WO2016175302A1 - Method for culturing and collection of microalgae culture - Google Patents
Method for culturing and collection of microalgae culture Download PDFInfo
- Publication number
- WO2016175302A1 WO2016175302A1 PCT/JP2016/063410 JP2016063410W WO2016175302A1 WO 2016175302 A1 WO2016175302 A1 WO 2016175302A1 JP 2016063410 W JP2016063410 W JP 2016063410W WO 2016175302 A1 WO2016175302 A1 WO 2016175302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- culture
- film
- microalgae
- microalga
- recovery
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 186
- 238000012258 culturing Methods 0.000 title claims abstract description 53
- 239000007788 liquid Substances 0.000 claims abstract description 304
- 238000003860 storage Methods 0.000 claims abstract description 170
- 238000011084 recovery Methods 0.000 claims description 196
- 241000195493 Cryptophyta Species 0.000 claims description 86
- 238000004804 winding Methods 0.000 claims description 61
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 claims description 40
- 230000002829 reductive effect Effects 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 24
- 238000005273 aeration Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 abstract description 19
- 239000012531 culture fluid Substances 0.000 abstract description 18
- 239000000243 solution Substances 0.000 description 246
- 239000002609 medium Substances 0.000 description 184
- 210000004027 cell Anatomy 0.000 description 146
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 112
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 97
- 239000003921 oil Substances 0.000 description 59
- 239000001963 growth medium Substances 0.000 description 57
- 239000001569 carbon dioxide Substances 0.000 description 56
- 229910002092 carbon dioxide Inorganic materials 0.000 description 56
- 239000000758 substrate Substances 0.000 description 48
- 229920003023 plastic Polymers 0.000 description 44
- 239000004033 plastic Substances 0.000 description 44
- 238000009434 installation Methods 0.000 description 40
- 239000002689 soil Substances 0.000 description 39
- 238000001035 drying Methods 0.000 description 38
- 239000000463 material Substances 0.000 description 37
- 230000012010 growth Effects 0.000 description 32
- 239000000306 component Substances 0.000 description 28
- 239000000126 substance Substances 0.000 description 27
- 239000006185 dispersion Substances 0.000 description 26
- -1 pottery Substances 0.000 description 25
- 239000000203 mixture Substances 0.000 description 23
- 238000004114 suspension culture Methods 0.000 description 22
- 239000004793 Polystyrene Substances 0.000 description 21
- 238000007667 floating Methods 0.000 description 21
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 19
- 239000004927 clay Substances 0.000 description 19
- 239000000047 product Substances 0.000 description 18
- 239000002028 Biomass Substances 0.000 description 16
- 229930002868 chlorophyll a Natural products 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- 238000012136 culture method Methods 0.000 description 15
- 230000037396 body weight Effects 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- 244000005700 microbiome Species 0.000 description 14
- 239000000049 pigment Substances 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 241001014907 Botryosphaerella sudetica Species 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 12
- 125000003729 nucleotide group Chemical group 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 241000180279 Chlorococcum Species 0.000 description 11
- 239000002551 biofuel Substances 0.000 description 10
- 239000006260 foam Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 206010021033 Hypomenorrhoea Diseases 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 239000012737 fresh medium Substances 0.000 description 8
- 235000015097 nutrients Nutrition 0.000 description 8
- 230000029553 photosynthesis Effects 0.000 description 8
- 238000010672 photosynthesis Methods 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229930002869 chlorophyll b Natural products 0.000 description 7
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 7
- 239000004567 concrete Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 230000000243 photosynthetic effect Effects 0.000 description 7
- 229920002223 polystyrene Polymers 0.000 description 7
- 108020004463 18S ribosomal RNA Proteins 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- DGNIJJSSARBJSH-NLJAFYFLSA-L magnesium (E)-3-[(3R)-16-ethenyl-11-ethyl-3-methoxycarbonyl-12,17,21,26-tetramethyl-4-oxo-7,24-diaza-23,25-diazanidahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1(22),2(6),5(26),7,9,11,13,15(24),16,18,20-undecaen-22-yl]prop-2-enoic acid Chemical compound [Mg++].CCc1c(C)c2cc3nc(cc4[n-]c(c(\C=C\C(O)=O)c4C)c4[C@@H](C(=O)OC)C(=O)c5c(C)c(cc1[n-]2)nc45)c(C)c3C=C DGNIJJSSARBJSH-NLJAFYFLSA-L 0.000 description 6
- 239000012533 medium component Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000002023 wood Substances 0.000 description 6
- NNMALANKTSRILL-LXENMSTPSA-N 3-[(2z,5e)-2-[[3-(2-carboxyethyl)-5-[(z)-[(3e,4r)-3-ethylidene-4-methyl-5-oxopyrrolidin-2-ylidene]methyl]-4-methyl-1h-pyrrol-2-yl]methylidene]-5-[(4-ethyl-3-methyl-5-oxopyrrol-2-yl)methylidene]-4-methylpyrrol-3-yl]propanoic acid Chemical compound O=C1C(CC)=C(C)C(\C=C\2C(=C(CCC(O)=O)C(=C/C3=C(C(C)=C(\C=C/4\C(\[C@@H](C)C(=O)N\4)=C\C)N3)CCC(O)=O)/N/2)C)=N1 NNMALANKTSRILL-LXENMSTPSA-N 0.000 description 5
- 241000195628 Chlorophyta Species 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229920002301 cellulose acetate Polymers 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 229920000747 poly(lactic acid) Polymers 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 4
- 229940081735 acetylcellulose Drugs 0.000 description 4
- 230000005587 bubbling Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000009630 liquid culture Methods 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000004626 polylactic acid Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241001536324 Botryococcus Species 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 241000199914 Dinophyceae Species 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 241000168525 Haematococcus Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 241000199919 Phaeophyceae Species 0.000 description 3
- 241000206572 Rhodophyta Species 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000003225 biodiesel Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 235000021466 carotenoid Nutrition 0.000 description 3
- 150000001747 carotenoids Chemical class 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229930002875 chlorophyll Natural products 0.000 description 3
- 235000019804 chlorophyll Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000013028 medium composition Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229920006284 nylon film Polymers 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000206761 Bacillariophyta Species 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 241000195641 Characium Species 0.000 description 2
- 241000195585 Chlamydomonas Species 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000192700 Cyanobacteria Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000195620 Euglena Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000206759 Haptophyceae Species 0.000 description 2
- 241000180182 Protosiphon Species 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 241000180189 Tetracystis Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 229930002863 chlorophyll d Natural products 0.000 description 2
- QXWRYZIMSXOOPY-SKHCYZARSA-M chlorophyll d Chemical compound C1([C@H](C2=O)C(=O)OC)=C(N3[Mg]N45)C2=C(C)\C3=C\C(=N2)C(CC)=C(C)\C2=C\C4=C(C=O)C(C)=C5\C=C/2[C@@H](C)[C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C1=N\2 QXWRYZIMSXOOPY-SKHCYZARSA-M 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 description 2
- 239000011736 potassium bicarbonate Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RQALKBLYTUKBFV-UHFFFAOYSA-N 1,4-dioxa-7-thiaspiro[4.4]nonane Chemical compound O1CCOC11CSCC1 RQALKBLYTUKBFV-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- GHQFLMULNSGOAR-UHFFFAOYSA-N 2,3-dihydroxybutanedioic acid;sodium Chemical compound [Na].OC(=O)C(O)C(O)C(O)=O GHQFLMULNSGOAR-UHFFFAOYSA-N 0.000 description 1
- JUAGNSFMKLTCCT-UHFFFAOYSA-N 2-aminoacetic acid;carbonic acid Chemical compound OC(O)=O.NCC(O)=O JUAGNSFMKLTCCT-UHFFFAOYSA-N 0.000 description 1
- ZEYHEAKUIGZSGI-UHFFFAOYSA-N 4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1 ZEYHEAKUIGZSGI-UHFFFAOYSA-N 0.000 description 1
- NNWNNQTUZYVQRK-UHFFFAOYSA-N 5-bromo-1h-pyrrolo[2,3-c]pyridine-2-carboxylic acid Chemical class BrC1=NC=C2NC(C(=O)O)=CC2=C1 NNWNNQTUZYVQRK-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241000192550 Botryosphaerella Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000252229 Carassius auratus Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000195587 Chlamydomonadaceae Species 0.000 description 1
- 241001147674 Chlorarachniophyceae Species 0.000 description 1
- 241000413531 Chromerida Species 0.000 description 1
- 241000206751 Chrysophyceae Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241001517276 Glaucocystophyceae Species 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 241000206764 Xanthophyceae Species 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 description 1
- 239000001168 astaxanthin Substances 0.000 description 1
- 229940022405 astaxanthin Drugs 0.000 description 1
- 235000013793 astaxanthin Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000012928 buffer substance Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- OCHFNTLZOZPXFE-JEDNCBNOSA-N carbonic acid;(2s)-2,6-diaminohexanoic acid Chemical compound OC(O)=O.NCCCC[C@H](N)C(O)=O OCHFNTLZOZPXFE-JEDNCBNOSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- QDRBYWCRXZZVLY-KXVZLLGWSA-L chlorophyll c2 Chemical compound N12[Mg]N3C4=C5C(C(=O)OC)C(=O)C4=C(C)C3=CC(C(=C3C)C=C)=N\C3=C/C2=C(C=C)C(C)=C1\C=C/1C(C)=C(\C=C\C(O)=O)C5=N\1 QDRBYWCRXZZVLY-KXVZLLGWSA-L 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000019820 disodium diphosphate Nutrition 0.000 description 1
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical compound [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Chemical class 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 238000011177 media preparation Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000016337 monopotassium tartrate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- ILUJQPXNXACGAN-UHFFFAOYSA-N ortho-methoxybenzoic acid Natural products COC1=CC=CC=C1C(O)=O ILUJQPXNXACGAN-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- NFIYTPYOYDDLGO-UHFFFAOYSA-N phosphoric acid;sodium Chemical compound [Na].OP(O)(O)=O NFIYTPYOYDDLGO-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000008832 photodamage Effects 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Chemical class 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- KYKNRZGSIGMXFH-ZVGUSBNCSA-M potassium bitartrate Chemical compound [K+].OC(=O)[C@H](O)[C@@H](O)C([O-])=O KYKNRZGSIGMXFH-ZVGUSBNCSA-M 0.000 description 1
- 229940081543 potassium bitartrate Drugs 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 210000003660 reticulum Anatomy 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/02—Separating microorganisms from their culture media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
Definitions
- the present invention relates to a method for culturing and recovering cultures of microalgae.
- microalga which has the ability to fix carbon dioxide with light energy and convert it to biofuels such as hydrocarbon compounds and biodiesel (triglyceride).
- biofuels such as hydrocarbon compounds and biodiesel (triglyceride).
- various studies have been conducted to fix carbon dioxide using light energy by culturing microalgae and to produce biofuels such as biodiesel and hydrocarbon compounds.
- microalgal culture methods in order to commercialize biofuel production using microalgae and carry it out on a commercial scale, efficient microalgal culture methods, microalgae recovery methods, and extraction methods of biofuels such as oil are also available.
- the problem is that it has not been developed and its cost is high.
- One of the biggest causes is the lack of efficient culture, drying and recovery methods for microalgae.
- microalgae since microalgae usually grow suspended in liquid, in order to use microalgae as biomass, it is necessary to recover very thin concentrations of microalgae from a large amount of liquid .
- the concentration of the microalgae present in the liquid can not be excessively high in order to secure sufficient light irradiation.
- the concentration of the microalgae present in the liquid can not be excessively high in order to secure sufficient light irradiation.
- the size of microalgae was generally small and filtration was not easy.
- Patent Document 1 as a simple and inexpensive method, a suspension or dispersion of Botryococcus sudeticus AVFF 007 strain is prepared, and a culture vessel (storage member) is allowed to stand.
- a method of culturing microalga comprising forming a biofilm on a liquid surface by settling microalgae on the bottom and then culturing for a while, and forming the formed biofilm as a substrate
- a method of recovering microalgae is disclosed, which comprises transferring or depositing on the surface for recovery.
- Patent Document 2 discloses, as a simpler and lower-cost method, by culturing Botryococcus sudeticus AVFF 007 strain in a culture solution in a first incubator (storage member), The first step of culture in which a biofilm consisting of microalgae is formed on the liquid surface of the culture solution, and the microalgae by using at least a part of the biofilm formed on the liquid surface of the culture solution as a seed algae
- a culture method of microalgae comprising culturing the second step on the liquid surface, and transferring or depositing the formed biofilm on the surface of the substrate for recovery. Methods of recovery of microalgae are described.
- the liquid surface floating culture methods described in Patent Document 1 and Patent Document 2 can form a biofilm on the liquid surface, so that stirring is not necessary and the water depth can be made shallow compared to conventional culture methods. It is characterized in that the recovery of the culture is easy, it is strong against the invasion of contamination microorganisms, and the moisture content of the recovered product is low.
- culture of microalgae by liquid surface suspension culture method is carried out on a practical scale, and in order to produce algal biomass and algal biofuel, it is more preferable to recover the culture. It was found that there is room for efficiency.
- this invention makes it a subject to provide the culture
- the present inventors diligently studied to solve the above-mentioned problems, and it is a method for culturing and recovering a culture of microalgae using a culture apparatus provided with a storage member for holding a culture solution, After the main culture step of cultivating the microalga with the culture solution while maintaining the air layer above, the liquid amount reduction step of reducing the liquid amount of the culture solution, and the liquid amount reduction step, the culture of the microalga is According to the culture and recovery method of the microalgal culture including the recovery step, the microalga culture can be efficiently recovered after the microalgae is cultured on a practical scale.
- the present invention has been completed. That is, the present invention provides the following (1) to (17).
- a method for cultivating and collecting a microalga culture using a culture apparatus provided with a storage member for holding a culture solution A main culture step of culturing the microalga in the culture solution while maintaining an air layer above the culture solution; A volume reduction step of reducing the volume of the culture solution, And a recovery step of recovering the microalgal culture after the liquid volume reduction step.
- the culture apparatus is further disposed above the storage member so as to cover at least a part of the liquid surface of the culture solution when viewed in the vertical direction, and can transmit light of at least a part of the wavelengths
- the culture apparatus further includes at least one of an air temperature control unit that controls the temperature of the air layer and a liquid temperature control unit that controls the temperature of the culture solution,
- the culture of the microalga according to any one of (1) to (4), wherein at least one of the temperature of the air layer and the temperature of the culture solution is controlled to a temperature range suitable for culture of the microalga.
- Method of culture and recovery of (6) The method for cultivating and recovering a microalgal culture according to any one of (1) to (5), wherein the culture apparatus further comprises an aeration unit in communication with the air layer.
- the storage member has a flexible first film and a support for supporting the first film, The microalgal culture according to any one of (1) to (7), wherein the support supports the first film to form a pool-like recess, and the culture solution is retained in the recess. Culture and recovery method.
- the culture apparatus has a first film moving member for moving the first film, In the volume reduction step, the culture volume of the culture solution is decreased to bring the culture of the cultured microalga into contact with the first film, The method for cultivating and collecting a microalgal culture according to (8), wherein the first film is moved from the support in the collection step, and the microalgal culture is collected.
- the culture apparatus has a first winding machine for winding the first film in a roll, In the recovery step, the first winder recovers the microalgal culture by rolling up the first film with the microalgal culture in a roll, according to (8) or (9). Method for culturing and recovering cultures of microalgae.
- the culture apparatus has a first winding machine for winding the first film in a roll, and a first recovery member for peeling the culture of the microalga from the first film, In the recovery step, while the first winder winds the first film into a roll, the first recovery member exfoliates the culture of microalgae from the first film to recover the culture of microalgae
- Method for culturing and recovering a culture of (14) The culture apparatus has a second film moving member for moving the second film, The method for cultivating and collecting a microalgal culture according to (13), wherein the second film is moved in the collection step, and the microalgal culture is collected.
- the culture apparatus has a second winding machine that winds the second film in a roll, In the recovery step, the second winding machine recovers the microalgal culture by rolling up the second film together with the microalgal culture in a roll, according to (13) or (14).
- the culture apparatus has a second winding machine for winding the second film in a roll, and a second recovery member for peeling the culture of microalgae from the second film, In the recovery step, while the second winder winds up the second film in a roll, the second recovery member exfoliates the culture of microalgae from the second film to recover the culture of microalgae
- a method for cultivating and collecting a microalgal culture which comprises efficiently collecting the cultured microalga after culturing the microalga on a practical scale.
- the culture and recovery method of the culture according to the present invention recovery of the culture of microalgae becomes extremely easy as compared with the conventional suspension culture, and the culture of microalgae can be recovered with high recovery rate . That is, in the present invention, it is not necessary to recover a culture of microalgae from a large amount of culture solution as in the prior art at the stage of recovering a culture of microalgae, and the recovery cost of cultured microalgae can be significantly reduced. . Moreover, there is no need to handle a large amount of liquid culture solution, and it is not necessary to use a large amount of water.
- FIG. 1 is a schematic perspective view showing an example of a culture apparatus.
- FIG. 2 is a cross-sectional view taken along line II-II of FIG.
- FIG. 3 is a cross-sectional view taken along line II-II of FIG.
- FIG. 4 is a cross-sectional view taken along line II-II of FIG.
- FIG. 5 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 6 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 7 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 8 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 9 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 10 is a schematic cross-sectional view for explaining the installation method of the culture apparatus.
- FIG. 11 is a schematic cross-sectional view for explaining the installation method of the culture apparatus.
- FIG. 12 is a schematic cross-sectional view for explaining the installation method of the culture apparatus.
- FIG. 13 is a schematic cross-sectional view for explaining the installation method of the culture apparatus.
- FIG. 14 is a schematic cross-sectional view showing an example of a suitable installation surface.
- FIG. 15 is a schematic cross-sectional view for explaining the installation method of the culture apparatus.
- FIG. 16 is a schematic cross-sectional view for explaining the installation method of the culture apparatus.
- FIG. 17 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 18 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 19 is a schematic perspective view showing another example of the culture apparatus.
- FIG. 20 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 21 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 22 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 23 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 24 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 25 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 25 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 26 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 27 is a schematic cross-sectional view showing another example of the culture apparatus.
- FIG. 28 is a schematic cross-sectional view for explaining the liquid amount reduction step and the recovery step.
- FIG. 29 is a schematic cross-sectional view for explaining the liquid amount reduction step and the recovery step.
- FIG. 30 is a schematic cross-sectional view for explaining the liquid amount reduction step and the recovery step.
- FIG. 31 is a schematic cross-sectional view for explaining the liquid amount reduction step and the recovery step.
- FIG. 32 is a schematic cross-sectional view for explaining the liquid amount reduction step and the recovery step.
- FIG. 33 is a schematic cross-sectional view for explaining the recovery step.
- FIG. 34 is a schematic cross-sectional view for explaining the recovery step.
- FIG. 35 is a schematic cross-sectional view for explaining the recovery step.
- FIG. 36 is a schematic cross-sectional view for explaining the recovery step.
- FIG. 37 is a schematic cross-sectional view for explaining the recovery step.
- FIG. 38 is a schematic plan view showing another example of the culture apparatus.
- FIG. 39 is a photograph showing the state of the first film after drying a microalgal culture in Example 1.
- FIG. 40 is a photograph showing the results of testing, in Example 31, the ease of desorption of the microalga dry matter, on the three types of materials.
- FIG. 39 is a photograph showing the state of the first film after drying a microalgal culture in Example 1.
- FIG. 40 is a photograph showing the results of testing, in Example 31, the ease of desorption of the microalga dry matter, on the three types of materials.
- FIG. 41 is a view schematically showing a microscopic image obtained by observing a biofilm of microalgae forming a biofilm on a liquid surface with an optical microscope.
- FIG. 42 is a view schematically showing a microscopic image obtained by observing a biofilm of microalgae forming a biofilm on a liquid surface with an optical microscope.
- FIG. 43 is a view schematically showing a microscopic image obtained by observing a microalga floating in a culture solution with an optical microscope.
- FIG. 44 is a diagram schematically showing a state in which a biofilm formed on a liquid surface in Example 32 is observed from the horizontal direction. A single foam and overlapping foams and cages are shown.
- FIG. 42 is a view schematically showing a microscopic image obtained by observing a biofilm of microalgae forming a biofilm on a liquid surface with an optical microscope.
- FIG. 43 is a view schematically showing a microscopic image obtained by observing
- FIG. 45 is a view schematically showing a state in which a biofilm formed on a liquid surface in Example 32 is observed from above in the vertical direction.
- the biofilm on the liquid surface shows a foamy structure and a scaly structure.
- FIG. 46 is a view showing a process of transferring a biofilm (algal cells) of microalgae formed on the liquid surface to the surface of the substrate using the first substrate.
- FIG. 47 is a view showing a process of depositing a biofilm (algal cells) of microalgae formed on the liquid surface on the surface of the substrate using the second substrate.
- a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
- the method for culturing and recovering a culture of microalgae according to the present invention is a method using a culture apparatus comprising a storage member for holding a culture solution.
- a method for cultivating and collecting algal culture, comprising a main culture step of culturing microalga in a culture solution while reducing an amount of the culture solution while maintaining an air layer above the culture solution It is a culture
- the characteristic point of the method for cultivating and recovering microalga of the present invention in comparison with the conventional method for cultivating and recovering microalgae is to cultivate the microalga after culturing the microalga to reduce the liquid volume of the culture solution It is in the point of collecting things.
- the microalgae cultured is recovered by centrifuging or filtering out the microalgae from a large amount of culture solution, the microalgae are recovered from the culture solution It was necessary to handle a large amount of culture fluid when However, according to the culture and recovery method of the present invention, since it is not necessary to culture microalgae on a practical scale and handle a large amount of culture solution when recovering the culture, it is not necessary to recover the cultured microalga. It can be reduced compared to the prior art.
- the recovery cost can be reduced by further including a post-culture step of culturing the microalga in the presence of the culture solution after the fluid volume reduction step and before the recovery step.
- algal productivity and / or oil productivity can be improved, and the production cost can be further reduced.
- microalgae culture may be simply referred to as "microalgae” or "culture”.
- FIG. 1 is a schematic perspective view schematically showing an example of a culture apparatus used in the culture and recovery method of the present invention
- FIGS. 2, 3 and 4 are cross-sectional views taken along line II-II of FIG.
- illustration of the shielding member 14a is partially abbreviate
- the culture apparatus 10a shown in FIG. 1, FIG. 2, FIG. 3 and FIG. 4 is a storage member 12a for holding the culture solution M, and a storage member so as to cover the liquid surface of the culture solution M when viewed from the vertical direction.
- the culture apparatus 10a when culturing the microalgae P, the culture apparatus 10a forms an air layer N between the liquid surface of the culture fluid M and the shielding member 14a, as shown in FIG. 2, FIG. 3 and FIG. Do. Even in culturing microalgae P 2, as shown in FIGS. 3 and 4, it may form a Kiso N between the shielding member 14a and the liquid surface of the culture solution M, microalgae P 3 Also when culturing C, as shown in FIG. 4, an air layer N may be formed between the liquid surface of the culture solution M and the shielding member 14a. 2, microalgae P 3 and 4 forms a biofilm on the liquid surface of the culture medium M, microalgae P 2 in FIGS. 3 and 4 is adhered to the surface in contact with the culture medium M of the container 16a and has, microalgae P 3 in FIG. 4 are suspended in culture M. Each component will be described in detail below with reference to FIGS. 1 to 27.
- the storage member is a culture solution tank capable of holding the culture solution M in which the microalgae P can be cultured for a certain period of time.
- the storage member is not particularly limited in its configuration, shape, size, material, and the like, as long as the culture solution M can be held during the culture period of the microalgae P.
- the storage member 12a of the culture apparatus 10a shown in FIG. 1, FIG. 2, FIG. 3 and FIG. 4 is a substantially rectangular parallelepiped box-shaped container 16a whose one surface is open. It is a holding part.
- a container 16a what was shape
- the material of the container 16a it is preferable to use a material composed of an organic polymer compound, an inorganic compound, a metal, or a complex thereof. It is also possible to use mixtures thereof.
- a material having a high thermal conductivity as the material of the container, for example, it is possible to suppress a temperature rise when culturing is performed under conditions of high temperature such as summer daytime.
- the liquid holding portion may be formed of a resin, and a layer made of a material having high thermal conductivity such as clay may be bonded to the periphery of the liquid holding portion.
- a material having a low thermal conductivity as the material of the container, for example, it is possible to suppress a temperature drop when culturing is performed under conditions of low temperature such as nighttime in winter.
- the material having a low thermal conductivity examples include, for example, plastics, expanded polystyrene, wood, pottery, gases and the like, and plastics are particularly preferable because they are inexpensive and have a low thermal conductivity.
- the liquid holding portion may be formed of glass, and a layer made of a material having a low thermal conductivity such as glass may be bonded to the periphery of the liquid holding portion.
- the culture and recovery method of the present invention is a microalgal algae having a property of floating on the liquid surface by being left standing, bubbling treatment with air, etc., floating by oil accumulation, addition of a standing step.
- the present invention can be widely applied to microalgae in which microalgae is floated to the liquid surface by floating or the like, and microalgae capable of stationary culture. It is particularly preferable when using a microalga capable of forming a biofilm on the liquid surface.
- the depth of the culture solution can be reduced, so a so-called bat-shaped shallow container (container with a small ratio of height to bottom area) is used. can do.
- a shallow container facilitates the recovery operation of the biofilm obtained by the culture, and is also advantageous in terms of the cost of the container.
- a deep container a container having a large ratio of height to bottom area as compared to a shallow container
- the culture solution can be held depending on the topography and the place to be cultured You may use.
- the size (area) and depth of the liquid holding portion of the culture solution M of the storage member 12a are not particularly limited, and may be appropriately selected according to the type of algae to be cultured, the culture method, and the like.
- the bottom surface of the liquid holding portion of the storage member 12a (the container 16a) is preferably flat in order to keep the amount of the culture solution small and in a substantially uniform state.
- the container 16a was made into the box shape of a substantially rectangular parallelepiped, limitation is not carried out like this, like the container 16b of the culture apparatus 10b shown in FIG.
- the shape may be inclined toward the opening side in the direction in which the side surface is open, or may be inclined in the direction in which the side surface is closed.
- the open surface is not limited to a rectangular shape, and may be a triangular shape, a polygonal shape, a circular shape, an elliptical shape, a raceway shape, or the like.
- the drainage pipe 18 and the valve 17 are connected to the side surface of the container 16a).
- the drainage pipe 18 is Preferably, it is connected to the side near the bottom of the member 12a.
- the drain pipe 18 may be connected to the bottom surface of the storage member 12a.
- the storage member 12a was comprised by the one container 16a in the example shown in FIG.2, FIG3 and FIG.4, limitation is not carried out to this,
- the storage member holding the culture solution M is comprised with several members May be
- the storage member has a flexible first film and a support for supporting the first film, and the support supports the first film to form a pool-like recess.
- the culture solution may be held in a recess.
- the first film may be a film of one sheet or may be a film of two or more sheets, but when it is formed of two or more films, the culture and recovery steps Preferred to repeat.
- the storage member 12f of the culture apparatus 10f shown in FIG. 6 has a flexible first film 22f and a support 20f for supporting the first film 22f.
- the support 20f is a first film. 22f is supported to form a pool-like recess. Therefore, the storage member 12 f holds the culture solution M, using the recess as a storage portion.
- the first film 22f has two surfaces, the front side (the side in contact with the culture solution M or the side closer to the culture solution M) and the rear side (the side farther from the culture solution M).
- the liquid amount of the culture solution M is reduced in the liquid amount reduction step described later.
- the microalgae P can be easily recovered by moving (detaching) the first film 22f from the support 20f in the recovery step. Can.
- the first film 22f can be repeatedly used by setting the first film 22f on the support 20f again. This point will be described in detail later.
- the first film 22f is not particularly limited as long as the culture solution M can be maintained for a certain period, that is, a period for culturing the microalgae P, and a resin film, a metal film, a woven fabric, a non-woven fabric, a combination thereof, etc. It is preferable to use a resin film.
- a fiber which comprises a woven fabric and a nonwoven fabric plastics, metals, wood material, grasses, glass fiber, a carbon fiber etc. are mentioned, for example.
- a material having a surface property having a suitable affinity with the microalgae P should be used.
- the recovery rate of microalgae P can be improved.
- a material having a surface property having appropriate affinity with the microalgae P for example, glass (silicate glass), silicone (silicone rubber, silicone resin, etc.), fluorocarbon resin (PTFE, PCTFE, CTFE, etc.) , PVDF, PVF, PFA, FE, ETFE, ECTFE, etc.), polyvinyl chloride, polyolefins (polyethylene, polypropylene, etc.) and the like.
- the surface having high affinity with the microalgae P it is preferred to use a material having properties.
- a film polyethylene, polyolefin such as polypropylene, polyethylene terephthalate, etc. which does not generate toxic substances such as chlorine even if it is burned together with the dried algal cells as the first film 22f
- polyesters, polyurethanes, polyamides, silicone resins, fluorine resins, composite films combining these, etc. are preferable, and biomass-derived films (bioPE, biopolyester, polylactic acid, and the like) from the viewpoint of environmental load (preventing global warming). Acetyl cellulose etc. is preferred.
- a recovery step may be performed after performing a plurality of main culture steps and a liquid volume reduction step.
- the recovery step By performing the recovery step after performing the main culture step and the liquid volume reduction step a plurality of times, the number of times of implementation of the recovery step can be reduced, and the overall cost can be reduced.
- the support 20 f is a substantially rectangular box-shaped container whose one surface is open. As shown in FIG. 6, the open surface of the support 20f is formed smaller than the first film 22f, and while the end of the first film 22f is locked to the edge of the open surface, the inside of the container is formed. By arranging the first film 22f, the first film 22f is concavely supported. As the support 20f, the same container as the container 16a shown in FIG. 2 can be used.
- the shape of the support is not limited to the container shown in FIG. 6, and a frame having no bottom may be used as the support 20h as in the culture apparatus 10h shown in FIG.
- the support 20h of the culture device 10h shown in FIG. 7 holds the end of the first film 22f in the frame and supports the first film 22f so as to form a recess in the frame.
- a frame-shaped support 20h may be a frame-like form using plastic, soil, concrete, wood, metal, clay, pottery, or a combination of two or more of them. What was formed into is mentioned.
- a plurality of pillars may be used as a support.
- the four columns are arranged so that the line connecting the columns forms a rectangular shape, and the end of the first film 22f is engaged with the tip of each column to form a recess.
- the first film 22f may be supported.
- the drainage pipe 18 may be connected to the support, and the first film may be formed with a drainage hole.
- the support may also have grooves or the like for alignment with the first film.
- the storage member may be configured to include the second film in which a plurality of through holes are formed on the outermost surface on the side in contact with the culture solution M.
- Culture apparatus 10g shown in FIG. 8 is a schematic cross-sectional view of another example of the culture apparatus according to the invention, except that storage apparatus 12g is provided with container 16a and second film 24g instead of storage member 12a. Since the configuration is the same as that of the culture apparatus 10a of FIG. 2, the same reference numerals are given to the same parts, and different parts will mainly be described in the following description.
- the second film 24g has two surfaces, the front side (the side closer to the liquid surface of the culture solution M) and the back side (the side closer to the first film).
- the storage member 12g of the culture apparatus 10g includes a container 16a and a second film 24g in which a plurality of through holes are formed.
- the second film 24g is formed larger than the open surface of the container 16a, and is disposed in the container 16a with its end locked to the edge of the open surface.
- the second film 24g may have the property of permeating the culture solution M and having difficulty in permeating microalgae. For example, mesh (wire mesh, plastic mesh, cloth, yarn, string, grass, fibers, etc.) And those having a large number of holes in the film, and the like.
- the liquid volume of the culture fluid M is reduced in the liquid volume reduction step described later. Since the cultured microalgae P remains on the second film 24g, the culture solution M can be more easily reduced. Also, as in the case of the first film described above, after the liquid volume of the culture solution M is reduced in the liquid volume reduction step and the cultured microalgae P is brought into contact with the second film 24g, in the recovery step, The microalgae P can be easily recovered by moving (detaching) the second film 24g from the container 16a.
- the second microalgae P particularly a biofilm obtained by the culture, is collected. It is very efficient because it can remove moisture at the same time as recovering 24 g of film.
- the cultured microalga forms a solid in the form of a film; It is hard to penetrate the hole. Therefore, even if the size of the through hole formed in the second film 24g is relatively large, the microalgae P remains on the second film 24g, so that the water can be removed more easily, which is preferable. is there.
- the container 16a for storing the culture fluid M is combined with the second film 24g in which a plurality of through holes are formed, but the present invention is not limited thereto.
- the second film 24g may be combined with the culture apparatus 10b shown, the culture apparatus 10f shown in FIG. 6, or the culture apparatus 10h shown in FIG.
- the culture apparatus preferably comprises a first film moving member for moving the first film.
- the culture solution of the cultured microalga is brought into contact with the first film by reducing the volume of the culture solution in the volume reduction step, and the first film is removed from the support in the recovery step. It can be moved to recover cultures of microalgae.
- the first film 22f is used as the first film moving member
- the microalgae P can be recovered by moving the first film 22 f using not shown.
- the member disposed on the outermost surface of the storage member in contact with the culture solution M is not limited to the first film, and is generally removable from the film-like structure having flexibility and further the outermost surface of the storage member. Any structure may be used, and the structure may be desorbed to recover the microalgae P together with the structure.
- the culture apparatus preferably comprises a second film moving member for moving the second film.
- the culture solution of the cultured microalga is brought into contact with the second film by reducing the volume of the culture solution in the volume reduction step, and the second film is used as the storage member in the recovery step.
- the microalgal culture can be recovered by moving from the outermost surface in contact with the culture solution.
- the second film is moved from the outermost surface of the storage member on the side in contact with the culture solution to a position from the liquid surface of the culture solution to Reducing the liquid volume to bring the cultured microalgal culture into contact with the second film, and in the recovery step moving the second film from its position to recover the microalgal culture You can also.
- the liquid volume of the culture solution is reduced to such an extent that the culture of the cultured microalga does not substantially contact the second film, and the second film is
- the microalgal culture can also be recovered by moving it from the outermost surface of the storage member in contact with the culture solution.
- the second film 24g is used as the second film moving member in the recovery step as a configuration in which the second film 24g is disposed on the outermost surface of the storage member in contact with the culture solution M.
- the microalgae P can be recovered by moving the second film 24 g by using (not shown).
- the member positioned on the outermost surface of the storage member in contact with the culture solution M is not limited to the second film, and is generally removable from the film-like structure having flexibility and further the outermost surface of the storage member Any structure may be used, and the structure may be desorbed to recover the microalgae P together with the structure.
- a flexible film-like structure represented by the first film or the second film may be folded or folded as required, or may be wound into a roll, in addition to lifting and pulling. It is preferable because various recovery methods can be selected according to the situation, such as taking.
- the culture apparatus according to the present invention preferably comprises a first winder for winding the first film in a roll.
- the first winding machine in the recovery step, can recover the microalgal culture by winding the first film together with the microalgal culture in a roll.
- the culture apparatus according to the present invention preferably further comprises a first recovery member for peeling the culture of the microalga from the first film.
- the culture apparatus according to the present invention includes the first winding machine and the first recovery member, the first winding machine winds the first film into a roll in the recovery step.
- the recovery member of the present invention can peel off the microalgal culture from the first film to recover the microalgal culture.
- the culture apparatus according to the present invention comprises a second winding machine for winding the second film in a roll.
- the second winding machine can recover the microalgal culture by rolling up the second film together with the microalgal culture in a roll.
- the culture apparatus according to the present invention preferably further comprises a second recovery member that peels the culture of the microalga from the second film.
- the culture apparatus according to the present invention includes the second winding machine and the second recovery member, the second winding machine winds the second film in a roll in the recovery step, The recovery member of the present invention can peel off the microalgal culture from the second film to recover the microalgal culture.
- the thickness, strength, etc. of the first film 22f or the second film 24g are not particularly limited, but in the case of collecting microalgae using the first film 22f or the second film 24g in the recovery step It is desirable to have sufficient strength not to break at the time of recovery. On the other hand, light weight is also important for large area work. Moreover, when winding up in roll shape, the thinner one is preferable. From the above point of view, the thickness of the first film 22f and the second film 24g is preferably 1 ⁇ m to 10000 ⁇ m, more preferably 5 ⁇ m to 1000 ⁇ m, and most preferably 10 to 500 ⁇ m, although it depends on the material. If the thickness is 10 ⁇ m or more, the first film or the second film can be handled without breakage, and if the thickness is 500 ⁇ m or less, the problem due to weight can be avoided.
- FIG. 9 shows a schematic cross-sectional view of another example of the culture apparatus used in the culture and recovery method of the present invention.
- the culture apparatus 10j shown in FIG. 9 is provided with a storage member 12j provided with a third film 26j between the first film 22f and the support 20h, instead of the storage member 12h of FIG.
- the configuration is the same as that of the culture apparatus 10h shown in FIG.
- the third film 26 j has two surfaces, the front side (the side closer to the culture solution M) and the rear side (the side farther from the culture solution M).
- the storage member 12j of the culture apparatus 10j includes a first film 22f, a support 20h for supporting the first film, and a third film 26j disposed between the first film 22f and the support 20h.
- the third film 26 j is not particularly limited, but the same film as the first film 22 f can be used.
- the cultured microalgae P is recovered together with the first film 22f, and then the outermost surface side is obtained. Since the third film 26j of the second film 26j can be used as the first film, it becomes possible to reuse without re-installing the collected first film 22f, and it is possible to culture the microalga continuously. , Can improve the manufacturing efficiency. Note that the third film used as the first film is regarded as the first film.
- the support is formed of soil, clay or the like, or when the first film 22f is in contact with the installation surface (in particular, the soil surface) of the apparatus as in the culture apparatus 10h shown in FIG.
- the back side of the first film 22f is contaminated by microorganisms and the like present in the installation surface and the soil, and the surface side (culture medium M side) is also contaminated when the first film 22f is wound up, etc.
- the microorganisms etc. may be mixed in the cultured microalgae P.
- disposing the third film 26 j between the first film 22 f and the support (installation surface) prevents the first film 22 f from being in direct contact with the support or the installation surface.
- a 3rd film in order to prevent mixing of a microbe etc., in order to prevent that a 3rd film moves at the time of a movement of a 1st film, a 3rd film Is preferably fixed to a support or the like.
- the first film when the microalga is continuously cultured using the third film as a new first film after recovery of the first film, the first film may be used as the third film. It is preferred to use the same film as the film. On the other hand, in the case where the third film is installed to prevent the contamination of microorganisms and the like, it is preferable that the third film is hardly soiled by the above-mentioned microorganisms and the like, hardly decomposed and capable of maintaining strength for a long time.
- the storage member is configured to include at least one of the first film and the second film
- the first film or the second film is moved to recover the microalgae in the recovery step
- a method of applying a substance that reduces the frictional force to the surface of the first film or the surface of the second film, a method of surface treating the surface, or a substance that reduces the frictional force between these members The method to make it exist is illustrated.
- both the first film and the second film are provided, at least one of the surface of the first film and the surface of the second film is preferably treated to reduce friction.
- the storage member is configured to include one liquid holding unit, but is not limited thereto, and may be divided into a plurality of sections by one or more partitions.
- each compartment is preferably capable of holding the culture solution for a predetermined period.
- the storage member may be provided with a drain pipe, a valve or the like for the purpose of draining in order to reduce the amount of culture solution.
- the bottom surface of the liquid holding portion of the storage member is preferably inclined so as to become lower toward the drainage pipe side. It is possible to drain easily by changing the water depth so that drainage can be performed from the lower side by tilting the bottom surface of the liquid holding portion.
- the method of inclining the bottom surface of the liquid holding portion is not particularly limited, and the bottom surface of the liquid holding portion may be inclined relative to the bottom surface of the storage member, or as shown in FIG.
- the storage member 12a may be installed on the inclined installation surface G. Alternatively, as shown in FIG.
- the bottom surface of the liquid holding portion may be inclined by sandwiching the bulking member 30 between one end side of the bottom surface of the storage member 12a and the installation surface G.
- the shape of the storage member 12t may be a shape having a step with a deep part of the liquid holding portion, and may be installed on the installation surface G having a step.
- the storage member 12 u of the culture device 10 u illustrated in FIG. 13 only a part of the liquid holding unit may be inclined.
- a water channel for the liquid drained from the drain pipe around the storage member.
- piping such as a gutter may be disposed, and as shown in FIG. 14, a groove H may be formed in the installation surface G to serve as a water channel for liquid drained from the drain pipe 18.
- the storage member may be disposed in the recess of the installation surface.
- the storage member 12 a may be disposed in the recess Gb of the installation surface G.
- a convex portion Gd may be formed on the installation surface G, and the storage member 12 a may be arranged in a region surrounded by the convex portion Gd.
- the installation surface G may be indoor or outdoor.
- soil, clay or the like can be used as the material of the container or the support that constitutes the storage member.
- the configuration in which a container or support made of such soil or clay is disposed in a recess on the installation surface as shown in FIGS. 15 and 16 is formed using soil or clay on the ground which is the installation surface.
- Such a configuration can be said to have formed a bowl on the ground.
- the culture apparatus 10r shown in FIG. 17 is a container in which the container 16r is formed by solidifying the soil on the ground which is the installation surface to form a recess.
- the second film 24g is disposed in the liquid holding portion of the container 16r to configure the storage member 12r.
- the culture apparatus 10n shown in FIG. 18 solidifies the soil of the ground which is an installation surface, and forms the support body 20n by forming a recessed part.
- the storage member 12n is configured by the support 20n and the first film 22f.
- the container 16r or the support 20n When the container 16r or the support 20n is formed into a bowl shape, combustion ash, concrete, cement, plastic, pottery, wood, grass, in addition to ground components such as soil, clay, sand, annual ash, volcanic ash, etc. Solids such as metals; Liquids such as water; Gases such as air and gas; Supercritical fluids such as supercritical carbon dioxide; etc. may be combined.
- the container 16r or the support 20n is made of soil, clay or the like, it is not limited to the structure using soil or clay derived from the ground to be installed, but using soil or clay obtained from other places It is also good.
- Soil, clay, sand, burning ash and volcanic ash are low cost and readily available, and in some cases may be discarded as waste, and may be available at the culture site. Moreover, these materials can ensure both shape stability and thermal conductivity by adjusting the water content. In addition, the adjustment of the moisture content and the selection of the particle size can reduce the surface irregularities. When the first film is used, the unevenness on the inner side of the liquid holding portion can be reduced by reducing the unevenness of the support, so the water depth of the liquid holding portion can be made shallower, and the amount of water used There is an advantage of being able to reduce drying and of facilitating drying.
- the container or support when processing the ground to form a container or support, may be formed by digging the ground or forming a bowl on the ground. Is preferred.
- a container or support is preferably formed using a paddy field, a fallow field, agriculture, an abandoned cultivation site or the like, from the viewpoint that a large area suitable for culture can be obtained inexpensively.
- a paddy field or a fallow field is suitable also from the point which originally has the function of maintaining, replenishing and draining water in advance.
- it may be changed to a form suitable for culture of microalgae. For example, if a road is installed, the asphalt may be removed, the soil may be exposed, and then the container or support may be formed by digging a hole so that the culture solution can be held.
- the land may be smoothed or divided into small sections.
- the surface in contact with the culture solution be hydrophilic so that a small amount of culture solution can be easily spread over a large area.
- the wall surface of the container or support may be shared with the adjacent container or support. By doing this, it is possible to install more culture devices in a certain area, and it is possible to reduce the time and effort for forming the wall surface. For example, a trough formed of soil may be shared with an adjacent container or support.
- Culture fluid The culture solution is retained in the reservoir of the reservoir member.
- the culture solution is a liquid medium. Details of the culture solution will be described later.
- the culture apparatus used in the present invention has a shielding member disposed above the storage member so as to cover at least a part of the liquid surface of the culture solution held by the storage member when viewed from above in the vertical direction. It is preferable to have.
- the shielding member preferably covers at least a part of the liquid surface of the culture solution, and if there is no restriction, more preferably covers 50% or more of the liquid surface area of the culture solution, and further covers 90% or more It is more preferable to cover 95% or more, and it is particularly preferable to cover 100%, but according to securing of work space, installation of other members, restrictions on topography, etc., a ratio to cover the liquid surface of culture fluid Can be set as appropriate.
- the shielding member has a region through which light of at least a part of the wavelength can be transmitted.
- at least a part of the wavelength includes the wavelength of light necessary for the culture of the microalga.
- the shielding member protects the culture solution and the cultured microalga from factors that inhibit culture due to natural conditions such as rain, wind, and dryness, and also prevents or suppresses contamination of foreign matter or foreign organisms from the outside. is there.
- the shielding member is to prevent and suppress the natural evaporation of the culture solution.
- the shielding member 14a of the culture device 10a shown in FIG. 1 and FIG. is set up.
- the shielding member 14a has light transmissivity for transmitting light of a predetermined wavelength.
- the air layer N exists between the shielding member 14a and the culture solution M (microalga P which culture
- the culture solution M microalga P which culture
- the material constituting the shielding member 14 is not particularly limited as long as at least a part of the material can transmit light, but, for example, plastic, glass, soil, concrete, cement, wood, metal, clay, pottery, Among these, combinations of two or more may be mentioned. Further, the shape of the shielding member 14 is, for example, a material that can be deformed, such as a film, a sheet, a cloth, a net, a knitted yarn, etc. even if it is a rigid structure such as a wall or a plate. Or any combination of these.
- the raw material comprised from an organic polymer compound, an inorganic compound, a metal, and those complexes, for example. It is also possible to use mixtures thereof.
- organic polymer compounds include polyethylene derivatives, polyvinyl chloride derivatives, polyester derivatives, polyamide derivatives, polystyrene derivatives, polypropylene derivatives, polyacryl derivatives, polyethylene terephthalate derivatives, polybutylene terephthalate derivatives, nylon derivatives, polyethylene naphthalate derivatives, polycarbonate derivatives , Polyvinylidene chloride derivative, polyacrylonitrile derivative, polyvinyl alcohol derivative, polyether sulfone derivative, polyarylate derivative, allyl diglycol carbonate derivative, ethylene-vinyl acetate copolymer derivative, fluorine resin derivative, polylactic acid derivative, acrylic resin derivative, Ethylene-vinyl alcohol copolymer, ethylene-methacrylic acid
- the shielding member 14a As a material constituting the shielding member 14a, it has light transmissivity, and it is lightweight while having the workability of cultivation and recovery, necessary strength, and is installed in a shape according to the shape of the storage member Plastics which are easy to do are preferred.
- plastics include, for example, polyolefins such as polyethylene and polypropylene, polyesters such as vinyl chlorides and polyethylene terephthalate, polylactic acids, acetyl celluloses, polyurethanes, polyamides, silicone resins, fluorine resins, Composite films etc. which combined two or more of these, etc. are mentioned. Further, it is also preferable to use glass (inorganic glass) in particular from the viewpoint of transparency and strength.
- the shielding member 14a has a plate shape and is disposed in close contact with the storage member 12a.
- the shape and position of the shielding member is the upper side in the vertical direction. If it is possible to cover at least the liquid surface of the culture solution M and to allow an air layer to be present between the liquid surface of the culture solution M and the second structure when viewed from the point of view, there is no particular limitation. I will not.
- the shape of the shielding member may be, for example, flat, inclined, uneven, irregular, or a combination of at least one of these. Among these, it is preferable that it is an inclined shape or a convex shape which can be quickly removed since rain, snow, or the like hardly accumulates on the shielding member. Also, the shielding member may be disposed apart from the storage member.
- the shielding member 14c of the culture device 10c shown in FIG. 19 is larger than the storage member 12a and has an arch-like curved shape, and the storage member 12a is disposed inside the arch of the shielding member 14c.
- the shielding member 14c is disposed above the storage member 12a so as to cover the liquid surface of the culture fluid M held by the storage member 12a when viewed from above in the vertical direction, the storage member 12a It does not have to be in contact with
- a support 28e may be provided to support the shielding member 14a so as to be disposed above the storage member 12a. At that time, it is preferable to support the shielding member 14a by inclining with respect to the horizontal plane.
- a support for supporting a shielding member 14d having a convex shape combining two inclined surfaces inclined with respect to a horizontal surface to be disposed above the storage member 12a The body 28 may be provided.
- the support 28 is not particularly limited as long as it can support the shielding member 14a, and any structure such as a column or a wall may be used.
- the shielding member preferably has a strength sufficient to be used for a long period of time in a culture environment. Therefore, it is also preferable to reinforce the shielding member by using walls, columns, beams, etc., and pipes, wires, etc. which are found in agricultural houses.
- the shielding member may form a closed space alone or together with the storage member, but it is possible to easily open or remove a part of the area, take up, etc., when necessary. It is also preferable to make it openable.
- a space, an air vent or the like can be provided in advance as long as there is no hindrance to culture and the like. That is, it is preferable to keep the air layer N in communication with the atmosphere or in a communication state. Thus, keeping the air layer N in communication with the atmosphere is preferable in that it becomes possible to take in carbon dioxide from the open air during culture.
- the vent may be provided with a ventilating device such as a fan.
- the shielding member is openable, removable, capable of being wounded, and the like.
- the shielding member when used for a long time in various environments indoors and outdoors, rain, snow, soil, dust, dust, microorganisms, or other various dirt causing substances fly, and the shielding member However, it may cause problems such as dirt and light transmission. Therefore, it is preferable that the shielding member is hard to adhere to those components, and that even if it adheres, it can be easily removed by rain or a simple water washing operation.
- a fluorine resin or silicone resin to which dirt does not easily adhere may be used, or the surface may be subjected to a hydrophobization treatment, a hydrophilization treatment, an antifouling treatment, or the like.
- the internal water may grow as a water droplet on the inner surface (surface on the storage member side) of the shielding member during culture, and this may drop to the liquid surface of the culture solution to inhibit the growth of the biofilm on the liquid surface. is there.
- the material of the shielding member may be a material on which droplets do not easily grow, or a droplet may not easily drop.
- PET a plastic film
- fluorocarbon resin acetyl cellulose
- PLA a plastic film which has been treated so that water droplets are not easily attached to the inner surface.
- Takinas C. I. Kasei Co., Ltd., thickness 0.15 mm for example, Takinas C. I. Kasei Co., Ltd., thickness 0.
- the inner surface of the shielding member may be provided with a structure in which water droplets are likely to fall, for example, a place where the structure is lowered, a portion which is a projection (such as a screw) of the structure, etc. If it is larger than the portion being carried out, it is preferable to provide an area in which the water droplet is likely to fall to the outside of the portion being cultured or to flow directly to the ground or the like. In addition, even when dropping to a portion where culture is being performed, it is preferable to set the area of the drop prone region of the water droplet formed inside the shielding member to 20% or less of the area of the portion where culture is being performed. It is more preferable to set it so that it becomes% or less. In addition, a structure for receiving the water droplets may be provided under a place where the water droplets are particularly easily accumulated. The obtained water can be reused as distilled water or the like.
- the temperature and the liquid temperature are high for the purpose of controlling at least one of the air temperature of the air layer and the liquid temperature of the culture solution to a temperature range suitable for the culture of the microalga during the culture
- a film that suppresses the transmission of heat rays during fine weather, etc., and a film that maintains the temperature when the temperature or liquid temperature is low (especially in winter, when the amount of sunlight is low and the temperature is low, etc.)
- the former there is a method of using an infrared ray reflective film, an infrared ray absorbing film, and in the case of the latter, two or more sheets of films stacked.
- a film having a characteristic that the transmittance of wavelength effective for growth is high, or conversely, the transmittance of wavelength unnecessary or harmful for growth Films having low properties can be used.
- an ultraviolet reflective film, an ultraviolet absorbing film, a wavelength selective transmission film, a wavelength selective reflective film, a light scattering film or the like may be used as the shielding member.
- the wavelength effective for growth is preferably about 360 nm to about 830 nm, more preferably about 380 nm to about 760 nm, and still more preferably about 400 nm to about 700 nm. Wavelengths harmful to growth are generally less than about 360 nm.
- Electromagnetic waves having a wavelength of less than 360 nm may damage microalgal cells.
- electromagnetic waves having a wavelength of more than about 830 nm are not effective for the growth of microalgae.
- the light in the infrared region having a wavelength of more than about 830 nm is likely to increase at least one of the air temperature and the liquid temperature at the time of culture, which may inhibit the growth of microalgae.
- light in an infrared region having a wavelength of more than about 830 nm may be used to raise the liquid temperature or the air temperature of the culture solution.
- the shielding member may be burnt as a fuel together with the dried algal cells.
- a film PET, polyurethane, polyamide, etc.
- biomass-derived films bioPE, biopolyester, polylactic acid, acetyl cellulose, etc.
- the shielding member 14 a is configured to have the light transmitting property over the entire surface, but is not limited thereto, and has a region capable of transmitting light of at least a part of wavelengths. It is good also as composition.
- the region T disposed vertically above the liquid surface of the culture solution may be configured to transmit light of at least a part of the wavelength.
- the region T is formed of a light transmissive material.
- light of at least a part of wavelength refers to light of a wavelength that microalgae can utilize for photosynthesis, generally, about 360 nm to about 830 nm is preferable, about 380 nm to about 760 nm is more preferable, and about 400 nm Further preferred is about -700 nm. Within this range, light of a wavelength that the microalgae can effectively use for photosynthesis is included.
- microalgae usually has one or more photosynthetic pigments in addition to chlorophyll a, and Since the photosynthetic pigment absorbs light of a wavelength which can not be absorbed by chlorophyll a and passes energy to chlorophyll a, the light including the absorption wavelength of chlorophyll a is not absolutely required.
- the main photosynthetic pigments possessed by microalgae include chlorophyll a, chlorophyll b, chlorophyll c, phycobilin pigments and carotenoid pigments.
- microalgae that perform photosynthesis often contain one or more of chlorophyll b, chlorophyll c, phycobilin-based pigment and carotenoid-based pigment in addition to chlorophyll a as a photosynthetic pigment.
- the green algae such as Chlamydomonas (Clamydomonas), Chloroccoccum, Botryococcus, Tetracystis, Characium, Protochiphon, Protosiphon, Haematococcus, etc.
- chlorophyll b in addition to chlorophyll a
- gray algae and red algae have phycobilin based pigments in addition to chlorophyll a
- chlora lacunion algae and euglena have chlorophyll b in addition to chlorophyll a
- crypt algae have chlorophyll In addition to a, it has chlorophyll c and phycobilin-based pigments
- haptoalgae has chlorophyll c and caroteno in addition to chlorophyll a.
- Inorganic dyes such as brown algae, golden algae, rafido algae, yellow green algae, diatoms, etc.
- phycobilin-based pigments, and one or more of carotenoid-based pigments, chromella algae have chlorophyll a
- cyanobacteria have chlorophyll b or chlorophyll d in addition to chlorophyll a.
- the absorption peak wavelength of chlorophyll is, for example, 90% acetone-water mixed solvent
- chlorophyll a is about 430 nm and about 664 nm
- chlorophyll b is about 460 nm and about 647 nm
- chlorophyll c 1 is about 442 nm and about 630 nm
- chlorophyll c 2 Are about 444 nm and about 630 nm
- chlorophyll d is about 401 nm, about 455 nm and about 696 nm.
- the shielding member may be integrated with a member constituting the storage member, for example, the first film.
- the culture apparatus 90 shown in FIG. 24 is a tubular (tube-like) member 92 formed by integrating the shielding member and the first film, and a support 94 for supporting the member 92.
- the culture solution M is held inside a member 92 formed in a tubular shape.
- one shielding member 14a is configured to cover one storage member 12a.
- the present invention is not limited to this, and one shielding member may be configured to cover two or more storage members.
- the culture apparatus 100 shown in FIG. 25 has a configuration in which one shielding member 14a is disposed so as to cover two storage members 12f consisting of a first film 22f and a support 20f.
- the shielding member 14a is supported vertically above the storage member 12f by two supports 28e which are spaced apart so as to sandwich the two storage members 12f.
- the culture apparatus preferably includes at least one of an air temperature control unit that controls the temperature of the air layer N and a liquid temperature control unit that controls the temperature of the culture solution M.
- the temperature control unit it is possible to control the temperature of the air layer N within the temperature range suitable for the culture of the microalga during the culture.
- the temperature of the air layer N can be controlled to a temperature higher than the temperature range suitable for the culture of the microalga, and the moisture content of the culture can be reduced to accelerate the drying.
- the temperature of the culture solution M can be controlled within the temperature range suitable for the culture of the microalga during the culture.
- the temperature of the culture solution M can be controlled to a temperature higher than the temperature range suitable for the culture of the microalga, and the moisture content of the culture can be reduced to accelerate the drying.
- the range of the air temperature of the air layer N suitable for the culture of microalgae and the liquid temperature of the culture solution M varies depending on the type of microalgae to be cultured, but it is generally about 10 to about 50 ° C, preferably about 15 to about 45 ° C It is near.
- the culture temperature can be selected according to the type of microalgae, but the liquid temperature of the culture solution is preferably 0 ° C. or more and 90 ° C. or less. The temperature is more preferably 15 ° C. or more and 50 ° C. or less, and particularly preferably 20 ° C. or more and less than 40 ° C. When the culture temperature is 20 ° C. or more and less than 40 ° C., the growth rate of microalgae is sufficiently fast.
- the air temperature control unit or the liquid temperature control unit for example, a configuration in which a member such as a liquid such as water or a gas such as air is caused to flow as a heat transfer medium may be provided around the storage member.
- the culture apparatus 50 shown in FIG. 26 includes a second container 52 having an opening larger than the outer shape of the storage member 12a.
- the storage member 12a is installed, and water W, which is a heat transfer medium, is placed in the second container 52.
- a part of the storage member 12a is immersed in the water W from the bottom surface side and installed on the support protrusion 54.
- Such a configuration can suppress changes in liquid temperature and air temperature.
- the storage member 12a is simply immersed in the water W not only to suppress changes in the liquid temperature and the air temperature, but also by controlling the temperature of the water W, the temperature of the culture solution M or the air layer N is a microalga. It may be controlled to a temperature range suitable for culture of Preferably, the water W in the second container 52 can be circulated.
- the culture device 60 shown in FIG. 27 includes a storage member 62, and a heat transfer pipe 64 which communicates the storage member 62 from the outside to the inside (liquid holding portion).
- the heat transfer pipe 64 is a pipe through which the heat transfer medium can flow. With such a configuration, by flowing the heat transfer medium into the heat transfer pipe 64, it is possible to control the temperature of the culture solution M and the air layer N.
- the ventilation part connected to an air layer as an air temperature control part or a liquid temperature control part.
- a space, an air vent, or the like can be provided in advance without bringing the storage member and the shielding member into close contact with each other as long as there is no hindrance to culture and the like.
- a gas with a temperature higher than the outside temperature in the air layer N using natural convection.
- the passage of gas in the aeration unit may be natural ventilation, or the passage of gas in the aeration unit may be controlled by the aeration control unit.
- means for controlling ventilation include forced ventilation means such as a fan.
- the culture apparatus further comprises a winding machine (first winding machine) for winding the first film and a winding machine (second winding machine for winding the second film). It is preferable to provide both or one of these.
- the first winding machine and the second winding machine may be separate winding machines, or one winding machine, and the film to be wound is the first film. Sometimes it may be a first winder, and it may be a second winder when the film to be taken up is a second film. The details will be described in the description of the recovery step.
- the culture apparatus further recovers the collection member (first collection member) for collecting the culture of microalgae on the first film and the culture of microalgae on the second film It is preferable to provide both or one of these recovery members (second recovery members).
- the first recovery member and the second recovery member may be separate recovery members, or one recovery member, and the microalgal culture to be recovered is on the first film.
- recovery member when it is set as a 1st collection
- the recovery member will be described in detail in the description of the recovery process.
- windproof equipment such as a windproof wall may be installed around the culture apparatus separately from the elements constituting the culture apparatus. Even when a windproof facility is installed, it is desirable to have a structure and position that does not significantly block the light necessary for the microalgal culture. Moreover, you may have an apparatus which supplies the carbon dioxide required for culture
- microalgae used in the culture and recovery method of the present invention is not particularly limited, and can be appropriately selected according to the purpose.
- microalgae refers to microalgae whose individual existence can not be recognized by the naked eye of a person.
- the microalgae may be either prokaryote or eukaryote.
- microalgae used in the culture and recovery method of the present invention examples include green algae (Chlorophyta), gray algae (Glaucophyta), red algae (Rhodophyta), chlora lacunion algae (Chlorarachniophyta), euglena (Euglenophya), cryptoalga ( Microalgae belonging to any of Cryptophyta), Brown algae (Phaeophyta), Haptophyta (Haptophyta), Heterophyta (Heterozziphyta), Dinophyta (Dinophyta), Chromella algae (Chromerida), Cyanobacteria, etc. Can be mentioned.
- the microalgae may have an undefined taxonomic group, and more preferably molecular phylogenetically it has been shown to be in or closely related to these taxa.
- microalgae can be used singly or in combination of two or more. If it is in a symbiotic relationship with another organism, it may be used with that organism.
- the state of floating on the liquid surface refers to a state in which about 50% or more of the algal biomass present in the culture liquid is present on the liquid surface, regardless of whether a biofilm is formed on the culture liquid surface or not. .
- green algae green algae
- diatoms non-uniform algae
- Botryococcus sudeticus (Botryococcus sudeticus) or Chlorococcum sp. Those belonging to are more preferred.
- a microalga strain or chlorococum having the same taxonomical properties as Botryococcus sudeticus FERM BP-11420 strain or its microalgal strain (Chlorococcum) sp.
- microalgal strain having the same taxonomical properties as the FERM BP-22262 strain or its microalgal strain, and the 73rd nucleotide sequence of the nucleotide sequence shown in SEQ ID NO: 1 among the nucleotide sequences of the gene region encoding 18S rRNA
- a microalga having a sequence identity of Especially preferred are microalgae having the same taxonomical properties as the FERM BP-22262 strain or its microalgae strain.
- FERM BP-22262 strain FLG039 strain Chloroccum sp.
- the taxonomical properties of the FERM BP-22262 strain are shown below. (Morphological properties) It is circular. When static culture is performed, a film-like structure is formed on the liquid surface. Produce oil. (Cultural properties) Culture medium: CSiFF04 medium or CSi modified medium (CSiFF04 medium is a modification of CSi medium. The composition is shown in Table 1. The pH is adjusted to 6.0 and the latter to 7.0 with NaOH or HCl, respectively. The culture solution can be autoclaved under conditions of 121 ° C. and 10 min.)
- Culture temperature It can be cultured at 15-25 ° C. Culture time: 2 to 4 weeks Culture method: static culture is suitable. Light requirement: Necessary. Illuminance 4000 lx-22000 lx, light-dark cycle: 12 hours light period / 12 hours dark period.
- microalgae having the same taxonomical properties as the FERM BP-22262 strain are microalgae belonging to the genus Chlorococcum, whose 18S rRNA gene comprises a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 2 Included are those having at least 99.94% sequence identity.
- SEQ ID NO: 1 is Chlorococcum sp.
- Botryococcus sudetics FERM BP-11420 (AVFF 007) The taxonomical properties of Botryococcus sudeticus FERM BP-11420 are shown below.
- Botryococcus sudeticus (Botryococcus sudeticus) is a bassonim (basic synonym) of Botryosphaerella sudetica (Botryosphaerella sudetica).
- CSiFF 04 medium Improved in CSi medium, the composition is shown in Table 2. Adjust pH to 6.0 with NaOH or HCl. Culture medium should be autoclaved under conditions of 121 ° C., 10 min. Can)
- Culture temperature The preferred temperature is 23 ° C., and culture can be carried out at 37 ° C. or less.
- Culture period (generally, a period until reaching the stationary phase): 2 weeks to 1 month, depending on the amount of algal cells used initially. Usually, culture can be performed at 1 ⁇ 10 5 cells / mL.
- Culture method static culture is suitable.
- ⁇ Light requirement Necessary. Illuminance 4000 lx to 15000 lx. Light-dark cycle: 12 hours specified time / 12 hours dark period. In the case of subculture, it is possible to culture at 4000 lx.
- the strain having taxonomically identical properties to the FERM BP-11420 strain is a microalga, wherein the 18S rRNA gene is at least 95.0%, preferably at least 95.0%, with a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 3 Included are those with 98.0%, more preferably 99.0%, still more preferably 99.5%, most preferably 99.9% sequence identity.
- the search and analysis regarding the identity of the base sequence can be performed by an algorithm or program well known to those skilled in the art.
- the parameters for using the program can be appropriately set by those skilled in the art, and may use the default parameters of each program. Specific procedures of these analysis methods are also well known to those skilled in the art.
- SEQ ID NO: 3 represents a part of the nucleotide sequence of 18S rRNA gene of Botryococcus sudeticus AVFF 007 strain (FERM BP-11420 strain).
- Biofilm generally refers to a film-like microbial structure (microbial assembly or membrane) composed of microorganisms and extracellular matrix attached to the surface of rock, plastic or other solid, but in the present invention,
- film-like or three-dimensional (foam-like, scaly-like, etc.) microbial structures (microbe-aggregated, etc.) composed of microorganisms and extracellular matrix etc. suspended on a fluid surface such as liquid surface Body or microbial membranes) are also referred to as biofilms.
- the biofilm on the liquid surface has a three-dimensional form such as a foam-like structure, a scaly structure, etc. which were not conventionally found in biofilms attached to rocks, plastics or other solid surfaces Structures may be formed.
- the foamy structure is considered to be formed from a gas such as carbon dioxide or oxygen generated by the metabolism of microalgae and the extracellular matrix.
- the diameter is generally about 2-3 mm to about 5-10 cm in size, and the shape is not particularly defined except that it is foamy.
- the foam-like structure may be a single foam-like structure isolated from other foam-like structures, or a plurality of foam-like structures are aggregated and superimposed in two or three dimensions. May include structure.
- the rod-like structure is considered to be formed by the formation of a portion invading the culture solution in the film-like biofilm or a portion protruding in the air as the algae grows.
- Biofilm invaginated in the culture solution may be partially torn down to the bottom of the culture solution. When the biofilm protruding into the air can not support its own weight, it is folded and overlaps the biofilm on the liquid surface.
- biofilms in the natural world include debris and debris of plants, but they may be included in the present invention as well.
- the biofilm does not contain impurities such as trash and plant fragments, and ideally, between the microalgae according to the present invention and the cells secreted during its growth. More preferably, it is composed only of a substance such as a matrix.
- the biofilm is preferably a structure in which individual microalgae are attached to each other directly or through a substance such as an intercellular matrix.
- the culture and recovery method of the present invention is a culture and recovery method of a culture of microalgae using the above-described culture apparatus, A main culture step of forming an air layer between the liquid surface of the culture solution and the shielding member to culture a culture of the microalga with the culture solution; After the main culturing step, a fluid volume reducing step of reducing the volume of the culture fluid, And a recovery step of recovering a culture of microalgae after the liquid volume reduction step, and a culture and recovery method of the microalgal culture.
- microalgae are cultured in a culture solution while an air layer is present above the culture solution.
- the culture solution and microalgae are as described above.
- the pre-culture step is a step of growing the number of microalgae until main culture can be performed by growing the storage microalgae obtained after the purification step is completed.
- the culture method for pre-culture can be selected by any known culture method. For example, it is also possible to carry out the dispersion culture method, the adhesion culture method, and the liquid surface suspension culture.
- pre-culture may be performed several times. In the pre-culture, stationary culture may be performed depending on the purpose, or non-static culture such as shaking culture may be performed.
- the pre-culture may be performed multiple times in order to grow the microalgae to a scale at which the main culture can be performed.
- a culture vessel storage member having a surface area of 1 cm 2 to 1 m 2 or less is used, and culture can be performed indoors or outside.
- the main culturing step is a step of culturing after pre-culturing, and refers to the culturing step up to immediately before the final recovery step when the following post-culturing is not performed.
- the main culture can be ended when a sufficient amount of microalga algae is formed.
- microalgae which forms a biofilm on the liquid surface
- the main culture can be completed, for example, in several days to several weeks, and more specifically, in five days to four weeks.
- main culture may be performed multiple times.
- an incubator storage member having a surface area of 100 cm 2 or more is used, and culture can be carried out indoors or outdoors, but culture outdoors is preferable.
- the post-culture step is a step of culturing after performing a liquid volume reduction step.
- the device for performing the post-culture step may be the same as the device for performing the main culture step, or another culture device may be prepared for use in the subsequent step.
- the former is preferable in the liquid volume reduction process described later.
- the liquid volume reduction step described later may be the former or the latter in the case of a step of skimming algal cells together with the culture medium, but from the culture tank of the main culture It is also preferable to use a shallow culture tank.
- the area of the culture tank in the post-culture is not particularly limited, but is preferably 10 times to 1/10 times the area of the culture tank in the main culture, more preferably 5 times to 1/5 And more preferably 2 to 1 to 4 times. If the area of the culture tank in the post-culture is 10 times to 1/10 times the area of the culture tank in the main culture, the depth of the culture solution is shallow and photosynthesis at the bottom of the culture tank becomes easy to progress, and the area is not too large. Therefore, algal body productivity and oil productivity are improved.
- algal productivity and / or oil productivity can be improved by further culturing microalgae in the coexistence of medium solution components after the liquid volume reduction step has not been clarified, but, for example, the medium amount decreases. It is presumed that photosynthesis is promoted by the influence of the fact that the temperature of the culture medium water easily rises under photosynthetic conditions (light irradiation state) or that light can sufficiently reach the bottom of the water.
- the oil content may be improved as a result of heat stress condition that the temperature of the culture medium rises and stress condition of the nutrient depleting state as the culture medium components decrease and nutrient components decrease. Sex is also considered.
- productivity means the yield per unit area of a product and per unit day.
- algal productivity is a value obtained by dividing the obtained algal weight (for example, g) by the culture area (for example, m 2 ) and the number of culture days (day) (g / m 2 / day) It is defined.
- oil productivity is defined as a value (g / m 2 / day) obtained by multiplying the algal body productivity (g / m 2 / day) by the oil content rate (mass%) in the algal body.
- the conditions for post-culture are described below.
- the carbon dioxide concentration is not particularly limited, and may be a normal atmospheric carbon dioxide concentration, but is preferably less than 20% by volume, more preferably from the atmospheric concentration to 15% by volume, and still more preferably 0.1 to It is 10% by volume. Within this range, culture can be further advanced.
- the medium is not particularly limited, and may be mere water, but a medium usable for pre-culture or main culture is preferable, and using the medium used for the main culture as it is is particularly preferable from the viewpoint of process simplification. preferable.
- Suspension culture stationary culture, liquid surface suspension culture
- suspension culture culturing the microalga in a dispersed state in a culture medium
- culture on the liquid surface is not referred to as suspension culture.
- Suspension culture can be used depending on the purpose, whether it is main culture or pre-culture.
- Stationary culture is a culture method in which the medium or the like is not intentionally moved during the culture.
- liquid suspension culture the culture method of culturing microalgae on liquid surface is called liquid surface floating culture.
- the culture method of culturing microalgae on liquid surface is called liquid surface floating culture.
- the culture method of culturing microalgae on liquid surface is called liquid surface floating culture.
- the position of the liquid surface may not always be clear, and the biofilm may be slightly sunk below the liquid surface by its own weight.
- the term "above the liquid level” includes not only the complete liquid level but also such cases.
- liquid level in the present invention is typically the liquid level of the liquid culture medium described later, and is usually the interface between the liquid culture medium and air. Also, when water is the main component, it means the water surface.
- the liquid surface floating culture in the present invention is performed, a phenomenon may be observed in which a fold-like structure intrudes into the liquid from the on-liquid surface biofilm. In the present invention, culture in such a situation is also included in liquid surface floating culture.
- seed algae for performing liquid surface suspension culture after performing suspension processing, it may be added to a culture vessel (storage member), and after addition of seed algae, in order to promote mixing with a liquid medium Stirring may be performed.
- the microalgal biofilm may be added to the liquid surface of the incubator (storage member), and the culture may be started in a floating state, or the floating of the microalgal biofilm from the liquid surface is minimal after floating.
- the microalgal biofilm may be divided on the liquid surface so as not to sink as much as possible so as to be limited, and may be further stirred so as to be dispersed on the liquid surface of the incubator (storage member).
- seed algae in the present invention refers to microalgae used at the start of pre-culture or main culture, and refers to microalgae which is the source of culture of microalgae in pre-culture or main culture.
- the culture can be started in a state in which the microalgal biofilm is floated on the liquid surface or in a state in which the microalgae is present on the bottom, and also in these cases, these microalgae are used as seed algae.
- microalgae attached to the bottom surface, other places of the incubator (storage member), other jigs constituting the culture, etc. can also be used as seed algae.
- the culture can be resumed by using microalgae remaining on the liquid surface as a seed algae.
- culture can also be carried out using a microalgal biofilm on the liquid surface as a seed algae. It is a method of leaving a part of the microalgal biofilm on the liquid surface. Moreover, it is also possible to start culture by collecting a part of microalgal biofilm and floating it on the liquid surface. Furthermore, it is also possible to start the culture by performing the dividing treatment while floating the biofilm on the liquid surface as much as possible to the liquid surface. By doing this, the liquid level of the incubator (storage member) can be effectively used, and the growth rate can be improved because it can be made to exist even in the microalgal absence region. Because there are many. Moreover, it is also possible to start culture from the state which left a part of micro algae biofilm on a bottom face and a liquid surface.
- the bottom algae refers to microalgae present near the bottom of the incubator (storage member).
- non-adherent bottom algae which adhere to the bottom surface and do not peel off when the liquid flow is light, or nonadherent bottom algae which exists near the bottom and moves even when the light flow is around.
- non-adherent bottom algae can also include liquid surface algae that are separated from the microalgal biofilm by the recovery operation and sink to the vicinity of the bottom. In the case where microalgae are present at a low concentration even in the culture medium other than the liquid level and the bottom, these may be a source of seed algae supply.
- the supply of microalgae from the bottom of the incubator (storage member) to the liquid surface means that the microalgae moves from the bottom to the liquid surface when it moves onto the liquid surface without growth of the microalgae on the bottom. There are both cases of proliferation while moving.
- microalgae on the bottom can be used as seed algae and culture can be continued.
- the used medium may be used as it is to continue the culture, or part of the used medium may be discarded and fresh medium may be added.
- the amount of fresh culture medium added may be equal to or less than the amount discarded.
- part of the bottom algae may be peeled off and dispersed in the medium. By doing this, it is possible to contact microalgae in a state in which only a part of the algal cells can be in contact with the medium with more medium, and it is possible to suitably improve the growth rate. is there.
- Nonadherent microalgae present on the bottom surface may be removed. This is because the unnecessary presence of microalgae on the bottom surface causes a decrease in growth rate which is considered to be caused by unnecessary consumption of nutrient components. Also, the abundance of bottom algae used as seed algae may be adjusted. This is because it is possible to perform appropriate culture.
- the amount of microalgae present on the bottom of the culture is preferably 0.001 ⁇ g / cm 2 or more and 100 mg / cm 2 or less, more preferably 0.1 ⁇ g / cm 2 or more and 10 mg / cm 2 or more, and 1 mg / cm 2 2 or 5 mg / cm 2 being most preferred. If it is 0.1 ⁇ g / cm 2 or more, the ratio of the amount of microalgae before and after cultivation can be increased in a short time, which is preferable.
- a suspension-treated microalgal sample may be used as a seed algae.
- the microalgae in the solution is made uniform, and as a result, the film thickness after culture is made uniform, so the amount of microalgae per culture area may increase.
- the suspension treatment any known method can be used, but pipetting, shaking treatment of the microalgal solution put in the container by hand, weak treatment such as treatment with a stirrer tip or a stirring rod, ultrasonic treatment or the like Examples thereof include strong treatment such as high-speed shaking treatment, and a method using a substance such as an enzyme that degrades an adhesive substance such as an intercellular matrix.
- the input of seed algae as a source of culture is almost uniformly applied throughout the incubator (storage member) It becomes difficult to do. Therefore, in the present invention, for example, it is also preferable to disperse the microalga to be the seed algae in advance in a water-absorbent substance (for example, seratin etc.) and appropriately charge it.
- a water-absorbent substance for example, seratin etc.
- any known medium liquid medium
- AF-6 medium Allen medium
- BBM medium C medium
- CA medium CA medium
- CAM medium CB medium
- CC medium CHU medium
- CSi medium CT medium
- CT medium CYT medium
- D medium ESM medium
- f / 2 medium HUT medium
- M-11 medium MA medium, MAF-6 medium, MF medium, MDM medium, MG medium, MGM medium, MKM medium, MNK medium, MNK medium, MW medium, P35 medium, URO medium, VT medium
- Examples include VTAC medium, VTYT medium, W medium, WESM medium, SW medium, SOT medium and the like.
- freshwater ones are AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CSi medium, CT medium, CYT medium, D medium, HUT medium M-11 medium, MA medium, MAF-6 medium, MDM medium, MG medium, MGM medium, MW medium, MW medium, P35 medium, URO medium, VT medium, VTAC medium, VTYT medium, W medium, SW medium, SOT medium is there.
- stock, C culture medium, CSi culture medium, CHU culture medium, and the mixture of these culture media are preferable.
- the culture medium is preferably selected according to the type of microorganism to be cultured.
- the medium may or may not be UV sterilized, autoclaved, filter sterilized.
- the same type of medium may be used in the pre-culture and the main culture, or different types of medium may be used. Also, different culture media may be used during the culture.
- the medium components when performing culture on a large area outdoors, etc., unlike the experiment in the laboratory, if the medium components are diluted to the concentration used in advance, the volume of the solution will be large, so to the culture place Inefficient from the aspect of transport and input work. Therefore, it is efficient to keep the necessary medium components in a concentrated state (hereinafter referred to as concentrated culture solution) and dilute with water at the culture site.
- concentrated culture solution since the culture medium components vary, when it is going to adjust a concentration culture medium in this way, depending on the combination of the components, precipitation may occur. In such a case, it is preferable to divide the concentrated medium as two or more concentrated mediums, and separate the components that cause precipitation into separate concentrated medium.
- carbon dioxide Many microalgal cultures require the provision of carbon dioxide.
- carbon dioxide may be supplied into the medium by bubbling as in the conventional method, but when liquid surface suspension culture is performed, carbon dioxide is extracted from the air layer. It is preferable to supply it. This is because the structure of the microalgal biofilm on the liquid surface is destroyed when carbon dioxide is supplied into the medium by bubbling or the like method, and algal mass is generated, and the biofilm recovery efficiency on the substrate in the recovery step And the amount of recovered algal bodies may decrease.
- carbon dioxide in the atmosphere can be used, carbon dioxide in a concentration higher than the atmospheric concentration can also be used.
- concentration of carbon dioxide in this case is not particularly limited as long as the effects of the present invention can be achieved, but is preferably not less than atmospheric concentration and less than 20% by volume, preferably 0.01 to 15% by volume, more preferably 0. 1 to 10% by volume.
- the carbon dioxide may be carbon dioxide discharged by the combustion device. Alternatively, carbon dioxide may be generated by the reagent.
- carbon dioxide is preferably supplied to the entire culture apparatus.
- Carbon dioxide can also be used in the culture solution culture medium and carbon dioxide in the air layer, but in order to obtain a sufficient amount of biofilm, it is desirable to supply more carbon dioxide.
- carbon dioxide supply method it is possible to open the part of the shielding member and take in the outside air, but in addition, carbon dioxide gas may be introduced from a cylinder or the like by piping. Moreover, the method of throwing in a solid substance in a culture apparatus as a carbon dioxide source can also be utilized.
- a solid carbon dioxide source carbonates (for example, sodium hydrogen carbonate, sodium carbonate, calcium carbonate and the like) and the like can be mentioned.
- CO 2 tablet CO 2 tablet
- the generation of carbon dioxide is not particularly limited as long as it is a solid state at normal temperature and pressure and can generate carbon dioxide by a chemical reaction.
- the generation of carbon dioxide can be performed by the reaction of a soluble acid source and a carbonate source. The reaction is promoted by contact with water.
- Soluble acid sources include citric acid, malic acid, fumaric acid, adipic acid, succinic acid, ascorbic acid, maleic acid, maleic acid, boric acid, tartaric acid, mandelic acid, malonic acid, pyruvic acid, glutaric acid, aspartic acid, oxalic acid, Salicylic acid, lactic acid, hydrochloric acid, acetic acid, benzoic acid, hydroxybenzoic acid, methoxybenzoic acid, sodium dihydrogenphosphate, disodium dihydrogen pyrophosphate, potassium bitartrate, primary sodium phosphate, primary sodium citrate, primary tartaric acid Sodium can be used, and as a carbonate source, potassium carbonate, magnesium carbonate, L-lysine carbonate, arginine carbonate, ammonium carbonate, sodium carbonate, glycine carbonate, calcium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium bicarbonate , Potassium bicarbonate, sodium sesquicarbonate, gum Emission
- the binder for forming the tablet may be any binder that can achieve the purpose, for example, gum arabic, gelatin, tragacanth gum, starch, cellulose substances such as methyl cellulose, alginic acid and salts thereof, polyethylene glycol, Guar gum, polysaccharide acid, bentonite, saccharides and the like can be used.
- the relationship between the carbon dioxide supply time and the light irradiation time during which photosynthesis is actually performed is also important, and the carbon dioxide supply time and the light irradiation time match at least 50% or more. It is preferable to do. Moreover, as a supply time of carbon dioxide, it is preferable to supply within 2 hours after actual light irradiation is started. In addition, when supplying carbon dioxide, pH in the culture solution is also an important factor, and it should be performed when the pH in the culture solution is at least one lower than the optimum pH of the microalga to be cultured. Is preferred.
- Light source and illuminance As a light source which can be used in the present invention, any known light source can be used. Among these, it is preferable to use sunlight which is natural energy, an LED with high luminous efficiency, and a fluorescent lamp which can be easily used.
- the illuminance (unit: lux (lx)) is preferably 100 lux or more and 1,000,000 lux or less, and more preferably 300 lux or more and 500,000 lux or less.
- the most preferable lux is at least 1000 lux and at most 200,000 lux.
- the illumination preferably refers to the illumination of the liquid surface of the culture solution.
- light When light is irradiated with an artificial light source, light may be either continuous irradiation or a method of setting an irradiation cycle in which irradiation and non-irradiation are repeated at a certain time interval, for example, in view of ordinary sunshine conditions. Preferably, the light is turned on and off at intervals of about 12 hours.
- irradiation conditions may be changed during the culture, such as continuous irradiation for several days (for example, 3 to 5 days) from the start of the culture, and then turning on and off light at intervals of 12 hours. In the pre-culture, continuous light may be used positively.
- the period in which the light is on may be referred to as a “bright period”
- the period in which the light is off may be referred to as a “dark period”.
- the wavelength of light may be any wavelength as long as photosynthesis can be performed, and the wavelength is not limited, but a preferred wavelength is sunlight or a wavelength similar to sunlight.
- a preferred wavelength is sunlight or a wavelength similar to sunlight.
- An example has also been reported in which the growth rate of photosynthetic organisms is improved by irradiation with a single wavelength, and such an irradiation method can also be used in the present invention.
- the pH of the culture solution (liquid medium) used in the pre-culture or the main culture is preferably in the range of 1 to 13, more preferably in the range of 3 to 11, and 5 to 9 It is further preferable to be within the range of, and it is most preferable to be within the range of 6 to 8. Moreover, since suitable pH changes according to the kind of microalga, it is preferable to select pH according to the kind of microalga.
- the pH of the liquid medium is the pH at the start of culture. In addition, since the pH during culture may change with the culture, the pH may change during the culture.
- a substance having a buffer action to keep the pH in the medium constant can be added to the medium.
- the substance having a buffer action known substances can be used, and there is no limitation on its use, but 4- (2-hydroxyethyl) -1-piperazine ethane sulfonic acid (HEPES), phosphoric acid Sodium buffer, potassium phosphate buffer and the like can be suitably used.
- the concentration and type of the buffer substance can be determined according to the type of microalga and the culture environment.
- the water depth can be shallow.
- the depth of water is preferably 0.4 cm or more, more preferably 1 cm to 10 m, still more preferably 2 cm to 1 m, and most preferably 4 cm to 30 cm.
- the water depth When the water depth is 0.4 cm or more, formation of a biofilm is possible, and when the water depth is 10 m or less, handling is easy. When the water depth is 4 cm to 30 cm, the influence of evaporation of water is minimal, and the handling of the solution containing the culture medium and microalgae is easy.
- the culture temperature can be selected according to the type of microalgae and is not particularly limited, but is preferably 0 ° C. or more and 90 ° C. or less, more preferably 15 ° C. or more and 50 ° C. or less, 20 ° C. or more and 40 ° C. Less than is most preferred. When the culture temperature is 20 ° C. or more and less than 40 ° C., microalgae can be suitably grown.
- the lower limit input amount of microalga ie, the amount of microalgae used at the start of culture, is not particularly limited because it is possible to proliferate if there is only one in the culture range, as long as it takes time. , Preferably 1 / cm 3 or more, more preferably 1000 / cm 3 or more, and still more preferably 1 ⁇ 10 4 / cm 3 or more.
- the upper limit input microalgae amount of microalgae basically can be grown at any high concentration, so there is no particular limitation, but the more the microalgae is, the more the amount of microalgae is, Since the ratio of the amount of input microalgae to the amount of microalgae after growth decreases, 1 ⁇ 10 9 cells / cm 3 or less is preferable, 1 ⁇ 10 8 cells / cm 3 or less is more preferable, and 5 ⁇ 10 7 cells / cm 3. More preferably, cm 3 or less.
- the pre-culture period and the main culture period in the present invention can be selected according to the type of microalgae and is not particularly limited, but is preferably 1 day to 300 days and more preferably 3 days to 100 days. 7 days to 50 days are more preferable.
- culture cultivation period was defined with days, it may be called "culture days.”
- the microalgae remaining on the bottom surface or in other parts are recultured as seed algae. , Can be done again and again.
- the concentration is too low, the growth rate is likely to be slow, and in such a case, the medium is newly added, or at least a part of the medium is replaced, or solid-like And high concentration of nutrient components can be added to the medium.
- the size of the microalgae biofilm is 0.1 cm 2 or more, more preferably 1 cm 2 or more, more preferably 10 cm 2 or more, and most preferably equal to the liquid surface area of the incubator (storage member). If it is 0.1 cm 2 or more, it is preferable because the ratio of the amount of microalgae at the end of culture to the amount of microalgae at the start of culture can be increased in a short time. Also, a plurality of microalgal biofilms may be present in the culture region.
- the thickness of the microalgal biofilm is preferably in the range of 1 ⁇ m to 10000 ⁇ m, more preferably in the range of 1 ⁇ m to 1000 ⁇ m, and most preferably in the range of 10 ⁇ m to 1000 ⁇ m. If it is in the range of 10 ⁇ m to 1000 ⁇ m, sufficient strength can be obtained to harvest a sufficient amount of biofilm.
- the general height of the foam relative to the liquid surface of the culture medium is 0.01 mm to 100 mm.
- the range of 0.1 mm to 40 mm is more preferable, and the range of 3 mm to 30 mm is most preferable.
- the height of the foam structure from the liquid surface is in the range of 3 mm to 30 mm, the moisture content can be sufficiently lowered, and the height of the incubator (storage member) can be suppressed to a low level.
- the microalgae according to the present invention preferably has a high growth rate on the liquid surface, and the growth rate in the logarithmic growth phase (that is, the average growth rate per day in the logarithmic growth phase) is 0 in dry weight. is preferably .1g / m 2 / day or more, more preferably 0.5g / m 2 / day or more, further preferably 1g / m 2 / day or more, 3g / m 2 / day It is most preferable that it is more than.
- the growth rate in the logarithmic growth phase of microalgae is generally 1000 g / m 2 / day or less in dry weight.
- the dry alga body weight per unit area of the biofilm according to the present invention is preferably 0.001 mg / cm 2 or more, more preferably 0.1 mg / cm 2 or more, and 1 mg / cm 2 or more. Being particularly preferred. Most preferably, it is 5 mg / cm 2 or more. It is because it is anticipated that the quantity of biomass, such as oil obtained, will become large, so that the dry alga body weight per unit area is large.
- the dry algal body weight per unit area of the biofilm is usually 100 mg / cm 2 or less.
- microalga of the present invention a microalga capable of forming a biofilm having the above-mentioned structure, area, thickness, height, growth rate and dry algal body weight per unit area in the above range on a liquid surface Is preferred for the same reasons as described above.
- the volume reduction step is a step of reducing the volume of the culture solution.
- the liquid volume reduction step may be performed after the main culture step or may be performed in parallel with the main culture step.
- a post-culture process is performed after a liquid volume reduction process.
- the method for reducing the culture solution volume is not particularly limited, but it is important to reduce the culture solution coexisting with the microalgal culture. Specific methods include, for example, drying the culture solution, discharging the culture solution, skimming the algal cells with the culture medium, or a combination thereof. By any method, the amount of medium coexisting with algal cells can be reduced. Also, by drying or discharging the culture solution, the culture solution present in the region between the liquid surface and the bottom of the culture solution can be reduced, and the culture of microalgae can be efficiently recovered It becomes easy.
- Examples of the method for drying the culture solution include natural drying, air drying, heat drying, lyophilization, a combination thereof and the like.
- natural drying can be performed, for example, by opening at least a part of the shielding member. This drying may be carried out in the presence of light or substantially in the absence of light.
- a microalga which forms a biofilm on the liquid surface to which the culture and recovery method of the present invention is suitably applied, it is possible even if the required culture solution is very shallow compared to the conventional method. Because of this, such natural drying can be easily dried. Therefore, it consumes less energy and contributes to cost reduction of algal biofuel.
- a drainage pipe, a flow path, a water channel, etc. are provided in advance, and the method is opened, or a method of suction and drainage with a pump, etc. The combination of these etc. is mentioned.
- the discharge of the culture solution may be performed from any part, but discharging from a position where the amount of microalga is present is preferable from the viewpoint of suppressing the outflow of microalga.
- the microalgal biofilm is formed on the liquid surface, so the bottom or bottom of the liquid holding portion It is preferable to discharge from the side of the vicinity.
- microalgae forming a biofilm on the liquid surface may form a microalgal biofilm also on the bottom of the liquid holding unit.
- the intermediate position it is preferable to discharge from the intermediate position because the amount of microalgae is small in the intermediate region excluding the liquid surface and the bottom portion. That is, discharge of the culture solution can be performed so as to remove at least a part of the culture medium present in the region between the liquid surface and the bottom, and in particular, the microalgae in the region between the liquid surface and the bottom It is preferable to carry out so as to remove at least a part of the culture solution present in the region substantially absent or not visually observed. Although it is expected that zoospores are present in the area where the microalgae is substantially absent or not visually observed, the zoospores are not visually observed because they are much smaller than the algal cells. .
- the discharged culture solution may be discarded, it is also possible to reuse it as a culture solution.
- the culture solution which remained in the storage member after the recovery process mentioned later can be reused similarly. That is, if nutrient components remain in the culture solution, the used culture solution may be used as it is to continue the culture solution, or a part of the used culture solution may be discarded and a new culture solution may be added. You may The amount of fresh culture medium added may be equal to or less than the amount discarded. In addition, it is more preferable to add a new culture solution from the viewpoint of being able to improve the growth rate of the microalga in the main culture in the latter stage.
- the nutrient component When a fresh culture solution is added, the nutrient component may be added in the state of being dissolved in the liquid, or may be added as a solid content. When it is added as a solid, it may be necessary to stir the culture solution, so it is more preferable to add it in a liquid state.
- a culture solution of the same component as the culture solution used for the main culture in the previous stage may be used, or a culture solution having different components may be added.
- a fresh medium having a high concentration of a specific component can be added to the culture solution used for the culture.
- the specific component is, for example, a compound including, but not limited to, any one selected from the group consisting of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and iron.
- the concentration is preferably 1.01 times to 100,000 times the normal case, and 10 It is more preferably twice or more and 10000 times or less, and most preferably 50 times or more and 5000 times or less.
- the specific component capacity concentration of the culture medium is more than 100,000 times, the volume of the culture solution becomes very small and the transportability and the introduction efficiency of the concentrated medium into the culture apparatus are improved, but depending on the type of medium component, the solubility Is worse. Furthermore, unnecessary precipitate may be generated upon introduction into the culture apparatus, and may not dissolve even after being diluted by stirring in the culture apparatus. As a result, the growth rate and growth amount of microalgae may be reduced.
- the component composition of the fresh medium may be the same as the composition of the medium component in the culture solution in the culture apparatus, a fresh medium composed of different components may be added. Furthermore, the medium and components in the culture solution may be partially the same. In addition, it is also possible to use a fresh medium which is prepared so that the components of the medium in the culture solution and the final concentration after addition differ greatly.
- the recovery step is a step of recovering the culture of microalgae after the liquid volume reduction step.
- the recovery method is not particularly limited, but for example, the obtained culture (biofilm, algal cells) is skimmed from a culture vessel (storage member) using tools of various forms such as a spatula-like, film-like member, Or the method of suctioning using a pump etc. is mentioned.
- the microalgae may be dispersed in the culture solution, but microalgal algae having the property of floating on the liquid surface by standing as described above, air, etc. It is preferable to apply the present invention to microalgae in which microalgae is floated on the liquid surface by floating by bubbling treatment, oil accumulation, or addition of a standing step, and microalgae capable of standing culture.
- microalga which can form a biofilm on the liquid surface.
- the algal cells since the algal cells form a biofilm on the liquid surface of the culture medium, it is easy to transfer this biofilm (algal cells) to another substrate or deposit it using another substrate for recovery.
- this biofilm algal cells
- algal cells not only algal cells present on the liquid surface but also algal bodies present in the water and bottom of the water may be recovered.
- the algal cells are skimmed together with the medium since it is easy to simultaneously scoop algal bodies present in the water and the bottom of the water.
- a method of transferring a biofilm (algal cells) to another substrate for recovery is a biofilm (algal cells) 903a composed of microalgae on the liquid surface of the culture tank 901, as shown in FIG. After transferring (a film-like structure or a three-dimensional structure) to the first substrate 902, a biofilm (alga) 903b is recovered from the first substrate 902. Also, a method of depositing and collecting a biofilm (algal cells) using another substrate is, for example, a biofilm (algal cells) 903a composed of microalgae on the liquid surface, as shown in FIG. After depositing (a film-like structure or a three-dimensional structure) on the second substrate 904, a biofilm (alga) 903b is recovered from the second substrate 904.
- any known method can be used as long as the biofilm (algal cells) can be peeled from the first substrate.
- a method such as peeling a biofilm from a substrate using a cell scraper, a method using a water flow, a method using ultrasonic waves, etc. can be mentioned, but a method using a cell scraper is preferable. This is because, in another method, the biofilm (algal cells) will be diluted with a medium or the like, which may require concentration again, which is inefficient.
- Recovery of the biofilm (algal cells) from the second substrate can be carried out by any known method as long as the biofilm (algal cells) can be peeled off from the second substrate.
- a method by gravity a method of peeling a biofilm from a substrate using a cell scraper, a method of using a water flow, a method of using ultrasonic waves, etc. can be mentioned, but a method utilizing a free fall by gravity.
- a method using a cell scraper or the like is preferable. This is because, in another method, the biofilm (algal cells) will be diluted with a medium or the like, which may require concentration again, which is inefficient.
- algal cells remaining on the second substrate can be recovered using a cell scraper or the like.
- All of the deposited microalgae and the biofilm (film-like structure or three-dimensional structure) composed of microalgae on the liquid surface may be recovered. Such a recovery method can be carried out even when the culture is terminated, another microalgae is cultured, or the medium in the culture tank is replaced. After the biofilm (algal cells) composed of microalgae on the liquid surface is transferred using the first substrate or recovered by the second substrate, the culture medium is removed, and the bottom of the culture vessel remains Microalgae may be recovered. Furthermore, all the microalgae in the culture tank may be recovered by a known method. Examples of the known method include recovery by a filter, recovery by a coagulant, and the like.
- the microalga on the bottom of the culture tank can be collected.
- the culture solution in the culture vessel may be removed to recover the microalgae on the bottom of the culture vessel or on the surface of the first substrate.
- Transfer when transferring a biofilm (algal cells) to a substrate is one type of adhesion, and adhesion substantially without growth.
- an operation of transferring the biofilm (algal cells) formed on the liquid surface to the surface of the first substrate substantially as it is using the first substrate is referred to.
- the transfer of the biofilm (algal cells) is a step of transferring the biofilm (algal cells) formed on the liquid surface to the surface of the substrate using the first substrate, as shown in FIG.
- a biofilm (algal body) is formed on the entire surface in the culture tank 901, and the recovery step is performed in such a state, but recovery in such a state may be performed, In the present invention, the recovery step can be performed even when there is a state in which a biofilm (algal body) consisting of microalgae is partially absent.
- the biofilm (algal cells) formed on the liquid surface may be wrinkled or folded, and from the folded microalgae.
- the constructed film-like structure may grow in the liquid like aurora (curtain-like).
- the first substrate and the second substrate are substrates used to transfer or recover a biofilm (algal cells) composed of microalgae on the liquid surface used in FIG. 46 or 47.
- the surface of the first substrate and the surface of the second substrate refer to any surface of the substrate, and refer to the top surface of the substrate, the bottom surface of the substrate, and the side surface of the substrate.
- microalgae adheres to these surfaces, it is in contact with a culture tank etc., and microalgae may come out to a culture solution from the layer formed between a substrate and the surface of a culture tank etc. If not, it is not the surface of the present invention.
- the shape of the substrate may be any shape such as film, plate, fiber, porous, convex, or wavy, but the adhesion, deposition, easiness of transfer, etc., and recovery of microalgae from the substrate It is preferable that it is a film form or plate shape from the ease of carrying out.
- the first substrate and the second substrate may have the same shape or different shapes.
- the area of the first substrate and the second substrate is preferably smaller than the area of the culture solution liquid surface in the culture vessel.
- the mass ratio of the algal cells to the culture solution (medium) is ⁇ mass of algal cells / mass of culture solution (medium) ⁇ , preferably 20/80 to 0.1 / 99.9, more preferably Is from 15/85 to 0.2 / 99.8, more preferably from 10/90 to 0.4 / 99.6.
- the mass of the algal cells is in the range of 0.1 to 20% by mass of the total mass of the algal cells and the culture solution (medium), the light is easily transmitted during the culture, and the culture is easily progressed. As it is not too much, the reduction effect of the load at the time of collection becomes large.
- the storage member when culture and recovery of microalgae are performed using a culture apparatus having a configuration in which a film is disposed on the surface of the liquid holding unit in contact with the culture solution, the storage member is used in the liquid volume reduction step. It is also preferable to recover the microalgae by reducing the liquid volume of the culture solution in the medium and bringing the microalgae (biofilm) into contact with the film to move the film.
- the first film or the second one in the above-described liquid volume reduction step A method of reducing the liquid volume of the culture solution until the film and the culture of microalgae come in contact, or lifting the second film to a position between the bottom and the liquid surface, the culture of the second film and the microalgae
- the liquid volume reduction step such as a method of reducing the culture liquid until the protein comes into contact, in addition to the method of contacting the film with the culture of microalgae, the second liquid film of the culture liquid volume in the liquid volume reduction step Or the like, and the second film is lifted in the recovery step to be brought into contact with the microalga, and the like, and the like.
- a culture apparatus 10f provided with the first film 22f described above, or a culture apparatus 10g provided with the second film 24g can be used.
- the first film and the second film used for the recovery of the microalgae are collectively referred to as a recovery film.
- the collecting film As a collection method in the case of collecting microalgae using a collecting film, after lifting, pulling out, winding up the collecting film to which the microalga is attached, the collecting film is inclined or turned upside down For example, it is possible to recover the microalga naturally by dropping the microalga or scraping the microalga from the film for recovery using a member such as a spatula, plate or blade. Among them, it is preferable to wind up and recover a recovery film.
- FIG. 28 is a schematic cross-sectional view showing an example of the culture apparatus 10 p after the main culturing step
- FIG. 29 is a schematic cross-sectional view showing the state of the culture device after the liquid amount reduction step
- FIG. 31 is a schematic cross-sectional view showing the state of the culture apparatus in the recovery step
- FIG. 32 is a schematic view showing the state in which the recovery film is being re-installed after the recovery step.
- FIG. 33 is a top view of the culture apparatus of FIG. 29, FIGS. 34 and 35 are top views of the culture apparatus of FIG. 31, and FIGS. 36 and 37 are recovery steps.
- FIG. 29 to FIG. 32 the illustration of the shielding member is omitted. Further, in FIG. 33 to FIG. 37, illustration of some members is omitted for the sake of explanation.
- the culture apparatus 10p shown in FIG. 28 covers the storage member 12n in which the third film 26j and the first film 22f are laminated in this order on the concave support 20n, and the liquid holding portion of the storage member 12n. And an arched shielding member 14c disposed on the The culture apparatus 10p shown in FIG. 28 shows the state after the main culture step, and the microalgae P is cultured on the liquid surface of the culture solution M held in the storage member 12n to form a biofilm.
- the culture fluid M is dried, drained from a drain pipe (not shown), or drained from a drying and drain pipe (not shown). .
- the microalgae P is deposited on the first film 22f.
- the first film 22f is moved to recover the microalgae P.
- a means for moving the first film 22f it has a first winding machine 202 provided with a winding roller, and as a first recovery member for recovering the microalgae P, A spatula 204 and a recovery container 206 are provided.
- the first film 22f is wound around the winding roller while the first film 22f to which the microalgae P is attached is wound by the first winder 202.
- the spatula 204 scrapes off the microalgae P on the first film 22 f and drops it to recover the microalgae P in the collection container 206.
- the winding roller of the first winder 202 may be rotated by a drive unit (not shown) or may be rotated manually.
- the film 210 for reinstallation wound around the installation roller 208 is unwound.
- the film 22f is moved to the top of the support 20n by connecting the end of the first film 22f by adhesion or the like and winding the film 210 for repositioning by the setting roller 208.
- the film 22f of 1 can be reused. By repeatedly using the recovery film in this manner, costs can be reduced, which is preferable.
- one set of the first winding machine 202 and the first recovery member is not limited to the configuration provided corresponding to one storage member, and the one set of the first winding machine 202 and the first collection member
- the first recovery member may be configured to perform recovery with a plurality of storage members.
- a plurality of storage members 12 are arranged in a direction orthogonal to the longitudinal direction of the storage member 12 and installed, and one set of the first winding machine 202a and the installation roller 208 are It is good also as composition arranged so that movement is possible in the direction which intersects perpendicularly with the longitudinal direction of storage member 12, respectively in the end part side of the longitudinal direction 12 of storage member.
- one set of the first winding machine 202a and the installation roller 208 are moved in the vertical direction in the drawing to wind up the recovery film of each storage member 12 and the microalgae from each storage member 12 It can be recovered.
- a storage member group 220 including a plurality of storage members 12 arranged in a direction orthogonal to the longitudinal direction of the storage members 12 is arranged and installed in the longitudinal direction of the storage member 12
- the first winder 202 may be disposed between the storage member group 220.
- the first winding machine used as the installation roller 208 in the storage member group 220 on the left in the drawing may be used as the first winding machine 202 b in the storage member group 220 in the middle of the drawing.
- the first winding machine 202c disposed adjacent to the right of the storage member group 220 in the middle in the figure can be used as an installation roller 208 which forms a pair with the first winding machine 202b.
- micro algae P is collect
- the culture (biofilm, algal cells) thus obtained is then transported or used as a fuel thereafter, and extraction and purification of the active ingredient in the culture (biofilm, algal cells)
- a drying process may be performed to further reduce the water content.
- the water content of the finally obtained culture (biofilm, algae) is preferably 80% by weight or less, more preferably 50% by weight or less, particularly preferably 20% by weight or less .
- the integral product of the culture (biofilm, algal cells) and film thus obtained can also be used as a fuel as it is. At this time, it is desirable that the culture (biofilm, algal cells) be sufficiently dried.
- the culture biological film, algal cells
- the culture solution is collected again, and if necessary, the culture seed algae and the like without collecting it. It is also possible to obtain a larger amount of culture (thick biofilm, algal cells) by repeating the culture and recovery steps by adding such microalgae. This operation may be repeated once or a plurality of times. Performing such a process is efficient because the amount of algal biomass obtained in one recovery process increases.
- the moisture content in the present invention is the weight of the moisture contained in the recovered product divided by the weight of the recovered product and multiplied by 100.
- the upper limit of the water content of the microalgal biofilm in the present invention is not particularly limited, but is preferably less than 98% by mass, more preferably 95% by mass or less, and particularly preferably 88% by mass or less.
- the moisture content of the microalgal biofilm cultured according to the culture and recovery method of the present invention is usually about 95 to 80% by mass even in the state where the algal cells on the water surface are recovered by the aforementioned recovery method. Furthermore, it is possible to make it about 90-75 mass% by processing with a centrifuge. In the case of culture by dispersion culture, most of the algal cells are present in water, and thus recovery is almost impossible with the above-mentioned recovery method. Therefore, methods such as recovering microalgae using a centrifuge with a culture solution are used, but even in that case, the water content is generally 90% by mass or more, and it is obtained by the culture method of the present invention.
- the moisture content of the above-liquid surface biofilm is lower than that and superior to conventional methods.
- the moisture content is lower in the three-dimensional structure including the foam structure, the scissor structure and the like than the film structure. It is presumed that this is because the three-dimensional structure is more distant from the liquid surface and closer to the light source, and the drying progresses to some extent.
- the moisture content varies depending on the site of the biofilm. For example, it is considered that the water content of the portion in contact with the liquid surface is high, and the water content of the portion not in contact with the liquid surface is low.
- the water content is the case where the biofilm on the liquid surface is recovered, and the area of the recovered matter is at least 10 cm 2 or more. Also, it is different from the moisture content after drying of the present invention.
- Algal biomass can be produced by using the above-described culture and recovery method of microalgae.
- the algal biomass in the present invention means organic resources derived from renewable organisms excluding fossil resources, and examples thereof include biological materials, foods, materials, fuels, resources and the like.
- the algal biomass includes microalga itself (which may be in the form of a biofilm), microalgal residue after collecting useful substances.
- the useful substance in the present invention is a kind of biomass derived from microalgae, which is a generic term for substances useful for the industry obtained from the biomass through steps such as an extraction step and a purification step.
- final products and intermediates and raw materials such as pharmaceuticals, cosmetics and health foods, raw materials of chemical compounds, intermediates and final products, hydrocarbon compounds, further oils, alcohol compounds, hydrogen and methane And energy substitutes such as enzymes, proteins, nucleic acids, sugars and lipid compounds such as DHA, astaxanthin etc.
- the useful substance can also be accumulated in the microalga by the useful substance accumulation step.
- Algal biofuels can be manufactured by using the above-described culture and recovery method of microalgae culture.
- the algal biofuel in the present invention is a microalgal dry matter, particularly one containing a flammable oil component inside, or a flammable flowable substance (oil) obtained from the microalgal dry matter.
- An oil is generally a mixture and is a substance that is extracted using a low polarity solvent such as hexane or acetone.
- the composition may be composed of a hydrocarbon compound, fatty acid, triglyceride or the like, or may be composed of a plurality of compositions selected from these. It can also be esterified and used as biodiesel.
- the method for collecting the oil contained in the microalgae recovery is not particularly limited as long as it does not impair the effect of the present invention.
- the final collected product is dried by heating to obtain a dried algal cell, then the cells are disrupted and the oil is extracted using an organic solvent.
- the extracted oil is generally purified because it contains impurities such as chlorophyll. Purification may be by silica gel column chromatography, by distillation (for example, by the distillation method described in JP-A-2010-539300). Such a method can also be used in the present invention.
- the biofilm which concerns on this invention has high oil content from a viewpoint of the usefulness as biomass.
- the oil content per dry algal body of the biofilm is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more.
- the oil content per dry algal body of the biofilm is usually 80% by mass or less.
- Example 1 (First pre-culture) As a first pre-culture, PS (polystyrene; polystyrene) (No. 28, As One Corp .; outer dimensions 63 mm ⁇ 50 mm ⁇ 25.5 mm; product number 4-5605-05) (in this example, case 28 made of PS) 40 mL of CSiFF 04 medium (the medium composition is shown in Table 3 below) and the microalga Chlorococcum sp. A mixture with the FFG 039 strain (FERM BP-22262 strain) (alga concentration 0.032 mg / mL) was added.
- FFG 039 strain FERM BP-22262 strain
- the PS case 28 containing the culture mixture is placed in a vacuum desiccator (VS type, As One Co., Ltd .; outer dimensions 300 mm ⁇ 300 mm ⁇ 170 mm; product number 1-070-01), temperature 23 ° C., carbon dioxide concentration 5% by volume
- VS type As One Co., Ltd .
- outer dimensions 300 mm ⁇ 300 mm ⁇ 170 mm; product number 1-070-01
- stationary cultures of microalgae were performed using a day white fluorescent lamp, at a light intensity of 15000 lx, a light period of 12 hours, and a dark period of 12 hours with a proof cycle of 15000 lx of the medium surface (first preculture).
- the culture temperature was controlled using an air conditioner set at 23 ° C.
- the number of days of culture for the first preculture was 14 days. Fourteen days after the start of culture, the PS case No.
- a second pre-culture was performed using the suspension of microalgae obtained in the first pre-culture in the same manner as the first pre-culture. However, using Seal Boy (No. 3, As One Co., Ltd .; external dimensions 319 mm ⁇ 230 mm ⁇ 113 mm; product number 4-5613-03) for the culture vessel, stationary culture of microalgae using 900 mL algal cell dispersion Done (second preculture). A vacuum desiccator is not used. The number of culture days for the second preculture was 14 days.
- microalgal biofilm formed on the liquid surface of the culture medium was recovered, and the same treatment as in the first pre-culture was performed to obtain a microalgal suspension.
- algal cells were dispersed manually using a 100 mL plastic container.
- Carbon dioxide is introduced into the air layer between the liquid surface of the culture solution in the incubator (storage member) and the groundnut after mixing the gas to a 1% concentration using a compressor and a carbon dioxide cylinder did. After 14 days, when the agricultural film was removed, formation of a film-like structure consisting of microalgae was observed on the liquid surface. The recovery was carried out in the same manner as in the first pre-culture, and a part thereof was used as an input algal body for the next main culture.
- An air layer N was present between the shielding member 14 c in the culture apparatus 10 p and the liquid surface of the culture solution M.
- the culture medium was precultured with Chlorococcum sp.
- the culture seed algae of the FFG 039 strain (FERM BP-22262 strain) was added so that the cell number would be 5 ⁇ 10 4 cells / mL. After the seed algae was added, stirring was performed to disperse the algae almost uniformly. After the algal cells were dispersed, the cells were cultured in a stationary state without stirring.
- the culture was carried out for 14 days, and the majority of the culture solution was removed by a pump from the region with few algal cells between the liquid surface of the culture solution and the bottom of the water tank.
- the remaining culture solution was allowed to dry naturally during the day by opening a part of the shielding member 14c (see FIGS. 29 and 30).
- the state of the first film after drying is shown in FIG. After drying, one of the agricultural films constituting the bottom of the water tank, which was in contact with the culture solution, is wound using the first winder 202, and at the same time, the dried algal cells on the film are stripped off. The dried algal cells were collected (see FIG. 31).
- Example 2 (First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed.
- a storage member was formed by laying one plastic film (Tekinasi) as a first film on a rectangular concrete water tank having a long side of 3 m and a short side of 1.2 m, which was installed outdoors. The concrete water tank was used for breeding goldfish, and the water tank was sufficiently cleaned before producing the storage member.
- the culture medium was precultured with Chlorococcum sp.
- the culture seed algae of the FFG 039 strain (FERM BP-22262 strain) was added so that the cell number would be 5 ⁇ 10 4 cells / mL, and agitation was performed to disperse the algae bodies almost uniformly. Thereafter, the main culture is carried out for 14 days in the same manner as in Example 1, and the dried algal cells are removed by removing the culture solution, naturally drying, winding the first film and stripping the dried algal cells from the first film. I was able to get
- Comparative Example 1 First Preculture, Second Preculture, and Third Preculture
- Main culture was performed in the same manner as in Example 1. Two weeks after the start of culture, a biofilm consisting of microalgae was formed on the liquid surface, so the culture solution is contacted with the agricultural film constituting the bottom of the culture tank without reducing the volume of the culture solution. I pulled out the one who was doing it.
- Example 3 (First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed. (First Main Culture) The main culture was performed in the same manner as in Example 1 except that only one agricultural film was used when producing the culture apparatus. Two weeks after the start of culture, a biofilm consisting of microalgae was formed on the liquid surface of the culture solution. Therefore, after reducing the liquid volume of the culture solution by the same method as in Example 1, the culture solution volume is further increased by evaporation. I reduced it. In this state, the agricultural film which constituted the bottom of the culture tank was wound up with a first winder and was simultaneously recovered by depriving the microalga on the agricultural film.
- the calorific value per unit mass of the dried algal cells obtained by the first main culture was compared with the calorific value per unit mass of the dried algal bodies obtained by the second main culture.
- the calorific value per unit mass of the dried algal cells obtained by the second main culture was lower than the calorific value per unit mass of the dry algal bodies obtained by the first main culture.
- the soil had adhered to the lower part of the film for agriculture which wound up after the 1st main culture, the contamination of the soil wound the film for agriculture after collect
- the soil did not contaminate the recovered product, the side that was in contact with the culture solution of the agricultural film at the time of winding was in contact with the side that was in contact with the ground and was in contact with the culture solution.
- Example 4 First Preculture and Second Preculture
- the first preculture and the second preculture were performed.
- Plastic bowl jumbo 180 plastic, inner size 92.5 cm ⁇ 59.1 cm
- culture tank was placed on the ground (soil).
- 27 L of CSiFF04 medium (sometimes referred to simply as “culture solution” in this example) is placed (water depth 5 cm), and the seed algae prepared by pre-culture is 5 ⁇ 10 5 cells. It was added to the culture solution in the culture tank so as to be / mL.
- a double-sided tape was attached to the top of the culture vessel, and a culture apparatus was produced by covering the upper surface of the culture vessel with texas. Liquid surface suspension culture using sunlight as a light source was started (main culture). Distilled water was added as needed to prevent a decrease in liquid volume due to evaporation of water in the culture solution.
- CSiFF04 medium after preparing 6 kinds of high concentration culture broth of N compound, two kinds of P compounds, Mg compound, EDTA compound, and other compounds, add one by one in this order, if necessary Stirring was performed to avoid promoting formation of unwanted precipitates.
- the dried algal cells adhering to the inside of the culture vessel were collected by scraping using a spatula.
- the moisture content was 24%. Therefore, it was further dried using a drier at 105 ° C. overnight.
- the weight after drying was 25.4 g.
- Example 5 A 120 cm ⁇ 80 cm texas film is placed under plastic jumbo 180 (which may simply be referred to as “incubation tank” in this example), except that the cultivation tank is not in direct contact with the soil.
- pre-culture and main culture were performed.
- the culture, partial dehydration of the culture solution, and recovery of algal cells were able to be performed, and no rebound of the soil was observed when it rained on the outer side surface of the culture tank .
- adhesion of soil due to rebound of water droplets was observed on the outer side surface of the culture tank after the culture.
- Example 6 A tekina film was laid inside the plastic tub jumbo 180 (it may be simply referred to as "water tank” in this example) to prepare a culture tank. After culture, partial culture solution removal, and natural drying were carried out in the same manner as in Example 4 except that the culture tank prepared as described above was used in place of the plastic mulberry jumbo 180, the vegan film was removed. It was removed from the water tank and deprived of dried algal cells on the texas film.
- Example 7 A tekina film was laid inside the plastic tub jumbo 180 (it may be simply referred to as "water tank” in this example) to prepare a culture tank.
- culture and partial culture fluid removal were carried out in the same manner as in Example 4 except that the culture tank prepared as described above was used instead of the plastic tub jumbo 180, and Most of the algal cells on the texas film did not move even if they were moved.
- another texas film was laid in the water tank and culture was started. By doing this, drying time was saved.
- the dried algal cells were obtained by depriving the dried algal cells on the first texas film.
- Example 8 The point which floated the plastic bowl jumbo 180 (in this example, it may only be called “the culture tank”) in the water tank which filled the water of 10 cm depth with a rectangular shape of 2 m long side x 1.2 m short side Except for the above, culture, partial dehydration of the culture solution, and recovery of algal cells were performed in the same manner as in Example 4. In addition, in order to prevent shaking of the culture tank, holes were made at the corners of the culture tank and the water tank and fixed with a rope so as not to move.
- Example 9 As an algal strain, Chlorococcum sp. The culture is performed in the same manner as in Example 1 except that 28 kinds of microalgae described in Table 4 are used instead of the FFG039 strain (FERM BP-22262 strain), and a biofilm consisting of microalgae is recovered did.
- Example 10 As an algal strain, Chlorococcum sp. The culture was carried out in the same manner as in Example 1 except that the FFG055 strain and the FFG061 strain described in Table 4 were used instead of the FFG 039 strain (FERM BP-22262 strain). Although both strains do not float on the liquid surface, they are algal strains that can be statically cultured. After the culture, the culture solution was removed from the liquid surface. Since the algae strain used is only partially attached to the agricultural film that constitutes the storage member, care was taken not to aspirate and remove the algae when removing the culture solution using a pump. Only about 20% of the solution could be removed. This is considered to be due to the release of a water-absorbing substance into algal bodies.
- Example 1 After partially removing the culture solution, natural drying was performed outdoors, but it took more time than in Example 1. It was possible to wind up the film in contact with the culture solution among the two agricultural films constituting the storage member, and to recover the dried algal bodies deposited thereon. Thus, even the algae not floating on the liquid surface could be cultured by the culture and recovery method of the present invention.
- Example 11 Culture was performed in the same manner as in Example 1. However, as shown in FIG. 15, as the installation surface, one in which the ground is dug down and a bowl-like object is installed at a site at the height of the ground, or Using the above, two agricultural films were laid on each installation surface to produce a culture apparatus. As a result, in the case of the former, the rise of the temperature of the air layer and the temperature of the liquid phase in the culture apparatus when the outside temperature is high can be suppressed, and the growth of microalgae can be appropriately performed. Workability has improved. After the culture, the incubator (storage member) was removed, the soil was returned to the original state, and spinach was grown, but it could be grown without any problem.
- the incubator storage member
- Example 12 Culture was performed in the same manner as in Example 1. However, by applying clay on red soil, volcanic ash collected in the vicinity of Sakurajima to water to make it into a clay shape, or sand, it is applied to the surface of the support constituting the storage member, thereby eliminating new irregularities as much as possible. The body was prepared, and an agricultural film was placed thereon to prepare a storage member. Moreover, the storage member was produced using the support which did not perform these processes, and it culture
- Example 13 Culture was performed in the same manner as in Example 1. However, the film for agriculture for producing a storage member was used not in two sheets but in five sheets, and two films for agriculture of the shielding member were used. In addition, as a comparison, culture was performed with the agricultural film of the shielding member remaining as one sheet. When two-ply agricultural films were used, the proliferation was improved when the outside air temperature was low, as compared to the case where only one agricultural film was used. This is considered to be the effect of heat retention. In addition, recovery was performed only about the film for agriculture which is in direct contact with the culture solution among the five films for agriculture. The agricultural film to which the algal cells are attached was wound and burned as it was. That is, it was used as a solid fuel. In addition, the culture solution could be added to the remaining four films and cultured again. Thereby, the effort which installs the film for agriculture in a incubator (storage member) one by one was able to be reduced significantly.
- Example 14 Culture was performed in the same manner as in Example 1. However, instead of the agricultural film (first film) on the front side, a mesh (a second film) with an opening of 4 cm was used. As a comparative example, an agricultural film, that is, a film without an opening was used as the film on the surface side. Further, a groove of 5 cm in width and 5 cm in depth was dug in the bottom of the installation surface in the major axis direction of the incubator (storage member). After completion of the culture, when most of the culture solution was removed, the network appeared to be covered with the microalgal biofilm on the liquid surface. Drying was carried out in this state, and algal cells remained alive at the bottom grooves, but algal cells on the reticulum could produce a dry state.
- the network was again placed in the incubator (storage member), and a new culture solution was placed in the culture apparatus to start culture. That is, the microalgae which remained in the groove part can be cultured as a seed algae, and the culture can be performed without using the seed algae newly procured from another culture apparatus.
- Example 15 Culture was performed in the same manner as in Example 1. However, glass beads having a diameter of 0.177 to 0.250 (As One Ltd., 6-257-04) mm were spread between the two agricultural films. The culture proceeded without any problem, and the film could be wound smoothly. In addition, a rod-like structure is previously installed between two agricultural films, and when winding up one of the two agricultural films that was in contact with the culture solution, the rod-like structure is vertically upward. By lifting, the frictional force between the two agricultural films could be reduced, and it was possible to smoothly roll up the two agricultural films which were in contact with the culture solution. The culture also proceeded without problems.
- Example 16 Culture was performed in the same manner as in Example 1. However, two storage members were installed in one shielding member. Also, the start of culture in each storage member was delayed for 7 days. Culture in any of the reservoirs proceeded without problems. In addition, after collecting the algal cells in one of the storage members, the alveolar structure is partially broken by collapsing the ridge-like structure of the partition with the storage member in which the culture is being performed. It was also possible to introduce it and start the culture again. As a result, it was possible to greatly reduce the time and effort of feeding the seed algae at the start of culture.
- Example 17 The microalga was cultured in the same manner as in Example 1. However, the bottom of the support portion of the storage member was inclined, and the difference in depth between the shallow side and the deep side of the bottom was set to 5 cm. The culture proceeded without problems. This facilitated the removal of the culture solution.
- Example 18 Culture was performed in the same manner as in Example 1. However, any of the functional films listed in Table 5 was used in place of the agricultural film for forming the tunnel-like structure of the shielding member. Both were able to culture without problems.
- Example 19 Culture was performed in the same manner as in Example 1. However, the shape of the tunnel-like structure was modified to the shape shown in FIG. 19 or 21.
- the tunnel-like structure having the shape shown in FIG. 19 was excellent in the measures against rain, the prevention of water drops, and the wind resistance.
- the tunnel-like structure having the shape shown in FIG. 21 is excellent in the measures against rain, the prevention of water drops, and the wind resistance.
- Example 20 Culture was performed in the same manner as in Example 1. However, when a vinyl for waist winding is installed on the side of the tunnel-like structure, which is a shielding member, and the temperature rises 7 ° C. lower than the high temperature side of the microalga culture temperature range, a part of the vinyl for waist winding Temperature control was performed by opening it. When the temperature was not adjusted, the weight of the obtained algal cells was reduced as compared to the one performed, but the algae could be harvested without any problem.
- Example 21 Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 2 to 6 ° C. by placing the cryostat on the outside of the tunnel-like structure which is a shielding member. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
- Example 22 Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 3 to 7 ° C. by spraying cooling water to the outside of the tunnel-like structure which is the shielding member. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
- Example 23 Culture was performed in the same manner as in Example 1. However, by flowing cooling water between the two agricultural films that make up the storage member and between the agricultural film that is not in contact with the culture solution and the ground, the temperature in the culture apparatus can be reduced. The temperature could be lowered by about 3 to 7 ° C. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
- Example 24 Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 3 to 8 ° C. by spraying particulate water droplets on the air layer in the culture apparatus. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
- Example 25 Culture was performed in the same manner as in Example 1. However, a network-like material through which gas can pass is installed at a low position and a high position in the inner space of the tunnel-like structure constituted by the columns and the agricultural film, and the high temperature air flows upward. The temperature in the culture apparatus could be lowered by about 2 to 6 ° C. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
- Example 26 Culture was performed in the same manner as in Example 1. However, without collecting the algal cells on the agricultural film, a new culture solution and seed algae were added and cultured again. This is repeated five times to dry the algal cells on the agricultural film that has been in direct contact with the culture solution, and at the same time winding the film, the algal cells are stripped from the film to obtain a dry algal body. The This made it possible to reduce the process of winding up the film and removing algal cells from the film.
- Example 27 Culture was performed in the same manner as in Example 1. However, carbon dioxide was supplied by CO 2 tablets. As a supply method, the thing put in the culture tank which is culturing microalga, the small water tank which is not culturing the algae body is installed in the air layer in the culture apparatus, and the CO 2 tablet is placed in the water tank Those used for generating carbon dioxide were used. In the case of the former, although part of the water surface algae was destroyed, the ratio to the whole was a part, and there was almost no influence. In any case, the culture could be done without problems.
- Example 28 Culture was performed in the same manner as in Example 1. However, natural drying of algal bodies was performed at night. By this, the daytime required for culture could be used effectively, and the dry algal body production amount in a fixed period could be improved.
- Example 29 The dried algal cells obtained in Example 1 were subjected to hexane extraction to obtain an oil.
- the oil content was 35% of the dry weight.
- Example 30 Pellets were prepared from the dried algal cells obtained in Example 1. The heat of combustion of the obtained pellets was 6000 cal / g.
- Example 31 The culture was carried out in the same manner as in Example 1, and after removing most of the medium with a pump, the wet algal cells were placed in a 1 L beaker and homogenized by thoroughly stirring. This was divided into 12 and each was applied onto the materials listed in the "material” column of Table 6. Next, they were placed in an oven and dried by heating to 130 ° C. After drying, the adhesion or peelability of the dried product was evaluated from the material. The results are shown in the "adhesion or peelability" column of Table 6. The dried algal cells were firmly attached to the cardboard, the aluminum bat and the aluminum foil (matted surface, glossy surface), but the dried algal cells were easily exfoliated from the glass and various main polymers only by tilting. In FIG. 40, for each material of aluminum bat, aluminum foil (matted surface) and fluorocarbon resin, only the material is wet, and the algal cells are dried and dried, and the dried algal cells are removed from the material. The state of each after peeling is shown.
- Example 32 The culture was carried out in the same manner as in Example 1 to form a biofilm on the liquid surface.
- the biofilm formed on the liquid surface was collected from a plurality of places and observed with an optical microscope, the microscopic image schematically represented in FIG. 41 or FIG. 42, or the ratio of algal bodies 601 and algal aggregate 603
- FIG. 41 schematically illustrates the state in which the algal bodies 601 and the extracellular matrix 602 form a biofilm.
- FIG. 42 schematically shows a state in which the algal bodies 601 and the algal body aggregate 603 and the extracellular matrix 602 form a biofilm.
- the aggregate of algal bodies 603 is considered to be one where algal bodies 601 are bound by extracellular polysaccharide.
- a microscopic image schematically represented in FIG. 43 was obtained.
- the biofilm formed on the liquid surface was a three-dimensional structure, and as shown in FIGS. 44 and 45, a foam-like structure and a scaly structure were formed.
- a biofilm 701 was formed on the liquid surface of the culture solution 802 placed in the culture tank (storage member) 801. In the biofilm 701, a foam-like structure 703 and a cocoon-like structure 702 were also observed.
- the foam-like structure 703 varied in size and shape, but was often several millimeters to several centimeters large, and the foam film could be easily broken.
- the gas inside the foam structure 703 is presumed to contain carbon dioxide or oxygen which has not been confirmed, but is generated by metabolism.
- the rod-shaped structure 702 was found to be invaginated in the culture solution 802.
- the rod-shaped structure 702 is presumed to be invaginated in the culture solution 802 by the force from the lateral direction of the rod-shaped structure 702 along with the extension of the biofilm 701.
- Example 33 (First pre-culture) PS (polystyrene; polystyrene) case (No. 28, As One Corporation; outer dimensions 63 mm ⁇ 50 mm ⁇ 25.5 mm; part number 4-5605-05) (in this example, “PS product made in the following manner In the case of No. 28), 40 mL of CSiFF 04 medium (the medium composition is shown in the above-mentioned Table 3) and the microalga Chlorococcum sp.
- a mixture of the FFG 039 strain (FERM BP-22262 strain) with 1 mL of a CSiFF 04 medium dispersion (algal concentration 1.2 mg / mL) (hereinafter sometimes referred to as "culture mixture”) was added.
- a No. 28 PS case containing a culture mixture using a white fluorescent lamp under conditions of a temperature of 23 ° C. and a carbon dioxide concentration of 5% by volume, the illuminance of the liquid surface of the medium is 15000 lx, the light period 12 hours, the dark period 12
- Stationary culture (liquid surface suspension culture) of the microalga was carried out in the irradiation cycle of time (first pre-culture).
- the culture temperature was controlled using an air conditioner set at 23 ° C.
- the number of days of culture for the first preculture was 14 days. Fourteen days after the start of culture, a microalgal biofilm formed on the liquid surface of the medium was recovered using a nylon film (thickness 1 mm) having the same length as the short diameter of Case 28 made of PS.
- a second pre-culture was performed using the microalgal biofilm obtained in the first pre-culture. Specifically, using a plastic vat (30 cm ⁇ 23 cm ⁇ 7 cm) in the culture tank, add half amount (mass base) of the microalgal biofilm obtained in the first pre-culture to 2800 mL of CSiFF04 medium, Stationary culture (liquid surface suspension culture) of the microalga was performed under the same culture conditions as the first pre-culture (second pre-culture). The number of days of culture for the second preculture was 14 days. Fourteen days after the start of culture, the microalgal biofilm formed on the liquid surface of the medium was recovered.
- the collected microalgal biofilm was transferred to a 500 mL plastic container containing 300 mL of CSiFF04 medium. After shaking this plastic container by hand, ultrasonication was carried out for 5 minutes to obtain a microalga CSiFF 04 medium dispersion (hereinafter sometimes referred to as “seed algae dispersion” in this example). 5 mL was collected from the obtained seed algal dispersion, followed by filtration and drying (130 ° C., 1 hour), and the dry algal body weight of the microalga obtained by the pre-culture was determined.
- seed algae dispersion a microalga CSiFF 04 medium dispersion
- seed algal concentration in the seed algal dispersion (hereinafter sometimes referred to as “seed algal concentration" in the present example) (mg / mL) is calculated from the dry algal weight obtained, it is 10.7 mg. It was / ml.
- the improved culture medium (the composition of the culture medium is shown in Table 7 below) and the depth of the culture medium are used for this culture tank. was put so that it would be 20 cm.
- a seed algal dispersion was added to the improved culture medium in the culture tank so that the algal body concentration was 4.0 g / m 2 .
- a culture vessel containing this medium and seed algal dispersion at a temperature of 23 ° C. and a carbon dioxide concentration of 5% by volume, using a daylight white fluorescent lamp, the illuminance on the medium liquid surface is 22000 lx, and the light period is 12 hours. Dark period A stationary culture (liquid surface suspension culture) of microalgae was performed (main culture) in an irradiation cycle of 12 hours.
- the culture days of the main culture were 9 days.
- the media surface was exposed by gently pushing away the microalgal biofilm formed on the entire surface of the culture medium using a plastic plate, taking care not to cause sedimentation. Using a pump, 95% by volume of the culture medium at the end of the main culture was discharged so as not to discharge the microalgal biofilm and algal cells formed on the liquid surface of the culture medium and the algal cells at the bottom of the culture tank (medium Medium volume discharged at volume reduction (95% by volume). The medium depth after draining was 1 cm. By removing the plastic plate, the microalgal biofilm spread again all over the medium surface. In addition, a part of the microalgal biofilm is collected and dried at 130 ° C.
- algal body yield g / m 2
- algal body productivity g / m 2 / day
- Oil content (mass%) (weight of residue (g) / weight of dried algal body (g)) ⁇ 100
- the oil productivity (g / m 2 / day) was calculated by multiplying the algal cell productivity (g / m 2 / day) previously obtained by the oil content rate. The results are shown in Table 8.
- Example 34 The culture and recovery of the microalga are carried out in the same manner as in Example 33 except that the culture days of the main culture are changed from 9 days to 11 days, and further, the culture days of the post culture are changed from 5 days to 3 days. Algal cell yield, algal cell productivity, oil content and oil productivity were calculated. The results are shown in Table 8.
- Example 35 The amount of medium discharged at the time of reduction of the amount of medium fluid was changed from 95% by volume to 75% by volume of the amount of medium fluid at the end of the main culture (the amount of medium discharged at the time of volume reduction of medium 75% by volume).
- the microalgae was cultured and recovered in the same manner as 33, and algal body yield, algal body productivity, oil content and oil productivity were calculated. The results are shown in Table 8.
- Comparative Example 2 Cultivation and recovery of microalgae were carried out in the same manner as in Example 33 except that the number of days of culture of the main culture was changed from 9 days to 14 days, and post-culture was not carried out, algal body yield, algal body productivity , Oil content and oil productivity were calculated. The results are shown in Table 8.
- total culture days (day) represents the total number of main culture days and post culture days.
- Example 36 (First Pre-Culturing and Second Pre-Culturing) In the same manner as in Example 33, the first pre-culturing and the second pre-culturing were performed to obtain a seed algal dispersion.
- a plastic cylindrical container (diameter 13.4 cm, height 21 cm) is used for the culture tank, and the CSiFF04 medium (the medium composition is shown in the above-mentioned Table 3) is used for this culture tank, and the depth of the medium. was put so that it would be 20 cm.
- a seed algal dispersion was added to the CSiFF04 medium in the culture tank so that the algal body concentration was 4.0 g / m 2 .
- using a culture vessel containing a culture medium and a seed algae dispersion using a white-white fluorescent lamp under conditions of a temperature 23 ° C.
- the whole amount of microalgal biofilm and algal cells obtained by culture was recovered.
- the collected microalgal biofilm and algal cells were dried at 130 ° C. in a constant temperature dryer for 3 hours to obtain dry algal bodies (hereinafter sometimes referred to as “dry algal bodies” in this example).
- the weight of the dried algal cells was measured to obtain the dried algal body weight (g).
- the value obtained by dividing dry algal body weight by culture area (container bottom area) (m 2 ) is used as algal body yield (g / m 2 ), and value obtained by dividing algal body yield (g / m 2 ) by culture days is algal Body productivity (g / m 2 / day).
- Example 37 Cultivation and recovery of microalgae were carried out in the same manner as in Example 36, except that the post-culture was changed to the atmosphere under a carbon dioxide concentration of 5% by volume, and algal yield, algal productivity, oil content and oil productivity was calculated. The results are shown in Table 9.
- Comparative Example 3 The first preculture, the second preculture, and the main culture were performed as in Example 36. Thereafter, all the microalgal biofilm and algal cells obtained by the culture are collected, suction-filtered, and the medium components are removed by washing with water (100 mL ⁇ 2 times) to obtain a microalgal culture. The To the obtained culture, 5.0 mL of water was added and stirred to obtain an aqueous dispersion (algaloid dispersion) of fine algae. The solid content of algal bodies in this algal dispersion was determined to be 8.34%. Thus, microalgae was post-cultured and recovered in the same manner as in Example 36 except that the medium was replaced with water, and algal body yield, algal body productivity, oil content, and oil productivity were calculated. The results are shown in Table 9.
- Comparative Example 4 The first preculture, the second preculture, and the main culture were performed as in Example 36. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The obtained culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the dry algal body weight (g). In the same manner as in Example 36, algal cell yield (g / m 2 ), algal cell productivity (g / m 2 / day), oil content (mass%) and oil productivity (g / m 2 / day) are calculated. did. The results are shown in Table 9.
- Comparative Example 5 The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 36 except that the culture days of the main culture were changed from 14 days to 17 days. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The resulting culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the amount of algal bodies (g). The algal cell yield, algal cell productivity, oil content and oil productivity were calculated in the same manner as in Example 36. The results are shown in Table 9.
- total culture days (day) represents the total of main culture days and post culture days.
- Example 38 (First pre-culture) PS (polystyrene; polystyrene) case (No. 28, As One Corporation; outer dimensions 63 mm ⁇ 50 mm ⁇ 25.5 mm; part number 4-5605-05) (in this example, “PS product made in the following manner In the case 28), 40 mL of CSiFF04 medium (the composition is shown in Table 3 above) and a dispersion of CSiFF04 medium of the microalga Botryococcus sudeticus AVFF 007 strain (FERM BP-11420 strain) A mixture with 1 mL (algal concentration 1.2 mg / mL) (hereinafter sometimes referred to as "culture mixture” in this example) was added.
- a second pre-culture was performed using the microalgal biofilm obtained in the first pre-culture. Specifically, using a plastic vat (30 cm ⁇ 23 cm ⁇ 7 cm) in the culture tank, add half amount (mass base) of the microalgal biofilm obtained in the first pre-culture to 2800 mL of CSiFF04 medium, Stationary culture (liquid surface suspension culture) of the microalga was performed under the same culture conditions as the first pre-culture (second pre-culture). The number of days of culture for the second preculture was 14 days. Fourteen days after the start of culture, the microalgal biofilm formed on the liquid surface of the medium was recovered.
- the collected microalgal biofilm was transferred to a 500 mL plastic container containing 300 mL of CSiFF04 medium. After shaking this plastic container by hand, ultrasonication was carried out for 5 minutes to obtain a microalga CSiFF 04 medium dispersion (hereinafter referred to as "seed algae dispersion" in this example). 5 mL was collected from the obtained seed algal dispersion, followed by filtration and drying (130 ° C., 1 hour), and the dry algal body weight of the microalga obtained by the pre-culture was determined.
- seed algae dispersion a microalga CSiFF 04 medium dispersion
- seed algal concentration in the seed algal dispersion (sometimes referred to as “seed algal concentration” in this example) was calculated from the dry algal weight obtained, it was 10.7 mg / ml. Met.
- TPX-stained bat vertical type, As One Co., Ltd .; size 94 mm ⁇ 46 mm ⁇ 96 mm; product number 2-3029-01
- the CSiFF 04 medium composition described in Table 3 above
- a seed algal dispersion was added to the CSiFF04 medium in the culture tank so that the algal body concentration was 0.67 g / m 2 .
- a white-white fluorescent lamp under conditions of temperature 23 ° C.
- a stationary culture (liquid surface suspension culture) of microalgae was performed (main culture) in an irradiation cycle of 12 hours.
- the culture days of the main culture were 14 days.
- PS Case No. 28 was prepared in a culture vessel, and the microalgal biofilm scooped on a plastic plate was spread on the bottom of this culture vessel. Using this culture vessel, the temperature on a microalgal biofilm surface spread to the bottom of the culture vessel using a day-white fluorescent lamp under conditions of a temperature of 23 ° C. and a carbon dioxide concentration of 5 vol. In the dark, a 12-hour irradiation cycle, the microalgae culture was further continued (post culture). The number of days for post-culture was 3 days.
- the whole amount of microalgal biofilm and algal cells obtained by culture was recovered.
- the collected microalgal biofilm and algal cells were dried at 130 ° C. in a constant temperature dryer for 3 hours to obtain dry algal bodies (hereinafter sometimes referred to as “dry algal bodies” in this example).
- the weight of the dried algal cells was measured to obtain the dried algal body weight (g).
- the value obtained by dividing dry algal body weight by culture area (container bottom area) (m 2 ) is used as algal body yield (g / m 2 ), and value obtained by dividing algal body yield (g / m 2 ) by culture days is algal Body productivity (g / m 2 / day).
- Comparative Example 6 The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 38. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The obtained culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the dry algal body weight (g). In the same manner as in Example 38, algal yield (g / m 2 ), algal productivity (g / m 2 / day), oil content (mass%) and oil productivity (g / m 2 / day) were produced. did. The results are shown in Table 10.
- Comparative Example 7 The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 38 except that the culture days of the main culture were changed from 14 days to 17 days. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The resulting culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the amount of algal bodies (g). Algal body yield, algal body productivity, oil content and oil productivity were produced in the same manner as in Example 38. The results are shown in Table 10.
- total culture days (day) represents the total of main culture days and post culture days.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Provided is a method for culturing and collecting a microalgae culture by using a culturing device provided with a storage member that stores a culture fluid, wherein the method includes the following: a main culturing step for culturing microalgae in a culture fluid while keeping an air layer present above the culture fluid; a liquid amount reduction step for reducing the amount of liquid in the culture fluid; and a collection step for collecting the microalgae culture after the liquid amount reduction step.
Description
本発明は、微細藻類の培養物の培養及び回収方法に関する。
The present invention relates to a method for culturing and recovering cultures of microalgae.
近年、産業活動の発達などに伴って、大量の化石燃料を使用することによる燃料価格の高騰や、化石燃料を使用することによって大気中に放出された二酸化炭素による温室効果で地球温暖化が進展することが問題となっている。
In recent years, with the development of industrial activities, global warming is progressing due to the soaring fuel price by using a large amount of fossil fuel and the greenhouse effect by carbon dioxide released into the atmosphere by using fossil fuel Is a problem.
このような問題を解決するための手段として、光エネルギーにより二酸化炭素を固定化し、炭化水素化合物やバイオディーゼル(トリグリセリド)等のバイオ燃料に変換する能力を有する微細藻類の利用に対する期待が高まっており、既に、微細藻類を培養することで、光エネルギーを用いて二酸化炭素を固定化し、バイオディーゼルや炭化水素化合物などのバイオ燃料を産生させる様々な研究が行われている。
As a means to solve such problems, there is increasing hope for the use of microalga which has the ability to fix carbon dioxide with light energy and convert it to biofuels such as hydrocarbon compounds and biodiesel (triglyceride). Already, various studies have been conducted to fix carbon dioxide using light energy by culturing microalgae and to produce biofuels such as biodiesel and hydrocarbon compounds.
しかし、微細藻類を用いてのバイオ燃料の生産を実用化し、商業的規模で行うには、効率的な微細藻類の培養方法、微細藻類の回収方法、更にはオイル等のバイオ燃料の抽出方法が開発されておらず、コストが高いことが問題となっている。その最大の原因の一つが、微細藻類の効率的な培養方法、乾燥方法、回収方法がないことである。具体的には、微細藻類は通常、液中に浮遊しながら生育させるため、微細藻類をバイオマスとして利用するためには、非常に希薄な濃度の微細藻類を大量の液中から回収しなければならない。加えて、微細藻類の生育のためには光エネルギーが必要であるため、十分な光の照射を確保するためには液中に存在する微細藻類の濃度を過度に高くすることが出来ない。結果として、液中に浮遊する微細藻類を回収するには、多量の水をろ過する必要があった。また、微細藻類のサイズは一般的に小さく、ろ過も容易ではなかった。このような問題を解決するための回収方法の検討として、沈殿剤を用いる方法、遠心分離機を用いる方法、微細藻類をより大型の生物の餌とした後に、その大型の生物を回収する方法などが試みられたものの、いずれの方法も根本的な解決には至らなかった。
However, in order to commercialize biofuel production using microalgae and carry it out on a commercial scale, efficient microalgal culture methods, microalgae recovery methods, and extraction methods of biofuels such as oil are also available. The problem is that it has not been developed and its cost is high. One of the biggest causes is the lack of efficient culture, drying and recovery methods for microalgae. Specifically, since microalgae usually grow suspended in liquid, in order to use microalgae as biomass, it is necessary to recover very thin concentrations of microalgae from a large amount of liquid . In addition, since light energy is required for the growth of the microalgae, the concentration of the microalgae present in the liquid can not be excessively high in order to secure sufficient light irradiation. As a result, in order to recover the microalgae suspended in the liquid, it was necessary to filter a large amount of water. In addition, the size of microalgae was generally small and filtration was not easy. As a study of recovery methods for solving such problems, a method using a precipitant, a method using a centrifuge, a method of recovering large organisms after using microalga as feed for larger organisms, etc. Although no attempt was made, none of the methods led to a fundamental solution.
これに対して、特許文献1には、簡便で低コストな方法として、ボツリオコッカス・スデティクス(Botryococcus sudeticus) AVFF007株の懸濁溶液又は分散液を調製し、培養器(貯留部材)を静置状態にしておき、微細藻類を底面に沈ませた後、しばらく培養することによって、液面上にバイオフィルムを形成させることを特徴とする微細藻類の培養方法、及び形成させたバイオフィルムを基板の表面に転写又は堆積させて回収することを特徴とする微細藻類の回収方法が記載されている。また、特許文献2には、より簡便で低コストな方法として、ボツリオコッカス・スデティクス(Botryococcus sudeticus) AVFF007株を、第一の培養器(貯留部材)内の培養液中で培養することによって、培養液の液面上に微細藻類からなるバイオフィルムを形成させる第一段目の培養と、培養液の液面上に形成されたバイオフィルムの少なくとも一部を種藻として用いることで、微細藻類を液面上で培養する第二段目の培養とを含むことを特徴とする微細藻類の培養方法、及び形成させたバイオフィルムを基板の表面に転写又は堆積させて回収することを特徴とする微細藻類の回収方法が記載されている。特許文献1に記載された方法及び特許文献2に記載された方法はいずれも、微細藻類を回収する段階では、微細藻類の集合体から構成されたバイオフィルムが液面上に浮かんでおり、そのバイオフィルムを回収対象としているため、従来のように大量の培養液から微細藻類を回収する必要がなく、微細藻類の回収コストを大幅に低減することができる。
On the other hand, in Patent Document 1, as a simple and inexpensive method, a suspension or dispersion of Botryococcus sudeticus AVFF 007 strain is prepared, and a culture vessel (storage member) is allowed to stand. A method of culturing microalga comprising forming a biofilm on a liquid surface by settling microalgae on the bottom and then culturing for a while, and forming the formed biofilm as a substrate A method of recovering microalgae is disclosed, which comprises transferring or depositing on the surface for recovery. In addition, Patent Document 2 discloses, as a simpler and lower-cost method, by culturing Botryococcus sudeticus AVFF 007 strain in a culture solution in a first incubator (storage member), The first step of culture in which a biofilm consisting of microalgae is formed on the liquid surface of the culture solution, and the microalgae by using at least a part of the biofilm formed on the liquid surface of the culture solution as a seed algae A culture method of microalgae comprising culturing the second step on the liquid surface, and transferring or depositing the formed biofilm on the surface of the substrate for recovery. Methods of recovery of microalgae are described. In any of the method described in Patent Document 1 and the method described in Patent Document 2, in the stage of collecting microalgae, a biofilm composed of an aggregate of microalgae floats on the liquid surface, and Since the biofilm is to be recovered, it is not necessary to recover microalgae from a large amount of culture solution as in the prior art, and the recovery cost of microalgae can be significantly reduced.
特許文献1及び特許文献2に記載された液面浮遊培養法は、液面上にバイオフィルムが形成されることで、従来の培養方法に比べて、攪拌が不要、水深を浅くすることができる、培養物の回収が容易、コンタミ微生物の侵入に対して強い、回収物の含水率が低いといった特徴がある。
しかし、本発明者らが検討したところによれば、実用的な規模で液面浮遊培養法による微細藻類の培養を行い、藻類バイオマス及び藻類バイオ燃料を製造するには、培養物の回収をより効率化する余地があることが知見された。 The liquid surface floating culture methods described in Patent Document 1 and Patent Document 2 can form a biofilm on the liquid surface, so that stirring is not necessary and the water depth can be made shallow compared to conventional culture methods. It is characterized in that the recovery of the culture is easy, it is strong against the invasion of contamination microorganisms, and the moisture content of the recovered product is low.
However, according to the study by the present inventors, culture of microalgae by liquid surface suspension culture method is carried out on a practical scale, and in order to produce algal biomass and algal biofuel, it is more preferable to recover the culture. It was found that there is room for efficiency.
しかし、本発明者らが検討したところによれば、実用的な規模で液面浮遊培養法による微細藻類の培養を行い、藻類バイオマス及び藻類バイオ燃料を製造するには、培養物の回収をより効率化する余地があることが知見された。 The liquid surface floating culture methods described in Patent Document 1 and Patent Document 2 can form a biofilm on the liquid surface, so that stirring is not necessary and the water depth can be made shallow compared to conventional culture methods. It is characterized in that the recovery of the culture is easy, it is strong against the invasion of contamination microorganisms, and the moisture content of the recovered product is low.
However, according to the study by the present inventors, culture of microalgae by liquid surface suspension culture method is carried out on a practical scale, and in order to produce algal biomass and algal biofuel, it is more preferable to recover the culture. It was found that there is room for efficiency.
そこで、本発明は、実用的な規模で微細藻類を培養した後、培養した微細藻類を効率的に回収することができる、微細藻類の培養物の培養及び回収方法を提供することを課題とする。
Then, this invention makes it a subject to provide the culture | cultivation and collection | recovery method of the culture thing of a micro algae which can collect | recover the cultured micro algae efficiently, after culture | cultivating a micro algae on a practical scale. .
本発明者らは、上記課題を解決すべく鋭意検討を重ねたところ、培養液を保持する貯留部材を備える培養装置を用いた微細藻類の培養物の培養及び回収方法であって、培養液の上方に気層が存在するようにしながら、培養液で微細藻類を培養する本培養工程と、培養液の液量を減らす液量縮減工程と、液量縮減工程の後に、微細藻類の培養物を回収する回収工程とを含む微細藻類の培養物の培養及び回収方法によれば、実用的な規模で微細藻類を培養した後、培養した微細藻類の培養物を効率的に回収することができることを知得し、本発明を完成させた。
すなわち、本発明は次の(1)~(17)を提供する。 The present inventors diligently studied to solve the above-mentioned problems, and it is a method for culturing and recovering a culture of microalgae using a culture apparatus provided with a storage member for holding a culture solution, After the main culture step of cultivating the microalga with the culture solution while maintaining the air layer above, the liquid amount reduction step of reducing the liquid amount of the culture solution, and the liquid amount reduction step, the culture of the microalga is According to the culture and recovery method of the microalgal culture including the recovery step, the microalga culture can be efficiently recovered after the microalgae is cultured on a practical scale. The present invention has been completed.
That is, the present invention provides the following (1) to (17).
すなわち、本発明は次の(1)~(17)を提供する。 The present inventors diligently studied to solve the above-mentioned problems, and it is a method for culturing and recovering a culture of microalgae using a culture apparatus provided with a storage member for holding a culture solution, After the main culture step of cultivating the microalga with the culture solution while maintaining the air layer above, the liquid amount reduction step of reducing the liquid amount of the culture solution, and the liquid amount reduction step, the culture of the microalga is According to the culture and recovery method of the microalgal culture including the recovery step, the microalga culture can be efficiently recovered after the microalgae is cultured on a practical scale. The present invention has been completed.
That is, the present invention provides the following (1) to (17).
(1)培養液を保持する貯留部材を備える培養装置を用いた微細藻類の培養物の培養及び回収方法であって、
培養液の上方に気層が存在するようにしながら、培養液で微細藻類を培養する本培養工程と、
培養液の液量を減らす液量縮減工程と、
液量縮減工程の後に、微細藻類の培養物を回収する回収工程と
を含む微細藻類の培養物の培養及び回収方法。
(2)液量縮減工程の後、かつ、回収工程の前に、更に、
培養液存在下で微細藻類を培養する後培養工程
を含む、(1)に記載の微細藻類の培養物の培養及び回収方法。
(3)後培養工程において、微細藻類の藻体と培養液の質量比が、藻体の質量/培養液の質量=20/80~0.1/99.9である、(2)に記載の微細藻類の培養物の培養及び回収方法。
(4)培養装置が、更に、鉛直方向から見た際に培養液の液面の少なくとも一部を覆うように、貯留部材の上方に配置される、少なくとも一部の波長の光が透過可能な遮蔽部材を備え、かつ、気層が培養液の液面と遮蔽部材との間に形成される、(1)~(3)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(5)培養装置が、更に、気層の温度を制御する気温制御部及び培養液の温度を制御する液温制御部の少なくとも一方を備え、
本培養工程において、気層の温度及び培養液の温度の少なくとも一方を微細藻類の培養に適した温度範囲に制御する、(1)~(4)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(6)培養装置が、更に、気層に連通する通気部を備える、(1)~(5)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(7)培養装置が、更に、通気部での気体の通過を制御する通気制御部を備える、(6)に記載の微細藻類の培養物の培養及び回収方法。
(8)貯留部材は、可撓性を有する第1のフィルムと、第1のフィルムを支持する支持体とを有し、
支持体が第1のフィルムをプール状の凹部を形成するように支持して、培養液を凹部で保持する、(1)~(7)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(9)培養装置は、第1のフィルムを移動させる第1のフィルム移動部材を有し、
液量縮減工程において、培養液の液量を減らすことで、培養した微細藻類の培養物を第1のフィルムに接触させて、
回収工程において、第1のフィルムを支持体から移動させて、微細藻類の培養物を回収する、(8)に記載の微細藻類の培養物の培養及び回収方法。
(10)培養装置は、第1のフィルムをロール状に巻き取る第1の巻取機を有し、
回収工程において、第1の巻取機は、第1のフィルムを微細藻類の培養物と共にロール状に巻き取ることで、微細藻類の培養物を回収する、(8)又は(9)に記載の微細藻類の培養物の培養及び回収方法。
(11)培養装置は、第1のフィルムをロール状に巻き取る第1の巻取機と、第1のフィルムから微細藻類の培養物を剥離させる第1の回収部材を有し、
回収工程において、第1の巻取機が第1のフィルムをロール状に巻き取りつつ、第1の回収部材が第1のフィルムから微細藻類の培養物を剥離させて微細藻類の培養物を回収する、(8)又は(9)に記載の微細藻類の培養物の培養及び回収方法。
(12)培養装置は、第1のフィルムと、支持体との間に、1以上の第3のフィルムを備える、(8)~(11)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(13)貯留部材は、培養液と接触する側の最表面に、複数の貫通孔が形成された第2のフィルムを備える、(1)~(12)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(14)培養装置は、第2のフィルムを移動させる第2のフィルム移動部材を有し、
回収工程において、第2のフィルムを移動させて、微細藻類の培養物を回収する、(13)に記載の微細藻類の培養物の培養及び回収方法。
(15)培養装置は、第2のフィルムをロール状に巻き取る第2の巻取機を有し、
回収工程において、第2の巻取機は、第2のフィルムを微細藻類の培養物と共にロール状に巻き取ることで、微細藻類の培養物を回収する、(13)又は(14)に記載の微細藻類の培養物の培養及び回収方法。
(16)培養装置は、第2のフィルムをロール状に巻き取る第2の巻取機と、第2のフィルムから微細藻類の培養物を剥離させる第2の回収部材を有し、
回収工程において、第2の巻取機が第2のフィルムをロール状に巻き取りつつ、第2の回収部材が第2のフィルムから微細藻類の培養物を剥離させて微細藻類の培養物を回収する、(13)又は(14)に記載の微細藻類の培養物の培養及び回収方法。
(17)微細藻類が培養液の液面にバイオフィルムを形成可能な微細藻類である、(1)~(16)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。 (1) A method for cultivating and collecting a microalga culture using a culture apparatus provided with a storage member for holding a culture solution,
A main culture step of culturing the microalga in the culture solution while maintaining an air layer above the culture solution;
A volume reduction step of reducing the volume of the culture solution,
And a recovery step of recovering the microalgal culture after the liquid volume reduction step.
(2) After the volume reduction step and before the recovery step,
The culture | cultivation and collection | recovery method of the culture of micro algae as described in (1) including the post-culture process of culture | cultivating micro algae in presence of a culture solution.
(3) In the post-culture step, the mass ratio of the microalga algal cells to the culture solution is: mass of algal cells / mass of culture solution = 20/80 to 0.1 / 99.9, described in (2) And a method of culturing and collecting microalga cultures.
(4) The culture apparatus is further disposed above the storage member so as to cover at least a part of the liquid surface of the culture solution when viewed in the vertical direction, and can transmit light of at least a part of the wavelengths A culture and recovery of the culture of the microalga according to any one of (1) to (3), further comprising a shielding member, wherein an air layer is formed between the liquid surface of the culture solution and the shielding member. Method.
(5) The culture apparatus further includes at least one of an air temperature control unit that controls the temperature of the air layer and a liquid temperature control unit that controls the temperature of the culture solution,
In the main culture step, the culture of the microalga according to any one of (1) to (4), wherein at least one of the temperature of the air layer and the temperature of the culture solution is controlled to a temperature range suitable for culture of the microalga. Method of culture and recovery of
(6) The method for cultivating and recovering a microalgal culture according to any one of (1) to (5), wherein the culture apparatus further comprises an aeration unit in communication with the air layer.
(7) The method for cultivating and recovering a culture of microalga according to (6), wherein the culture apparatus further comprises an aeration control unit for controlling passage of gas in the aeration unit.
(8) The storage member has a flexible first film and a support for supporting the first film,
The microalgal culture according to any one of (1) to (7), wherein the support supports the first film to form a pool-like recess, and the culture solution is retained in the recess. Culture and recovery method.
(9) The culture apparatus has a first film moving member for moving the first film,
In the volume reduction step, the culture volume of the culture solution is decreased to bring the culture of the cultured microalga into contact with the first film,
The method for cultivating and collecting a microalgal culture according to (8), wherein the first film is moved from the support in the collection step, and the microalgal culture is collected.
(10) The culture apparatus has a first winding machine for winding the first film in a roll,
In the recovery step, the first winder recovers the microalgal culture by rolling up the first film with the microalgal culture in a roll, according to (8) or (9). Method for culturing and recovering cultures of microalgae.
(11) The culture apparatus has a first winding machine for winding the first film in a roll, and a first recovery member for peeling the culture of the microalga from the first film,
In the recovery step, while the first winder winds the first film into a roll, the first recovery member exfoliates the culture of microalgae from the first film to recover the culture of microalgae The culture | cultivation and collection | recovery method of the culture of the micro algae as described in (8) or (9).
(12) The culture of the microalga according to any one of (8) to (11), wherein the culture apparatus comprises one or more third films between the first film and the support. Culture and recovery method.
(13) The microalgae according to any one of (1) to (12), wherein the storage member comprises a second film in which a plurality of through holes are formed on the outermost surface in contact with the culture solution. Method for culturing and recovering a culture of
(14) The culture apparatus has a second film moving member for moving the second film,
The method for cultivating and collecting a microalgal culture according to (13), wherein the second film is moved in the collection step, and the microalgal culture is collected.
(15) The culture apparatus has a second winding machine that winds the second film in a roll,
In the recovery step, the second winding machine recovers the microalgal culture by rolling up the second film together with the microalgal culture in a roll, according to (13) or (14). Method for culturing and recovering cultures of microalgae.
(16) The culture apparatus has a second winding machine for winding the second film in a roll, and a second recovery member for peeling the culture of microalgae from the second film,
In the recovery step, while the second winder winds up the second film in a roll, the second recovery member exfoliates the culture of microalgae from the second film to recover the culture of microalgae The culture | cultivation and collection | recovery method of the culture of the micro algae as described in (13) or (14).
(17) The method for cultivating and recovering a culture of microalga according to any one of (1) to (16), wherein the microalga is a microalga capable of forming a biofilm on the liquid surface of a culture solution.
培養液の上方に気層が存在するようにしながら、培養液で微細藻類を培養する本培養工程と、
培養液の液量を減らす液量縮減工程と、
液量縮減工程の後に、微細藻類の培養物を回収する回収工程と
を含む微細藻類の培養物の培養及び回収方法。
(2)液量縮減工程の後、かつ、回収工程の前に、更に、
培養液存在下で微細藻類を培養する後培養工程
を含む、(1)に記載の微細藻類の培養物の培養及び回収方法。
(3)後培養工程において、微細藻類の藻体と培養液の質量比が、藻体の質量/培養液の質量=20/80~0.1/99.9である、(2)に記載の微細藻類の培養物の培養及び回収方法。
(4)培養装置が、更に、鉛直方向から見た際に培養液の液面の少なくとも一部を覆うように、貯留部材の上方に配置される、少なくとも一部の波長の光が透過可能な遮蔽部材を備え、かつ、気層が培養液の液面と遮蔽部材との間に形成される、(1)~(3)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(5)培養装置が、更に、気層の温度を制御する気温制御部及び培養液の温度を制御する液温制御部の少なくとも一方を備え、
本培養工程において、気層の温度及び培養液の温度の少なくとも一方を微細藻類の培養に適した温度範囲に制御する、(1)~(4)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(6)培養装置が、更に、気層に連通する通気部を備える、(1)~(5)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(7)培養装置が、更に、通気部での気体の通過を制御する通気制御部を備える、(6)に記載の微細藻類の培養物の培養及び回収方法。
(8)貯留部材は、可撓性を有する第1のフィルムと、第1のフィルムを支持する支持体とを有し、
支持体が第1のフィルムをプール状の凹部を形成するように支持して、培養液を凹部で保持する、(1)~(7)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(9)培養装置は、第1のフィルムを移動させる第1のフィルム移動部材を有し、
液量縮減工程において、培養液の液量を減らすことで、培養した微細藻類の培養物を第1のフィルムに接触させて、
回収工程において、第1のフィルムを支持体から移動させて、微細藻類の培養物を回収する、(8)に記載の微細藻類の培養物の培養及び回収方法。
(10)培養装置は、第1のフィルムをロール状に巻き取る第1の巻取機を有し、
回収工程において、第1の巻取機は、第1のフィルムを微細藻類の培養物と共にロール状に巻き取ることで、微細藻類の培養物を回収する、(8)又は(9)に記載の微細藻類の培養物の培養及び回収方法。
(11)培養装置は、第1のフィルムをロール状に巻き取る第1の巻取機と、第1のフィルムから微細藻類の培養物を剥離させる第1の回収部材を有し、
回収工程において、第1の巻取機が第1のフィルムをロール状に巻き取りつつ、第1の回収部材が第1のフィルムから微細藻類の培養物を剥離させて微細藻類の培養物を回収する、(8)又は(9)に記載の微細藻類の培養物の培養及び回収方法。
(12)培養装置は、第1のフィルムと、支持体との間に、1以上の第3のフィルムを備える、(8)~(11)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(13)貯留部材は、培養液と接触する側の最表面に、複数の貫通孔が形成された第2のフィルムを備える、(1)~(12)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。
(14)培養装置は、第2のフィルムを移動させる第2のフィルム移動部材を有し、
回収工程において、第2のフィルムを移動させて、微細藻類の培養物を回収する、(13)に記載の微細藻類の培養物の培養及び回収方法。
(15)培養装置は、第2のフィルムをロール状に巻き取る第2の巻取機を有し、
回収工程において、第2の巻取機は、第2のフィルムを微細藻類の培養物と共にロール状に巻き取ることで、微細藻類の培養物を回収する、(13)又は(14)に記載の微細藻類の培養物の培養及び回収方法。
(16)培養装置は、第2のフィルムをロール状に巻き取る第2の巻取機と、第2のフィルムから微細藻類の培養物を剥離させる第2の回収部材を有し、
回収工程において、第2の巻取機が第2のフィルムをロール状に巻き取りつつ、第2の回収部材が第2のフィルムから微細藻類の培養物を剥離させて微細藻類の培養物を回収する、(13)又は(14)に記載の微細藻類の培養物の培養及び回収方法。
(17)微細藻類が培養液の液面にバイオフィルムを形成可能な微細藻類である、(1)~(16)のいずれか1つに記載の微細藻類の培養物の培養及び回収方法。 (1) A method for cultivating and collecting a microalga culture using a culture apparatus provided with a storage member for holding a culture solution,
A main culture step of culturing the microalga in the culture solution while maintaining an air layer above the culture solution;
A volume reduction step of reducing the volume of the culture solution,
And a recovery step of recovering the microalgal culture after the liquid volume reduction step.
(2) After the volume reduction step and before the recovery step,
The culture | cultivation and collection | recovery method of the culture of micro algae as described in (1) including the post-culture process of culture | cultivating micro algae in presence of a culture solution.
(3) In the post-culture step, the mass ratio of the microalga algal cells to the culture solution is: mass of algal cells / mass of culture solution = 20/80 to 0.1 / 99.9, described in (2) And a method of culturing and collecting microalga cultures.
(4) The culture apparatus is further disposed above the storage member so as to cover at least a part of the liquid surface of the culture solution when viewed in the vertical direction, and can transmit light of at least a part of the wavelengths A culture and recovery of the culture of the microalga according to any one of (1) to (3), further comprising a shielding member, wherein an air layer is formed between the liquid surface of the culture solution and the shielding member. Method.
(5) The culture apparatus further includes at least one of an air temperature control unit that controls the temperature of the air layer and a liquid temperature control unit that controls the temperature of the culture solution,
In the main culture step, the culture of the microalga according to any one of (1) to (4), wherein at least one of the temperature of the air layer and the temperature of the culture solution is controlled to a temperature range suitable for culture of the microalga. Method of culture and recovery of
(6) The method for cultivating and recovering a microalgal culture according to any one of (1) to (5), wherein the culture apparatus further comprises an aeration unit in communication with the air layer.
(7) The method for cultivating and recovering a culture of microalga according to (6), wherein the culture apparatus further comprises an aeration control unit for controlling passage of gas in the aeration unit.
(8) The storage member has a flexible first film and a support for supporting the first film,
The microalgal culture according to any one of (1) to (7), wherein the support supports the first film to form a pool-like recess, and the culture solution is retained in the recess. Culture and recovery method.
(9) The culture apparatus has a first film moving member for moving the first film,
In the volume reduction step, the culture volume of the culture solution is decreased to bring the culture of the cultured microalga into contact with the first film,
The method for cultivating and collecting a microalgal culture according to (8), wherein the first film is moved from the support in the collection step, and the microalgal culture is collected.
(10) The culture apparatus has a first winding machine for winding the first film in a roll,
In the recovery step, the first winder recovers the microalgal culture by rolling up the first film with the microalgal culture in a roll, according to (8) or (9). Method for culturing and recovering cultures of microalgae.
(11) The culture apparatus has a first winding machine for winding the first film in a roll, and a first recovery member for peeling the culture of the microalga from the first film,
In the recovery step, while the first winder winds the first film into a roll, the first recovery member exfoliates the culture of microalgae from the first film to recover the culture of microalgae The culture | cultivation and collection | recovery method of the culture of the micro algae as described in (8) or (9).
(12) The culture of the microalga according to any one of (8) to (11), wherein the culture apparatus comprises one or more third films between the first film and the support. Culture and recovery method.
(13) The microalgae according to any one of (1) to (12), wherein the storage member comprises a second film in which a plurality of through holes are formed on the outermost surface in contact with the culture solution. Method for culturing and recovering a culture of
(14) The culture apparatus has a second film moving member for moving the second film,
The method for cultivating and collecting a microalgal culture according to (13), wherein the second film is moved in the collection step, and the microalgal culture is collected.
(15) The culture apparatus has a second winding machine that winds the second film in a roll,
In the recovery step, the second winding machine recovers the microalgal culture by rolling up the second film together with the microalgal culture in a roll, according to (13) or (14). Method for culturing and recovering cultures of microalgae.
(16) The culture apparatus has a second winding machine for winding the second film in a roll, and a second recovery member for peeling the culture of microalgae from the second film,
In the recovery step, while the second winder winds up the second film in a roll, the second recovery member exfoliates the culture of microalgae from the second film to recover the culture of microalgae The culture | cultivation and collection | recovery method of the culture of the micro algae as described in (13) or (14).
(17) The method for cultivating and recovering a culture of microalga according to any one of (1) to (16), wherein the microalga is a microalga capable of forming a biofilm on the liquid surface of a culture solution.
本発明によれば、実用的な規模で微細藻類を培養した後、培養した微細藻類を効率的に回収することを特徴とする、微細藻類の培養物の培養及び回収方法を提供することができる。
According to the present invention, it is possible to provide a method for cultivating and collecting a microalgal culture, which comprises efficiently collecting the cultured microalga after culturing the microalga on a practical scale. .
本発明に係る培養物の培養及び回収方法によれば、従来の浮遊培養と比較して、微細藻類の培養物の回収が極めて容易になり、高い回収率で微細藻類の培養物の回収ができる。即ち、本発明では、微細藻類の培養物を回収する段階では、従来のように大量の培養液から微細藻類の培養物を回収する必要がなく、培養した微細藻類の回収コストを大幅に低下できる。また、大量の液体培養液をハンドリングする必要が無く、大量の水を使用する必要が無い。
According to the culture and recovery method of the culture according to the present invention, recovery of the culture of microalgae becomes extremely easy as compared with the conventional suspension culture, and the culture of microalgae can be recovered with high recovery rate . That is, in the present invention, it is not necessary to recover a culture of microalgae from a large amount of culture solution as in the prior art at the stage of recovering a culture of microalgae, and the recovery cost of cultured microalgae can be significantly reduced. . Moreover, there is no need to handle a large amount of liquid culture solution, and it is not necessary to use a large amount of water.
以下、本発明の好ましい実施の形態について詳細に説明する。
なお、本明細書において、「~」を用いて表される数値範囲は「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
なお、本明細書において、「~」を用いて表される数値範囲は「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
[微細藻類の培養物の培養及び回収方法]
本発明に係る微細藻類の培養物の培養及び回収方法(以下、単に「本発明の培養及び回収方法」という場合がある。)は、培養液を保持する貯留部材を備える培養装置を用いた微細藻類の培養物の培養及び回収方法であって、培養液の上方に気層が存在するようにしながら、培養液で微細藻類を培養する本培養工程と、培養液の液量を減らす液量縮減工程と、液量縮減工程の後に、微細藻類の培養物を回収する回収工程とを含む微細藻類の培養物の培養及び回収方法である。 [Method for culturing and recovering cultures of microalgae]
The method for culturing and recovering a culture of microalgae according to the present invention (hereinafter, sometimes referred to simply as the “culture and recovery method of the present invention”) is a method using a culture apparatus comprising a storage member for holding a culture solution. A method for cultivating and collecting algal culture, comprising a main culture step of culturing microalga in a culture solution while reducing an amount of the culture solution while maintaining an air layer above the culture solution It is a culture | cultivation and collection | recovery method of the culture of micro algae including a process and the collection process of collect | recovering culture of micro algae after a liquid volume reduction process.
本発明に係る微細藻類の培養物の培養及び回収方法(以下、単に「本発明の培養及び回収方法」という場合がある。)は、培養液を保持する貯留部材を備える培養装置を用いた微細藻類の培養物の培養及び回収方法であって、培養液の上方に気層が存在するようにしながら、培養液で微細藻類を培養する本培養工程と、培養液の液量を減らす液量縮減工程と、液量縮減工程の後に、微細藻類の培養物を回収する回収工程とを含む微細藻類の培養物の培養及び回収方法である。 [Method for culturing and recovering cultures of microalgae]
The method for culturing and recovering a culture of microalgae according to the present invention (hereinafter, sometimes referred to simply as the “culture and recovery method of the present invention”) is a method using a culture apparatus comprising a storage member for holding a culture solution. A method for cultivating and collecting algal culture, comprising a main culture step of culturing microalga in a culture solution while reducing an amount of the culture solution while maintaining an air layer above the culture solution It is a culture | cultivation and collection | recovery method of the culture of micro algae including a process and the collection process of collect | recovering culture of micro algae after a liquid volume reduction process.
本発明の微細藻類の培養及び回収方法の、従来の微細藻類の培養及び回収方法と比べた特徴的な点は、微細藻類を培養して、培養液の液量を減らした後に微細藻類の培養物を回収する点にある。
従来の微細藻類の培養及び回収方法では、大量の培養液から微細藻類を遠心分離したり、濾別したりすることによって、培養した微細藻類の回収を行っていたため、培養液から微細藻類を回収する際に大量の培養液をハンドリングする必要があった。
しかし、本発明の培養及び回収方法では、実用的な規模で微細藻類を培養して、培養物を回収する際に大量の培養液をハンドリングする必要が無いので、培養した微細藻類の回収コストを従来に比べて低減することができる。 The characteristic point of the method for cultivating and recovering microalga of the present invention in comparison with the conventional method for cultivating and recovering microalgae is to cultivate the microalga after culturing the microalga to reduce the liquid volume of the culture solution It is in the point of collecting things.
In the conventional culture and recovery method of microalgae, since the microalgae cultured is recovered by centrifuging or filtering out the microalgae from a large amount of culture solution, the microalgae are recovered from the culture solution It was necessary to handle a large amount of culture fluid when
However, according to the culture and recovery method of the present invention, since it is not necessary to culture microalgae on a practical scale and handle a large amount of culture solution when recovering the culture, it is not necessary to recover the cultured microalga. It can be reduced compared to the prior art.
従来の微細藻類の培養及び回収方法では、大量の培養液から微細藻類を遠心分離したり、濾別したりすることによって、培養した微細藻類の回収を行っていたため、培養液から微細藻類を回収する際に大量の培養液をハンドリングする必要があった。
しかし、本発明の培養及び回収方法では、実用的な規模で微細藻類を培養して、培養物を回収する際に大量の培養液をハンドリングする必要が無いので、培養した微細藻類の回収コストを従来に比べて低減することができる。 The characteristic point of the method for cultivating and recovering microalga of the present invention in comparison with the conventional method for cultivating and recovering microalgae is to cultivate the microalga after culturing the microalga to reduce the liquid volume of the culture solution It is in the point of collecting things.
In the conventional culture and recovery method of microalgae, since the microalgae cultured is recovered by centrifuging or filtering out the microalgae from a large amount of culture solution, the microalgae are recovered from the culture solution It was necessary to handle a large amount of culture fluid when
However, according to the culture and recovery method of the present invention, since it is not necessary to culture microalgae on a practical scale and handle a large amount of culture solution when recovering the culture, it is not necessary to recover the cultured microalga. It can be reduced compared to the prior art.
また、本発明の培養及び回収方法においては、液量縮減工程の後、かつ、回収工程の前に、更に、培養液存在下で微細藻類を培養する後培養工程を含むことによって、回収コストを低減させた上に、藻体生産性及び/又は油生産性を向上させることができ、更に生産コストを低減することができる。
Moreover, in the culture and recovery method of the present invention, the recovery cost can be reduced by further including a post-culture step of culturing the microalga in the presence of the culture solution after the fluid volume reduction step and before the recovery step. In addition, algal productivity and / or oil productivity can be improved, and the production cost can be further reduced.
なお、以下の説明では、培養した微細藻類の培養物を、単に「微細藻類」又は「培養物」という場合がある。
In the following description, the cultured microalgae culture may be simply referred to as "microalgae" or "culture".
まず、本発明の製造方法で用いる培養装置について、図1~図27を用いて説明した後に、本発明の製造方法について説明する。
First, the culture apparatus used in the production method of the present invention will be described using FIGS. 1 to 27, and then the production method of the present invention will be described.
〈培養装置〉
図1は、本発明の培養及び回収方法で用いる培養装置の一例を模式的に示す概略斜視図であり、図2、図3及び図4は、図1のII-II線断面図である。なお、図1においては、説明のため遮蔽部材14aの図示を一部省略している。
図1、図2、図3及び図4に示す培養装置10aは、培養液Mを保持する貯留部材12a、及び、鉛直方向から見た際に培養液Mの液面を覆うように、貯留部材12aの上方に配置される、少なくとも一部の波長の光が透過可能な遮蔽部材14aを備える。
また、この培養装置10aは、微細藻類Pを培養する際には、図2、図3及び図4に示すように、培養液Mの液面と遮蔽部材14aとの間に気層Nを形成する。微細藻類P2を培養する際にも、図3及び図4に示すように、培養液Mの液面と遮蔽部材14aとの間に気層Nを形成していてもよく、微細藻類P3を培養する際にも、図4に示すように、培養液Mの液面と遮蔽部材14aとの間に気層Nを形成していてもよい。
図2、図3及び図4において微細藻類Pは培養液Mの液面にバイオフィルムを形成しており、図3及び図4において微細藻類P2は容器16aの培養液Mに接する面に付着しており、図4において微細藻類P3は培養液M中を浮遊している。
以下、各構成要素について、図1~図27を用いて詳細に説明する。 <Culture device>
FIG. 1 is a schematic perspective view schematically showing an example of a culture apparatus used in the culture and recovery method of the present invention, and FIGS. 2, 3 and 4 are cross-sectional views taken along line II-II of FIG. In addition, in FIG. 1, illustration of the shieldingmember 14a is partially abbreviate | omitted for description.
Theculture apparatus 10a shown in FIG. 1, FIG. 2, FIG. 3 and FIG. 4 is a storage member 12a for holding the culture solution M, and a storage member so as to cover the liquid surface of the culture solution M when viewed from the vertical direction. A shielding member 14a, which can transmit light of at least a part of wavelengths, is disposed above the 12a.
In addition, when culturing the microalgae P, theculture apparatus 10a forms an air layer N between the liquid surface of the culture fluid M and the shielding member 14a, as shown in FIG. 2, FIG. 3 and FIG. Do. Even in culturing microalgae P 2, as shown in FIGS. 3 and 4, it may form a Kiso N between the shielding member 14a and the liquid surface of the culture solution M, microalgae P 3 Also when culturing C, as shown in FIG. 4, an air layer N may be formed between the liquid surface of the culture solution M and the shielding member 14a.
2, microalgae P 3 and 4 forms a biofilm on the liquid surface of the culture medium M, microalgae P 2 in FIGS. 3 and 4 is adhered to the surface in contact with the culture medium M of thecontainer 16a and has, microalgae P 3 in FIG. 4 are suspended in culture M.
Each component will be described in detail below with reference to FIGS. 1 to 27.
図1は、本発明の培養及び回収方法で用いる培養装置の一例を模式的に示す概略斜視図であり、図2、図3及び図4は、図1のII-II線断面図である。なお、図1においては、説明のため遮蔽部材14aの図示を一部省略している。
図1、図2、図3及び図4に示す培養装置10aは、培養液Mを保持する貯留部材12a、及び、鉛直方向から見た際に培養液Mの液面を覆うように、貯留部材12aの上方に配置される、少なくとも一部の波長の光が透過可能な遮蔽部材14aを備える。
また、この培養装置10aは、微細藻類Pを培養する際には、図2、図3及び図4に示すように、培養液Mの液面と遮蔽部材14aとの間に気層Nを形成する。微細藻類P2を培養する際にも、図3及び図4に示すように、培養液Mの液面と遮蔽部材14aとの間に気層Nを形成していてもよく、微細藻類P3を培養する際にも、図4に示すように、培養液Mの液面と遮蔽部材14aとの間に気層Nを形成していてもよい。
図2、図3及び図4において微細藻類Pは培養液Mの液面にバイオフィルムを形成しており、図3及び図4において微細藻類P2は容器16aの培養液Mに接する面に付着しており、図4において微細藻類P3は培養液M中を浮遊している。
以下、各構成要素について、図1~図27を用いて詳細に説明する。 <Culture device>
FIG. 1 is a schematic perspective view schematically showing an example of a culture apparatus used in the culture and recovery method of the present invention, and FIGS. 2, 3 and 4 are cross-sectional views taken along line II-II of FIG. In addition, in FIG. 1, illustration of the shielding
The
In addition, when culturing the microalgae P, the
2, microalgae P 3 and 4 forms a biofilm on the liquid surface of the culture medium M, microalgae P 2 in FIGS. 3 and 4 is adhered to the surface in contact with the culture medium M of the
Each component will be described in detail below with reference to FIGS. 1 to 27.
《貯留部材》
貯留部材は、微細藻類Pの培養が可能な培養液Mを一定期間保持することが可能な培養液槽である。貯留部材は、微細藻類Pを培養する期間、培養液Mを保持することができれば、その構成、形状、大きさ、材質等には特に限定はない。
例えば、図1、図2、図3及び図4に示す培養装置10aの貯留部材12aは、一面が開放された略直方体の箱型形状の容器16aからなり、容器16a内が培養液Mの液体保持部である。 << Reserved member >>
The storage member is a culture solution tank capable of holding the culture solution M in which the microalgae P can be cultured for a certain period of time. The storage member is not particularly limited in its configuration, shape, size, material, and the like, as long as the culture solution M can be held during the culture period of the microalgae P.
For example, thestorage member 12a of the culture apparatus 10a shown in FIG. 1, FIG. 2, FIG. 3 and FIG. 4 is a substantially rectangular parallelepiped box-shaped container 16a whose one surface is open. It is a holding part.
貯留部材は、微細藻類Pの培養が可能な培養液Mを一定期間保持することが可能な培養液槽である。貯留部材は、微細藻類Pを培養する期間、培養液Mを保持することができれば、その構成、形状、大きさ、材質等には特に限定はない。
例えば、図1、図2、図3及び図4に示す培養装置10aの貯留部材12aは、一面が開放された略直方体の箱型形状の容器16aからなり、容器16a内が培養液Mの液体保持部である。 << Reserved member >>
The storage member is a culture solution tank capable of holding the culture solution M in which the microalgae P can be cultured for a certain period of time. The storage member is not particularly limited in its configuration, shape, size, material, and the like, as long as the culture solution M can be held during the culture period of the microalgae P.
For example, the
このような容器16aとしては、プラスチック、土、コンクリート、木、金属、粘土、陶器、ガラス、又はこれらのうち2種類以上の組合せを用いて容器状の形態に成形されたものが挙げられる。
中でも、容器16a材料として、有機高分子化合物や無機化合物、金属、それらの複合体から構成された素材を使用することが好ましい。また、それらの混合物を用いることも可能である。
容器の材料として、熱伝導率の高い材料で構成することにより、例えば、夏場の日中など、温度が高い条件で培養を行うときの温度上昇を抑制することができる。熱伝導性の高い材料としては、例えば、粘土、金属板等が挙げられ、安価で熱伝導性が高いことから、粘土が特に好ましい。
また、例えば、液体保持部を樹脂で形成し、その周囲に粘土等の熱伝導性の高い材料からなる層を貼り合わせて形成してもよい。
容器の材料として、熱伝導率の低い材料で構成することにより、例えば、冬場の夜間など、温度が低い条件で培養を行うときの温度低下を抑制することができる。熱伝導率の低い材料としては、例えば、プラスチック、発泡スチロール、木、陶器、気体等が挙げられ、安価で熱伝導率が低いことから、プラスチックが特に好ましい。
また、例えば、液体保持部をガラスで形成し、その周囲にガラス等の熱伝導率の低い材料からなる層を貼り合わせて形成してもよい。 As such acontainer 16a, what was shape | molded in the container-like form using plastic, soil, concrete, wood, metal, clay, pottery, glass, or the combination of 2 or more types of these is mentioned.
Among them, as the material of thecontainer 16a, it is preferable to use a material composed of an organic polymer compound, an inorganic compound, a metal, or a complex thereof. It is also possible to use mixtures thereof.
By using a material having a high thermal conductivity as the material of the container, for example, it is possible to suppress a temperature rise when culturing is performed under conditions of high temperature such as summer daytime. As a material with high thermal conductivity, for example, clay, a metal plate and the like can be mentioned, and clay is particularly preferable because it is inexpensive and has high thermal conductivity.
Alternatively, for example, the liquid holding portion may be formed of a resin, and a layer made of a material having high thermal conductivity such as clay may be bonded to the periphery of the liquid holding portion.
By using a material having a low thermal conductivity as the material of the container, for example, it is possible to suppress a temperature drop when culturing is performed under conditions of low temperature such as nighttime in winter. Examples of the material having a low thermal conductivity include, for example, plastics, expanded polystyrene, wood, pottery, gases and the like, and plastics are particularly preferable because they are inexpensive and have a low thermal conductivity.
Also, for example, the liquid holding portion may be formed of glass, and a layer made of a material having a low thermal conductivity such as glass may be bonded to the periphery of the liquid holding portion.
中でも、容器16a材料として、有機高分子化合物や無機化合物、金属、それらの複合体から構成された素材を使用することが好ましい。また、それらの混合物を用いることも可能である。
容器の材料として、熱伝導率の高い材料で構成することにより、例えば、夏場の日中など、温度が高い条件で培養を行うときの温度上昇を抑制することができる。熱伝導性の高い材料としては、例えば、粘土、金属板等が挙げられ、安価で熱伝導性が高いことから、粘土が特に好ましい。
また、例えば、液体保持部を樹脂で形成し、その周囲に粘土等の熱伝導性の高い材料からなる層を貼り合わせて形成してもよい。
容器の材料として、熱伝導率の低い材料で構成することにより、例えば、冬場の夜間など、温度が低い条件で培養を行うときの温度低下を抑制することができる。熱伝導率の低い材料としては、例えば、プラスチック、発泡スチロール、木、陶器、気体等が挙げられ、安価で熱伝導率が低いことから、プラスチックが特に好ましい。
また、例えば、液体保持部をガラスで形成し、その周囲にガラス等の熱伝導率の低い材料からなる層を貼り合わせて形成してもよい。 As such a
Among them, as the material of the
By using a material having a high thermal conductivity as the material of the container, for example, it is possible to suppress a temperature rise when culturing is performed under conditions of high temperature such as summer daytime. As a material with high thermal conductivity, for example, clay, a metal plate and the like can be mentioned, and clay is particularly preferable because it is inexpensive and has high thermal conductivity.
Alternatively, for example, the liquid holding portion may be formed of a resin, and a layer made of a material having high thermal conductivity such as clay may be bonded to the periphery of the liquid holding portion.
By using a material having a low thermal conductivity as the material of the container, for example, it is possible to suppress a temperature drop when culturing is performed under conditions of low temperature such as nighttime in winter. Examples of the material having a low thermal conductivity include, for example, plastics, expanded polystyrene, wood, pottery, gases and the like, and plastics are particularly preferable because they are inexpensive and have a low thermal conductivity.
Also, for example, the liquid holding portion may be formed of glass, and a layer made of a material having a low thermal conductivity such as glass may be bonded to the periphery of the liquid holding portion.
また、後に詳述するが、本発明の培養及び回収方法は、静置することで液面に浮遊する性質を有する微細藻類藻、空気等のバブリング処理、オイル蓄積による浮遊、静置工程の追加による浮遊等で微細藻類を液面に浮上させた微細藻類、静置培養が可能な微細藻類に広く適用できる。液面にバイオフィルムを形成することが可能な微細藻類を用いる場合に特に好ましい。液面にバイオフィルムを形成する微細藻類を用いる場合には、培養液の深さを浅くすることができるので、いわゆるバット状の浅めの容器(底面積に対する高さの比が小さい容器)を利用することができる。浅めの容器を用いることで、培養により得られたバイオフィルムの回収作業が容易になり、また容器のコスト的にも有利である。
また、本発明の製造方法は、培養を行う地形や場所に応じて培養液を保持可能であれば、深めの容器(浅めの容器に比べて、底面積に対する高さの比が大きい容器)を用いてもよい。 In addition, as described in detail later, the culture and recovery method of the present invention is a microalgal algae having a property of floating on the liquid surface by being left standing, bubbling treatment with air, etc., floating by oil accumulation, addition of a standing step. The present invention can be widely applied to microalgae in which microalgae is floated to the liquid surface by floating or the like, and microalgae capable of stationary culture. It is particularly preferable when using a microalga capable of forming a biofilm on the liquid surface. When using a microalga that forms a biofilm on the liquid surface, the depth of the culture solution can be reduced, so a so-called bat-shaped shallow container (container with a small ratio of height to bottom area) is used. can do. The use of a shallow container facilitates the recovery operation of the biofilm obtained by the culture, and is also advantageous in terms of the cost of the container.
In addition, according to the production method of the present invention, a deep container (a container having a large ratio of height to bottom area as compared to a shallow container) can be used, as long as the culture solution can be held depending on the topography and the place to be cultured You may use.
また、本発明の製造方法は、培養を行う地形や場所に応じて培養液を保持可能であれば、深めの容器(浅めの容器に比べて、底面積に対する高さの比が大きい容器)を用いてもよい。 In addition, as described in detail later, the culture and recovery method of the present invention is a microalgal algae having a property of floating on the liquid surface by being left standing, bubbling treatment with air, etc., floating by oil accumulation, addition of a standing step. The present invention can be widely applied to microalgae in which microalgae is floated to the liquid surface by floating or the like, and microalgae capable of stationary culture. It is particularly preferable when using a microalga capable of forming a biofilm on the liquid surface. When using a microalga that forms a biofilm on the liquid surface, the depth of the culture solution can be reduced, so a so-called bat-shaped shallow container (container with a small ratio of height to bottom area) is used. can do. The use of a shallow container facilitates the recovery operation of the biofilm obtained by the culture, and is also advantageous in terms of the cost of the container.
In addition, according to the production method of the present invention, a deep container (a container having a large ratio of height to bottom area as compared to a shallow container) can be used, as long as the culture solution can be held depending on the topography and the place to be cultured You may use.
貯留部材12a(容器16a)の培養液Mの液体保持部の大きさ(面積)及び深さには特に限定はなく、培養する藻類の種類、培養方法等に応じて適宜選択すればよい。
なお、培養液の液量を少なく、かつほぼ均一な状態で維持するために、貯留部材12a(容器16a)の液体保持部の底面は平坦であることが好ましい。 The size (area) and depth of the liquid holding portion of the culture solution M of thestorage member 12a (container 16a) are not particularly limited, and may be appropriately selected according to the type of algae to be cultured, the culture method, and the like.
The bottom surface of the liquid holding portion of thestorage member 12a (the container 16a) is preferably flat in order to keep the amount of the culture solution small and in a substantially uniform state.
なお、培養液の液量を少なく、かつほぼ均一な状態で維持するために、貯留部材12a(容器16a)の液体保持部の底面は平坦であることが好ましい。 The size (area) and depth of the liquid holding portion of the culture solution M of the
The bottom surface of the liquid holding portion of the
また、図2、図3及び図4に示す例では、容器16aは、略直方体の箱型形状としたが、これに限定はされず、図5に示す培養装置10bの容器16bのように、開放面に向かって、側面が開口する方向に傾斜した形状であってもよいし、側面が閉口する方向に傾斜した形状であってもよい。また、開放面も矩形状に限定はされず、三角形状、多角形状、円形状、楕円形状、レースウェイ型等の形状であってもよい。
Moreover, in the example shown in FIG.2, FIG3 and FIG.4, although the container 16a was made into the box shape of a substantially rectangular parallelepiped, limitation is not carried out like this, like the container 16b of the culture apparatus 10b shown in FIG. The shape may be inclined toward the opening side in the direction in which the side surface is open, or may be inclined in the direction in which the side surface is closed. Also, the open surface is not limited to a rectangular shape, and may be a triangular shape, a polygonal shape, a circular shape, an elliptical shape, a raceway shape, or the like.
また、後に詳述する液量縮減工程において、貯留部材内の培養液Mを排水することで、液量を減らす場合には、図2、図3及び図4に示すように、貯留部材12a(容器16a)の側面には、排水管18及びバルブ17が接続される。
ここで、本発明が好適に適用される、液面にバイオフィルムを形成する微細藻類を用いる場合には、微細藻類の多くは培養液の液面側に存在するので、排水管18は、貯留部材12aの底面近傍の側面に接続されるのが好ましい。又は、排水管18は、貯留部材12aの底面に接続されてもよい。 Further, in the case of reducing the liquid amount by draining the culture solution M in the storage member in the liquid amount reduction step described in detail later, as shown in FIG. 2, FIG. 3 and FIG. Thedrainage pipe 18 and the valve 17 are connected to the side surface of the container 16a).
Here, in the case of using the microalga which forms a biofilm on the liquid surface to which the present invention is suitably applied, most of the microalgae are present on the liquid surface side of the culture solution, so thedrainage pipe 18 is Preferably, it is connected to the side near the bottom of the member 12a. Alternatively, the drain pipe 18 may be connected to the bottom surface of the storage member 12a.
ここで、本発明が好適に適用される、液面にバイオフィルムを形成する微細藻類を用いる場合には、微細藻類の多くは培養液の液面側に存在するので、排水管18は、貯留部材12aの底面近傍の側面に接続されるのが好ましい。又は、排水管18は、貯留部材12aの底面に接続されてもよい。 Further, in the case of reducing the liquid amount by draining the culture solution M in the storage member in the liquid amount reduction step described in detail later, as shown in FIG. 2, FIG. 3 and FIG. The
Here, in the case of using the microalga which forms a biofilm on the liquid surface to which the present invention is suitably applied, most of the microalgae are present on the liquid surface side of the culture solution, so the
また、図2、図3及び図4に示す例では、貯留部材12aを1つの容器16aで構成したが、これに限定はされず、培養液Mを保持する貯留部材を複数の部材で構成してもよい。
Moreover, although the storage member 12a was comprised by the one container 16a in the example shown in FIG.2, FIG3 and FIG.4, limitation is not carried out to this, The storage member holding the culture solution M is comprised with several members May be
例えば、貯留部材は、可撓性を有する第1のフィルムと、第1のフィルムを支持する支持体とを有し、支持体が第1のフィルムをプール状の凹部を形成するように支持して、培養液を凹部で保持するものであってもよい。ここで、第1のフィルムは1枚のフィルムからなるものであってもよいし、2枚以上のフィルムからなるものであってもよいが、2枚以上のフィルムからなると、培養及び回収工程を繰り返すために好ましい。図6に示す培養装置10fの貯留部材12fは、可撓性を有する第1のフィルム22fと、第1のフィルム22fを支持する支持体20fとを有し、支持体20fが、第1のフィルム22fをプール状の凹部を形成するように支持してなるものである。従って、貯留部材12fは、この凹部を貯留部として、培養液Mを保持する。なお、第1のフィルム22fは、おもて側(培養液Mに接する側又は培養液Mにより近い側)及びうら側(培養液Mからより遠い側)の2つの表面を有する。
For example, the storage member has a flexible first film and a support for supporting the first film, and the support supports the first film to form a pool-like recess. Alternatively, the culture solution may be held in a recess. Here, the first film may be a film of one sheet or may be a film of two or more sheets, but when it is formed of two or more films, the culture and recovery steps Preferred to repeat. The storage member 12f of the culture apparatus 10f shown in FIG. 6 has a flexible first film 22f and a support 20f for supporting the first film 22f. The support 20f is a first film. 22f is supported to form a pool-like recess. Therefore, the storage member 12 f holds the culture solution M, using the recess as a storage portion. The first film 22f has two surfaces, the front side (the side in contact with the culture solution M or the side closer to the culture solution M) and the rear side (the side farther from the culture solution M).
このように、貯留部材12fを、第1のフィルム22fと、第1のフィルム22fを支持する支持体20fとで構成した場合には、後述する液量縮減工程で培養液Mの液量を減らして、培養した微細藻類Pを第1のフィルム22fに接触させた後、回収工程において、第1のフィルム22fを支持体20fから移動(着脱)することで、微細藻類Pを容易に回収することができる。
また、微細藻類Pの回収後、第1のフィルム22fを再度、支持体20f上に設置することで、繰り返し利用することができる。
この点に関しては後に詳述する。 As described above, when thestorage member 12f is configured of the first film 22f and the support 20f supporting the first film 22f, the liquid amount of the culture solution M is reduced in the liquid amount reduction step described later. After bringing the cultured microalgae P into contact with the first film 22f, the microalgae P can be easily recovered by moving (detaching) the first film 22f from the support 20f in the recovery step. Can.
Moreover, after collection of the microalgae P, thefirst film 22f can be repeatedly used by setting the first film 22f on the support 20f again.
This point will be described in detail later.
また、微細藻類Pの回収後、第1のフィルム22fを再度、支持体20f上に設置することで、繰り返し利用することができる。
この点に関しては後に詳述する。 As described above, when the
Moreover, after collection of the microalgae P, the
This point will be described in detail later.
第1のフィルム22fは、培養液Mを一定期間、すなわち、微細藻類Pを培養する期間保持することができれば、特に限定はなく、樹脂フィルム、金属フィルム、織布、不織布、これらの組み合わせ等が挙げられ、樹脂フィルムを用いるのが好ましい。なお、織布、不織布を構成する繊維としては、例えば、プラスチック類、金属類、木質材、草本類、グラスファイバー、カーボンファイバー等が挙げられる。
The first film 22f is not particularly limited as long as the culture solution M can be maintained for a certain period, that is, a period for culturing the microalgae P, and a resin film, a metal film, a woven fabric, a non-woven fabric, a combination thereof, etc. It is preferable to use a resin film. In addition, as a fiber which comprises a woven fabric and a nonwoven fabric, plastics, metals, wood material, grasses, glass fiber, a carbon fiber etc. are mentioned, for example.
なお、後述する回収工程において、得られた微細藻類Pを第1のフィルム22fから剥離して回収する場合には、微細藻類Pとの適度な親和性を持った表面特性を有する材料を用いることで、微細藻類Pの回収率を向上させることができる。
ここで、微細藻類Pとの適度な親和性を持った表面特性を有する材料としては、例えば、ガラス(ケイ酸ガラス)、シリコーン(シリコーンゴム、シリコーン樹脂等)、フッ素樹脂(PTFE、PCTFE、CTFE、PVDF、PVF、PFA、FE、ETFE、ECTFE等)、ポリ塩化ビニル、ポリオレフィン(ポリエチレン、ポリプロピレン等)等が挙げられる。 When the obtained microalgae P is separated and recovered from thefirst film 22f in the recovery step to be described later, a material having a surface property having a suitable affinity with the microalgae P should be used. Thus, the recovery rate of microalgae P can be improved.
Here, as a material having a surface property having appropriate affinity with the microalgae P, for example, glass (silicate glass), silicone (silicone rubber, silicone resin, etc.), fluorocarbon resin (PTFE, PCTFE, CTFE, etc.) , PVDF, PVF, PFA, FE, ETFE, ECTFE, etc.), polyvinyl chloride, polyolefins (polyethylene, polypropylene, etc.) and the like.
ここで、微細藻類Pとの適度な親和性を持った表面特性を有する材料としては、例えば、ガラス(ケイ酸ガラス)、シリコーン(シリコーンゴム、シリコーン樹脂等)、フッ素樹脂(PTFE、PCTFE、CTFE、PVDF、PVF、PFA、FE、ETFE、ECTFE等)、ポリ塩化ビニル、ポリオレフィン(ポリエチレン、ポリプロピレン等)等が挙げられる。 When the obtained microalgae P is separated and recovered from the
Here, as a material having a surface property having appropriate affinity with the microalgae P, for example, glass (silicate glass), silicone (silicone rubber, silicone resin, etc.), fluorocarbon resin (PTFE, PCTFE, CTFE, etc.) , PVDF, PVF, PFA, FE, ETFE, ECTFE, etc.), polyvinyl chloride, polyolefins (polyethylene, polypropylene, etc.) and the like.
また、回収工程において、得られた微細藻類Pを第1のフィルム22fから剥離することなく一体のままで回収して、フィルム状燃料とする場合には、微細藻類Pとの親和性の高い表面特性を有する材料を用いるのが好ましい。
第1のフィルム22fも燃料として使用する場合には、第1のフィルム22fとしては、乾燥藻体と共に燃焼させても塩素等の有毒物を発生しないフィルム(ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンテレフタラートなどのポリエステル、ポリウレタン、ポリアミド、シリコーン樹脂、フッ素系樹脂、これらを組合せた複合フィルムなど)が好ましく、更に環境負荷(温暖化防止)の観点からバイオマス由来フィルム(バイオPE、バイオポリエステル、ポリ乳酸、アセチルセルロース等)が好ましい。 Further, in the recovery step, when the obtained microalgae P is collected as it is without peeling from thefirst film 22f and used as a film-like fuel, the surface having high affinity with the microalgae P It is preferred to use a material having properties.
When thefirst film 22f is also used as a fuel, a film (polyethylene, polyolefin such as polypropylene, polyethylene terephthalate, etc. which does not generate toxic substances such as chlorine even if it is burned together with the dried algal cells as the first film 22f) And polyesters, polyurethanes, polyamides, silicone resins, fluorine resins, composite films combining these, etc. are preferable, and biomass-derived films (bioPE, biopolyester, polylactic acid, and the like) from the viewpoint of environmental load (preventing global warming). Acetyl cellulose etc. is preferred.
第1のフィルム22fも燃料として使用する場合には、第1のフィルム22fとしては、乾燥藻体と共に燃焼させても塩素等の有毒物を発生しないフィルム(ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンテレフタラートなどのポリエステル、ポリウレタン、ポリアミド、シリコーン樹脂、フッ素系樹脂、これらを組合せた複合フィルムなど)が好ましく、更に環境負荷(温暖化防止)の観点からバイオマス由来フィルム(バイオPE、バイオポリエステル、ポリ乳酸、アセチルセルロース等)が好ましい。 Further, in the recovery step, when the obtained microalgae P is collected as it is without peeling from the
When the
複数回の本培養工程及び液量縮減工程を行った後に、回収工程を行ってもよい。複数回の本培養工程及び液量縮減工程を行った後に、回収工程を行うことにより、回収工程の実施回数を少なくすることができ、全体のコストを低減させることができる。なお、この際には、液量縮減工程の後に藻体を乾燥させることが好ましい。藻体を乾燥させることにより、蓄積したオイルの減少を防止することができ、また、藻類バイオマスの減少を防止することができるからである。
A recovery step may be performed after performing a plurality of main culture steps and a liquid volume reduction step. By performing the recovery step after performing the main culture step and the liquid volume reduction step a plurality of times, the number of times of implementation of the recovery step can be reduced, and the overall cost can be reduced. In this case, it is preferable to dry the algal cells after the liquid amount reduction step. By drying the algal cells, it is possible to prevent the reduction of accumulated oil and to prevent the reduction of algal biomass.
支持体20fは、一面が開放された略直方体の箱型形状の容器である。図6示すように、支持体20fの開放面は、第1のフィルム22fよりも小さく形成されており、開放面の縁部に第1のフィルム22fの端部を係止させつつ、容器内に第1のフィルム22fを配置することで、第1のフィルム22fを凹状に支持する。
支持体20fとしては、図2に示す容器16aと同様の容器を用いることができる。 Thesupport 20 f is a substantially rectangular box-shaped container whose one surface is open. As shown in FIG. 6, the open surface of the support 20f is formed smaller than the first film 22f, and while the end of the first film 22f is locked to the edge of the open surface, the inside of the container is formed. By arranging the first film 22f, the first film 22f is concavely supported.
As thesupport 20f, the same container as the container 16a shown in FIG. 2 can be used.
支持体20fとしては、図2に示す容器16aと同様の容器を用いることができる。 The
As the
また、支持体の形状は、図6に示す容器状に限定はされず、図7に示す培養装置10hのように、底面を有さない枠状物を支持体20hとして用いてもよい。図7に示す培養装置10hの支持体20hは、枠状物に第1のフィルム22fの端部を係止させて、枠内に凹部を形成するように、第1のフィルム22fを支持する。
このような枠状の支持体20hとしては、上記支持体20fと同様に、プラスチック、土、コンクリート、木、金属、粘土、陶器、又はこれらのうち2種類以上の組合せを用いて枠状の形態に成形されたものが挙げられる。 Further, the shape of the support is not limited to the container shown in FIG. 6, and a frame having no bottom may be used as thesupport 20h as in the culture apparatus 10h shown in FIG. The support 20h of the culture device 10h shown in FIG. 7 holds the end of the first film 22f in the frame and supports the first film 22f so as to form a recess in the frame.
Similar to the above-mentionedsupport 20f, such a frame-shaped support 20h may be a frame-like form using plastic, soil, concrete, wood, metal, clay, pottery, or a combination of two or more of them. What was formed into is mentioned.
このような枠状の支持体20hとしては、上記支持体20fと同様に、プラスチック、土、コンクリート、木、金属、粘土、陶器、又はこれらのうち2種類以上の組合せを用いて枠状の形態に成形されたものが挙げられる。 Further, the shape of the support is not limited to the container shown in FIG. 6, and a frame having no bottom may be used as the
Similar to the above-mentioned
又は、支持体として複数の柱状物を用いてもよい。例えば、4本の各柱状物を、各柱状物を結んだ線が矩形状をなすように配置し、各柱状物の先端に第1のフィルム22fの端部を係止して凹部を形成させて、第1のフィルム22fを支持する構成としてもよい。
Alternatively, a plurality of pillars may be used as a support. For example, the four columns are arranged so that the line connecting the columns forms a rectangular shape, and the end of the first film 22f is engaged with the tip of each column to form a recess. Alternatively, the first film 22f may be supported.
なお、貯留部材を第1のフィルムと支持体とで構成する場合には、支持体に排水管18が接続され、第1のフィルムには排水用の孔が形成されていてもよい。
When the storage member is constituted by the first film and the support, the drainage pipe 18 may be connected to the support, and the first film may be formed with a drainage hole.
また、支持体は、第1のフィルムとの位置合わせのための溝等を有していてもよい。
The support may also have grooves or the like for alignment with the first film.
ここで、貯留部材は、培養液Mと接触する側の最表面に、複数の貫通孔が形成された第2のフィルムを備える構成としてもよい。図8に示す培養装置10gは、発明に係る培養装置の他の一例の概略断面図であり、貯留部材12aに代えて、容器16aと第2のフィルム24gとを備える貯留部材12gを備える以外は、図2の培養装置10aと同様の構成を備えるので、同じ部位には同じ符号を付し、以下の説明では異なる部位を主に行う。なお、第2のフィルム24gは、おもて側(培養液Mの液面により近い側)及びうら側(第1のフィルムにより近い側)の2つの表面を有する。
Here, the storage member may be configured to include the second film in which a plurality of through holes are formed on the outermost surface on the side in contact with the culture solution M. Culture apparatus 10g shown in FIG. 8 is a schematic cross-sectional view of another example of the culture apparatus according to the invention, except that storage apparatus 12g is provided with container 16a and second film 24g instead of storage member 12a. Since the configuration is the same as that of the culture apparatus 10a of FIG. 2, the same reference numerals are given to the same parts, and different parts will mainly be described in the following description. The second film 24g has two surfaces, the front side (the side closer to the liquid surface of the culture solution M) and the back side (the side closer to the first film).
培養装置10gの貯留部材12gは、容器16aと、複数の貫通孔が形成された第2のフィルム24gとを備える。
第2のフィルム24gは、容器16aの開放面よりも大きく形成されており、開放面の縁部に端部を係止させて、容器16a内に配置される。
第2のフィルム24gは、培養液Mを透過し、微細藻類を透過しにくい性質を有していればよく、例えば、網(金網、プラスチックメッシュ、布、糸や紐や草本類や繊維類などを編みこんだものなど)、ろ紙、フィルムに孔を多数開けたもの等が挙げられる。 Thestorage member 12g of the culture apparatus 10g includes a container 16a and a second film 24g in which a plurality of through holes are formed.
Thesecond film 24g is formed larger than the open surface of the container 16a, and is disposed in the container 16a with its end locked to the edge of the open surface.
Thesecond film 24g may have the property of permeating the culture solution M and having difficulty in permeating microalgae. For example, mesh (wire mesh, plastic mesh, cloth, yarn, string, grass, fibers, etc.) And those having a large number of holes in the film, and the like.
第2のフィルム24gは、容器16aの開放面よりも大きく形成されており、開放面の縁部に端部を係止させて、容器16a内に配置される。
第2のフィルム24gは、培養液Mを透過し、微細藻類を透過しにくい性質を有していればよく、例えば、網(金網、プラスチックメッシュ、布、糸や紐や草本類や繊維類などを編みこんだものなど)、ろ紙、フィルムに孔を多数開けたもの等が挙げられる。 The
The
The
このように、培養液Mを透過し、微細藻類を透過しにくい第2のフィルム24gを培養液M側に配置することで、後述する液量縮減工程において培養液Mの液量を減らす際に、培養した微細藻類Pは、第2のフィルム24g上にとどまるので、より容易に培養液Mを減らすことができる。また、先の第1のフィルムの場合と同様に、液量縮減工程で培養液Mの液量を減らして、培養した微細藻類Pを第2のフィルム24gに接触させた後、回収工程において、第2のフィルム24gを容器16aから移動(着脱)することで、微細藻類Pを容易に回収することができる。
Thus, when the second film 24 g which permeates the culture fluid M and hardly permeates the microalgae is disposed on the culture fluid M side, the liquid volume of the culture fluid M is reduced in the liquid volume reduction step described later. Since the cultured microalgae P remains on the second film 24g, the culture solution M can be more easily reduced. Also, as in the case of the first film described above, after the liquid volume of the culture solution M is reduced in the liquid volume reduction step and the cultured microalgae P is brought into contact with the second film 24g, in the recovery step, The microalgae P can be easily recovered by moving (detaching) the second film 24g from the container 16a.
また、培養液Mを透過し、微細藻類Pを透過しにくい第2のフィルム24gを用いると、培養した微細藻類P、特には培養で得られたバイオフィルム、を回収する際に、第2のフィルム24gを回収すると同時に水分の除去が行えるので非常に効率的である。
In addition, when using the second film 24g which permeates the culture solution M and does not easily permeate the microalgae P, the second microalgae P, particularly a biofilm obtained by the culture, is collected. It is very efficient because it can remove moisture at the same time as recovering 24 g of film.
ここで、本発明が好適に適用される、液面にバイオフィルムを形成する微細藻類を用いる場合には、培養した微細藻類がフィルム状の固形物を形成するため、第2のフィルム24gの貫通孔を透過しづらい。従って、第2のフィルム24gに形成される貫通孔のサイズを比較的大きくしても、微細藻類Pが第2のフィルム24g上にとどまるので、より簡易に水分の除去を行うことができ好適である。
Here, in the case of using the microalga which forms a biofilm on the liquid surface, to which the present invention is suitably applied, the cultured microalga forms a solid in the form of a film; It is hard to penetrate the hole. Therefore, even if the size of the through hole formed in the second film 24g is relatively large, the microalgae P remains on the second film 24g, so that the water can be removed more easily, which is preferable. is there.
また、図8に示す例では、培養液Mを貯留する容器16aと、複数の貫通孔が形成された第2のフィルム24gとを組み合わせる構成としたが、これに限定はされず、図5に示す培養装置10b、図6に示す培養装置10f、又は、図7に示す培養装置10hに、第2のフィルム24gを組み合わせた構成としてもよい。
In the example shown in FIG. 8, the container 16a for storing the culture fluid M is combined with the second film 24g in which a plurality of through holes are formed, but the present invention is not limited thereto. The second film 24g may be combined with the culture apparatus 10b shown, the culture apparatus 10f shown in FIG. 6, or the culture apparatus 10h shown in FIG.
本発明に係る培養装置は、第1のフィルムを移動させる第1のフィルム移動部材を備えることが好ましい。この場合には、液量縮減工程において、培養液の液量を減らすことで、培養した微細藻類の培養物を第1のフィルムに接触させて、回収工程において、第1のフィルムを支持体から移動させて、微細藻類の培養物を回収することができる。例えば、図6に示す培養装置10fでは、貯留部材の培養液Mと接する最表面に第1のフィルム22fを配置する構成として、回収工程で、第1のフィルム22fを第1のフィルム移動部材(図示せず)を用いて第1のフィルム22fを移動させることで、微細藻類Pを回収することができる。ただし、貯留部材の培養液Mと接する最表面に配置する部材は第1のフィルムに限定されず、一般に可撓性を有するフィルム状の構造物、更には、貯留部材の最表面に着脱可能な構造物であればよく、その構造物を脱着して、構造物とともに微細藻類Pを回収するものとすることができる。
The culture apparatus according to the present invention preferably comprises a first film moving member for moving the first film. In this case, the culture solution of the cultured microalga is brought into contact with the first film by reducing the volume of the culture solution in the volume reduction step, and the first film is removed from the support in the recovery step. It can be moved to recover cultures of microalgae. For example, in the culture apparatus 10f shown in FIG. 6, as the first film 22f is disposed on the outermost surface of the storage member in contact with the culture solution M, the first film 22f is used as the first film moving member The microalgae P can be recovered by moving the first film 22 f using not shown. However, the member disposed on the outermost surface of the storage member in contact with the culture solution M is not limited to the first film, and is generally removable from the film-like structure having flexibility and further the outermost surface of the storage member. Any structure may be used, and the structure may be desorbed to recover the microalgae P together with the structure.
本発明に係る培養装置は、第2のフィルムを移動させる第2のフィルム移動部材を備えることが好ましい。この場合には、液量縮減工程において、培養液の液量を減らすことで、培養した微細藻類の培養物を第2のフィルムに接触させて、回収工程において、第2のフィルムを貯留部材の培養液と接触する側の最表面から移動させて、微細藻類の培養物を回収することができる。また、この場合には、液量縮減工程において、第2のフィルムを貯留部材の培養液と接触する側の最表面から培養液の液面までの間の位置に移動させた後、培養液の液量を減らすことで、培養した微細藻類の培養物を第2のフィルムに接触させて、回収工程において、第2のフィルムを、その位置から移動させて、微細藻類の培養物を回収することもできる。更に、この場合には、液量縮減工程において、培養した微細藻類の培養物が第2のフィルムに実質的に接触しない程度まで培養液の液量を減らし、回収工程において、第2のフィルムを貯留部材の培養液と接触する側の最表面から移動させて、微細藻類の培養物を回収することもできる。例えば、図8に示す培養装置10gでは、貯留部材の培養液Mと接する最表面に第2のフィルム24gを配置する構成として、回収工程で、第2のフィルム24gを第2のフィルム移動部材(図示せず)を用いて第2のフィルム24gを移動させることで、微細藻類Pを回収することができる。ただし、貯留部材の培養液Mと接する最表面に位置する部材は第2のフィルムに限定されず、一般に可撓性を有するフィルム状の構造物、更には、貯留部材の最表面に着脱可能な構造物であればよく、その構造物を脱着して、構造物とともに微細藻類Pを回収するものとしてもよい。
The culture apparatus according to the present invention preferably comprises a second film moving member for moving the second film. In this case, the culture solution of the cultured microalga is brought into contact with the second film by reducing the volume of the culture solution in the volume reduction step, and the second film is used as the storage member in the recovery step. The microalgal culture can be recovered by moving from the outermost surface in contact with the culture solution. Also, in this case, in the liquid volume reduction step, the second film is moved from the outermost surface of the storage member on the side in contact with the culture solution to a position from the liquid surface of the culture solution to Reducing the liquid volume to bring the cultured microalgal culture into contact with the second film, and in the recovery step moving the second film from its position to recover the microalgal culture You can also. Furthermore, in this case, in the liquid volume reduction step, the liquid volume of the culture solution is reduced to such an extent that the culture of the cultured microalga does not substantially contact the second film, and the second film is The microalgal culture can also be recovered by moving it from the outermost surface of the storage member in contact with the culture solution. For example, in the culture apparatus 10g shown in FIG. 8, the second film 24g is used as the second film moving member in the recovery step as a configuration in which the second film 24g is disposed on the outermost surface of the storage member in contact with the culture solution M. The microalgae P can be recovered by moving the second film 24 g by using (not shown). However, the member positioned on the outermost surface of the storage member in contact with the culture solution M is not limited to the second film, and is generally removable from the film-like structure having flexibility and further the outermost surface of the storage member Any structure may be used, and the structure may be desorbed to recover the microalgae P together with the structure.
なお、第1のフィルム又は第2のフィルムに代表される、可撓性を有するフィルム状の構造物は、持ち上げる、引き抜くなどの他に、必要に応じて折り曲げたり、折りたたんだり、ロール状に巻き取ったりなど、その状況に応じた各種の回収方法が選べるため、好適である。
A flexible film-like structure represented by the first film or the second film may be folded or folded as required, or may be wound into a roll, in addition to lifting and pulling. It is preferable because various recovery methods can be selected according to the situation, such as taking.
本発明に係る培養装置は、第1のフィルムをロール状に巻き取る第1の巻取機を備えることが好ましい。この場合には、回収工程において、第1の巻取機は、第1のフィルムを微細藻類の培養物と共にロール状に巻き取ることで、微細藻類の培養物を回収することができる。また、本発明に係る培養装置は、第1のフィルムから微細藻類の培養物を剥離させる第1の回収部材を更に備えることが好ましい。本発明に係る培養装置が第1の巻取機及び第1の回収部材を備える場合には、回収工程において、第1の巻取機が第1のフィルムをロール状に巻き取りつつ、第1の回収部材が第1のフィルムから微細藻類の培養物を剥離させて微細藻類の培養物を回収することができる。
The culture apparatus according to the present invention preferably comprises a first winder for winding the first film in a roll. In this case, in the recovery step, the first winding machine can recover the microalgal culture by winding the first film together with the microalgal culture in a roll. In addition, the culture apparatus according to the present invention preferably further comprises a first recovery member for peeling the culture of the microalga from the first film. When the culture apparatus according to the present invention includes the first winding machine and the first recovery member, the first winding machine winds the first film into a roll in the recovery step. The recovery member of the present invention can peel off the microalgal culture from the first film to recover the microalgal culture.
また、本発明に係る培養装置は、第2のフィルムをロール状に巻き取る第2の巻取機を備えることが好ましい。この場合には、回収工程において、第2の巻取機は、第2のフィルムを微細藻類の培養物と共にロール状に巻き取ることで、微細藻類の培養物を回収することができる。また、本発明に係る培養装置は、第2のフィルムから微細藻類の培養物を剥離させる第2の回収部材を更に備えることが好ましい。本発明に係る培養装置が第2の巻取機及び第2の回収部材を備える場合には、回収工程において、第2の巻取機が第2のフィルムをロール状に巻き取りつつ、第2の回収部材が第2のフィルムから微細藻類の培養物を剥離させて微細藻類の培養物を回収することができる。
Moreover, it is preferable that the culture apparatus according to the present invention comprises a second winding machine for winding the second film in a roll. In this case, in the recovery step, the second winding machine can recover the microalgal culture by rolling up the second film together with the microalgal culture in a roll. In addition, the culture apparatus according to the present invention preferably further comprises a second recovery member that peels the culture of the microalga from the second film. When the culture apparatus according to the present invention includes the second winding machine and the second recovery member, the second winding machine winds the second film in a roll in the recovery step, The recovery member of the present invention can peel off the microalgal culture from the second film to recover the microalgal culture.
第1のフィルム22f又は第2のフィルム24gの厚さや強度等については、特に限定はないが、回収工程において、第1のフィルム22f又は第2のフィルム24gを用いて微細藻類の回収を行う場合には、回収時に破断等をしないような十分な強度を有していることが望ましい。一方で、大面積での作業のためには、重量が軽いことも重要である。また、ロール状に巻き取る場合には、厚さは薄いほうが好ましい。
以上の観点から、第1のフィルム22f及び第2のフィルム24gの厚さは、材質にもよるが、1μm~10000μmが好ましく、5μm~1000μmが更に好ましく、10~500μmが最も好ましい。10μm以上の厚さがあれば、第一のフィルムや第二のフィルムが破損することなく取り扱うことができ、500μm以下の厚さであれば、重量に由来する問題を回避することができる。 The thickness, strength, etc. of thefirst film 22f or the second film 24g are not particularly limited, but in the case of collecting microalgae using the first film 22f or the second film 24g in the recovery step It is desirable to have sufficient strength not to break at the time of recovery. On the other hand, light weight is also important for large area work. Moreover, when winding up in roll shape, the thinner one is preferable.
From the above point of view, the thickness of thefirst film 22f and the second film 24g is preferably 1 μm to 10000 μm, more preferably 5 μm to 1000 μm, and most preferably 10 to 500 μm, although it depends on the material. If the thickness is 10 μm or more, the first film or the second film can be handled without breakage, and if the thickness is 500 μm or less, the problem due to weight can be avoided.
以上の観点から、第1のフィルム22f及び第2のフィルム24gの厚さは、材質にもよるが、1μm~10000μmが好ましく、5μm~1000μmが更に好ましく、10~500μmが最も好ましい。10μm以上の厚さがあれば、第一のフィルムや第二のフィルムが破損することなく取り扱うことができ、500μm以下の厚さであれば、重量に由来する問題を回避することができる。 The thickness, strength, etc. of the
From the above point of view, the thickness of the
また、図6に示す培養装置10fにおいては、貯留部材12fが第1のフィルム22fと支持体20fとからなる構成としたが、これに限定はされず、第1のフィルム22fと支持体20fとの間に、1以上の第3のフィルムを備える構成としてもよい。図9に、本発明の培養及び回収方法で用いる培養装置の他の一例の概略断面図を示す。ここで、図9に示す培養装置10jは、図7の貯留部材12hに代えて、第1のフィルム22fと支持体20hとの間に第3のフィルム26jを備える貯留部材12jを備える以外は、図7に示す培養装置10hと同様の構成を備えるので、同じ部位には同じ符号を付し、以下の説明では異なる部位を主に行う。なお、第3のフィルム26jは、おもて側(培養液Mにより近い側)及びうら側(培養液Mからより遠い側)の2つの表面を有する。
In addition, in the culture apparatus 10f shown in FIG. 6, the storage member 12f is configured to include the first film 22f and the support 20f, but is not limited thereto, and the first film 22f and the support 20f are not limited thereto. Between the two, one or more third films may be provided. FIG. 9 shows a schematic cross-sectional view of another example of the culture apparatus used in the culture and recovery method of the present invention. Here, the culture apparatus 10j shown in FIG. 9 is provided with a storage member 12j provided with a third film 26j between the first film 22f and the support 20h, instead of the storage member 12h of FIG. The configuration is the same as that of the culture apparatus 10h shown in FIG. The third film 26 j has two surfaces, the front side (the side closer to the culture solution M) and the rear side (the side farther from the culture solution M).
培養装置10jの貯留部材12jは、第1のフィルム22f、第1のフィルムを支持する支持体20h、及び、第1のフィルム22fと支持体20hとの間に配置される第3のフィルム26jを備える。
第3のフィルム26jとしては特に限定はないが、第1のフィルム22fと同様のフィルムを用いることができる。 The storage member 12j of theculture apparatus 10j includes a first film 22f, a support 20h for supporting the first film, and a third film 26j disposed between the first film 22f and the support 20h. Prepare.
Thethird film 26 j is not particularly limited, but the same film as the first film 22 f can be used.
第3のフィルム26jとしては特に限定はないが、第1のフィルム22fと同様のフィルムを用いることができる。 The storage member 12j of the
The
このように、第1のフィルム22fと支持体20hとの間に1以上の第3のフィルム26jを配置することで、培養した微細藻類Pを第1のフィルム22fと共に回収した後、最表面側の第3のフィルム26jを第1のフィルムとして用いることができるので、回収した第1のフィルム22fを再度設置することなく、再利用が可能となり、連続的に微細藻類の培養を行うことができ、製造効率をより向上できる。
なお、第1のフィルムとして用いる第3のフィルムは、第1のフィルムとみなす。 Thus, by arranging one or morethird films 26j between the first film 22f and the support 20h, the cultured microalgae P is recovered together with the first film 22f, and then the outermost surface side is obtained. Since the third film 26j of the second film 26j can be used as the first film, it becomes possible to reuse without re-installing the collected first film 22f, and it is possible to culture the microalga continuously. , Can improve the manufacturing efficiency.
Note that the third film used as the first film is regarded as the first film.
なお、第1のフィルムとして用いる第3のフィルムは、第1のフィルムとみなす。 Thus, by arranging one or more
Note that the third film used as the first film is regarded as the first film.
また、支持体が土、粘土等で形成される場合や、図7に示す培養装置10hのように、第1のフィルム22fが、装置の設置面(特に土面など)に接する場合には、第1のフィルム22fの裏面が、設置面や土中に存在する微生物等によって汚染され、更に、第1のフィルム22fを巻き取った際等に表面側(培養液M側)も汚染されて、培養した微細藻類Pに上記微生物等が混入してしまう恐れがある。
これに対して、第1のフィルム22fと支持体(設置面)との間に第3のフィルム26jを配置することで、第1のフィルム22fが支持体や設置面と直接接触することを防止して、設置面や土中に存在する微生物等が混入するのを防止できるので好適である。
なお、微生物等の混入を防止するために第3のフィルムを設置する場合には、第1のフィルムの移動の際に、第3のフィルムが移動するのを防止するために、第3のフィルムを支持体等に固定するのが好ましい。 When the support is formed of soil, clay or the like, or when thefirst film 22f is in contact with the installation surface (in particular, the soil surface) of the apparatus as in the culture apparatus 10h shown in FIG. The back side of the first film 22f is contaminated by microorganisms and the like present in the installation surface and the soil, and the surface side (culture medium M side) is also contaminated when the first film 22f is wound up, etc. The microorganisms etc. may be mixed in the cultured microalgae P.
On the other hand, disposing thethird film 26 j between the first film 22 f and the support (installation surface) prevents the first film 22 f from being in direct contact with the support or the installation surface. It is preferable because it can prevent the mixing of microorganisms and the like present in the installation surface and in the soil.
In addition, when installing a 3rd film in order to prevent mixing of a microbe etc., in order to prevent that a 3rd film moves at the time of a movement of a 1st film, a 3rd film Is preferably fixed to a support or the like.
これに対して、第1のフィルム22fと支持体(設置面)との間に第3のフィルム26jを配置することで、第1のフィルム22fが支持体や設置面と直接接触することを防止して、設置面や土中に存在する微生物等が混入するのを防止できるので好適である。
なお、微生物等の混入を防止するために第3のフィルムを設置する場合には、第1のフィルムの移動の際に、第3のフィルムが移動するのを防止するために、第3のフィルムを支持体等に固定するのが好ましい。 When the support is formed of soil, clay or the like, or when the
On the other hand, disposing the
In addition, when installing a 3rd film in order to prevent mixing of a microbe etc., in order to prevent that a 3rd film moves at the time of a movement of a 1st film, a 3rd film Is preferably fixed to a support or the like.
上記観点から、第1のフィルムの回収後、第3のフィルムを新たな第1のフィルムとして利用して、連続的に微細藻類の培養を行う場合には、第3のフィルムとして、第1のフィルムと同じフィルムを用いるのが好ましい。
一方、第3のフィルムを設置して微生物等の混入を防止する場合には、上記微生物等によって汚れにくく、分解されにくく、長期間にわたり強度を維持可能なものが好ましい。 From the above viewpoint, when the microalga is continuously cultured using the third film as a new first film after recovery of the first film, the first film may be used as the third film. It is preferred to use the same film as the film.
On the other hand, in the case where the third film is installed to prevent the contamination of microorganisms and the like, it is preferable that the third film is hardly soiled by the above-mentioned microorganisms and the like, hardly decomposed and capable of maintaining strength for a long time.
一方、第3のフィルムを設置して微生物等の混入を防止する場合には、上記微生物等によって汚れにくく、分解されにくく、長期間にわたり強度を維持可能なものが好ましい。 From the above viewpoint, when the microalga is continuously cultured using the third film as a new first film after recovery of the first film, the first film may be used as the third film. It is preferred to use the same film as the film.
On the other hand, in the case where the third film is installed to prevent the contamination of microorganisms and the like, it is preferable that the third film is hardly soiled by the above-mentioned microorganisms and the like, hardly decomposed and capable of maintaining strength for a long time.
また、貯留部材を、第1のフィルム及び第2のフィルムの少なくとも一方を備える構成とし、回収工程において、第1のフィルム又は第2のフィルムを移動させて微細藻類を回収する場合には、第1のフィルム又は第2のフィルムとこれらフィルムと接する部材との間の摩擦を低減する処理を行うことが好ましい。具体的には、第1のフィルムの又は第2のフィルムの表面に摩擦力を低減させる物質を塗布する方法、表面を表面処理する方法、又は、これらの部材間に摩擦力を低減させる物質を存在させる方法が例示される。また、第1のフィルム及び第2のフィルムの両方を備える場合には、第1のフィルムの表面及び第2のフィルムの表面の少なくとも一方に摩擦を低減する処理を行うことが好ましい。また、第3のフィルムを備える場合には、第3のフィルムの表面に摩擦を低減する処理を行うことが好ましい。
これにより、巻き取り等によりフィルムを移動させる際の摩擦力が減少し、巻き取り等の負荷を減らし、必要なエネルギー量を減少させることができ好ましい。
摩擦を低減させる物質としては、潤滑油、グリース、ワックス、粒径が揃った粒状物、例えば、小麦粉やデンプンの粉などをあげることができる。これらの物質は、フィルムの使用回数と共に減少する場合があるため、必要に応じて追加使用することができる。 In addition, when the storage member is configured to include at least one of the first film and the second film, and the first film or the second film is moved to recover the microalgae in the recovery step, It is preferable to perform a treatment to reduce the friction between the first film or the second film and a member in contact with the films. Specifically, a method of applying a substance that reduces the frictional force to the surface of the first film or the surface of the second film, a method of surface treating the surface, or a substance that reduces the frictional force between these members The method to make it exist is illustrated. When both the first film and the second film are provided, at least one of the surface of the first film and the surface of the second film is preferably treated to reduce friction. Moreover, when providing a 3rd film, it is preferable to perform the process which reduces friction on the surface of a 3rd film.
Thereby, the frictional force at the time of moving a film by winding-up etc. reduces, Loads, such as winding-up, can be reduced and the required energy amount can be reduced and it is preferable.
Substances that reduce friction can include lubricating oils, greases, waxes, and granules with uniform particle sizes, such as flour and starch powder. These substances may decrease with the number of times the film is used, and can be used additionally as needed.
これにより、巻き取り等によりフィルムを移動させる際の摩擦力が減少し、巻き取り等の負荷を減らし、必要なエネルギー量を減少させることができ好ましい。
摩擦を低減させる物質としては、潤滑油、グリース、ワックス、粒径が揃った粒状物、例えば、小麦粉やデンプンの粉などをあげることができる。これらの物質は、フィルムの使用回数と共に減少する場合があるため、必要に応じて追加使用することができる。 In addition, when the storage member is configured to include at least one of the first film and the second film, and the first film or the second film is moved to recover the microalgae in the recovery step, It is preferable to perform a treatment to reduce the friction between the first film or the second film and a member in contact with the films. Specifically, a method of applying a substance that reduces the frictional force to the surface of the first film or the surface of the second film, a method of surface treating the surface, or a substance that reduces the frictional force between these members The method to make it exist is illustrated. When both the first film and the second film are provided, at least one of the surface of the first film and the surface of the second film is preferably treated to reduce friction. Moreover, when providing a 3rd film, it is preferable to perform the process which reduces friction on the surface of a 3rd film.
Thereby, the frictional force at the time of moving a film by winding-up etc. reduces, Loads, such as winding-up, can be reduced and the required energy amount can be reduced and it is preferable.
Substances that reduce friction can include lubricating oils, greases, waxes, and granules with uniform particle sizes, such as flour and starch powder. These substances may decrease with the number of times the film is used, and can be used additionally as needed.
また、図示例においては、貯留部材は、1つの液体保持部を備える構成としたが、これに限定はされず、1つ以上の仕切りによって複数の区画に区分されていてもよい。この場合、各区画は培養液を所定期間保持することができることが好ましい。
Further, in the illustrated example, the storage member is configured to include one liquid holding unit, but is not limited thereto, and may be divided into a plurality of sections by one or more partitions. In this case, each compartment is preferably capable of holding the culture solution for a predetermined period.
また、前述のとおり、貯留部材には、培養液の液量を減らすために排水をすることを目的として、排水管やバルブ等が設けられていてもよい。液量縮減工程において、排水して培養液の液量を減らす場合には、貯留部材の液体保持部の底面は、排水管側に向かって低くなるように、傾斜していることが好ましい。
液体保持部の底面を傾斜させて、高さの低い側から排水を行えるように水深を変化させることで、容易に排水することができる。
なお、液体保持部の底面を傾斜させる方法には特に限定はなく、液体保持部の底面を貯留部材の底面に対して傾斜させて形成しても良いし、又は、図10に示すように、貯留部材12aを傾斜した設置面Gに設置してもよい。又は、図11に示すように、貯留部材12aの底面の一方の端辺側と設置面Gとの間に嵩上げする部材30を挟むようにして、液体保持部の底面を傾斜させてもよい。又は、図12に示す培養装置10tように、貯留部材12tの形状を液体保持部の一部の深さが深い、段差を有する形状とし、段差を有する設置面Gに設置してもよい。また、図13に示す培養装置10uの貯留部材12uのように、液体保持部の一部のみを傾斜させてもよい。
なお、培養を行う液体保持部の最大の高低差は、培養を行う際の水深と同程度以下とすることが好ましい。
また、このように、培養液を排水して液量を減らす場合には、貯留部材の周辺に、排水管から排水された液の水路を設けるのが好ましい。例えば、雨どいのような配管を配置してもよいし、図14に示すように、設置面Gに、排水管18から排水された液の水路となる溝Hを形成してもよい。 Further, as described above, the storage member may be provided with a drain pipe, a valve or the like for the purpose of draining in order to reduce the amount of culture solution. In the liquid volume reduction step, when draining to reduce the liquid volume of the culture solution, the bottom surface of the liquid holding portion of the storage member is preferably inclined so as to become lower toward the drainage pipe side.
It is possible to drain easily by changing the water depth so that drainage can be performed from the lower side by tilting the bottom surface of the liquid holding portion.
The method of inclining the bottom surface of the liquid holding portion is not particularly limited, and the bottom surface of the liquid holding portion may be inclined relative to the bottom surface of the storage member, or as shown in FIG. Thestorage member 12a may be installed on the inclined installation surface G. Alternatively, as shown in FIG. 11, the bottom surface of the liquid holding portion may be inclined by sandwiching the bulking member 30 between one end side of the bottom surface of the storage member 12a and the installation surface G. Alternatively, as in a culture apparatus 10t shown in FIG. 12, the shape of the storage member 12t may be a shape having a step with a deep part of the liquid holding portion, and may be installed on the installation surface G having a step. Alternatively, as in the storage member 12 u of the culture device 10 u illustrated in FIG. 13, only a part of the liquid holding unit may be inclined.
In addition, it is preferable to make the largest height difference of the liquid holding | maintenance part which culture | cultivates into less than the same as the water depth at the time of culturing.
Further, when the culture solution is drained to reduce the amount of liquid, it is preferable to provide a water channel for the liquid drained from the drain pipe around the storage member. For example, piping such as a gutter may be disposed, and as shown in FIG. 14, a groove H may be formed in the installation surface G to serve as a water channel for liquid drained from thedrain pipe 18.
液体保持部の底面を傾斜させて、高さの低い側から排水を行えるように水深を変化させることで、容易に排水することができる。
なお、液体保持部の底面を傾斜させる方法には特に限定はなく、液体保持部の底面を貯留部材の底面に対して傾斜させて形成しても良いし、又は、図10に示すように、貯留部材12aを傾斜した設置面Gに設置してもよい。又は、図11に示すように、貯留部材12aの底面の一方の端辺側と設置面Gとの間に嵩上げする部材30を挟むようにして、液体保持部の底面を傾斜させてもよい。又は、図12に示す培養装置10tように、貯留部材12tの形状を液体保持部の一部の深さが深い、段差を有する形状とし、段差を有する設置面Gに設置してもよい。また、図13に示す培養装置10uの貯留部材12uのように、液体保持部の一部のみを傾斜させてもよい。
なお、培養を行う液体保持部の最大の高低差は、培養を行う際の水深と同程度以下とすることが好ましい。
また、このように、培養液を排水して液量を減らす場合には、貯留部材の周辺に、排水管から排水された液の水路を設けるのが好ましい。例えば、雨どいのような配管を配置してもよいし、図14に示すように、設置面Gに、排水管18から排水された液の水路となる溝Hを形成してもよい。 Further, as described above, the storage member may be provided with a drain pipe, a valve or the like for the purpose of draining in order to reduce the amount of culture solution. In the liquid volume reduction step, when draining to reduce the liquid volume of the culture solution, the bottom surface of the liquid holding portion of the storage member is preferably inclined so as to become lower toward the drainage pipe side.
It is possible to drain easily by changing the water depth so that drainage can be performed from the lower side by tilting the bottom surface of the liquid holding portion.
The method of inclining the bottom surface of the liquid holding portion is not particularly limited, and the bottom surface of the liquid holding portion may be inclined relative to the bottom surface of the storage member, or as shown in FIG. The
In addition, it is preferable to make the largest height difference of the liquid holding | maintenance part which culture | cultivates into less than the same as the water depth at the time of culturing.
Further, when the culture solution is drained to reduce the amount of liquid, it is preferable to provide a water channel for the liquid drained from the drain pipe around the storage member. For example, piping such as a gutter may be disposed, and as shown in FIG. 14, a groove H may be formed in the installation surface G to serve as a water channel for liquid drained from the
また、貯留部材は、設置面の凹部に配置するようにしてもよい。
例えば、図15に示すように、貯留部材12aを、設置面Gの凹部Gb内に配置してもよい。又は、図16に示すように、設置面Gに凸部Gdを形成して、凸部Gdで囲まれる領域に貯留部材12aを配置してもよい。
このように、貯留部材を設置面の凹部に配置することで、培養液の温度変化を抑制でき好ましい。
なお、設置面Gは屋内であっても屋外であってもよいのは当然である。 Further, the storage member may be disposed in the recess of the installation surface.
For example, as shown in FIG. 15, thestorage member 12 a may be disposed in the recess Gb of the installation surface G. Alternatively, as shown in FIG. 16, a convex portion Gd may be formed on the installation surface G, and the storage member 12 a may be arranged in a region surrounded by the convex portion Gd.
Thus, by disposing the storage member in the recess of the installation surface, the temperature change of the culture solution can be suppressed, which is preferable.
Of course, the installation surface G may be indoor or outdoor.
例えば、図15に示すように、貯留部材12aを、設置面Gの凹部Gb内に配置してもよい。又は、図16に示すように、設置面Gに凸部Gdを形成して、凸部Gdで囲まれる領域に貯留部材12aを配置してもよい。
このように、貯留部材を設置面の凹部に配置することで、培養液の温度変化を抑制でき好ましい。
なお、設置面Gは屋内であっても屋外であってもよいのは当然である。 Further, the storage member may be disposed in the recess of the installation surface.
For example, as shown in FIG. 15, the
Thus, by disposing the storage member in the recess of the installation surface, the temperature change of the culture solution can be suppressed, which is preferable.
Of course, the installation surface G may be indoor or outdoor.
ここで、前述のとおり、貯留部材を構成する容器や支持体の材料として、土や粘土等を用いることができる。
このような土や粘土で形成された容器や支持体を、図15、図16に示すような設置面の凹部に配置する構成は、設置面である地面の土や粘土を用いて形成することができる。このような構成は、地面に畝状物を形成したものということができる。 Here, as described above, soil, clay or the like can be used as the material of the container or the support that constitutes the storage member.
The configuration in which a container or support made of such soil or clay is disposed in a recess on the installation surface as shown in FIGS. 15 and 16 is formed using soil or clay on the ground which is the installation surface. Can. Such a configuration can be said to have formed a bowl on the ground.
このような土や粘土で形成された容器や支持体を、図15、図16に示すような設置面の凹部に配置する構成は、設置面である地面の土や粘土を用いて形成することができる。このような構成は、地面に畝状物を形成したものということができる。 Here, as described above, soil, clay or the like can be used as the material of the container or the support that constitutes the storage member.
The configuration in which a container or support made of such soil or clay is disposed in a recess on the installation surface as shown in FIGS. 15 and 16 is formed using soil or clay on the ground which is the installation surface. Can. Such a configuration can be said to have formed a bowl on the ground.
例えば、図17に示す培養装置10rは、設置面である地面の土を固めて凹部を形成することで容器16rを形成したものである。図示例においては、容器16rの液体保持部には、第2のフィルム24gが配置されて、貯留部材12rを構成する。
また、図18に示す培養装置10nは、設置面である地面の土を固めて凹部を形成することで支持体20nを形成したものである。この支持体20nと第1のフィルム22fとで貯留部材12nを構成する。
なお、このような容器16r又は支持体20nは、設置面である地面と一体的なものとなるが、土を固めて凹部を形成した領域が容器16r又は支持体20nである。 For example, theculture apparatus 10r shown in FIG. 17 is a container in which the container 16r is formed by solidifying the soil on the ground which is the installation surface to form a recess. In the illustrated example, the second film 24g is disposed in the liquid holding portion of the container 16r to configure the storage member 12r.
Moreover, theculture apparatus 10n shown in FIG. 18 solidifies the soil of the ground which is an installation surface, and forms the support body 20n by forming a recessed part. The storage member 12n is configured by the support 20n and the first film 22f.
Although such acontainer 16r or a support 20n is integrated with the ground which is the installation surface, the region where the soil is hardened to form a recess is the container 16r or a support 20n.
また、図18に示す培養装置10nは、設置面である地面の土を固めて凹部を形成することで支持体20nを形成したものである。この支持体20nと第1のフィルム22fとで貯留部材12nを構成する。
なお、このような容器16r又は支持体20nは、設置面である地面と一体的なものとなるが、土を固めて凹部を形成した領域が容器16r又は支持体20nである。 For example, the
Moreover, the
Although such a
容器16r又は支持体20nを畝状に構成する場合には、土、粘土、砂、年少灰、火山灰等の地面の構成物に加えて、燃焼灰、コンクリート、セメント、プラスチック、陶器、木、草、金属等の固体状物;水等の液状物;空気、ガス等の気体状物;超臨界二酸化炭素等の超臨界流体状物;等を組合せてもよい。
なお、容器16r又は支持体20nを土や粘土等で構成する場合には、設置する地面に由来する土や粘土を用いる構成に限定はされず、他の場所から入手した土や粘土を用いてもよい。
土、粘土、砂、燃焼灰及び火山灰は、低コストで入手が容易で、場合によっては、廃棄物として捨てられるものもあり、培養場所で入手可能な場合もある。また、これらの素材は、含水率の調整で、形状安定性及び熱伝導性の両方を確保することができる。更に、含水率の調整及び粒度の選択で、表面の凹凸を減らすことができる。第1のフィルムを用いる場合には、支持体の凹凸を減らすことによって、液体保持部の内側の凹凸を減らすことができるので、液体保持部の水深をより浅くすることができ、水の使用量を減らすことができるとともに、乾燥が容易にできる利点がある。 When thecontainer 16r or the support 20n is formed into a bowl shape, combustion ash, concrete, cement, plastic, pottery, wood, grass, in addition to ground components such as soil, clay, sand, annual ash, volcanic ash, etc. Solids such as metals; Liquids such as water; Gases such as air and gas; Supercritical fluids such as supercritical carbon dioxide; etc. may be combined.
In the case where thecontainer 16r or the support 20n is made of soil, clay or the like, it is not limited to the structure using soil or clay derived from the ground to be installed, but using soil or clay obtained from other places It is also good.
Soil, clay, sand, burning ash and volcanic ash are low cost and readily available, and in some cases may be discarded as waste, and may be available at the culture site. Moreover, these materials can ensure both shape stability and thermal conductivity by adjusting the water content. In addition, the adjustment of the moisture content and the selection of the particle size can reduce the surface irregularities. When the first film is used, the unevenness on the inner side of the liquid holding portion can be reduced by reducing the unevenness of the support, so the water depth of the liquid holding portion can be made shallower, and the amount of water used There is an advantage of being able to reduce drying and of facilitating drying.
なお、容器16r又は支持体20nを土や粘土等で構成する場合には、設置する地面に由来する土や粘土を用いる構成に限定はされず、他の場所から入手した土や粘土を用いてもよい。
土、粘土、砂、燃焼灰及び火山灰は、低コストで入手が容易で、場合によっては、廃棄物として捨てられるものもあり、培養場所で入手可能な場合もある。また、これらの素材は、含水率の調整で、形状安定性及び熱伝導性の両方を確保することができる。更に、含水率の調整及び粒度の選択で、表面の凹凸を減らすことができる。第1のフィルムを用いる場合には、支持体の凹凸を減らすことによって、液体保持部の内側の凹凸を減らすことができるので、液体保持部の水深をより浅くすることができ、水の使用量を減らすことができるとともに、乾燥が容易にできる利点がある。 When the
In the case where the
Soil, clay, sand, burning ash and volcanic ash are low cost and readily available, and in some cases may be discarded as waste, and may be available at the culture site. Moreover, these materials can ensure both shape stability and thermal conductivity by adjusting the water content. In addition, the adjustment of the moisture content and the selection of the particle size can reduce the surface irregularities. When the first film is used, the unevenness on the inner side of the liquid holding portion can be reduced by reducing the unevenness of the support, so the water depth of the liquid holding portion can be made shallower, and the amount of water used There is an advantage of being able to reduce drying and of facilitating drying.
また、地面を加工して容器又は支持体を形成する場合には、地面を掘り下げるか、又は地面に畝状物を形成するかのいずれか一方又は両方を行って容器又は支持体を形成することが好ましい。
また、このような容器又は支持体は、安価に培養に適した大面積が得られる点から、水田、休耕田、農、耕作放棄地等を用いて形成するのが好ましい。特に、水田又は休耕田は、もともと水を維持、補給、排水する機能を予め有している点からも好適である。
しかしながら、微細藻類の培養に好適な形態に変化させてもよい。例えば、道路が設置されている場合は、アスファルトを剥がし、土壌を露出させた後、培養液の保持が可能なように穴を掘ることで容器又は支持体を形成してもよい。 In addition, when processing the ground to form a container or support, the container or support may be formed by digging the ground or forming a bowl on the ground. Is preferred.
Moreover, such a container or support is preferably formed using a paddy field, a fallow field, agriculture, an abandoned cultivation site or the like, from the viewpoint that a large area suitable for culture can be obtained inexpensively. In particular, a paddy field or a fallow field is suitable also from the point which originally has the function of maintaining, replenishing and draining water in advance.
However, it may be changed to a form suitable for culture of microalgae. For example, if a road is installed, the asphalt may be removed, the soil may be exposed, and then the container or support may be formed by digging a hole so that the culture solution can be held.
また、このような容器又は支持体は、安価に培養に適した大面積が得られる点から、水田、休耕田、農、耕作放棄地等を用いて形成するのが好ましい。特に、水田又は休耕田は、もともと水を維持、補給、排水する機能を予め有している点からも好適である。
しかしながら、微細藻類の培養に好適な形態に変化させてもよい。例えば、道路が設置されている場合は、アスファルトを剥がし、土壌を露出させた後、培養液の保持が可能なように穴を掘ることで容器又は支持体を形成してもよい。 In addition, when processing the ground to form a container or support, the container or support may be formed by digging the ground or forming a bowl on the ground. Is preferred.
Moreover, such a container or support is preferably formed using a paddy field, a fallow field, agriculture, an abandoned cultivation site or the like, from the viewpoint that a large area suitable for culture can be obtained inexpensively. In particular, a paddy field or a fallow field is suitable also from the point which originally has the function of maintaining, replenishing and draining water in advance.
However, it may be changed to a form suitable for culture of microalgae. For example, if a road is installed, the asphalt may be removed, the soil may be exposed, and then the container or support may be formed by digging a hole so that the culture solution can be held.
また、土地の地形に応じて、土地を平滑化したり、細かい区画に分けたりしてもよい。また少量の培養液量でも大面積に拡がりやすいように、培養液に接する面は親水的であることが好ましい。
なお、容器又は支持体の壁面は、隣接する容器又は支持体と共用してもよい。このようにすることで、一定の面積に培養装置をより多く設置することができ、壁面を形成する手間を減ずることができる。例えば、土で形成された畝状物を隣接する容器又は支持体と共用してもよい。 Also, depending on the land topography, the land may be smoothed or divided into small sections. In addition, it is preferable that the surface in contact with the culture solution be hydrophilic so that a small amount of culture solution can be easily spread over a large area.
The wall surface of the container or support may be shared with the adjacent container or support. By doing this, it is possible to install more culture devices in a certain area, and it is possible to reduce the time and effort for forming the wall surface. For example, a trough formed of soil may be shared with an adjacent container or support.
なお、容器又は支持体の壁面は、隣接する容器又は支持体と共用してもよい。このようにすることで、一定の面積に培養装置をより多く設置することができ、壁面を形成する手間を減ずることができる。例えば、土で形成された畝状物を隣接する容器又は支持体と共用してもよい。 Also, depending on the land topography, the land may be smoothed or divided into small sections. In addition, it is preferable that the surface in contact with the culture solution be hydrophilic so that a small amount of culture solution can be easily spread over a large area.
The wall surface of the container or support may be shared with the adjacent container or support. By doing this, it is possible to install more culture devices in a certain area, and it is possible to reduce the time and effort for forming the wall surface. For example, a trough formed of soil may be shared with an adjacent container or support.
《培養液》
培養液は、貯留部材の貯留部に保持される。培養液は液体の培地である。培養液についての詳細は後述する。 << Culture fluid >>
The culture solution is retained in the reservoir of the reservoir member. The culture solution is a liquid medium. Details of the culture solution will be described later.
培養液は、貯留部材の貯留部に保持される。培養液は液体の培地である。培養液についての詳細は後述する。 << Culture fluid >>
The culture solution is retained in the reservoir of the reservoir member. The culture solution is a liquid medium. Details of the culture solution will be described later.
《遮蔽部材》
本発明に用いられる培養装置は、鉛直方向の上方から見た際に、上記貯留部材に保持された培養液の液面の少なくとも一部を覆うように貯留部材の上方に配置される遮蔽部材を備えることが好ましい。
遮蔽部材は、培養液の液面の少なくとも一部を覆うことが好ましく、制約が無ければ、培養液の液面の面積の50%以上を覆うことがより好ましく、90%以上を覆うことが更に好ましく、95%以上を覆うことが一層好ましく、100%を覆うことがとりわけ好ましいが、作業スペースの確保、他の部材の設置、地形上の制約などに応じて、培養液の液面を覆う割合を適宜設定することができる。
また、この遮蔽部材は、少なくとも一部の波長の光が透過可能な領域を有することが好ましい。ここで、少なくとも一部の波長は、微細藻類の培養に必要な光の波長を含むことが好ましい。 «Shielding member»
The culture apparatus used in the present invention has a shielding member disposed above the storage member so as to cover at least a part of the liquid surface of the culture solution held by the storage member when viewed from above in the vertical direction. It is preferable to have.
The shielding member preferably covers at least a part of the liquid surface of the culture solution, and if there is no restriction, more preferably covers 50% or more of the liquid surface area of the culture solution, and further covers 90% or more It is more preferable to cover 95% or more, and it is particularly preferable to cover 100%, but according to securing of work space, installation of other members, restrictions on topography, etc., a ratio to cover the liquid surface of culture fluid Can be set as appropriate.
Preferably, the shielding member has a region through which light of at least a part of the wavelength can be transmitted. Here, it is preferable that at least a part of the wavelength includes the wavelength of light necessary for the culture of the microalga.
本発明に用いられる培養装置は、鉛直方向の上方から見た際に、上記貯留部材に保持された培養液の液面の少なくとも一部を覆うように貯留部材の上方に配置される遮蔽部材を備えることが好ましい。
遮蔽部材は、培養液の液面の少なくとも一部を覆うことが好ましく、制約が無ければ、培養液の液面の面積の50%以上を覆うことがより好ましく、90%以上を覆うことが更に好ましく、95%以上を覆うことが一層好ましく、100%を覆うことがとりわけ好ましいが、作業スペースの確保、他の部材の設置、地形上の制約などに応じて、培養液の液面を覆う割合を適宜設定することができる。
また、この遮蔽部材は、少なくとも一部の波長の光が透過可能な領域を有することが好ましい。ここで、少なくとも一部の波長は、微細藻類の培養に必要な光の波長を含むことが好ましい。 «Shielding member»
The culture apparatus used in the present invention has a shielding member disposed above the storage member so as to cover at least a part of the liquid surface of the culture solution held by the storage member when viewed from above in the vertical direction. It is preferable to have.
The shielding member preferably covers at least a part of the liquid surface of the culture solution, and if there is no restriction, more preferably covers 50% or more of the liquid surface area of the culture solution, and further covers 90% or more It is more preferable to cover 95% or more, and it is particularly preferable to cover 100%, but according to securing of work space, installation of other members, restrictions on topography, etc., a ratio to cover the liquid surface of culture fluid Can be set as appropriate.
Preferably, the shielding member has a region through which light of at least a part of the wavelength can be transmitted. Here, it is preferable that at least a part of the wavelength includes the wavelength of light necessary for the culture of the microalga.
遮蔽部材は、培養液及び培養された微細藻類を、雨、風、乾燥等の自然条件による培養の阻害要因から防護し、また、外部からの異物若しくは異種生物の混入を防止、抑制するものである。また、遮蔽部材は、培養液の自然蒸発を防止、抑制するものである。
The shielding member protects the culture solution and the cultured microalga from factors that inhibit culture due to natural conditions such as rain, wind, and dryness, and also prevents or suppresses contamination of foreign matter or foreign organisms from the outside. is there. In addition, the shielding member is to prevent and suppress the natural evaporation of the culture solution.
例えば、図1及び図2に示す培養装置10aの遮蔽部材14aは、矩形の板状部材であり、貯留部材12aの開放面を覆う大きさを有し、開放面を覆って貯留部材12a上に設置されている。
また、遮蔽部材14aは、所定の波長の光を透過させる光透過性を有する。 For example, the shieldingmember 14a of the culture device 10a shown in FIG. 1 and FIG. is set up.
In addition, the shieldingmember 14a has light transmissivity for transmitting light of a predetermined wavelength.
また、遮蔽部材14aは、所定の波長の光を透過させる光透過性を有する。 For example, the shielding
In addition, the shielding
また、図2に示すように、遮蔽部材14aと培養液M(培養した微細藻類P)との間には気層Nが存在する。
このような気層Nを形成することで、培養中に微細藻類Pの培養に必要な二酸化炭素を供給することができる。 Moreover, as shown in FIG. 2, the air layer N exists between the shieldingmember 14a and the culture solution M (microalga P which culture | cultivated).
By forming such an air layer N, carbon dioxide necessary for the culture of the microalgae P can be supplied during the culture.
このような気層Nを形成することで、培養中に微細藻類Pの培養に必要な二酸化炭素を供給することができる。 Moreover, as shown in FIG. 2, the air layer N exists between the shielding
By forming such an air layer N, carbon dioxide necessary for the culture of the microalgae P can be supplied during the culture.
遮蔽部材14を構成する材料としては、少なくとも一部の領域が光を透過可能であれば、特に限定はないが、例えば、プラスチック、ガラス、土、コンクリート、セメント、木、金属、粘土、陶器、これらのうち2つ以上の組合せ等が挙げられる。また、遮蔽部材14の形状としては、例えば壁や板などの剛直な構造物であっても、またフィルム状、シート状、布状、網状、糸等を編みこんだものなど変形が可能な材料であっても、またこれらの複数の組合せであっても構わない。
The material constituting the shielding member 14 is not particularly limited as long as at least a part of the material can transmit light, but, for example, plastic, glass, soil, concrete, cement, wood, metal, clay, pottery, Among these, combinations of two or more may be mentioned. Further, the shape of the shielding member 14 is, for example, a material that can be deformed, such as a film, a sheet, a cloth, a net, a knitted yarn, etc. even if it is a rigid structure such as a wall or a plate. Or any combination of these.
また、遮蔽部材14を構成する材料は、例えば、有機高分子化合物や無機化合物、金属、それらの複合体から構成された素材を使用することが好ましい。また、それらの混合物を用いることも可能である。
有機高分子化合物としては、ポリエチレン誘導体、ポリ塩化ビニル誘導体、ポリエステル誘導体、ポリアミド誘導体、ポリスチレン誘導体、ポリプロピレン誘導体、ポリアクリル誘導体、ポリエチレンテレフタレート誘導体、ポリブチレンテレフタレート誘導体、ナイロン誘導体、ポリエチレンナフタレート誘導体、ポリカーボネート誘導体、ポリ塩化ビニリデン誘導体、ポリアクリロニトリル誘導体、ポリビニルアルコール誘導体、ポリエーテルスルホン誘導体、ポリアリレート誘導体、アリルジグリコールカーボネート誘導体、エチレン-酢酸ビニル共重合体誘導体、フッ素樹脂誘導体、ポリ乳酸誘導体、アクリル樹脂誘導体、エチレン-ビニルアルコール共重合体、エチレン-メタクリル酸共重合体等などを用いることができる。
無機化合物としては、ガラス、セラミックス、コンクリートなどを用いることができる。金属化合物としては、鉄、アルミニウム、銅やステンレスなどの合金を用いることができる。 Moreover, as a material which comprises the shielding member 14, it is preferable to use the raw material comprised from an organic polymer compound, an inorganic compound, a metal, and those complexes, for example. It is also possible to use mixtures thereof.
Examples of organic polymer compounds include polyethylene derivatives, polyvinyl chloride derivatives, polyester derivatives, polyamide derivatives, polystyrene derivatives, polypropylene derivatives, polyacryl derivatives, polyethylene terephthalate derivatives, polybutylene terephthalate derivatives, nylon derivatives, polyethylene naphthalate derivatives, polycarbonate derivatives , Polyvinylidene chloride derivative, polyacrylonitrile derivative, polyvinyl alcohol derivative, polyether sulfone derivative, polyarylate derivative, allyl diglycol carbonate derivative, ethylene-vinyl acetate copolymer derivative, fluorine resin derivative, polylactic acid derivative, acrylic resin derivative, Ethylene-vinyl alcohol copolymer, ethylene-methacrylic acid copolymer, etc. can be used.
Glass, ceramics, concrete or the like can be used as the inorganic compound. As the metal compound, alloys such as iron, aluminum, copper and stainless steel can be used.
有機高分子化合物としては、ポリエチレン誘導体、ポリ塩化ビニル誘導体、ポリエステル誘導体、ポリアミド誘導体、ポリスチレン誘導体、ポリプロピレン誘導体、ポリアクリル誘導体、ポリエチレンテレフタレート誘導体、ポリブチレンテレフタレート誘導体、ナイロン誘導体、ポリエチレンナフタレート誘導体、ポリカーボネート誘導体、ポリ塩化ビニリデン誘導体、ポリアクリロニトリル誘導体、ポリビニルアルコール誘導体、ポリエーテルスルホン誘導体、ポリアリレート誘導体、アリルジグリコールカーボネート誘導体、エチレン-酢酸ビニル共重合体誘導体、フッ素樹脂誘導体、ポリ乳酸誘導体、アクリル樹脂誘導体、エチレン-ビニルアルコール共重合体、エチレン-メタクリル酸共重合体等などを用いることができる。
無機化合物としては、ガラス、セラミックス、コンクリートなどを用いることができる。金属化合物としては、鉄、アルミニウム、銅やステンレスなどの合金を用いることができる。 Moreover, as a material which comprises the shielding member 14, it is preferable to use the raw material comprised from an organic polymer compound, an inorganic compound, a metal, and those complexes, for example. It is also possible to use mixtures thereof.
Examples of organic polymer compounds include polyethylene derivatives, polyvinyl chloride derivatives, polyester derivatives, polyamide derivatives, polystyrene derivatives, polypropylene derivatives, polyacryl derivatives, polyethylene terephthalate derivatives, polybutylene terephthalate derivatives, nylon derivatives, polyethylene naphthalate derivatives, polycarbonate derivatives , Polyvinylidene chloride derivative, polyacrylonitrile derivative, polyvinyl alcohol derivative, polyether sulfone derivative, polyarylate derivative, allyl diglycol carbonate derivative, ethylene-vinyl acetate copolymer derivative, fluorine resin derivative, polylactic acid derivative, acrylic resin derivative, Ethylene-vinyl alcohol copolymer, ethylene-methacrylic acid copolymer, etc. can be used.
Glass, ceramics, concrete or the like can be used as the inorganic compound. As the metal compound, alloys such as iron, aluminum, copper and stainless steel can be used.
中でも、遮蔽部材14aを構成する材料としては、光透過性を有し、また、培養及び回収の作業性、必要な強度を有しながら、軽量でもあり、貯留部材の形状に合わせた形状で設置することが容易であるプラスチック類が好ましい。プラスチック類の例としては例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、塩化ビニル類、ポリエチレンテレフタラート等のポリエステル類、ポリ乳酸類、アセチルセルロース類、ポリウレタン類、ポリアミド類、シリコーン樹脂類、フッ素系樹脂類、これらのうち2つ以上を組み合わせた複合フィルム類などが挙げられる。また、特に透明性や強度の点からガラス(無機ガラス)を用いることも好ましい。
Above all, as a material constituting the shielding member 14a, it has light transmissivity, and it is lightweight while having the workability of cultivation and recovery, necessary strength, and is installed in a shape according to the shape of the storage member Plastics which are easy to do are preferred. Examples of plastics include, for example, polyolefins such as polyethylene and polypropylene, polyesters such as vinyl chlorides and polyethylene terephthalate, polylactic acids, acetyl celluloses, polyurethanes, polyamides, silicone resins, fluorine resins, Composite films etc. which combined two or more of these, etc. are mentioned. Further, it is also preferable to use glass (inorganic glass) in particular from the viewpoint of transparency and strength.
図2に示す例では、遮蔽部材14aは、板状とし、貯留部材12a上に密着して配置する構成としたが、これに限定はされず、遮蔽部材の形状及び位置は、鉛直方向の上方から見た際に、少なくとも培養液Mの液面を覆うことができ、培養液Mの液面と第二の構造体との間に気層が存在するようにすることができれば、特に限定はされない。
In the example shown in FIG. 2, the shielding member 14a has a plate shape and is disposed in close contact with the storage member 12a. However, the present invention is not limited to this. The shape and position of the shielding member is the upper side in the vertical direction. If it is possible to cover at least the liquid surface of the culture solution M and to allow an air layer to be present between the liquid surface of the culture solution M and the second structure when viewed from the point of view, there is no particular limitation. I will not.
すなわち、遮蔽部材の形状は、例えば、平坦状、傾斜状、凹凸状、不定形状、これらの少なくとも一つ以上の組み合わせから構成されればよい。これらのうち、雨又は雪などが遮蔽部材上に溜まりにくく速やかに除去が可能となる傾斜状や凸型であることが好ましい。
また、遮蔽部材は、貯留部材から離間して配置されてもよい。 That is, the shape of the shielding member may be, for example, flat, inclined, uneven, irregular, or a combination of at least one of these. Among these, it is preferable that it is an inclined shape or a convex shape which can be quickly removed since rain, snow, or the like hardly accumulates on the shielding member.
Also, the shielding member may be disposed apart from the storage member.
また、遮蔽部材は、貯留部材から離間して配置されてもよい。 That is, the shape of the shielding member may be, for example, flat, inclined, uneven, irregular, or a combination of at least one of these. Among these, it is preferable that it is an inclined shape or a convex shape which can be quickly removed since rain, snow, or the like hardly accumulates on the shielding member.
Also, the shielding member may be disposed apart from the storage member.
例えば、図19に示す培養装置10cの遮蔽部材14cは、貯留部材12aよりも大きく、アーチ状に湾曲した形状を有し、遮蔽部材14cのアーチの内部に貯留部材12aが配置される。
このように、遮蔽部材14cは、鉛直方向の上方から見た際に、貯留部材12aに保持された培養液Mの液面を覆うように貯留部材12aの上方に配置されれば、貯留部材12aに接していなくてもよい。 For example, the shieldingmember 14c of the culture device 10c shown in FIG. 19 is larger than the storage member 12a and has an arch-like curved shape, and the storage member 12a is disposed inside the arch of the shielding member 14c.
Thus, when the shieldingmember 14c is disposed above the storage member 12a so as to cover the liquid surface of the culture fluid M held by the storage member 12a when viewed from above in the vertical direction, the storage member 12a It does not have to be in contact with
このように、遮蔽部材14cは、鉛直方向の上方から見た際に、貯留部材12aに保持された培養液Mの液面を覆うように貯留部材12aの上方に配置されれば、貯留部材12aに接していなくてもよい。 For example, the shielding
Thus, when the shielding
また、図20に示す培養装置10dの遮蔽部材14dのように、水平面に対して傾斜した2つの傾斜面を組み合わせた凸状の形状としてもよい。
又は、図21に示す培養装置10eのように、遮蔽部材14aを貯留部材12aの上方に配置するように支持する支持体28eを備える構成としてもよい。その際、遮蔽部材14aを水平面に対して傾斜させて支持するのが好ましい。
又は、図22に示す培養装置10iのように、水平面に対して傾斜した2つの傾斜面を組み合わせた凸状の形状を有する遮蔽部材14dを、貯留部材12aの上方に配置するように支持する支持体28を備える構成としてもよい。
支持体28としては遮蔽部材14aを支持できれば、特に限定はなく柱状、壁状等の構造物であればよい。 Further, as in a shieldingmember 14d of a culture apparatus 10d shown in FIG.
Alternatively, as in aculture apparatus 10e shown in FIG. 21, a support 28e may be provided to support the shielding member 14a so as to be disposed above the storage member 12a. At that time, it is preferable to support the shielding member 14a by inclining with respect to the horizontal plane.
Alternatively, as in aculture apparatus 10i shown in FIG. 22, a support for supporting a shielding member 14d having a convex shape combining two inclined surfaces inclined with respect to a horizontal surface to be disposed above the storage member 12a The body 28 may be provided.
Thesupport 28 is not particularly limited as long as it can support the shielding member 14a, and any structure such as a column or a wall may be used.
又は、図21に示す培養装置10eのように、遮蔽部材14aを貯留部材12aの上方に配置するように支持する支持体28eを備える構成としてもよい。その際、遮蔽部材14aを水平面に対して傾斜させて支持するのが好ましい。
又は、図22に示す培養装置10iのように、水平面に対して傾斜した2つの傾斜面を組み合わせた凸状の形状を有する遮蔽部材14dを、貯留部材12aの上方に配置するように支持する支持体28を備える構成としてもよい。
支持体28としては遮蔽部材14aを支持できれば、特に限定はなく柱状、壁状等の構造物であればよい。 Further, as in a shielding
Alternatively, as in a
Alternatively, as in a
The
また、遮蔽部材は、培養を行う環境下での長期間に使用できるだけの強度を有することが好ましい。そのため、壁、支柱、梁など、また、農業用ハウスでみられるようなパイプ類、針金等を用いて、遮蔽部材を強化することも好ましい。
In addition, the shielding member preferably has a strength sufficient to be used for a long period of time in a culture environment. Therefore, it is also preferable to reinforce the shielding member by using walls, columns, beams, etc., and pipes, wires, etc. which are found in agricultural houses.
また、遮蔽部材は、単独で、又は、貯留部材と共に、閉塞された空間を形成してもよいが、一部の領域を容易に開放、又は取り外し、巻き取りなどを可能として、必要な際には開放可能にしておくことも好ましい。また、培養等に支障のない範囲で、予め空間や通気口等を設けておくこともできる。すなわち、気層Nを大気と連通可能に、又は、連通状態にしておくことが好ましい。
このように、気層Nを大気と連通可能にしておくことは、培養中に外気から二酸化炭素を取り入れることが可能となる点で好適である。
また、通気口には、ファン等の換気装置を設けてもよい。 In addition, the shielding member may form a closed space alone or together with the storage member, but it is possible to easily open or remove a part of the area, take up, etc., when necessary. It is also preferable to make it openable. In addition, a space, an air vent or the like can be provided in advance as long as there is no hindrance to culture and the like. That is, it is preferable to keep the air layer N in communication with the atmosphere or in a communication state.
Thus, keeping the air layer N in communication with the atmosphere is preferable in that it becomes possible to take in carbon dioxide from the open air during culture.
In addition, the vent may be provided with a ventilating device such as a fan.
このように、気層Nを大気と連通可能にしておくことは、培養中に外気から二酸化炭素を取り入れることが可能となる点で好適である。
また、通気口には、ファン等の換気装置を設けてもよい。 In addition, the shielding member may form a closed space alone or together with the storage member, but it is possible to easily open or remove a part of the area, take up, etc., when necessary. It is also preferable to make it openable. In addition, a space, an air vent or the like can be provided in advance as long as there is no hindrance to culture and the like. That is, it is preferable to keep the air layer N in communication with the atmosphere or in a communication state.
Thus, keeping the air layer N in communication with the atmosphere is preferable in that it becomes possible to take in carbon dioxide from the open air during culture.
In addition, the vent may be provided with a ventilating device such as a fan.
また、遮蔽部材は、少なくとも一部を開放、取り外し、巻取り等が可能な状態とすることが好ましい。これにより、培養液、培養の元になる種藻の投入作業、培養状況の観察、培養液や種藻の追加、投入作業、培養液の少なくとも一部を減少させる作業、培養物を回収する作業等の各種の作業を容易に行えるようになるといった利点がある。
Further, it is preferable that at least a part of the shielding member is openable, removable, capable of being wounded, and the like. By this, the culture solution, the input operation of the seed algae which is the source of the culture, the observation of the culture condition, the addition of the culture solution or the seed algae, the input operation, the operation of reducing at least a part of the culture solution, the operation of recovering the culture There is an advantage that various tasks such as can be easily performed.
また、遮蔽部材は、屋内外での各種環境下で長期間にわたって使用される際に、雨、雪、土、チリ、埃、微生物類、又はその他の各種汚れ原因物が飛来して、遮蔽部材が汚れ、光透過性の低下などの問題を引き起こすことがある。従って、遮蔽部材は、それらの成分が付着しにくく、また付着しても、雨や簡単な水洗作業などによって容易に除去可能であることが好ましい。例えば、素材として汚れが付着しにくいフッ素系樹脂やシリコーン系樹脂を用いたり、表面を疎水化処理、親水化処理、防汚処理などを施したりしてもよい。また微生物の付着を抑制する物質をコーティングしてもよい。
In addition, when the shielding member is used for a long time in various environments indoors and outdoors, rain, snow, soil, dust, dust, microorganisms, or other various dirt causing substances fly, and the shielding member However, it may cause problems such as dirt and light transmission. Therefore, it is preferable that the shielding member is hard to adhere to those components, and that even if it adheres, it can be easily removed by rain or a simple water washing operation. For example, as a material, a fluorine resin or silicone resin to which dirt does not easily adhere may be used, or the surface may be subjected to a hydrophobization treatment, a hydrophilization treatment, an antifouling treatment, or the like. Moreover, you may coat the substance which suppresses the adhesion of microorganisms.
また、培養中に内部の水分が遮蔽部材の内側面(貯留部材側の面)に水滴として成長し、これが培養液の液面へ滴下して液面でのバイオフィルムの成長を阻害することがある。このような現象を防止するために、遮蔽部材の材料を液滴が成長しにくいものとしてもよいし、液滴が落下しにくいものとしてもよい。
具体的には、ガラス板、光透過性のプラスチック板、プラスチックフィルム(PE,PP,PET、フッ素樹脂、アセチルセルロース、PLA)、特に、内側面に水滴がつきにくい処理を施したガラスやフィルム類(例えば、テキナシ シーアイ化成株式会社、厚さ0.15mm)や親水性フイルム(アセチルセルロース等)が好ましい。 In addition, the internal water may grow as a water droplet on the inner surface (surface on the storage member side) of the shielding member during culture, and this may drop to the liquid surface of the culture solution to inhibit the growth of the biofilm on the liquid surface. is there. In order to prevent such a phenomenon, the material of the shielding member may be a material on which droplets do not easily grow, or a droplet may not easily drop.
Specifically, a glass plate, a light transmitting plastic plate, a plastic film (PE, PP, PET, fluorocarbon resin, acetyl cellulose, PLA), in particular, a glass or a film which has been treated so that water droplets are not easily attached to the inner surface. (For example, Takinas C. I. Kasei Co., Ltd., thickness 0.15 mm) and hydrophilic films (acetyl cellulose etc.) are preferable.
具体的には、ガラス板、光透過性のプラスチック板、プラスチックフィルム(PE,PP,PET、フッ素樹脂、アセチルセルロース、PLA)、特に、内側面に水滴がつきにくい処理を施したガラスやフィルム類(例えば、テキナシ シーアイ化成株式会社、厚さ0.15mm)や親水性フイルム(アセチルセルロース等)が好ましい。 In addition, the internal water may grow as a water droplet on the inner surface (surface on the storage member side) of the shielding member during culture, and this may drop to the liquid surface of the culture solution to inhibit the growth of the biofilm on the liquid surface. is there. In order to prevent such a phenomenon, the material of the shielding member may be a material on which droplets do not easily grow, or a droplet may not easily drop.
Specifically, a glass plate, a light transmitting plastic plate, a plastic film (PE, PP, PET, fluorocarbon resin, acetyl cellulose, PLA), in particular, a glass or a film which has been treated so that water droplets are not easily attached to the inner surface. (For example, Takinas C. I. Kasei Co., Ltd., thickness 0.15 mm) and hydrophilic films (acetyl cellulose etc.) are preferable.
又は、遮蔽部材の内側面に、水滴が落下しやすい構造、例えば、構造体が低くなっている場所、構造体の突起(ビス等)となっている部分などを設けて、遮蔽部材が培養を行っている部分よりも大きい場合などは、水滴の落下しやすい領域を、培養を行っている部分の外部に設けることや、地面等に直接流れるようにすることが好ましい。また培養を行っている部分に落下する場合でも、遮蔽部材の内側に形成された水滴の落下しやすい領域の面積を、培養を行っている部分の面積の20%以下とすることが好ましく、10%以下となるように設置することが更に好ましい。
また、これらの水滴が特に溜まりやすい場所の下に、水滴を受けるための構造物を設けてもよい。得られた水分は蒸留水等として再利用することも可能である。 Alternatively, the inner surface of the shielding member may be provided with a structure in which water droplets are likely to fall, for example, a place where the structure is lowered, a portion which is a projection (such as a screw) of the structure, etc. If it is larger than the portion being carried out, it is preferable to provide an area in which the water droplet is likely to fall to the outside of the portion being cultured or to flow directly to the ground or the like. In addition, even when dropping to a portion where culture is being performed, it is preferable to set the area of the drop prone region of the water droplet formed inside the shielding member to 20% or less of the area of the portion where culture is being performed. It is more preferable to set it so that it becomes% or less.
In addition, a structure for receiving the water droplets may be provided under a place where the water droplets are particularly easily accumulated. The obtained water can be reused as distilled water or the like.
また、これらの水滴が特に溜まりやすい場所の下に、水滴を受けるための構造物を設けてもよい。得られた水分は蒸留水等として再利用することも可能である。 Alternatively, the inner surface of the shielding member may be provided with a structure in which water droplets are likely to fall, for example, a place where the structure is lowered, a portion which is a projection (such as a screw) of the structure, etc. If it is larger than the portion being carried out, it is preferable to provide an area in which the water droplet is likely to fall to the outside of the portion being cultured or to flow directly to the ground or the like. In addition, even when dropping to a portion where culture is being performed, it is preferable to set the area of the drop prone region of the water droplet formed inside the shielding member to 20% or less of the area of the portion where culture is being performed. It is more preferable to set it so that it becomes% or less.
In addition, a structure for receiving the water droplets may be provided under a place where the water droplets are particularly easily accumulated. The obtained water can be reused as distilled water or the like.
また、遮蔽部材は、培養中に、気層の気温及び培養液の液温の少なくとも一方を微細藻類の培養に適した温度範囲に制御する目的で、気温、液温が高い場合(特に夏場、晴天時など)には熱線の透過を抑えるようなフィルム、逆に気温、液温が低い場合(特に冬場、日照量が少なく温度が低い場合など)には温度を保つようなフィルムを、遮蔽部材として有していてもよい。
前者の例としては、赤外線反射フィルム、赤外線吸収フィルム、後者の場合にはフィルムを2枚以上重ねて用いるなどの方法がある。 In addition, when the temperature and the liquid temperature are high for the purpose of controlling at least one of the air temperature of the air layer and the liquid temperature of the culture solution to a temperature range suitable for the culture of the microalga during the culture A film that suppresses the transmission of heat rays during fine weather, etc., and a film that maintains the temperature when the temperature or liquid temperature is low (especially in winter, when the amount of sunlight is low and the temperature is low, etc.) You may have as.
As an example of the former, there is a method of using an infrared ray reflective film, an infrared ray absorbing film, and in the case of the latter, two or more sheets of films stacked.
前者の例としては、赤外線反射フィルム、赤外線吸収フィルム、後者の場合にはフィルムを2枚以上重ねて用いるなどの方法がある。 In addition, when the temperature and the liquid temperature are high for the purpose of controlling at least one of the air temperature of the air layer and the liquid temperature of the culture solution to a temperature range suitable for the culture of the microalga during the culture A film that suppresses the transmission of heat rays during fine weather, etc., and a film that maintains the temperature when the temperature or liquid temperature is low (especially in winter, when the amount of sunlight is low and the temperature is low, etc.) You may have as.
As an example of the former, there is a method of using an infrared ray reflective film, an infrared ray absorbing film, and in the case of the latter, two or more sheets of films stacked.
また、微細藻類の培養状態を制御する目的で、培養する微細藻類に合わせて、生育に有効な波長の透過率が高い特性を有するフィルム、又は、逆に生育に不要若しくは有害な波長の透過率が低い特性を有するフィルムを用いることができる。具体的には、紫外線反射フィルム、紫外線吸収フィルム、波長選択透過フィルム、波長選択反射フィルム、光散乱性フィルムなどを、遮蔽部材として利用してもよい。
生育に有効な波長としては、概ね、約360nm~約830nmが好ましく、約380nm~約760nmがより好ましく、約400nm~約700nmが更に好ましい。
生育に有害な波長は、概ね、約360nm未満である。波長が360nm未満の電磁波は微細藻類の細胞に障害を与えるおそれがある。また、波長が約830nm超の電磁波は微細藻類の生育には有効ではない。波長が約830nm超の赤外線領域の光は培養時の気温及び液温の少なくとも一方を上昇させやすいので、微細藻類の増殖を阻害するおそれがある。ただし、培養温度が、培養対象の微細藻類の培養にとって低い場合には、波長が約830nm超の赤外線領域の光を培養液の液温又は気温を上昇させるために用いてもよい。 Moreover, in order to control the culture state of microalgae, according to the microalga to be cultured, a film having a characteristic that the transmittance of wavelength effective for growth is high, or conversely, the transmittance of wavelength unnecessary or harmful for growth Films having low properties can be used. Specifically, an ultraviolet reflective film, an ultraviolet absorbing film, a wavelength selective transmission film, a wavelength selective reflective film, a light scattering film or the like may be used as the shielding member.
The wavelength effective for growth is preferably about 360 nm to about 830 nm, more preferably about 380 nm to about 760 nm, and still more preferably about 400 nm to about 700 nm.
Wavelengths harmful to growth are generally less than about 360 nm. Electromagnetic waves having a wavelength of less than 360 nm may damage microalgal cells. In addition, electromagnetic waves having a wavelength of more than about 830 nm are not effective for the growth of microalgae. The light in the infrared region having a wavelength of more than about 830 nm is likely to increase at least one of the air temperature and the liquid temperature at the time of culture, which may inhibit the growth of microalgae. However, when the culture temperature is low for the culture of the microalga to be cultured, light in an infrared region having a wavelength of more than about 830 nm may be used to raise the liquid temperature or the air temperature of the culture solution.
生育に有効な波長としては、概ね、約360nm~約830nmが好ましく、約380nm~約760nmがより好ましく、約400nm~約700nmが更に好ましい。
生育に有害な波長は、概ね、約360nm未満である。波長が360nm未満の電磁波は微細藻類の細胞に障害を与えるおそれがある。また、波長が約830nm超の電磁波は微細藻類の生育には有効ではない。波長が約830nm超の赤外線領域の光は培養時の気温及び液温の少なくとも一方を上昇させやすいので、微細藻類の増殖を阻害するおそれがある。ただし、培養温度が、培養対象の微細藻類の培養にとって低い場合には、波長が約830nm超の赤外線領域の光を培養液の液温又は気温を上昇させるために用いてもよい。 Moreover, in order to control the culture state of microalgae, according to the microalga to be cultured, a film having a characteristic that the transmittance of wavelength effective for growth is high, or conversely, the transmittance of wavelength unnecessary or harmful for growth Films having low properties can be used. Specifically, an ultraviolet reflective film, an ultraviolet absorbing film, a wavelength selective transmission film, a wavelength selective reflective film, a light scattering film or the like may be used as the shielding member.
The wavelength effective for growth is preferably about 360 nm to about 830 nm, more preferably about 380 nm to about 760 nm, and still more preferably about 400 nm to about 700 nm.
Wavelengths harmful to growth are generally less than about 360 nm. Electromagnetic waves having a wavelength of less than 360 nm may damage microalgal cells. In addition, electromagnetic waves having a wavelength of more than about 830 nm are not effective for the growth of microalgae. The light in the infrared region having a wavelength of more than about 830 nm is likely to increase at least one of the air temperature and the liquid temperature at the time of culture, which may inhibit the growth of microalgae. However, when the culture temperature is low for the culture of the microalga to be cultured, light in an infrared region having a wavelength of more than about 830 nm may be used to raise the liquid temperature or the air temperature of the culture solution.
また、遮蔽部材も、フィルム状、シート状等の場合は少なくともその一部を乾燥藻体と共に燃料として燃焼させて使用する構成とすることができる。この場合、遮蔽部材としては、乾燥藻体と共に燃焼させても塩素等の有毒物を発生しないフィルム(PE、PP、PETなどのポリエステル、ポリウレタン、ポリアミドなど)が好ましく、更に環境負荷(温暖化防止)の観点からバイオマス由来フィルム(バイオPE、バイオポリエステル、ポリ乳酸、アセチルセルロース等)が好ましい。
In addition, in the case of a film, a sheet, or the like, at least a part of the shielding member may be burnt as a fuel together with the dried algal cells. In this case, as the shielding member, a film (PE, polyester such as PP, PET, polyurethane, polyamide, etc.) which does not generate toxic substances such as chlorine even when burned together with the dried algal cells is preferable, and further environmental load (warming prevention) From the viewpoint of), biomass-derived films (bioPE, biopolyester, polylactic acid, acetyl cellulose, etc.) are preferred.
また、図2に示す例では、遮蔽部材14aは、全面が光透過性を有する構成としたが、これに限定はされず、少なくとも一部の波長の光を透過させることが可能な領域を有する構成としてもよい。
例えば、図23に示す培養装置10kの遮蔽部材14kのように、培養液の液面の鉛直上方に配置される領域Tが、少なくとも一部の波長の光を透過させる構成としてもよい。この場合、領域Tが光透過性を有する材料で形成される。 Further, in the example shown in FIG. 2, the shieldingmember 14 a is configured to have the light transmitting property over the entire surface, but is not limited thereto, and has a region capable of transmitting light of at least a part of wavelengths. It is good also as composition.
For example, as in a shieldingmember 14k of the culture device 10k shown in FIG. 23, the region T disposed vertically above the liquid surface of the culture solution may be configured to transmit light of at least a part of the wavelength. In this case, the region T is formed of a light transmissive material.
例えば、図23に示す培養装置10kの遮蔽部材14kのように、培養液の液面の鉛直上方に配置される領域Tが、少なくとも一部の波長の光を透過させる構成としてもよい。この場合、領域Tが光透過性を有する材料で形成される。 Further, in the example shown in FIG. 2, the shielding
For example, as in a shielding
ここで、少なくとも一部の波長の光は、微細藻類が光合成をするために利用しうる波長の光をいい、概ね、約360nm~約830nmが好ましく、約380nm~約760nmがより好ましく、約400nm~約700nmが更に好ましい。この範囲内であると、微細藻類が光合成に有効に利用できる波長の光が含まれている。
Here, light of at least a part of wavelength refers to light of a wavelength that microalgae can utilize for photosynthesis, generally, about 360 nm to about 830 nm is preferable, about 380 nm to about 760 nm is more preferable, and about 400 nm Further preferred is about -700 nm. Within this range, light of a wavelength that the microalgae can effectively use for photosynthesis is included.
微細藻類が光合成を行うために必要な光の波長は、微細藻類が有する光合成色素の種類及び組合せによって異なるが、微細藻類は、通常、クロロフィルaの他に1種類以上の光合成色素を持ち、その光合成色素が、クロロフィルaが吸収できない波長の光を吸収してエネルギーをクロロフィルaに渡すため、クロロフィルaの吸収波長を含む光を絶対に必要とするわけではない。
微細藻類が持つ主要な光合成色素としては、クロロフィルa、クロロフィルb、クロロフィルc、フィコビリン系色素及びカロテノイド系色素が挙げられる。光合成を行う微細藻類は、一般に、光合成色素としてクロロフィルaに加えて、クロロフィルb、クロロフィルc、フィコビリン系色素及びカロテノイド系色素のうち1種類以上を含むことが多い。例えば、クラミドモナス(Clamydomonas)属、クロロコックム(Chlorococcum)属、ボトリオコッカス(Botryococcus)属、テトラシスチス(Tetracystis)属、カラシウム(Characium)属、プロトシフォン(Protosiphon)属、ヘマトコッカス(Haematococcus)属等の緑藻類はクロロフィルaに加えてクロロフィルbを持ち、灰色藻類及び紅色藻類はクロロフィルaに加えてフィコビリン系色素を持ち、クロララクニオン藻類及びユーグレナ類はクロロフィルaに加えてクロロフィルbを持ち、クリプト藻類はクロロフィルaに加えてクロロフィルc及びフィコビリン系色素を持ち、ハプト藻類はクロロフィルaに加えてクロロフィルc及びカロテノイド色素を持ち、褐藻、黄金色藻、ラフィド藻、黄緑藻、珪藻等の不等毛藻類はクロロフィルaに加えてクロロフィルcを持ち、渦鞭毛藻類はクロロフィルアに加えて、クロロフィルb、クロロフィルc、フィコビリン系色素等、カロテノイド系色素のうち1つ以上を持ち、クロメラ藻類はクロロフィルaを持ち、藍藻類はクロロフィルaに加えてクロロフィルb又はクロロフィルdを持つ。
クロロフィルの吸収ピーク波長は、例えば、90%アセトン-水混合溶媒中で、クロロフィルaは約430nm及び約664nm、クロロフィルbは約460nm及び約647nm、クロロフィルc1は約442nm及び約630nm、クロロフィルc2は約444nm及び約630nm、クロロフィルdは約401nm、約455nm及び約696nmである。 Although the wavelength of light necessary for microalgae to carry out photosynthesis varies depending on the type and combination of photosynthetic pigments that microalgae has, microalgae usually has one or more photosynthetic pigments in addition to chlorophyll a, and Since the photosynthetic pigment absorbs light of a wavelength which can not be absorbed by chlorophyll a and passes energy to chlorophyll a, the light including the absorption wavelength of chlorophyll a is not absolutely required.
The main photosynthetic pigments possessed by microalgae include chlorophyll a, chlorophyll b, chlorophyll c, phycobilin pigments and carotenoid pigments. In general, microalgae that perform photosynthesis often contain one or more of chlorophyll b, chlorophyll c, phycobilin-based pigment and carotenoid-based pigment in addition to chlorophyll a as a photosynthetic pigment. For example, the green algae such as Chlamydomonas (Clamydomonas), Chloroccoccum, Botryococcus, Tetracystis, Characium, Protochiphon, Protosiphon, Haematococcus, etc. Have chlorophyll b in addition to chlorophyll a, gray algae and red algae have phycobilin based pigments in addition to chlorophyll a, chlora lacunion algae and euglena have chlorophyll b in addition to chlorophyll a, and crypt algae have chlorophyll In addition to a, it has chlorophyll c and phycobilin-based pigments, and haptoalgae has chlorophyll c and caroteno in addition to chlorophyll a. Inorganic dyes such as brown algae, golden algae, rafido algae, yellow green algae, diatoms, etc. have chlorophyll a in addition to chlorophyll a, and dinoflagellates have chlorophyll b and chlorophyll c in addition to chlorophyll a. And phycobilin-based pigments, and one or more of carotenoid-based pigments, chromella algae have chlorophyll a, and cyanobacteria have chlorophyll b or chlorophyll d in addition to chlorophyll a.
The absorption peak wavelength of chlorophyll is, for example, 90% acetone-water mixed solvent, chlorophyll a is about 430 nm and about 664 nm, chlorophyll b is about 460 nm and about 647 nm, chlorophyll c 1 is about 442 nm and about 630 nm, chlorophyll c 2 Are about 444 nm and about 630 nm, and chlorophyll d is about 401 nm, about 455 nm and about 696 nm.
微細藻類が持つ主要な光合成色素としては、クロロフィルa、クロロフィルb、クロロフィルc、フィコビリン系色素及びカロテノイド系色素が挙げられる。光合成を行う微細藻類は、一般に、光合成色素としてクロロフィルaに加えて、クロロフィルb、クロロフィルc、フィコビリン系色素及びカロテノイド系色素のうち1種類以上を含むことが多い。例えば、クラミドモナス(Clamydomonas)属、クロロコックム(Chlorococcum)属、ボトリオコッカス(Botryococcus)属、テトラシスチス(Tetracystis)属、カラシウム(Characium)属、プロトシフォン(Protosiphon)属、ヘマトコッカス(Haematococcus)属等の緑藻類はクロロフィルaに加えてクロロフィルbを持ち、灰色藻類及び紅色藻類はクロロフィルaに加えてフィコビリン系色素を持ち、クロララクニオン藻類及びユーグレナ類はクロロフィルaに加えてクロロフィルbを持ち、クリプト藻類はクロロフィルaに加えてクロロフィルc及びフィコビリン系色素を持ち、ハプト藻類はクロロフィルaに加えてクロロフィルc及びカロテノイド色素を持ち、褐藻、黄金色藻、ラフィド藻、黄緑藻、珪藻等の不等毛藻類はクロロフィルaに加えてクロロフィルcを持ち、渦鞭毛藻類はクロロフィルアに加えて、クロロフィルb、クロロフィルc、フィコビリン系色素等、カロテノイド系色素のうち1つ以上を持ち、クロメラ藻類はクロロフィルaを持ち、藍藻類はクロロフィルaに加えてクロロフィルb又はクロロフィルdを持つ。
クロロフィルの吸収ピーク波長は、例えば、90%アセトン-水混合溶媒中で、クロロフィルaは約430nm及び約664nm、クロロフィルbは約460nm及び約647nm、クロロフィルc1は約442nm及び約630nm、クロロフィルc2は約444nm及び約630nm、クロロフィルdは約401nm、約455nm及び約696nmである。 Although the wavelength of light necessary for microalgae to carry out photosynthesis varies depending on the type and combination of photosynthetic pigments that microalgae has, microalgae usually has one or more photosynthetic pigments in addition to chlorophyll a, and Since the photosynthetic pigment absorbs light of a wavelength which can not be absorbed by chlorophyll a and passes energy to chlorophyll a, the light including the absorption wavelength of chlorophyll a is not absolutely required.
The main photosynthetic pigments possessed by microalgae include chlorophyll a, chlorophyll b, chlorophyll c, phycobilin pigments and carotenoid pigments. In general, microalgae that perform photosynthesis often contain one or more of chlorophyll b, chlorophyll c, phycobilin-based pigment and carotenoid-based pigment in addition to chlorophyll a as a photosynthetic pigment. For example, the green algae such as Chlamydomonas (Clamydomonas), Chloroccoccum, Botryococcus, Tetracystis, Characium, Protochiphon, Protosiphon, Haematococcus, etc. Have chlorophyll b in addition to chlorophyll a, gray algae and red algae have phycobilin based pigments in addition to chlorophyll a, chlora lacunion algae and euglena have chlorophyll b in addition to chlorophyll a, and crypt algae have chlorophyll In addition to a, it has chlorophyll c and phycobilin-based pigments, and haptoalgae has chlorophyll c and caroteno in addition to chlorophyll a. Inorganic dyes such as brown algae, golden algae, rafido algae, yellow green algae, diatoms, etc. have chlorophyll a in addition to chlorophyll a, and dinoflagellates have chlorophyll b and chlorophyll c in addition to chlorophyll a. And phycobilin-based pigments, and one or more of carotenoid-based pigments, chromella algae have chlorophyll a, and cyanobacteria have chlorophyll b or chlorophyll d in addition to chlorophyll a.
The absorption peak wavelength of chlorophyll is, for example, 90% acetone-water mixed solvent, chlorophyll a is about 430 nm and about 664 nm, chlorophyll b is about 460 nm and about 647 nm, chlorophyll c 1 is about 442 nm and about 630 nm, chlorophyll c 2 Are about 444 nm and about 630 nm, and chlorophyll d is about 401 nm, about 455 nm and about 696 nm.
更に、遮蔽部材は、貯留部材を構成する部材、例えば、第1のフィルムと一体となっていてもよい。例えば、図24に示す培養装置90は、遮蔽部材と第1のフィルムとが一体化されて、管状(チューブ状)に形成された部材92とこれを支持する支持体94とからなり、管状(チューブ状)に形成された部材92の内側に培養液Mを保持する。
Furthermore, the shielding member may be integrated with a member constituting the storage member, for example, the first film. For example, the culture apparatus 90 shown in FIG. 24 is a tubular (tube-like) member 92 formed by integrating the shielding member and the first film, and a support 94 for supporting the member 92. The culture solution M is held inside a member 92 formed in a tubular shape.
また、図1に示す例では、1つの遮蔽部材14aが、1つの貯留部材12aを覆う構成としたがこれに限定はされず、1つの遮蔽部材が、2以上の貯留部材を覆う構成としてもよい。
例えば、図25に示す培養装置100は、1つの遮蔽部材14aが、第1のフィルム22fと支持体20fとからなる貯留部材12fの2つを、覆うように配置された構成を有する。図に示すように、遮蔽部材14aは、2つの貯留部材12fを挟むように離間して配置された2つの支持体28eによって、貯留部材12fの鉛直上方に支持される。 Further, in the example shown in FIG. 1, one shieldingmember 14a is configured to cover one storage member 12a. However, the present invention is not limited to this, and one shielding member may be configured to cover two or more storage members. Good.
For example, theculture apparatus 100 shown in FIG. 25 has a configuration in which one shielding member 14a is disposed so as to cover two storage members 12f consisting of a first film 22f and a support 20f. As shown in the figure, the shielding member 14a is supported vertically above the storage member 12f by two supports 28e which are spaced apart so as to sandwich the two storage members 12f.
例えば、図25に示す培養装置100は、1つの遮蔽部材14aが、第1のフィルム22fと支持体20fとからなる貯留部材12fの2つを、覆うように配置された構成を有する。図に示すように、遮蔽部材14aは、2つの貯留部材12fを挟むように離間して配置された2つの支持体28eによって、貯留部材12fの鉛直上方に支持される。 Further, in the example shown in FIG. 1, one shielding
For example, the
《気温制御部/液温制御部》
培養装置は、気層Nの温度を制御する気温制御部及び培養液Mの温度を制御する液温制御部のうち少なくとも一方を備えることが好ましい。
気温制御部を備えることによって、培養中に、気層Nの温度を微細藻類の培養に適した温度範囲内に制御することができる。また、回収工程において、気層Nの温度を微細藻類の培養に適した温度範囲よりも高い温度に制御することができ、培養物の含水率を低下させ、乾燥を促進することができる。
液温制御部を備えることによって、培養中に、培養液Mの温度を微細藻類の培養に適した温度範囲内に制御することができる。また、回収工程において、培養液Mの温度を微細藻類の培養に適した温度範囲よりも高い温度に制御することができ、培養物の含水率を低下させ、乾燥を促進することができる。 << Temperature control part / liquid temperature control part >>
The culture apparatus preferably includes at least one of an air temperature control unit that controls the temperature of the air layer N and a liquid temperature control unit that controls the temperature of the culture solution M.
By providing the temperature control unit, it is possible to control the temperature of the air layer N within the temperature range suitable for the culture of the microalga during the culture. Further, in the recovery step, the temperature of the air layer N can be controlled to a temperature higher than the temperature range suitable for the culture of the microalga, and the moisture content of the culture can be reduced to accelerate the drying.
By providing the liquid temperature control unit, the temperature of the culture solution M can be controlled within the temperature range suitable for the culture of the microalga during the culture. In addition, in the recovery step, the temperature of the culture solution M can be controlled to a temperature higher than the temperature range suitable for the culture of the microalga, and the moisture content of the culture can be reduced to accelerate the drying.
培養装置は、気層Nの温度を制御する気温制御部及び培養液Mの温度を制御する液温制御部のうち少なくとも一方を備えることが好ましい。
気温制御部を備えることによって、培養中に、気層Nの温度を微細藻類の培養に適した温度範囲内に制御することができる。また、回収工程において、気層Nの温度を微細藻類の培養に適した温度範囲よりも高い温度に制御することができ、培養物の含水率を低下させ、乾燥を促進することができる。
液温制御部を備えることによって、培養中に、培養液Mの温度を微細藻類の培養に適した温度範囲内に制御することができる。また、回収工程において、培養液Mの温度を微細藻類の培養に適した温度範囲よりも高い温度に制御することができ、培養物の含水率を低下させ、乾燥を促進することができる。 << Temperature control part / liquid temperature control part >>
The culture apparatus preferably includes at least one of an air temperature control unit that controls the temperature of the air layer N and a liquid temperature control unit that controls the temperature of the culture solution M.
By providing the temperature control unit, it is possible to control the temperature of the air layer N within the temperature range suitable for the culture of the microalga during the culture. Further, in the recovery step, the temperature of the air layer N can be controlled to a temperature higher than the temperature range suitable for the culture of the microalga, and the moisture content of the culture can be reduced to accelerate the drying.
By providing the liquid temperature control unit, the temperature of the culture solution M can be controlled within the temperature range suitable for the culture of the microalga during the culture. In addition, in the recovery step, the temperature of the culture solution M can be controlled to a temperature higher than the temperature range suitable for the culture of the microalga, and the moisture content of the culture can be reduced to accelerate the drying.
微細藻類の培養に適した気層Nの気温及び培養液Mの液温の範囲は、培養する微細藻類の種類によっても異なるが、概ね約10~約50℃、好ましくは約15~約45℃付近である。
The range of the air temperature of the air layer N suitable for the culture of microalgae and the liquid temperature of the culture solution M varies depending on the type of microalgae to be cultured, but it is generally about 10 to about 50 ° C, preferably about 15 to about 45 ° C It is near.
培養温度は、微細藻類の種類に応じて選択することができるが、培養液の液温で、0℃以上90℃以下であることが好ましい。より好ましくは、15℃以上50℃以下であり、特に好ましくは、20℃以上40℃未満である。培養温度が20℃以上40℃未満であると、微細藻類の増殖速度が十分速い。
The culture temperature can be selected according to the type of microalgae, but the liquid temperature of the culture solution is preferably 0 ° C. or more and 90 ° C. or less. The temperature is more preferably 15 ° C. or more and 50 ° C. or less, and particularly preferably 20 ° C. or more and less than 40 ° C. When the culture temperature is 20 ° C. or more and less than 40 ° C., the growth rate of microalgae is sufficiently fast.
気温制御部又は液温制御部としては、例えば、貯留部材の周囲及び内部の両方又はいずれか一方に、水等の液体又は空気等の気体を伝熱媒体として流す部材を設ける構成が挙げられる。
As the air temperature control unit or the liquid temperature control unit, for example, a configuration in which a member such as a liquid such as water or a gas such as air is caused to flow as a heat transfer medium may be provided around the storage member.
例えば、図26に示す培養装置50は、貯留部材12aの外形よりも大きな開口を有する第2の容器52を備える。この第2の容器52内に、貯留部材12aを設置すると共に、第2の容器52内に伝熱媒体である水Wを入れたものである。貯留部材12aは、底面側から、その一部が水W内に浸漬されて支持用突起54上に設置される。
このような構成により、液温及び気温の変化を抑制できる。また、単に、貯留部材12aを水W内に浸漬させて液温及び気温の変化を抑制するのみならず、水Wの温度を制御することで、培養液Mや気層Nの温度を微細藻類の培養に適した温度範囲に制御してもよい。なお、第2の容器52内の水Wは、循環可能とするのが好ましい。 For example, theculture apparatus 50 shown in FIG. 26 includes a second container 52 having an opening larger than the outer shape of the storage member 12a. In the second container 52, the storage member 12a is installed, and water W, which is a heat transfer medium, is placed in the second container 52. A part of the storage member 12a is immersed in the water W from the bottom surface side and installed on the support protrusion 54.
Such a configuration can suppress changes in liquid temperature and air temperature. Moreover, thestorage member 12a is simply immersed in the water W not only to suppress changes in the liquid temperature and the air temperature, but also by controlling the temperature of the water W, the temperature of the culture solution M or the air layer N is a microalga. It may be controlled to a temperature range suitable for culture of Preferably, the water W in the second container 52 can be circulated.
このような構成により、液温及び気温の変化を抑制できる。また、単に、貯留部材12aを水W内に浸漬させて液温及び気温の変化を抑制するのみならず、水Wの温度を制御することで、培養液Mや気層Nの温度を微細藻類の培養に適した温度範囲に制御してもよい。なお、第2の容器52内の水Wは、循環可能とするのが好ましい。 For example, the
Such a configuration can suppress changes in liquid temperature and air temperature. Moreover, the
また、図27に示す培養装置60は、貯留部材62と、貯留部材62を外部から内部(液体保持部)に連通する伝熱用配管64とを備える。伝熱用配管64は伝熱媒体を流すことができる配管である。
このような構成により、伝熱用配管64内に伝熱媒体を流すことで、培養液Mや気層Nの温度を制御することができる。 Further, theculture device 60 shown in FIG. 27 includes a storage member 62, and a heat transfer pipe 64 which communicates the storage member 62 from the outside to the inside (liquid holding portion). The heat transfer pipe 64 is a pipe through which the heat transfer medium can flow.
With such a configuration, by flowing the heat transfer medium into theheat transfer pipe 64, it is possible to control the temperature of the culture solution M and the air layer N.
このような構成により、伝熱用配管64内に伝熱媒体を流すことで、培養液Mや気層Nの温度を制御することができる。 Further, the
With such a configuration, by flowing the heat transfer medium into the
また、気温制御部又は液温制御部として、気層に連通する通気部を備えていてもよい。具体的には、貯留部材と遮蔽部材との間の、少なくとも一部の領域を容易に開放、又は取り外し、巻き取りなどを可能として、必要な際には開放可能にしておくことも好ましい。また培養等に支障のない範囲で、貯留部材と遮蔽部材とを密着させずに、予め空間や通気口などを設けておくこともできる。また、遮蔽部材の高さを連続的に変化させ、かつ少なくとも高さの高い側に通気可能な構造を設けることで、自然対流を利用して気層N内の、外部よりも高い温度の気体を遮蔽部材の高さの高い方から外部へと放出可能な構造とすることもできる。このような構造とすることで、特に培養液Mの温度上昇を抑制することもできる。通気部での気体の通過は、自然通風でも良いし、通気部での気体の通過を通気制御部によって制御してもよい。通気制御の手段としては、例えば、ファン等の強制的な通気手段が挙げられる。
Moreover, you may provide the ventilation part connected to an air layer as an air temperature control part or a liquid temperature control part. Specifically, it is also preferable that at least a part of the area between the storage member and the shielding member can be easily opened, removed, taken up, etc., and can be opened when necessary. In addition, a space, an air vent, or the like can be provided in advance without bringing the storage member and the shielding member into close contact with each other as long as there is no hindrance to culture and the like. Also, by changing the height of the shielding member continuously and providing a structure that can be ventilated to at least the high side, a gas with a temperature higher than the outside temperature in the air layer N using natural convection. Can also be configured to be able to be released from the higher side of the shielding member to the outside. By setting it as such a structure, the temperature rise of the culture solution M can also be suppressed especially. The passage of gas in the aeration unit may be natural ventilation, or the passage of gas in the aeration unit may be controlled by the aeration control unit. Examples of means for controlling ventilation include forced ventilation means such as a fan.
《巻取機》
本発明に係る培養装置は、更に、第1のフィルムを巻き取るための巻取機(第1の巻取機)及び第2のフィルムを巻き取るための巻取機(第2の巻取機)の両方又はこれらのうちの一方を備えることが好ましい。ここで、第1の巻取機と第2の巻取機とはそれぞれ別個の巻取機であってもよいし、一の巻取機であって、巻き取るフィルムが第1のフィルムであるときに第1の巻取機とし、巻き取るフィルムが第2のフィルムであるときに第2の巻取機としてもよい。なお、詳細には、回収工程の説明において述べる。 巻 取 Winding machine》
The culture apparatus according to the present invention further comprises a winding machine (first winding machine) for winding the first film and a winding machine (second winding machine for winding the second film). It is preferable to provide both or one of these. Here, the first winding machine and the second winding machine may be separate winding machines, or one winding machine, and the film to be wound is the first film. Sometimes it may be a first winder, and it may be a second winder when the film to be taken up is a second film. The details will be described in the description of the recovery step.
本発明に係る培養装置は、更に、第1のフィルムを巻き取るための巻取機(第1の巻取機)及び第2のフィルムを巻き取るための巻取機(第2の巻取機)の両方又はこれらのうちの一方を備えることが好ましい。ここで、第1の巻取機と第2の巻取機とはそれぞれ別個の巻取機であってもよいし、一の巻取機であって、巻き取るフィルムが第1のフィルムであるときに第1の巻取機とし、巻き取るフィルムが第2のフィルムであるときに第2の巻取機としてもよい。なお、詳細には、回収工程の説明において述べる。 巻 取 Winding machine》
The culture apparatus according to the present invention further comprises a winding machine (first winding machine) for winding the first film and a winding machine (second winding machine for winding the second film). It is preferable to provide both or one of these. Here, the first winding machine and the second winding machine may be separate winding machines, or one winding machine, and the film to be wound is the first film. Sometimes it may be a first winder, and it may be a second winder when the film to be taken up is a second film. The details will be described in the description of the recovery step.
《回収部材》
本発明に係る培養装置は、更に、第1のフィルム上の微細藻類の培養物を回収するための回収部材(第1の回収部材)及び第2のフィルム上の微細藻類の培養物を回収するための回収部材(第2の回収部材)の両方又はこれらのうちの一方を備えることが好ましい。ここで、第1の回収部材と第2の回収部材とはそれぞれ別個の回収部材であってもよいし、一の回収部材であって、回収する微細藻類の培養物が第1のフィルム上のものであるときに第1の回収部材とし、回収する微細藻類の培養物が第2のフィルム状のものであるときに第2の回収部材としてもよい。なお、回収部材について、詳細には、回収工程の説明において述べる。 << Collection member >>
The culture apparatus according to the present invention further recovers the collection member (first collection member) for collecting the culture of microalgae on the first film and the culture of microalgae on the second film It is preferable to provide both or one of these recovery members (second recovery members). Here, the first recovery member and the second recovery member may be separate recovery members, or one recovery member, and the microalgal culture to be recovered is on the first film. When it is a thing, it is good also as a 2nd collection | recovery member, when it is set as a 1st collection | recovery member and culture | cultivation of the micro algae to collect | recover is 2nd film-like. The recovery member will be described in detail in the description of the recovery process.
本発明に係る培養装置は、更に、第1のフィルム上の微細藻類の培養物を回収するための回収部材(第1の回収部材)及び第2のフィルム上の微細藻類の培養物を回収するための回収部材(第2の回収部材)の両方又はこれらのうちの一方を備えることが好ましい。ここで、第1の回収部材と第2の回収部材とはそれぞれ別個の回収部材であってもよいし、一の回収部材であって、回収する微細藻類の培養物が第1のフィルム上のものであるときに第1の回収部材とし、回収する微細藻類の培養物が第2のフィルム状のものであるときに第2の回収部材としてもよい。なお、回収部材について、詳細には、回収工程の説明において述べる。 << Collection member >>
The culture apparatus according to the present invention further recovers the collection member (first collection member) for collecting the culture of microalgae on the first film and the culture of microalgae on the second film It is preferable to provide both or one of these recovery members (second recovery members). Here, the first recovery member and the second recovery member may be separate recovery members, or one recovery member, and the microalgal culture to be recovered is on the first film. When it is a thing, it is good also as a 2nd collection | recovery member, when it is set as a 1st collection | recovery member and culture | cultivation of the micro algae to collect | recover is 2nd film-like. The recovery member will be described in detail in the description of the recovery process.
《その他の培養装置に関連するもの》
培養装置を台風、暴風、突風等の自然災害から防ぐように、培養装置を構成する要素とは別に、培養装置の周辺に防風壁などの防風設備を設置してもよい。防風設備を設置した場合であっても、微細藻類の培養を行う場所に必要な光を大幅に遮ることのないような構造及び位置にすることが望ましい。
また、微細藻類の培養に必要な二酸化炭素を供給する装置、微細藻類の培養に必要な光を供給する光源等を有していてもよい。 << Related to Other Culture Equipments >>
In order to prevent the culture apparatus from natural disasters such as typhoons, storms, gusts and the like, windproof equipment such as a windproof wall may be installed around the culture apparatus separately from the elements constituting the culture apparatus. Even when a windproof facility is installed, it is desirable to have a structure and position that does not significantly block the light necessary for the microalgal culture.
Moreover, you may have an apparatus which supplies the carbon dioxide required for culture | cultivation of micro algae, and a light source etc. which supply light required for culture of micro algae.
培養装置を台風、暴風、突風等の自然災害から防ぐように、培養装置を構成する要素とは別に、培養装置の周辺に防風壁などの防風設備を設置してもよい。防風設備を設置した場合であっても、微細藻類の培養を行う場所に必要な光を大幅に遮ることのないような構造及び位置にすることが望ましい。
また、微細藻類の培養に必要な二酸化炭素を供給する装置、微細藻類の培養に必要な光を供給する光源等を有していてもよい。 << Related to Other Culture Equipments >>
In order to prevent the culture apparatus from natural disasters such as typhoons, storms, gusts and the like, windproof equipment such as a windproof wall may be installed around the culture apparatus separately from the elements constituting the culture apparatus. Even when a windproof facility is installed, it is desirable to have a structure and position that does not significantly block the light necessary for the microalgal culture.
Moreover, you may have an apparatus which supplies the carbon dioxide required for culture | cultivation of micro algae, and a light source etc. which supply light required for culture of micro algae.
〈微細藻類〉
本発明の培養及び回収方法に用いる微細藻類は、特に制限はなく、目的に応じて適宜選択することができる。ここで、微細藻類とは、人の肉眼では、その個々の存在が認識できないような微小な藻類を指す。微細藻類は原核生物及び真核生物のいずれであってもよい。 <Fine algae>
The microalgae used in the culture and recovery method of the present invention is not particularly limited, and can be appropriately selected according to the purpose. Here, microalgae refers to microalgae whose individual existence can not be recognized by the naked eye of a person. The microalgae may be either prokaryote or eukaryote.
本発明の培養及び回収方法に用いる微細藻類は、特に制限はなく、目的に応じて適宜選択することができる。ここで、微細藻類とは、人の肉眼では、その個々の存在が認識できないような微小な藻類を指す。微細藻類は原核生物及び真核生物のいずれであってもよい。 <Fine algae>
The microalgae used in the culture and recovery method of the present invention is not particularly limited, and can be appropriately selected according to the purpose. Here, microalgae refers to microalgae whose individual existence can not be recognized by the naked eye of a person. The microalgae may be either prokaryote or eukaryote.
本発明の培養及び回収方法に用いる微細藻類としては、例えば、緑藻類(Chlorophyta)、灰色藻類(Glaucophyta)、紅色藻類(Rhodophyta)、クロララクニオン藻類(Chlorarachniophyta)、ユーグレナ類(Euglenophyta)、クリプト藻類(Cryptophyta)、褐藻類(Phaeophyta)、ハプト藻類(Haptophyta)、不等毛藻類(Heterokontophyta)、渦鞭毛藻類(Dinophyta)、クロメラ藻類(Chromerida)、藍藻類(Cyanobacteria)等のいずれかに帰属する微細藻類が挙げられる。微細藻類は帰属分類群が未確定であってもよく、分子系統学的にこれらの分類群に含まれるか、又は近縁関係にあることが示されていればなおよい。
Examples of microalgae used in the culture and recovery method of the present invention include green algae (Chlorophyta), gray algae (Glaucophyta), red algae (Rhodophyta), chlora lacunion algae (Chlorarachniophyta), euglena (Euglenophya), cryptoalga ( Microalgae belonging to any of Cryptophyta), Brown algae (Phaeophyta), Haptophyta (Haptophyta), Heterophyta (Heterokontophyta), Dinophyta (Dinophyta), Chromella algae (Chromerida), Cyanobacteria, etc. Can be mentioned. The microalgae may have an undefined taxonomic group, and more preferably molecular phylogenetically it has been shown to be in or closely related to these taxa.
本発明の培養及び回収方法では、微細藻類は1種類を単独で、又は2種類以上を組み合わせて用いることができる。他の生物と共生関係にある場合は、その生物とともに用いてもよい。
In the culture and recovery method of the present invention, microalgae can be used singly or in combination of two or more. If it is in a symbiotic relationship with another organism, it may be used with that organism.
また、本発明の培養及び回収方法で用いる微細藻類としては、回収工程の前に実質的に液面に浮遊した状態となるものが好ましい。ここで、液面に浮遊した状態とは、培養液面にバイオフィルムを形成するか否かを問わず、培養液に存在する藻体バイオマスの約50%以上が液面に存在する状態をいう。
Moreover, as a microalga used by the culture | cultivation and collection | recovery method of this invention, what will be in the state which floated substantially in the liquid surface before a collection process is preferable. Here, the state of floating on the liquid surface refers to a state in which about 50% or more of the algal biomass present in the culture liquid is present on the liquid surface, regardless of whether a biofilm is formed on the culture liquid surface or not. .
また、本発明の培養及び回収方法で用いる微細藻類としては、培養液の液面にバイオフィルムを形成可能なものが好ましい。なお、バイオフィルムについては後述する。
Moreover, as a microalga used by the culture | cultivation and collection | recovery method of this invention, what can form a biofilm in the liquid surface of a culture solution is preferable. The biofilm will be described later.
培養液の液面にバイオフィルムを形成可能な微細藻類としては、緑藻(緑藻類)又は珪藻(不等毛藻類)が好ましい。
As microalgae capable of forming a biofilm on the liquid surface of the culture solution, green algae (green algae) or diatoms (non-uniform algae) are preferable.
培養液の液面にバイオフィルムを形成可能な微細藻類としては、ボツリオコッカス(Botryococcus) sp.、ボツリオスフェレラ(Botryosphaerella) sp.、クラミドモナス(Chlamydomonas) sp.、クロロコックム(Chlorococcum) sp、クラミドモナス科(Chlamydomonadaceae) sp.、テトラシスチス(Tetracystis) sp.、カラシウム(Characium) sp.プロトシフォン(Protosiphon) sp.又はヘマトコッカス(Haematococcus) sp.に帰属するものがより好ましい。
As microalgae capable of forming a biofilm on the liquid surface of the culture solution, Botryococcus sp. Botryosphaerella sp. , Chlamydomonas sp. , Chloroccum sp, Chlamydomonadaceae sp. , Tetracystis sp. , Characium sp. Proto Chiffon (Protosiphon) sp. Or Haematococcus (Haematococcus) sp. Those belonging to are more preferred.
培養液の液面にバイオフィルムを形成可能な微細藻類としては、ボツリオコッカス・スデティクス(Botryococcus sudeticus)又はクロロコックム(Chlorococcum) sp.に帰属するものが更に好ましい。
As microalgae capable of forming a biofilm on the liquid surface of the culture solution, Botryococcus sudeticus (Botryococcus sudeticus) or Chlorococcum sp. Those belonging to are more preferred.
培養液の液面にバイオフィルムを形成可能な微細藻類としては、ボツリオコッカス・スデティクス(Botryococcus sudeticus) FERM BP-11420株若しくはその微細藻類株と同一の分類学的性質を有する微細藻類株又はクロロコックム(Chlorococcum) sp. FERM BP-22262株若しくはその微細藻類株と同一の分類学的性質を有する微細藻類株がより一層好ましく、18S rRNAをコードする遺伝子領域のヌクレオチド配列のうち配列番号1に示すヌクレオチド配列の第73番目~第1722番目のヌクレオチドヌクレオチド配列に対応する部分のヌクレオチド配列が、配列番号1に示すヌクレオチド配列の第73番目~第1722番目のヌクレオチド配列と、少なくとも99.94%(小数点以下第3位を四捨五入する)の配列同一性を有する微細藻類が更に一層好ましく、クロロコックム(Chlorococcum) sp. FERM BP-22262株又はその微細藻類株と同一の分類学的性質を有する微細藻類がとりわけ好ましい。
As a microalga capable of forming a biofilm on the liquid surface of the culture solution, a microalga strain or chlorococum having the same taxonomical properties as Botryococcus sudeticus FERM BP-11420 strain or its microalgal strain (Chlorococcum) sp. Even more preferable is a microalgal strain having the same taxonomical properties as the FERM BP-22262 strain or its microalgal strain, and the 73rd nucleotide sequence of the nucleotide sequence shown in SEQ ID NO: 1 among the nucleotide sequences of the gene region encoding 18S rRNA The nucleotide sequence of the portion corresponding to the nucleotide sequence of nucleotides 1 to 1722, and the nucleotide sequence of nucleotides 73 to 1722 of the nucleotide sequence shown in SEQ ID NO: 1, at least 99.94% (rounded off to the third decimal place) Still more preferred is a microalga having a sequence identity of Especially preferred are microalgae having the same taxonomical properties as the FERM BP-22262 strain or its microalgae strain.
微細藻類を入手する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、自然界より採取する方法、市販品を用いる方法、保存機関や寄託機関から入手する方法などが挙げられる。
There is no restriction | limiting in particular as a method to obtain a microalga, According to the objective, it can select suitably, For example, the method of extract | collecting from nature, the method of using a commercial item, the method of acquiring from a preservation organization or a depository It can be mentioned.
《クロロコックム sp. FERM BP-22262株(FFG039株)の分類学的性質》
クロロコックム(Chlorococcum) sp. FERM BP-22262株の分類学的性質を以下に示す。
(形態的性質)
円状である。静置培養を行うと、液面上にフィルム状の構造物を形成する。オイルを生産する。
(培養的性質)
培養液:CSiFF04培地又はCSi改良培養液(CSiFF04培地はCSi培地を改良したもの。組成を表1に示した。NaOH又はHClにてpHを前者は6.0、後者は7.0に調整する。培養液は、121℃、10minの条件で高圧蒸気滅菌することができる。) << Chloroccocum sp. Taxonomical properties of FERM BP-22262 strain (FFG039 strain)
Chloroccum sp. The taxonomical properties of the FERM BP-22262 strain are shown below.
(Morphological properties)
It is circular. When static culture is performed, a film-like structure is formed on the liquid surface. Produce oil.
(Cultural properties)
Culture medium: CSiFF04 medium or CSi modified medium (CSiFF04 medium is a modification of CSi medium. The composition is shown in Table 1. The pH is adjusted to 6.0 and the latter to 7.0 with NaOH or HCl, respectively. The culture solution can be autoclaved under conditions of 121 ° C. and 10 min.)
クロロコックム(Chlorococcum) sp. FERM BP-22262株の分類学的性質を以下に示す。
(形態的性質)
円状である。静置培養を行うと、液面上にフィルム状の構造物を形成する。オイルを生産する。
(培養的性質)
培養液:CSiFF04培地又はCSi改良培養液(CSiFF04培地はCSi培地を改良したもの。組成を表1に示した。NaOH又はHClにてpHを前者は6.0、後者は7.0に調整する。培養液は、121℃、10minの条件で高圧蒸気滅菌することができる。) << Chloroccocum sp. Taxonomical properties of FERM BP-22262 strain (FFG039 strain)
Chloroccum sp. The taxonomical properties of the FERM BP-22262 strain are shown below.
(Morphological properties)
It is circular. When static culture is performed, a film-like structure is formed on the liquid surface. Produce oil.
(Cultural properties)
Culture medium: CSiFF04 medium or CSi modified medium (CSiFF04 medium is a modification of CSi medium. The composition is shown in Table 1. The pH is adjusted to 6.0 and the latter to 7.0 with NaOH or HCl, respectively. The culture solution can be autoclaved under conditions of 121 ° C. and 10 min.)
培養温度:15~25℃で培養できる。
培養時間:2~4週間
培養方法:静置培養が適する。
光要求性:要。照度4000lx~22000lx、明暗周期:明期時間12時間/暗期時間12時間。 Culture temperature: It can be cultured at 15-25 ° C.
Culture time: 2 to 4 weeks Culture method: static culture is suitable.
Light requirement: Necessary. Illuminance 4000 lx-22000 lx, light-dark cycle: 12 hours light period / 12 hours dark period.
培養時間:2~4週間
培養方法:静置培養が適する。
光要求性:要。照度4000lx~22000lx、明暗周期:明期時間12時間/暗期時間12時間。 Culture temperature: It can be cultured at 15-25 ° C.
Culture time: 2 to 4 weeks Culture method: static culture is suitable.
Light requirement: Necessary. Illuminance 4000 lx-22000 lx, light-dark cycle: 12 hours light period / 12 hours dark period.
FERM BP-22262株と分類学的に同一の性質を有する微細藻類には、クロロコックム(Chlorococcum)属に属する微細藻類であって、その18S rRNA遺伝子が、配列番号2の塩基配列からなるポリヌクレオチドと少なくとも99.94%の配列同一性を有するものが含まれる。
Among the microalga having the same taxonomical properties as the FERM BP-22262 strain are microalgae belonging to the genus Chlorococcum, whose 18S rRNA gene comprises a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 2 Included are those having at least 99.94% sequence identity.
なお、配列番号1はクロロコックム(Chlorococcum) sp. RK261株の18S rRNA遺伝子の塩基配列の一部(日本DNAデータバンク アクセッション番号=AB490286)を、配列番号2はクロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)の18S rRNA遺伝子の塩基配列の一部を、それぞれ表す。
In addition, SEQ ID NO: 1 is Chlorococcum sp. SEQ ID NO: 2 is a part of the nucleotide sequence of the 18S rRNA gene of RK261 strain (Japan DNA Data Bank accession number = AB490286), and is a sequence of Chlorococcum sp. A part of base sequence of 18S rRNA gene of FFG039 strain (FERM BP-22262 strain) is shown, respectively.
《ボツリオコッカス・スデティクス FERM BP-11420株(AVFF007株)の分類学的性質》
ボツリオコッカス・スデティクス(Botryococcus sudeticus) FERM BP-11420株の分類学的性質を以下に示す。
なお、ボツリオコッカス・スデティクス(Botryococcus sudeticus)は、ボツリオスフェレラ・スデティカ(Botryosphaerella sudetica)のバソニム(基礎異名)である。 Taxonomical properties of Botryococcus sudetics FERM BP-11420 (AVFF 007)
The taxonomical properties of Botryococcus sudeticus FERM BP-11420 are shown below.
Botryococcus sudeticus (Botryococcus sudeticus) is a bassonim (basic synonym) of Botryosphaerella sudetica (Botryosphaerella sudetica).
ボツリオコッカス・スデティクス(Botryococcus sudeticus) FERM BP-11420株の分類学的性質を以下に示す。
なお、ボツリオコッカス・スデティクス(Botryococcus sudeticus)は、ボツリオスフェレラ・スデティカ(Botryosphaerella sudetica)のバソニム(基礎異名)である。 Taxonomical properties of Botryococcus sudetics FERM BP-11420 (AVFF 007)
The taxonomical properties of Botryococcus sudeticus FERM BP-11420 are shown below.
Botryococcus sudeticus (Botryococcus sudeticus) is a bassonim (basic synonym) of Botryosphaerella sudetica (Botryosphaerella sudetica).
(形態的性質)
緑色円形状である。浮遊性であり、液面及び底面で増殖することができる。液面上で増殖し、フィルム状構造体を形成する。サイズは概ね4~100μmである。また、液面上の藻体は比較的大きく、底面の藻体は比較的小さい。増殖に伴って、液面上のフィルム状構造体中に気泡が発生し、これらが単独で存在している場合のほか、結合、合体したり、三次元に重なり合ったりした構造を含む泡状構造体を形成する。 (Morphological properties)
It has a green circle shape. It is floating and can grow on the liquid and bottom surfaces. It grows on the liquid surface to form a film-like structure. The size is approximately 4 to 100 μm. Also, algal bodies on the liquid surface are relatively large, and algal bodies on the bottom are relatively small. During the growth, bubbles are generated in the film-like structure on the liquid surface, and the foam-like structure including a structure in which they are combined, coalesced, or three-dimensionally overlapped, as well as when they are present alone. Form a body.
緑色円形状である。浮遊性であり、液面及び底面で増殖することができる。液面上で増殖し、フィルム状構造体を形成する。サイズは概ね4~100μmである。また、液面上の藻体は比較的大きく、底面の藻体は比較的小さい。増殖に伴って、液面上のフィルム状構造体中に気泡が発生し、これらが単独で存在している場合のほか、結合、合体したり、三次元に重なり合ったりした構造を含む泡状構造体を形成する。 (Morphological properties)
It has a green circle shape. It is floating and can grow on the liquid and bottom surfaces. It grows on the liquid surface to form a film-like structure. The size is approximately 4 to 100 μm. Also, algal bodies on the liquid surface are relatively large, and algal bodies on the bottom are relatively small. During the growth, bubbles are generated in the film-like structure on the liquid surface, and the foam-like structure including a structure in which they are combined, coalesced, or three-dimensionally overlapped, as well as when they are present alone. Form a body.
(培養的性質)
・培養液:CSiFF04培地(CSi培地を改良したもの。組成を表2に示した。NaOH又はHClにてpH6.0に調整する。培養液は、121℃、10minの条件で高圧蒸気滅菌することができる。) (Cultural properties)
Culture solution: CSiFF 04 medium (improved in CSi medium, the composition is shown in Table 2. Adjust pH to 6.0 with NaOH or HCl. Culture medium should be autoclaved under conditions of 121 ° C., 10 min. Can)
・培養液:CSiFF04培地(CSi培地を改良したもの。組成を表2に示した。NaOH又はHClにてpH6.0に調整する。培養液は、121℃、10minの条件で高圧蒸気滅菌することができる。) (Cultural properties)
Culture solution: CSiFF 04 medium (improved in CSi medium, the composition is shown in Table 2. Adjust pH to 6.0 with NaOH or HCl. Culture medium should be autoclaved under conditions of 121 ° C., 10 min. Can)
・培養温度:好適温度は23℃であり、37℃以下であれば培養できる。
・培養期間(概ね定常期に達するまでの期間):初期使用藻体量によるが、2週間~1ヶ月である。通常、1×105個/mLで培養することができる。
・培養方法:静置培養が適する。
・光要求性:要。照度4000lx~15000lx。明暗周期:明記時間12時間/暗期時間12時間。継代培養の際は、4000lxで培養することができる。 Culture temperature: The preferred temperature is 23 ° C., and culture can be carried out at 37 ° C. or less.
Culture period (generally, a period until reaching the stationary phase): 2 weeks to 1 month, depending on the amount of algal cells used initially. Usually, culture can be performed at 1 × 10 5 cells / mL.
Culture method: static culture is suitable.
・ Light requirement: Necessary. Illuminance 4000 lx to 15000 lx. Light-dark cycle: 12 hours specified time / 12 hours dark period. In the case of subculture, it is possible to culture at 4000 lx.
・培養期間(概ね定常期に達するまでの期間):初期使用藻体量によるが、2週間~1ヶ月である。通常、1×105個/mLで培養することができる。
・培養方法:静置培養が適する。
・光要求性:要。照度4000lx~15000lx。明暗周期:明記時間12時間/暗期時間12時間。継代培養の際は、4000lxで培養することができる。 Culture temperature: The preferred temperature is 23 ° C., and culture can be carried out at 37 ° C. or less.
Culture period (generally, a period until reaching the stationary phase): 2 weeks to 1 month, depending on the amount of algal cells used initially. Usually, culture can be performed at 1 × 10 5 cells / mL.
Culture method: static culture is suitable.
・ Light requirement: Necessary. Illuminance 4000 lx to 15000 lx. Light-dark cycle: 12 hours specified time / 12 hours dark period. In the case of subculture, it is possible to culture at 4000 lx.
FERM BP-11420株と分類学的に同一の性質を有する株には、微細藻類であって、その18S rRNA遺伝子が、配列番号3の塩基配列からなるポリヌクレオチドと少なくとも95.0%、好ましくは98.0%、より好ましくは99.0%、更に好ましくは99.5%、最も好ましくは99.9%の配列同一性を有するものが含まれる。
The strain having taxonomically identical properties to the FERM BP-11420 strain is a microalga, wherein the 18S rRNA gene is at least 95.0%, preferably at least 95.0%, with a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 3 Included are those with 98.0%, more preferably 99.0%, still more preferably 99.5%, most preferably 99.9% sequence identity.
本発明で塩基配列について同一性というときは、2つの配列を最適の態様でペアワイズ整列させた場合に、整列した領域内の2つの2つの配列間で共有する一致した塩基の数の百分率を意味する。すなわち、同一性=(一致した塩基の数/塩基の全数)×100で算出することができ、市販又は一般に公開されているアルゴリズムを用いて計算することができる。塩基配列の同一性に関する検索及び解析は、当業者には周知のアルゴリズム又はプログラムにより行うことができる。プログラムを用いる場合のパラメーターは、当業者であれば適切に設定することができ、また、各プログラムのデフォルトパラメーターをもちいてもよい。これらの解析方法の具体的な手法もまた、当業者にはよく知られている。
In the present invention, the term "identity" for the base sequence means the percentage of the number of matched bases shared between the two two sequences in the aligned region when the two sequences are aligned pairwise in an optimal manner. Do. That is, it can be calculated by identity = (number of matched bases / total number of bases) × 100, and can be calculated using a commercially available or generally published algorithm. The search and analysis regarding the identity of the base sequence can be performed by an algorithm or program well known to those skilled in the art. The parameters for using the program can be appropriately set by those skilled in the art, and may use the default parameters of each program. Specific procedures of these analysis methods are also well known to those skilled in the art.
なお、配列表中、配列番号3は、ボツリオコックス・スデティクス(Botryococcus sudeticus) AVFF007株(FERM BP-11420株)の18S rRNA遺伝子の塩基配列の一部を表す。
In the sequence listing, SEQ ID NO: 3 represents a part of the nucleotide sequence of 18S rRNA gene of Botryococcus sudeticus AVFF 007 strain (FERM BP-11420 strain).
バイオフィルムとは、通常、岩、プラスチックその他固体の表面に付着する、微生物及び細胞外マトリックスから構成されるフィルム状の微生物構造体(微生物集合体又は微生物膜)をいうが、本発明においては、これらに加えて、液面のような流動性のある表面に浮遊する、微生物及び細胞外マトリックス等から構成されるフィルム状又は三次元状(泡状、襞状など)の微生物構造体(微生物集合体又は微生物膜)もバイオフィルムというものとする。
Biofilm generally refers to a film-like microbial structure (microbial assembly or membrane) composed of microorganisms and extracellular matrix attached to the surface of rock, plastic or other solid, but in the present invention, In addition to these, film-like or three-dimensional (foam-like, scaly-like, etc.) microbial structures (microbe-aggregated, etc.) composed of microorganisms and extracellular matrix etc. suspended on a fluid surface such as liquid surface Body or microbial membranes) are also referred to as biofilms.
好適な態様では、液面上のバイオフィルムには、従来、岩、プラスチックその他の固体表面に付着しているバイオフィルムでは見られなかった、泡状構造体、襞状構造体などの三次元状構造体が形成される場合がある。また、培養液を静置することで、液面上のバイオフィルムをより形成しやすくなる。
泡状構造体は、微細藻類の代謝により発生した二酸化炭素、酸素等の気体と細胞外マトリックスとから形成されたものと考えられる。径が概ね約2~3ミリメートルから約5~10センチメートルのサイズで、形状は、泡状であることを除いて、特に定まってはいない。また、泡状構造体は、他の泡状構造体からアイソレートした単独の泡状構造体である場合もあるし、複数の泡状構造体がアグリゲートして二次元又は三次元に重畳した構造を含む場合もある。
襞状構造体は、藻類の増殖に伴い、フィルム状のバイオフィルムに培養液中に陥入する部分又は空気中に突出する部分が生じることにより形成されると考えられる。培養液中に陥入したバイオフィルムは、一部がちぎれて、培養液の底部に沈み込むことがある。空気中に突出したバイオフィルムは、自重を支えきれなくなると、折りたたまれて、液面上のバイオフィルムに重なる。 In a preferred embodiment, the biofilm on the liquid surface has a three-dimensional form such as a foam-like structure, a scaly structure, etc. which were not conventionally found in biofilms attached to rocks, plastics or other solid surfaces Structures may be formed. In addition, by leaving the culture solution stationary, it becomes easier to form a biofilm on the liquid surface.
The foamy structure is considered to be formed from a gas such as carbon dioxide or oxygen generated by the metabolism of microalgae and the extracellular matrix. The diameter is generally about 2-3 mm to about 5-10 cm in size, and the shape is not particularly defined except that it is foamy. Also, the foam-like structure may be a single foam-like structure isolated from other foam-like structures, or a plurality of foam-like structures are aggregated and superimposed in two or three dimensions. May include structure.
The rod-like structure is considered to be formed by the formation of a portion invading the culture solution in the film-like biofilm or a portion protruding in the air as the algae grows. Biofilm invaginated in the culture solution may be partially torn down to the bottom of the culture solution. When the biofilm protruding into the air can not support its own weight, it is folded and overlaps the biofilm on the liquid surface.
泡状構造体は、微細藻類の代謝により発生した二酸化炭素、酸素等の気体と細胞外マトリックスとから形成されたものと考えられる。径が概ね約2~3ミリメートルから約5~10センチメートルのサイズで、形状は、泡状であることを除いて、特に定まってはいない。また、泡状構造体は、他の泡状構造体からアイソレートした単独の泡状構造体である場合もあるし、複数の泡状構造体がアグリゲートして二次元又は三次元に重畳した構造を含む場合もある。
襞状構造体は、藻類の増殖に伴い、フィルム状のバイオフィルムに培養液中に陥入する部分又は空気中に突出する部分が生じることにより形成されると考えられる。培養液中に陥入したバイオフィルムは、一部がちぎれて、培養液の底部に沈み込むことがある。空気中に突出したバイオフィルムは、自重を支えきれなくなると、折りたたまれて、液面上のバイオフィルムに重なる。 In a preferred embodiment, the biofilm on the liquid surface has a three-dimensional form such as a foam-like structure, a scaly structure, etc. which were not conventionally found in biofilms attached to rocks, plastics or other solid surfaces Structures may be formed. In addition, by leaving the culture solution stationary, it becomes easier to form a biofilm on the liquid surface.
The foamy structure is considered to be formed from a gas such as carbon dioxide or oxygen generated by the metabolism of microalgae and the extracellular matrix. The diameter is generally about 2-3 mm to about 5-10 cm in size, and the shape is not particularly defined except that it is foamy. Also, the foam-like structure may be a single foam-like structure isolated from other foam-like structures, or a plurality of foam-like structures are aggregated and superimposed in two or three dimensions. May include structure.
The rod-like structure is considered to be formed by the formation of a portion invading the culture solution in the film-like biofilm or a portion protruding in the air as the algae grows. Biofilm invaginated in the culture solution may be partially torn down to the bottom of the culture solution. When the biofilm protruding into the air can not support its own weight, it is folded and overlaps the biofilm on the liquid surface.
なお、一般的には、特に、自然界でのバイオフィルムには、微生物以外に、ゴミや植物の破片などを含んでいるが、本発明でもこれらを含んでいてもよいものとする。ただし、例えば、屋外のようなオープンな環境では、目的微生物以外の混入の回避は実質的不可能であるために、本発明では意図的にこれらを含ませた試料を対象としていない。しかし、微細藻類の回収の効率の観点から、バイオフィルムはゴミや植物の破片などの不純物を含まないことが好ましく、理想的には、本発明に係る微細藻類とその増殖時に分泌される細胞間マトリックスなどのような物質のみから構成されていることがより好ましい。また、本発明では、バイオフィルムは、個々の微細藻類どうしが直接又は細胞間マトリックスのような物質を介して付着しあっている構造であることが好ましい。
Generally, in addition to microorganisms, in particular, biofilms in the natural world include debris and debris of plants, but they may be included in the present invention as well. However, in an open environment such as, for example, outdoors, the avoidance of contamination other than the target microorganism is practically impossible, so the present invention does not target samples intentionally containing these. However, from the viewpoint of the efficiency of recovery of microalgae, it is preferable that the biofilm does not contain impurities such as trash and plant fragments, and ideally, between the microalgae according to the present invention and the cells secreted during its growth. More preferably, it is composed only of a substance such as a matrix. Furthermore, in the present invention, the biofilm is preferably a structure in which individual microalgae are attached to each other directly or through a substance such as an intercellular matrix.
次に、本発明の微細藻類の培養物の培養及び回収方法について、詳細に説明する。
本発明の培養及び回収方法は、上述した培養装置を用いた微細藻類の培養物の培養及び回収方法であって、
培養液の液面と遮蔽部材との間に気層を形成して、培養液で微細藻類の培養物を培養する本培養工程と、
本培養工程の後に、培養液の液量を減らす液量縮減工程と、
液量縮減工程の後に、微細藻類の培養物を回収する回収工程と、を含む微細藻類培養物の培養及び回収方法である。 Next, the culture and recovery method of the culture of microalga of the present invention will be described in detail.
The culture and recovery method of the present invention is a culture and recovery method of a culture of microalgae using the above-described culture apparatus,
A main culture step of forming an air layer between the liquid surface of the culture solution and the shielding member to culture a culture of the microalga with the culture solution;
After the main culturing step, a fluid volume reducing step of reducing the volume of the culture fluid,
And a recovery step of recovering a culture of microalgae after the liquid volume reduction step, and a culture and recovery method of the microalgal culture.
本発明の培養及び回収方法は、上述した培養装置を用いた微細藻類の培養物の培養及び回収方法であって、
培養液の液面と遮蔽部材との間に気層を形成して、培養液で微細藻類の培養物を培養する本培養工程と、
本培養工程の後に、培養液の液量を減らす液量縮減工程と、
液量縮減工程の後に、微細藻類の培養物を回収する回収工程と、を含む微細藻類培養物の培養及び回収方法である。 Next, the culture and recovery method of the culture of microalga of the present invention will be described in detail.
The culture and recovery method of the present invention is a culture and recovery method of a culture of microalgae using the above-described culture apparatus,
A main culture step of forming an air layer between the liquid surface of the culture solution and the shielding member to culture a culture of the microalga with the culture solution;
After the main culturing step, a fluid volume reducing step of reducing the volume of the culture fluid,
And a recovery step of recovering a culture of microalgae after the liquid volume reduction step, and a culture and recovery method of the microalgal culture.
〈培養〉
微細藻類の培養は、培養液の上方に気層が存在するようにしながら、培養液で微細藻類を培養する。培養液及び微細藻類は前述したとおりである。 <culture>
In the culture of microalgae, microalgae are cultured in a culture solution while an air layer is present above the culture solution. The culture solution and microalgae are as described above.
微細藻類の培養は、培養液の上方に気層が存在するようにしながら、培養液で微細藻類を培養する。培養液及び微細藻類は前述したとおりである。 <culture>
In the culture of microalgae, microalgae are cultured in a culture solution while an air layer is present above the culture solution. The culture solution and microalgae are as described above.
《前培養工程》
本発明において前培養工程とは、純化工程を終了した後に得られた保存用微細藻類を増殖させ、本培養が行えるまで微細藻類の数を増やす工程のことである。前培養の培養法は、公知のいかなる培養方法でも選択可能である。例えば、分散培養法や付着培養法、液面浮遊培養を行うことも可能である。また、本培養が行える規模まで微細藻類を増殖させるために、前培養を数回行ってもよい。また、前培養では、目的に応じて静置培養を行ってもよいし、振盪培養などの非静置培養を行ってもよい。また、前培養は、本培養が行える規模まで微細藻類を増殖させるために、前培養を複数回行ってもよい。また、一般的には、1cm2~1m2以下の表面積を持つ培養器(貯留部材)を使用し、屋内外いずれでも培養可能である。 Pre-culture process
In the present invention, the pre-culture step is a step of growing the number of microalgae until main culture can be performed by growing the storage microalgae obtained after the purification step is completed. The culture method for pre-culture can be selected by any known culture method. For example, it is also possible to carry out the dispersion culture method, the adhesion culture method, and the liquid surface suspension culture. In addition, in order to grow microalgae to a scale that can be subjected to main culture, pre-culture may be performed several times. In the pre-culture, stationary culture may be performed depending on the purpose, or non-static culture such as shaking culture may be performed. In addition, the pre-culture may be performed multiple times in order to grow the microalgae to a scale at which the main culture can be performed. In general, a culture vessel (storage member) having a surface area of 1 cm 2 to 1 m 2 or less is used, and culture can be performed indoors or outside.
本発明において前培養工程とは、純化工程を終了した後に得られた保存用微細藻類を増殖させ、本培養が行えるまで微細藻類の数を増やす工程のことである。前培養の培養法は、公知のいかなる培養方法でも選択可能である。例えば、分散培養法や付着培養法、液面浮遊培養を行うことも可能である。また、本培養が行える規模まで微細藻類を増殖させるために、前培養を数回行ってもよい。また、前培養では、目的に応じて静置培養を行ってもよいし、振盪培養などの非静置培養を行ってもよい。また、前培養は、本培養が行える規模まで微細藻類を増殖させるために、前培養を複数回行ってもよい。また、一般的には、1cm2~1m2以下の表面積を持つ培養器(貯留部材)を使用し、屋内外いずれでも培養可能である。 Pre-culture process
In the present invention, the pre-culture step is a step of growing the number of microalgae until main culture can be performed by growing the storage microalgae obtained after the purification step is completed. The culture method for pre-culture can be selected by any known culture method. For example, it is also possible to carry out the dispersion culture method, the adhesion culture method, and the liquid surface suspension culture. In addition, in order to grow microalgae to a scale that can be subjected to main culture, pre-culture may be performed several times. In the pre-culture, stationary culture may be performed depending on the purpose, or non-static culture such as shaking culture may be performed. In addition, the pre-culture may be performed multiple times in order to grow the microalgae to a scale at which the main culture can be performed. In general, a culture vessel (storage member) having a surface area of 1 cm 2 to 1 m 2 or less is used, and culture can be performed indoors or outside.
《本培養工程》
本発明において本培養工程とは、前培養を行った後に培養を行う工程のことであり、後述の後培養を行わない場合には、最終回収工程を行う直前までの培養工程のことをいい、後述の後培養を行う場合には、後培養を行う前までの培養工程のことをいう。本培養は、微細藻類の藻体が十分な量形成されたときに終了することができる。特に、液面にバイオフィルムを形成する微細藻類の場合には、液面上にバイオフィルムが十分な量形成されたときに終了することができる。本培養は、例えば、数日~数週間で、より特定すると、5日~4週間で終了することができる。また、本培養は、複数回行ってもよいものとする。
また、一般的には、100cm2以上の表面積を持つ培養器(貯留部材)を使用し、屋内外いずれでも培養可能であるが、屋外での培養の方が好ましい。 Main culture process
In the present invention, the main culturing step is a step of culturing after pre-culturing, and refers to the culturing step up to immediately before the final recovery step when the following post-culturing is not performed. In the case of performing the post-culture described later, it refers to the culture step before the post-culture. The main culture can be ended when a sufficient amount of microalga algae is formed. In particular, in the case of microalgae which forms a biofilm on the liquid surface, it can be ended when a sufficient amount of biofilm is formed on the liquid surface. The main culture can be completed, for example, in several days to several weeks, and more specifically, in five days to four weeks. Also, main culture may be performed multiple times.
Generally, an incubator (storage member) having a surface area of 100 cm 2 or more is used, and culture can be carried out indoors or outdoors, but culture outdoors is preferable.
本発明において本培養工程とは、前培養を行った後に培養を行う工程のことであり、後述の後培養を行わない場合には、最終回収工程を行う直前までの培養工程のことをいい、後述の後培養を行う場合には、後培養を行う前までの培養工程のことをいう。本培養は、微細藻類の藻体が十分な量形成されたときに終了することができる。特に、液面にバイオフィルムを形成する微細藻類の場合には、液面上にバイオフィルムが十分な量形成されたときに終了することができる。本培養は、例えば、数日~数週間で、より特定すると、5日~4週間で終了することができる。また、本培養は、複数回行ってもよいものとする。
また、一般的には、100cm2以上の表面積を持つ培養器(貯留部材)を使用し、屋内外いずれでも培養可能であるが、屋外での培養の方が好ましい。 Main culture process
In the present invention, the main culturing step is a step of culturing after pre-culturing, and refers to the culturing step up to immediately before the final recovery step when the following post-culturing is not performed. In the case of performing the post-culture described later, it refers to the culture step before the post-culture. The main culture can be ended when a sufficient amount of microalga algae is formed. In particular, in the case of microalgae which forms a biofilm on the liquid surface, it can be ended when a sufficient amount of biofilm is formed on the liquid surface. The main culture can be completed, for example, in several days to several weeks, and more specifically, in five days to four weeks. Also, main culture may be performed multiple times.
Generally, an incubator (storage member) having a surface area of 100 cm 2 or more is used, and culture can be carried out indoors or outdoors, but culture outdoors is preferable.
〈後培養工程〉
本発明において後培養工程とは、液量縮減工程を行った後に培養を行う工程のことである。後培養工程を行う装置は本培養工程を行う装置と同じものであっても構わないし、あるいは後工程に用いるために別の培養装置を用意しても構わない。後述する液量縮減工程が、培地を乾燥させる、培養液を排出するといった工程の場合は前者が好ましい。一方、後述する液量縮減工程が、藻体を培地と共にすくい取るといった工程の場合は前者であっても、後者であっても構わないが、少ない液量に合わせて、本培養の培養槽よりも浅めの培養槽を用いることも好ましい。また、後培養における培養槽の面積は、特に限定されるものではないが、本培養における培養槽の面積の、好ましくは10倍から1/10倍であり、より好ましくは5倍から1/5倍であり、さらに好ましくは2倍から1/4倍である。後培養における培養槽の面積が本培養における培養槽の面積の10倍~1/10倍であると、培養液の水深が浅く培養槽底部での光合成が進行しやすくなり、面積が広すぎないので藻体生産性及び油生産性が向上する。 <Post-culture process>
In the present invention, the post-culture step is a step of culturing after performing a liquid volume reduction step. The device for performing the post-culture step may be the same as the device for performing the main culture step, or another culture device may be prepared for use in the subsequent step. In the case of the process of drying the culture medium and discharging the culture solution, the former is preferable in the liquid volume reduction process described later. On the other hand, the liquid volume reduction step described later may be the former or the latter in the case of a step of skimming algal cells together with the culture medium, but from the culture tank of the main culture It is also preferable to use a shallow culture tank. Further, the area of the culture tank in the post-culture is not particularly limited, but is preferably 10 times to 1/10 times the area of the culture tank in the main culture, more preferably 5 times to 1/5 And more preferably 2 to 1 to 4 times. If the area of the culture tank in the post-culture is 10 times to 1/10 times the area of the culture tank in the main culture, the depth of the culture solution is shallow and photosynthesis at the bottom of the culture tank becomes easy to progress, and the area is not too large. Therefore, algal body productivity and oil productivity are improved.
本発明において後培養工程とは、液量縮減工程を行った後に培養を行う工程のことである。後培養工程を行う装置は本培養工程を行う装置と同じものであっても構わないし、あるいは後工程に用いるために別の培養装置を用意しても構わない。後述する液量縮減工程が、培地を乾燥させる、培養液を排出するといった工程の場合は前者が好ましい。一方、後述する液量縮減工程が、藻体を培地と共にすくい取るといった工程の場合は前者であっても、後者であっても構わないが、少ない液量に合わせて、本培養の培養槽よりも浅めの培養槽を用いることも好ましい。また、後培養における培養槽の面積は、特に限定されるものではないが、本培養における培養槽の面積の、好ましくは10倍から1/10倍であり、より好ましくは5倍から1/5倍であり、さらに好ましくは2倍から1/4倍である。後培養における培養槽の面積が本培養における培養槽の面積の10倍~1/10倍であると、培養液の水深が浅く培養槽底部での光合成が進行しやすくなり、面積が広すぎないので藻体生産性及び油生産性が向上する。 <Post-culture process>
In the present invention, the post-culture step is a step of culturing after performing a liquid volume reduction step. The device for performing the post-culture step may be the same as the device for performing the main culture step, or another culture device may be prepared for use in the subsequent step. In the case of the process of drying the culture medium and discharging the culture solution, the former is preferable in the liquid volume reduction process described later. On the other hand, the liquid volume reduction step described later may be the former or the latter in the case of a step of skimming algal cells together with the culture medium, but from the culture tank of the main culture It is also preferable to use a shallow culture tank. Further, the area of the culture tank in the post-culture is not particularly limited, but is preferably 10 times to 1/10 times the area of the culture tank in the main culture, more preferably 5 times to 1/5 And more preferably 2 to 1 to 4 times. If the area of the culture tank in the post-culture is 10 times to 1/10 times the area of the culture tank in the main culture, the depth of the culture solution is shallow and photosynthesis at the bottom of the culture tank becomes easy to progress, and the area is not too large. Therefore, algal body productivity and oil productivity are improved.
液量縮減工程の後に更に培地液成分共存下で微細藻類を培養することで藻体生産性、及び/又は油生産性が向上する理由は明確になっていないが、例えば培地量が減少することで光合成条件(光照射状態)での培地水温が上がりやすくなっていること、あるいは水底部分にまで光が十分に到達できること、などの影響で光合成が促進されているためかと推測される。または、培地水温が上がることが加熱ストレス条件となること、培地成分が減少して栄養成分が減少するため栄養枯渇状態というストレス付与条件となること、などの結果として含油率が向上している可能性も考えられる。
The reason why algal productivity and / or oil productivity can be improved by further culturing microalgae in the coexistence of medium solution components after the liquid volume reduction step has not been clarified, but, for example, the medium amount decreases. It is presumed that photosynthesis is promoted by the influence of the fact that the temperature of the culture medium water easily rises under photosynthetic conditions (light irradiation state) or that light can sufficiently reach the bottom of the water. Alternatively, the oil content may be improved as a result of heat stress condition that the temperature of the culture medium rises and stress condition of the nutrient depleting state as the culture medium components decrease and nutrient components decrease. Sex is also considered.
ここで、生産性とは、生産物の単位面積当たり及び単位日数当たりの収量をいう。具体的には、藻体生産性は、得られた藻体重量(例えば、g)を培養面積(例えば、m2)及び培養日数(day)で割った値(g/m2/day)で定義される。また、油生産性は、藻体生産性(g/m2/day)に、藻体中の油含有率(質量%)を乗じた値(g/m2/day)で定義される。
Here, productivity means the yield per unit area of a product and per unit day. Specifically, algal productivity is a value obtained by dividing the obtained algal weight (for example, g) by the culture area (for example, m 2 ) and the number of culture days (day) (g / m 2 / day) It is defined. In addition, oil productivity is defined as a value (g / m 2 / day) obtained by multiplying the algal body productivity (g / m 2 / day) by the oil content rate (mass%) in the algal body.
以下に後培養の条件について記載する。
・二酸化炭素濃度
特に限定されず、通常の大気中の二酸化炭素濃度でもよいが、好ましくは20体積%未満であり、より好ましくは大気中濃度~15体積%であり、さらに好ましくは0.1~10体積%である。この範囲内であると、培養をより進行させることができる。
・培養液(培地)
特に限定されず、単なる水であってもよいが、前培養又は本培養に使用可能な培地が好ましく、本培養に使用してきた培地をそのまま継続して使用することが工程簡略化の観点から特に好ましい。 The conditions for post-culture are described below.
The carbon dioxide concentration is not particularly limited, and may be a normal atmospheric carbon dioxide concentration, but is preferably less than 20% by volume, more preferably from the atmospheric concentration to 15% by volume, and still more preferably 0.1 to It is 10% by volume. Within this range, culture can be further advanced.
・ Culture (medium)
The medium is not particularly limited, and may be mere water, but a medium usable for pre-culture or main culture is preferable, and using the medium used for the main culture as it is is particularly preferable from the viewpoint of process simplification. preferable.
・二酸化炭素濃度
特に限定されず、通常の大気中の二酸化炭素濃度でもよいが、好ましくは20体積%未満であり、より好ましくは大気中濃度~15体積%であり、さらに好ましくは0.1~10体積%である。この範囲内であると、培養をより進行させることができる。
・培養液(培地)
特に限定されず、単なる水であってもよいが、前培養又は本培養に使用可能な培地が好ましく、本培養に使用してきた培地をそのまま継続して使用することが工程簡略化の観点から特に好ましい。 The conditions for post-culture are described below.
The carbon dioxide concentration is not particularly limited, and may be a normal atmospheric carbon dioxide concentration, but is preferably less than 20% by volume, more preferably from the atmospheric concentration to 15% by volume, and still more preferably 0.1 to It is 10% by volume. Within this range, culture can be further advanced.
・ Culture (medium)
The medium is not particularly limited, and may be mere water, but a medium usable for pre-culture or main culture is preferable, and using the medium used for the main culture as it is is particularly preferable from the viewpoint of process simplification. preferable.
《浮遊培養、静置培養、液面浮遊培養》
(浮遊培養)
本発明では、微細藻類を培地中に分散させた状態で培養することを浮遊培養と呼んでいる。なお本発明では、液面上での培養を浮遊培養とは呼ばないものとする。浮遊培養は、本培養でも、前培養でも、目的に応じて使用できる。 << Suspension culture, stationary culture, liquid surface suspension culture >>
(Suspension culture)
In the present invention, culturing the microalga in a dispersed state in a culture medium is called suspension culture. In the present invention, culture on the liquid surface is not referred to as suspension culture. Suspension culture can be used depending on the purpose, whether it is main culture or pre-culture.
(浮遊培養)
本発明では、微細藻類を培地中に分散させた状態で培養することを浮遊培養と呼んでいる。なお本発明では、液面上での培養を浮遊培養とは呼ばないものとする。浮遊培養は、本培養でも、前培養でも、目的に応じて使用できる。 << Suspension culture, stationary culture, liquid surface suspension culture >>
(Suspension culture)
In the present invention, culturing the microalga in a dispersed state in a culture medium is called suspension culture. In the present invention, culture on the liquid surface is not referred to as suspension culture. Suspension culture can be used depending on the purpose, whether it is main culture or pre-culture.
(静置培養)
本発明での本培養では、静置培養を行うことが好ましい。静置培養とは、培養中に意図的に培地などを動かさない培養法のことである。 (Static culture)
In the main culture in the present invention, it is preferable to perform stationary culture. Stationary culture is a culture method in which the medium or the like is not intentionally moved during the culture.
本発明での本培養では、静置培養を行うことが好ましい。静置培養とは、培養中に意図的に培地などを動かさない培養法のことである。 (Static culture)
In the main culture in the present invention, it is preferable to perform stationary culture. Stationary culture is a culture method in which the medium or the like is not intentionally moved during the culture.
(液面浮遊培養)
本発明では、液面上で微細藻類を培養する培養方法のことを液面浮遊培養という。なお、培養器(貯留部材)底面、側面、その他表面上や培地中などに微細藻類が同時に存在していても、主たる目的が液面上での培養である場合には、液面浮遊培養という。また液面上にはバイオフィルムとともに泡沫がたくさん存在し、液面がどの位置か必ずしも明確でない場合があり、またバイオフィルムが自重によって液面下に多少沈んでいる場合があるが、本発明で液面上というときは、完全な液面のみならず、このような場合も含む。ただし、微細藻類を液中、培養器(貯留部材)の底面のいずれか一方のみ、又は、両方のみで培養する培養方法は液面浮遊培養には含まれない。
なお本発明における液面とは、典型的には後述する液体培地の液面であり、通常、液体培地と空気との界面である。また、水が主成分となる場合は、水面のことである。また、本発明での液面浮遊培養を行っていると、液面上バイオフィルムからひだ状の構造体が液中へと侵入する現象が見られることがある。本発明では、この様な状況での培養も液面浮遊培養に含むものとしている。
液面浮遊培養を行うための種藻としては、懸濁処理を行った後、培養器(貯留部材)に添加してもよく、種藻の添加後、液体培地との混合を促進するために攪拌を行ってもよい。また、微細藻類バイオフィルムを培養器(貯留部材)の液面に対して添加し、浮かせた状態で培養を開始してもよいし、浮かせてから微細藻類バイオフィルムの液面からの離脱が最小限になるように、微細藻類バイオフィルムを可能な限り沈まないように液面上で分割処理し、更に、培養器(貯留部材)液面上に分散するように攪拌してもかまわない。 (Liquid suspension culture)
In the present invention, the culture method of culturing microalgae on liquid surface is called liquid surface floating culture. In addition, even if microalgae are simultaneously present on the bottom, sides, and other surfaces of the incubator (storage member), in the culture medium, etc., when the main purpose is culture on the liquid surface, it is called liquid surface floating culture. . In addition to the biofilm, many foams may be present on the liquid surface, the position of the liquid surface may not always be clear, and the biofilm may be slightly sunk below the liquid surface by its own weight. The term "above the liquid level" includes not only the complete liquid level but also such cases. However, culture methods in which microalgae are cultured only in one or both of the bottom of a culture vessel (storage member) or both in a liquid are not included in liquid surface suspension culture.
The liquid level in the present invention is typically the liquid level of the liquid culture medium described later, and is usually the interface between the liquid culture medium and air. Also, when water is the main component, it means the water surface. In addition, when the liquid surface floating culture in the present invention is performed, a phenomenon may be observed in which a fold-like structure intrudes into the liquid from the on-liquid surface biofilm. In the present invention, culture in such a situation is also included in liquid surface floating culture.
As seed algae for performing liquid surface suspension culture, after performing suspension processing, it may be added to a culture vessel (storage member), and after addition of seed algae, in order to promote mixing with a liquid medium Stirring may be performed. Alternatively, the microalgal biofilm may be added to the liquid surface of the incubator (storage member), and the culture may be started in a floating state, or the floating of the microalgal biofilm from the liquid surface is minimal after floating. The microalgal biofilm may be divided on the liquid surface so as not to sink as much as possible so as to be limited, and may be further stirred so as to be dispersed on the liquid surface of the incubator (storage member).
本発明では、液面上で微細藻類を培養する培養方法のことを液面浮遊培養という。なお、培養器(貯留部材)底面、側面、その他表面上や培地中などに微細藻類が同時に存在していても、主たる目的が液面上での培養である場合には、液面浮遊培養という。また液面上にはバイオフィルムとともに泡沫がたくさん存在し、液面がどの位置か必ずしも明確でない場合があり、またバイオフィルムが自重によって液面下に多少沈んでいる場合があるが、本発明で液面上というときは、完全な液面のみならず、このような場合も含む。ただし、微細藻類を液中、培養器(貯留部材)の底面のいずれか一方のみ、又は、両方のみで培養する培養方法は液面浮遊培養には含まれない。
なお本発明における液面とは、典型的には後述する液体培地の液面であり、通常、液体培地と空気との界面である。また、水が主成分となる場合は、水面のことである。また、本発明での液面浮遊培養を行っていると、液面上バイオフィルムからひだ状の構造体が液中へと侵入する現象が見られることがある。本発明では、この様な状況での培養も液面浮遊培養に含むものとしている。
液面浮遊培養を行うための種藻としては、懸濁処理を行った後、培養器(貯留部材)に添加してもよく、種藻の添加後、液体培地との混合を促進するために攪拌を行ってもよい。また、微細藻類バイオフィルムを培養器(貯留部材)の液面に対して添加し、浮かせた状態で培養を開始してもよいし、浮かせてから微細藻類バイオフィルムの液面からの離脱が最小限になるように、微細藻類バイオフィルムを可能な限り沈まないように液面上で分割処理し、更に、培養器(貯留部材)液面上に分散するように攪拌してもかまわない。 (Liquid suspension culture)
In the present invention, the culture method of culturing microalgae on liquid surface is called liquid surface floating culture. In addition, even if microalgae are simultaneously present on the bottom, sides, and other surfaces of the incubator (storage member), in the culture medium, etc., when the main purpose is culture on the liquid surface, it is called liquid surface floating culture. . In addition to the biofilm, many foams may be present on the liquid surface, the position of the liquid surface may not always be clear, and the biofilm may be slightly sunk below the liquid surface by its own weight. The term "above the liquid level" includes not only the complete liquid level but also such cases. However, culture methods in which microalgae are cultured only in one or both of the bottom of a culture vessel (storage member) or both in a liquid are not included in liquid surface suspension culture.
The liquid level in the present invention is typically the liquid level of the liquid culture medium described later, and is usually the interface between the liquid culture medium and air. Also, when water is the main component, it means the water surface. In addition, when the liquid surface floating culture in the present invention is performed, a phenomenon may be observed in which a fold-like structure intrudes into the liquid from the on-liquid surface biofilm. In the present invention, culture in such a situation is also included in liquid surface floating culture.
As seed algae for performing liquid surface suspension culture, after performing suspension processing, it may be added to a culture vessel (storage member), and after addition of seed algae, in order to promote mixing with a liquid medium Stirring may be performed. Alternatively, the microalgal biofilm may be added to the liquid surface of the incubator (storage member), and the culture may be started in a floating state, or the floating of the microalgal biofilm from the liquid surface is minimal after floating. The microalgal biofilm may be divided on the liquid surface so as not to sink as much as possible so as to be limited, and may be further stirred so as to be dispersed on the liquid surface of the incubator (storage member).
《種藻》
本発明での種藻とは、前培養や本培養の開始時に使用する微細藻類のことを指し、前培養や本培養における微細藻類の培養の元となる微細藻類のことをいう。また、液面に微細藻類バイオフィルムを浮かせた状態や底面に微細藻類が存在している状態で培養を開始することもでき、それらの場合にも、これらの微細藻類を種藻として利用することができる。更に、底面や培養器(貯留部材)のその他の場所、培養を構成するその他の治具などに付着存在している微細藻類も、種藻として利用することができる。また、回収工程の後に、液面上に残存している微細藻類を種藻として用いて、培養を再開することもできる。 "Seed algae"
The term "seed algae" in the present invention refers to microalgae used at the start of pre-culture or main culture, and refers to microalgae which is the source of culture of microalgae in pre-culture or main culture. In addition, the culture can be started in a state in which the microalgal biofilm is floated on the liquid surface or in a state in which the microalgae is present on the bottom, and also in these cases, these microalgae are used as seed algae. Can. Further, microalgae attached to the bottom surface, other places of the incubator (storage member), other jigs constituting the culture, etc. can also be used as seed algae. Moreover, after the recovery step, the culture can be resumed by using microalgae remaining on the liquid surface as a seed algae.
本発明での種藻とは、前培養や本培養の開始時に使用する微細藻類のことを指し、前培養や本培養における微細藻類の培養の元となる微細藻類のことをいう。また、液面に微細藻類バイオフィルムを浮かせた状態や底面に微細藻類が存在している状態で培養を開始することもでき、それらの場合にも、これらの微細藻類を種藻として利用することができる。更に、底面や培養器(貯留部材)のその他の場所、培養を構成するその他の治具などに付着存在している微細藻類も、種藻として利用することができる。また、回収工程の後に、液面上に残存している微細藻類を種藻として用いて、培養を再開することもできる。 "Seed algae"
The term "seed algae" in the present invention refers to microalgae used at the start of pre-culture or main culture, and refers to microalgae which is the source of culture of microalgae in pre-culture or main culture. In addition, the culture can be started in a state in which the microalgal biofilm is floated on the liquid surface or in a state in which the microalgae is present on the bottom, and also in these cases, these microalgae are used as seed algae. Can. Further, microalgae attached to the bottom surface, other places of the incubator (storage member), other jigs constituting the culture, etc. can also be used as seed algae. Moreover, after the recovery step, the culture can be resumed by using microalgae remaining on the liquid surface as a seed algae.
本発明では、液面上の微細藻類バイオフィルムを種藻として使用し、培養を行うこともできる。液面上の微細藻類バイオフィルムの一部を残しておく方法である。また、一部の微細藻類バイオフィルムを採取し、これを液面上に浮かせることで培養を開始することも可能である。更に、液面上のバイオフィルムを可能な限り液面に浮かせた状態で分割処理を行い、培養を開始することもできる。この様にすることで、培養器(貯留部材)の液面を有効活用することができ、微細藻類非存在領域に対しても存在させることができることから、増殖速度を向上させることができる場合が多いからである。また、底面上及び液面上に微細藻類バイオフィルムの一部を残した状態から培養を開始することも可能である。
In the present invention, culture can also be carried out using a microalgal biofilm on the liquid surface as a seed algae. It is a method of leaving a part of the microalgal biofilm on the liquid surface. Moreover, it is also possible to start culture by collecting a part of microalgal biofilm and floating it on the liquid surface. Furthermore, it is also possible to start the culture by performing the dividing treatment while floating the biofilm on the liquid surface as much as possible to the liquid surface. By doing this, the liquid level of the incubator (storage member) can be effectively used, and the growth rate can be improved because it can be made to exist even in the microalgal absence region. Because there are many. Moreover, it is also possible to start culture from the state which left a part of micro algae biofilm on a bottom face and a liquid surface.
底面藻とは、培養器(貯留部材)底面近傍に存在している微細藻類のことを指す。この中には、底面に付着し、軽い液流程度では剥がれないものや、底面近傍に存在し、軽い液流程度でも移動してしまう非付着性底面藻も存在している。また、回収操作によって微細藻類バイオフィルムから離れ、底面近傍へと沈んでしまった液面藻も、本発明では非付着性底面藻に含めることができる。なお、液面や底面以外の培地中にも低濃度ながら微細藻類が存在している場合には、これらが種藻の供給源となる可能性もある。また、培養器(貯留部材)底面から液面上への微細藻類の供給とは、底面の微細藻類の増殖を伴わずに液面上に移動する場合と、微細藻類が底面から液面上に移動しながら増殖する場合との両方がある。
The bottom algae refers to microalgae present near the bottom of the incubator (storage member). Among these, there are non-adherent bottom algae which adhere to the bottom surface and do not peel off when the liquid flow is light, or nonadherent bottom algae which exists near the bottom and moves even when the light flow is around. In addition, in the present invention, non-adherent bottom algae can also include liquid surface algae that are separated from the microalgal biofilm by the recovery operation and sink to the vicinity of the bottom. In the case where microalgae are present at a low concentration even in the culture medium other than the liquid level and the bottom, these may be a source of seed algae supply. In addition, the supply of microalgae from the bottom of the incubator (storage member) to the liquid surface means that the microalgae moves from the bottom to the liquid surface when it moves onto the liquid surface without growth of the microalgae on the bottom. There are both cases of proliferation while moving.
本発明では、底面上の微細藻類を種藻として使用し、培養を継続することもできる。培地中に栄養成分が残っていれば、使用済みの培地をそのまま使用して培養を継続してもよいし、使用済みの培地の一部を廃棄し、新しい培地を添加してもよい。新しい培地の添加量は、廃棄量と同等の液量を加えてもよいし、それよりも少なくても多くてもかまわない。なお、新しい培地を添加する方が、後段の本培養での微細藻類の増殖速度を向上させることができる観点からより好ましい。底面上の微細藻類を種藻として利用する場合、底面藻の一部を剥がし、それを培地中へと分散させてもよい。この様にすることによって、藻体の一部しか培地と接触することができない状態の微細藻類を、より多くの培地と接触させることが可能となり、増殖速度を好適に向上させることが可能だからである。
In the present invention, microalgae on the bottom can be used as seed algae and culture can be continued. As long as the nutrient components remain in the medium, the used medium may be used as it is to continue the culture, or part of the used medium may be discarded and fresh medium may be added. The amount of fresh culture medium added may be equal to or less than the amount discarded. In addition, it is more preferable to add a new culture medium from the viewpoint of being able to improve the growth rate of microalgae in the subsequent main culture. When the microalgae on the bottom is used as a seed algae, part of the bottom algae may be peeled off and dispersed in the medium. By doing this, it is possible to contact microalgae in a state in which only a part of the algal cells can be in contact with the medium with more medium, and it is possible to suitably improve the growth rate. is there.
底面上に存在する非付着性微細藻類を除去してもよい。底面上に不必要に微細藻類が存在していると、栄養成分の不必要な消費が原因と考えられる増殖速度の低下が見られるからである。また、種藻として使用する底面藻の存在量を調整してもよい。このことにより、適切な培養を行うことが可能だからである。培養を開始するにあたっての底面上での微細藻類の存在量は、0.001μg/cm2以上100mg/cm2以下が好ましく、0.1μg/cm2以上10mg/cm2が更に好ましく、1mg/cm2以上5mg/cm2が最も好ましい。0.1μg/cm2以上であれば、培養前後の微細藻類量の比を短時間で大きくすることができるから好ましい。
Nonadherent microalgae present on the bottom surface may be removed. This is because the unnecessary presence of microalgae on the bottom surface causes a decrease in growth rate which is considered to be caused by unnecessary consumption of nutrient components. Also, the abundance of bottom algae used as seed algae may be adjusted. This is because it is possible to perform appropriate culture. The amount of microalgae present on the bottom of the culture is preferably 0.001 μg / cm 2 or more and 100 mg / cm 2 or less, more preferably 0.1 μg / cm 2 or more and 10 mg / cm 2 or more, and 1 mg / cm 2 2 or 5 mg / cm 2 being most preferred. If it is 0.1 μg / cm 2 or more, the ratio of the amount of microalgae before and after cultivation can be increased in a short time, which is preferable.
本発明では、懸濁処理した微細藻類試料を種藻として用いてもよい。懸濁処理を行うことで、溶液中の微細藻類が均一化し、培養後の膜厚が均一化する結果、培養面積あたりの微細藻類量が増加する場合があるからである。懸濁処理としては、公知のいかなる方法でも用いることができるが、ピペッティングや容器内に入れた微細藻類溶液を手で振る処理、スターラーチップや攪拌棒による処理などの弱い処理、超音波処理や高速振盪処理などの強い処理、細胞間マトリックスのような接着物質を分解する酵素などの物質を用いる方法などをあげることができる。
In the present invention, a suspension-treated microalgal sample may be used as a seed algae. By performing the suspension process, the microalgae in the solution is made uniform, and as a result, the film thickness after culture is made uniform, so the amount of microalgae per culture area may increase. As the suspension treatment, any known method can be used, but pipetting, shaking treatment of the microalgal solution put in the container by hand, weak treatment such as treatment with a stirrer tip or a stirring rod, ultrasonic treatment or the like Examples thereof include strong treatment such as high-speed shaking treatment, and a method using a substance such as an enzyme that degrades an adhesive substance such as an intercellular matrix.
また、屋外などで培養を大面積で実施する際には、実験室内での実験とは異なり、培養の元となる種藻の投入を培養器(貯留部材)全体に渡ってほぼ均一には投入しにくくなる。そのため、本発明では、例えば、種藻となる微細藻類を予め吸水性物質(例えば、セラチンなど)の中に分散させておき、それを適宜投入することなども好ましい。
In addition, when carrying out culture on a large area outdoors etc., unlike experiments in a laboratory, the input of seed algae as a source of culture is almost uniformly applied throughout the incubator (storage member) It becomes difficult to do. Therefore, in the present invention, for example, it is also preferable to disperse the microalga to be the seed algae in advance in a water-absorbent substance (for example, seratin etc.) and appropriately charge it.
《培養液(培地)》
本発明では、培養で使用する培地は、微生物を培養できる限り、公知のいかなる培地(液体培地)も使用することができる。公知の培地として、AF-6培地、Allen培地、BBM培地、C培地、CA培地、CAM培地、CB培地、CC培地、CHU培地、CSi培地、CT培地、CYT培地、D培地、ESM培地、f/2培地、HUT培地、M-11培地、MA培地、MAF-6培地、MF培地、MDM培地、MG培地、MGM培地、MKM培地、MNK培地、MW培地、P35培地、URO培地、VT培地、VTAC培地、VTYT培地、W培地、WESM培地、SW培地、SOT培地等を挙げることができる。このうち淡水性のものはAF-6培地、Allen培地、BBM培地、C培地、CA培地、CAM培地、CB培地、CC培地、CHU培地、CSi培地、CT培地、CYT培地、D培地、HUT培地、M-11培地、MA培地、MAF-6培地、MDM培地、MG培地、MGM培地、MW培地、P35培地、URO培地、VT培地、VTAC培地、VTYT培地、W培地、SW培地、SOT培地である。前述のAVFF007株を培養する培地としては、C培地、CSi培地、CHU培地、及びこれら培地の混合物が好ましい。なお培地は、培養する微生物の種類に応じて選択することが望ましい。 << Culture fluid (medium) >>
In the present invention, as the medium used for culture, any known medium (liquid medium) can be used as long as microorganisms can be cultured. As a known medium, AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CT medium, CT medium, CYT medium, D medium, ESM medium, f / 2 medium, HUT medium, M-11 medium, MA medium, MAF-6 medium, MF medium, MDM medium, MG medium, MGM medium, MKM medium, MNK medium, MNK medium, MW medium, P35 medium, URO medium, VT medium, Examples include VTAC medium, VTYT medium, W medium, WESM medium, SW medium, SOT medium and the like. Among them, freshwater ones are AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CSi medium, CT medium, CYT medium, D medium, HUT medium M-11 medium, MA medium, MAF-6 medium, MDM medium, MG medium, MGM medium, MW medium, MW medium, P35 medium, URO medium, VT medium, VTAC medium, VTYT medium, W medium, SW medium, SOT medium is there. As a culture medium which culture | cultivates the above-mentioned AVFF007 strain | stump | stock, C culture medium, CSi culture medium, CHU culture medium, and the mixture of these culture media are preferable. The culture medium is preferably selected according to the type of microorganism to be cultured.
本発明では、培養で使用する培地は、微生物を培養できる限り、公知のいかなる培地(液体培地)も使用することができる。公知の培地として、AF-6培地、Allen培地、BBM培地、C培地、CA培地、CAM培地、CB培地、CC培地、CHU培地、CSi培地、CT培地、CYT培地、D培地、ESM培地、f/2培地、HUT培地、M-11培地、MA培地、MAF-6培地、MF培地、MDM培地、MG培地、MGM培地、MKM培地、MNK培地、MW培地、P35培地、URO培地、VT培地、VTAC培地、VTYT培地、W培地、WESM培地、SW培地、SOT培地等を挙げることができる。このうち淡水性のものはAF-6培地、Allen培地、BBM培地、C培地、CA培地、CAM培地、CB培地、CC培地、CHU培地、CSi培地、CT培地、CYT培地、D培地、HUT培地、M-11培地、MA培地、MAF-6培地、MDM培地、MG培地、MGM培地、MW培地、P35培地、URO培地、VT培地、VTAC培地、VTYT培地、W培地、SW培地、SOT培地である。前述のAVFF007株を培養する培地としては、C培地、CSi培地、CHU培地、及びこれら培地の混合物が好ましい。なお培地は、培養する微生物の種類に応じて選択することが望ましい。 << Culture fluid (medium) >>
In the present invention, as the medium used for culture, any known medium (liquid medium) can be used as long as microorganisms can be cultured. As a known medium, AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CT medium, CT medium, CYT medium, D medium, ESM medium, f / 2 medium, HUT medium, M-11 medium, MA medium, MAF-6 medium, MF medium, MDM medium, MG medium, MGM medium, MKM medium, MNK medium, MNK medium, MW medium, P35 medium, URO medium, VT medium, Examples include VTAC medium, VTYT medium, W medium, WESM medium, SW medium, SOT medium and the like. Among them, freshwater ones are AF-6 medium, Allen medium, BBM medium, C medium, CA medium, CAM medium, CB medium, CC medium, CHU medium, CSi medium, CSi medium, CT medium, CYT medium, D medium, HUT medium M-11 medium, MA medium, MAF-6 medium, MDM medium, MG medium, MGM medium, MW medium, MW medium, P35 medium, URO medium, VT medium, VTAC medium, VTYT medium, W medium, SW medium, SOT medium is there. As a culture medium which culture | cultivates the above-mentioned AVFF007 strain | stump | stock, C culture medium, CSi culture medium, CHU culture medium, and the mixture of these culture media are preferable. The culture medium is preferably selected according to the type of microorganism to be cultured.
培地は、紫外線滅菌、オートクレーブ滅菌、フィルター滅菌しても良く、しなくてもよい。培地は、前培養と本培養で同一種類の培地を用いてもよいし、異なる種類の培地を使用してもよい。また、培養の途中で異なる培地を使用してもよい。
The medium may or may not be UV sterilized, autoclaved, filter sterilized. As the medium, the same type of medium may be used in the pre-culture and the main culture, or different types of medium may be used. Also, different culture media may be used during the culture.
また、屋外などで培養を大面積で実施する際には、実験室内での実験とは異なり、培地成分を予め使用する濃度に希釈しておくと、その液量が大量となるので培養場所への運搬、投入作業の面から非効率である。その為に、必要な培地成分は濃縮した状態(以下、濃縮培養液と言う)としておき、培養場所において水で希釈することが効率的である。なお、培地成分は多岐に渡るので、このように濃縮培地を調整しようとすると、その成分の組合せによっては沈殿を生じてしまう場合もある。このような場合は、濃縮培地を2つ以上の濃縮培養液として分け、沈殿を生じてしまう成分を別々の濃縮培地に分けた状態とすることが好ましい。
Also, when performing culture on a large area outdoors, etc., unlike the experiment in the laboratory, if the medium components are diluted to the concentration used in advance, the volume of the solution will be large, so to the culture place Inefficient from the aspect of transport and input work. Therefore, it is efficient to keep the necessary medium components in a concentrated state (hereinafter referred to as concentrated culture solution) and dilute with water at the culture site. In addition, since the culture medium components vary, when it is going to adjust a concentration culture medium in this way, depending on the combination of the components, precipitation may occur. In such a case, it is preferable to divide the concentrated medium as two or more concentrated mediums, and separate the components that cause precipitation into separate concentrated medium.
《二酸化炭素》
多くの微細藻類の培養には、二酸化炭素の供給が必要である。
前培養で分散培養を行った場合には、従来法のようにバブリングによって二酸化炭素を培地中に供給してもよいが、液面浮遊培養を行った場合には、二酸化炭素を気層中から供給した方が好ましい。これは、培地中に二酸化炭素をバブリングなどの方法で供給すると液面上の微細藻類バイオフィルムの構造が破壊され、藻体量の斑が発生し、回収工程で基板上へのバイオフィルム回収効率が悪く、回収藻体量が減少する可能性があるからである。 "carbon dioxide"
Many microalgal cultures require the provision of carbon dioxide.
When dispersion culture is performed by pre-culture, carbon dioxide may be supplied into the medium by bubbling as in the conventional method, but when liquid surface suspension culture is performed, carbon dioxide is extracted from the air layer. It is preferable to supply it. This is because the structure of the microalgal biofilm on the liquid surface is destroyed when carbon dioxide is supplied into the medium by bubbling or the like method, and algal mass is generated, and the biofilm recovery efficiency on the substrate in the recovery step And the amount of recovered algal bodies may decrease.
多くの微細藻類の培養には、二酸化炭素の供給が必要である。
前培養で分散培養を行った場合には、従来法のようにバブリングによって二酸化炭素を培地中に供給してもよいが、液面浮遊培養を行った場合には、二酸化炭素を気層中から供給した方が好ましい。これは、培地中に二酸化炭素をバブリングなどの方法で供給すると液面上の微細藻類バイオフィルムの構造が破壊され、藻体量の斑が発生し、回収工程で基板上へのバイオフィルム回収効率が悪く、回収藻体量が減少する可能性があるからである。 "carbon dioxide"
Many microalgal cultures require the provision of carbon dioxide.
When dispersion culture is performed by pre-culture, carbon dioxide may be supplied into the medium by bubbling as in the conventional method, but when liquid surface suspension culture is performed, carbon dioxide is extracted from the air layer. It is preferable to supply it. This is because the structure of the microalgal biofilm on the liquid surface is destroyed when carbon dioxide is supplied into the medium by bubbling or the like method, and algal mass is generated, and the biofilm recovery efficiency on the substrate in the recovery step And the amount of recovered algal bodies may decrease.
本発明では、大気中の二酸化炭素の利用も可能であるが、大気濃度よりも高濃度の二酸化炭素を利用することもできる。この場合には、拡散による二酸化炭素の損失を防ぐために、閉鎖型の培養装置又は農業用フィルムなどの被覆物で覆った培養装置中で培養することが望ましい。この場合の二酸化炭素の濃度は本発明の効果が達成できる限り特に限定しないが、好ましくは大気濃度以上、20体積%未満であり、好ましくは0.01~15体積%であり、より好ましくは0.1~10体積%である。また、二酸化炭素は、燃焼装置によって排出された二酸化炭素であってもよい。また、試薬によって二酸化炭素を発生させてもよい。
In the present invention, although carbon dioxide in the atmosphere can be used, carbon dioxide in a concentration higher than the atmospheric concentration can also be used. In this case, in order to prevent the loss of carbon dioxide due to diffusion, it is desirable to culture in a culture apparatus covered with a closed culture apparatus or a coating such as an agricultural film. The concentration of carbon dioxide in this case is not particularly limited as long as the effects of the present invention can be achieved, but is preferably not less than atmospheric concentration and less than 20% by volume, preferably 0.01 to 15% by volume, more preferably 0. 1 to 10% by volume. Also, the carbon dioxide may be carbon dioxide discharged by the combustion device. Alternatively, carbon dioxide may be generated by the reagent.
また培養に当たっては、培養装置全体に二酸化炭素を供給することが好ましい。二酸化炭素は培養装置の培養液中の二酸化炭素、気層中の二酸化炭素も利用できるが、十分な量のバイオフィルムを得るためには、更に二酸化炭素を供給することが望ましい。
In the culture, carbon dioxide is preferably supplied to the entire culture apparatus. Carbon dioxide can also be used in the culture solution culture medium and carbon dioxide in the air layer, but in order to obtain a sufficient amount of biofilm, it is desirable to supply more carbon dioxide.
二酸化炭素の供給方法としては、遮蔽部材の一部を開放して外気を取り入れることも可能であるが、その他に、二酸化炭素ガスをボンベ等から配管で導入してもよい。また、二酸化炭素源として固形状物を培養装置中に投入する方法も利用できる。固形状物の二酸化炭素源としては、炭酸塩(例えば、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カルシウムなど)などが挙げられる。また、市販のCO2錠剤(CO2タブレット)等を用いることも好ましい。
As a carbon dioxide supply method, it is possible to open the part of the shielding member and take in the outside air, but in addition, carbon dioxide gas may be introduced from a cylinder or the like by piping. Moreover, the method of throwing in a solid substance in a culture apparatus as a carbon dioxide source can also be utilized. As a solid carbon dioxide source, carbonates (for example, sodium hydrogen carbonate, sodium carbonate, calcium carbonate and the like) and the like can be mentioned. Moreover, it is also preferable to use a commercially available CO 2 tablet (CO 2 tablet) or the like.
二酸化炭素の発生は、常温常圧で固体状態であり、化学反応によって二酸化炭素を発生できる手段であれば、特に限定はされない。例えば、二酸化炭素の発生は、可溶性酸源と炭酸塩源との反応によって行うことができる。反応は、水との接触によって促進される。可溶性酸源としては、クエン酸、リンゴ酸、フマル酸、アジピン酸、コハク酸、アスコルビン酸、マレイン酸、ホウ酸、酒石酸、マンデル酸、マロン酸、ピルビン酸、グルタル酸、アスパラギン酸、シュウ酸、サリチル酸、乳酸、塩酸、酢酸、安息香酸、ヒドロキシ安息香酸、メトキシ安息香酸、燐酸二水素ナトリウム、ピロリン酸二水素二ナトリウム、重酒石酸カリウム、1級リン酸ナトリウム、1級クエン酸ナトリウム、1級酒石酸ナトリウムを用いることができ、炭酸塩源としては、炭酸カリウム、炭酸マグネシウム、炭酸L-リジン、炭酸アルギニン、炭酸アンモニウム、炭酸ナトリウム、炭酸グリシン、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、重炭酸ナトリウム、重炭酸カリウム、セスキ炭酸ナトリウム、グリシン炭酸ナトリウム、クエン酸二水素カリウム、非晶質炭酸カルシウムなどを用いることができる。
The generation of carbon dioxide is not particularly limited as long as it is a solid state at normal temperature and pressure and can generate carbon dioxide by a chemical reaction. For example, the generation of carbon dioxide can be performed by the reaction of a soluble acid source and a carbonate source. The reaction is promoted by contact with water. Soluble acid sources include citric acid, malic acid, fumaric acid, adipic acid, succinic acid, ascorbic acid, maleic acid, maleic acid, boric acid, tartaric acid, mandelic acid, malonic acid, pyruvic acid, glutaric acid, aspartic acid, oxalic acid, Salicylic acid, lactic acid, hydrochloric acid, acetic acid, benzoic acid, hydroxybenzoic acid, methoxybenzoic acid, sodium dihydrogenphosphate, disodium dihydrogen pyrophosphate, potassium bitartrate, primary sodium phosphate, primary sodium citrate, primary tartaric acid Sodium can be used, and as a carbonate source, potassium carbonate, magnesium carbonate, L-lysine carbonate, arginine carbonate, ammonium carbonate, sodium carbonate, glycine carbonate, calcium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium bicarbonate , Potassium bicarbonate, sodium sesquicarbonate, gum Emissions sodium carbonate, potassium dihydrogen citrate, or the like can be used amorphous calcium carbonate.
錠剤を形成するためのバインダとしては、目的を達成できるものであればいかなるものでもよいが、例えば、アラビアガム、ゼラチン、トラガカントガム、澱粉、メチルセルロースのようなセルロース物質、アルギン酸及びその塩、ポリエチレングリコール、グアーガム、ポリサッカリド酸、ベントナイト、糖類などを用いることができる。
The binder for forming the tablet may be any binder that can achieve the purpose, for example, gum arabic, gelatin, tragacanth gum, starch, cellulose substances such as methyl cellulose, alginic acid and salts thereof, polyethylene glycol, Guar gum, polysaccharide acid, bentonite, saccharides and the like can be used.
培養を効率的に進めるためには、二酸化炭素の供給時間と実際に光合成が行われる光照射時間との関係も重要であり、二酸化炭素の供給時間と光照射時間とが、少なくとも50%以上一致することが好ましい。また二酸化炭素の供給時間としては実際の光照射が開始されてから2時間以内に供給することが好ましい。また、二酸化炭素の供給を行う際には培養液中のpHも重要な因子であり、培養液中のpHが培養する微細藻類の最適pHよりも1以上低い値以上になったときに行うことが好ましい。
In order to promote the culture efficiently, the relationship between the carbon dioxide supply time and the light irradiation time during which photosynthesis is actually performed is also important, and the carbon dioxide supply time and the light irradiation time match at least 50% or more. It is preferable to do. Moreover, as a supply time of carbon dioxide, it is preferable to supply within 2 hours after actual light irradiation is started. In addition, when supplying carbon dioxide, pH in the culture solution is also an important factor, and it should be performed when the pH in the culture solution is at least one lower than the optimum pH of the microalga to be cultured. Is preferred.
《光源及び照度》
本発明で用いることのできる光源は、公知のいかなる光源も用いることができるが、太陽光、LED光、蛍光灯(白色、昼光色又は昼白色など)、白熱球、キセノンランプ光、ハロゲンランプなどを用いることができ、この中でも、自然エネルギーである太陽光、発光効率のよいLED、簡便に使用することのできる蛍光灯を用いることが好ましい。 << Light source and illuminance >>
As a light source which can be used in the present invention, any known light source can be used. Among these, it is preferable to use sunlight which is natural energy, an LED with high luminous efficiency, and a fluorescent lamp which can be easily used.
本発明で用いることのできる光源は、公知のいかなる光源も用いることができるが、太陽光、LED光、蛍光灯(白色、昼光色又は昼白色など)、白熱球、キセノンランプ光、ハロゲンランプなどを用いることができ、この中でも、自然エネルギーである太陽光、発光効率のよいLED、簡便に使用することのできる蛍光灯を用いることが好ましい。 << Light source and illuminance >>
As a light source which can be used in the present invention, any known light source can be used. Among these, it is preferable to use sunlight which is natural energy, an LED with high luminous efficiency, and a fluorescent lamp which can be easily used.
照度(単位:ルクス(lx))は、100ルクス以上100万ルクス以下であることが好ましく、300ルクス以上50万ルクス以下が更に好ましい。最も好ましいルクスは、1000ルクス以上20万ルクス以下である。照度が1000ルクス以上であると、微細藻類の培養が可能であり、20万ルクス以下であると、光障害による培養への悪影響が少ない。なお、照度は、好ましくは培養液の液面の照度をいうものとする。
The illuminance (unit: lux (lx)) is preferably 100 lux or more and 1,000,000 lux or less, and more preferably 300 lux or more and 500,000 lux or less. The most preferable lux is at least 1000 lux and at most 200,000 lux. When the illuminance is 1000 lux or more, microalgae can be cultured, and when it is 200,000 lux or less, the adverse effect on the culture due to light damage is small. The illumination preferably refers to the illumination of the liquid surface of the culture solution.
人工的な光源で光照射を行う場合、光は、連続照射、ある一定の時間間隔で照射と非照射を繰り返す照射サイクルを設定する方法のいずれでもかまわないが、例えば、通常の日照条件を鑑みて12時間程度の間隔で光をON、OFFすることが好ましい。また、培養開始から、数日間(例えば、3~5日間)は、連続照射し、その後、12時間間隔で光をON、OFFするなど、培養の途中で、照射条件を変更してもよい。また、前培養において、連続光を積極的に用いても良い。なお、照射サイクルを設定する方法において、光をONしている期間を「明期」、光をOFFにしている期間を「暗期」という場合がある。
When light is irradiated with an artificial light source, light may be either continuous irradiation or a method of setting an irradiation cycle in which irradiation and non-irradiation are repeated at a certain time interval, for example, in view of ordinary sunshine conditions. Preferably, the light is turned on and off at intervals of about 12 hours. In addition, irradiation conditions may be changed during the culture, such as continuous irradiation for several days (for example, 3 to 5 days) from the start of the culture, and then turning on and off light at intervals of 12 hours. In the pre-culture, continuous light may be used positively. In the method of setting the irradiation cycle, the period in which the light is on may be referred to as a “bright period”, and the period in which the light is off may be referred to as a “dark period”.
光の波長は、光合成が行える波長であれば、どの様な波長でも用いることができ、その制限を設けないが、好ましい波長は、太陽光若しくは太陽光に類似の波長である。単一の波長を照射することで光合成生物の育成速度が向上する例も報告されており、本発明でもこの様な照射方法を用いることもできる。
The wavelength of light may be any wavelength as long as photosynthesis can be performed, and the wavelength is not limited, but a preferred wavelength is sunlight or a wavelength similar to sunlight. An example has also been reported in which the growth rate of photosynthetic organisms is improved by irradiation with a single wavelength, and such an irradiation method can also be used in the present invention.
《その他の培養条件》
本発明では、前培養や本培養で使用する培養液(液体培地)のpHは、1~13の範囲内であることが好ましく、3~11の範囲内であることがより好ましく、5~9の範囲内であることが更に好ましく、6~8の範囲内であることが最も好ましい。また、微細藻類の種類に応じて、好適なpHは変化することから、微細藻類の種類に応じたpHを選択することが好ましい。なお、液体培地のpHとは、培養開始時のpHのことである。また、培養中のpHとは、培養に伴って変化する場合があることから、培養中にpHは変化してもよい。 << Other culture conditions >>
In the present invention, the pH of the culture solution (liquid medium) used in the pre-culture or the main culture is preferably in the range of 1 to 13, more preferably in the range of 3 to 11, and 5 to 9 It is further preferable to be within the range of, and it is most preferable to be within the range of 6 to 8. Moreover, since suitable pH changes according to the kind of microalga, it is preferable to select pH according to the kind of microalga. The pH of the liquid medium is the pH at the start of culture. In addition, since the pH during culture may change with the culture, the pH may change during the culture.
本発明では、前培養や本培養で使用する培養液(液体培地)のpHは、1~13の範囲内であることが好ましく、3~11の範囲内であることがより好ましく、5~9の範囲内であることが更に好ましく、6~8の範囲内であることが最も好ましい。また、微細藻類の種類に応じて、好適なpHは変化することから、微細藻類の種類に応じたpHを選択することが好ましい。なお、液体培地のpHとは、培養開始時のpHのことである。また、培養中のpHとは、培養に伴って変化する場合があることから、培養中にpHは変化してもよい。 << Other culture conditions >>
In the present invention, the pH of the culture solution (liquid medium) used in the pre-culture or the main culture is preferably in the range of 1 to 13, more preferably in the range of 3 to 11, and 5 to 9 It is further preferable to be within the range of, and it is most preferable to be within the range of 6 to 8. Moreover, since suitable pH changes according to the kind of microalga, it is preferable to select pH according to the kind of microalga. The pH of the liquid medium is the pH at the start of culture. In addition, since the pH during culture may change with the culture, the pH may change during the culture.
本発明では、培地中のpHを一定に保つ緩衝作用を持った物質を培地中に添加することができる。これにより、微細藻類の培養の進行とともに培地中のpHが変化する問題を抑制することや、培地中への二酸化炭素の供給でpHが変化する現象を抑制できる場合がある。緩衝作用を持った物質としては、公知の物質を使用することができ、その使用には制限がないが、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(HEPES)や、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液などを好適に用いることができる。これら、緩衝物質の濃度や種類は、微細藻類の種類や培養環境に応じて決めることができる。
In the present invention, a substance having a buffer action to keep the pH in the medium constant can be added to the medium. As a result, it may be possible to suppress the problem that the pH in the medium changes as the microalgal culture progresses, or to suppress the phenomenon that the pH changes due to the supply of carbon dioxide into the medium. As the substance having a buffer action, known substances can be used, and there is no limitation on its use, but 4- (2-hydroxyethyl) -1-piperazine ethane sulfonic acid (HEPES), phosphoric acid Sodium buffer, potassium phosphate buffer and the like can be suitably used. The concentration and type of the buffer substance can be determined according to the type of microalga and the culture environment.
分散培養を行った場合の液体培地の水深が深いと、光が届かず、攪拌効率が悪くなる問題があり、限度があった。しかし、液面浮遊培養の場合には、液面上に高密度に微細藻類が増殖していることから、培養器(貯留部材)深部に対して光を供給する必要がなく、基本的には攪拌も行わないことから、その水深は、浅くすることができる。これにより、水の使用量が少なく、ハンドリング効率が良くなることから、水深を浅くすることは好ましい。水深は0.4cm以上が好ましく、1cm~10mがより好ましく、2cm~1mが更に好ましく、4cm~30cmが最も好ましい。水深が0.4cm以上であるとバイオフィルムの形成が可能となり、水深が10m以下であると、ハンドリングが容易である。水深が4cm~30cmであると、水分の蒸発による影響が最小限であり、培地や微細藻類を含む溶液のハンドリングが容易である。
When the liquid culture medium in the case of dispersion culture is deep, the light does not reach and there is a problem that the stirring efficiency is deteriorated, and there is a limit. However, in the case of liquid surface floating culture, since microalgae are grown at high density on the liquid surface, there is no need to supply light to the deep part of the incubator (storage member), basically Since the stirring is not performed, the water depth can be shallow. Thus, it is preferable to reduce the water depth because the amount of water used is small and the handling efficiency is improved. The depth of water is preferably 0.4 cm or more, more preferably 1 cm to 10 m, still more preferably 2 cm to 1 m, and most preferably 4 cm to 30 cm. When the water depth is 0.4 cm or more, formation of a biofilm is possible, and when the water depth is 10 m or less, handling is easy. When the water depth is 4 cm to 30 cm, the influence of evaporation of water is minimal, and the handling of the solution containing the culture medium and microalgae is easy.
培養温度は、微細藻類の種類に応じて選択することができ、特に限定はしないが、0℃以上90℃以下であることが好ましく、15℃以上50℃以下がより好ましく、20℃以上40℃未満が最も好ましい。培養温度が20℃以上40℃未満であると、微細藻類を好適に増殖させることができる。
The culture temperature can be selected according to the type of microalgae and is not particularly limited, but is preferably 0 ° C. or more and 90 ° C. or less, more preferably 15 ° C. or more and 50 ° C. or less, 20 ° C. or more and 40 ° C. Less than is most preferred. When the culture temperature is 20 ° C. or more and less than 40 ° C., microalgae can be suitably grown.
微細藻類の下限投入微細藻類量、すなわち、培養開始時に使用する微細藻類量は、培養範囲内において1個あれば、時間をかけさえすれば増殖は可能であるため、その制限は特に設けないが、好ましくは1個/cm3以上であり、より好ましくは1000個/cm3以上であり、更に好ましくは1×104個/cm3以上である。微細藻類の上限投入微細藻類量は、基本的にはどの様な高濃度でも増殖が可能であるため、その制限は特に設けないが、ある濃度以上であると微細藻類量が多ければ多いほど、投入微細藻類量と増殖後の微細藻類量の比が低下することから、1×109個/cm3以下が好ましく、1×108個/cm3以下がより好ましく、5×107個/cm3以下が更に好ましい。
The lower limit input amount of microalga, ie, the amount of microalgae used at the start of culture, is not particularly limited because it is possible to proliferate if there is only one in the culture range, as long as it takes time. , Preferably 1 / cm 3 or more, more preferably 1000 / cm 3 or more, and still more preferably 1 × 10 4 / cm 3 or more. The upper limit input microalgae amount of microalgae basically can be grown at any high concentration, so there is no particular limitation, but the more the microalgae is, the more the amount of microalgae is, Since the ratio of the amount of input microalgae to the amount of microalgae after growth decreases, 1 × 10 9 cells / cm 3 or less is preferable, 1 × 10 8 cells / cm 3 or less is more preferable, and 5 × 10 7 cells / cm 3. More preferably, cm 3 or less.
本発明での前培養期間、本培養期間は、微細藻類の種類に応じて選択することができ、特に限定はしないが、1日以上300日以下が好ましく、3日以上100日以下がより好ましく、7日以上50日以下が更に好ましい。なお、培養期間を日数をもって定めた時は、「培養日数」という場合がある。
The pre-culture period and the main culture period in the present invention can be selected according to the type of microalgae and is not particularly limited, but is preferably 1 day to 300 days and more preferably 3 days to 100 days. 7 days to 50 days are more preferable. In addition, when culture | cultivation period was defined with days, it may be called "culture days."
本発明においては、微細藻類バイオフィルムを回収した後、増殖のための栄養成分が培地中に残っている限り、底面上やその他の部位に残っている微細藻類を種藻として再度培養することが、何度でも可能である。しかし、あまりにも低濃度であると増殖速度が遅くなってしまう可能性が高いため、その様な場合には、培地を新たに添加したり、少なくとも一部の培地を置換したり、固形物状の栄養成分や高濃度の栄養成分を培地に添加したりすることができる。
In the present invention, after collecting the microalgal biofilm, as long as a nutrient component for growth remains in the medium, the microalgae remaining on the bottom surface or in other parts are recultured as seed algae. , Can be done again and again. However, if the concentration is too low, the growth rate is likely to be slow, and in such a case, the medium is newly added, or at least a part of the medium is replaced, or solid-like And high concentration of nutrient components can be added to the medium.
微細藻類バイオフィルムの大きさは0.1cm2以上であることが好ましく、1cm2以上がより好ましく、10cm2以上が更に好ましく、培養器(貯留部材)の液面面積と等しいことが最も好ましい。0.1cm2以上であれば、培養開始時の微細藻類量に対する培養終了時の微細藻類量との比を短時間で大きくすることができることから好ましい。また、微細藻類バイオフィルムは、培養領域内で複数個存在していてもよい。微細藻類バイオフィルムの厚さは、1μm~10000μmの範囲であることが好ましく、1μm~1000μmの範囲であることがより好ましく、10μm~1000μmの範囲であることが最も好ましい。10μm~1000μmの範囲であると、強度が高く、十分な量のバイオフィルムを収穫することができる。
Preferably the size of the microalgae biofilm is 0.1 cm 2 or more, more preferably 1 cm 2 or more, more preferably 10 cm 2 or more, and most preferably equal to the liquid surface area of the incubator (storage member). If it is 0.1 cm 2 or more, it is preferable because the ratio of the amount of microalgae at the end of culture to the amount of microalgae at the start of culture can be increased in a short time. Also, a plurality of microalgal biofilms may be present in the culture region. The thickness of the microalgal biofilm is preferably in the range of 1 μm to 10000 μm, more preferably in the range of 1 μm to 1000 μm, and most preferably in the range of 10 μm to 1000 μm. If it is in the range of 10 μm to 1000 μm, sufficient strength can be obtained to harvest a sufficient amount of biofilm.
本発明に係るバイオフィルムが、三次元状構造体、特に泡状構造体を形成する場合、培地の液面を基準としたその泡状構造体の一般的な高さは、0.01mm~100mmの範囲であることが好ましく、0.1mm~40mmの範囲であることがより好ましく、3mm~30mmの範囲であることが最も好ましい。泡状構造体の液面からの高さが3mm~30mmの範囲であると、含水率を十分に下げることができ、培養器(貯留部材)の高さを低く抑えることができる。また本発明にかかる微細藻類は、液面上における増殖速度が大きいことが好ましく、対数増殖期における増殖速度(すなわち、対数増殖期の期間における一日あたりの平均増殖速度)が、乾燥重量で0.1g/m2/day以上であることが好ましく、0.5g/m2/day以上であることがより好ましく、1g/m2/day以上であることが更に好ましく、3g/m2/day以上であることが最も好ましい。微細藻類の対数増殖期における増殖速度は、乾燥重量で一般的に1000g/m2/day以下である。
When the biofilm according to the present invention forms a three-dimensional structure, particularly a foam, the general height of the foam relative to the liquid surface of the culture medium is 0.01 mm to 100 mm. The range of 0.1 mm to 40 mm is more preferable, and the range of 3 mm to 30 mm is most preferable. When the height of the foam structure from the liquid surface is in the range of 3 mm to 30 mm, the moisture content can be sufficiently lowered, and the height of the incubator (storage member) can be suppressed to a low level. The microalgae according to the present invention preferably has a high growth rate on the liquid surface, and the growth rate in the logarithmic growth phase (that is, the average growth rate per day in the logarithmic growth phase) is 0 in dry weight. is preferably .1g / m 2 / day or more, more preferably 0.5g / m 2 / day or more, further preferably 1g / m 2 / day or more, 3g / m 2 / day It is most preferable that it is more than. The growth rate in the logarithmic growth phase of microalgae is generally 1000 g / m 2 / day or less in dry weight.
本発明に係るバイオフィルムの単位面積あたりの乾燥藻体重量は、0.001mg/cm2以上であることが好ましく、0.1mg/cm2以上であることがより好ましく、1mg/cm2以上であることが特に好ましい。最も好ましくは、5mg/cm2以上である。単位面積あたりの乾燥藻体重量が大きい方が、得られるオイルなどのバイオマスの量が大きくなることが見込まれるからである。バイオフィルムの単位面積あたりの乾燥藻体重量は通常100mg/cm2以下である。
また本発明の微細藻類としては、上記の構造や、上記範囲の面積、厚さ、高さ、増殖速度、単位面積あたりの乾燥藻体重量を有するバイオフィルムを液面上に形成可能な微細藻類であることが、上記と同様の理由で好ましい。 The dry alga body weight per unit area of the biofilm according to the present invention is preferably 0.001 mg / cm 2 or more, more preferably 0.1 mg / cm 2 or more, and 1 mg / cm 2 or more. Being particularly preferred. Most preferably, it is 5 mg / cm 2 or more. It is because it is anticipated that the quantity of biomass, such as oil obtained, will become large, so that the dry alga body weight per unit area is large. The dry algal body weight per unit area of the biofilm is usually 100 mg / cm 2 or less.
Moreover, as the microalga of the present invention, a microalga capable of forming a biofilm having the above-mentioned structure, area, thickness, height, growth rate and dry algal body weight per unit area in the above range on a liquid surface Is preferred for the same reasons as described above.
また本発明の微細藻類としては、上記の構造や、上記範囲の面積、厚さ、高さ、増殖速度、単位面積あたりの乾燥藻体重量を有するバイオフィルムを液面上に形成可能な微細藻類であることが、上記と同様の理由で好ましい。 The dry alga body weight per unit area of the biofilm according to the present invention is preferably 0.001 mg / cm 2 or more, more preferably 0.1 mg / cm 2 or more, and 1 mg / cm 2 or more. Being particularly preferred. Most preferably, it is 5 mg / cm 2 or more. It is because it is anticipated that the quantity of biomass, such as oil obtained, will become large, so that the dry alga body weight per unit area is large. The dry algal body weight per unit area of the biofilm is usually 100 mg / cm 2 or less.
Moreover, as the microalga of the present invention, a microalga capable of forming a biofilm having the above-mentioned structure, area, thickness, height, growth rate and dry algal body weight per unit area in the above range on a liquid surface Is preferred for the same reasons as described above.
〈液量縮減工程〉
液量縮減工程は、培養液の液量を減らす工程である。本発明の微細藻類の培養物の培養及び回収方法において、液量縮減工程は、本培養工程の後に行ってもよいし、本培養工程と並行して行ってもよい。また、後培養工程を行う場合は、液量縮減工程の後に後培養工程を行う。
培養液の液量を減らす方法は特に限定されないが、微細藻類の培養物と共存する培養液を減少させることが重要である。具体的な方法としては、例えば、培養液を乾燥させる、培養液を排出する、藻体を培地と共にすくい取る、又はこれらの組合せ等が挙げられる。いずれの方法によっても、藻体と共存する培地量を少なくすることができる。また、培養液を乾燥させたり、排出したりすることによって、培養液の液面と底面との間の領域に存在する培養液を減少させることができ、微細藻類の培養物を効率よく回収することが容易になる。 Liquid volume reduction process
The volume reduction step is a step of reducing the volume of the culture solution. In the culture and recovery method of the microalga culture of the present invention, the liquid volume reduction step may be performed after the main culture step or may be performed in parallel with the main culture step. Moreover, when performing a post-culture process, a post-culture process is performed after a liquid volume reduction process.
The method for reducing the culture solution volume is not particularly limited, but it is important to reduce the culture solution coexisting with the microalgal culture. Specific methods include, for example, drying the culture solution, discharging the culture solution, skimming the algal cells with the culture medium, or a combination thereof. By any method, the amount of medium coexisting with algal cells can be reduced. Also, by drying or discharging the culture solution, the culture solution present in the region between the liquid surface and the bottom of the culture solution can be reduced, and the culture of microalgae can be efficiently recovered It becomes easy.
液量縮減工程は、培養液の液量を減らす工程である。本発明の微細藻類の培養物の培養及び回収方法において、液量縮減工程は、本培養工程の後に行ってもよいし、本培養工程と並行して行ってもよい。また、後培養工程を行う場合は、液量縮減工程の後に後培養工程を行う。
培養液の液量を減らす方法は特に限定されないが、微細藻類の培養物と共存する培養液を減少させることが重要である。具体的な方法としては、例えば、培養液を乾燥させる、培養液を排出する、藻体を培地と共にすくい取る、又はこれらの組合せ等が挙げられる。いずれの方法によっても、藻体と共存する培地量を少なくすることができる。また、培養液を乾燥させたり、排出したりすることによって、培養液の液面と底面との間の領域に存在する培養液を減少させることができ、微細藻類の培養物を効率よく回収することが容易になる。 Liquid volume reduction process
The volume reduction step is a step of reducing the volume of the culture solution. In the culture and recovery method of the microalga culture of the present invention, the liquid volume reduction step may be performed after the main culture step or may be performed in parallel with the main culture step. Moreover, when performing a post-culture process, a post-culture process is performed after a liquid volume reduction process.
The method for reducing the culture solution volume is not particularly limited, but it is important to reduce the culture solution coexisting with the microalgal culture. Specific methods include, for example, drying the culture solution, discharging the culture solution, skimming the algal cells with the culture medium, or a combination thereof. By any method, the amount of medium coexisting with algal cells can be reduced. Also, by drying or discharging the culture solution, the culture solution present in the region between the liquid surface and the bottom of the culture solution can be reduced, and the culture of microalgae can be efficiently recovered It becomes easy.
培養液を乾燥させる方法としては、自然乾燥、送風乾燥、加熱乾燥、凍結乾燥、これらの組合せ等が挙げられる。自然乾燥の場合は、例えば、遮蔽部材の少なくとも一部を開放することで、自然乾燥させることができる。この乾燥は光が存在する条件下で行っても、実質的に光が存在しない条件下で行ってもよい。本発明の培養及び回収方法が好適に適用される、液面にバイオフィルムを形成する微細藻類を用いる場合には、必要な培養液の水深が従来方法に比べて非常に浅くても可能であるためにこのような自然乾燥でも容易に乾燥させることができる。そのため、エネルギー消費が少なく、藻類バイオ燃料の低コスト化に貢献する。
Examples of the method for drying the culture solution include natural drying, air drying, heat drying, lyophilization, a combination thereof and the like. In the case of natural drying, natural drying can be performed, for example, by opening at least a part of the shielding member. This drying may be carried out in the presence of light or substantially in the absence of light. In the case of using a microalga which forms a biofilm on the liquid surface, to which the culture and recovery method of the present invention is suitably applied, it is possible even if the required culture solution is very shallow compared to the conventional method. Because of this, such natural drying can be easily dried. Therefore, it consumes less energy and contributes to cost reduction of algal biofuel.
培養液を排出する方法としては、前述の図2のように、予め排液管配管、流路、水路等を設けておき、これを開放する方法や、ポンプ等で吸引排液する方法、又はこれらの組合せなどが挙げられる。
As a method of discharging the culture solution, as shown in FIG. 2 described above, a drainage pipe, a flow path, a water channel, etc. are provided in advance, and the method is opened, or a method of suction and drainage with a pump, etc. The combination of these etc. is mentioned.
培養液の排出は、どの部分から行ってもよいが、微細藻類の存在量が少ない位置から排出を行うのが、微細藻類の流出を抑制する観点から好ましい。本発明の製造方法が好適に適用される、液面にバイオフィルムを形成する微細藻類を用いる場合には、液面上に微細藻類バイオフィルムが形成されるので、液体保持部の底面、又は底面近傍の側面から排出するのが好ましい。又は、液面にバイオフィルムを形成する微細藻類は液体保持部の底面にも微細藻類バイオフィルムが形成される場合がある。このような場合には、液面と底面部分を除く中間領域には微細藻類の存在量が少ないことから、中間位置から排出することが好ましい。すなわち、培養液の排出は、液面と底面との間の領域に存在する培地の少なくとも一部を除去するように行うことができ、特に液面と底面との間の領域のうち、微細藻類が実質的に存在しないか又は目視では観察されない領域に存在する培養液の少なくとも一部を除去するように行うことが好ましい。なお、この微細藻類が実質的に存在しないか又は目視では観察されない領域には、遊走子が存在していることが予想されるが、藻体よりもかなり小さいため、遊走子は目視では観察されない。
The discharge of the culture solution may be performed from any part, but discharging from a position where the amount of microalga is present is preferable from the viewpoint of suppressing the outflow of microalga. When using the microalga which forms a biofilm on the liquid surface to which the manufacturing method of the present invention is suitably applied, the microalgal biofilm is formed on the liquid surface, so the bottom or bottom of the liquid holding portion It is preferable to discharge from the side of the vicinity. Alternatively, microalgae forming a biofilm on the liquid surface may form a microalgal biofilm also on the bottom of the liquid holding unit. In such a case, it is preferable to discharge from the intermediate position because the amount of microalgae is small in the intermediate region excluding the liquid surface and the bottom portion. That is, discharge of the culture solution can be performed so as to remove at least a part of the culture medium present in the region between the liquid surface and the bottom, and in particular, the microalgae in the region between the liquid surface and the bottom It is preferable to carry out so as to remove at least a part of the culture solution present in the region substantially absent or not visually observed. Although it is expected that zoospores are present in the area where the microalgae is substantially absent or not visually observed, the zoospores are not visually observed because they are much smaller than the algal cells. .
また、排出した培養液は廃棄してもよいが、培養液として再使用することも可能である。また、後述する回収工程の後に貯留部材中に残った培養液も、同様に、再使用することができる。すなわち、培養液中に栄養成分が残っていれば、使用済みの培養液をそのまま使用して培養液を継続してもよいし、使用済み培養液の一部を廃棄し、新しい培養液を添加してもよい。新しい培養液の添加量は、廃棄量と同等の液量加えてもよいし、それよりも少なくても多くてもよい。なお、新しい培養液を添加する方が、後段の本培養での微細藻類の増殖速度を向上させることができる観点からより好ましい。
Moreover, although the discharged culture solution may be discarded, it is also possible to reuse it as a culture solution. Moreover, the culture solution which remained in the storage member after the recovery process mentioned later can be reused similarly. That is, if nutrient components remain in the culture solution, the used culture solution may be used as it is to continue the culture solution, or a part of the used culture solution may be discarded and a new culture solution may be added. You may The amount of fresh culture medium added may be equal to or less than the amount discarded. In addition, it is more preferable to add a new culture solution from the viewpoint of being able to improve the growth rate of the microalga in the main culture in the latter stage.
新しい培養液を添加する場合には、栄養成分を液体に溶解させた状態で添加してもよいし、固形分として添加してもよい。固形分として添加した場合には、培養液を攪拌しなければならない場合があることから、液体に溶解させた状態で添加することの方がより好ましい。
When a fresh culture solution is added, the nutrient component may be added in the state of being dissolved in the liquid, or may be added as a solid content. When it is added as a solid, it may be necessary to stir the culture solution, so it is more preferable to add it in a liquid state.
培養液の添加は、前段の本培養に使用した培養液と同一成分の培養液を使用してもよいし、成分が異なる培養液を添加してもよい。
For the addition of the culture solution, a culture solution of the same component as the culture solution used for the main culture in the previous stage may be used, or a culture solution having different components may be added.
また、培養に使用した培養液に対して、特定の成分が高濃度である新鮮な培地を添加することができる。特定の成分は、特に限定されないが、例えば、窒素、リン、カリウム、カルシウム、マグネシウム、イオウ、及び鉄からなる群より選択されるいずれかを含む化合物である。培養に使用した培養液に対して、特定の成分が高濃度である新鮮な培地を添加する場合には、濃度は、通常の場合に対して、1.01倍以上100000倍以下が好ましく、10倍以上10000倍以下が更に好ましく、50倍以上5000倍以下が最も好ましい。新鮮培地の特定の成分の濃度が1.01倍未満であると、その製造に多くの水が必要となり、更に、新鮮培地の調製場所と培養器(貯留部材)設置場所との距離が離れるほど輸送性が低下し、大量の培地を培養器(貯留部材)内へと導入するためには、新鮮培地の保管容器や培養器(貯留部材)へと新鮮培地を供給するためなどの種々の装置が必要となるなど、様々な問題が考えられる。更に、培養装置内の培地量が増加し、例えば、1.01倍の濃縮液を培養装置へと加えた場合には、培養装置内の培養液中の培地成分がほぼゼロであると仮定した場合には、約1/2の濃度へと薄まる。これらのことにより、増殖速度や増殖量が低下する可能性が高い。培地の特定の成分能濃度が100000倍より大きいと、培養液の液量が非常に少なくなり輸送性や培養装置への濃縮培地の導入効率が向上するが、培地成分の種類によっては、溶解性が悪くなる。更に、培養装置への導入の際に不必要な沈殿物が発生し、培養装置内での攪拌によって希釈された後でも溶解しない場合がある。その結果、微細藻類の増殖速度や増殖量が低下する場合がある。
In addition, a fresh medium having a high concentration of a specific component can be added to the culture solution used for the culture. The specific component is, for example, a compound including, but not limited to, any one selected from the group consisting of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and iron. When a fresh medium having a high concentration of a specific component is added to the culture solution used for the culture, the concentration is preferably 1.01 times to 100,000 times the normal case, and 10 It is more preferably twice or more and 10000 times or less, and most preferably 50 times or more and 5000 times or less. When the concentration of a specific component of the fresh medium is less than 1.01, more water is required for its production, and the distance between the fresh medium preparation place and the incubator (storage member) installation place increases. In order to reduce the transportability and introduce a large amount of culture medium into the incubator (storage member), various devices such as supplying fresh culture medium to a storage container for the fresh culture medium and the incubator (storage member) There are various problems, such as the need for Furthermore, it was assumed that the medium component in the culture solution in the culture apparatus was almost zero when the medium volume in the culture apparatus increased, for example, when a concentrate of 1.01 times was added to the culture apparatus In the case, it reduces to about 1/2 concentration. These things are likely to reduce the growth rate and amount of growth. When the specific component capacity concentration of the culture medium is more than 100,000 times, the volume of the culture solution becomes very small and the transportability and the introduction efficiency of the concentrated medium into the culture apparatus are improved, but depending on the type of medium component, the solubility Is worse. Furthermore, unnecessary precipitate may be generated upon introduction into the culture apparatus, and may not dissolve even after being diluted by stirring in the culture apparatus. As a result, the growth rate and growth amount of microalgae may be reduced.
新鮮培地の成分組成は、培養装置内の培養液中の培地成分組成と同一のものを使用することもできるが、異なる成分から構成された新鮮培地を添加してもよい。更に、培養液中の培地と成分が一部同じものを用いてもよい。また、培養液中の培地の成分と、添加後の最終濃度が大きく異なるように調製した新鮮培地を使用することもできる。
Although the component composition of the fresh medium may be the same as the composition of the medium component in the culture solution in the culture apparatus, a fresh medium composed of different components may be added. Furthermore, the medium and components in the culture solution may be partially the same. In addition, it is also possible to use a fresh medium which is prepared so that the components of the medium in the culture solution and the final concentration after addition differ greatly.
〈回収工程〉
回収工程は、液量縮減工程の後に、微細藻類の培養物を回収する工程である。
回収方法は特に限定されないが、例えば、得られた培養物(バイオフィルム、藻体)をヘラ状、フィルム状の部材などの各種形態の用具を用いて、培養器(貯留部材)からすくい取る、又はポンプ等を用いて吸引するなどの方法が挙げられる。 Recovery process
The recovery step is a step of recovering the culture of microalgae after the liquid volume reduction step.
The recovery method is not particularly limited, but for example, the obtained culture (biofilm, algal cells) is skimmed from a culture vessel (storage member) using tools of various forms such as a spatula-like, film-like member, Or the method of suctioning using a pump etc. is mentioned.
回収工程は、液量縮減工程の後に、微細藻類の培養物を回収する工程である。
回収方法は特に限定されないが、例えば、得られた培養物(バイオフィルム、藻体)をヘラ状、フィルム状の部材などの各種形態の用具を用いて、培養器(貯留部材)からすくい取る、又はポンプ等を用いて吸引するなどの方法が挙げられる。 Recovery process
The recovery step is a step of recovering the culture of microalgae after the liquid volume reduction step.
The recovery method is not particularly limited, but for example, the obtained culture (biofilm, algal cells) is skimmed from a culture vessel (storage member) using tools of various forms such as a spatula-like, film-like member, Or the method of suctioning using a pump etc. is mentioned.
培養物(バイオフィルム、藻体)を培地と共にすくい取る方法としては、水は透過するが藻体は通しにくいフィルター、ろ紙などを用いる方法や、遠心分離法などが利用できる。
藻体を培養液と共にすくい取る工程を用いる場合は、微細藻類は培養液中に分散していてもよいが、前述の静置することで液面に浮遊する性質を有する微細藻類藻、空気等のバブリング処理、オイル蓄積による浮遊、静置工程の追加による浮遊等で微細藻類を液面に浮上させた微細藻類、静置培養が可能な微細藻類に適用することが好ましい。中でも液面にバイオフィルムを形成することが可能な微細藻類に対して用いることが特に好ましい。この場合は藻体が培地の液面でバイオフィルムを形成しているので、このバイオフィルム(藻体)を他の基板に転写、或いは他の基板を用いて堆積させて回収することが容易である(詳細には、特開2013-226063号公報等を参照)。
またこの際には液面に存在する藻体のみでなく、水中・水底に存在する藻体も回収してもよい。特に培地を排水、乾燥した後に藻体を培地と共にすくい取る場合には、水中・水底に存在する藻体も同時にすくい取ることが容易であるので好ましい。
これらの回収方法について、以下に簡単に説明する。 As a method of skimming the culture (biofilm, algal cells) together with the medium, a method using a filter, filter paper or the like which allows water to permeate but not algal cells can be used, or a centrifugation method can be used.
When using a step of skimming algal cells with the culture solution, the microalgae may be dispersed in the culture solution, but microalgal algae having the property of floating on the liquid surface by standing as described above, air, etc. It is preferable to apply the present invention to microalgae in which microalgae is floated on the liquid surface by floating by bubbling treatment, oil accumulation, or addition of a standing step, and microalgae capable of standing culture. Above all, it is particularly preferable to use for microalga which can form a biofilm on the liquid surface. In this case, since the algal cells form a biofilm on the liquid surface of the culture medium, it is easy to transfer this biofilm (algal cells) to another substrate or deposit it using another substrate for recovery. (For details, refer to Japanese Patent Application Laid-Open No. 2013-226063 etc.).
In this case, not only algal cells present on the liquid surface but also algal bodies present in the water and bottom of the water may be recovered. In particular, when the medium is drained and dried, the algal cells are skimmed together with the medium since it is easy to simultaneously scoop algal bodies present in the water and the bottom of the water.
These recovery methods are briefly described below.
藻体を培養液と共にすくい取る工程を用いる場合は、微細藻類は培養液中に分散していてもよいが、前述の静置することで液面に浮遊する性質を有する微細藻類藻、空気等のバブリング処理、オイル蓄積による浮遊、静置工程の追加による浮遊等で微細藻類を液面に浮上させた微細藻類、静置培養が可能な微細藻類に適用することが好ましい。中でも液面にバイオフィルムを形成することが可能な微細藻類に対して用いることが特に好ましい。この場合は藻体が培地の液面でバイオフィルムを形成しているので、このバイオフィルム(藻体)を他の基板に転写、或いは他の基板を用いて堆積させて回収することが容易である(詳細には、特開2013-226063号公報等を参照)。
またこの際には液面に存在する藻体のみでなく、水中・水底に存在する藻体も回収してもよい。特に培地を排水、乾燥した後に藻体を培地と共にすくい取る場合には、水中・水底に存在する藻体も同時にすくい取ることが容易であるので好ましい。
これらの回収方法について、以下に簡単に説明する。 As a method of skimming the culture (biofilm, algal cells) together with the medium, a method using a filter, filter paper or the like which allows water to permeate but not algal cells can be used, or a centrifugation method can be used.
When using a step of skimming algal cells with the culture solution, the microalgae may be dispersed in the culture solution, but microalgal algae having the property of floating on the liquid surface by standing as described above, air, etc. It is preferable to apply the present invention to microalgae in which microalgae is floated on the liquid surface by floating by bubbling treatment, oil accumulation, or addition of a standing step, and microalgae capable of standing culture. Above all, it is particularly preferable to use for microalga which can form a biofilm on the liquid surface. In this case, since the algal cells form a biofilm on the liquid surface of the culture medium, it is easy to transfer this biofilm (algal cells) to another substrate or deposit it using another substrate for recovery. (For details, refer to Japanese Patent Application Laid-Open No. 2013-226063 etc.).
In this case, not only algal cells present on the liquid surface but also algal bodies present in the water and bottom of the water may be recovered. In particular, when the medium is drained and dried, the algal cells are skimmed together with the medium since it is easy to simultaneously scoop algal bodies present in the water and the bottom of the water.
These recovery methods are briefly described below.
バイオフィルム(藻体)を他の基板に転写して回収する方法は、例えば、図46に示されるように、培養槽901の液面上の微細藻類から構成されたバイオフィルム(藻体)903a(フィルム状の構造物又は三次元状の構造物)を第一の基板902に転写した後、第一の基板902からバイオフィルム(藻体)903bを回収することにより行う。
また、バイオフィルム(藻体)を他の基板を用いて堆積させて回収する方法は、例えば、図47に示されるように、液面上の微細藻類から構成されたバイオフィルム(藻体)903a(フィルム状の構造物もしくは三次元状の構造物)を第二の基板904に堆積させた後、第二の基板904からバイオフィルム(藻体)903bを回収することにより行う。 For example, as shown in FIG. 46, a method of transferring a biofilm (algal cells) to another substrate for recovery is a biofilm (algal cells) 903a composed of microalgae on the liquid surface of theculture tank 901, as shown in FIG. After transferring (a film-like structure or a three-dimensional structure) to the first substrate 902, a biofilm (alga) 903b is recovered from the first substrate 902.
Also, a method of depositing and collecting a biofilm (algal cells) using another substrate is, for example, a biofilm (algal cells) 903a composed of microalgae on the liquid surface, as shown in FIG. After depositing (a film-like structure or a three-dimensional structure) on thesecond substrate 904, a biofilm (alga) 903b is recovered from the second substrate 904.
また、バイオフィルム(藻体)を他の基板を用いて堆積させて回収する方法は、例えば、図47に示されるように、液面上の微細藻類から構成されたバイオフィルム(藻体)903a(フィルム状の構造物もしくは三次元状の構造物)を第二の基板904に堆積させた後、第二の基板904からバイオフィルム(藻体)903bを回収することにより行う。 For example, as shown in FIG. 46, a method of transferring a biofilm (algal cells) to another substrate for recovery is a biofilm (algal cells) 903a composed of microalgae on the liquid surface of the
Also, a method of depositing and collecting a biofilm (algal cells) using another substrate is, for example, a biofilm (algal cells) 903a composed of microalgae on the liquid surface, as shown in FIG. After depositing (a film-like structure or a three-dimensional structure) on the
第一の基板からのバイオフィルム(藻体)の回収は、バイオフィルム(藻体)を第一の基板から剥離させることが可能な方法であればいかなる公知の方法を使用することもできる。例えば、セルスクレーパーのようなものを用いて基板からバイオフィルムを剥ぎ取る方法、水流を用いる方法、超音波を用いる方法などをあげることができるが、セルスクレーパーのようなものを用いる方法が好ましい。これは、他の方法では、バイオフィルム(藻体)が培地などで薄められることになり、再度濃縮が必要な場合があり、非効率であるからである。
第二の基板からのバイオフィルム(藻体)の回収は、バイオフィルム(藻体)を第二の基板から剥離させることが可能な方法であればいかなる公知の方法を使用することもできる。例えば、重力による方法、セルスクレーパーのようなものを用いて基板からバイオフィルムを剥ぎ取る方法、水流を用いる方法、超音波を用いる方法などをあげることができるが、重力による自然落下を利用した方法、もしくは、セルスクレーパーのようなものを用いる方法が好ましい。これは、他の方法では、バイオフィルム(藻体)が培地などで薄められることになり、再度濃縮が必要な場合があり、非効率であるからである。また、重力による自然落下を用いてバイオフィルム(藻体)を回収した後に、セルスクレーパーのようなものを用いて、第二の基板上に残存している藻体を回収することもできる。 For recovery of the biofilm (algal cells) from the first substrate, any known method can be used as long as the biofilm (algal cells) can be peeled from the first substrate. For example, a method such as peeling a biofilm from a substrate using a cell scraper, a method using a water flow, a method using ultrasonic waves, etc. can be mentioned, but a method using a cell scraper is preferable. This is because, in another method, the biofilm (algal cells) will be diluted with a medium or the like, which may require concentration again, which is inefficient.
Recovery of the biofilm (algal cells) from the second substrate can be carried out by any known method as long as the biofilm (algal cells) can be peeled off from the second substrate. For example, a method by gravity, a method of peeling a biofilm from a substrate using a cell scraper, a method of using a water flow, a method of using ultrasonic waves, etc. can be mentioned, but a method utilizing a free fall by gravity. Or, a method using a cell scraper or the like is preferable. This is because, in another method, the biofilm (algal cells) will be diluted with a medium or the like, which may require concentration again, which is inefficient. Alternatively, after the biofilm (algal cells) is recovered using gravity-induced free fall, algal cells remaining on the second substrate can be recovered using a cell scraper or the like.
第二の基板からのバイオフィルム(藻体)の回収は、バイオフィルム(藻体)を第二の基板から剥離させることが可能な方法であればいかなる公知の方法を使用することもできる。例えば、重力による方法、セルスクレーパーのようなものを用いて基板からバイオフィルムを剥ぎ取る方法、水流を用いる方法、超音波を用いる方法などをあげることができるが、重力による自然落下を利用した方法、もしくは、セルスクレーパーのようなものを用いる方法が好ましい。これは、他の方法では、バイオフィルム(藻体)が培地などで薄められることになり、再度濃縮が必要な場合があり、非効率であるからである。また、重力による自然落下を用いてバイオフィルム(藻体)を回収した後に、セルスクレーパーのようなものを用いて、第二の基板上に残存している藻体を回収することもできる。 For recovery of the biofilm (algal cells) from the first substrate, any known method can be used as long as the biofilm (algal cells) can be peeled from the first substrate. For example, a method such as peeling a biofilm from a substrate using a cell scraper, a method using a water flow, a method using ultrasonic waves, etc. can be mentioned, but a method using a cell scraper is preferable. This is because, in another method, the biofilm (algal cells) will be diluted with a medium or the like, which may require concentration again, which is inefficient.
Recovery of the biofilm (algal cells) from the second substrate can be carried out by any known method as long as the biofilm (algal cells) can be peeled off from the second substrate. For example, a method by gravity, a method of peeling a biofilm from a substrate using a cell scraper, a method of using a water flow, a method of using ultrasonic waves, etc. can be mentioned, but a method utilizing a free fall by gravity. Or, a method using a cell scraper or the like is preferable. This is because, in another method, the biofilm (algal cells) will be diluted with a medium or the like, which may require concentration again, which is inefficient. Alternatively, after the biofilm (algal cells) is recovered using gravity-induced free fall, algal cells remaining on the second substrate can be recovered using a cell scraper or the like.
沈積した微細藻類、液面上の微細藻類から構成されたバイオフィルム(フィルム状の構造物もしくは三次元状の構造物)の全てを回収してもよい。この様な回収法は、培養を終了する場合、別の微細藻類を培養する場合、培養槽内の培地を入れ替える場合などでも行うことができる。液面上の微細藻類から構成されたバイオフィルム(藻体)を、第一の基板を用いた転写、もしくは第二の基板による回収を行った後、培地を除去し、残った培養槽底面上の微細藻類を回収しても良い。さらに、培養槽内の全微細藻類を公知の方法によって回収しても良い。前記の公知の方法としては、フィルターによる回収、凝集剤による回収などが挙げられる。
All of the deposited microalgae and the biofilm (film-like structure or three-dimensional structure) composed of microalgae on the liquid surface may be recovered. Such a recovery method can be carried out even when the culture is terminated, another microalgae is cultured, or the medium in the culture tank is replaced. After the biofilm (algal cells) composed of microalgae on the liquid surface is transferred using the first substrate or recovered by the second substrate, the culture medium is removed, and the bottom of the culture vessel remains Microalgae may be recovered. Furthermore, all the microalgae in the culture tank may be recovered by a known method. Examples of the known method include recovery by a filter, recovery by a coagulant, and the like.
また、例えば、液面上の微細藻類のバイオフィルム(藻体)を回収した後に、培養槽底面上の微細藻類を回収することができる。
さらに、液面上の微細藻類からなるバイオフィルムを回収した後に、培養槽中の培養溶液を除去し、培養槽底面もしくは第一の基板の表面上の微細藻類を回収してもよい。 In addition, for example, after collecting the biofilm (algal body) of the microalga on the liquid surface, the microalga on the bottom of the culture tank can be collected.
Furthermore, after the biofilm consisting of microalgae on the liquid surface is recovered, the culture solution in the culture vessel may be removed to recover the microalgae on the bottom of the culture vessel or on the surface of the first substrate.
さらに、液面上の微細藻類からなるバイオフィルムを回収した後に、培養槽中の培養溶液を除去し、培養槽底面もしくは第一の基板の表面上の微細藻類を回収してもよい。 In addition, for example, after collecting the biofilm (algal body) of the microalga on the liquid surface, the microalga on the bottom of the culture tank can be collected.
Furthermore, after the biofilm consisting of microalgae on the liquid surface is recovered, the culture solution in the culture vessel may be removed to recover the microalgae on the bottom of the culture vessel or on the surface of the first substrate.
バイオフィルム(藻体)を基板に転写させる際の「転写」とは、付着の一種で、実質的に増殖を伴わない付着である。本発明では、第一の基板を用いて、液面上に形成されたバイオフィルム(藻体)を、実質的にそのままの形で第一の基板の表面に移し採る操作を言う。
"Transfer" when transferring a biofilm (algal cells) to a substrate is one type of adhesion, and adhesion substantially without growth. In the present invention, an operation of transferring the biofilm (algal cells) formed on the liquid surface to the surface of the first substrate substantially as it is using the first substrate is referred to.
バイオフィルム(藻体)の転写は、図46に示したように、第一の基板を用い、液面上に形成させたバイオフィルム(藻体)を基板の表面へと転写させる工程である。図46では、培養槽901内の全面にバイオフィルム(藻体)が形成されており、この様な状態で回収工程を行っているが、この様な状態での回収を行っても良いし、微細藻類からなるバイオフィルム(藻体)が部分的に存在していない状態がある場合でも本発明では回収工程を行うことができる。また、本発明のような方法で培養を行っていると、液面上に形成されたバイオフィルム(藻体)がしわ状になったり、折り重なる様になったりすること、ひだ状の微細藻類から構成されたフィルム状の構造物がオーロラ(カーテン状)の様に液中に生育する場合もある。
The transfer of the biofilm (algal cells) is a step of transferring the biofilm (algal cells) formed on the liquid surface to the surface of the substrate using the first substrate, as shown in FIG. In FIG. 46, a biofilm (algal body) is formed on the entire surface in the culture tank 901, and the recovery step is performed in such a state, but recovery in such a state may be performed, In the present invention, the recovery step can be performed even when there is a state in which a biofilm (algal body) consisting of microalgae is partially absent. In addition, when culturing is carried out by the method as in the present invention, the biofilm (algal cells) formed on the liquid surface may be wrinkled or folded, and from the folded microalgae. The constructed film-like structure may grow in the liquid like aurora (curtain-like).
第一の基板及び第二の基板は、図46又は図47で使用する液面上の微細藻類から構成されたバイオフィルム(藻体)を、転写又は回収するために使用する基板である。
The first substrate and the second substrate are substrates used to transfer or recover a biofilm (algal cells) composed of microalgae on the liquid surface used in FIG. 46 or 47.
第一の基板の表面及び第二の基板の表面とは、基板のあらゆる表面のことを言い、基板の上面、基板の底面、基板の側面のことをいうものとする。なお、これらの表面に微細藻類が付着していても、培養槽などに接触しており、基板と培養槽などの表面との間に形成される層から微細藻類が培養溶液中に出ることができない場合には、本発明の表面ではないものとする。
The surface of the first substrate and the surface of the second substrate refer to any surface of the substrate, and refer to the top surface of the substrate, the bottom surface of the substrate, and the side surface of the substrate. In addition, even if microalgae adheres to these surfaces, it is in contact with a culture tank etc., and microalgae may come out to a culture solution from the layer formed between a substrate and the surface of a culture tank etc. If not, it is not the surface of the present invention.
基板の形状は、フィルム状、板状、繊維状、多孔質状、凸状、波状などいかなる形状のものでも良いが、付着や沈着、転写などのしやすさ、および基板からの微細藻類の回収のしやすさから、フィルム状又は板状であることが好ましい。
第一の基板及び第二の基板はそれぞれ同一の形状でもよいし、それぞれ別の形状でもよい。第一の基板及び第二の基板の面積は、好ましくは培養槽中の培養溶液液面の面積よりも小さい方が好ましい。 The shape of the substrate may be any shape such as film, plate, fiber, porous, convex, or wavy, but the adhesion, deposition, easiness of transfer, etc., and recovery of microalgae from the substrate It is preferable that it is a film form or plate shape from the ease of carrying out.
The first substrate and the second substrate may have the same shape or different shapes. The area of the first substrate and the second substrate is preferably smaller than the area of the culture solution liquid surface in the culture vessel.
第一の基板及び第二の基板はそれぞれ同一の形状でもよいし、それぞれ別の形状でもよい。第一の基板及び第二の基板の面積は、好ましくは培養槽中の培養溶液液面の面積よりも小さい方が好ましい。 The shape of the substrate may be any shape such as film, plate, fiber, porous, convex, or wavy, but the adhesion, deposition, easiness of transfer, etc., and recovery of microalgae from the substrate It is preferable that it is a film form or plate shape from the ease of carrying out.
The first substrate and the second substrate may have the same shape or different shapes. The area of the first substrate and the second substrate is preferably smaller than the area of the culture solution liquid surface in the culture vessel.
ところで、藻体生産性、及び又は油生産性を向上させるためには、回収工程において藻体のみを単離するのではなく、培養液(培地)が存在する状態に保つことが重要である。この場合の藻体と培養液(培地)の質量比は、{藻体の質量/培養液(培地)の質量}が、好ましくは20/80~0.1/99.9であり、より好ましくは15/85~0.2/99.8であり、さらに好ましくは10/90~0.4/99.6である。
藻体の質量が藻体及び培養液(培地)の合計質量の0.1~20質量%の範囲内であると、培養時に光が透過しやすくなるため培養が進行しやすくなり、水分が多すぎないので、回収時の負荷の低減効果が大きくなる。 By the way, in order to improve algal cell productivity and / or oil productivity, it is important not to isolate only algal cells in the recovery step but to maintain a state in which a culture solution (medium) is present. In this case, the mass ratio of the algal cells to the culture solution (medium) is {mass of algal cells / mass of culture solution (medium)}, preferably 20/80 to 0.1 / 99.9, more preferably Is from 15/85 to 0.2 / 99.8, more preferably from 10/90 to 0.4 / 99.6.
When the mass of the algal cells is in the range of 0.1 to 20% by mass of the total mass of the algal cells and the culture solution (medium), the light is easily transmitted during the culture, and the culture is easily progressed. As it is not too much, the reduction effect of the load at the time of collection becomes large.
藻体の質量が藻体及び培養液(培地)の合計質量の0.1~20質量%の範囲内であると、培養時に光が透過しやすくなるため培養が進行しやすくなり、水分が多すぎないので、回収時の負荷の低減効果が大きくなる。 By the way, in order to improve algal cell productivity and / or oil productivity, it is important not to isolate only algal cells in the recovery step but to maintain a state in which a culture solution (medium) is present. In this case, the mass ratio of the algal cells to the culture solution (medium) is {mass of algal cells / mass of culture solution (medium)}, preferably 20/80 to 0.1 / 99.9, more preferably Is from 15/85 to 0.2 / 99.8, more preferably from 10/90 to 0.4 / 99.6.
When the mass of the algal cells is in the range of 0.1 to 20% by mass of the total mass of the algal cells and the culture solution (medium), the light is easily transmitted during the culture, and the culture is easily progressed. As it is not too much, the reduction effect of the load at the time of collection becomes large.
また、本発明においては、液体保持部の培養液と接する側の表面にフィルムを配置する構成の培養装置を用いて、微細藻類の培養及び回収を行う場合には、液量縮減工程で貯留部材内の培養液の液量を減らして、このフィルムに微細藻類(バイオフィルム)を接触させて、このフィルムを移動させることで微細藻類を回収することも好ましい。
In the present invention, when culture and recovery of microalgae are performed using a culture apparatus having a configuration in which a film is disposed on the surface of the liquid holding unit in contact with the culture solution, the storage member is used in the liquid volume reduction step. It is also preferable to recover the microalgae by reducing the liquid volume of the culture solution in the medium and bringing the microalgae (biofilm) into contact with the film to move the film.
微細藻類を回収するための前段階としての、フィルムと微細藻類の培養物(バイオフィルム、藻体)とを接触させる方法としては、前述した液量縮減工程において、第1のフィルム若しくは第2のフィルムと微細藻類の培養物とが接触するまで、培養液の液量を減らす方法、又は第2のフィルムを底面から液面までの間の位置に持ち上げ、第2のフィルムと微細藻類の培養物とが接触するまで培養液を減少させる方法などの、液量縮減工程において、フィルムと微細藻類の培養物とを接触させる方法のほか、液量縮減工程において培養液の液量を第2のフィルムと微細藻類の培養物とが実質的に接触しない程度まで減少させた後、回収工程で第2のフィルムを持ち上げて微細藻類と接触させる方法、などが挙げられる。
このような培養装置としては、具体的には、上記の第1のフィルム22fを備える培養装置10f、又は、第2のフィルム24gを備える培養装置10g等を用いることができる。
なお、以下の説明では、微細藻類の回収に用いられる第1のフィルム及び第2のフィルムをまとめて回収用フィルムともいう。 As a method of bringing a film into contact with a culture of a microalga (biofilm, algal cells) as a pre-step for collecting microalgae, the first film or the second one in the above-described liquid volume reduction step A method of reducing the liquid volume of the culture solution until the film and the culture of microalgae come in contact, or lifting the second film to a position between the bottom and the liquid surface, the culture of the second film and the microalgae In the liquid volume reduction step, such as a method of reducing the culture liquid until the protein comes into contact, in addition to the method of contacting the film with the culture of microalgae, the second liquid film of the culture liquid volume in the liquid volume reduction step Or the like, and the second film is lifted in the recovery step to be brought into contact with the microalga, and the like, and the like.
As such a culture apparatus, specifically, aculture apparatus 10f provided with the first film 22f described above, or a culture apparatus 10g provided with the second film 24g can be used.
In the following description, the first film and the second film used for the recovery of the microalgae are collectively referred to as a recovery film.
このような培養装置としては、具体的には、上記の第1のフィルム22fを備える培養装置10f、又は、第2のフィルム24gを備える培養装置10g等を用いることができる。
なお、以下の説明では、微細藻類の回収に用いられる第1のフィルム及び第2のフィルムをまとめて回収用フィルムともいう。 As a method of bringing a film into contact with a culture of a microalga (biofilm, algal cells) as a pre-step for collecting microalgae, the first film or the second one in the above-described liquid volume reduction step A method of reducing the liquid volume of the culture solution until the film and the culture of microalgae come in contact, or lifting the second film to a position between the bottom and the liquid surface, the culture of the second film and the microalgae In the liquid volume reduction step, such as a method of reducing the culture liquid until the protein comes into contact, in addition to the method of contacting the film with the culture of microalgae, the second liquid film of the culture liquid volume in the liquid volume reduction step Or the like, and the second film is lifted in the recovery step to be brought into contact with the microalga, and the like, and the like.
As such a culture apparatus, specifically, a
In the following description, the first film and the second film used for the recovery of the microalgae are collectively referred to as a recovery film.
回収用フィルムを用いて微細藻類の回収を行う場合の回収方法としては、微細藻類が付着した回収用フィルムを、持ち上げたり、引き出す、巻き取るなどした後に、この回収用フィルムを傾斜させたり裏返すことなどで、微細藻類を自然落下させることや、ヘラ状、板状、刃状など部材を用いて、回収用フィルムから微細藻類をかきとること、などによって回収できる。
なかでも、回収用フィルムを巻き取って回収することが好ましい。 As a collection method in the case of collecting microalgae using a collecting film, after lifting, pulling out, winding up the collecting film to which the microalga is attached, the collecting film is inclined or turned upside down For example, it is possible to recover the microalga naturally by dropping the microalga or scraping the microalga from the film for recovery using a member such as a spatula, plate or blade.
Among them, it is preferable to wind up and recover a recovery film.
なかでも、回収用フィルムを巻き取って回収することが好ましい。 As a collection method in the case of collecting microalgae using a collecting film, after lifting, pulling out, winding up the collecting film to which the microalga is attached, the collecting film is inclined or turned upside down For example, it is possible to recover the microalga naturally by dropping the microalga or scraping the microalga from the film for recovery using a member such as a spatula, plate or blade.
Among them, it is preferable to wind up and recover a recovery film.
ここで、本発明の製造方法における、回収工程の一例を図28~図32及び図33~図37を用いて説明する。
図28は、本培養工程後の培養装置10pの一例を示す概略断面図であり、図29は、液量縮減工程後の培養装置の状態を示す概略断面図であり、図30は、図29のII-II線断面図であり、図31は、回収工程中の培養装置の状態を示す概略断面図であり、図32は、回収工程後に、回収用フィルムを再設置中の状態を示す概略断面図である。
また、図33は、図29の培養装置を上から見た図であり、図34及び図35は、図31の培養装置を上から見た図であり、図36及び図37は、回収工程後の回収用フィルムの再設置を説明するための図である。
なお、図29~図32では、遮蔽部材の図示は省略している。また、図33~図37では、説明のため一部の部材の図示を省略している。 Here, an example of the recovery step in the manufacturing method of the present invention will be described with reference to FIGS. 28 to 32 and 33 to 37.
FIG. 28 is a schematic cross-sectional view showing an example of theculture apparatus 10 p after the main culturing step, FIG. 29 is a schematic cross-sectional view showing the state of the culture device after the liquid amount reduction step, and FIG. FIG. 31 is a schematic cross-sectional view showing the state of the culture apparatus in the recovery step, and FIG. 32 is a schematic view showing the state in which the recovery film is being re-installed after the recovery step. FIG.
33 is a top view of the culture apparatus of FIG. 29, FIGS. 34 and 35 are top views of the culture apparatus of FIG. 31, and FIGS. 36 and 37 are recovery steps. It is a figure for demonstrating reinstallation of the film for subsequent collection | recovery.
In FIG. 29 to FIG. 32, the illustration of the shielding member is omitted. Further, in FIG. 33 to FIG. 37, illustration of some members is omitted for the sake of explanation.
図28は、本培養工程後の培養装置10pの一例を示す概略断面図であり、図29は、液量縮減工程後の培養装置の状態を示す概略断面図であり、図30は、図29のII-II線断面図であり、図31は、回収工程中の培養装置の状態を示す概略断面図であり、図32は、回収工程後に、回収用フィルムを再設置中の状態を示す概略断面図である。
また、図33は、図29の培養装置を上から見た図であり、図34及び図35は、図31の培養装置を上から見た図であり、図36及び図37は、回収工程後の回収用フィルムの再設置を説明するための図である。
なお、図29~図32では、遮蔽部材の図示は省略している。また、図33~図37では、説明のため一部の部材の図示を省略している。 Here, an example of the recovery step in the manufacturing method of the present invention will be described with reference to FIGS. 28 to 32 and 33 to 37.
FIG. 28 is a schematic cross-sectional view showing an example of the
33 is a top view of the culture apparatus of FIG. 29, FIGS. 34 and 35 are top views of the culture apparatus of FIG. 31, and FIGS. 36 and 37 are recovery steps. It is a figure for demonstrating reinstallation of the film for subsequent collection | recovery.
In FIG. 29 to FIG. 32, the illustration of the shielding member is omitted. Further, in FIG. 33 to FIG. 37, illustration of some members is omitted for the sake of explanation.
図28に示す培養装置10pは、凹状の支持体20n上に、第3のフィルム26j、及び、第1のフィルム22fをこの順に積層した貯留部材12nと、貯留部材12nの液体保持部を覆うように配置されたアーチ状の遮蔽部材14cとを備える。
図28に示す培養装置10pは、本培養工程後の状態を示すものであり、貯留部材12n中に保持された培養液Mの液面に微細藻類Pが培養されバイオフィルムを形成している。
次に、図29、図33に示すように、液量縮減工程で、培養液Mを乾燥し、排水管(図示せず)から排出し、又は乾燥及び排水管(図示せず)から排出する。培養液Mを乾燥し、排出し、又は乾燥及び排出すると、微細藻類Pが第1のフィルム22f上に堆積する。 Theculture apparatus 10p shown in FIG. 28 covers the storage member 12n in which the third film 26j and the first film 22f are laminated in this order on the concave support 20n, and the liquid holding portion of the storage member 12n. And an arched shielding member 14c disposed on the
Theculture apparatus 10p shown in FIG. 28 shows the state after the main culture step, and the microalgae P is cultured on the liquid surface of the culture solution M held in the storage member 12n to form a biofilm.
Next, as shown in FIGS. 29 and 33, in the liquid volume reduction step, the culture fluid M is dried, drained from a drain pipe (not shown), or drained from a drying and drain pipe (not shown). . When the culture solution M is dried, discharged, or dried and discharged, the microalgae P is deposited on thefirst film 22f.
図28に示す培養装置10pは、本培養工程後の状態を示すものであり、貯留部材12n中に保持された培養液Mの液面に微細藻類Pが培養されバイオフィルムを形成している。
次に、図29、図33に示すように、液量縮減工程で、培養液Mを乾燥し、排水管(図示せず)から排出し、又は乾燥及び排水管(図示せず)から排出する。培養液Mを乾燥し、排出し、又は乾燥及び排出すると、微細藻類Pが第1のフィルム22f上に堆積する。 The
The
Next, as shown in FIGS. 29 and 33, in the liquid volume reduction step, the culture fluid M is dried, drained from a drain pipe (not shown), or drained from a drying and drain pipe (not shown). . When the culture solution M is dried, discharged, or dried and discharged, the microalgae P is deposited on the
次に、第1のフィルム22fを移動させて微細藻類Pを回収する。
ここで、図30に示すように、第1のフィルム22fを移動させる手段として、巻取ローラを備える第1の巻取機202を有し、微細藻類Pを回収する第1の回収部材として、ヘラ204及び回収容器206を備える。
図31、図34、図35に示すように、微細藻類Pが付着した第1のフィルム22fを第1の巻取機202で巻取りつつ、第1のフィルム22fが巻取ローラに巻きかかった位置で、ヘラ204が第1のフィルム22f上の微細藻類Pを掻き取り、落下させて回収容器206に微細藻類Pを回収する。
なお、第1の巻取機202の巻取ローラは、図示しない駆動手段により回転されてもよいし、手動で回転してもよい。 Next, thefirst film 22f is moved to recover the microalgae P.
Here, as shown in FIG. 30, as a means for moving thefirst film 22f, it has a first winding machine 202 provided with a winding roller, and as a first recovery member for recovering the microalgae P, A spatula 204 and a recovery container 206 are provided.
As shown in FIGS. 31, 34, and 35, thefirst film 22f is wound around the winding roller while the first film 22f to which the microalgae P is attached is wound by the first winder 202. At the position, the spatula 204 scrapes off the microalgae P on the first film 22 f and drops it to recover the microalgae P in the collection container 206.
The winding roller of thefirst winder 202 may be rotated by a drive unit (not shown) or may be rotated manually.
ここで、図30に示すように、第1のフィルム22fを移動させる手段として、巻取ローラを備える第1の巻取機202を有し、微細藻類Pを回収する第1の回収部材として、ヘラ204及び回収容器206を備える。
図31、図34、図35に示すように、微細藻類Pが付着した第1のフィルム22fを第1の巻取機202で巻取りつつ、第1のフィルム22fが巻取ローラに巻きかかった位置で、ヘラ204が第1のフィルム22f上の微細藻類Pを掻き取り、落下させて回収容器206に微細藻類Pを回収する。
なお、第1の巻取機202の巻取ローラは、図示しない駆動手段により回転されてもよいし、手動で回転してもよい。 Next, the
Here, as shown in FIG. 30, as a means for moving the
As shown in FIGS. 31, 34, and 35, the
The winding roller of the
なお、微細藻類の回収後、第1のフィルム22fを再利用する場合には、図36、図37に示すように、設置用ローラ208に巻き回されている再設置用のフィルム210を巻き出して、第1のフィルム22fの端部に接着等により接続し、設置用ローラ208で再設置用のフィルム210を巻き取ることで、第1のフィルム22fを支持体20n上に移動させて、第1のフィルム22fを再利用することができる。
このように回収用フィルムを繰り返しの利用することで、コストを低減でき好ましい。 When thefirst film 22f is reused after recovery of the microalgae, as shown in FIGS. 36 and 37, the film 210 for reinstallation wound around the installation roller 208 is unwound. The film 22f is moved to the top of the support 20n by connecting the end of the first film 22f by adhesion or the like and winding the film 210 for repositioning by the setting roller 208. The film 22f of 1 can be reused.
By repeatedly using the recovery film in this manner, costs can be reduced, which is preferable.
このように回収用フィルムを繰り返しの利用することで、コストを低減でき好ましい。 When the
By repeatedly using the recovery film in this manner, costs can be reduced, which is preferable.
ここで、1組の第1の巻取機202及び第1の回収部材は、1つの貯留部材に対応して設けられる構成に限定はされず、1組の第1の巻取機202及び第1の回収部材が、複数の貯留部材で回収を行う構成としてもよい。
例えば、図38に示すように、複数の貯留部材12が、貯留部材12の長手方向と直行する方向に配列されて設置され、1組の第1の巻取機202a及び設置用ローラ208が、貯留部材の12の長手方向の端部側にそれぞれ、貯留部材12の長手方向と直行する方向に移動可能に配置された構成としてもよい。この構成により、1組の第1の巻取機202a及び設置用ローラ208を図中上下方向に移動させて、各貯留部材12の回収用フィルムを巻き取って、各貯留部材12から微細藻類を回収することができる。 Here, one set of the first windingmachine 202 and the first recovery member is not limited to the configuration provided corresponding to one storage member, and the one set of the first winding machine 202 and the first collection member The first recovery member may be configured to perform recovery with a plurality of storage members.
For example, as shown in FIG. 38, a plurality ofstorage members 12 are arranged in a direction orthogonal to the longitudinal direction of the storage member 12 and installed, and one set of the first winding machine 202a and the installation roller 208 are It is good also as composition arranged so that movement is possible in the direction which intersects perpendicularly with the longitudinal direction of storage member 12, respectively in the end part side of the longitudinal direction 12 of storage member. According to this configuration, one set of the first winding machine 202a and the installation roller 208 are moved in the vertical direction in the drawing to wind up the recovery film of each storage member 12 and the microalgae from each storage member 12 It can be recovered.
例えば、図38に示すように、複数の貯留部材12が、貯留部材12の長手方向と直行する方向に配列されて設置され、1組の第1の巻取機202a及び設置用ローラ208が、貯留部材の12の長手方向の端部側にそれぞれ、貯留部材12の長手方向と直行する方向に移動可能に配置された構成としてもよい。この構成により、1組の第1の巻取機202a及び設置用ローラ208を図中上下方向に移動させて、各貯留部材12の回収用フィルムを巻き取って、各貯留部材12から微細藻類を回収することができる。 Here, one set of the first winding
For example, as shown in FIG. 38, a plurality of
また、図38に示すように、貯留部材12の長手方向と直行する方向に配列された複数の貯留部材12を含む貯留部材群220を、貯留部材12の長手方向に配列して設置し、各貯留部材群220の間に第1の巻取機202を配置する構成としてもよい。この場合、図中左の貯留部材群220において設置用ローラ208として利用される第1の巻取機を、図中真ん中の貯留部材群220における第1の巻取機202bとして用いてもよい。その際、図中真ん中の貯留部材群220の右に隣接して配置される第1の巻取機202cは、第1の巻取機202bと組をなす設置用ローラ208として用いることができる。
Further, as shown in FIG. 38, a storage member group 220 including a plurality of storage members 12 arranged in a direction orthogonal to the longitudinal direction of the storage members 12 is arranged and installed in the longitudinal direction of the storage member 12 The first winder 202 may be disposed between the storage member group 220. In this case, the first winding machine used as the installation roller 208 in the storage member group 220 on the left in the drawing may be used as the first winding machine 202 b in the storage member group 220 in the middle of the drawing. At that time, the first winding machine 202c disposed adjacent to the right of the storage member group 220 in the middle in the figure can be used as an installation roller 208 which forms a pair with the first winding machine 202b.
なお、図示例においては、得られた微細藻類Pを回収用フィルムから剥離して回収する構成としたが、これに限定はされず、微細藻類Pを回収用フィルムと共に、回収して、そのまま燃料として使用することもできる。
In addition, in the example of illustration, although it was set as the structure which peels and collect | recovers the obtained micro algae P from the film for collection | recovery, it is not limited to this, The micro algae P is collect | recovered with the film for collection, It can also be used as
このようにして得られた培養物(バイオフィルム、藻体)は、その後の運搬、又はその後の燃料としての利用や、培養物(バイオフィルム、藻体)中の有効成分の抽出及び精製などの作業を容易にするために、更に含水分を少なくする乾燥処理を行ってもよい。最終的に得られる培養物(バイオフィルム、藻体)の含水分としては80重量%以下であることが好ましく、50重量%以下であることが更に好ましく、20重量%以下であることが特に好ましい。
The culture (biofilm, algal cells) thus obtained is then transported or used as a fuel thereafter, and extraction and purification of the active ingredient in the culture (biofilm, algal cells) In order to make the process easy, a drying process may be performed to further reduce the water content. The water content of the finally obtained culture (biofilm, algae) is preferably 80% by weight or less, more preferably 50% by weight or less, particularly preferably 20% by weight or less .
このようにして得られた培養物(バイオフィルム、藻体)とフィルムの一体物はそのまま燃料として用いることもできる。なおこの際には培養物(バイオフィルム、藻体)が十分に乾燥されていることが望ましい。
The integral product of the culture (biofilm, algal cells) and film thus obtained can also be used as a fuel as it is. At this time, it is desirable that the culture (biofilm, algal cells) be sufficiently dried.
また、一旦少なくとも培養液の一部を減少させることで培養物(バイオフィルム、藻体)を得たのちに、これを回収せずに、再度、培養液、必要に応じて培養の種藻となる微細藻類を追加して培養及び回収工程を繰り返すことで、より多量の培養物(厚いバイオフィルム、藻体)を得ることもできる。この操作の繰り返しは、1回でも複数回でも構わない。このような工程を行うことで、1回当たりの回収工程で得られる藻類バイオマスの量が増加するために、効率的である。
In addition, once the culture (biofilm, algal cells) is obtained by reducing at least a part of the culture solution, the culture solution is collected again, and if necessary, the culture seed algae and the like without collecting it. It is also possible to obtain a larger amount of culture (thick biofilm, algal cells) by repeating the culture and recovery steps by adding such microalgae. This operation may be repeated once or a plurality of times. Performing such a process is efficient because the amount of algal biomass obtained in one recovery process increases.
(含水率)
本発明での含水率とは、回収物中に含まれる水分の重量を、回収物の重量で割って、100を掛けたものである。本発明での微細藻類バイオフィルムの含水率の上限は、特に限定されないが、98質量%未満が好ましく、95質量%以下がより好ましく、88質量%以下が特に好ましい。 (Water content)
The moisture content in the present invention is the weight of the moisture contained in the recovered product divided by the weight of the recovered product and multiplied by 100. The upper limit of the water content of the microalgal biofilm in the present invention is not particularly limited, but is preferably less than 98% by mass, more preferably 95% by mass or less, and particularly preferably 88% by mass or less.
本発明での含水率とは、回収物中に含まれる水分の重量を、回収物の重量で割って、100を掛けたものである。本発明での微細藻類バイオフィルムの含水率の上限は、特に限定されないが、98質量%未満が好ましく、95質量%以下がより好ましく、88質量%以下が特に好ましい。 (Water content)
The moisture content in the present invention is the weight of the moisture contained in the recovered product divided by the weight of the recovered product and multiplied by 100. The upper limit of the water content of the microalgal biofilm in the present invention is not particularly limited, but is preferably less than 98% by mass, more preferably 95% by mass or less, and particularly preferably 88% by mass or less.
本発明の培養及び回収方法に従って培養した微細藻類バイオフィルムの含水率は、前述の回収方法で水面上の藻体を回収した状態でも通常、95~80質量%程度である。更に遠心分離機で処理することで90~75質量%程度にすることが可能である。分散培養で培養した場合は、藻体の大部分は水中に存在するため、前述のような回収方法ではほとんど回収ができない。そのため、培養液を遠心分離機を用いて微細藻類を回収するなどの方法が用いられるが、その場合でも含水率は、一般的に90質量%以上とされ、本発明での培養法によって得られた液面上バイオフィルムの含水率は、それよりも低く、従来法と比べて優れている点である。なお、フィルム状構造体よりも、泡状構造体、襞状構造体等を含む三次元状構造体の方が含水率は低い。これは、三次元状構造体の方が液面から離れており、かつ、光源に近く、ある程度の乾燥が進行していることが原因と推定している。また、含水率は、バイオフィルムの部位によってばらつきがあるものと推定している。例えば、液面と接触している部位の含水率は高く、液面と接触していない部位の含水率は低いと考えられる。上記、含水率は、液面上のバイオフィルムを回収し、その回収物の面積が少なくとも10cm2以上の場合である。また、本発明の乾燥後の含水率とは異なる。
The moisture content of the microalgal biofilm cultured according to the culture and recovery method of the present invention is usually about 95 to 80% by mass even in the state where the algal cells on the water surface are recovered by the aforementioned recovery method. Furthermore, it is possible to make it about 90-75 mass% by processing with a centrifuge. In the case of culture by dispersion culture, most of the algal cells are present in water, and thus recovery is almost impossible with the above-mentioned recovery method. Therefore, methods such as recovering microalgae using a centrifuge with a culture solution are used, but even in that case, the water content is generally 90% by mass or more, and it is obtained by the culture method of the present invention. The moisture content of the above-liquid surface biofilm is lower than that and superior to conventional methods. In addition, the moisture content is lower in the three-dimensional structure including the foam structure, the scissor structure and the like than the film structure. It is presumed that this is because the three-dimensional structure is more distant from the liquid surface and closer to the light source, and the drying progresses to some extent. Also, it is estimated that the moisture content varies depending on the site of the biofilm. For example, it is considered that the water content of the portion in contact with the liquid surface is high, and the water content of the portion not in contact with the liquid surface is low. The water content is the case where the biofilm on the liquid surface is recovered, and the area of the recovered matter is at least 10 cm 2 or more. Also, it is different from the moisture content after drying of the present invention.
[藻類バイオマスの製造方法及び藻類バイオマス]
上述の微細藻類の培養物の培養及び回収方法を使用することにより、藻類バイオマスを製造することができる。
本発明での藻類バイオマスとは、化石資源を除いた再生可能な生物由来の有機性資源をいい、例えば、生物由来の物質、食料、資材、燃料、資源などをあげることができる。藻類バイオマスには、微細藻類自体(バイオフィルム状であってもよい)、有用物質を採取した後の微細藻類残滓が含まれる。
なお、本発明での有用物質とは、微細藻類由来のバイオマスの一種で、バイオマスから抽出工程、精製工程などの工程を経由することによって得られる産業にとって有益な物質の総称である。この様な物質として、医薬品や化粧品や健康食品などの最終生成物や中間物や原料、化学合成物の原料、中間物や最終生成物、炭化水素化合物、更にはオイル、アルコール化合物、水素やメタンなどのエネルギー代替物質、酵素、タンパク、核酸、糖やDHAなどの脂質化合物、アスタキサンチンなどを含む。有用物質は、有用物質蓄積工程によって、微細藻類中に蓄積させることもできる。 [Method for producing algal biomass and algal biomass]
Algal biomass can be produced by using the above-described culture and recovery method of microalgae.
The algal biomass in the present invention means organic resources derived from renewable organisms excluding fossil resources, and examples thereof include biological materials, foods, materials, fuels, resources and the like. The algal biomass includes microalga itself (which may be in the form of a biofilm), microalgal residue after collecting useful substances.
The useful substance in the present invention is a kind of biomass derived from microalgae, which is a generic term for substances useful for the industry obtained from the biomass through steps such as an extraction step and a purification step. As such substances, final products and intermediates and raw materials such as pharmaceuticals, cosmetics and health foods, raw materials of chemical compounds, intermediates and final products, hydrocarbon compounds, further oils, alcohol compounds, hydrogen and methane And energy substitutes such as enzymes, proteins, nucleic acids, sugars and lipid compounds such as DHA, astaxanthin etc. The useful substance can also be accumulated in the microalga by the useful substance accumulation step.
上述の微細藻類の培養物の培養及び回収方法を使用することにより、藻類バイオマスを製造することができる。
本発明での藻類バイオマスとは、化石資源を除いた再生可能な生物由来の有機性資源をいい、例えば、生物由来の物質、食料、資材、燃料、資源などをあげることができる。藻類バイオマスには、微細藻類自体(バイオフィルム状であってもよい)、有用物質を採取した後の微細藻類残滓が含まれる。
なお、本発明での有用物質とは、微細藻類由来のバイオマスの一種で、バイオマスから抽出工程、精製工程などの工程を経由することによって得られる産業にとって有益な物質の総称である。この様な物質として、医薬品や化粧品や健康食品などの最終生成物や中間物や原料、化学合成物の原料、中間物や最終生成物、炭化水素化合物、更にはオイル、アルコール化合物、水素やメタンなどのエネルギー代替物質、酵素、タンパク、核酸、糖やDHAなどの脂質化合物、アスタキサンチンなどを含む。有用物質は、有用物質蓄積工程によって、微細藻類中に蓄積させることもできる。 [Method for producing algal biomass and algal biomass]
Algal biomass can be produced by using the above-described culture and recovery method of microalgae.
The algal biomass in the present invention means organic resources derived from renewable organisms excluding fossil resources, and examples thereof include biological materials, foods, materials, fuels, resources and the like. The algal biomass includes microalga itself (which may be in the form of a biofilm), microalgal residue after collecting useful substances.
The useful substance in the present invention is a kind of biomass derived from microalgae, which is a generic term for substances useful for the industry obtained from the biomass through steps such as an extraction step and a purification step. As such substances, final products and intermediates and raw materials such as pharmaceuticals, cosmetics and health foods, raw materials of chemical compounds, intermediates and final products, hydrocarbon compounds, further oils, alcohol compounds, hydrogen and methane And energy substitutes such as enzymes, proteins, nucleic acids, sugars and lipid compounds such as DHA, astaxanthin etc. The useful substance can also be accumulated in the microalga by the useful substance accumulation step.
[藻類バイオ燃料の製造方法及び藻類バイオ燃料]
上述の微細藻類の培養物の培養及び回収方法を使用することにより、藻類バイオ燃料を製造することができる。
本発明での藻類バイオ燃料とは、微細藻類乾燥物、特に内部に可燃性のオイル分を含有するもの、又は微細藻類乾燥物から得られた可燃性の流動性物質(オイル)のことであり、主として、炭素、水素から構成された化合物のことであり、場合によっては、酸素原子、窒素原子などを含む物質のことである。オイルは、一般的に混合物であり、ヘキサンやアセトンなどの低極性溶媒を用いて抽出される物質である。その組成は、炭化水素化合物や脂肪酸、トリグリセリドなどから構成される場合や、これらから選ばれる複数種の組成から構成されている場合もある。また、エステル化して、バイオディーゼルとして使用することもできる。 [Method for producing algal biofuel and algal biofuel]
Algal biofuels can be manufactured by using the above-described culture and recovery method of microalgae culture.
The algal biofuel in the present invention is a microalgal dry matter, particularly one containing a flammable oil component inside, or a flammable flowable substance (oil) obtained from the microalgal dry matter. , A compound mainly composed of carbon and hydrogen, and in some cases, a substance containing an oxygen atom, a nitrogen atom and the like. An oil is generally a mixture and is a substance that is extracted using a low polarity solvent such as hexane or acetone. The composition may be composed of a hydrocarbon compound, fatty acid, triglyceride or the like, or may be composed of a plurality of compositions selected from these. It can also be esterified and used as biodiesel.
上述の微細藻類の培養物の培養及び回収方法を使用することにより、藻類バイオ燃料を製造することができる。
本発明での藻類バイオ燃料とは、微細藻類乾燥物、特に内部に可燃性のオイル分を含有するもの、又は微細藻類乾燥物から得られた可燃性の流動性物質(オイル)のことであり、主として、炭素、水素から構成された化合物のことであり、場合によっては、酸素原子、窒素原子などを含む物質のことである。オイルは、一般的に混合物であり、ヘキサンやアセトンなどの低極性溶媒を用いて抽出される物質である。その組成は、炭化水素化合物や脂肪酸、トリグリセリドなどから構成される場合や、これらから選ばれる複数種の組成から構成されている場合もある。また、エステル化して、バイオディーゼルとして使用することもできる。 [Method for producing algal biofuel and algal biofuel]
Algal biofuels can be manufactured by using the above-described culture and recovery method of microalgae culture.
The algal biofuel in the present invention is a microalgal dry matter, particularly one containing a flammable oil component inside, or a flammable flowable substance (oil) obtained from the microalgal dry matter. , A compound mainly composed of carbon and hydrogen, and in some cases, a substance containing an oxygen atom, a nitrogen atom and the like. An oil is generally a mixture and is a substance that is extracted using a low polarity solvent such as hexane or acetone. The composition may be composed of a hydrocarbon compound, fatty acid, triglyceride or the like, or may be composed of a plurality of compositions selected from these. It can also be esterified and used as biodiesel.
微細藻類回収物中に含まれるオイルを採取する方法としては、本発明の効果を損なうものでなければ特に制限されない。オイルの一般的な抽出方法は、最終回収物を加熱乾燥させて、乾燥藻体を得た後、細胞破砕を行い、有機溶媒を用いてオイルを抽出する。抽出したオイルは、一般的に、クロロフィルなどの不純物を含むため精製を行う。精製は、シリカゲルカラムクロマトグラフィーによるもの、蒸留(例えば、特表2010-539300に記載の蒸留方法)によるものなどがある。本発明でもこの様な方法を用いることができる。また、超音波処理によって微細藻類を破砕したり、プロテアーゼや酵素などによって微細藻類を溶解したりした後、有機溶媒を用いて藻体内のオイルを抽出する方法もある(例えば、特表2010-530741に記載の方法)。本発明でもこの様な方法を用いることができる。また本発明に係るバイオフィルムは、バイオマスとしての有用性の観点から、オイル含有量が高いことが好ましい。具体的には、バイオフィルムの乾燥藻体あたりのオイル含有量が5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが特に好ましい。バイオフィルムの乾燥藻体あたりのオイル含有量は通常80質量%以下である。
The method for collecting the oil contained in the microalgae recovery is not particularly limited as long as it does not impair the effect of the present invention. In a general extraction method of oil, the final collected product is dried by heating to obtain a dried algal cell, then the cells are disrupted and the oil is extracted using an organic solvent. The extracted oil is generally purified because it contains impurities such as chlorophyll. Purification may be by silica gel column chromatography, by distillation (for example, by the distillation method described in JP-A-2010-539300). Such a method can also be used in the present invention. In addition, there is also a method of extracting the oil in the algal body using an organic solvent after crushing the microalga by sonication or dissolving the microalga with a protease, an enzyme or the like (for example, JP-A-2010-530741) The method described in). Such a method can also be used in the present invention. Moreover, it is preferable that the biofilm which concerns on this invention has high oil content from a viewpoint of the usefulness as biomass. Specifically, the oil content per dry algal body of the biofilm is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more. The oil content per dry algal body of the biofilm is usually 80% by mass or less.
以下の実施例により本発明を更に具体的に説明するが、本発明は以下の実施例によって限定されるものではない。
The present invention will be more specifically described by the following examples, but the present invention is not limited by the following examples.
[実施例1]
(第1の前培養)
第1の前培養として、PS(polystyrene;ポリスチレン)(28号,アズワン株式会社;外寸法 63mm×50mm×25.5mm;品番 4-5605-05)(本実施例において、以下「PS製ケース28号」という。)にCSiFF04培地(下記する表3に培地組成を示す。)40mLと、微細藻類 クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)(藻体濃度0.032mg/mL)との混合物を入れた。培養混合物を入れたPS製ケース28号を真空デシケーター(VS型,アズワン株式会社;外寸法 300mm×300mm×170mm;品番 1-070-01)中に入れ、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面の照度 15000lx、明期 12時間、暗期 12時間の証明サイクルで、微細藻類の静置培養を行った(第1の前培養)。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。第1の前培養の培養日数は14日とした。培養開始から14日後、真空デシケーターからPS製ケース28号を取り出し、PS製ケース28号の短径と同じ長さのナイロンフィルム(厚さ1mm)を用いて、培地液面上に形成された微細藻類バイオフィルムを回収した。回収した微細藻類バイオフィルムを5mLホモジナイズ用チューブ(株式会社トミー精工、TM-655)に、少量のCSiFF04培地と共に入れ、ビーズ式細胞破砕装置MS-100(株式会社トミー精工)にセットし、4200rpmで20秒間のホモジナイズ処理を3回行い、微細藻類懸濁液を得た。ただし、ビーズは使用しなかった。 Example 1
(First pre-culture)
As a first pre-culture, PS (polystyrene; polystyrene) (No. 28, As One Corp .; outer dimensions 63 mm × 50 mm × 25.5 mm; product number 4-5605-05) (in this example,case 28 made of PS) 40 mL of CSiFF 04 medium (the medium composition is shown in Table 3 below) and the microalga Chlorococcum sp. A mixture with the FFG 039 strain (FERM BP-22262 strain) (alga concentration 0.032 mg / mL) was added. The PS case 28 containing the culture mixture is placed in a vacuum desiccator (VS type, As One Co., Ltd .; outer dimensions 300 mm × 300 mm × 170 mm; product number 1-070-01), temperature 23 ° C., carbon dioxide concentration 5% by volume Under the conditions, stationary cultures of microalgae were performed using a day white fluorescent lamp, at a light intensity of 15000 lx, a light period of 12 hours, and a dark period of 12 hours with a proof cycle of 15000 lx of the medium surface (first preculture). The culture temperature was controlled using an air conditioner set at 23 ° C. The number of days of culture for the first preculture was 14 days. Fourteen days after the start of culture, the PS case No. 28 was taken out of the vacuum desiccator, and a nylon film (thickness 1 mm) having the same length as the short diameter of the PS case No. 28 was used. The algal biofilm was recovered. Put the collected microalgal biofilm into a 5 mL tube for homogenization (Tomy Seiko Co., Ltd., TM-655) together with a small amount of CSiFF04 medium, set it in a bead cell disrupter MS-100 (Tomy Seiko Co., Ltd.), and use 4200 rpm The homogenization treatment for 20 seconds was performed three times to obtain a microalgal suspension. However, beads were not used.
(第1の前培養)
第1の前培養として、PS(polystyrene;ポリスチレン)(28号,アズワン株式会社;外寸法 63mm×50mm×25.5mm;品番 4-5605-05)(本実施例において、以下「PS製ケース28号」という。)にCSiFF04培地(下記する表3に培地組成を示す。)40mLと、微細藻類 クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)(藻体濃度0.032mg/mL)との混合物を入れた。培養混合物を入れたPS製ケース28号を真空デシケーター(VS型,アズワン株式会社;外寸法 300mm×300mm×170mm;品番 1-070-01)中に入れ、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面の照度 15000lx、明期 12時間、暗期 12時間の証明サイクルで、微細藻類の静置培養を行った(第1の前培養)。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。第1の前培養の培養日数は14日とした。培養開始から14日後、真空デシケーターからPS製ケース28号を取り出し、PS製ケース28号の短径と同じ長さのナイロンフィルム(厚さ1mm)を用いて、培地液面上に形成された微細藻類バイオフィルムを回収した。回収した微細藻類バイオフィルムを5mLホモジナイズ用チューブ(株式会社トミー精工、TM-655)に、少量のCSiFF04培地と共に入れ、ビーズ式細胞破砕装置MS-100(株式会社トミー精工)にセットし、4200rpmで20秒間のホモジナイズ処理を3回行い、微細藻類懸濁液を得た。ただし、ビーズは使用しなかった。 Example 1
(First pre-culture)
As a first pre-culture, PS (polystyrene; polystyrene) (No. 28, As One Corp .; outer dimensions 63 mm × 50 mm × 25.5 mm; product number 4-5605-05) (in this example,
(第2の前培養)第1の前培養で得られた微細藻類の懸濁液を用いて、第1の前培養と同様にして、第2の前培養を行った。ただし、培養器にシールボーイ(No.3,アズワン株式会社;外寸法 319mm×230mm×113mm;品番 4-5613-03)を用い、900mLの藻体分散液を用いて微細藻類の静置培養を行った(第二の前培養)。なお、真空デシケーターは用いていない。第2の前培養の培養日数は14日とした。培養開始から14日後、培地液面上に形成された微細藻類バイオフィルムを回収し、第1の前培養と同様の処理を行い、微細藻類の懸濁液を得た。ただし、100mLプラスチック製容器を用いて、藻体の分散は手で行った。
(Second Pre-Culture) A second pre-culture was performed using the suspension of microalgae obtained in the first pre-culture in the same manner as the first pre-culture. However, using Seal Boy (No. 3, As One Co., Ltd .; external dimensions 319 mm × 230 mm × 113 mm; product number 4-5613-03) for the culture vessel, stationary culture of microalgae using 900 mL algal cell dispersion Done (second preculture). A vacuum desiccator is not used. The number of culture days for the second preculture was 14 days. Fourteen days after the start of culture, the microalgal biofilm formed on the liquid surface of the culture medium was recovered, and the same treatment as in the first pre-culture was performed to obtain a microalgal suspension. However, algal cells were dispersed manually using a 100 mL plastic container.
(第3の前培養)鉄筋コンクリート製の建物の中の部屋に設置したメタルラック上の設置面の上に設置したプラ舟ジャンボ180に、27LのCSiFF04培地(培養液)を入れ(水深5cm)、細胞数が5×105個/mLになるように、第2の前培養によって準備した種藻を水槽内に入れた。水槽の上部の淵に、両面テープを貼り付け、更に、テキナシ(第二の構造体、農業用フィルム、シーアイ化成株式会社、水滴形成防止フィルム)で水槽の上面開口部をカバーして培養器(貯留部材)をとした。光源として蛍光灯を用いての液面浮遊培養を開始した。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。二酸化炭素は、コンプレッサーと二酸化炭素ボンベとを用いて、1%濃度になるようにガスを混合後、培養器(貯留部材)の中の培養液液面とテキナシとの間の気層へと導入した。14日後、農業用フィルムを除去すると、液面上に微細藻類からなるフィルム状構造物の形成が見られた。回収は、第1の前培養と同様の方法で行い、その一部を次の本培養の投入用藻体として使用した。
(Third pre-culture) Put 27L CSiFF 04 culture medium (culture medium) in plastic tub jumbo 180 installed on the installation surface on the metal rack installed in the room in the reinforced concrete building (water depth 5cm), The seed algae prepared by the second pre-culture was placed in a water tank so that the number of cells was 5 × 10 5 cells / mL. Attach a double-sided tape to the ridge of the upper part of the water tank, and cover the top opening of the water tank with a tangy pear (second structure, agricultural film, Cai Kasei Co., Ltd., water droplet formation prevention film) Storage member). Liquid surface floating culture was started using a fluorescent lamp as a light source. The culture temperature was controlled using an air conditioner set at 23 ° C. Carbon dioxide is introduced into the air layer between the liquid surface of the culture solution in the incubator (storage member) and the groundnut after mixing the gas to a 1% concentration using a compressor and a carbon dioxide cylinder did. After 14 days, when the agricultural film was removed, formation of a film-like structure consisting of microalgae was observed on the liquid surface. The recovery was carried out in the same manner as in the first pre-culture, and a part thereof was used as an input algal body for the next main culture.
(本培養)地面に畝(凹状の支持体20n)を形成して、そこに農業用フィルム(第3のフィルム26j)を敷き、更にそこに重ねて農業用フィルム(第1のフィルム22f)を敷いて、長辺5m×短辺1mの長方形状の貯留部材27を形成した。
次いで、貯留部材27の上を跨ぐように貯留部材27の短辺と平行に1m間隔で設置した半円形の支柱と農業用フィルムとを用いて水槽を覆うトンネル状(アーチ状)の遮蔽部材14cを配置し、培養装置10pを作製した(図28参照)。
貯留部材12pの液体保持部にCSiFF04培地(培養液)を250L入れた。培養装置10p内の遮蔽部材14cと培養液Mの液面との間には気層Nが存在した。
培養液に、前培養したクロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)の培養用種藻を、細胞数が5×104個/mLになるように添加した。種藻を添加した後、藻体をほぼ均一に分散させるために攪拌を行った。なお、藻体の分散を行った後には、攪拌を行わず、静置状態で培養した。二酸化炭素は、本実施例の第3の前培養と同様に、コンプレッサーと二酸化炭素ボンベとを用いて、1%濃度になるようにガスを混合後、トンネル状構造体と培地(培養液)の液面との間の気層へと導入した。また、蒸発に伴う培養液中の水の減少を防止するために、必要に応じて蒸留水を添加した。
なお、CSiFF04培地の調製に際しては、N化合物、P化合物二種、Mg化合物、EDTA化合物、その他化合物の6種の高濃度培養液を調製後、この順番で1つずつ添加し、必要に応じて不要な沈殿物の形成の促進を避けるために攪拌を行った。
この状態で、14日間の培養を行い、培養液の液面と水槽の底面との間の藻体の少ない部位から、培養液の大部分をポンプで除去した。遮蔽部材14cの一部を開放することで、残った培養液を日中に自然乾燥させた(図29及び図30参照)。乾燥後の第1のフィルムの状態を図39に示した。
乾燥後、水槽の底面を構成していた農業用フィルムのうち培養液に接触していた方を第1の巻取機202を用いて巻き取ると同時に、フィルム上の乾燥藻体を剥奪し、乾燥藻体を集めた(図31参照)。 (Main culture) Form a weir (concave support 20n) on the ground, lay an agricultural film (third film 26j) there, and stack it there to form an agricultural film (first film 22f) A rectangular storage member 27 having a long side of 5 m and a short side of 1 m was formed.
Next, a tunnel-like (arch-like) shieldingmember 14c covering the water tank using semicircular columns installed at intervals of 1 m parallel to the short sides of the storage member 27 so as to straddle the storage member 27 Were placed to prepare a culture apparatus 10 p (see FIG. 28).
250 L of CSiFF 04 medium (culture fluid) was placed in the liquid holding portion of the storage member 12 p. An air layer N was present between the shieldingmember 14 c in the culture apparatus 10 p and the liquid surface of the culture solution M.
The culture medium was precultured with Chlorococcum sp. The culture seed algae of the FFG 039 strain (FERM BP-22262 strain) was added so that the cell number would be 5 × 10 4 cells / mL. After the seed algae was added, stirring was performed to disperse the algae almost uniformly. After the algal cells were dispersed, the cells were cultured in a stationary state without stirring. As in the third pre-incubation of this example, carbon dioxide is mixed with gas using a compressor and a carbon dioxide bomb so as to have a concentration of 1%, and then the tunnel-like structure and the medium (culture medium) It was introduced into the air layer between the liquid level. In addition, distilled water was added as needed to prevent the loss of water in the culture solution accompanying evaporation.
In addition, when preparing CSiFF04 medium, after preparing 6 kinds of high concentration culture broth of N compound, two kinds of P compounds, Mg compound, EDTA compound, and other compounds, add one by one in this order, if necessary Stirring was performed to avoid promoting formation of unwanted precipitates.
In this state, the culture was carried out for 14 days, and the majority of the culture solution was removed by a pump from the region with few algal cells between the liquid surface of the culture solution and the bottom of the water tank. The remaining culture solution was allowed to dry naturally during the day by opening a part of the shieldingmember 14c (see FIGS. 29 and 30). The state of the first film after drying is shown in FIG.
After drying, one of the agricultural films constituting the bottom of the water tank, which was in contact with the culture solution, is wound using thefirst winder 202, and at the same time, the dried algal cells on the film are stripped off. The dried algal cells were collected (see FIG. 31).
次いで、貯留部材27の上を跨ぐように貯留部材27の短辺と平行に1m間隔で設置した半円形の支柱と農業用フィルムとを用いて水槽を覆うトンネル状(アーチ状)の遮蔽部材14cを配置し、培養装置10pを作製した(図28参照)。
貯留部材12pの液体保持部にCSiFF04培地(培養液)を250L入れた。培養装置10p内の遮蔽部材14cと培養液Mの液面との間には気層Nが存在した。
培養液に、前培養したクロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)の培養用種藻を、細胞数が5×104個/mLになるように添加した。種藻を添加した後、藻体をほぼ均一に分散させるために攪拌を行った。なお、藻体の分散を行った後には、攪拌を行わず、静置状態で培養した。二酸化炭素は、本実施例の第3の前培養と同様に、コンプレッサーと二酸化炭素ボンベとを用いて、1%濃度になるようにガスを混合後、トンネル状構造体と培地(培養液)の液面との間の気層へと導入した。また、蒸発に伴う培養液中の水の減少を防止するために、必要に応じて蒸留水を添加した。
なお、CSiFF04培地の調製に際しては、N化合物、P化合物二種、Mg化合物、EDTA化合物、その他化合物の6種の高濃度培養液を調製後、この順番で1つずつ添加し、必要に応じて不要な沈殿物の形成の促進を避けるために攪拌を行った。
この状態で、14日間の培養を行い、培養液の液面と水槽の底面との間の藻体の少ない部位から、培養液の大部分をポンプで除去した。遮蔽部材14cの一部を開放することで、残った培養液を日中に自然乾燥させた(図29及び図30参照)。乾燥後の第1のフィルムの状態を図39に示した。
乾燥後、水槽の底面を構成していた農業用フィルムのうち培養液に接触していた方を第1の巻取機202を用いて巻き取ると同時に、フィルム上の乾燥藻体を剥奪し、乾燥藻体を集めた(図31参照)。 (Main culture) Form a weir (
Next, a tunnel-like (arch-like) shielding
250 L of CSiFF 04 medium (culture fluid) was placed in the liquid holding portion of the storage member 12 p. An air layer N was present between the shielding
The culture medium was precultured with Chlorococcum sp. The culture seed algae of the FFG 039 strain (FERM BP-22262 strain) was added so that the cell number would be 5 × 10 4 cells / mL. After the seed algae was added, stirring was performed to disperse the algae almost uniformly. After the algal cells were dispersed, the cells were cultured in a stationary state without stirring. As in the third pre-incubation of this example, carbon dioxide is mixed with gas using a compressor and a carbon dioxide bomb so as to have a concentration of 1%, and then the tunnel-like structure and the medium (culture medium) It was introduced into the air layer between the liquid level. In addition, distilled water was added as needed to prevent the loss of water in the culture solution accompanying evaporation.
In addition, when preparing CSiFF04 medium, after preparing 6 kinds of high concentration culture broth of N compound, two kinds of P compounds, Mg compound, EDTA compound, and other compounds, add one by one in this order, if necessary Stirring was performed to avoid promoting formation of unwanted precipitates.
In this state, the culture was carried out for 14 days, and the majority of the culture solution was removed by a pump from the region with few algal cells between the liquid surface of the culture solution and the bottom of the water tank. The remaining culture solution was allowed to dry naturally during the day by opening a part of the shielding
After drying, one of the agricultural films constituting the bottom of the water tank, which was in contact with the culture solution, is wound using the
[実施例2]
(第1の前培養、第2の前培養及び第3の前培養)実施例1と同様にして、第1の前培養、第2の前培養及び第3の前培養を行った。
(本培養)屋外に設置された、長辺3m×短辺1.2mの長方形状のコンクリート製水槽に、第1のフィルムとしてプラスチックフィルム(テキナシ)1枚を敷いて、貯留部材を形成した。なお、コンクリート製水槽は金魚の飼育に使用されていたものであり、貯留部材を作製する前に水槽を十分に洗浄した。
貯留部材にCSiFF04培地(本実施例において、単に「培養液」という場合がある。)を200L入れ、貯留部材の上面開口部全面を覆うように遮蔽部材としてプラスチックフィルムのカバーを被せ、培養装置を構成した。培養装置内の培養液の液面とプラスチックフィルムのカバーとの間には気層が存在した。
培養液に、前培養したクロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)の培養用種藻を、細胞数が5×104個/mLになるように添加し、藻体をほぼ均一に分散させるために攪拌を行った。その後、実施例1と同様にして本培養を14日間行い、培養液除去、自然乾燥、第1のフィルムの巻取りと第1のフィルムからの乾燥藻体の剥奪を行うことで、乾燥藻体を得ることができた。 Example 2
(First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed.
(Main culture) A storage member was formed by laying one plastic film (Tekinasi) as a first film on a rectangular concrete water tank having a long side of 3 m and a short side of 1.2 m, which was installed outdoors. The concrete water tank was used for breeding goldfish, and the water tank was sufficiently cleaned before producing the storage member.
Put 200L of CSiFF04 medium (sometimes simply referred to as "culture solution" in this example) in the storage member, cover the plastic film cover as a shielding member so as to cover the entire top opening of the storage member, Configured. An air layer was present between the liquid surface of the culture solution in the culture apparatus and the plastic film cover.
The culture medium was precultured with Chlorococcum sp. The culture seed algae of the FFG 039 strain (FERM BP-22262 strain) was added so that the cell number would be 5 × 10 4 cells / mL, and agitation was performed to disperse the algae bodies almost uniformly. Thereafter, the main culture is carried out for 14 days in the same manner as in Example 1, and the dried algal cells are removed by removing the culture solution, naturally drying, winding the first film and stripping the dried algal cells from the first film. I was able to get
(第1の前培養、第2の前培養及び第3の前培養)実施例1と同様にして、第1の前培養、第2の前培養及び第3の前培養を行った。
(本培養)屋外に設置された、長辺3m×短辺1.2mの長方形状のコンクリート製水槽に、第1のフィルムとしてプラスチックフィルム(テキナシ)1枚を敷いて、貯留部材を形成した。なお、コンクリート製水槽は金魚の飼育に使用されていたものであり、貯留部材を作製する前に水槽を十分に洗浄した。
貯留部材にCSiFF04培地(本実施例において、単に「培養液」という場合がある。)を200L入れ、貯留部材の上面開口部全面を覆うように遮蔽部材としてプラスチックフィルムのカバーを被せ、培養装置を構成した。培養装置内の培養液の液面とプラスチックフィルムのカバーとの間には気層が存在した。
培養液に、前培養したクロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)の培養用種藻を、細胞数が5×104個/mLになるように添加し、藻体をほぼ均一に分散させるために攪拌を行った。その後、実施例1と同様にして本培養を14日間行い、培養液除去、自然乾燥、第1のフィルムの巻取りと第1のフィルムからの乾燥藻体の剥奪を行うことで、乾燥藻体を得ることができた。 Example 2
(First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed.
(Main culture) A storage member was formed by laying one plastic film (Tekinasi) as a first film on a rectangular concrete water tank having a long side of 3 m and a short side of 1.2 m, which was installed outdoors. The concrete water tank was used for breeding goldfish, and the water tank was sufficiently cleaned before producing the storage member.
Put 200L of CSiFF04 medium (sometimes simply referred to as "culture solution" in this example) in the storage member, cover the plastic film cover as a shielding member so as to cover the entire top opening of the storage member, Configured. An air layer was present between the liquid surface of the culture solution in the culture apparatus and the plastic film cover.
The culture medium was precultured with Chlorococcum sp. The culture seed algae of the FFG 039 strain (FERM BP-22262 strain) was added so that the cell number would be 5 × 10 4 cells / mL, and agitation was performed to disperse the algae bodies almost uniformly. Thereafter, the main culture is carried out for 14 days in the same manner as in Example 1, and the dried algal cells are removed by removing the culture solution, naturally drying, winding the first film and stripping the dried algal cells from the first film. I was able to get
[比較例1]
(第1の前培養、第2の前培養及び第3の前培養)実施例1と同様にして、第1の前培養、第2の前培養及び第3の前培養を行った。
(本培養)実施例1と同様にして本培養を行った。培養開始2週間後、液面上に微細藻類からなるバイオフィルムが形成されたので、培養液の液量を減らすことなく、培養槽の底面を構成していた農業用フィルムのうち培養液に接触していた方をそのまま引き抜いた。その結果、培養槽の底面に堆積していた微細藻類及び培養液の液面上のごく一部の微細藻類バイオフィルムを回収することができたが、大部分の液面上の微細藻類を回収することはできなかった。 Comparative Example 1
(First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed.
(Main culture) Main culture was performed in the same manner as in Example 1. Two weeks after the start of culture, a biofilm consisting of microalgae was formed on the liquid surface, so the culture solution is contacted with the agricultural film constituting the bottom of the culture tank without reducing the volume of the culture solution. I pulled out the one who was doing it. As a result, it was possible to recover microalgae deposited on the bottom of the culture tank and a very small amount of microalgal biofilm on the liquid surface of the culture solution, but most of the microalgae on the liquid surface were recovered I could not do that.
(第1の前培養、第2の前培養及び第3の前培養)実施例1と同様にして、第1の前培養、第2の前培養及び第3の前培養を行った。
(本培養)実施例1と同様にして本培養を行った。培養開始2週間後、液面上に微細藻類からなるバイオフィルムが形成されたので、培養液の液量を減らすことなく、培養槽の底面を構成していた農業用フィルムのうち培養液に接触していた方をそのまま引き抜いた。その結果、培養槽の底面に堆積していた微細藻類及び培養液の液面上のごく一部の微細藻類バイオフィルムを回収することができたが、大部分の液面上の微細藻類を回収することはできなかった。 Comparative Example 1
(First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed.
(Main culture) Main culture was performed in the same manner as in Example 1. Two weeks after the start of culture, a biofilm consisting of microalgae was formed on the liquid surface, so the culture solution is contacted with the agricultural film constituting the bottom of the culture tank without reducing the volume of the culture solution. I pulled out the one who was doing it. As a result, it was possible to recover microalgae deposited on the bottom of the culture tank and a very small amount of microalgal biofilm on the liquid surface of the culture solution, but most of the microalgae on the liquid surface were recovered I could not do that.
[実施例3]
(第1の前培養、第2の前培養及び第3の前培養)実施例1と同様にして、第1の前培養、第2の前培養及び第3の前培養を行った。
(1回目の本培養)培養装置を作製する際に、農業用フィルムを1枚しか使用しなかった点を除いて、実施例1と同様にして本培養を行った。培養開始2週間後、培養液の液面上に微細藻類からなるバイオフィルムが形成されたので、実施例1と同様の方法で培養液の液量を減らした後、蒸発によって培養液量を更に減らした。この状態で、培養槽の底を構成していた農業用フィルムを第1の巻取機で巻き取ると同時に農業用フィルム上の微細藻類を剥奪することで回収した。
(2回目の本培養)次に、設置用ローラを用いて、畝を形成した地面に再度農業用フィルムを敷いて培養装置を作製し(図32)、同様に培養を行い、培養液量を減少させた後、貯留部材を構成していた農業用フィルムを第1の巻取機で巻き取ると同時に農業用フィルム上の微細藻類を剥奪することで回収した。 [Example 3]
(First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed.
(First Main Culture) The main culture was performed in the same manner as in Example 1 except that only one agricultural film was used when producing the culture apparatus. Two weeks after the start of culture, a biofilm consisting of microalgae was formed on the liquid surface of the culture solution. Therefore, after reducing the liquid volume of the culture solution by the same method as in Example 1, the culture solution volume is further increased by evaporation. I reduced it. In this state, the agricultural film which constituted the bottom of the culture tank was wound up with a first winder and was simultaneously recovered by depriving the microalga on the agricultural film.
(Second time of main culture) Next, using an installation roller, a film for agriculture is spread again on the ground on which the ridges are formed to produce a culture apparatus (FIG. 32), and culture is carried out in the same manner. After the reduction, the agricultural film constituting the storage member was taken up by the first winding machine and recovered by simultaneously depriving the microalga on the agricultural film.
(第1の前培養、第2の前培養及び第3の前培養)実施例1と同様にして、第1の前培養、第2の前培養及び第3の前培養を行った。
(1回目の本培養)培養装置を作製する際に、農業用フィルムを1枚しか使用しなかった点を除いて、実施例1と同様にして本培養を行った。培養開始2週間後、培養液の液面上に微細藻類からなるバイオフィルムが形成されたので、実施例1と同様の方法で培養液の液量を減らした後、蒸発によって培養液量を更に減らした。この状態で、培養槽の底を構成していた農業用フィルムを第1の巻取機で巻き取ると同時に農業用フィルム上の微細藻類を剥奪することで回収した。
(2回目の本培養)次に、設置用ローラを用いて、畝を形成した地面に再度農業用フィルムを敷いて培養装置を作製し(図32)、同様に培養を行い、培養液量を減少させた後、貯留部材を構成していた農業用フィルムを第1の巻取機で巻き取ると同時に農業用フィルム上の微細藻類を剥奪することで回収した。 [Example 3]
(First Preculture, Second Preculture, and Third Preculture) In the same manner as in Example 1, the first preculture, the second preculture, and the third preculture were performed.
(First Main Culture) The main culture was performed in the same manner as in Example 1 except that only one agricultural film was used when producing the culture apparatus. Two weeks after the start of culture, a biofilm consisting of microalgae was formed on the liquid surface of the culture solution. Therefore, after reducing the liquid volume of the culture solution by the same method as in Example 1, the culture solution volume is further increased by evaporation. I reduced it. In this state, the agricultural film which constituted the bottom of the culture tank was wound up with a first winder and was simultaneously recovered by depriving the microalga on the agricultural film.
(Second time of main culture) Next, using an installation roller, a film for agriculture is spread again on the ground on which the ridges are formed to produce a culture apparatus (FIG. 32), and culture is carried out in the same manner. After the reduction, the agricultural film constituting the storage member was taken up by the first winding machine and recovered by simultaneously depriving the microalga on the agricultural film.
1回目の本培養により得られた乾燥藻体の単位質量あたり発熱量と2回目の本培養により得られた乾燥藻体の単位質量あたり発熱量とを比較した。その結果、2回目の本培養によって得られた乾燥藻体の単位質量あたり発熱量は、1回目の本培養によって得られた乾燥藻体の単位質量あたり発熱量よりも低かった。
1回目の本培養によって得られた乾燥藻体及び2回目の本培養によって得られた乾燥藻体を観察、対比すると、2回目の本培養によって得られた乾燥藻体には土壌が混入していた。混入した土壌によって、単位質量あたり発熱量が低下したことがわかった。また、土壌の混入は、1回目の本培養の後、巻き取った農業用フィルムの下部には土壌が付着していたが、上部に存在している微細藻類を回収した後に農業用フィルムを巻き取ったため、回収物には土壌が混入することはなかったが、巻き取り時に農業用フィルムの培養液に接触していた側と地面に接触していた側とが接触し、培養液に接触していた側に土壌の一部が付着し、この状態で畝状構造を形成した地面に農業用フィルムを敷いて培養装置を作製すると、貯留部材の内側、すなわち、農業用フィルムの培養液と接触する側に土壌が侵入し、この状態で本培養、培養液の部分除去、乾燥、農業用フィルムからの乾燥藻体の剥奪、回収を行ったために、回収物中に土壌が混入したものである。 The calorific value per unit mass of the dried algal cells obtained by the first main culture was compared with the calorific value per unit mass of the dried algal bodies obtained by the second main culture. As a result, the calorific value per unit mass of the dried algal cells obtained by the second main culture was lower than the calorific value per unit mass of the dry algal bodies obtained by the first main culture.
By observing and comparing the dried algal cells obtained by the first main culture and the dried algal bodies obtained by the second main culture, the dried algal bodies obtained by the second main culture are contaminated with soil. The It was found that due to the mixed soil, the calorific value per unit mass decreased. Moreover, although the soil had adhered to the lower part of the film for agriculture which wound up after the 1st main culture, the contamination of the soil wound the film for agriculture after collect | recovering the micro algae which exists in the upper part Although the soil did not contaminate the recovered product, the side that was in contact with the culture solution of the agricultural film at the time of winding was in contact with the side that was in contact with the ground and was in contact with the culture solution. When a part of the soil adheres to the side where the soil was attached, and an agricultural film is laid on the ground forming a bowl-like structure in this state to make a culture device, the inside of the storage member, ie, the culture solution of the agricultural film contacts The soil intruded into the soil, and in this state, soil was mixed in the recovered product because the main culture, partial removal of the culture solution, drying, stripping of the dried algal cells from the agricultural film, and recovery were performed. .
1回目の本培養によって得られた乾燥藻体及び2回目の本培養によって得られた乾燥藻体を観察、対比すると、2回目の本培養によって得られた乾燥藻体には土壌が混入していた。混入した土壌によって、単位質量あたり発熱量が低下したことがわかった。また、土壌の混入は、1回目の本培養の後、巻き取った農業用フィルムの下部には土壌が付着していたが、上部に存在している微細藻類を回収した後に農業用フィルムを巻き取ったため、回収物には土壌が混入することはなかったが、巻き取り時に農業用フィルムの培養液に接触していた側と地面に接触していた側とが接触し、培養液に接触していた側に土壌の一部が付着し、この状態で畝状構造を形成した地面に農業用フィルムを敷いて培養装置を作製すると、貯留部材の内側、すなわち、農業用フィルムの培養液と接触する側に土壌が侵入し、この状態で本培養、培養液の部分除去、乾燥、農業用フィルムからの乾燥藻体の剥奪、回収を行ったために、回収物中に土壌が混入したものである。 The calorific value per unit mass of the dried algal cells obtained by the first main culture was compared with the calorific value per unit mass of the dried algal bodies obtained by the second main culture. As a result, the calorific value per unit mass of the dried algal cells obtained by the second main culture was lower than the calorific value per unit mass of the dry algal bodies obtained by the first main culture.
By observing and comparing the dried algal cells obtained by the first main culture and the dried algal bodies obtained by the second main culture, the dried algal bodies obtained by the second main culture are contaminated with soil. The It was found that due to the mixed soil, the calorific value per unit mass decreased. Moreover, although the soil had adhered to the lower part of the film for agriculture which wound up after the 1st main culture, the contamination of the soil wound the film for agriculture after collect | recovering the micro algae which exists in the upper part Although the soil did not contaminate the recovered product, the side that was in contact with the culture solution of the agricultural film at the time of winding was in contact with the side that was in contact with the ground and was in contact with the culture solution. When a part of the soil adheres to the side where the soil was attached, and an agricultural film is laid on the ground forming a bowl-like structure in this state to make a culture device, the inside of the storage member, ie, the culture solution of the agricultural film contacts The soil intruded into the soil, and in this state, soil was mixed in the recovered product because the main culture, partial removal of the culture solution, drying, stripping of the dried algal cells from the agricultural film, and recovery were performed. .
[実施例4]
(第1の前培養及び第2の前培養)実施例1と同様にして、第1の前培養及び第2の前培養を行った。
(本培養)プラ舟ジャンボ180(プラスチック製、内寸92.5cm×59.1cm)(本実施例において、単に「培養槽」という場合がある。)を地面(土)の上に設置した。
この培養槽に、27LのCSiFF04培地(本実施例において、単に「培養液」という場合がある。)を入れ(水深5cm)、前培養によって準備した種藻を、細胞数が5×105個/mLになるように培養槽内の培養液に入れた。
培養槽の上部の淵に、両面テープを貼り付け、更に、テキナシで培養槽の上面をカバーすることにより培養装置を作製した。
光源として太陽光を用いての液面浮遊培養を開始した(本培養)。培養液中の水の蒸発による液量の減少を防止するために、必要に応じて、蒸留水を添加した。
なお、CSiFF04培地の調製に際しては、N化合物、P化合物二種、Mg化合物、EDTA化合物、その他化合物の6種の高濃度培養液を調製後、この順番で1つずつ添加し、必要に応じて不要な沈殿物の形成の促進を避けるために攪拌を行った。
また、二酸化炭素は、気層中の濃度が5%になるように、培養2、4、6、9、11、13日目の朝に供給した。培養14日後、培養槽をカバーしていた農業用フィルムを除去すると、培養液の液面上に微細藻類からなるフィルム状構造物の形成が見られた。
培養液の液面と培養槽の底面との間の培養液を、ポンプを用いて、可能な限り微細藻類を吸引しないようにして除去した。この状態で6時間放置することで、培養槽内の微細藻類を乾燥させた。すなわち、日中に自然乾燥させた。なお、気温は、31℃、湿度64%であった。
培養槽内に付着している乾燥藻体を、ヘラを用いてかき集めることで回収した。含水率は、24%であった。そこで、更に105℃で一晩乾燥機を用いて乾燥させた。乾燥後の重量は、25.4gであった。 Example 4
First Preculture and Second Preculture In the same manner as in Example 1, the first preculture and the second preculture were performed.
(Main culture) Plastic bowl jumbo 180 (plastic, inner size 92.5 cm × 59.1 cm) (may be simply referred to as “culture tank” in this example) was placed on the ground (soil).
In this culture vessel, 27 L of CSiFF04 medium (sometimes referred to simply as “culture solution” in this example) is placed (water depth 5 cm), and the seed algae prepared by pre-culture is 5 × 10 5 cells. It was added to the culture solution in the culture tank so as to be / mL.
A double-sided tape was attached to the top of the culture vessel, and a culture apparatus was produced by covering the upper surface of the culture vessel with texas.
Liquid surface suspension culture using sunlight as a light source was started (main culture). Distilled water was added as needed to prevent a decrease in liquid volume due to evaporation of water in the culture solution.
In addition, when preparing CSiFF04 medium, after preparing 6 kinds of high concentration culture broth of N compound, two kinds of P compounds, Mg compound, EDTA compound, and other compounds, add one by one in this order, if necessary Stirring was performed to avoid promoting formation of unwanted precipitates.
In addition, carbon dioxide was supplied in the morning of the second, fourth, sixth, ninth, eleventh and thirteenth days of culture so that the concentration in the air layer was 5%. After 14 days of culture, when the agricultural film covering the culture tank was removed, the formation of a film-like structure consisting of microalgae was observed on the liquid surface of the culture solution.
The culture solution between the liquid surface of the culture solution and the bottom of the culture vessel was removed using a pump so as not to aspirate microalgae as much as possible. The microalgae in the culture tank was dried by leaving it in this state for 6 hours. That is, it was naturally dried during the day. The temperature was 31 ° C. and the humidity was 64%.
The dried algal cells adhering to the inside of the culture vessel were collected by scraping using a spatula. The moisture content was 24%. Therefore, it was further dried using a drier at 105 ° C. overnight. The weight after drying was 25.4 g.
(第1の前培養及び第2の前培養)実施例1と同様にして、第1の前培養及び第2の前培養を行った。
(本培養)プラ舟ジャンボ180(プラスチック製、内寸92.5cm×59.1cm)(本実施例において、単に「培養槽」という場合がある。)を地面(土)の上に設置した。
この培養槽に、27LのCSiFF04培地(本実施例において、単に「培養液」という場合がある。)を入れ(水深5cm)、前培養によって準備した種藻を、細胞数が5×105個/mLになるように培養槽内の培養液に入れた。
培養槽の上部の淵に、両面テープを貼り付け、更に、テキナシで培養槽の上面をカバーすることにより培養装置を作製した。
光源として太陽光を用いての液面浮遊培養を開始した(本培養)。培養液中の水の蒸発による液量の減少を防止するために、必要に応じて、蒸留水を添加した。
なお、CSiFF04培地の調製に際しては、N化合物、P化合物二種、Mg化合物、EDTA化合物、その他化合物の6種の高濃度培養液を調製後、この順番で1つずつ添加し、必要に応じて不要な沈殿物の形成の促進を避けるために攪拌を行った。
また、二酸化炭素は、気層中の濃度が5%になるように、培養2、4、6、9、11、13日目の朝に供給した。培養14日後、培養槽をカバーしていた農業用フィルムを除去すると、培養液の液面上に微細藻類からなるフィルム状構造物の形成が見られた。
培養液の液面と培養槽の底面との間の培養液を、ポンプを用いて、可能な限り微細藻類を吸引しないようにして除去した。この状態で6時間放置することで、培養槽内の微細藻類を乾燥させた。すなわち、日中に自然乾燥させた。なお、気温は、31℃、湿度64%であった。
培養槽内に付着している乾燥藻体を、ヘラを用いてかき集めることで回収した。含水率は、24%であった。そこで、更に105℃で一晩乾燥機を用いて乾燥させた。乾燥後の重量は、25.4gであった。 Example 4
First Preculture and Second Preculture In the same manner as in Example 1, the first preculture and the second preculture were performed.
(Main culture) Plastic bowl jumbo 180 (plastic, inner size 92.5 cm × 59.1 cm) (may be simply referred to as “culture tank” in this example) was placed on the ground (soil).
In this culture vessel, 27 L of CSiFF04 medium (sometimes referred to simply as “culture solution” in this example) is placed (water depth 5 cm), and the seed algae prepared by pre-culture is 5 × 10 5 cells. It was added to the culture solution in the culture tank so as to be / mL.
A double-sided tape was attached to the top of the culture vessel, and a culture apparatus was produced by covering the upper surface of the culture vessel with texas.
Liquid surface suspension culture using sunlight as a light source was started (main culture). Distilled water was added as needed to prevent a decrease in liquid volume due to evaporation of water in the culture solution.
In addition, when preparing CSiFF04 medium, after preparing 6 kinds of high concentration culture broth of N compound, two kinds of P compounds, Mg compound, EDTA compound, and other compounds, add one by one in this order, if necessary Stirring was performed to avoid promoting formation of unwanted precipitates.
In addition, carbon dioxide was supplied in the morning of the second, fourth, sixth, ninth, eleventh and thirteenth days of culture so that the concentration in the air layer was 5%. After 14 days of culture, when the agricultural film covering the culture tank was removed, the formation of a film-like structure consisting of microalgae was observed on the liquid surface of the culture solution.
The culture solution between the liquid surface of the culture solution and the bottom of the culture vessel was removed using a pump so as not to aspirate microalgae as much as possible. The microalgae in the culture tank was dried by leaving it in this state for 6 hours. That is, it was naturally dried during the day. The temperature was 31 ° C. and the humidity was 64%.
The dried algal cells adhering to the inside of the culture vessel were collected by scraping using a spatula. The moisture content was 24%. Therefore, it was further dried using a drier at 105 ° C. overnight. The weight after drying was 25.4 g.
[実施例5]
プラ舟ジャンボ180(本実施例において、単に「培養槽」という場合がある。)の下に、120cm×80cmのテキナシフィルムを敷いて、培養槽が直接土壌と接触しないようにした点を除いて、実施例4と同様にして前培養及び本培養を行った。
実施例4と同様にして、培養、培養液の部分脱水、藻体の回収を行うことができたとともに、培養槽の外側側面には雨が降ったときの土壌の跳ね返りが全く見られなかった。
一方、実施例4では、培養期間中に雨が降った日があったため、培養後に、培養槽の外側側面には水滴の跳ね返りによる土壌の付着が見られた。また、培養槽を移動させ、複数個重ねたときに、培養槽内部に土壌が侵入した。 [Example 5]
A 120 cm × 80 cm texas film is placed under plastic jumbo 180 (which may simply be referred to as “incubation tank” in this example), except that the cultivation tank is not in direct contact with the soil. In the same manner as in Example 4, pre-culture and main culture were performed.
In the same manner as in Example 4, the culture, partial dehydration of the culture solution, and recovery of algal cells were able to be performed, and no rebound of the soil was observed when it rained on the outer side surface of the culture tank .
On the other hand, in Example 4, since there was a day when it rained during the culture period, adhesion of soil due to rebound of water droplets was observed on the outer side surface of the culture tank after the culture. Moreover, when the culture tank was moved and two or more were piled up, soil penetrated the inside of a culture tank.
プラ舟ジャンボ180(本実施例において、単に「培養槽」という場合がある。)の下に、120cm×80cmのテキナシフィルムを敷いて、培養槽が直接土壌と接触しないようにした点を除いて、実施例4と同様にして前培養及び本培養を行った。
実施例4と同様にして、培養、培養液の部分脱水、藻体の回収を行うことができたとともに、培養槽の外側側面には雨が降ったときの土壌の跳ね返りが全く見られなかった。
一方、実施例4では、培養期間中に雨が降った日があったため、培養後に、培養槽の外側側面には水滴の跳ね返りによる土壌の付着が見られた。また、培養槽を移動させ、複数個重ねたときに、培養槽内部に土壌が侵入した。 [Example 5]
A 120 cm × 80 cm texas film is placed under plastic jumbo 180 (which may simply be referred to as “incubation tank” in this example), except that the cultivation tank is not in direct contact with the soil. In the same manner as in Example 4, pre-culture and main culture were performed.
In the same manner as in Example 4, the culture, partial dehydration of the culture solution, and recovery of algal cells were able to be performed, and no rebound of the soil was observed when it rained on the outer side surface of the culture tank .
On the other hand, in Example 4, since there was a day when it rained during the culture period, adhesion of soil due to rebound of water droplets was observed on the outer side surface of the culture tank after the culture. Moreover, when the culture tank was moved and two or more were piled up, soil penetrated the inside of a culture tank.
[実施例6]
プラ舟ジャンボ180の(本実施例において、単に「水槽」という場合がある。)内部にテキナシフィルムを敷設して培養槽を作製した。
プラ舟ジャンボ180に代えて、上記のとおり作製した培養槽を用いた点を除いて、実施例4と同様にして、培養、部分的培養液除去、自然乾燥を行った後、テキナシフィルムを水槽から移動させるとともに、テキナシフィルム上の乾燥藻体を剥奪した。 [Example 6]
A tekina film was laid inside the plastic tub jumbo 180 (it may be simply referred to as "water tank" in this example) to prepare a culture tank.
After culture, partial culture solution removal, and natural drying were carried out in the same manner as in Example 4 except that the culture tank prepared as described above was used in place of the plastic mulberry jumbo 180, the vegan film was removed. It was removed from the water tank and deprived of dried algal cells on the texas film.
プラ舟ジャンボ180の(本実施例において、単に「水槽」という場合がある。)内部にテキナシフィルムを敷設して培養槽を作製した。
プラ舟ジャンボ180に代えて、上記のとおり作製した培養槽を用いた点を除いて、実施例4と同様にして、培養、部分的培養液除去、自然乾燥を行った後、テキナシフィルムを水槽から移動させるとともに、テキナシフィルム上の乾燥藻体を剥奪した。 [Example 6]
A tekina film was laid inside the plastic tub jumbo 180 (it may be simply referred to as "water tank" in this example) to prepare a culture tank.
After culture, partial culture solution removal, and natural drying were carried out in the same manner as in Example 4 except that the culture tank prepared as described above was used in place of the plastic mulberry jumbo 180, the vegan film was removed. It was removed from the water tank and deprived of dried algal cells on the texas film.
[実施例7]
プラ舟ジャンボ180の(本実施例において、単に「水槽」という場合がある。)内部にテキナシフィルムを敷設して培養槽を作製した。
プラ舟ジャンボ180に代えて、上記のとおり作製した培養槽を用いた点を除いて、実施例4と同様にして、培養、部分的培養液除去を行い、次に、水槽からテキナシフィルムを移動させても、テキナシフィルム上の藻体の大部分が移動しない程度の乾燥状態にした。テキナシフィルムを水槽とは異なる場所に移動させて更に乾燥させると同時に、水槽には、別のテキナシフィルムを敷設し、培養を開始した。この様にすることで、乾燥時間を節約した。最初のテキナシフィルム上の乾燥藻体を剥奪することで乾燥藻体を得た。 [Example 7]
A tekina film was laid inside the plastic tub jumbo 180 (it may be simply referred to as "water tank" in this example) to prepare a culture tank.
In the same manner as in Example 4, culture and partial culture fluid removal were carried out in the same manner as in Example 4 except that the culture tank prepared as described above was used instead of the plastic tub jumbo 180, and Most of the algal cells on the texas film did not move even if they were moved. At the same time as moving texas film to a place different from the water tank and further drying, another texas film was laid in the water tank and culture was started. By doing this, drying time was saved. The dried algal cells were obtained by depriving the dried algal cells on the first texas film.
プラ舟ジャンボ180の(本実施例において、単に「水槽」という場合がある。)内部にテキナシフィルムを敷設して培養槽を作製した。
プラ舟ジャンボ180に代えて、上記のとおり作製した培養槽を用いた点を除いて、実施例4と同様にして、培養、部分的培養液除去を行い、次に、水槽からテキナシフィルムを移動させても、テキナシフィルム上の藻体の大部分が移動しない程度の乾燥状態にした。テキナシフィルムを水槽とは異なる場所に移動させて更に乾燥させると同時に、水槽には、別のテキナシフィルムを敷設し、培養を開始した。この様にすることで、乾燥時間を節約した。最初のテキナシフィルム上の乾燥藻体を剥奪することで乾燥藻体を得た。 [Example 7]
A tekina film was laid inside the plastic tub jumbo 180 (it may be simply referred to as "water tank" in this example) to prepare a culture tank.
In the same manner as in Example 4, culture and partial culture fluid removal were carried out in the same manner as in Example 4 except that the culture tank prepared as described above was used instead of the plastic tub jumbo 180, and Most of the algal cells on the texas film did not move even if they were moved. At the same time as moving texas film to a place different from the water tank and further drying, another texas film was laid in the water tank and culture was started. By doing this, drying time was saved. The dried algal cells were obtained by depriving the dried algal cells on the first texas film.
[実施例8]
プラ舟ジャンボ180(本実施例において、単に「培養槽」という場合がある。)を、長辺2m×短辺1.2mの長方形状で、水深10cmの水を入れた水槽に浮かべた点を除いて、実施例4と同様にして培養、培養液の部分脱水、藻体の回収を行った。なお、培養槽の揺れを防止するために、培養槽及び水槽の角の位置に穴を開け、動かないようにロープで固定した。 [Example 8]
The point which floated the plastic bowl jumbo 180 (in this example, it may only be called "the culture tank") in the water tank which filled the water of 10 cm depth with a rectangular shape of 2 m long side x 1.2 m short side Except for the above, culture, partial dehydration of the culture solution, and recovery of algal cells were performed in the same manner as in Example 4. In addition, in order to prevent shaking of the culture tank, holes were made at the corners of the culture tank and the water tank and fixed with a rope so as not to move.
プラ舟ジャンボ180(本実施例において、単に「培養槽」という場合がある。)を、長辺2m×短辺1.2mの長方形状で、水深10cmの水を入れた水槽に浮かべた点を除いて、実施例4と同様にして培養、培養液の部分脱水、藻体の回収を行った。なお、培養槽の揺れを防止するために、培養槽及び水槽の角の位置に穴を開け、動かないようにロープで固定した。 [Example 8]
The point which floated the plastic bowl jumbo 180 (in this example, it may only be called "the culture tank") in the water tank which filled the water of 10 cm depth with a rectangular shape of 2 m long side x 1.2 m short side Except for the above, culture, partial dehydration of the culture solution, and recovery of algal cells were performed in the same manner as in Example 4. In addition, in order to prevent shaking of the culture tank, holes were made at the corners of the culture tank and the water tank and fixed with a rope so as not to move.
[実施例9]
藻類株として、クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)に代えて、表4に記載した28種類の微細藻類を用いた点を除いて、実施例1と同様にして培養を行い、微細藻類からなるバイオフィルムを回収した。 [Example 9]
As an algal strain, Chlorococcum sp. The culture is performed in the same manner as in Example 1 except that 28 kinds of microalgae described in Table 4 are used instead of the FFG039 strain (FERM BP-22262 strain), and a biofilm consisting of microalgae is recovered did.
藻類株として、クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)に代えて、表4に記載した28種類の微細藻類を用いた点を除いて、実施例1と同様にして培養を行い、微細藻類からなるバイオフィルムを回収した。 [Example 9]
As an algal strain, Chlorococcum sp. The culture is performed in the same manner as in Example 1 except that 28 kinds of microalgae described in Table 4 are used instead of the FFG039 strain (FERM BP-22262 strain), and a biofilm consisting of microalgae is recovered did.
[実施例10]
藻類株として、クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)に代えて、表4に記載したFFG055株及びFFG061株を用いた点を除いて、実施例1と同様にして培養を行った。両株とも液面上には浮かないが、静置培養が可能な藻類株である。
培養後、培養液の除去を液面から行った。用いた藻類株は、貯留部材を構成する農業用フィルムには一部しか付着していないため、ポンプを用いての培養液の除去時に藻体を吸引除去しないように注意深く行ったが、全培養液の20%程度しか除去できなかった。これは、藻体物中に吸水性の物質を放出していることが原因であると考えられる。
培養液の部分除去後、屋外にて自然乾燥を行ったが、実施例1と比べて時間を要した。
貯留部材を構成する2枚の農業用フィルムのうち培養液と接触していた方のフィルムを巻き取るとともに、その上に堆積している乾燥藻体を回収することができた。このように、液面に浮いていない藻類でも本発明の培養及び回収方法で培養することができた。 [Example 10]
As an algal strain, Chlorococcum sp. The culture was carried out in the same manner as in Example 1 except that the FFG055 strain and the FFG061 strain described in Table 4 were used instead of the FFG 039 strain (FERM BP-22262 strain). Although both strains do not float on the liquid surface, they are algal strains that can be statically cultured.
After the culture, the culture solution was removed from the liquid surface. Since the algae strain used is only partially attached to the agricultural film that constitutes the storage member, care was taken not to aspirate and remove the algae when removing the culture solution using a pump. Only about 20% of the solution could be removed. This is considered to be due to the release of a water-absorbing substance into algal bodies.
After partially removing the culture solution, natural drying was performed outdoors, but it took more time than in Example 1.
It was possible to wind up the film in contact with the culture solution among the two agricultural films constituting the storage member, and to recover the dried algal bodies deposited thereon. Thus, even the algae not floating on the liquid surface could be cultured by the culture and recovery method of the present invention.
藻類株として、クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)に代えて、表4に記載したFFG055株及びFFG061株を用いた点を除いて、実施例1と同様にして培養を行った。両株とも液面上には浮かないが、静置培養が可能な藻類株である。
培養後、培養液の除去を液面から行った。用いた藻類株は、貯留部材を構成する農業用フィルムには一部しか付着していないため、ポンプを用いての培養液の除去時に藻体を吸引除去しないように注意深く行ったが、全培養液の20%程度しか除去できなかった。これは、藻体物中に吸水性の物質を放出していることが原因であると考えられる。
培養液の部分除去後、屋外にて自然乾燥を行ったが、実施例1と比べて時間を要した。
貯留部材を構成する2枚の農業用フィルムのうち培養液と接触していた方のフィルムを巻き取るとともに、その上に堆積している乾燥藻体を回収することができた。このように、液面に浮いていない藻類でも本発明の培養及び回収方法で培養することができた。 [Example 10]
As an algal strain, Chlorococcum sp. The culture was carried out in the same manner as in Example 1 except that the FFG055 strain and the FFG061 strain described in Table 4 were used instead of the FFG 039 strain (FERM BP-22262 strain). Although both strains do not float on the liquid surface, they are algal strains that can be statically cultured.
After the culture, the culture solution was removed from the liquid surface. Since the algae strain used is only partially attached to the agricultural film that constitutes the storage member, care was taken not to aspirate and remove the algae when removing the culture solution using a pump. Only about 20% of the solution could be removed. This is considered to be due to the release of a water-absorbing substance into algal bodies.
After partially removing the culture solution, natural drying was performed outdoors, but it took more time than in Example 1.
It was possible to wind up the film in contact with the culture solution among the two agricultural films constituting the storage member, and to recover the dried algal bodies deposited thereon. Thus, even the algae not floating on the liquid surface could be cultured by the culture and recovery method of the present invention.
[実施例11]
実施例1と同様の方法で培養を行った。ただし、図15に示すように、設置面として、地面を掘り下げて地面の高さの部位に畝状物を設置したもの、又は地面に土を盛って地面よりも高い部位に畝状物を設置したものを用いて、それぞれの設置面の上に2枚の農業用フィルムを敷いて培養装置を作製した。これにより、前者の場合には、外気温の高いときの培養装置内の気層の温度及び液相の温度の上昇が抑えられ、微細藻類の増殖を適切に行うことができ、後者の場合には、作業性が向上した。培養後、培養器(貯留部材)を撤去し、土壌を元の状態に戻し、ほうれん草を栽培したが、問題なく栽培することができた。 [Example 11]
Culture was performed in the same manner as in Example 1. However, as shown in FIG. 15, as the installation surface, one in which the ground is dug down and a bowl-like object is installed at a site at the height of the ground, or Using the above, two agricultural films were laid on each installation surface to produce a culture apparatus. As a result, in the case of the former, the rise of the temperature of the air layer and the temperature of the liquid phase in the culture apparatus when the outside temperature is high can be suppressed, and the growth of microalgae can be appropriately performed. Workability has improved. After the culture, the incubator (storage member) was removed, the soil was returned to the original state, and spinach was grown, but it could be grown without any problem.
実施例1と同様の方法で培養を行った。ただし、図15に示すように、設置面として、地面を掘り下げて地面の高さの部位に畝状物を設置したもの、又は地面に土を盛って地面よりも高い部位に畝状物を設置したものを用いて、それぞれの設置面の上に2枚の農業用フィルムを敷いて培養装置を作製した。これにより、前者の場合には、外気温の高いときの培養装置内の気層の温度及び液相の温度の上昇が抑えられ、微細藻類の増殖を適切に行うことができ、後者の場合には、作業性が向上した。培養後、培養器(貯留部材)を撤去し、土壌を元の状態に戻し、ほうれん草を栽培したが、問題なく栽培することができた。 [Example 11]
Culture was performed in the same manner as in Example 1. However, as shown in FIG. 15, as the installation surface, one in which the ground is dug down and a bowl-like object is installed at a site at the height of the ground, or Using the above, two agricultural films were laid on each installation surface to produce a culture apparatus. As a result, in the case of the former, the rise of the temperature of the air layer and the temperature of the liquid phase in the culture apparatus when the outside temperature is high can be suppressed, and the growth of microalgae can be appropriately performed. Workability has improved. After the culture, the incubator (storage member) was removed, the soil was returned to the original state, and spinach was grown, but it could be grown without any problem.
[実施例12]
実施例1と同様の方法で培養を行った。ただし、赤土からなる粘土、桜島近辺で採取した火山灰に水を混ぜて粘土状にしたもの又は砂を用いて貯留部材を構成する支持体の表面に塗布することで、凹凸を極力なくした新しい支持体を準備し、その上に農業用フィルムを設置して貯留部材を作製した。また、これらの処理を行わなかった支持体を用いて貯留部材を作製し、同様に培養を行った。いずれの場合も微細藻類の培養を行うことができたが、凹凸をなくす処理を行わなかった場合には、貯留部材を構成する2枚の農業用フィルムのうち、培養液に接触する側のフィルムの一部が培養液の液面から気層中へと飛び出したところが数ヵ所存在し、その結果藻体量が少なくなる現象が見られた。また、赤土からなる粘土又は桜島近辺で採取した火山灰に水を混ぜて粘土状にしたものを用いて凹凸を極力なくした支持体を準備した場合には、培養装置内に蓄積された熱をうまく逃がすことができたため、砂を用いて凹凸を極力なくした支持体を準備した場合と比較して、培養は良好な状態となった。 [Example 12]
Culture was performed in the same manner as in Example 1. However, by applying clay on red soil, volcanic ash collected in the vicinity of Sakurajima to water to make it into a clay shape, or sand, it is applied to the surface of the support constituting the storage member, thereby eliminating new irregularities as much as possible. The body was prepared, and an agricultural film was placed thereon to prepare a storage member. Moreover, the storage member was produced using the support which did not perform these processes, and it culture | cultivated similarly. In either case, it was possible to culture the microalgae, but if processing to eliminate the unevenness was not performed, the film on the side that contacts the culture solution, out of the two agricultural films that constitute the storage member There were several places where a part of the substance jumped out of the liquid surface of the culture solution into the air layer, and as a result, the phenomenon that the amount of algal cells decreased was observed. In addition, when a support that is made as uneven as possible by mixing clay with a clay made of red soil or volcanic ash collected in the vicinity of Sakurajima is prepared, the heat accumulated in the culture apparatus can be used successfully. Since the escape was possible, the culture was in a better condition as compared to the case of preparing a support with as little unevenness as possible using sand.
実施例1と同様の方法で培養を行った。ただし、赤土からなる粘土、桜島近辺で採取した火山灰に水を混ぜて粘土状にしたもの又は砂を用いて貯留部材を構成する支持体の表面に塗布することで、凹凸を極力なくした新しい支持体を準備し、その上に農業用フィルムを設置して貯留部材を作製した。また、これらの処理を行わなかった支持体を用いて貯留部材を作製し、同様に培養を行った。いずれの場合も微細藻類の培養を行うことができたが、凹凸をなくす処理を行わなかった場合には、貯留部材を構成する2枚の農業用フィルムのうち、培養液に接触する側のフィルムの一部が培養液の液面から気層中へと飛び出したところが数ヵ所存在し、その結果藻体量が少なくなる現象が見られた。また、赤土からなる粘土又は桜島近辺で採取した火山灰に水を混ぜて粘土状にしたものを用いて凹凸を極力なくした支持体を準備した場合には、培養装置内に蓄積された熱をうまく逃がすことができたため、砂を用いて凹凸を極力なくした支持体を準備した場合と比較して、培養は良好な状態となった。 [Example 12]
Culture was performed in the same manner as in Example 1. However, by applying clay on red soil, volcanic ash collected in the vicinity of Sakurajima to water to make it into a clay shape, or sand, it is applied to the surface of the support constituting the storage member, thereby eliminating new irregularities as much as possible. The body was prepared, and an agricultural film was placed thereon to prepare a storage member. Moreover, the storage member was produced using the support which did not perform these processes, and it culture | cultivated similarly. In either case, it was possible to culture the microalgae, but if processing to eliminate the unevenness was not performed, the film on the side that contacts the culture solution, out of the two agricultural films that constitute the storage member There were several places where a part of the substance jumped out of the liquid surface of the culture solution into the air layer, and as a result, the phenomenon that the amount of algal cells decreased was observed. In addition, when a support that is made as uneven as possible by mixing clay with a clay made of red soil or volcanic ash collected in the vicinity of Sakurajima is prepared, the heat accumulated in the culture apparatus can be used successfully. Since the escape was possible, the culture was in a better condition as compared to the case of preparing a support with as little unevenness as possible using sand.
[実施例13]
実施例1と同様の方法で培養を行った。ただし、貯留部材を作製するための農業用フィルムは、2枚重ねではなく、5枚重ねで使用し、遮蔽部材の農業用フィルムを2枚重ねとした。また、その比較として、遮蔽部材の農業用フィルムを1枚のままとして培養を行った。
2枚重ねの農業用フィルムを使用した場合には、1枚のみの農業用フィルムを使用した場合と比較して、外気温が低いときの増殖性が向上した。これは、保温効果が現れたものと考えている。なお、回収は、5枚の農業用フィルムのうち、培養液と直接接している農業用フィルムについてのみ行った。藻体が付着している農業用フィルムは、巻き取って、そのまま燃焼させた。すなわち、固形燃料として使用した。
また、残る4枚のフィルムに対して、培養液を加え、再度培養することもできた。これにより、一枚ずつ農業用フィルムを培養器(貯留部材)の中に設置する手間を大幅に削減することができた。 [Example 13]
Culture was performed in the same manner as in Example 1. However, the film for agriculture for producing a storage member was used not in two sheets but in five sheets, and two films for agriculture of the shielding member were used. In addition, as a comparison, culture was performed with the agricultural film of the shielding member remaining as one sheet.
When two-ply agricultural films were used, the proliferation was improved when the outside air temperature was low, as compared to the case where only one agricultural film was used. This is considered to be the effect of heat retention. In addition, recovery was performed only about the film for agriculture which is in direct contact with the culture solution among the five films for agriculture. The agricultural film to which the algal cells are attached was wound and burned as it was. That is, it was used as a solid fuel.
In addition, the culture solution could be added to the remaining four films and cultured again. Thereby, the effort which installs the film for agriculture in a incubator (storage member) one by one was able to be reduced significantly.
実施例1と同様の方法で培養を行った。ただし、貯留部材を作製するための農業用フィルムは、2枚重ねではなく、5枚重ねで使用し、遮蔽部材の農業用フィルムを2枚重ねとした。また、その比較として、遮蔽部材の農業用フィルムを1枚のままとして培養を行った。
2枚重ねの農業用フィルムを使用した場合には、1枚のみの農業用フィルムを使用した場合と比較して、外気温が低いときの増殖性が向上した。これは、保温効果が現れたものと考えている。なお、回収は、5枚の農業用フィルムのうち、培養液と直接接している農業用フィルムについてのみ行った。藻体が付着している農業用フィルムは、巻き取って、そのまま燃焼させた。すなわち、固形燃料として使用した。
また、残る4枚のフィルムに対して、培養液を加え、再度培養することもできた。これにより、一枚ずつ農業用フィルムを培養器(貯留部材)の中に設置する手間を大幅に削減することができた。 [Example 13]
Culture was performed in the same manner as in Example 1. However, the film for agriculture for producing a storage member was used not in two sheets but in five sheets, and two films for agriculture of the shielding member were used. In addition, as a comparison, culture was performed with the agricultural film of the shielding member remaining as one sheet.
When two-ply agricultural films were used, the proliferation was improved when the outside air temperature was low, as compared to the case where only one agricultural film was used. This is considered to be the effect of heat retention. In addition, recovery was performed only about the film for agriculture which is in direct contact with the culture solution among the five films for agriculture. The agricultural film to which the algal cells are attached was wound and burned as it was. That is, it was used as a solid fuel.
In addition, the culture solution could be added to the remaining four films and cultured again. Thereby, the effort which installs the film for agriculture in a incubator (storage member) one by one was able to be reduced significantly.
[実施例14]
実施例1と同様の方法で培養を行った。ただし、表面側の農業用フィルム(第1のフィルム)に代えて、目開き4cmの網状物(第2のフィルム)を用いた。比較例として、表面側のフィルムとして農業用フィルム、すなわち、目開きのないフィルムを用いた。また、設置面の底部に、幅5cm、深さ5cmの溝を、培養器(貯留部材)の長径方向に穴を掘っておいた。
培養終了後、培養液の大部分を除去すると、網状物に液面上の微細藻類バイオフィルムが載ったような状態となった。この状態で乾燥処理を行い、底部の溝の部位に藻体が生きたまま残っているが、網状物の上の藻体は乾燥した状態を作り出すことができた。
網状物を巻取り、藻体を脱着させた後、再び、網状物を培養器(貯留部材)の中に入れ、新しい培養液を培養装置の中に入れて培養を開始した。すなわち、溝部位に残存していた微細藻類を種藻として培養することができ、新たに別の培養装置から調達した種藻を使用することなく、培養を行うことができた。 Example 14
Culture was performed in the same manner as in Example 1. However, instead of the agricultural film (first film) on the front side, a mesh (a second film) with an opening of 4 cm was used. As a comparative example, an agricultural film, that is, a film without an opening was used as the film on the surface side. Further, a groove of 5 cm in width and 5 cm in depth was dug in the bottom of the installation surface in the major axis direction of the incubator (storage member).
After completion of the culture, when most of the culture solution was removed, the network appeared to be covered with the microalgal biofilm on the liquid surface. Drying was carried out in this state, and algal cells remained alive at the bottom grooves, but algal cells on the reticulum could produce a dry state.
After winding the network and desorbing algal cells, the network was again placed in the incubator (storage member), and a new culture solution was placed in the culture apparatus to start culture. That is, the microalgae which remained in the groove part can be cultured as a seed algae, and the culture can be performed without using the seed algae newly procured from another culture apparatus.
実施例1と同様の方法で培養を行った。ただし、表面側の農業用フィルム(第1のフィルム)に代えて、目開き4cmの網状物(第2のフィルム)を用いた。比較例として、表面側のフィルムとして農業用フィルム、すなわち、目開きのないフィルムを用いた。また、設置面の底部に、幅5cm、深さ5cmの溝を、培養器(貯留部材)の長径方向に穴を掘っておいた。
培養終了後、培養液の大部分を除去すると、網状物に液面上の微細藻類バイオフィルムが載ったような状態となった。この状態で乾燥処理を行い、底部の溝の部位に藻体が生きたまま残っているが、網状物の上の藻体は乾燥した状態を作り出すことができた。
網状物を巻取り、藻体を脱着させた後、再び、網状物を培養器(貯留部材)の中に入れ、新しい培養液を培養装置の中に入れて培養を開始した。すなわち、溝部位に残存していた微細藻類を種藻として培養することができ、新たに別の培養装置から調達した種藻を使用することなく、培養を行うことができた。 Example 14
Culture was performed in the same manner as in Example 1. However, instead of the agricultural film (first film) on the front side, a mesh (a second film) with an opening of 4 cm was used. As a comparative example, an agricultural film, that is, a film without an opening was used as the film on the surface side. Further, a groove of 5 cm in width and 5 cm in depth was dug in the bottom of the installation surface in the major axis direction of the incubator (storage member).
After completion of the culture, when most of the culture solution was removed, the network appeared to be covered with the microalgal biofilm on the liquid surface. Drying was carried out in this state, and algal cells remained alive at the bottom grooves, but algal cells on the reticulum could produce a dry state.
After winding the network and desorbing algal cells, the network was again placed in the incubator (storage member), and a new culture solution was placed in the culture apparatus to start culture. That is, the microalgae which remained in the groove part can be cultured as a seed algae, and the culture can be performed without using the seed algae newly procured from another culture apparatus.
[実施例15]
実施例1と同様の方法で培養を行った。ただし、2枚の農業用フィルムの間には直径0.177~0.250(アズワン株式会社、6-257-04)mmのガラス製ビーズを敷き詰めた。培養は問題なく進行し、フィルムの巻取りをスムーズに行うことができた。
また、あらかじめ2枚の農業用フィルム間に棒状構造体を設置しておき、2枚の農業用フィルムのうち培養液に接触していた方を巻き取る際に、棒状構造体を鉛直上方へと持ち上げることで、2枚の農業用フィルム間の摩擦力を低減することができ、2枚の農業用フィルムのうち培養液に接触していた方をスムーズに巻き取ることができた。培養も問題なく進行した。 [Example 15]
Culture was performed in the same manner as in Example 1. However, glass beads having a diameter of 0.177 to 0.250 (As One Ltd., 6-257-04) mm were spread between the two agricultural films. The culture proceeded without any problem, and the film could be wound smoothly.
In addition, a rod-like structure is previously installed between two agricultural films, and when winding up one of the two agricultural films that was in contact with the culture solution, the rod-like structure is vertically upward. By lifting, the frictional force between the two agricultural films could be reduced, and it was possible to smoothly roll up the two agricultural films which were in contact with the culture solution. The culture also proceeded without problems.
実施例1と同様の方法で培養を行った。ただし、2枚の農業用フィルムの間には直径0.177~0.250(アズワン株式会社、6-257-04)mmのガラス製ビーズを敷き詰めた。培養は問題なく進行し、フィルムの巻取りをスムーズに行うことができた。
また、あらかじめ2枚の農業用フィルム間に棒状構造体を設置しておき、2枚の農業用フィルムのうち培養液に接触していた方を巻き取る際に、棒状構造体を鉛直上方へと持ち上げることで、2枚の農業用フィルム間の摩擦力を低減することができ、2枚の農業用フィルムのうち培養液に接触していた方をスムーズに巻き取ることができた。培養も問題なく進行した。 [Example 15]
Culture was performed in the same manner as in Example 1. However, glass beads having a diameter of 0.177 to 0.250 (As One Ltd., 6-257-04) mm were spread between the two agricultural films. The culture proceeded without any problem, and the film could be wound smoothly.
In addition, a rod-like structure is previously installed between two agricultural films, and when winding up one of the two agricultural films that was in contact with the culture solution, the rod-like structure is vertically upward. By lifting, the frictional force between the two agricultural films could be reduced, and it was possible to smoothly roll up the two agricultural films which were in contact with the culture solution. The culture also proceeded without problems.
[実施例16]
実施例1と同様の方法で培養を行った。ただし、2つの貯留部材を1つの遮蔽部材の中に設置した。また、それぞれの貯留部材での培養開始は、7日間遅らせるようにした。いずれの貯留部材内での培養も問題なく進行した。なお、片方の貯留部材内の藻体を回収した後、培養を行っている貯留部材との仕切りの畝状構造物を崩すことで、藻体の一部を、藻体を回収済みの貯留部材へと導入し、再度培養を開始することもできた。これにより、培養開始時の種藻の投入の手間を大幅に減らすことができた。 [Example 16]
Culture was performed in the same manner as in Example 1. However, two storage members were installed in one shielding member. Also, the start of culture in each storage member was delayed for 7 days. Culture in any of the reservoirs proceeded without problems. In addition, after collecting the algal cells in one of the storage members, the alveolar structure is partially broken by collapsing the ridge-like structure of the partition with the storage member in which the culture is being performed. It was also possible to introduce it and start the culture again. As a result, it was possible to greatly reduce the time and effort of feeding the seed algae at the start of culture.
実施例1と同様の方法で培養を行った。ただし、2つの貯留部材を1つの遮蔽部材の中に設置した。また、それぞれの貯留部材での培養開始は、7日間遅らせるようにした。いずれの貯留部材内での培養も問題なく進行した。なお、片方の貯留部材内の藻体を回収した後、培養を行っている貯留部材との仕切りの畝状構造物を崩すことで、藻体の一部を、藻体を回収済みの貯留部材へと導入し、再度培養を開始することもできた。これにより、培養開始時の種藻の投入の手間を大幅に減らすことができた。 [Example 16]
Culture was performed in the same manner as in Example 1. However, two storage members were installed in one shielding member. Also, the start of culture in each storage member was delayed for 7 days. Culture in any of the reservoirs proceeded without problems. In addition, after collecting the algal cells in one of the storage members, the alveolar structure is partially broken by collapsing the ridge-like structure of the partition with the storage member in which the culture is being performed. It was also possible to introduce it and start the culture again. As a result, it was possible to greatly reduce the time and effort of feeding the seed algae at the start of culture.
[実施例17]
実施例1と同様の方法で微細藻類の培養を行った。ただし、貯留部材の支持部の底面を傾斜させ、底面の浅い方と深い方との深さの差を5cmに設定した。培養は問題なく進行した。これにより、培養液の除去が容易になった。 [Example 17]
The microalga was cultured in the same manner as in Example 1. However, the bottom of the support portion of the storage member was inclined, and the difference in depth between the shallow side and the deep side of the bottom was set to 5 cm. The culture proceeded without problems. This facilitated the removal of the culture solution.
実施例1と同様の方法で微細藻類の培養を行った。ただし、貯留部材の支持部の底面を傾斜させ、底面の浅い方と深い方との深さの差を5cmに設定した。培養は問題なく進行した。これにより、培養液の除去が容易になった。 [Example 17]
The microalga was cultured in the same manner as in Example 1. However, the bottom of the support portion of the storage member was inclined, and the difference in depth between the shallow side and the deep side of the bottom was set to 5 cm. The culture proceeded without problems. This facilitated the removal of the culture solution.
[実施例18]
実施例1と同様の方法で培養を行った。ただし、遮蔽部材のトンネル状構造体を構成するための農業用フィルムに代えて、表5に列挙した機能性フィルムのいずれかを用いた。いずれも問題なく培養することができた。 [Example 18]
Culture was performed in the same manner as in Example 1. However, any of the functional films listed in Table 5 was used in place of the agricultural film for forming the tunnel-like structure of the shielding member. Both were able to culture without problems.
実施例1と同様の方法で培養を行った。ただし、遮蔽部材のトンネル状構造体を構成するための農業用フィルムに代えて、表5に列挙した機能性フィルムのいずれかを用いた。いずれも問題なく培養することができた。 [Example 18]
Culture was performed in the same manner as in Example 1. However, any of the functional films listed in Table 5 was used in place of the agricultural film for forming the tunnel-like structure of the shielding member. Both were able to culture without problems.
[実施例19]
実施例1と同様の方法で培養を行った。ただし、トンネル状構造体の形状を、図19又は図21に示す形状に改変した。
トンネル状構造体の形状を図19に示す形状としたものは、雨対策、水滴落下防止及び耐風性に優れていた。
トンネル状構造体の形状を図21に示す形状としたものは、雨対策、水滴落下防止及び耐風性に優れていた。 [Example 19]
Culture was performed in the same manner as in Example 1. However, the shape of the tunnel-like structure was modified to the shape shown in FIG. 19 or 21.
The tunnel-like structure having the shape shown in FIG. 19 was excellent in the measures against rain, the prevention of water drops, and the wind resistance.
The tunnel-like structure having the shape shown in FIG. 21 is excellent in the measures against rain, the prevention of water drops, and the wind resistance.
実施例1と同様の方法で培養を行った。ただし、トンネル状構造体の形状を、図19又は図21に示す形状に改変した。
トンネル状構造体の形状を図19に示す形状としたものは、雨対策、水滴落下防止及び耐風性に優れていた。
トンネル状構造体の形状を図21に示す形状としたものは、雨対策、水滴落下防止及び耐風性に優れていた。 [Example 19]
Culture was performed in the same manner as in Example 1. However, the shape of the tunnel-like structure was modified to the shape shown in FIG. 19 or 21.
The tunnel-like structure having the shape shown in FIG. 19 was excellent in the measures against rain, the prevention of water drops, and the wind resistance.
The tunnel-like structure having the shape shown in FIG. 21 is excellent in the measures against rain, the prevention of water drops, and the wind resistance.
[実施例20]
実施例1と同様の方法で培養を行った。ただし、遮蔽部材であるトンネル状構造体の側面に腰巻用ビニールを設置し、微細藻類の培養可能温度範囲の高温側から7℃低い温度よりも高くなったときに、腰巻用ビニールの一部を開放することで温度調整を行った。温度調整を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 20]
Culture was performed in the same manner as in Example 1. However, when a vinyl for waist winding is installed on the side of the tunnel-like structure, which is a shielding member, and the temperature rises 7 ° C. lower than the high temperature side of the microalga culture temperature range, a part of the vinyl for waist winding Temperature control was performed by opening it. When the temperature was not adjusted, the weight of the obtained algal cells was reduced as compared to the one performed, but the algae could be harvested without any problem.
実施例1と同様の方法で培養を行った。ただし、遮蔽部材であるトンネル状構造体の側面に腰巻用ビニールを設置し、微細藻類の培養可能温度範囲の高温側から7℃低い温度よりも高くなったときに、腰巻用ビニールの一部を開放することで温度調整を行った。温度調整を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 20]
Culture was performed in the same manner as in Example 1. However, when a vinyl for waist winding is installed on the side of the tunnel-like structure, which is a shielding member, and the temperature rises 7 ° C. lower than the high temperature side of the microalga culture temperature range, a part of the vinyl for waist winding Temperature control was performed by opening it. When the temperature was not adjusted, the weight of the obtained algal cells was reduced as compared to the one performed, but the algae could be harvested without any problem.
[実施例21]
実施例1と同様の方法で培養を行った。ただし、寒冷紗を遮蔽部材であるトンネル状構造体の外側に設置することで、培養装置内の温度を約2~6℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 21]
Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 2 to 6 ° C. by placing the cryostat on the outside of the tunnel-like structure which is a shielding member. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
実施例1と同様の方法で培養を行った。ただし、寒冷紗を遮蔽部材であるトンネル状構造体の外側に設置することで、培養装置内の温度を約2~6℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 21]
Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 2 to 6 ° C. by placing the cryostat on the outside of the tunnel-like structure which is a shielding member. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
[実施例22]
実施例1と同様の方法で培養を行った。ただし、遮蔽部材であるトンネル状構造体の外側に冷却水を散布することで、培養装置内の温度を約3~7℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 Example 22
Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 3 to 7 ° C. by spraying cooling water to the outside of the tunnel-like structure which is the shielding member. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
実施例1と同様の方法で培養を行った。ただし、遮蔽部材であるトンネル状構造体の外側に冷却水を散布することで、培養装置内の温度を約3~7℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 Example 22
Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 3 to 7 ° C. by spraying cooling water to the outside of the tunnel-like structure which is the shielding member. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
[実施例23]
実施例1と同様の方法で培養を行った。ただし、貯留部材を構成する2枚重ねの農業用フィルムの間と、培養液とは接触していない方の農業用フィルムと地面との間に冷却水を流すことで、培養装置内の温度を約3~7℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 23]
Culture was performed in the same manner as in Example 1. However, by flowing cooling water between the two agricultural films that make up the storage member and between the agricultural film that is not in contact with the culture solution and the ground, the temperature in the culture apparatus can be reduced. The temperature could be lowered by about 3 to 7 ° C. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
実施例1と同様の方法で培養を行った。ただし、貯留部材を構成する2枚重ねの農業用フィルムの間と、培養液とは接触していない方の農業用フィルムと地面との間に冷却水を流すことで、培養装置内の温度を約3~7℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 23]
Culture was performed in the same manner as in Example 1. However, by flowing cooling water between the two agricultural films that make up the storage member and between the agricultural film that is not in contact with the culture solution and the ground, the temperature in the culture apparatus can be reduced. The temperature could be lowered by about 3 to 7 ° C. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
[実施例24]
実施例1と同様の方法で培養を行った。ただし、培養装置内の気層に微粒子状の水滴を噴霧することで、培養装置内の温度を約3~8℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 24]
Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 3 to 8 ° C. by spraying particulate water droplets on the air layer in the culture apparatus. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
実施例1と同様の方法で培養を行った。ただし、培養装置内の気層に微粒子状の水滴を噴霧することで、培養装置内の温度を約3~8℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 24]
Culture was performed in the same manner as in Example 1. However, the temperature in the culture apparatus could be lowered by about 3 to 8 ° C. by spraying particulate water droplets on the air layer in the culture apparatus. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
[実施例25]
実施例1と同様の方法で培養を行った。ただし、支柱と農業用フィルムによって構成されたトンネル状構造体の内部空間の低い位置と高い位置に気体が通過できる網状物を設置し、温度の高い空気が上方へと流れる性質を利用して、培養装置内の温度を約2~6℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 25]
Culture was performed in the same manner as in Example 1. However, a network-like material through which gas can pass is installed at a low position and a high position in the inner space of the tunnel-like structure constituted by the columns and the agricultural film, and the high temperature air flows upward. The temperature in the culture apparatus could be lowered by about 2 to 6 ° C. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
実施例1と同様の方法で培養を行った。ただし、支柱と農業用フィルムによって構成されたトンネル状構造体の内部空間の低い位置と高い位置に気体が通過できる網状物を設置し、温度の高い空気が上方へと流れる性質を利用して、培養装置内の温度を約2~6℃下げることができた。本体策を行わなかったものは、行ったものに比べて、得られた藻体の重量が減ったが、問題なく収穫できた。 [Example 25]
Culture was performed in the same manner as in Example 1. However, a network-like material through which gas can pass is installed at a low position and a high position in the inner space of the tunnel-like structure constituted by the columns and the agricultural film, and the high temperature air flows upward. The temperature in the culture apparatus could be lowered by about 2 to 6 ° C. Although the weight of the obtained algal cells was lower than that of the one without the main measures, it could be harvested without any problem.
[実施例26]
実施例1と同様の方法で培養を行った。ただし、農業用フィルム上の藻体を回収せずに、新しく培養液及び種藻を投入し、再度培養した。これを5回繰り返し、培養液に直接接触していた農業用フィルム上の藻体を乾燥した後、そのフィルムを巻き取ると同時に、藻体をフィルム上から剥奪することで、乾燥藻体を得た。これにより、フィルムを巻取り、藻体をフィルム上から剥奪する工程を減らすことができた。 [Example 26]
Culture was performed in the same manner as in Example 1. However, without collecting the algal cells on the agricultural film, a new culture solution and seed algae were added and cultured again. This is repeated five times to dry the algal cells on the agricultural film that has been in direct contact with the culture solution, and at the same time winding the film, the algal cells are stripped from the film to obtain a dry algal body. The This made it possible to reduce the process of winding up the film and removing algal cells from the film.
実施例1と同様の方法で培養を行った。ただし、農業用フィルム上の藻体を回収せずに、新しく培養液及び種藻を投入し、再度培養した。これを5回繰り返し、培養液に直接接触していた農業用フィルム上の藻体を乾燥した後、そのフィルムを巻き取ると同時に、藻体をフィルム上から剥奪することで、乾燥藻体を得た。これにより、フィルムを巻取り、藻体をフィルム上から剥奪する工程を減らすことができた。 [Example 26]
Culture was performed in the same manner as in Example 1. However, without collecting the algal cells on the agricultural film, a new culture solution and seed algae were added and cultured again. This is repeated five times to dry the algal cells on the agricultural film that has been in direct contact with the culture solution, and at the same time winding the film, the algal cells are stripped from the film to obtain a dry algal body. The This made it possible to reduce the process of winding up the film and removing algal cells from the film.
[実施例27]
実施例1と同様の方法で培養を行った。ただし、二酸化炭素は、CO2錠剤によって供給した。供給方法としては、微細藻類を培養している培養槽の中に投入するもの、藻体を培養していない小さな水槽を培養装置内の気層中に設置し、その水槽内にCO2錠剤を投入して二酸化炭素を発生させるものとを用いた。前者の場合には、水面藻の一部が破壊されたものの、全体に対する割合は一部で、影響はほとんどなかった。いずれの場合とも問題なく培養できた。 [Example 27]
Culture was performed in the same manner as in Example 1. However, carbon dioxide was supplied by CO 2 tablets. As a supply method, the thing put in the culture tank which is culturing microalga, the small water tank which is not culturing the algae body is installed in the air layer in the culture apparatus, and the CO 2 tablet is placed in the water tank Those used for generating carbon dioxide were used. In the case of the former, although part of the water surface algae was destroyed, the ratio to the whole was a part, and there was almost no influence. In any case, the culture could be done without problems.
実施例1と同様の方法で培養を行った。ただし、二酸化炭素は、CO2錠剤によって供給した。供給方法としては、微細藻類を培養している培養槽の中に投入するもの、藻体を培養していない小さな水槽を培養装置内の気層中に設置し、その水槽内にCO2錠剤を投入して二酸化炭素を発生させるものとを用いた。前者の場合には、水面藻の一部が破壊されたものの、全体に対する割合は一部で、影響はほとんどなかった。いずれの場合とも問題なく培養できた。 [Example 27]
Culture was performed in the same manner as in Example 1. However, carbon dioxide was supplied by CO 2 tablets. As a supply method, the thing put in the culture tank which is culturing microalga, the small water tank which is not culturing the algae body is installed in the air layer in the culture apparatus, and the CO 2 tablet is placed in the water tank Those used for generating carbon dioxide were used. In the case of the former, although part of the water surface algae was destroyed, the ratio to the whole was a part, and there was almost no influence. In any case, the culture could be done without problems.
[実施例28]
実施例1と同様の方法で培養を行った。ただし、藻体の自然乾燥は、夜間に行った。これによって、培養に必要な日中を有効活用することができ、一定期間内の乾燥藻体生産量を向上させることができた。 [Example 28]
Culture was performed in the same manner as in Example 1. However, natural drying of algal bodies was performed at night. By this, the daytime required for culture could be used effectively, and the dry algal body production amount in a fixed period could be improved.
実施例1と同様の方法で培養を行った。ただし、藻体の自然乾燥は、夜間に行った。これによって、培養に必要な日中を有効活用することができ、一定期間内の乾燥藻体生産量を向上させることができた。 [Example 28]
Culture was performed in the same manner as in Example 1. However, natural drying of algal bodies was performed at night. By this, the daytime required for culture could be used effectively, and the dry algal body production amount in a fixed period could be improved.
[実施例29]
実施例1で得られた乾燥藻体から、ヘキサン抽出を行うことによって、オイルを得ることができた。オイル含有量は、乾燥質量の35%であった。 [Example 29]
The dried algal cells obtained in Example 1 were subjected to hexane extraction to obtain an oil. The oil content was 35% of the dry weight.
実施例1で得られた乾燥藻体から、ヘキサン抽出を行うことによって、オイルを得ることができた。オイル含有量は、乾燥質量の35%であった。 [Example 29]
The dried algal cells obtained in Example 1 were subjected to hexane extraction to obtain an oil. The oil content was 35% of the dry weight.
[実施例30]
実施例1で得られた乾燥藻体からペレットを作成した。得られたペレットの燃焼熱は、6000cal/gであった。 [Example 30]
Pellets were prepared from the dried algal cells obtained in Example 1. The heat of combustion of the obtained pellets was 6000 cal / g.
実施例1で得られた乾燥藻体からペレットを作成した。得られたペレットの燃焼熱は、6000cal/gであった。 [Example 30]
Pellets were prepared from the dried algal cells obtained in Example 1. The heat of combustion of the obtained pellets was 6000 cal / g.
[実施例31]
実施例1と同様に培養を行い、ポンプで培地の大部分を除去した後、湿潤藻体を1Lのビーカーに入れ、よく攪拌することで均一にした。これを12分割し、それぞれを表6の「素材」の欄に列挙した素材の上に塗布した。次に、オーブン中にこれらを入れ、130℃に加熱することで乾燥した。
乾燥後、素材から乾燥物の付着性又は剥離性を評価した。その結果を表6の「付着性又は剥離性」の欄に示した。ダンボール、アルミバット及びアルミホイル(つや消し面、光沢面)には乾燥藻体が強固に付着したが、ガラス及び各種主要なポリマーからは、傾けるだけで、乾燥藻体が容易に剥離した。
図40には、アルミバット、アルミホイル(つや消し面)及びフッ素樹脂の各素材について、素材のみ、素材に湿潤藻体を載せ乾燥する前、藻体を乾燥した後、及び素材から乾燥藻体を剥離した後のそれぞれの様子を示す。 [Example 31]
The culture was carried out in the same manner as in Example 1, and after removing most of the medium with a pump, the wet algal cells were placed in a 1 L beaker and homogenized by thoroughly stirring. This was divided into 12 and each was applied onto the materials listed in the "material" column of Table 6. Next, they were placed in an oven and dried by heating to 130 ° C.
After drying, the adhesion or peelability of the dried product was evaluated from the material. The results are shown in the "adhesion or peelability" column of Table 6. The dried algal cells were firmly attached to the cardboard, the aluminum bat and the aluminum foil (matted surface, glossy surface), but the dried algal cells were easily exfoliated from the glass and various main polymers only by tilting.
In FIG. 40, for each material of aluminum bat, aluminum foil (matted surface) and fluorocarbon resin, only the material is wet, and the algal cells are dried and dried, and the dried algal cells are removed from the material. The state of each after peeling is shown.
実施例1と同様に培養を行い、ポンプで培地の大部分を除去した後、湿潤藻体を1Lのビーカーに入れ、よく攪拌することで均一にした。これを12分割し、それぞれを表6の「素材」の欄に列挙した素材の上に塗布した。次に、オーブン中にこれらを入れ、130℃に加熱することで乾燥した。
乾燥後、素材から乾燥物の付着性又は剥離性を評価した。その結果を表6の「付着性又は剥離性」の欄に示した。ダンボール、アルミバット及びアルミホイル(つや消し面、光沢面)には乾燥藻体が強固に付着したが、ガラス及び各種主要なポリマーからは、傾けるだけで、乾燥藻体が容易に剥離した。
図40には、アルミバット、アルミホイル(つや消し面)及びフッ素樹脂の各素材について、素材のみ、素材に湿潤藻体を載せ乾燥する前、藻体を乾燥した後、及び素材から乾燥藻体を剥離した後のそれぞれの様子を示す。 [Example 31]
The culture was carried out in the same manner as in Example 1, and after removing most of the medium with a pump, the wet algal cells were placed in a 1 L beaker and homogenized by thoroughly stirring. This was divided into 12 and each was applied onto the materials listed in the "material" column of Table 6. Next, they were placed in an oven and dried by heating to 130 ° C.
After drying, the adhesion or peelability of the dried product was evaluated from the material. The results are shown in the "adhesion or peelability" column of Table 6. The dried algal cells were firmly attached to the cardboard, the aluminum bat and the aluminum foil (matted surface, glossy surface), but the dried algal cells were easily exfoliated from the glass and various main polymers only by tilting.
In FIG. 40, for each material of aluminum bat, aluminum foil (matted surface) and fluorocarbon resin, only the material is wet, and the algal cells are dried and dried, and the dried algal cells are removed from the material. The state of each after peeling is shown.
[実施例32]
実施例1と同様に培養を行って、液面上にバイオフィルムが形成された。
液面上に形成されたバイオフィルムを複数個所から採取し、光学顕微鏡で観察したところ、図41若しくは図42に模式的に表される顕微鏡像、又は藻体601及び藻体集合物603の割合が図41及び図42に模式的に表される顕微鏡像の中間的な状態の顕微鏡像を得ることができた。
図41は、藻体601及び細胞外マトリックス602がバイオフィルムを形成している状態を模式的に表す。図42は、藻体601及び藻体集合物603並びに細胞外マトリックス602がバイオフィルムを形成している状態を模式的に表す。藻体集合物603は藻体601が細胞外多糖により結合したものと考えられる。
一方、培養液中に浮遊している微細藻類を光学顕微鏡で観察すると、図43に模式的に表される顕微鏡像を得ることができた。
液面上に形成されたバイオフィルムは三次元状構造体であり、図44及び図45に示すように、泡状構造体及び襞状構造体が形成されていた。
培養槽(貯留部材)801に入れられた培養液802の液面に、バイオフィルム701が形成された。バイオフィルム701には、泡状構造体703及び襞状構造体702も認められた。
泡状構造体703は、サイズ及び形状は様々であったが、数ミリメートルから数センチメール大のものが多く、泡膜は容易に破壊可能であった。泡状構造体703の内部の気体は、未確認であるが、代謝により発生した二酸化炭素又は酸素を含むものと推定される。
襞状構造体702は、培養液802中に陥入するものが認められた。襞状構造体702は、バイオフィルム701の伸展に伴って襞状構造体702の横方向からの力によって培養液802中に陥入したものと推定される。 [Example 32]
The culture was carried out in the same manner as in Example 1 to form a biofilm on the liquid surface.
When the biofilm formed on the liquid surface was collected from a plurality of places and observed with an optical microscope, the microscopic image schematically represented in FIG. 41 or FIG. 42, or the ratio ofalgal bodies 601 and algal aggregate 603 A microscope image of an intermediate state of the microscope images schematically represented in FIGS. 41 and 42 can be obtained.
FIG. 41 schematically illustrates the state in which thealgal bodies 601 and the extracellular matrix 602 form a biofilm. FIG. 42 schematically shows a state in which the algal bodies 601 and the algal body aggregate 603 and the extracellular matrix 602 form a biofilm. The aggregate of algal bodies 603 is considered to be one where algal bodies 601 are bound by extracellular polysaccharide.
On the other hand, when the microalgae suspended in the culture solution were observed with an optical microscope, a microscopic image schematically represented in FIG. 43 was obtained.
The biofilm formed on the liquid surface was a three-dimensional structure, and as shown in FIGS. 44 and 45, a foam-like structure and a scaly structure were formed.
Abiofilm 701 was formed on the liquid surface of the culture solution 802 placed in the culture tank (storage member) 801. In the biofilm 701, a foam-like structure 703 and a cocoon-like structure 702 were also observed.
The foam-like structure 703 varied in size and shape, but was often several millimeters to several centimeters large, and the foam film could be easily broken. The gas inside the foam structure 703 is presumed to contain carbon dioxide or oxygen which has not been confirmed, but is generated by metabolism.
The rod-shapedstructure 702 was found to be invaginated in the culture solution 802. The rod-shaped structure 702 is presumed to be invaginated in the culture solution 802 by the force from the lateral direction of the rod-shaped structure 702 along with the extension of the biofilm 701.
実施例1と同様に培養を行って、液面上にバイオフィルムが形成された。
液面上に形成されたバイオフィルムを複数個所から採取し、光学顕微鏡で観察したところ、図41若しくは図42に模式的に表される顕微鏡像、又は藻体601及び藻体集合物603の割合が図41及び図42に模式的に表される顕微鏡像の中間的な状態の顕微鏡像を得ることができた。
図41は、藻体601及び細胞外マトリックス602がバイオフィルムを形成している状態を模式的に表す。図42は、藻体601及び藻体集合物603並びに細胞外マトリックス602がバイオフィルムを形成している状態を模式的に表す。藻体集合物603は藻体601が細胞外多糖により結合したものと考えられる。
一方、培養液中に浮遊している微細藻類を光学顕微鏡で観察すると、図43に模式的に表される顕微鏡像を得ることができた。
液面上に形成されたバイオフィルムは三次元状構造体であり、図44及び図45に示すように、泡状構造体及び襞状構造体が形成されていた。
培養槽(貯留部材)801に入れられた培養液802の液面に、バイオフィルム701が形成された。バイオフィルム701には、泡状構造体703及び襞状構造体702も認められた。
泡状構造体703は、サイズ及び形状は様々であったが、数ミリメートルから数センチメール大のものが多く、泡膜は容易に破壊可能であった。泡状構造体703の内部の気体は、未確認であるが、代謝により発生した二酸化炭素又は酸素を含むものと推定される。
襞状構造体702は、培養液802中に陥入するものが認められた。襞状構造体702は、バイオフィルム701の伸展に伴って襞状構造体702の横方向からの力によって培養液802中に陥入したものと推定される。 [Example 32]
The culture was carried out in the same manner as in Example 1 to form a biofilm on the liquid surface.
When the biofilm formed on the liquid surface was collected from a plurality of places and observed with an optical microscope, the microscopic image schematically represented in FIG. 41 or FIG. 42, or the ratio of
FIG. 41 schematically illustrates the state in which the
On the other hand, when the microalgae suspended in the culture solution were observed with an optical microscope, a microscopic image schematically represented in FIG. 43 was obtained.
The biofilm formed on the liquid surface was a three-dimensional structure, and as shown in FIGS. 44 and 45, a foam-like structure and a scaly structure were formed.
A
The foam-
The rod-shaped
[実施例33]
(第1の前培養)PS(polystyrene;ポリスチレン)製ケース(28号,アズワン株式会社;外寸法 63mm×50mm×25.5mm;品番 4-5605-05)(本実施例において、以下「PS製ケース28号」という。)に、CSiFF04培地(上記した表3に培地組成を示す。)40mLと、微細藻類 クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)のCSiFF04培地分散液(藻体濃度 1.2mg/mL)1mLとの混合物(本実施例において、以下「培養混合物」という場合がある。)を入れた。培養混合物を入れたPS製ケース28号を用いて、温度23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面の照度 15000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を行った(第1の前培養)。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。第1の前培養の培養日数は14日間とした。培養開始から14日後、PS製ケース28号の短径と同じ長さのナイロンフィルム(厚さ1mm)を用いて、培地液面上に形成された微細藻類バイオフィルムを回収した。 [Example 33]
(First pre-culture) PS (polystyrene; polystyrene) case (No. 28, As One Corporation; outer dimensions 63 mm × 50 mm × 25.5 mm; part number 4-5605-05) (in this example, “PS product made in the following manner In the case of No. 28), 40 mL of CSiFF 04 medium (the medium composition is shown in the above-mentioned Table 3) and the microalga Chlorococcum sp. A mixture of the FFG 039 strain (FERM BP-22262 strain) with 1 mL of a CSiFF 04 medium dispersion (algal concentration 1.2 mg / mL) (hereinafter sometimes referred to as "culture mixture") was added. Using a No. 28 PS case containing a culture mixture, using a white fluorescent lamp under conditions of a temperature of 23 ° C. and a carbon dioxide concentration of 5% by volume, the illuminance of the liquid surface of the medium is 15000 lx, thelight period 12 hours, the dark period 12 Stationary culture (liquid surface suspension culture) of the microalga was carried out in the irradiation cycle of time (first pre-culture). The culture temperature was controlled using an air conditioner set at 23 ° C. The number of days of culture for the first preculture was 14 days. Fourteen days after the start of culture, a microalgal biofilm formed on the liquid surface of the medium was recovered using a nylon film (thickness 1 mm) having the same length as the short diameter of Case 28 made of PS.
(第1の前培養)PS(polystyrene;ポリスチレン)製ケース(28号,アズワン株式会社;外寸法 63mm×50mm×25.5mm;品番 4-5605-05)(本実施例において、以下「PS製ケース28号」という。)に、CSiFF04培地(上記した表3に培地組成を示す。)40mLと、微細藻類 クロロコックム(Chlorococcum) sp. FFG039株(FERM BP-22262株)のCSiFF04培地分散液(藻体濃度 1.2mg/mL)1mLとの混合物(本実施例において、以下「培養混合物」という場合がある。)を入れた。培養混合物を入れたPS製ケース28号を用いて、温度23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面の照度 15000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を行った(第1の前培養)。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。第1の前培養の培養日数は14日間とした。培養開始から14日後、PS製ケース28号の短径と同じ長さのナイロンフィルム(厚さ1mm)を用いて、培地液面上に形成された微細藻類バイオフィルムを回収した。 [Example 33]
(First pre-culture) PS (polystyrene; polystyrene) case (No. 28, As One Corporation; outer dimensions 63 mm × 50 mm × 25.5 mm; part number 4-5605-05) (in this example, “PS product made in the following manner In the case of No. 28), 40 mL of CSiFF 04 medium (the medium composition is shown in the above-mentioned Table 3) and the microalga Chlorococcum sp. A mixture of the FFG 039 strain (FERM BP-22262 strain) with 1 mL of a CSiFF 04 medium dispersion (algal concentration 1.2 mg / mL) (hereinafter sometimes referred to as "culture mixture") was added. Using a No. 28 PS case containing a culture mixture, using a white fluorescent lamp under conditions of a temperature of 23 ° C. and a carbon dioxide concentration of 5% by volume, the illuminance of the liquid surface of the medium is 15000 lx, the
(第2の前培養)第1の前培養で得られた微細藻類バイオフィルムを用いて、第2の前培養を行った。具体的には、培養槽にプラスチック製バット(30cm×23cm×7cm)を用い、CSiFF04培地2800mLに第1の前培養で得られた微細藻類バイオフィルムの半分量(質量ベース)を添加して、第1の前培養と同様の培養条件で、微細藻類の静置培養(液面浮遊培養)を行った(第2の前培養)。第2の前培養の培養日数は14日間とした。培養開始から14日後、培地液面上に形成された微細藻類バイオフィルムを回収した。回収した微細藻類バイオフィルムを、CSiFF04培地300mLを入れた500mL容プラスチック製容器に移した。このプラスチック製容器を手で振った後、超音波処理を5分間行い、微細藻類のCSiFF04培地分散液(本実施例において、以下「種藻分散液」という場合がある。)を得た。得られた種藻分散液から5mLを採取して、ろ過及び乾燥(130℃、1時間)を行い、前培養によって得られた微細藻類の乾燥藻体重量を求めた。さらに、求めた乾燥藻体重量から、種藻分散液中の藻体濃度(本実施例において、以下「種藻濃度」という場合がある。)(mg/mL)を算出したところ、10.7mg/mlであった。
(Second pre-culture) A second pre-culture was performed using the microalgal biofilm obtained in the first pre-culture. Specifically, using a plastic vat (30 cm × 23 cm × 7 cm) in the culture tank, add half amount (mass base) of the microalgal biofilm obtained in the first pre-culture to 2800 mL of CSiFF04 medium, Stationary culture (liquid surface suspension culture) of the microalga was performed under the same culture conditions as the first pre-culture (second pre-culture). The number of days of culture for the second preculture was 14 days. Fourteen days after the start of culture, the microalgal biofilm formed on the liquid surface of the medium was recovered. The collected microalgal biofilm was transferred to a 500 mL plastic container containing 300 mL of CSiFF04 medium. After shaking this plastic container by hand, ultrasonication was carried out for 5 minutes to obtain a microalga CSiFF 04 medium dispersion (hereinafter sometimes referred to as “seed algae dispersion” in this example). 5 mL was collected from the obtained seed algal dispersion, followed by filtration and drying (130 ° C., 1 hour), and the dry algal body weight of the microalga obtained by the pre-culture was determined. Furthermore, when the algal concentration in the seed algal dispersion (hereinafter sometimes referred to as "seed algal concentration" in the present example) (mg / mL) is calculated from the dry algal weight obtained, it is 10.7 mg. It was / ml.
(本培養)培養槽にプラスチック製円筒状容器(直径13.4cm、高さ21cm)を用い、この培養槽に、改良培地(下記する表7に培地組成を示す。)を、培地の深さが20cmになるように入れた。次に、この培養槽内の改良培地に、藻体濃度が4.0g/m2になるように、種藻分散液を添加した。この培地及び種藻分散液を入れた培養槽を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面での照度 22000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を行った(本培養)。本培養の培養日数は9日とした。
(Main culture) A plastic cylindrical container (diameter 13.4 cm, height 21 cm) is used for the culture tank, and the improved culture medium (the composition of the culture medium is shown in Table 7 below) and the depth of the culture medium are used for this culture tank. Was put so that it would be 20 cm. Next, a seed algal dispersion was added to the improved culture medium in the culture tank so that the algal body concentration was 4.0 g / m 2 . Using a culture vessel containing this medium and seed algal dispersion, at a temperature of 23 ° C. and a carbon dioxide concentration of 5% by volume, using a daylight white fluorescent lamp, the illuminance on the medium liquid surface is 22000 lx, and the light period is 12 hours. Dark period A stationary culture (liquid surface suspension culture) of microalgae was performed (main culture) in an irradiation cycle of 12 hours. The culture days of the main culture were 9 days.
(培地液量縮減)培地液面上全面に形成された微細藻類バイオフィルムを、沈降させないように注意しながら、プラスチック板を用いて静かに押しのけて培地液面を露出させた。培地液面上に形成された微細藻類バイオフィルム及び藻体、並びに培養槽底面の藻体を排出しないように、ポンプを用いて、本培養終了時の培地の95体積%分を排出した(培地液量縮減時の培地排出量 95体積%)。培地排出後の培地の深さは1cmであった。プラスチック板を除くことで、再び培地液面上全面に微細藻類バイオフィルムが広がった。なお、微細藻類バイオフィルムの一部を採取して、定温乾燥機中130℃で3時間乾燥させ、その乾燥前後の重量を測定することで、微細藻類バイオフィルムの藻体固形分量(本実施例において「培地排出後の藻体固形分量」という。)(質量%)を求めた。結果を表8に示す。
(Media volume reduction) The media surface was exposed by gently pushing away the microalgal biofilm formed on the entire surface of the culture medium using a plastic plate, taking care not to cause sedimentation. Using a pump, 95% by volume of the culture medium at the end of the main culture was discharged so as not to discharge the microalgal biofilm and algal cells formed on the liquid surface of the culture medium and the algal cells at the bottom of the culture tank (medium Medium volume discharged at volume reduction (95% by volume). The medium depth after draining was 1 cm. By removing the plastic plate, the microalgal biofilm spread again all over the medium surface. In addition, a part of the microalgal biofilm is collected and dried at 130 ° C. in a constant temperature dryer for 3 hours, and the weight before and after the drying is measured to determine the algal body solid content of the microalgal biofilm (this example) In the above, “the solid content of algal bodies after discharging the medium” was determined (mass%). The results are shown in Table 8.
(後培養)培地液量縮減後の培養槽を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面での照度 22000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を更に継続した(後培養)。後培養の培養日数は5日間とした。
(Post-Culture) Using the culture tank after volume reduction of medium volume, temperature 23 ° C., carbon dioxide concentration 5% by volume, using white-white fluorescent light, illuminance on medium level 22000 lx, light period 12 hours, Dark period Still culture (liquid surface suspension culture) of microalgae was further continued (post culture) in a 12-hour irradiation cycle. The number of days for post-culture was 5 days.
(回収)培地液面上に形成された微細藻類バイオフィルム及び培養槽底面に沈殿している藻体の全量をすくい取って回収した。回収した微細藻類バイオフィルム及び藻体を、定温乾燥機中130℃で3時間乾燥し、乾燥した藻体(本実施例において、以下「乾燥藻体」という場合がある。)を得た。乾燥藻体の重量を測定し、乾燥藻体重量(g)とした。乾燥藻体重量を培養面積(容器底面積)(m2)で割った値を藻体収量(g/m2)とし、藻体収量(g/m2)を培養日数で割った値を藻体生産性(g/m2/day)とした。
(Recovery) The total amount of the microalgal biofilm formed on the liquid surface of the culture medium and the algal cells precipitated on the bottom of the culture vessel was scraped and collected. The collected microalgal biofilm and algal cells were dried at 130 ° C. in a constant temperature dryer for 3 hours to obtain dry algal bodies (hereinafter sometimes referred to as “dry algal bodies” in this example). The weight of the dried algal cells was measured to obtain the dried algal body weight (g). The value obtained by dividing dry algal body weight by culture area (container bottom area) (m 2 ) is used as algal body yield (g / m 2 ), and value obtained by dividing algal body yield (g / m 2 ) by culture days is algal Body productivity (g / m 2 / day).
(含油率及び油生産性)得られた乾燥藻体約50mgを精秤し、これを乳鉢及び乳棒を用いて5分間かけて十分にすり潰して、粉砕物を得た。得られた粉砕物をメタノール(1mLを2回)及びクロロホルム(4mLを1回)で洗浄して、溶剤可溶部分を集め、遠心分離処理(1000rcf、5分間)を行った。遠心分離処理後の上清から溶媒を揮発させ、残存物の重量を精秤し、含油率を下記の式によって求めた。
含油率(質量%)=(残存物の重量(g)/乾燥藻体重量(g))×100
先に求めた藻体生産性(g/m2/day)に含油率を乗じることによって、油生産性(g/m2/day)を算出した。これらの結果を表8に示す。 (Oil content and oil productivity) About 50 mg of the obtained dried algal cells were precisely weighed and thoroughly ground using a mortar and a pestle for 5 minutes to obtain a crushed material. The resulting pulverized product was washed with methanol (twice with 1 mL) and chloroform (once with 4 mL), the solvent-soluble part was collected, and centrifugation (1000 rcf, 5 minutes) was performed. The solvent was evaporated from the supernatant after centrifugation, the weight of the residue was precisely weighed, and the oil content was determined by the following equation.
Oil content (mass%) = (weight of residue (g) / weight of dried algal body (g)) × 100
The oil productivity (g / m 2 / day) was calculated by multiplying the algal cell productivity (g / m 2 / day) previously obtained by the oil content rate. The results are shown in Table 8.
含油率(質量%)=(残存物の重量(g)/乾燥藻体重量(g))×100
先に求めた藻体生産性(g/m2/day)に含油率を乗じることによって、油生産性(g/m2/day)を算出した。これらの結果を表8に示す。 (Oil content and oil productivity) About 50 mg of the obtained dried algal cells were precisely weighed and thoroughly ground using a mortar and a pestle for 5 minutes to obtain a crushed material. The resulting pulverized product was washed with methanol (twice with 1 mL) and chloroform (once with 4 mL), the solvent-soluble part was collected, and centrifugation (1000 rcf, 5 minutes) was performed. The solvent was evaporated from the supernatant after centrifugation, the weight of the residue was precisely weighed, and the oil content was determined by the following equation.
Oil content (mass%) = (weight of residue (g) / weight of dried algal body (g)) × 100
The oil productivity (g / m 2 / day) was calculated by multiplying the algal cell productivity (g / m 2 / day) previously obtained by the oil content rate. The results are shown in Table 8.
[実施例34]
本培養の培養日数を9日間から11日間に変更し、さらに、後培養の培養日数を5日間から3日間に変更した以外は、実施例33と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表8に示す。 [Example 34]
The culture and recovery of the microalga are carried out in the same manner as in Example 33 except that the culture days of the main culture are changed from 9 days to 11 days, and further, the culture days of the post culture are changed from 5 days to 3 days. Algal cell yield, algal cell productivity, oil content and oil productivity were calculated. The results are shown in Table 8.
本培養の培養日数を9日間から11日間に変更し、さらに、後培養の培養日数を5日間から3日間に変更した以外は、実施例33と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表8に示す。 [Example 34]
The culture and recovery of the microalga are carried out in the same manner as in Example 33 except that the culture days of the main culture are changed from 9 days to 11 days, and further, the culture days of the post culture are changed from 5 days to 3 days. Algal cell yield, algal cell productivity, oil content and oil productivity were calculated. The results are shown in Table 8.
[実施例35]
培地液量縮減時の培地排出量を、本培養終了時の培地液量の95体積%分から75体積%分に変更した(培地液量縮減時の培地排出量 75体積%)以外は、実施例33と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表8に示す。 [Example 35]
The amount of medium discharged at the time of reduction of the amount of medium fluid was changed from 95% by volume to 75% by volume of the amount of medium fluid at the end of the main culture (the amount of medium discharged at the time of volume reduction of medium 75% by volume). The microalgae was cultured and recovered in the same manner as 33, and algal body yield, algal body productivity, oil content and oil productivity were calculated. The results are shown in Table 8.
培地液量縮減時の培地排出量を、本培養終了時の培地液量の95体積%分から75体積%分に変更した(培地液量縮減時の培地排出量 75体積%)以外は、実施例33と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表8に示す。 [Example 35]
The amount of medium discharged at the time of reduction of the amount of medium fluid was changed from 95% by volume to 75% by volume of the amount of medium fluid at the end of the main culture (the amount of medium discharged at the time of volume reduction of medium 75% by volume). The microalgae was cultured and recovered in the same manner as 33, and algal body yield, algal body productivity, oil content and oil productivity were calculated. The results are shown in Table 8.
[比較例2]
本培養の培養日数を9日間から14日間に変更し、かつ、後培養を行わなかった以外は、実施例33と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表8に示す。 Comparative Example 2
Cultivation and recovery of microalgae were carried out in the same manner as in Example 33 except that the number of days of culture of the main culture was changed from 9 days to 14 days, and post-culture was not carried out, algal body yield, algal body productivity , Oil content and oil productivity were calculated. The results are shown in Table 8.
本培養の培養日数を9日間から14日間に変更し、かつ、後培養を行わなかった以外は、実施例33と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表8に示す。 Comparative Example 2
Cultivation and recovery of microalgae were carried out in the same manner as in Example 33 except that the number of days of culture of the main culture was changed from 9 days to 14 days, and post-culture was not carried out, algal body yield, algal body productivity , Oil content and oil productivity were calculated. The results are shown in Table 8.
なお、表8中、「総培養日数(日)」は本培養日数及び後培養日数の合計を表す。
In Table 8, "total culture days (day)" represents the total number of main culture days and post culture days.
[実施例36]
(第1の前培養及び第2の前培養)実施例33と同様にして、第1の前培養及び第2の前培養を行い、種藻分散液を得た。 [Example 36]
(First Pre-Culturing and Second Pre-Culturing) In the same manner as in Example 33, the first pre-culturing and the second pre-culturing were performed to obtain a seed algal dispersion.
(第1の前培養及び第2の前培養)実施例33と同様にして、第1の前培養及び第2の前培養を行い、種藻分散液を得た。 [Example 36]
(First Pre-Culturing and Second Pre-Culturing) In the same manner as in Example 33, the first pre-culturing and the second pre-culturing were performed to obtain a seed algal dispersion.
(本培養)培養槽にプラスチック製円筒状容器(直径13.4cm、高さ21cm)を用い、この培養槽に、CSiFF04培地(上記した表3に培地組成を示す。)を、培地の深さが20cmになるように入れた。次に、この培養槽内のCSiFF04培地に、藻体濃度が4.0g/m2になるように、種藻分散液を添加した。培地及び種藻分散液を入れた培養槽を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面での照度 22000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を行った。本培養の培養日数は14日とした。
(Main culture) A plastic cylindrical container (diameter 13.4 cm, height 21 cm) is used for the culture tank, and the CSiFF04 medium (the medium composition is shown in the above-mentioned Table 3) is used for this culture tank, and the depth of the medium. Was put so that it would be 20 cm. Next, a seed algal dispersion was added to the CSiFF04 medium in the culture tank so that the algal body concentration was 4.0 g / m 2 . Using a culture vessel containing a culture medium and a seed algae dispersion, using a white-white fluorescent lamp under conditions of a temperature 23 ° C. and a carbon dioxide concentration of 5% by volume, an illuminance of 22000 lx at the liquid surface of the medium, a light period 12 hours dark Stationary culture (liquid surface suspension culture) of microalgae was performed in an irradiation cycle of 12 hours. The culture days of the main culture were 14 days.
(培地液量縮減)培養槽の大きさに合わせたプラスチック板を用意し、このプラスチック板を培養槽の端から微細藻類バイオフィルムの下まで挿入し、プラスチック板を容器の反対側に寄せていくことで、微細藻類バイオフィルムをプラスチック板上に堆積させ、培地液面上に形成された微細藻類バイオフィルムを全量すくい取った。すくい取った微細藻類バイオフィルムの一部を採取して、定温乾燥機中130℃で3時間乾燥させ、その乾燥前後の重量を測定することで、微細藻類バイオフィルムの藻体固形分量(本実施例において「培地排出後の藻体固形分量」という。)(質量%)を求めた。結果を表9に示す。
(Mold volume reduction) Prepare a plastic plate adapted to the size of the culture vessel, insert this plastic plate from the end of the culture vessel to the bottom of the microalgal biofilm, and move the plastic plate to the other side of the container Thus, the microalgal biofilm was deposited on the plastic plate, and the whole microalgal biofilm formed on the medium surface was skimmed off. A portion of the scooped microalgal biofilm is collected, dried in a constant temperature dryer at 130 ° C. for 3 hours, and the weight before and after the drying is measured to determine the solid content of algal bodies in the microalgal biofilm (this practice) In the example, "the solid content of algal bodies after discharging the medium" (mass%) was determined. The results are shown in Table 9.
(後培養)培養槽にプラスチック製円筒状容器(直径13.4cm、高さ6cm)を用意し、プラスチック板にすくい取った微細藻類バイオフィルムをこの培養槽の底面に広げた。回収した微細藻類バイオフィルムは湿潤状態であり、培地が共存していた。この培養槽を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培養槽底面に広げた微細藻類バイオフィルム表面での照度 22000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の培養を更に継続した(後培養)。後培養の培養日数は3日間とした。
(Post-Culture) A plastic cylindrical container (diameter 13.4 cm, height 6 cm) was prepared in a culture vessel, and the microalgal biofilm scooped on a plastic plate was spread on the bottom of the culture vessel. The collected microalgal biofilm was wet, and the culture medium coexisted. Using this culture vessel, temperature 23 ° C., carbon dioxide concentration 5% by volume, using a white-white fluorescent lamp, the microalgae biofilm surface illuminance spread at the bottom of the culture vessel 22000 lx, 12 hours light, dark Cultivation of microalgae was further continued with an irradiation cycle of 12 hours (post culture). The number of days for post-culture was 3 days.
(回収)培養により得られた微細藻類バイオフィルム及び藻体を全量回収した。回収した微細藻類バイオフィルム及び藻体を、定温乾燥機中130℃で3時間乾燥し、乾燥した藻体(本実施例において、以下「乾燥藻体」という場合がある。)を得た。乾燥藻体の重量を測定し、乾燥藻体重量(g)とした。乾燥藻体重量を培養面積(容器底面積)(m2)で割った値を藻体収量(g/m2)とし、藻体収量(g/m2)を培養日数で割った値を藻体生産性(g/m2/day)とした。
(Recovery) The whole amount of microalgal biofilm and algal cells obtained by culture was recovered. The collected microalgal biofilm and algal cells were dried at 130 ° C. in a constant temperature dryer for 3 hours to obtain dry algal bodies (hereinafter sometimes referred to as “dry algal bodies” in this example). The weight of the dried algal cells was measured to obtain the dried algal body weight (g). The value obtained by dividing dry algal body weight by culture area (container bottom area) (m 2 ) is used as algal body yield (g / m 2 ), and value obtained by dividing algal body yield (g / m 2 ) by culture days is algal Body productivity (g / m 2 / day).
(含油率及び油生産性)実施例33と同様にして含油率(質量%)及び油生産性(g/m2/day)を算出した。これらの結果を表9に示す。
(Oil content and oil productivity) In the same manner as in Example 33, the oil content (% by mass) and the oil productivity (g / m 2 / day) were calculated. The results are shown in Table 9.
[実施例37]
後培養を二酸化炭素濃度 5体積%下から大気下に変更した以外は、実施例36と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表9に示す。 [Example 37]
Cultivation and recovery of microalgae were carried out in the same manner as in Example 36, except that the post-culture was changed to the atmosphere under a carbon dioxide concentration of 5% by volume, and algal yield, algal productivity, oil content and oil productivity Was calculated. The results are shown in Table 9.
後培養を二酸化炭素濃度 5体積%下から大気下に変更した以外は、実施例36と同様にして微細藻類の培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表9に示す。 [Example 37]
Cultivation and recovery of microalgae were carried out in the same manner as in Example 36, except that the post-culture was changed to the atmosphere under a carbon dioxide concentration of 5% by volume, and algal yield, algal productivity, oil content and oil productivity Was calculated. The results are shown in Table 9.
[比較例3]
実施例36と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過し、更に水で洗浄(100mL×2回)することで培地成分を除去して、微細藻類の培養物を得た。得られた培養物に、水5.0mLを加えて撹拌し、微細藻類の水分散液(藻体分散液)を得た。この藻体分散液中の藻体固形分量を求めたところ、8.34%であった。このようにして培地を水に置換した以外は、実施例36と同様にして微細藻類の後培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。これらの結果を表9に示す。 Comparative Example 3
The first preculture, the second preculture, and the main culture were performed as in Example 36. Thereafter, all the microalgal biofilm and algal cells obtained by the culture are collected, suction-filtered, and the medium components are removed by washing with water (100 mL × 2 times) to obtain a microalgal culture. The To the obtained culture, 5.0 mL of water was added and stirred to obtain an aqueous dispersion (algaloid dispersion) of fine algae. The solid content of algal bodies in this algal dispersion was determined to be 8.34%. Thus, microalgae was post-cultured and recovered in the same manner as in Example 36 except that the medium was replaced with water, and algal body yield, algal body productivity, oil content, and oil productivity were calculated. The results are shown in Table 9.
実施例36と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過し、更に水で洗浄(100mL×2回)することで培地成分を除去して、微細藻類の培養物を得た。得られた培養物に、水5.0mLを加えて撹拌し、微細藻類の水分散液(藻体分散液)を得た。この藻体分散液中の藻体固形分量を求めたところ、8.34%であった。このようにして培地を水に置換した以外は、実施例36と同様にして微細藻類の後培養及び回収を行い、藻体収量、藻体生産性、含油率及び油生産性を算出した。これらの結果を表9に示す。 Comparative Example 3
The first preculture, the second preculture, and the main culture were performed as in Example 36. Thereafter, all the microalgal biofilm and algal cells obtained by the culture are collected, suction-filtered, and the medium components are removed by washing with water (100 mL × 2 times) to obtain a microalgal culture. The To the obtained culture, 5.0 mL of water was added and stirred to obtain an aqueous dispersion (algaloid dispersion) of fine algae. The solid content of algal bodies in this algal dispersion was determined to be 8.34%. Thus, microalgae was post-cultured and recovered in the same manner as in Example 36 except that the medium was replaced with water, and algal body yield, algal body productivity, oil content, and oil productivity were calculated. The results are shown in Table 9.
[比較例4]
実施例36と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより乾燥藻体重量(g)を求めた。実施例36と同様にして藻体収量(g/m2)、藻体生産性(g/m2/day)、含油率(質量%)及び油生産性(g/m2/day)を算出した。結果を表9に示す。 Comparative Example 4
The first preculture, the second preculture, and the main culture were performed as in Example 36. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The obtained culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the dry algal body weight (g). In the same manner as in Example 36, algal cell yield (g / m 2 ), algal cell productivity (g / m 2 / day), oil content (mass%) and oil productivity (g / m 2 / day) are calculated. did. The results are shown in Table 9.
実施例36と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより乾燥藻体重量(g)を求めた。実施例36と同様にして藻体収量(g/m2)、藻体生産性(g/m2/day)、含油率(質量%)及び油生産性(g/m2/day)を算出した。結果を表9に示す。 Comparative Example 4
The first preculture, the second preculture, and the main culture were performed as in Example 36. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The obtained culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the dry algal body weight (g). In the same manner as in Example 36, algal cell yield (g / m 2 ), algal cell productivity (g / m 2 / day), oil content (mass%) and oil productivity (g / m 2 / day) are calculated. did. The results are shown in Table 9.
[比較例5]
本培養の培養日数を14日間から17日間に変更した以外は実施例36と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより藻体量(g)を求めた。実施例36と同様にして藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表9に示す。 Comparative Example 5
The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 36 except that the culture days of the main culture were changed from 14 days to 17 days. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The resulting culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the amount of algal bodies (g). The algal cell yield, algal cell productivity, oil content and oil productivity were calculated in the same manner as in Example 36. The results are shown in Table 9.
本培養の培養日数を14日間から17日間に変更した以外は実施例36と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより藻体量(g)を求めた。実施例36と同様にして藻体収量、藻体生産性、含油率及び油生産性を算出した。結果を表9に示す。 Comparative Example 5
The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 36 except that the culture days of the main culture were changed from 14 days to 17 days. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The resulting culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the amount of algal bodies (g). The algal cell yield, algal cell productivity, oil content and oil productivity were calculated in the same manner as in Example 36. The results are shown in Table 9.
なお、表9中、「総培養日数(日)」は本培養日数及び後培養日数の合計を表す。
In Table 9, "total culture days (day)" represents the total of main culture days and post culture days.
[実施例38]
(第1の前培養)PS(polystyrene;ポリスチレン)製ケース(28号,アズワン株式会社;外寸法 63mm×50mm×25.5mm;品番 4-5605-05)(本実施例において、以下「PS製ケース28号」という。)に、CSiFF04培地(上記した表3に組成を示す。)40mLと、微細藻類 ボツリオコッカス・スデティクス(Botryococcus sudeticus) AVFF007株(FERM BP-11420株)のCSiFF04培地分散液(藻体濃度1.2mg/mL)1mLとの混合物(本実施例において、以下「培養混合物」という場合がある。)を入れた。培養混合物を入れたPS製ケース28号を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面の照度 15000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を行った(第1の前培養)。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。第1の前培養の培養日数は14日間とした。培養開始から14日後、PS製ケース28号の短径と同じ長さのナイロンフィルム(厚さ1mm)を用いて、培地液面に形成された微細藻類バイオフィルムを回収した。 [Example 38]
(First pre-culture) PS (polystyrene; polystyrene) case (No. 28, As One Corporation; outer dimensions 63 mm × 50 mm × 25.5 mm; part number 4-5605-05) (in this example, “PS product made in the following manner In the case 28), 40 mL of CSiFF04 medium (the composition is shown in Table 3 above) and a dispersion of CSiFF04 medium of the microalga Botryococcus sudeticus AVFF 007 strain (FERM BP-11420 strain) A mixture with 1 mL (algal concentration 1.2 mg / mL) (hereinafter sometimes referred to as "culture mixture" in this example) was added. Using aPS case 28 containing a culture mixture, temperature 23 ° C., carbon dioxide concentration 5% by volume, using a white fluorescent lamp, the illuminance of the liquid surface of the culture medium 15000 lx, light period 12 hours, dark period 12 Stationary culture (liquid surface suspension culture) of the microalga was carried out in the irradiation cycle of time (first pre-culture). The culture temperature was controlled using an air conditioner set at 23 ° C. The number of days of culture for the first preculture was 14 days. Fourteen days after the start of culture, a microalgal biofilm formed on the liquid surface of the medium was recovered using a nylon film (thickness 1 mm) having the same length as the short diameter of Case 28 made of PS.
(第1の前培養)PS(polystyrene;ポリスチレン)製ケース(28号,アズワン株式会社;外寸法 63mm×50mm×25.5mm;品番 4-5605-05)(本実施例において、以下「PS製ケース28号」という。)に、CSiFF04培地(上記した表3に組成を示す。)40mLと、微細藻類 ボツリオコッカス・スデティクス(Botryococcus sudeticus) AVFF007株(FERM BP-11420株)のCSiFF04培地分散液(藻体濃度1.2mg/mL)1mLとの混合物(本実施例において、以下「培養混合物」という場合がある。)を入れた。培養混合物を入れたPS製ケース28号を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面の照度 15000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を行った(第1の前培養)。なお、培養温度の制御は、23℃に設定したエアコンを用いて行った。第1の前培養の培養日数は14日間とした。培養開始から14日後、PS製ケース28号の短径と同じ長さのナイロンフィルム(厚さ1mm)を用いて、培地液面に形成された微細藻類バイオフィルムを回収した。 [Example 38]
(First pre-culture) PS (polystyrene; polystyrene) case (No. 28, As One Corporation; outer dimensions 63 mm × 50 mm × 25.5 mm; part number 4-5605-05) (in this example, “PS product made in the following manner In the case 28), 40 mL of CSiFF04 medium (the composition is shown in Table 3 above) and a dispersion of CSiFF04 medium of the microalga Botryococcus sudeticus AVFF 007 strain (FERM BP-11420 strain) A mixture with 1 mL (algal concentration 1.2 mg / mL) (hereinafter sometimes referred to as "culture mixture" in this example) was added. Using a
(第2の前培養)第1の前培養で得られた微細藻類バイオフィルムを用いて、第2の前培養を行った。具体的には、培養槽にプラスチック製バット(30cm×23cm×7cm)を用い、CSiFF04培地2800mLに第1の前培養で得られた微細藻類バイオフィルムの半分量(質量ベース)を添加して、第1の前培養と同様の培養条件で、微細藻類の静置培養(液面浮遊培養)を行った(第2の前培養)。第2の前培養の培養日数は14日間とした。培養開始から14日後、培地液面上に形成された微細藻類バイオフィルムを回収した。回収した微細藻類バイオフィルムを、CSiFF04培地300mLを入れた500mL容プラスチック製容器に移した。このプラスチック製容器を手で振った後、超音波処理を5分間行い、微細藻類のCSiFF04培地分散液(本実施例において、以下「種藻分散液」という。)を得た。得られた種藻分散液から5mLを採取して、ろ過及び乾燥(130℃、1時間)を行い、前培養によって得られた微細藻類の乾燥藻体重量を求めた。さらに、求めた乾燥藻体重量から、種藻分散液中の藻体濃度(本実施例において「種藻濃度」という場合がある。)(mg/mL)を算出したところ、10.7mg/mlであった。
(Second pre-culture) A second pre-culture was performed using the microalgal biofilm obtained in the first pre-culture. Specifically, using a plastic vat (30 cm × 23 cm × 7 cm) in the culture tank, add half amount (mass base) of the microalgal biofilm obtained in the first pre-culture to 2800 mL of CSiFF04 medium, Stationary culture (liquid surface suspension culture) of the microalga was performed under the same culture conditions as the first pre-culture (second pre-culture). The number of days of culture for the second preculture was 14 days. Fourteen days after the start of culture, the microalgal biofilm formed on the liquid surface of the medium was recovered. The collected microalgal biofilm was transferred to a 500 mL plastic container containing 300 mL of CSiFF04 medium. After shaking this plastic container by hand, ultrasonication was carried out for 5 minutes to obtain a microalga CSiFF 04 medium dispersion (hereinafter referred to as "seed algae dispersion" in this example). 5 mL was collected from the obtained seed algal dispersion, followed by filtration and drying (130 ° C., 1 hour), and the dry algal body weight of the microalga obtained by the pre-culture was determined. Furthermore, when the algal concentration in the seed algal dispersion (sometimes referred to as "seed algal concentration" in this example) (mg / mL) was calculated from the dry algal weight obtained, it was 10.7 mg / ml. Met.
(本培養)培養槽にTPX染色バット(タテ型壺,アズワン株式会社;サイズ 94mm×46mm×96mm;品番 2-3029-01)を用い、この培養槽に、CSiFF04培地(上記した表3に組成を示す。)を、培地の深さが5cmになるように入れた。次に、この培養槽内のCSiFF04培地に、藻体濃度が0.67g/m2になるように、種藻分散液を添加した。この培地及び種藻分散液を入れた培養槽を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培地液面での照度 15000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の静置培養(液面浮遊培養)を行った(本培養)。本培養の培養日数は14日間とした。
(Main culture) Using TPX-stained bat (vertical type, As One Co., Ltd .; size 94 mm × 46 mm × 96 mm; product number 2-3029-01) in the culture tank, the CSiFF 04 medium (composition described in Table 3 above) was used in this culture tank. ) Is placed so that the depth of culture medium is 5 cm. Next, a seed algal dispersion was added to the CSiFF04 medium in the culture tank so that the algal body concentration was 0.67 g / m 2 . Using a culture vessel containing this medium and seed algal dispersion, using a white-white fluorescent lamp under conditions of temperature 23 ° C. and carbon dioxide concentration 5% by volume, illuminance 15,000 lx at the medium liquid surface, light period 12 hours, Dark period A stationary culture (liquid surface suspension culture) of microalgae was performed (main culture) in an irradiation cycle of 12 hours. The culture days of the main culture were 14 days.
(培地液量縮減)培養槽の大きさに合わせたプラスチック板を用意し、このプラスチック板を培養槽の端から微細藻類バイオフィルムの下まで挿入し、プラスチック板を容器の反対側に寄せていくことで、微細藻類バイオフィルムをプラスチック板上に堆積させ、培地液面上に形成された微細藻類バイオフィルムを全量すくい取った。すくいとった微細藻類バイオフィルムの一部を採取して、定温乾燥機中130℃で3時間乾燥させ、その乾燥前後の重量を測定することで、微細藻類バイオフィルムの藻体固形分量(本実施例において「培地排出後の藻体固形分量」という。)(質量%)を求めた。結果を表10に示す。
(Mold volume reduction) Prepare a plastic plate adapted to the size of the culture vessel, insert this plastic plate from the end of the culture vessel to the bottom of the microalgal biofilm, and move the plastic plate to the other side of the container Thus, the microalgal biofilm was deposited on the plastic plate, and the whole microalgal biofilm formed on the medium surface was skimmed off. A portion of the scooped microalgal biofilm is collected and dried at 130 ° C. in a constant temperature dryer for 3 hours, and the weight before and after drying is measured to determine the solid content of algal bodies in the microalgal biofilm (this practice) In the example, "the solid content of algal bodies after discharging the medium" (mass%) was determined. The results are shown in Table 10.
(後培養)培養槽にPSケース28号を用意し、プラスチック板にすくい取った微細藻類バイオフィルムをこの培養槽の底面に広げた。この培養槽を用いて、温度 23℃、二酸化炭素濃度 5体積%条件下、昼白色蛍光灯を用いて、培養槽の底面に広げた微細藻類バイオフィルム表面での照度 15000lx、明期 12時間、暗期 12時間の照射サイクルで、微細藻類の培養を更に継続した(後培養)。後培養の培養日数は3日間とした。
(Post-Culture) PS Case No. 28 was prepared in a culture vessel, and the microalgal biofilm scooped on a plastic plate was spread on the bottom of this culture vessel. Using this culture vessel, the temperature on a microalgal biofilm surface spread to the bottom of the culture vessel using a day-white fluorescent lamp under conditions of a temperature of 23 ° C. and a carbon dioxide concentration of 5 vol. In the dark, a 12-hour irradiation cycle, the microalgae culture was further continued (post culture). The number of days for post-culture was 3 days.
(回収)培養により得られた微細藻類バイオフィルム及び藻体を全量回収した。回収した微細藻類バイオフィルム及び藻体を、定温乾燥機中130℃で3時間乾燥し、乾燥した藻体(本実施例において、以下「乾燥藻体」という場合がある。)を得た。乾燥藻体の重量を測定し、乾燥藻体重量(g)とした。乾燥藻体重量を培養面積(容器底面積)(m2)で割った値を藻体収量(g/m2)とし、藻体収量(g/m2)を培養日数で割った値を藻体生産性(g/m2/day)とした。
(Recovery) The whole amount of microalgal biofilm and algal cells obtained by culture was recovered. The collected microalgal biofilm and algal cells were dried at 130 ° C. in a constant temperature dryer for 3 hours to obtain dry algal bodies (hereinafter sometimes referred to as “dry algal bodies” in this example). The weight of the dried algal cells was measured to obtain the dried algal body weight (g). The value obtained by dividing dry algal body weight by culture area (container bottom area) (m 2 ) is used as algal body yield (g / m 2 ), and value obtained by dividing algal body yield (g / m 2 ) by culture days is algal Body productivity (g / m 2 / day).
(含油率及び油生産性)実施例33と同様にして含油率(質量%)及び油生産性(g/m2/day)を算出した。これらの結果を表10に示す。
(Oil content and oil productivity) In the same manner as in Example 33, the oil content (% by mass) and the oil productivity (g / m 2 / day) were calculated. These results are shown in Table 10.
[比較例6]
実施例38と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより乾燥藻体重量(g)を求めた。実施例38と同様にして藻体収量(g/m2)、藻体生産性(g/m2/day)、含油率(質量%)及び油生産性(g/m2/day)を産出した。結果を表10に示す。 Comparative Example 6
The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 38. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The obtained culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the dry algal body weight (g). In the same manner as in Example 38, algal yield (g / m 2 ), algal productivity (g / m 2 / day), oil content (mass%) and oil productivity (g / m 2 / day) were produced. did. The results are shown in Table 10.
実施例38と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより乾燥藻体重量(g)を求めた。実施例38と同様にして藻体収量(g/m2)、藻体生産性(g/m2/day)、含油率(質量%)及び油生産性(g/m2/day)を産出した。結果を表10に示す。 Comparative Example 6
The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 38. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The obtained culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the dry algal body weight (g). In the same manner as in Example 38, algal yield (g / m 2 ), algal productivity (g / m 2 / day), oil content (mass%) and oil productivity (g / m 2 / day) were produced. did. The results are shown in Table 10.
[比較例7]
本培養の培養日数を14日間から17日間に変更した以外は実施例38と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより藻体量(g)を求めた。実施例38と同様にして藻体収量、藻体生産性、含油率及び油生産性を産出した。結果を表10に示す。 Comparative Example 7
The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 38 except that the culture days of the main culture were changed from 14 days to 17 days. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The resulting culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the amount of algal bodies (g). Algal body yield, algal body productivity, oil content and oil productivity were produced in the same manner as in Example 38. The results are shown in Table 10.
本培養の培養日数を14日間から17日間に変更した以外は実施例38と同様に第1の前培養、第2の前培養、及び本培養を行った。その後、培養により得られた微細藻類バイオフィルム及び藻体を全量回収し、吸引ろ過して、微細藻類の培養物を得た。得られた培養物を定温乾燥機中130℃で3時間乾燥し、その重量を測定することにより藻体量(g)を求めた。実施例38と同様にして藻体収量、藻体生産性、含油率及び油生産性を産出した。結果を表10に示す。 Comparative Example 7
The first preculture, the second preculture, and the main culture were performed in the same manner as in Example 38 except that the culture days of the main culture were changed from 14 days to 17 days. Thereafter, the entire amount of the microalgal biofilm and algal cells obtained by the culture was collected and suction-filtered to obtain a culture of the microalgae. The resulting culture was dried at 130 ° C. in a constant temperature dryer for 3 hours, and its weight was measured to determine the amount of algal bodies (g). Algal body yield, algal body productivity, oil content and oil productivity were produced in the same manner as in Example 38. The results are shown in Table 10.
なお、表10中、「総培養日数(日)」は本培養日数及び後培養日数の合計を表す。
In Table 10, "total culture days (day)" represents the total of main culture days and post culture days.
10a,10b,10c,10d,10e,10f,10g,10h,10i,10k,10n,10p,10r,10t,10u 培養装置
12,12a,12b,12f,12g,12h,12j,12n,12r,12t,12u 貯留部材
14a,14b,14c,14d,14k 遮蔽部材
16a,16r 容器
17 バルブ
18 排水管
20f,20h,20n,28,28e 支持体
22f 第1のフィルム
24g 第2のフィルム
26j 第3のフィルム
27 貯留部材
30 嵩上げする部材
50,60 培養装置
52,62 貯留部材
64 伝熱用配管
90 培養装置
92 管状(チューブ状)に形成された部材
94 支持体
100,200 培養装置
202,202a,202b,202c 第1の巻取機
204 ヘラ
206 回収容器
208 設置用ローラ
210 再設置用のフィルム
220 貯留部材群
601 藻体
602 細胞外マトリックス
603 藻体集合物
701 バイオフィルム
702 襞状構造体
703 泡状構造体
800 培養装置
801 培養槽(貯留部材)
802 培養液
901 培養槽
902 第一の基板
903a バイオフィルム(藻体)
903b バイオフィルム(藻体)
904 第二の基板
G 設置面
Gb 凹部
Gd 凸部
M 培養液
N 気層
P,P2,P3 微細藻類
T 領域
W 水 10a, 10b, 10c, 10e, 10e, 10g, 10h, 10i, 10k, 10n, 10r, 10t, 10u Culture apparatus 12, 12a, 12b, 12f, 12g, 12h, 12j, 12n, 12t, 12t , 12u Storage members 14a, 14b, 14c, 14d, 14k Shielding members 16a, 16r Containers 17 Valves 18 Drains 20f, 20h, 20n, 28, 28e Support 22f First film 24g Second film 26j Third film 27 Storage member 30 Bulking member 50, 60 Culture device 52, 62 Storage member 64 Heat transfer piping 90 Culture device 92 Member formed in a tubular shape (tube shape) Support body 100, 200 Culture device 202, 202a, 202b, 202c First winding machine 204 for installation of spatula 206 collection container 208 Over La 210 film 220 storage member group 601 algal cells 602 extracellular matrix 603 algae assemblage 701 biofilm 702 pleated structure 703 foam structure 800 culture apparatus 801 culture tank for repositioning (storage member)
802culture solution 901 culture tank 902 first substrate 903a biofilm (alga)
903b Biofilm (Alga)
904 Second substrate G Installation surface Gb Concave part Gd Convex part M Culture solution N Air layer P, P 2 , P 3 Microalgae T Region W Water
12,12a,12b,12f,12g,12h,12j,12n,12r,12t,12u 貯留部材
14a,14b,14c,14d,14k 遮蔽部材
16a,16r 容器
17 バルブ
18 排水管
20f,20h,20n,28,28e 支持体
22f 第1のフィルム
24g 第2のフィルム
26j 第3のフィルム
27 貯留部材
30 嵩上げする部材
50,60 培養装置
52,62 貯留部材
64 伝熱用配管
90 培養装置
92 管状(チューブ状)に形成された部材
94 支持体
100,200 培養装置
202,202a,202b,202c 第1の巻取機
204 ヘラ
206 回収容器
208 設置用ローラ
210 再設置用のフィルム
220 貯留部材群
601 藻体
602 細胞外マトリックス
603 藻体集合物
701 バイオフィルム
702 襞状構造体
703 泡状構造体
800 培養装置
801 培養槽(貯留部材)
802 培養液
901 培養槽
902 第一の基板
903a バイオフィルム(藻体)
903b バイオフィルム(藻体)
904 第二の基板
G 設置面
Gb 凹部
Gd 凸部
M 培養液
N 気層
P,P2,P3 微細藻類
T 領域
W 水 10a, 10b, 10c, 10e, 10e, 10g, 10h, 10i, 10k, 10n, 10r, 10t, 10u
802
903b Biofilm (Alga)
904 Second substrate G Installation surface Gb Concave part Gd Convex part M Culture solution N Air layer P, P 2 , P 3 Microalgae T Region W Water
Claims (17)
- 培養液を保持する貯留部材を備える培養装置を用いた微細藻類の培養物の培養及び回収方法であって、
前記培養液の上方に気層が存在するようにしながら、前記培養液で微細藻類を培養する本培養工程と、
前記培養液の液量を減らす液量縮減工程と、
前記液量縮減工程の後に、前記微細藻類の培養物を回収する回収工程と
を含む微細藻類の培養物の培養及び回収方法。 A culture and recovery method of a microalga culture using a culture apparatus including a storage member for holding a culture solution,
A main culture step of culturing a microalga in the culture solution while maintaining an air layer above the culture solution;
A volume reduction step of reducing the volume of the culture solution;
And a recovery step of recovering the culture of the microalga after the liquid volume reduction step. - 前記液量縮減工程の後、かつ、前記回収工程の前に、更に、
培養液存在下で前記微細藻類を培養する後培養工程
を含む、請求項1に記載の微細藻類の培養物の培養及び回収方法。 After the liquid volume reduction step and before the recovery step,
The culture | cultivation and collection | recovery method of the culture of the microalga of Claim 1 including the post-culture process which culture | cultivates the said microalga in presence of a culture solution. - 前記後培養工程において、前記微細藻類の藻体と培養液の質量比が、藻体の質量/培養液の質量=20/80~0.1/99.9である、請求項2に記載の微細藻類の培養物の培養及び回収方法。 3. The method according to claim 2, wherein in the post-culturing step, the mass ratio of the microalga algal cells to the culture solution is: mass of algal cells / mass of culture solution = 20/80 to 0.1 / 99.9. Method for culturing and recovering cultures of microalgae.
- 前記培養装置が、更に、鉛直方向から見た際に前記培養液の液面の少なくとも一部を覆うように、前記貯留部材の上方に配置される、少なくとも一部の波長の光が透過可能な遮蔽部材を備え、かつ、前記気層が前記培養液の液面と前記遮蔽部材との間に形成される、請求項1~3のいずれか1項に記載の微細藻類の培養物の培養及び回収方法。 The culture device is further disposed above the storage member so as to cover at least a part of the liquid surface of the culture solution when viewed in the vertical direction, and can transmit light of at least a part of wavelengths The culture of the culture of the microalga according to any one of claims 1 to 3, further comprising a shielding member, wherein the air layer is formed between the liquid surface of the culture solution and the shielding member. Recovery method.
- 前記培養装置が、更に、前記気層の温度を制御する気温制御部及び前記培養液の温度を制御する液温制御部の少なくとも一方を備え、
前記本培養工程において、前記気層の温度及び前記培養液の温度の少なくとも一方を前記微細藻類の培養に適した温度範囲に制御する、請求項1~4のいずれか1項に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus further includes at least one of an air temperature control unit that controls the temperature of the air layer and a liquid temperature control unit that controls the temperature of the culture solution,
The microalga according to any one of claims 1 to 4, wherein, in the main culture step, at least one of the temperature of the air layer and the temperature of the culture solution is controlled to a temperature range suitable for culturing the microalga. Method for culturing and recovering a culture of - 前記培養装置が、更に、前記気層に連通する通気部を備える、請求項1~5のいずれか1項に記載の微細藻類の培養物の培養及び回収方法。 The method for cultivating and recovering a culture of microalga according to any one of claims 1 to 5, wherein the culture apparatus further comprises an aeration unit in communication with the air layer.
- 前記培養装置が、更に、前記通気部での気体の通過を制御する通気制御部を備える、請求項6に記載の微細藻類の培養物の培養及び回収方法。 The culture and recovery method of a culture of microalga according to claim 6, wherein the culture apparatus further comprises an aeration control unit that controls passage of gas in the aeration unit.
- 前記貯留部材は、可撓性を有する第1のフィルムと、前記第1のフィルムを支持する支持体とを有し、
前記支持体が前記第1のフィルムをプール状の凹部を形成するように支持して、前記培養液を前記凹部で保持する、請求項1~7のいずれか1項に記載の微細藻類の培養物の培養及び回収方法。 The storage member includes a flexible first film and a support for supporting the first film.
The culture of the microalga according to any one of claims 1 to 7, wherein the support supports the first film to form a pool-like recess, and the culture solution is held by the recess. Method of culture and recovery of - 前記培養装置は、前記第1のフィルムを移動させる第1のフィルム移動部材を有し、
前記液量縮減工程において、培養液の液量を減らすことで、培養した前記微細藻類の培養物を前記第1のフィルムに接触させて、
前記回収工程において、前記第1のフィルムを前記支持体から移動させて、前記微細藻類の培養物を回収する、請求項8に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus has a first film moving member for moving the first film,
In the liquid volume reduction step, the culture volume of the culture solution is reduced to bring the culture of the cultured microalga into contact with the first film;
The culture and recovery method of a culture of microalga according to claim 8, wherein the first film is moved from the support in the recovery step, and the culture of the microalga is recovered. - 前記培養装置は、前記第1のフィルムをロール状に巻き取る第1の巻取機を有し、
前記回収工程において、前記第1の巻取機は、前記第1のフィルムを前記微細藻類の培養物と共にロール状に巻き取ることで、前記微細藻類の培養物を回収する、請求項8又は9に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus includes a first winding machine which winds the first film in a roll.
10. The method according to claim 8, wherein in the recovery step, the first winder recovers the culture of the microalga by rolling up the first film together with the culture of the microalgae in a roll. The culture | cultivation and collection | recovery method of the culture of micro algae as described in 4. - 前記培養装置は、前記第1のフィルムをロール状に巻き取る第1の巻取機と、前記第1のフィルムから前記微細藻類の培養物を剥離させる第1の回収部材を有し、
前記回収工程において、前記第1の巻取機が前記第1のフィルムをロール状に巻き取りつつ、前記第1の回収部材が前記第1のフィルムから前記微細藻類の培養物を剥離させて前記微細藻類の培養物を回収する、請求項8又は9に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus includes a first winding machine which winds the first film in a roll, and a first recovery member which peels the culture of the microalga from the first film.
In the recovery step, the first recovery member peels the culture of the microalgae from the first film while the first winder winds the first film into a roll, The culture | cultivation and collection | recovery method of the culture of the micro algae of Claim 8 or 9 which collect | recovers the culture of micro algae. - 前記培養装置は、前記第1のフィルムと、前記支持体との間に、1以上の第3のフィルムを備える、請求項8~11のいずれか1項に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus of a microalga according to any one of claims 8 to 11, wherein the culture apparatus comprises one or more third films between the first film and the support. And recovery methods.
- 前記貯留部材は、前記培養液と接触する側の最表面に、複数の貫通孔が形成された第2のフィルムを備える、請求項1~12のいずれか1項に記載の微細藻類の培養物の培養及び回収方法。 The culture of the microalga according to any one of claims 1 to 12, wherein the storage member comprises a second film having a plurality of through holes formed on the outermost surface in contact with the culture solution. Culture and recovery method.
- 前記培養装置は、前記第2のフィルムを移動させる第2のフィルム移動部材を有し、
前記回収工程において、前記第2のフィルムを移動させて、前記微細藻類の培養物を回収する、請求項13に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus has a second film moving member for moving the second film,
The method for cultivating and collecting a microalgal culture according to claim 13, wherein in the collecting step, the second film is moved to collect the microalgal culture. - 前記培養装置は、前記第2のフィルムをロール状に巻き取る第2の巻取機を有し、
前記回収工程において、前記第2の巻取機は、前記第2のフィルムを前記微細藻類の培養物と共にロール状に巻き取ることで、前記微細藻類の培養物を回収する、請求項13又は14に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus includes a second winding machine which winds the second film in a roll.
In the recovery step, the second winding machine recovers the culture of the microalga by rolling up the second film together with the culture of the microalgae in a roll shape. The culture | cultivation and collection | recovery method of the culture of micro algae as described in 4. - 前記培養装置は、前記第2のフィルムをロール状に巻き取る第2の巻取機と、前記第2のフィルムから前記微細藻類の培養物を剥離させる第2の回収部材を有し、
前記回収工程において、前記第2の巻取機が前記第2のフィルムをロール状に巻き取りつつ、前記第2の回収部材が前記第2のフィルムから前記微細藻類の培養物を剥離させて前記微細藻類の培養物を回収する、請求項13又は14に記載の微細藻類の培養物の培養及び回収方法。 The culture apparatus has a second winding machine for winding the second film in a roll, and a second recovery member for peeling the culture of the microalga from the second film.
In the recovery step, the second recovery member exfoliates the culture of the microalgae from the second film while the second winding machine winds the second film in a roll shape. The culture | cultivation and collection | recovery method of the culture of microalga of Claim 13 or 14 which collect | recovers the culture of microalga. - 前記微細藻類が前記培養液の液面にバイオフィルムを形成可能な微細藻類である、請求項1~16のいずれか1項に記載の微細藻類の培養物の培養及び回収方法。 The culture and recovery method of a culture of microalga according to any one of claims 1 to 16, wherein the microalga is a microalga capable of forming a biofilm on the liquid surface of the culture solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017515616A JPWO2016175302A1 (en) | 2015-04-30 | 2016-04-28 | Method for culturing and collecting microalgae culture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-093125 | 2015-04-30 | ||
JP2015093125 | 2015-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016175302A1 true WO2016175302A1 (en) | 2016-11-03 |
Family
ID=57198500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/063410 WO2016175302A1 (en) | 2015-04-30 | 2016-04-28 | Method for culturing and collection of microalgae culture |
Country Status (2)
Country | Link |
---|---|
JP (2) | JPWO2016175302A1 (en) |
WO (1) | WO2016175302A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018088916A (en) * | 2016-12-01 | 2018-06-14 | 日本曹達株式会社 | Algae growing method and algae culturing device |
JP2021528082A (en) * | 2018-06-21 | 2021-10-21 | アルジー・イノベイション・ネザーランズ・ベスローテン・フェンノートシャップAlgae Innovation Netherlands B.V. | Use of green microalgae to improve plant growth |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016175302A1 (en) * | 2015-04-30 | 2018-02-08 | 富士フイルム株式会社 | Method for culturing and collecting microalgae culture |
JP7087275B2 (en) * | 2017-04-20 | 2022-06-21 | 株式会社Ihi | Manufacturing method of microorganisms |
JP7652367B2 (en) | 2020-02-26 | 2025-03-27 | 株式会社カネカ | Algae culture device, algae culture method, and culture device management system |
JP7440910B2 (en) * | 2020-10-30 | 2024-02-29 | 株式会社BrainGild | Culture device and method for manufacturing culture target |
CN118922527A (en) * | 2022-03-29 | 2024-11-08 | 株式会社村田制作所 | Algae cultivation method, algae cultivation device, algae cultivation package and algae slurry |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05268947A (en) * | 1992-03-18 | 1993-10-19 | Kobe Steel Ltd | Method for culture in vapor phase and apparatus therefor |
JPH0670756A (en) * | 1992-08-25 | 1994-03-15 | Kobe Steel Ltd | Method for liquid and gas phases two step culture and its device |
JPH10314546A (en) * | 1997-05-21 | 1998-12-02 | Kajima Corp | Method and apparatus for fixing carbon dioxide by microalgae |
JPH1189555A (en) * | 1997-09-24 | 1999-04-06 | Sanyo Electric Co Ltd | Carbon dioxide-decreasing machine |
WO2012077250A1 (en) * | 2010-12-09 | 2012-06-14 | ▲緑▼合能源有限公司 | Method and system for producing and supplying biogas using mixed microalgae |
JP2012157274A (en) * | 2011-01-31 | 2012-08-23 | Fujifilm Corp | Method for adherent culturing of photosynthetic microorganism |
JP2012249611A (en) * | 2011-06-06 | 2012-12-20 | Daiwa House Industry Co Ltd | Treatment method for used plant culture solution |
WO2013161832A1 (en) * | 2012-04-24 | 2013-10-31 | 富士フイルム株式会社 | Method for culturing microalga, biofilm formed on surface of liquid by said culturing method, biomass and oil both produced from said biofilm, method for collecting said biofilm, method for producing biomass fuel, microalga capable of forming biofilm on surface of liquid, biofilm formed on surface of liquid using said microalga, and biomass and oil both produced from said biofilm |
WO2014088010A1 (en) * | 2012-12-07 | 2014-06-12 | 富士フイルム株式会社 | Method for collecting seed algae from microalgae on liquid surface, and for performing culturing in separate culture vessel, in method for culturing microalgae on liquid surface |
JP2014113083A (en) * | 2012-12-07 | 2014-06-26 | Fujifilm Corp | Method for culturing microalgae on the liquid surface characterized in that microalgae on the liquid surface is collected onto a board to be transferred and cultured in another culture vessel |
WO2015041351A1 (en) * | 2013-09-20 | 2015-03-26 | 富士フイルム株式会社 | Culture method for microalgae that improves oil content ratio, method for manufacturing algal biomass, and novel microalga |
WO2015041349A1 (en) * | 2013-09-20 | 2015-03-26 | 富士フイルム株式会社 | Method for liquid-surface floating culture of microalgae using microalgae on bottom surface as seed algae, method for producing algal biomass, and microalga |
JP2015057990A (en) * | 2013-09-20 | 2015-03-30 | 富士フイルム株式会社 | Multistage culture method by liquid-surface floating culture |
JP2015057991A (en) * | 2013-09-20 | 2015-03-30 | 富士フイルム株式会社 | Method for liquid-surface floating culture of microalgae using structure with penetrated portion, and collection method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103052715B (en) * | 2010-07-06 | 2015-04-22 | 美国科乐生物能源有限公司 | Cultivation of green algae chlorococcum pamirum for production of biofuel |
JPWO2016175302A1 (en) * | 2015-04-30 | 2018-02-08 | 富士フイルム株式会社 | Method for culturing and collecting microalgae culture |
-
2016
- 2016-04-28 JP JP2017515616A patent/JPWO2016175302A1/en not_active Abandoned
- 2016-04-28 WO PCT/JP2016/063410 patent/WO2016175302A1/en active Application Filing
- 2016-04-28 JP JP2016090583A patent/JP2016208972A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05268947A (en) * | 1992-03-18 | 1993-10-19 | Kobe Steel Ltd | Method for culture in vapor phase and apparatus therefor |
JPH0670756A (en) * | 1992-08-25 | 1994-03-15 | Kobe Steel Ltd | Method for liquid and gas phases two step culture and its device |
JPH10314546A (en) * | 1997-05-21 | 1998-12-02 | Kajima Corp | Method and apparatus for fixing carbon dioxide by microalgae |
JPH1189555A (en) * | 1997-09-24 | 1999-04-06 | Sanyo Electric Co Ltd | Carbon dioxide-decreasing machine |
WO2012077250A1 (en) * | 2010-12-09 | 2012-06-14 | ▲緑▼合能源有限公司 | Method and system for producing and supplying biogas using mixed microalgae |
JP2012157274A (en) * | 2011-01-31 | 2012-08-23 | Fujifilm Corp | Method for adherent culturing of photosynthetic microorganism |
JP2012249611A (en) * | 2011-06-06 | 2012-12-20 | Daiwa House Industry Co Ltd | Treatment method for used plant culture solution |
WO2013161832A1 (en) * | 2012-04-24 | 2013-10-31 | 富士フイルム株式会社 | Method for culturing microalga, biofilm formed on surface of liquid by said culturing method, biomass and oil both produced from said biofilm, method for collecting said biofilm, method for producing biomass fuel, microalga capable of forming biofilm on surface of liquid, biofilm formed on surface of liquid using said microalga, and biomass and oil both produced from said biofilm |
WO2014088010A1 (en) * | 2012-12-07 | 2014-06-12 | 富士フイルム株式会社 | Method for collecting seed algae from microalgae on liquid surface, and for performing culturing in separate culture vessel, in method for culturing microalgae on liquid surface |
JP2014113083A (en) * | 2012-12-07 | 2014-06-26 | Fujifilm Corp | Method for culturing microalgae on the liquid surface characterized in that microalgae on the liquid surface is collected onto a board to be transferred and cultured in another culture vessel |
WO2015041351A1 (en) * | 2013-09-20 | 2015-03-26 | 富士フイルム株式会社 | Culture method for microalgae that improves oil content ratio, method for manufacturing algal biomass, and novel microalga |
WO2015041349A1 (en) * | 2013-09-20 | 2015-03-26 | 富士フイルム株式会社 | Method for liquid-surface floating culture of microalgae using microalgae on bottom surface as seed algae, method for producing algal biomass, and microalga |
JP2015057990A (en) * | 2013-09-20 | 2015-03-30 | 富士フイルム株式会社 | Multistage culture method by liquid-surface floating culture |
JP2015057991A (en) * | 2013-09-20 | 2015-03-30 | 富士フイルム株式会社 | Method for liquid-surface floating culture of microalgae using structure with penetrated portion, and collection method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018088916A (en) * | 2016-12-01 | 2018-06-14 | 日本曹達株式会社 | Algae growing method and algae culturing device |
JP7049647B2 (en) | 2016-12-01 | 2022-04-07 | 株式会社BrainGild | Algae growing method and algae culture equipment |
JP2021528082A (en) * | 2018-06-21 | 2021-10-21 | アルジー・イノベイション・ネザーランズ・ベスローテン・フェンノートシャップAlgae Innovation Netherlands B.V. | Use of green microalgae to improve plant growth |
US11771028B2 (en) | 2018-06-21 | 2023-10-03 | Algae Innovations Netherlands B.V. | Use of green microalgae to improve plant growth |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016175302A1 (en) | 2018-02-08 |
JP2016208972A (en) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016175302A1 (en) | Method for culturing and collection of microalgae culture | |
Gross et al. | Biofilm-based algal cultivation systems | |
Gao et al. | A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent | |
EP3013758B1 (en) | Facility for treating and recycling animal waste comprising methanisation, cultivation of microalgae and macrophytes, and vermiculture | |
CN103834567B (en) | A kind of microalgae culture method | |
US20130115688A1 (en) | Laminar photobioreactor for the production of microalgae | |
WO2015041351A1 (en) | Culture method for microalgae that improves oil content ratio, method for manufacturing algal biomass, and novel microalga | |
CN102382769A (en) | Recycling method for recovering microalgae and culture water by means of flocculation of ferric trichloride | |
JP2012157274A (en) | Method for adherent culturing of photosynthetic microorganism | |
CN103153495A (en) | Method for producing thalli of lichens, method for restoring the degraded ecology by them, and compositions therefor | |
US20150267162A1 (en) | Method of collecting seed algae from microalgae on liquid surface and of performing culturing in separate culture container, in method of culturing microalgae on liquid surface | |
CA2871438C (en) | Biofilm culture of microalgae on a liquid surface | |
WO2015041350A1 (en) | Novel method for adherent culture in region formed between water-absorbent polymer gel and substrate, method for manufacturing biomass, and novel microalga | |
CN114467397B (en) | System and method for improving saline-alkali soil in situ by using microalgae | |
WO2014085869A1 (en) | Bioreactor and method of use | |
Selvendran | Large scale algal biomass (Spirulina) production in India | |
USH2271H1 (en) | Production and application of an aircraft spreadable, cyanobacterial based biological soil crust inoculant for soil fertilization, soil stablization and atmospheric CO2 drawdown and sequestration | |
JP6670015B2 (en) | Low energy consumption culture method of microalgae | |
JP2015057991A (en) | Method for liquid-surface floating culture of microalgae using structure with penetrated portion, and collection method | |
CN103849570A (en) | Method for harvesting microalgae by rapidly adsorbing and gathering with suspended carrier | |
KR101810782B1 (en) | Method for massive culture of adhesive microalgae | |
KR101788507B1 (en) | Method of Separating Silica from Adhesive Diatoms Isolated from Jeju Magma Sea Water and Silica Separated Using the same | |
KR20170139313A (en) | Method for massive culture of adhesive microalgae | |
KR101388241B1 (en) | Cultivating and harvesting method of attached microalgae from the wastewater and utilizing as the biomass thereof | |
JP2015057990A (en) | Multistage culture method by liquid-surface floating culture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16786578 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017515616 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16786578 Country of ref document: EP Kind code of ref document: A1 |