generator 22. The inverter 21 supplies a small current to the motor 30 when the duty ratio of the signal generated by the PWM signal generator 22 is small and a large current when the duty ratio is large.
PWM 신호가 생성되는 과정을 살펴보면 다음과 같다.The process of generating a PWM signal is as follows.
제1비교기(26)가 목표 각속도 신호와 모터(30)의 현재 각속도를 비교한 값을 출력하면, 속력 제어기(25)가 그 값에 어떤 상수 값을 곱해서 목표 전류 신호를 생성한다.When the first comparator 26 outputs a value obtained by comparing the target angular velocity signal with the current angular velocity of the motor 30, the speed controller 25 multiplies the value by a certain constant to generate the target current signal.
제2비교기(24)가 인버터(21)가 모터(30)에 공급하는 전류와 목표 전류를 비교하면, 전류 제어기(23)가 그 값에 다른 상수 값을 곱해서 목표 전압 신호를 생성한다.When the second comparator 24 compares the current supplied by the inverter 21 to the motor 30 with the target current, the current controller 23 multiplies the value by another constant value to generate the target voltage signal.
PWM 신호 발생기(22)는 목표 전압 신호에 따른 듀티비를 갖는 PWM 신호를 발생하고, 이를 이용하여 인버터(21)가 모터로 전류를 공급한다.The PWM signal generator 22 generates a PWM signal having a duty ratio according to the target voltage signal, and the inverter 21 supplies current to the motor by using the PWM signal generator 22.
이러한 종래 기술은 높은 배터리 전압과 큰 전류를 위해 많은 배터리 셀을 직렬 및 병렬 연결한다. 이는 배터리의 신뢰성 저하, 무게 증가, 부피 증가 및 비용증가를 초래한다.This prior art connects many battery cells in series and in parallel for high battery voltages and large currents. This leads to battery reliability, weight increase, volume increase and cost increase.
특허 제10-1065309호는 이와 같은 문제점을 해결하기 위한 기술이 개시되어 있다. 구체적으로 살펴보면 커패시터를 이용하여 평상시에 배터리가 공급하는 전류를 충전해뒀다가 최대 전류가 필요할 경우에 배터리 전류 외에도 커패시터의 전류를 모터로 함께 공급한다. 이렇게 함으로써 배터리의 병렬 연결하는 개수를 줄일 수 있고, 무게와 부피 및 원가를 줄일 수 있다. 그렇지만 이 기술에서도 여전히 고압 커패시터를 사용해야 하고, 다수 배터리의 직렬 연결에 의한 신뢰성 저하 문제는 여전히 남아 있다.Patent No. 10-1065309 discloses a technique for solving such a problem. Specifically, the capacitor is used to charge the current supplied by the battery in normal times, and when the maximum current is required, the capacitor current is supplied to the motor together with the battery current. This reduces the number of parallel connections of the batteries and reduces weight, volume and cost. Nevertheless, this technology still requires the use of high voltage capacitors, and the problem of reduced reliability due to the series connection of multiple batteries remains.
한편 이러한 종래의 전기 자전거의 배터리가 방전된 경우에 이미 충전된 배터리와 교환하거나 별도의 외부 충전기를 사용하여 충전한다. 그렇지만 전기 자전거를 이용할 때, 충전된 교체용 배터리 또는 외부 충전기를 별도로 운반해야 하는 불편함이 있다.Meanwhile, when the battery of the conventional electric bicycle is discharged, it is replaced with a battery that is already charged or charged using a separate external charger. However, when using an electric bicycle, there is an inconvenience of having to carry a charged replacement battery or an external charger separately.
따라서, 본 발명은 상술한 종래 기술의 문제점들을 해결하는 것을 목적으로 한다.Accordingly, the present invention aims to solve the above-mentioned problems of the prior art.
본 발명은 커패시터를 이용하여 고전압 배터리 사용 문제를 해결하고, 배터리의 무게 및 비용 절감을하는 것을 하나의 목적으로 한다.One object of the present invention is to solve the problem of using a high voltage battery by using a capacitor, and to reduce the weight and cost of the battery.
본 발명의 다른 목적은 충전기 혹은 인버터 회로를 배터리와 함께 배터리 패키지에 통합하여 배터리 패키지의 신뢰성을 높이고 원가절감 및 사용의 편의성을 증대하는 것을 다른 목적으로 한다.Another object of the present invention is to integrate the charger or inverter circuit with the battery in the battery package to increase the reliability of the battery package, reduce the cost and ease of use.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특징적인 효과를 실현하기 위한, 본 발명의 특징적인 구성은 하기와 같다.The characteristic structure of this invention for achieving the objective of this invention mentioned above, and realizing the characteristic effect of this invention mentioned later is as follows.
본 발명의 일 태양에 따르면, 이중 배터리 패키지는 배터리, 부스트 컨버터, 및 일단이 상기 배터리의 양극 및 상기 부스트 컨버터와 제1 노드에서 연결되고 타단이 제2 노드에서 상기 부스트 컨버터와 연결된 커패시터를 포함하고, 제2 노드를 통해 외부 부하에 전류를 공급한다.According to one aspect of the present invention, a dual battery package includes a battery, a boost converter, and a capacitor, one end of which is connected to the anode and the boost converter of the battery at a first node and the other end of which is connected to the boost converter at a second node; The current is supplied to an external load through the second node.
본 발명의 다른 태양에 따르면, 이중 배터리 패키지는 배터리, 부스트 컨버터 및 커패시터 이외에 충전기를 포함한다. 이 때 충전기에 포함된 트랜스포머의 2차 코일은 부스트 컨버터의 인덕터 역할을 함께 수행할 수도 있다.According to another aspect of the invention, a dual battery package includes a charger in addition to a battery, a boost converter and a capacitor. In this case, the secondary coil of the transformer included in the charger may serve as an inductor of the boost converter.
본 발명의 또 다른 태양에 따르면, 이중 배터리 패키지는 배터리, 부스트 컨버터 및 커패시터 외에 인버터 회로를 포함한다.According to another aspect of the invention, a dual battery package includes an inverter circuit in addition to a battery, a boost converter and a capacitor.
본 발명에 적어도 일부 실시 태양에 따르면,이중 배터리 패키지는 배터리 및 커패시터를 함께 이용하기 때문에 저전압배터리를 사용할 수 있고, 이는 배터리 패키지의 신뢰성 증가와 무게 및 부피 감소를 가능케 하고 원가를 절감할 수 있게 한다.According to at least some embodiments of the present invention, a dual battery package can use a low voltage battery because it uses a battery and a capacitor together, which enables increased battery package reliability, reduced weight and volume, and reduced cost. .
본 발명의 적어도 일부 실시 태양에 따르면, 이중 배터리 패키지는 충전기를 통합하고 있어서, 사용자의 편의성이 크게 증가한다. 또한 충전기의 일부 구성요소를 기존 배터리 패키지의 구성요소와 유기적으로 통합함으로써 원가 절감이 가능하다.According to at least some embodiments of the present invention, the dual battery package incorporates a charger, greatly increasing user convenience. In addition, cost savings can be achieved by organically integrating some components of the charger with those of existing battery packages.
본 발명의 적어도 일부 실시 태양에 따르면, 이중 배터리 패키지는 인버터 회로를 통합하고 있어서 별도로 설계할 때에 비해 신뢰성 상승을 기대할 수 있다.According to at least some embodiments of the present invention, a dual battery package incorporates inverter circuits, which can be expected to increase reliability when compared to separate designs.
도 1은 기존의 전기 자전거의 구동부를 보여주는 개념도이다.1 is a conceptual diagram showing a driving unit of a conventional electric bicycle.
도 2는 전기 자전거의 모터에 공급되는 전류의 크기를 보여주는 그래프이다.2 is a graph showing the amount of current supplied to the motor of the electric bicycle.
도 3은 인버터 회로의 구성을 보여주는 개념도이다.3 is a conceptual diagram showing the configuration of an inverter circuit.
도 4는 본 발명의 일 실시예의 따른 이중 배터리 패키지를 보여주는 도면이다.4 illustrates a dual battery package according to an embodiment of the present invention.
도 5는 부스트 컨버터의 구성을 간략히 보여주는 도면이다.5 is a diagram schematically illustrating a configuration of a boost converter.
도 6은 본 발명의 다른 실시예의 따른 이중 배터리 패키지를 보여주는 도면이다.6 illustrates a dual battery package according to another embodiment of the present invention.
도 7은 본 발명의 또 다른 실시예에 따른 이중 배터리 패키지를 보여주는 도면이다.7 illustrates a dual battery package according to another embodiment of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.DETAILED DESCRIPTION OF THE INVENTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
도 4는 본 발명의 일 실시예의 따른 이중 배터리 패키지를 보여주는 도면이다.4 illustrates a dual battery package according to an embodiment of the present invention.
이중 배터리 패키지(1)는 배터리(100)와 커패시터(200)와 부스트 컨버터(300)를 포함한다.The dual battery package 1 includes a battery 100, a capacitor 200, and a boost converter 300.
이중 배터리 패키지(1)는 사용자의 제어에 따른 전류를 인버터 회로(400)에 공급하는데, 전기 자전거가 기동하거나 모터의 출력을 최대로 해야할 경우에 커패시터(200)와 배터리(100) 양자 모두가 인버터 회로(400)에 전류를 공급하고, 모터가 출력을 최대로 하지 않아도 되는 경우(예를 들면 정상 주행시)에는 배터리(100)만 전류를 공급한다.The dual battery package 1 supplies a current according to the user's control to the inverter circuit 400, in which both the capacitor 200 and the battery 100 are inverters when the electric bicycle is started or the output of the motor needs to be maximized. When the current is supplied to the circuit 400 and the motor does not have to maximize the output (for example, during normal driving), only the battery 100 supplies current.
배터리(100)는 두 개의 12V/10A의 배터리 셀을 병렬로 연결하여 사용할 수 있다. 배터리(100)의 양극은 노드 1에 연결되고 배터리(100)의 음극은 접지와 연결된다. 배터리(100)는 부스트 컨버터(300)를 포함하여 여러 제어 회로(도시되지 않음)에 전류 혹은 전압을 공급한다.The battery 100 may connect two 12V / 10A battery cells in parallel. The positive electrode of the battery 100 is connected to node 1 and the negative electrode of the battery 100 is connected to the ground. The battery 100 includes a boost converter 300 to supply current or voltage to various control circuits (not shown).
노드 1을 통해 공급되는 12V의 전압은 부스트 컨버터(300)를 거쳐 노드 2의 전압은 36V로 승압된다. 따라서 노드 1과 노드 2 사이에 연결된 커패시터(200)에는 24V의 전압이 걸린다.The voltage of 12V supplied through node 1 is boosted to 36V by boost converter 300. Therefore, the capacitor 200 connected between the node 1 and the node 2 is subjected to a voltage of 24V.
인버터 회로(400)는 이중 배터리 패키지(1)로부터 전류를 공급받고, 이에 비례하는 전류를 모터(500)로 공급한다. 이러한 인버터 회로(400)는 복수 개의 인버터들을 포함할 수 있다. 또한 기존에 검증된 인버터 회로를 사용할 수도 있다.The inverter circuit 400 receives a current from the dual battery package 1 and supplies a current proportional thereto to the motor 500. The inverter circuit 400 may include a plurality of inverters. You can also use a proven inverter circuit.
인버터 회로(400)는 BLDC(Brush-Less Direct Current) 모터나 PMSM(Permanent-Magnet Synchronous Motor)에 적합한 강압형 6-스위치 DC/AC 인버터(Power MOSFET 6개로 구현할 수 있음)들로 구현할 수 있고, MOSFET의 온오프 제어를 위해 마이크로 프로세서 및 인버터 제어 로직을 포함하도록 구현할 수 있다. 본 실시예에서 인버터 회로(400)를 구현할 때, 기존에 일반적으로 사용하는 회로를 채용한다.The inverter circuit 400 may be implemented as a step-down six-switch DC / AC inverter (which can be implemented with six Power MOSFETs) suitable for a brush-less direct current (BLDC) motor or a permanent-magnetic synchronous motor (PMSM). It can be implemented to include microprocessor and inverter control logic for on and off control of the MOSFET. When implementing the inverter circuit 400 in the present embodiment, a circuit generally used conventionally is employed.
인버터 회로(400)는 도 4의 실시예와 같이 이중 배터리 패키지에 포함되지 않고 별개로 구현되는 것도 가능하지만, 이중 배터리 패키지에 포함되도록 구현될 수도 있다. 이중 배터리 패키지에 포함되도록 구현될 경우에는 이중 배터리 패키지의 가격이 상승하지만 별도로 양자를 별개로 구현하고 이를 통합할 때에 비해 통합에 따른 신뢰성 저하를 피할 수 있다. 한편 이중 배터리 패키지의 가격 상승분은 별개의 인버터 회로 구현에 따른 비용 발생을 억제하는 것에 의해 상쇄시킬 수 있다. 이하의 다른 실시예는 이중 배터리 패키지 안에 인버터 회로가 구현되지 않은 것을 기준으로 설명하고 통합된 버전에 대한 설명은 생략한다.Although the inverter circuit 400 may be implemented separately without being included in the dual battery package as in the embodiment of FIG. 4, the inverter circuit 400 may be implemented to be included in the dual battery package. When implemented in a dual battery package, the price of the dual battery package increases, but it is possible to avoid the deterioration of reliability due to the integration of the two separately. On the other hand, the price increase of the dual battery package can be offset by reducing the cost of implementing separate inverter circuits. The following other embodiments are described based on the fact that the inverter circuit is not implemented in the dual battery package, and the description of the integrated version is omitted.
모터(500)는 인버터 회로(400)로부터 전류를 공급받아 회전운동을 한다. BLDC 모터나 PMSM 모터 중 어느 것을 채택해도 무방하다. 저가형 전기 자전거 구현을 위해 DC 모터를 사용할 수 있는데, 이 경우에 인버터 회로의 수정이 필요하다.The motor 500 receives a current from the inverter circuit 400 and rotates. Either a BLDC motor or a PMSM motor may be adopted. DC motors can be used to implement low-cost electric bicycles, in which case modifications to the inverter circuits are required.
이하, 이중 배터리 패키지의 동작을 살펴본다.Hereinafter, the operation of the dual battery package will be described.
전기 자전거가 기동할 때, 배터리(100)에서 부스트 컨버터(300)를 통해서 노드 2를 거쳐 인버터 회로(400)로 필요한 전류의 일부가 공급된다. 부스트 컨버터의 적절한 제어를 통해 배터리(100)에서 공급하는 전류의 최대치를 제한이 가능하고, 이에 따라 배터리(100)의 용량, 즉 병렬 연결 셀 수를 줄일 수 있다. 기동 시 인버터 회로(400)에 필요한 모자라는 전류는 커패시터(200)에서 노드 2를 거쳐 공급된다.When the electric bicycle is started, part of the required current is supplied from the battery 100 to the inverter circuit 400 via the boost converter 300 via node 2. By appropriate control of the boost converter, it is possible to limit the maximum value of the current supplied from the battery 100, thereby reducing the capacity of the battery 100, that is, the number of parallel connected cells. The insufficient current required for the inverter circuit 400 at startup is supplied from the capacitor 200 via node 2.
전기 자전거의 기동상태가 끝나고 정상 운행 중일 때 캐패시터(200)에서 인버터 회로(400)에 공급하는 전류는 없고, 배터리(100)에서 부스트 컨버터(300)를 통해 필요한 인버터(400) 회로 전류를 모두 공급한다. 즉, 캐패시터(200)는 기동 시 짧은 시간 동안만 전력공급을 행하므로 적은 용량으로 구현 가능하다. 이를 통해 배터리 패키지의 경량화와 저비용화를 달성할 수 있다.There is no current supplied from the capacitor 200 to the inverter circuit 400 when the electric bicycle is started and is operating normally. The battery 100 supplies all necessary inverter 400 circuit current through the boost converter 300. do. That is, since the capacitor 200 only supplies power for a short time during startup, it can be implemented with a small capacity. This results in a lighter and lower cost battery package.
전기 자전거가 제동할 때, 모터(500)에서 발생하는 역전류는 인버터(400)를 거쳐 노드 2를 통해 커패시터(200)로 공급되어 기동 시에 방전된 커패시터(200)를 일부 충전하게 된다. 전기 자전거가 완전 정지(휴식) 중에 있을 때는 배터리(100)에서 부스트 컨버터(300)를 통해 기동 시 방전된 커패시터(200)를 완전히 충전하게 된다.When the electric bicycle is braked, the reverse current generated by the motor 500 is supplied to the capacitor 200 through the node 2 via the inverter 400 to partially charge the discharged capacitor 200 at startup. When the electric bicycle is in a full stop (rest), the battery 100 is fully charged by the discharged capacitor 200 at start-up via the boost converter 300.
본 발명에 사용되는 부스트 컨버터는 일반적으로 사용되는 전력 회로 Topology 를 채용할 수 있다. The boost converter used in the present invention may adopt a power circuit topology generally used.
도 5는 부스트 컨버터의 구성 예를 나타낸다. 부스트 컨버터(300)는 노드 1과 노드 2, 그리고 접지 노드 사이에 인덕터Lb(320), 스위칭 부(330), 스위칭 부 (310)를 구비하는데, 스위칭 부(330) 컨버터 제어회로(340)에서 발생한 스위치 도통/차단 신호에 따라 도통 차단을 반복한다. 5 shows an example of the configuration of the boost converter. The boost converter 300 includes an inductor Lb 320, a switching unit 330, and a switching unit 310 between the node 1 and the node 2 and the ground node, and the switching unit 330 in the converter control circuit 340. Repeat the conduction interruption according to the generated switch conduction / interruption signal
스위칭 부(310)는 주로 다이오드 D6를 사용하며, 경우에 따라 SW1을 추가해도 무방하다. 단, SW1 의 도통은 SW2 의 차단시에만, SW1의 차단은 SW2의 도통시에 발생하도록 SW1을 도통/차단해야 한다. 제어회로(340)에서 발생하는 신호는 통상 수십 KHz 이상의 신호이고, 도통 신호 발생시 스위칭 부(330)는 도통되고 스위칭 부(310)는 차단된다. 이때 배터리(100) - 인덕터Lb - SW2의 경로로 전류가 흘러 인덕터에 에너지가 저장된다. The switching unit 310 mainly uses a diode D6, and in some cases, SW1 may be added. However, SW1 should be turned on / off so that SW1 conduction only occurs when SW2 is interrupted and SW1 interruption occurs when SW2 is conducted. The signal generated from the control circuit 340 is usually a signal of several tens of KHz or more, and when the conduction signal is generated, the switching unit 330 is turned on and the switching unit 310 is cut off. At this time, current flows through the path of the battery 100-inductor Lb-SW2 and energy is stored in the inductor.
차단 신호 발생시 스위칭 부(330)는 차단되고 배터리(100) - 인덕터 - SW1의 경로로 인덕터에 저장된 에너지는 배터리(100) 에너지와 더해져서 인버터 회로(400)로 전달하게 된다. 따라서, 노드 N2 와 접지 노드 사이 전압은 배터리 (100) 전압보다 크게 부스팅 되어 인버터 회로 (400)에 인가된다. When the blocking signal is generated, the switching unit 330 is cut off, and the energy stored in the inductor through the path of the battery 100-inductor-SW1 is added to the battery 100 and transferred to the inverter circuit 400. Therefore, the voltage between the node N2 and the ground node is boosted to be greater than the voltage of the battery 100 and is applied to the inverter circuit 400.
스위치(330)의 도통/차단 동작은 Ts의 주기로 반복되며, 스위치 도통 시간을 Ton 이라고 하면, 시비율 D 를 Ton/Ts 로 정의할 수 있다. The conduction / blocking operation of the switch 330 is repeated in a period of Ts. When the switch conduction time is Ton, the ratio D may be defined as Ton / Ts.
전기 자전거의 기동 시 많은 인버터 전류가 필요하면, 시비율 D를 크게 하여 동작한다. 스위치(330)의 도통 시간이 길어져 인덕터에 저장된 에너지가 커져서, 기동 시 순간 필요 전력을 공급할 수 있다. 단, 배터리(100)의 허용 전류 이상이 공급되지 않도록 시비율 D의 크기를 제한하고 동작한다. 기동 시 모자라는 전력은 상기 서술한 바대로 커패시터(200)에서 공급한다. 정상/운행 조건시 에는 시비율 D가 낮아지도록 동작한다. 제동시나 완전 휴식기에는 노드 2와 접지 노드 사이의 전압이 인버터 (400) 허용 전압 미만이 되도록 시비율 D 조절 동작을 행한다. 이는 배터리(100)의 수명에 도움을 준다.If a large number of inverter currents are required at the start of the electric bicycle, the operation rate D is increased. The conduction time of the switch 330 is long, and the energy stored in the inductor is increased, thereby providing the necessary power at the moment of startup. However, the size of the fertilization rate D is limited and operated so that more than the allowable current of the battery 100 is supplied. The power which is insufficient at the start-up is supplied by the capacitor 200 as described above. Under normal / operational conditions, the application rate D is lowered. During braking or at complete rest, the rate D adjustment operation is performed such that the voltage between node 2 and the ground node is less than the inverter 400 allowable voltage. This helps the life of the battery 100.
도 6은 본 발명의 다른 실시예의 따른 이중 배터리 패키지를 보여주는 도면이다.6 illustrates a dual battery package according to another embodiment of the present invention.
이중 배터리 패키지(2)는 도 4의 이중 배터리 패키지(1)와 마찬가지로 배터리와 부스트 컨버터 및 커패시터가 구비된 회로인 이중 배터리 장치(600)를 포함할 뿐만 아니라 충전기(700)도 포함한다. 충전기(700)에는 트랜스 포머(710)가 구비되어 220V의 교류전압을 낮추어서 충전 과정에서 배터리에 발생할 수 있는 데미지를 줄여 줄 뿐 아니라, 전기적 절연이 가능하여 사용자 감전 사고등 안전을 보장한다. .The dual battery package 2, like the dual battery package 1 of FIG. 4, includes not only the dual battery device 600, which is a circuit including a battery, a boost converter, and a capacitor, but also a charger 700. The charger 700 is provided with a transformer 710 to lower the AC voltage of 220V to reduce damage that may occur to the battery during the charging process, as well as electrical insulation to ensure the safety of the user electric shock accidents. .
인버터 회로(400)는 이중 배터리 패키지(1)에 포함되지 않지만 포함되도록 구현하는 것도 가능하다.The inverter circuit 400 is not included in the dual battery package 1 but may be implemented to be included.
도 7은 본 발명의 또 다른 실시예에 따른 이중 배터리 패키지를 보여주는 도면이다.7 illustrates a dual battery package according to another embodiment of the present invention.
도 6의 이중 배터리 패키지(2)는 충전기(700)를 이중 배터리 패키지에 포함시킴으로써 사용자가 별도로 충전기를 갖고 다니게 하는 불편함을 줄이는 것에 그쳤지만,본 실시예에 따른 이중 배터리 패키지(3)는 기존에 부스트 컨버터에 포함되어 있는 인덕터를 충전기(900)에 포함된 트랜스 포머(910)의 2차 코일로 사용한다. 이렇게 함으로써 부품을 줄일 수 있고, 원가와 무게를 줄일 수 있다.The dual battery package 2 of FIG. 6 merely reduces the inconvenience of having the user carry the charger separately by including the charger 700 in the dual battery package. However, the dual battery package 3 according to the present embodiment is conventional. The inductor included in the boost converter is used as the secondary coil of the transformer 910 included in the charger 900. This can reduce parts, reduce cost and weight.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.Although the present invention has been described by specific embodiments such as specific components and the like, but the embodiments and the drawings are provided to assist in a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations can be made from such descriptions.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the embodiments described above, and all of the equivalents or equivalents of the claims, as well as the claims below, are included in the scope of the spirit of the present invention. I will say.

Claims (5)

  1. 배터리,부스트 컨버터, 및 일단이 상기 배터리의 양극 및 상기 부스트 컨버터와 제1 노드에서 연결되고 타단이 제2노드에서 상기 부스트 컨버터와 연결된 커패시터를 포함하고,A battery, a boost converter, and a capacitor having one end connected to a positive electrode of the battery and the boost converter at a first node and the other end connected to the boost converter at a second node,
    제2 노드를 통해 외부 부하에 전류를 공급하는 이중 배터리 패키지.Dual battery package for supplying current to an external load through a second node.
  2. 제1항에 있어서, 상기 부스트 컨버터는The method of claim 1, wherein the boost converter
    상기 제1 노드 및 제3 노드 사이에 연결되고, 부스팅을 위하여 일시적으로 에너지를 저장하는 인덕터;An inductor coupled between the first node and a third node, the inductor temporarily storing energy for boosting;
    상기 제2노드 및 상기 제3 노드 사이에 연결되는 제1 스위칭부;A first switching unit connected between the second node and the third node;
    상기 제3 노드 및 상기 배터리의 음극 사이에 연결되는 제2 스위칭부; 및A second switching unit connected between the third node and a negative electrode of the battery; And
    상기 제1스위칭부를 차단할 때, 제2스위칭부를 도통시키고, 상기 제1스위칭부를 도통시킬 때 상기 제2스위칭부를 차단시키는 컨버터 제어회로를 포함하는 것을 특징으로 하는 이중 배터리 패키지.And a converter control circuit for conducting a second switching unit when the first switching unit is blocked, and for blocking the second switching unit when the first switching unit is conductive.
  3. 제2항에 있어서, 상기 컨버터 제어회로는The method of claim 2, wherein the converter control circuit
    상기 제2스위칭부가 도통되는 시간(Ton)을 제2스위칭부가 차단되는 시간(Ts)으로 나는 시비율(Ton/Ts)로서 상기 부스트 컨버터의 출력을 제어하는데, 제동시 또는 완전 휴식기에 노드2의 전압이 허용 전압 미만이 되도록 유지하는 것을 특징으로 하는 이중 배터리 패키지. The output of the boost converter is controlled as a ratio (Ton / Ts), which is a time (Ton) at which the second switching unit is turned on and a time (Ts) at which the second switching unit is interrupted. A dual battery package, wherein the voltage is maintained below the permissible voltage.
  4. 배터리, 부스트 컨버터, 일단이 상기 배터리의 양극 및 상기 부스트 컨버터와 제1 노드에서 연결되고 타단이 제2노드에서 상기 부스트 컨버터와 연결된 커패시터, 및 배터리 충전기를 포함하되,A battery, a boost converter, a capacitor of one end connected to the positive electrode and the boost converter at the first node and the other end connected to the boost converter at a second node, and a battery charger,
    상기 배터리 충전기는 트랜스 포머를 포함하고, 상기 트랜스 포머의2차 코일의 일단은 상기 배터리의 양극과 연결되고 타단은 상기 부스트 컨버터에 연결되어 부스팅 동작에서 일시적으로 에너지를 저장하는 인덕터 역할을 수행하는 것을 특징으로 하는 이중 배터리 패키지.The battery charger includes a transformer, one end of the secondary coil of the transformer is connected to the positive electrode of the battery and the other end is connected to the boost converter to serve as an inductor to temporarily store energy in a boosting operation. Dual battery package.
  5. 제4항에 있어서, 상기 부스트 컨버터는The method of claim 4, wherein the boost converter
    상기 제1 노드 및 제3 노드 사이에 연결되고, 부스팅을 위하여 일시적으로 에너지를 저장하며, 상기 트랜스포머의 2차 코일인 인덕터;An inductor coupled between the first node and a third node, temporarily storing energy for boosting, and being a secondary coil of the transformer;
    상기 제2노드 및 상기 제3 노드 사이에 연결되는 제1 스위칭부;A first switching unit connected between the second node and the third node;
    상기 제3 노드 및 상기 배터리의 음극 사이에 연결되는 제2 스위칭부; 및A second switching unit connected between the third node and a negative electrode of the battery; And
    상기 제1스위칭부를 차단할 때, 제2스위칭부를 도통시키고, 상기 제1스위칭부를 도통시킬 때 상기 제2스위칭부를 차단시키는 컨버터 제어회로를 포함하는 것을 특징으로 하는 이중 배터리 패키지.And a converter control circuit for conducting a second switching unit when the first switching unit is blocked, and for blocking the second switching unit when the first switching unit is conductive.
PCT/KR2016/003011 2015-04-29 2016-03-24 Dual battery package WO2016175455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0060747 2015-04-29
KR1020150060747A KR101686864B1 (en) 2015-04-29 2015-04-29 Dual Battery Package

Publications (1)

Publication Number Publication Date
WO2016175455A1 true WO2016175455A1 (en) 2016-11-03

Family

ID=57198677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003011 WO2016175455A1 (en) 2015-04-29 2016-03-24 Dual battery package

Country Status (2)

Country Link
KR (1) KR101686864B1 (en)
WO (1) WO2016175455A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102230350B1 (en) * 2019-04-23 2021-03-23 고려대학교 산학협력단 Energy harvesting system with small capacity battery protection and operation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220341A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Power supply system
JP2011066989A (en) * 2009-09-16 2011-03-31 Denso Corp Power conversion device
KR20130003617A (en) * 2011-06-30 2013-01-09 한국전자통신연구원 Method for client graphic device-separated software execution
KR20140052525A (en) * 2012-10-24 2014-05-07 삼성전자주식회사 Circuit for charging battery and boosting voltage of battery and method for charging battery
KR20140075102A (en) * 2012-12-10 2014-06-19 한국전자통신연구원 Apparatus for converting energy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210424B1 (en) * 2011-11-14 2012-12-11 한밭대학교 산학협력단 Step-up converter to drive an inverter of a electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220341A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Power supply system
JP2011066989A (en) * 2009-09-16 2011-03-31 Denso Corp Power conversion device
KR20130003617A (en) * 2011-06-30 2013-01-09 한국전자통신연구원 Method for client graphic device-separated software execution
KR20140052525A (en) * 2012-10-24 2014-05-07 삼성전자주식회사 Circuit for charging battery and boosting voltage of battery and method for charging battery
KR20140075102A (en) * 2012-12-10 2014-06-19 한국전자통신연구원 Apparatus for converting energy

Also Published As

Publication number Publication date
KR20160128805A (en) 2016-11-08
KR101686864B1 (en) 2016-12-16

Similar Documents

Publication Publication Date Title
JP5786330B2 (en) Discharge control device and discharge control method
CA2110011C (en) Technique for decoupling the energy storage system voltage from the dc link voltage in ac electric drive systems
EP2284037B1 (en) System for multiple energy storage and management and method of making same
EP1976721B1 (en) Vehicle propulsion system
US9809128B2 (en) System for multiple energy storage and management and method of making same
US9481253B2 (en) Electrical energy storage system for traction power supply
CN212588110U (en) Charging and discharging system
CN106385101B (en) Method and device for realizing power supply of high-power elevator automatic rescue device
US10186861B2 (en) Energy storage device comprising a DC voltage supply circuit and method for providing a DC voltage from an energy storage device
CN212579619U (en) Energy supply device for a rail vehicle and rail vehicle
WO2014077587A1 (en) Single-phase bess power conversion device for lengthening battery life and method for supplying power to same
US20120038215A1 (en) System for multiple energy storage and management and method of making same
JP2003102132A (en) Storage power supply and control method for charging the same
CN103010868A (en) Elevator energy-saving system and control method thereof
CN103338968A (en) System for charging an energy store, and method for operating the charging system
KR101835742B1 (en) Dual Battery Package and Operating Method of the Same
WO2020091168A1 (en) Power converter
CN103441667A (en) Direct current control device applied to multilevel energy storage system
WO2020080630A1 (en) Device and method for emergency charging of vehicle battery
WO2016175455A1 (en) Dual battery package
CN105186630B (en) A kind of electric energy transfer method and a kind of electric energy bus
WO2011099704A2 (en) Electric vehicle driving system having a battery charging function
JP2012044765A (en) Battery controller and vehicle
WO2014069835A1 (en) Load current regenerating circuit and electrical device having load current regenerating circuit
JP2003312952A (en) Control device for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786641

Country of ref document: EP

Kind code of ref document: A1