WO2016174957A1 - Oil pressure control valve and valve timing control device for internal combustion engine using oil pressure control valve - Google Patents

Oil pressure control valve and valve timing control device for internal combustion engine using oil pressure control valve Download PDF

Info

Publication number
WO2016174957A1
WO2016174957A1 PCT/JP2016/058906 JP2016058906W WO2016174957A1 WO 2016174957 A1 WO2016174957 A1 WO 2016174957A1 JP 2016058906 W JP2016058906 W JP 2016058906W WO 2016174957 A1 WO2016174957 A1 WO 2016174957A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
spool valve
hydraulic
port
spool
Prior art date
Application number
PCT/JP2016/058906
Other languages
French (fr)
Japanese (ja)
Inventor
保英 ▲高▼田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016174957A1 publication Critical patent/WO2016174957A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides

Definitions

  • the present invention relates to a hydraulic control valve capable of switching supply and discharge of hydraulic fluid to and from a plurality of hydraulic passages according to, for example, an operating state of a vehicle, and a valve timing control device of an internal combustion engine using the hydraulic control valve.
  • the hydraulic control valve is provided with a cylindrical cam bolt in which a supply / discharge port for letting hydraulic fluid flow in the radial direction of the peripheral wall penetrates, and the inside of the cam bolt can be moved axially in the axial direction. It has a first spool valve that switches the supply and discharge of hydraulic fluid to and from the change mechanism, and a second spool valve that is coaxially arranged with the first spool valve and that switches the supply and discharge of hydraulic fluid to the lock mechanism according to the movement position. ing.
  • the first and second spool valves are respectively connected to separate electromagnetic actuators, and the axial position is individually controlled by the respective electromagnetic actuators.
  • the conventional hydraulic control valve has to independently control the axial position of the first and second spool valves by the respective electromagnetic actuators, it causes complication of control.
  • the size of the apparatus is increased.
  • the present invention has been made in view of the above-described conventional technical problems, and hydraulic control that can suppress complication of control and upsizing of the device by enabling interlocking of the first and second spool valves. It is an object of the present invention to provide a valve and a valve timing control device in which the valve and the hydraulic control valve are used.
  • the present invention is provided with a hollow valve body in which a plurality of ports through which hydraulic fluid circulates in the radial direction of the peripheral wall are formed, and the valve body is axially movably provided inside the valve body. And a first spool valve for switching the communication state of the hydraulic fluid to the port, and coaxial with the first spool valve, and interlocked with the first spool valve according to the axial movement position of the first spool valve And a second spool valve which moves in the axial direction inside the valve body and switches the communication state of the hydraulic fluid to the plurality of ports.
  • FIG. 1 is an overall configuration diagram showing a valve timing control device according to an embodiment of the present invention in cross section. It is a front view which shows the state which the vane rotor provided to this embodiment rotated to the position of the most retarded phase. It is a front view which shows the state which the said vane rotor rotated to the position of the middle phase. It is a front view which shows the state which the same vane rotor rotated to the position of the most advance angle phase. It is an expanded sectional view showing operation of each lock pin in case a vane rotor of this embodiment is located near the most retarded angle. It is an expanded sectional view showing operation of each lock pin when the same vane rotor rotates to the advance side a little by alternating torque.
  • FIG. 6 is a table showing the relationship between the stroke amount of the first spool valve and the supply and discharge of hydraulic oil to each hydraulic pressure chamber and lock passage.
  • valve timing control device for an internal combustion engine
  • the valve timing control device is applied to the intake valve side of an internal combustion engine such as a hybrid car or an idle stop car, for example.
  • the valve timing control device as shown in FIG. 1 and FIG. 2, is disposed along a longitudinal direction of the engine with a sprocket 1 which is a drive rotating body rotationally driven by a crankshaft of the engine via a timing chain (not shown).
  • the hydraulic pressure is applied to the phase change mechanism 3, the lock mechanism 4 that locks the phase change mechanism 3 at an intermediate phase position between the most advanced phase and the most retarded phase, and the phase change mechanism 3 and the lock mechanism 4.
  • a hydraulic circuit 5 that operates to supply and discharge.
  • the sprocket 1 is configured as a rear cover that closes the rear end opening of the housing 7 described later, and is formed in a substantially thick disc shape, and has a gear portion 1a around which the timing chain is wound. At the same time, a support hole 1b rotatably supported on the outer periphery of the one end 2a of the camshaft 2 is formed in the center through. Further, in the sprocket 1, four female screw holes 1 c (not shown) are formed at circumferentially equally spaced positions on the outer peripheral side.
  • the camshaft 2 is rotatably supported by a cylinder head (not shown) via a plurality of cam bearings, and has a plurality of egg-shaped rotary cams for opening the intake valve (not shown), which is an engine valve, on the outer peripheral surface. While integrally fixed at a predetermined position in the axial direction, a bolt hole 6 into which a later-described valve body 61 having a function as a cam bolt is screwed is formed in the axial direction of the one end portion 2a. The bolt holes 6 are formed along the internal axial direction from the tip end side of the one end portion 2a.
  • the bolt hole 6 is formed in a step diameter reduction shape from the tip end side to the inner bottom side, and one end portion of a sleeve 62 described later is fitted to the inner peripheral surface of the large diameter portion 6a at the tip end side.
  • a female screw 6c is formed in the small diameter portion 6b on the inner bottom side, and a male screw 61c of the valve body 61 is screwed to the female screw 6c.
  • the phase change mechanism 3 is fixed to the camshaft 2 via the valve body 61 and a housing 7 integrally provided in the axial direction of the sprocket 1 as shown in FIGS. 1 and 2.
  • a vane rotor (movable member) 9 which is a driven rotating member rotatably accommodated in the housing 7, and four first members which are provided on the inner peripheral surface of the housing 7 so as to protrude inward (center).
  • the housing 7 comprises a cylindrical housing body 10, a front plate 13 formed by press molding to close the front end opening of the housing body 10, and the sprocket 1 as a rear cover closing the rear end opening. It is done.
  • the housing body 10 is integrally formed of a sintered metal, and the four shoes 10a to 10d are integrally protruded at substantially equal positions in the circumferential direction of the inner peripheral surface, and the shoes 10a to 10d are integrally formed.
  • Bolt insertion holes 10 e are respectively formed to penetrate in the axial direction on the outer peripheral side of 10 d.
  • the front plate 13 is formed in the shape of a thin disc made of metal and has a through hole 13a at the center, and four bolt insertion holes 13b (not shown) at equally spaced positions in the circumferential direction on the outer peripheral side. It is formed through.
  • the sprocket 1, the housing body 10 and the front plate 13 are cofastened and fixed by four bolts 14 (not shown) which are inserted through the bolt insertion holes 13b and 10e and screwed to the female screw holes 1c. .
  • 1e in FIG. 2 is a positioning pin attached to the outer peripheral side of the inner surface 1d of the sprocket, and the positioning pin 1e is formed on the outer peripheral surface of the first shoe 10a of the housing main body 10.
  • the housing main body 10 is positioned relative to the sprocket 1 at the time of assembly by being fitted into the positioning groove 10f.
  • the vane rotor 9 is integrally formed of a metal material, and as shown in FIGS. 1 and 2, a rotor 15 fixed to the one end of the camshaft 2 by the valve body 61 and an outer peripheral surface of the rotor 15. It is composed of four first to fourth vanes 16a to 16d radially projected at equal intervals of approximately 90 ° in the circumferential direction.
  • the rotor 15 is formed in a relatively thick, short cylindrical shape in the axial direction, and a bolt insertion hole 15a is formed substantially at the center position, and a head portion 61a of the valve body 61 described later is seated at the front end A circular seating surface 15b is formed.
  • the rotor 15 is formed in a large diameter shape having a uniform outer diameter as a whole, and the amount of protrusion of each of the shoes 10a to 10d facing the outer peripheral surface in the radial direction is equal to the outer diameter of the rotor 15. Correspondingly, it is set relatively short and is formed in a substantially rectangular shape on the side.
  • seal members 17a which are in sliding contact with the outer peripheral surface of the rotor 15 are respectively fitted and fixed to the end edges of the first to fourth shoes 10a to 10d.
  • Each seal member 17a is formed substantially in a U-shape, and is urged toward the outer peripheral surface of the rotor 15 by a plate spring (not shown) provided on the bottom surface side of each seal groove.
  • Each of the vanes 16a to 16d is set so that the total projection length is substantially the same, and the circumferential width is substantially the same and relatively thin, and each of the vanes 16a to 16d is between the shoes 10a to 10d. Is located in
  • a seal groove having a rectangular cross section is formed along the axial direction on the tip outer peripheral portion of each of the vanes 16a to 16d, and the seal groove slides on the inner peripheral surface of the housing main body 10.
  • U-shaped seal members 17 b are provided to be in contact with each other.
  • the other vanes 16b to 16d are in a separated state without contacting the opposing surfaces of the shoes 10a to 10d whose both side surfaces are opposed in the circumferential direction. Therefore, the contact accuracy between the first vane 16a and the first and second shoes 10a and 10b is improved, and the supply speed of the hydraulic pressure to the hydraulic chambers 11 and 12 described later is increased. Rotational response is high.
  • the vane rotor 9 In the normal relative rotation control with the housing 7, the vane rotor 9 is in contact with the first shoe 10a or the second shoe 10b to which the first vane 16a corresponds, according to the most retarded phase and the most advanced phase.
  • the relative rotation control is also performed inside, that is, in a slightly middle range.
  • the aforementioned retarded oil pressure chambers 11 and advance oil pressure chambers 12 are separated between the side surfaces in the forward and reverse rotational directions of the vanes 16a to 16d and the side surfaces of the shoes 10a to 10d.
  • the respective retarding hydraulic chambers 11 and the advancing hydraulic chambers 12 are provided with the hydraulic circuit 5 via the retarding oil holes 11a and the advancing oil holes 12a formed along the inner diameter direction of the rotor 15, respectively. It communicates with each of the
  • the lock mechanism 4 rotates the vane rotor 9 with respect to the housing 7 at the most retarded side relative to the housing 7 (the position shown in FIG. 2) and at the most advanced angled position (the position shown in FIG. 4). ) And the intermediate rotational phase position (position in FIG. 3).
  • first to third locks which are first to third lock recesses formed at predetermined positions on the inner surface (sprocket inner surface 1d) of the sprocket 1 on the rotor 15 side.
  • First to third lock pins which are three first to third lock members provided at three locations in the circumferential direction of the holes 15 to 26 and the inner circumferential direction of the rotor 15 and engaged with the respective lock holes 24 to 26 respectively 27 to 29, and first to third release pressure receiving chambers 30 to 32 for releasing the engagement of the lock pins 27 to the lock holes 24 to 26, respectively.
  • the first lock hole 24 is formed in the inner surface 1d of the sprocket on the side of the first large diameter portion 15c, and formed in a circular shape having a diameter larger than the outer diameter of the small diameter tip 27a of the first lock pin 27 described later. As a result, the inserted tip 27a is slightly movable in the circumferential direction. Further, the first lock hole 24 is formed at an intermediate position closer to the advancing side than the rotational position on the most retarded side of the vane rotor 9 of the inner surface 1 d of the sprocket. Further, in the first lock hole 24, the depth of the bottom surface 24a is set to be substantially the same depth as the second bottom surfaces 25b and 26b of the second and third lock holes 25 and 26 described later.
  • the second lock hole 25 is formed in the sprocket inner surface 1 d on the side of the first large diameter portion 15 c as in the first lock hole 24, and is formed in a step shape of a long groove along the circumferential direction. That is, with the sprocket inner side surface 1d as the uppermost step, it is formed in a step-like shape in which the first bottom surface 25a and the second bottom surface 25b sequentially become lower than this. At the same time, the inner side edge 25c on the advance side of the second bottom surface 25b is also a wall surface rising vertically.
  • the second bottom surface 25b is formed slightly longer in the circumferential direction on the advance side, and the second lock pin 28 is in the advanced state as shown in FIGS. It can move slightly in the direction.
  • the third lock hole 26 is formed in a circular arc long groove shape extending in the circumferential direction of the sprocket 1 longer than the second lock hole 25 on the second large diameter portion 15 d side, and the sprocket inner side surface 1 d
  • the vane rotor 9 is formed at an intermediate position closer to the advancing side than the rotational position on the most retarded side of the vane rotor 9.
  • the third lock hole 26 is formed in a three-step shape in which the bottom surface is lowered from the retardation side to the advance side, and this functions as a lock guide groove.
  • the third lock hole 26 is formed in a step-like shape in which the first inner bottom surface 26a and the second bottom surface 26b sequentially become lower with the inner surface 1d of the sprocket as the uppermost step.
  • the inner edge 26c on the advancing side of the second bottom surface 26b also becomes a wall surface that has stood upright.
  • the lock holes 24 to 26 are formed by hole forming members fitted and fixed in the holding holes formed on the sprocket 1.
  • the first lock pin 27 is slidably disposed in a first pin hole 33a formed in an axial direction penetrating in an inner axial direction on the side of the first lock hole 24 of the rotor 15, and has a small diameter tip 27a and the tip A hollow large-diameter portion 27b located on the rear side of 27a and a step pressure receiving surface 27c formed between the tip 27a and the large-diameter portion 27b are integrally formed.
  • the tip end portion 27 a is formed in a flat surface shape such that the tip end surface can be in close contact with the bottom surface 24 a of the first lock hole 24.
  • first lock pin 27 is a first lock by a spring force of a first spring 36, which is a biasing member resiliently mounted between the bottom of the concave groove in the large diameter portion 27b and the inner surface of the front plate 13. It is biased in a direction to engage the hole 24.
  • first spring 36 which is a biasing member resiliently mounted between the bottom of the concave groove in the large diameter portion 27b and the inner surface of the front plate 13. It is biased in a direction to engage the hole 24.
  • the first release pressure receiving chamber 30 communicates with the hydraulic circuit 5 via a first branch passage 30a formed along the inner radial direction of the rotor 15.
  • the hydraulic pressure acts on the step pressure receiving surface 27c to move the first lock pin 27 backward against the spring force of the first spring 36. The engagement between the first lock pin 27 and the first lock hole 24 is released.
  • the second lock pin 28 is slidably disposed in a second pin hole 33b formed in the axial direction of the rotor 15 on the side of the second lock hole 25 so that the outer diameter is formed in a step diameter shape.
  • a small diameter distal end portion 28a, a hollow large diameter portion 28b located on the rear side of the distal end portion 28a, and a step pressure receiving surface 28c formed between the distal end portion 28a and the large diameter portion 28b; are integrally formed.
  • the tip end portion 28a is formed in a flat surface shape such that the tip end surface can be in contact with the bottom surfaces 25a and 25b of the second lock hole 25 in a close contact state.
  • the second lock pin 28 is a biasing member resiliently mounted between the bottom surface of the recessed groove formed in the axial direction from the rear end side of the large diameter portion 28 b and the inner surface of the front plate 13.
  • the spring force of the spring 37 urges the second lock hole 25 to engage.
  • the second release pressure receiving chamber 31 communicates with the hydraulic circuit 5 via a second branch passage 31 a formed along the inner radial direction of the rotor 15, and the hydraulic pressure is supplied from the hydraulic circuit 5.
  • the second lock pin 28 and the second lock pin 28 are moved backward by moving the second lock pin 28 against the spring force of the second spring 37 by acting the hydraulic pressure on the step pressure receiving surface 28c. The engagement with the lock hole 25 is released.
  • the third lock pin 29 is slidably disposed in a third pin hole 33c which is formed to penetrate in the inner axial direction on the third lock hole 26 side of the rotor 15, and the outer diameter is formed in a step diameter shape.
  • a small diameter tip portion 29a, a hollow large diameter portion 29b located rearward of the tip portion 29a, and a step pressure receiving surface 29c formed between the tip portion 29a and the large diameter portion 29b; Are integrally formed.
  • the distal end portion 29a is formed in a flat surface shape such that the distal end surface can be in close contact with the bottom surfaces 26a and 26b of the third lock hole 26.
  • the third lock pin 29 is a biasing member resiliently mounted between the bottom surface of the concave groove formed in the axial direction from the rear end side of the large diameter portion 29 b and the inner surface of the front plate 13.
  • the spring force of the spring 38 biases the third lock hole 26 in a direction in which it is engaged.
  • the third release pressure receiving chamber 32 is in communication with the hydraulic circuit 5 via a third branch passage 32 a formed along the inner radial direction of the rotor 15, and hydraulic pressure is supplied from the hydraulic circuit 5. This hydraulic pressure acts on the step pressure receiving surface 29c to move the third lock pin 29 backward against the spring force of the third spring 38, whereby the third lock pin 29 and the third lock pin 29 are moved. The engagement with the lock hole 26 is released.
  • the rear end sides of the first to third pin holes 33a to 33c communicate with the atmosphere through a breathing hole (not shown) in order to ensure good slidability of the lock pins 27, 28 and 29. ing.
  • Two passage control mechanisms 50, 50 are provided to appropriately block or restrict communication between the retard side oil hole 11a and the advance side oil hole 12a.
  • the passage control mechanisms 50 are provided at substantially symmetrical positions on the opposite side of the pin holes 33 a to 33 c of the rotor 15, and the retarding oil holes 11 a along the internal axial direction of the rotor 15.
  • the advance-side oil hole 12a and is provided slidably in the communication hole 51, and the communication hole 51 is provided via the communication hole 51 according to the sliding position.
  • the valve body 52 which changes the communication state of both oil holes 11a and 12a
  • the spring 53 which is a spring member which biases the valve body 52 in the direction in which the oil holes 11a and 12a communicate
  • the rotor 15 An oil passage hole 54, which is bored in a radial direction on the end face of the peripheral part and acts in a direction to block the communication of each oil hole 11a, 12a against the spring force of the spring 53, mainly formed. ing.
  • the communication hole 51 has an inner diameter set to substantially the same size as each of the pin holes 33 a to 33 c, and the advancing side and the retard side oil hole 11 a adjacent to each other. It is formed across the oil holes 12a.
  • the valve body 52 has a small diameter valve shaft 52a at the center, a valve portion 52b and a sliding portion 52c of the same large diameter formed at both ends of the valve shaft 52a, and a tip end surface of the valve portion 52b.
  • the projection 52d is formed.
  • An annular groove 52e is formed on the outer periphery of the valve shaft 52a, and the entire valve body 52 is urged to the right by the spring force of the spring 53 as shown in FIG.
  • the two oil holes 11a and 12a are in communication with each other.
  • the valve portion 52b is set such that its axial length at least closes the open end of the advance side oil hole 12a.
  • the spring 53 has one end resiliently in contact with the bottom surface of the hollow sliding portion 52c, while the other end resiliently contacts the inner surface of the front plate 13 so that the entire valve body 52 can be seen in FIG. It is biased in the direction.
  • the oil passage hole 54 is disposed on the side of the pressure receiving surface 52f, which is the tip end surface of the projection 52d, and is formed to communicate with a lock communication hole 78 of the electromagnetic switching valve 60 described later. Then, the hydraulic pressure supplied through the lock communication hole 78 acts on the pressure receiving surface 52f, thereby pressing the valve body 52 in the left direction as shown by a dashed dotted line in FIG. Communication between the two oil holes 11a and 12a through 52e is shut off.
  • the hydraulic circuit 5 is a hydraulic pressure that switches the supply and discharge of hydraulic fluid to the retarding hydraulic chambers 11, the advancing hydraulic chambers 12, and the first to third pressure receiving chambers 30 to 32, as shown in FIG.
  • a single electromagnetic switching valve 60 which is a control valve, a supply passage 41 for supplying hydraulic oil drawn from an oil pan 44 to the electromagnetic switching valve 60, the retarding hydraulic chambers 11 and the advancing hydraulic chambers 12 and The first and second drain passages 42 and 43 for returning the hydraulic oil discharged from the first to third release pressure receiving chambers 30 to 32 through the electromagnetic switching valve 60 to the oil pan 44 .
  • the supply passage 41 is provided with an oil pump 45 in the middle of the flow passage, and an upstream side of the oil pump 45 is formed as a suction passage 41a, and a downstream side of the oil pump 45 is a discharge passage 41b. It is formed as.
  • One end of the first drain passage 42 is a drain communication hole 79 of a sleeve 62 (described later) of the electromagnetic switching valve 60 via a drain hole 42a formed along the radial direction of the camshaft 2 (FIG. 11). While the other end is connected to the oil pan 44.
  • One end of the second drain passage 43 is connected to a drain hole 90 (see FIG. 11) of the first spool valve 65 described later of the electromagnetic switching valve 60, and the other end is the oil pan 44. It is connected to the.
  • the oil pump 45 is a general one such as a trochoid pump rotationally driven by a crankshaft of an engine, and is operated by being sucked from the inside of the oil pan 44 through the suction passage 41a by rotation of the outer and inner rotors. Oil is discharged through the discharge passage 41b, and a part of the oil is supplied from the main oil gallery M / G to each sliding portion of the internal combustion engine, and the other is supplied to the electromagnetic switching valve 60 side. It is supposed to be.
  • a flow control valve 47 is provided downstream of the discharge passage 41b for returning the excess hydraulic oil discharged from the discharge passage 41b to the suction passage 41a via a reflux passage 46 and controlling the flow to an appropriate flow rate.
  • a filtration filter 48 for collecting and filtering foreign matter in the hydraulic oil.
  • the electromagnetic switching valve 60 is, as shown in FIGS. 1 and 11, a 6-port, 7-position proportional valve including a substantially cylindrical valve body 61 and a cylinder fixed to the outer peripheral surface of the valve body 61.
  • the first valve spring 66 is provided on the side to urge the first spool valve 65 in the left direction in FIG.
  • the first valve spring 66 is First and second spool valves 63, wherein the 5 first, and the second solenoid 67 is an actuator that moves against the spring force of the valve spring 64, 66 to the right in FIG. 1, and is mainly comprised.
  • the valve body 61 is formed of an iron-based metal material, functions as a cam bolt as described above, is provided at the other end, and a fastening jig such as a spanner can be fitted on the outer periphery
  • a head portion 61a having a hexagonal portion is formed, and an externally threaded portion 61c axially extending from the base of the head portion 61a and screwed to the internally threaded portion 6c of the camshaft 2 is formed on the outer peripheral surface of the tip portion.
  • a cylindrical shaft portion 61b is formed of an iron-based metal material, functions as a cam bolt as described above, is provided at the other end, and a fastening jig such as a spanner can be fitted on the outer periphery
  • a head portion 61a having a hexagonal portion is formed, and an externally threaded portion 61c axially extending from the base of the head portion 61a and screwed to the internally threaded portion 6c of the
  • a hole 68 is bored at a substantially axial position of the valve body 61 from the tip end surface side of the shaft 61b toward the head 61a.
  • the hole 68 is formed in a step diameter shape, and a large diameter hole 68a from the opening end on the side of the shaft 61b to approximately 1/3 of the inner axial direction, and an annular step in the large diameter hole 68a.
  • a small diameter hole 68b connected to the surface 68c and extended to the inside of the head 61a.
  • the hole 68 is formed as an introduction port 69 whose open end on the tip end side in the axial direction of the valve body 61 is connected to the downstream end of the discharge passage 41 b.
  • the hydraulic fluid discharged from the discharge passage 41 b is introduced into the introduction port 69 via the hydraulic pressure introducing chamber 6 d of the bolt hole 6.
  • the hole portion 68 is press-fitted and fixed to the inner circumferential surface in a state where the cup-shaped retainer 70 is in contact with the step surface 68c, and the working oil is directly supplied from the oil pump 45 to the internal space by the retainer 70. It is separated into a check valve chamber 71 on the side of the male screw portion 61c, which is introduced as described above, and a second spool valve chamber 72 on the side of the head 61a which houses and holds the second spool valve 63.
  • check valve storage chamber 71 In the check valve storage chamber 71, four lead ports 73a for guiding the hydraulic oil introduced into the inside are formed in a penetrating manner along the cruciform radial direction in the peripheral wall, and the introduction port 69 is inserted from the lead port 73a.
  • a check valve 74 for restricting the backflow of the hydraulic fluid discharged from the oil pump 45 is attached and fixed to the inner peripheral surface of the side.
  • the check valve 74 includes a bottomed cylindrical body portion 74a and a ball valve body 74b axially movably accommodated in the body portion 74a.
  • the body portion 74a is formed with an opening hole 74c communicating with the introduction port 69 of the valve body 61 on the tip end side.
  • the ball valve body 74b is biased by a coil spring 74d in a direction to be seated on the inner end hole edge of the opening hole 74c to close the opening hole 74c, and also acts on the introduction port 69 or more. It is moved backward against the spring force of the coil spring 74d by oil pressure to open the opening hole 74c.
  • the hydraulic oil introduced into the body portion 74a from the opening hole 74c flows toward the outlet port 73a through an oil passage 74e formed in the body portion 74a.
  • the second spool valve accommodating chamber 72 has a drain wall 21a, a lock port 20a, a first reintroduction port 73b, and an advance port 19a in the circumferential wall sequentially from the male screw portion 61c to the head 61a.
  • the second reintroduction port 73c and the retardation port 18a are respectively formed in a penetrating manner along the cross radial direction of the second spool valve accommodating chamber 72, and four are provided.
  • Each of the outlet ports 73a and the first and second reintroduction ports 73b and 73c are formed at substantially the same angular position in the circumferential direction, while the other ports 18a, 19a, 20a and 21a and Is set so that the angular position in the circumferential direction does not overlap.
  • a through hole 68d having a diameter smaller than the inner diameter of the small diameter hole 68b of the hole 68 is formed to penetrate in the axial direction.
  • the sleeve 62 is formed of a synthetic resin material, and is divided into two in the radial direction, and the two divided portions are radially butted and joined by, for example, a welding method to form a cylindrical integral. It is formed.
  • the inner diameter of the sleeve 62 is substantially the same as the outer diameter of the shaft portion 61b of the valve body 61, and the inner peripheral surface is fixed to the outer peripheral surface of the shaft portion 61b from the outside. . Further, in the sleeve 62, a cylindrical positioning protrusion 62a protrudes from an end of the inner peripheral surface on the side of the electromagnetic solenoid 67, and the positioning protrusion 62a is used in the vicinity of the head 61a of the shaft 61b.
  • the valve body 61 can be positioned in the circumferential direction and the axial direction by fitting it with a positioning hole 61 d drilled on the outer peripheral surface of the valve body 61.
  • Each of the communication grooves 75 constitutes a communication passage between the inner peripheral surface thereof and the outer peripheral surface of the shaft portion 61b of the valve body 61, and one end portion on the male screw portion 61c overlaps with each of the outlet ports 73a. On the other hand, the other end is extended to a position where it communicates with the first and second reintroduction ports 73b and 73c.
  • the outlet ports 73a are always in communication with the first and second reintroduction ports 73b and 73c through the communication grooves 75, respectively.
  • a retard communication hole 76 for communicating the respective retard side oil holes 11a with the respective retard ports 18a, the respective advance side oil holes 12a, the respective advance ports 19a, and the like.
  • the lock communication hole 78 for communicating the branch passages 30a, 31a and 32a with the lock port 20a, and the drain communication for communicating the drain hole 42a with the drain port 21a. Holes 79 are formed.
  • the communication holes 76 to 79 are axially offset (biased) with respect to the axial positions of the corresponding ports 18a, 19a, 20a and 21a, respectively.
  • the sleeve 62 has an axial groove extending in the axial direction on the inner peripheral side of the sleeve 62.
  • the communication holes 76 to 79 respectively communicate with the ports 18a, 19a, 20a and 21a via the axial grooves.
  • an annular groove groove 79a is formed at a portion on the outer peripheral side of the sleeve 62 of each of the drain communication holes 79.
  • the second spool valve 63 is formed in a bottomed hollow shape with one end 63a on the retainer 70 side open, and the internal space thereof accommodates and holds the first spool valve 65 so as to be movable in the axial direction. It is configured as a first spool valve storage chamber 80.
  • a cylindrical sliding hole 63c is formed through the bottom wall on the other end 63b side, and the first spool valve 65 is slid in the sliding hole 63c. It is inserted in a movable manner.
  • the opening is closed by a lid member 81 fitted on the inner peripheral surface of an annular groove formed on the inner peripheral surface of the opening of the one end portion 63a.
  • the lid member 81 is formed of a metal material, and has a bottomed cylindrical lid main body 81a, and a flange portion which is formed so as to protrude radially outward from the opening end edge of the lid main body 81a and is fitted in the annular groove And 81b.
  • the lid member 81 accommodates and holds the first valve spring 66 inside the lid main body 81a, and the end face of one end of the first spool valve 65 can be in contact with the inner end edge of the flange portion 81b. It has become.
  • a cylindrical through hole 81c is formed in a penetrating manner along the axial direction, and the through hole 81c constitutes a part of the first drain passage 42.
  • One end of the second valve spring 64 elastically contacts the outer end surface of the flange portion 81 b in the axial direction, and the other end elastically contacts the inner bottom surface of the retainer 70 in the axial direction. Is always urged toward the electromagnetic solenoid 67 side.
  • a cylindrical guide portion 82 slidingly guiding the second spool valve 63 to the inner circumferential surface of the second spool valve chamber 72 is provided on the outer circumferential surface on the other end 63b side. While being formed, eight first to eighth land portions 83a to 83h are provided at predetermined intervals in the axial direction on the outer peripheral surface closer to the one end portion 63a than the guide portion 82.
  • the land portions 83a to 83h are guided in axial movement while the outer peripheral surface thereof is in sliding contact with the inner peripheral surface of the second spool valve accommodating chamber 72 with a minute gap.
  • first groove groove 84a which appropriately communicates with the drain port 21a while always communicating with the lock port 20a. ing.
  • a second groove groove 84b appropriately communicated with the first reintroduction port 73b is formed on the outer peripheral surface between the second land portion 83b and the third land portion 83c adjacent to the second land portion 83b.
  • a third groove 84c is formed on the outer peripheral surface between the third land portion 83c and the fourth land portion 83d adjacent to the third land portion 83c. The third groove 84c appropriately communicates with the advance port 19a.
  • a fourth groove groove 84d always communicating with the advance port 19a is formed on the outer peripheral surface between the fourth land portion 83d and the fifth land portion 83e adjacent thereto.
  • a fifth groove groove 84e appropriately communicated with the advance port 19a and the second reintroduction port 73c is formed on the outer peripheral surface between the fifth land portion 83e and the sixth land portion 83f adjacent thereto. ing.
  • a sixth groove groove 84f which appropriately communicates with the second reintroduction port 73c and the retardation port 18a.
  • a seventh groove 84g always communicating with the retardation port 18a is formed on the outer peripheral surface between the seventh land 83g and the eighth land 83h adjacent thereto.
  • an eighth groove groove 84h appropriately communicating with the retardation port 18a is formed on an outer peripheral surface between the eighth land portion 83h and the guide portion 82 adjacent thereto.
  • the first to eighth groove grooves 84a to 84h are first to eighth communication holes 85a constantly communicating with the first spool valve accommodating chamber 80 at predetermined positions in the axial direction and circumferential direction of the respective bottom walls.
  • the through holes 85 h are formed to penetrate in the radial direction.
  • the first spool valve 65 is formed in a substantially cylindrical shape, and most of the side from the one end 65 a to the other end 65 b on the side of the retainer 70 is accommodated in the first spool valve accommodation chamber 80, The other end 65 b protrudes outward of the valve body 61 through the through hole 68 d of the valve body 61 and the sliding hole 63 c of the second spool valve 63.
  • first spool valve 65 is configured as an oil passage through which the working oil flows, and the partition portion 86 for blocking the flow of the working oil at an axial intermediate position of the oil passage.
  • the oil passage is separated by the partition 86 into a first oil passage hole 87 on the other end 65b side and a second oil passage hole 88 on the one end 65a side.
  • this partition part 86 is formed using the remaining part at the time of carrying out drilling processing of the said 1st spool valve 65 by a drill etc. from both ends.
  • the opening end of the first oil passage hole 87 is closed by a ball-shaped blind plug 89, and a pair of upper and lower drain holes 90 are formed penetrating in the radial direction in the peripheral wall near the opening end. .
  • the drain hole 90 communicates with the oil pan 44 via the second drain passage 43. As a result, the hydraulic oil flowing into the first oil passage hole 87 is always returned to the oil pan 44 via the two drain holes 90 and the second drain passage 43.
  • the second oil passage hole 88 has an annular groove formed on the inner peripheral surface of the opening, and the opening is closed by a disc-like plug 91 fitted on the inner peripheral surface of the annular groove. ing.
  • One end of the first valve spring 66 is in elastic contact with the end face of the plug body 91 on the side of the retainer 70 in the axial direction, and the other end is elastic against the inner bottom face of the lid member 81 of the second spool valve 63 from the axial direction.
  • the first spool valve 65 is always urged toward the electromagnetic solenoid 67 side.
  • a valve 92 is housed.
  • the check valve 92 is press-fit into the inner peripheral surface of the second oil passage hole 88, and an annular valve seat 93 having an opening hole 93a formed substantially at the axial center position, and the second oil passage hole 88
  • a metal ball valve body 94 provided on the opening side of the valve seat 93 of the valve seat 93 so as to be able to be seated on the hole edge of the opening hole 93a of the valve seat 93;
  • a coil spring 95 always biased toward the side 93.
  • first spool valve 65 has a cylindrical guide portion 96 slidingly guiding the first spool valve 65 to the inner peripheral surface of the first spool valve storage chamber 80 on the outer peripheral surface on the other end 65b side.
  • seven ninth to fifteenth land portions 97a to 97g are integrally formed on the outer peripheral surface on one end side with respect to the guide portion 96 at predetermined intervals in the axial direction.
  • the lands 97a to 97g have their outer peripheral surfaces in sliding contact with the inner peripheral surface of the first spool valve accommodating chamber 80 with a minute gap, and are guided in axial movement.
  • a ninth groove 98a is formed on the outer peripheral surface on one end side of the ninth land 97a so as to appropriately communicate with the first communication hole 85a of the second spool valve 63.
  • a tenth groove groove 98b appropriately communicated with the first communication hole 85a is formed on the outer peripheral surface between the ninth land portion 97a and the tenth land portion 97b adjacent thereto.
  • an eleventh groove groove 98c always communicating with the second communication hole 85b is formed on the outer peripheral surface between the tenth land portion 97b and the eleventh land portion 97c adjacent thereto.
  • a twelfth groove groove 98d appropriately communicated with the third communication hole 85c of the second spool valve 63 is formed on the outer peripheral surface between the eleventh land portion 97c and the twelfth land portion 97d adjacent thereto. ing. Further, on the outer peripheral surface between the twelfth land portion 97d and the thirteenth land portion 97e adjacent thereto, a thirteenth groove groove 98e appropriately communicated with the fourth and fifth communication holes 85d and 85e is formed. There is.
  • a fourteenth groove groove 98f appropriately communicated with the fifth and sixth communication holes 85e and 85f is formed on an outer peripheral surface between the thirteenth land portion 97e and a fourteenth land portion 97f adjacent thereto.
  • a fifteenth groove groove 98g appropriately communicated with the seventh communication hole 85g is formed on an outer peripheral surface between the fourteenth land portion 97f and a fifteenth land portion 97g adjacent thereto.
  • a sixteenth groove groove 98h always communicating with the eighth communication hole 85h is formed on the outer peripheral surface between the fifteenth land portion 97g and the guide portion 96 adjacent thereto.
  • ninth and tenth communication holes 99a and 99b constantly communicating with the second oil passage hole 88 at predetermined positions in the axial direction and circumferential direction of each bottom wall. It penetrates along the radial direction, respectively.
  • the ninth communication hole 99 a communicates with the opening side of the second oil passage hole 88 relative to the valve seat 93
  • the tenth communication hole 99 b communicates with the valve seat of the second oil passage hole 88.
  • the formation position is set to communicate with the partition wall side more than 93.
  • the twelfth, fifteenth, and sixteenth groove grooves 98d, 98g, and 98h communicate with the first oil passage hole 87 at predetermined positions in the axial direction and circumferential direction of each bottom wall. 13 communication holes 99c to 99e are respectively formed penetrating along the cross radial direction.
  • the electromagnetic solenoid 67 is, as shown in FIG. 1, a cylindrical solenoid casing 101 coaxially arranged and fixed to the valve body 61 via a bolt or the like on a chain cover (not shown), and the inside of the solenoid casing 101. And an electromagnetic coil 102 to which a control current is output from an electronic controller 107 described later, and a bottomed end fixed to the inner peripheral side of the electromagnetic coil 102.
  • a cylindrical fixed yoke 103, a movable plunger 104 axially slidably provided inside the fixed yoke 103, and a distal end portion of the movable plunger 104 are integrally formed, and the distal end portion 105a is
  • a drive rod 105 for pressing the blind plug 89 pools valve 65 to the right in FIG. 1, and is mainly comprised.
  • the solenoid casing 101 is provided with a synthetic resin connector 106 having a terminal 106 a electrically connected to the electronic controller 107 at the rear end side.
  • the internal computer uses the current rotational phase of a crank angle sensor (engine speed detection), an air flow meter, an engine water temperature sensor, an engine temperature sensor, a throttle valve opening sensor, and a camshaft 2 not shown.
  • An information signal from various sensors such as a cam angle sensor to be detected is input to detect the current engine operating condition, and as described above, a control pulse current is output to the electromagnetic coil 102 of the electromagnetic switching valve 60.
  • the movement positions of the first and second spool valves 63 and 65 are controlled to selectively switch the ports.
  • a table showing the relationship between the stroke amount of the first spool valve 65 shown in FIG. 18 and the supply and discharge of hydraulic oil to the respective hydraulic pressure chambers 11, 12 and the first through third pressure receiving chambers 30 through 32 will be described.
  • the position control of the first and second spool valves 63 and 65 will be specifically described with reference to FIGS.
  • the electromagnetic solenoid 67 is not energized from the electronic controller 107, and the first and second spool valves 63 and 65 are configured of the first and second valve springs 64 and 66 as shown in FIG.
  • the retardation port 18a is connected to the drain hole 90 for the seventh groove groove 84g and the seventh communication
  • the lock port 20a is connected to the drain port 21a through the hole 85g, the fifteenth groove groove 98g, the twelfth communication hole 99d, and the first oil passage hole 87.
  • the advance port 19a is configured not to communicate with any port by closing the fourth communication hole 85d by the twelfth land portion 97d.
  • the first spool valve 65 when the first spool valve 65 is energized from the electronic controller 107 to the electromagnetic solenoid 67, it slightly resists the spring force of the first valve spring 66 and moves to the right. When it moves and is not in contact with one end surface or the other end surface of the first spool valve storage chamber 80 (second position), the communication between the lock port 20a and the drain port 21a is maintained, The retardation port 18a is interrupted in communication with the drain hole 90, and the fifth groove groove 84e, the fifth communication hole 85e, the fourteenth groove groove 98f, and the sixth with respect to the second reintroduction port 73c. Communication is made via the communication hole 85 f and the sixth groove groove 84 f.
  • the advance port 19a also has the fifth groove groove 84e, the fifth communication hole 85e, the thirteenth groove groove 98e, the fourth communication hole 85d, and the fourth groove groove with respect to the second reintroduction port 73c. Communication is made via 84d.
  • the discharge state of the hydraulic oil of the first to third pressure receiving chambers 30 to 32 is maintained, while the hydraulic oil discharged from the oil pump 45 is After being introduced to the introduction port 69 of the electromagnetic switching valve 60 through the discharge passage 41b and the hydraulic pressure introduction chamber 6d, the second re-introduction port 73c is connected to the retarding and advancing ports 18a and 19a, respectively.
  • the retard and advance hydraulic pressure chambers 11, 12 are supplied.
  • the first spool valve 65 is further moved slightly to the right by large energization of the electromagnetic solenoid 67 as shown in FIG. 13 and abuts on one end surface of the first spool valve storage chamber 80.
  • the communication of the retardation and advance ports 18a and 19a with the second reintroduction port 73c is maintained, and the lock port 20a is shut off from the drain port 21a.
  • the first groove groove 84a is
  • the supply of hydraulic oil to the retarded and advancing hydraulic pressure chambers 11 and 12 is maintained, and the oil is discharged from the oil pump 45 and the first reintroduction is provided.
  • the hydraulic oil having flowed into the port 73b is supplied from the lock port 20a to the release pressure receiving chambers 30 to 32 through the first to third branch passages 30a, 31a, 32a.
  • the supply state of the hydraulic oil to the release pressure receiving chambers 30 to 32 is maintained, and the hydraulic oil in the retard hydraulic chamber 11 is the retard oil.
  • the oil After flowing into the retardation port 18 a from the passage 11 a, the oil is discharged from the drain holes 90 to the oil pan 44 via the second drain passage 43.
  • the hydraulic oil discharged from the oil pump 45 is introduced into the advance hydraulic pressure chamber 12 via the discharge passage 41b and the hydraulic pressure introduction chamber 6d into the introduction port 69 of the electromagnetic switching valve 60, It is supplied to the advance hydraulic chamber 12 from the second reintroduction port 73 c via the advance port 19 a.
  • the hydraulic fluid in the retarding hydraulic pressure chamber 11 and the hydraulic fluid in each of the pressure receiving chambers 30 to 32 for release are respectively the first and second drain passages 42, While the oil is discharged to the oil pan 44 through 43, the hydraulic oil of the advance hydraulic chamber 12 is held in the advance hydraulic chamber 12.
  • the hydraulic oil in the advance hydraulic chamber 12 communicates with the retard hydraulic chamber 11 through the annular grooves 52e (the communication holes 51) of the passage control mechanism 50. It is the same as 1 position. Therefore, the hydraulic oil of the advance hydraulic chamber 12 is also discharged to the oil pan 44 through the same path as the hydraulic oil of the retard hydraulic chamber 11 as in the case of the first position.
  • each port is selectively switched by changing the axial movement position of the first and second spool valves 63 and 65 in accordance with the engine operating condition, and the vane rotor 9 with respect to the sprocket 1 is The relative rotation angle is changed, and the locking and unlocking of the lock pins 27 to 29 to the lock holes 24 to 26 is selectively performed to allow and restrict free rotation of the vane rotor 9. There is.
  • the tip portions 27a and 28a of the first and second lock pins 27 and 28 resiliently contact the inner surface 1d of the sprocket by the biasing force of the first and second springs 36 and 37.
  • the distal end portion 29a of the third lock pin 29 slides on the advance side in the above state, and the first bottom surface of the third lock hole 26 is moved by the biasing force of the third spring 38, as shown in FIG. Engage and abut on 26a.
  • positive alternating torque acts on the vane rotor 9 and tries to rotate to the retard side
  • the side edge of the tip portion 29a of the third lock pin 29 contacts the rising step surface of the first bottom surface 26a.
  • the rotation to the retard side (in the direction of the arrow in FIG. 6) is restricted.
  • the third lock pin 29 moves to move down the stairs sequentially and engages with the second bottom surface 26b as shown in FIG. It abuts, and moves to the intermediate position on the second bottom surface 26b while receiving a ratcheting action in the advancing direction.
  • the tip end portion 28a of the second lock pin 28 abuts and engages with the first bottom surface 25a of the second lock hole 25 by the biasing force of the second spring 37, as shown in FIG. .
  • the third lock pin 29 moves to the vicinity of the inner edge 26c and the second lock pin 28 of the second lock hole 25 as shown in FIG.
  • the second bottom surface 25b is in contact and engaged while receiving a ratcheting action.
  • the vane rotor 9 when the vane rotor 9 is further advanced to the advancing side by the negative torque, as shown in FIG. 10, the first lock pin is moved with the movement of the second and third lock pins 28 and 29 in the same direction. 27 is engaged with the first lock hole 24 and held between the opposed inner edges 24b, 25c of the respective lock holes 24, 25 by the first lock pin 27 and the second lock pin 28 as described above. Arranged as. As a result, as shown in FIG. 3, the vane rotor 9 is stably and reliably held at an intermediate position between the most retarded angle and the most advanced angle.
  • the energization of the electromagnetic switching valve 60 is also cut off, so the first and second spool valves 63 and 65 As shown in FIG. 11, the spring force of the first and second valve springs 64 and 66 holds the first position described above.
  • the retarding port 18a and the second drain passage 43 are communicated with each other, and the lock port 20a and the first drain passage 42 are communicated with each other, so that the retarding hydraulic pressure chamber 11 and the pressure receiving chambers 30 to 30
  • the hydraulic oil in 32 is discharged to the oil pan 44 through the drain passages 42 and 43, respectively.
  • the hydraulic oil in the advance hydraulic chamber 12 is also the same as the retard hydraulic chamber 11 as in the retard hydraulic chamber 11. It is discharged to the oil pan 44 via the passage control mechanism 50.
  • each valve body 52 is a solid line in FIG. As shown in FIG. 5, the spring force of each spring 53 causes the head to move to the right. Therefore, on the side of each passage control mechanism 50, the retard side oil hole 11a and the advance side oil hole 12a are in communication with each other through the annular grooves 52e (the communication holes 51).
  • each advance angle hydraulic chamber 12 is made to flow in substitution to the respective retard side oil holes 11a via the respective advance angle oil holes 12a and the respective annular grooves 52e, and from here the second It is possible to lead to the drain passage 43.
  • the vane rotor 9 can be rotationally moved without being affected by the hydraulic pressure of each of the hydraulic pressure chambers 11, 12, so that the amount of fluttering can be increased and the aforementioned ratcheting action can be sufficiently exhibited.
  • the oil pump 45 is driven by the first explosion (cranking start) immediately thereafter, but the oil pressure discharged by the oil pump 45 is unstable during idling operation
  • the first position of the first and second spool valves 63 and 65 is maintained without energization of the electromagnetic switching valve 60.
  • a control current is outputted from the electronic controller 107 to the electromagnetic switching valve 60, and the first spool valve 65 As shown in FIG. 12, it moves slightly in the other direction against the spring force of the first valve spring 66 (second position).
  • hydraulic oil hydraulic pressure
  • the first spool valve 65 is the first valve spring.
  • the second spool valve 63 resists the spring force of the second valve spring 64 by being moved further to the right against the spring force of 66 and being pressed by one end of the first spool valve 65. Move slightly to the right (fourth position).
  • the lock pins 27-29 are maintained in the state of being pulled out of the lock holes 24-26.
  • the vane rotor 9 has a low pressure as the advance hydraulic chambers 12 are discharged as the hydraulic pressure is discharged, while the retard hydraulic chambers 11 become relatively high pressure. Rotate to the corner side. Therefore, the camshaft 2 is converted into a relative rotational phase of the most retarded angle with respect to the sprocket 1 as shown by the arrow in FIG.
  • valve overlap between the intake valve and the exhaust valve is reduced, the residual gas in the cylinder is reduced, the combustion efficiency is improved, and the engine rotation can be stabilized and the fuel consumption can be improved.
  • valve overlap between the intake valve and the exhaust valve is increased, the intake charging efficiency is increased, and the output torque of the engine can be improved.
  • the control current from the electronic controller 107 to the electromagnetic switching valve 60 is de-energized, and the first, the first and the second The two spool valves 63 and 65 are respectively moved in the maximum left direction by the spring force of the first and second valve springs 64 and 66 and controlled to the first position described above.
  • the vane rotor 9 rotates to the advancing side by the alternating torque acting on the camshaft 2 as described above.
  • the lock pins 27 to 29 move forward by the spring force of the springs 36 to 38 and engage with the lock holes 24 to 26 while obtaining the above-mentioned ratchet action. Therefore, the vane rotor 9 is locked at an intermediate phase position between the most advanced angle and the most retarded angle shown in FIG.
  • the electromagnetic switching valve 60 is energized, and as shown in FIG. 15, the first and second spool valves 63 and 65 are in the fourth position and the sixth position. Move to the axial position between the positions (5th position). As a result, the hydraulic oil is held in the retarding hydraulic chambers 11 and the advancing hydraulic chambers 12, respectively, and the lock pins 27 to 29 are disengaged from the lock holes 24 to 26, respectively. It is maintained in the unlocked state.
  • the intake valve is held at a predetermined valve timing.
  • the electronic controller 107 controls the movement of the respective spool valves 63 and 65 in the axial direction by deenergizing or de-energizing the electromagnetic switching valve 60 with a predetermined amount of energization. Control to the predetermined position position.
  • the phase change mechanism, 3 and the lock mechanism 4 are controlled to control to the optimum relative rotational position of the camshaft 2 with respect to the sprocket 1, the control accuracy of the valve timing can be improved.
  • the electronic controller 107 detects this abnormal state from the rotational position of the camshaft 2.
  • the control current of the maximum energization amount is output to the electromagnetic solenoid 67 of the electromagnetic switching valve 60.
  • the first and second spool valves 63 and 65 cut the contamination with a strong pressing force or move to the maximum position in the right direction while releasing the biting ( 7th position).
  • the immovable state of the first and second spool valves 63 and 65 can be forcibly released.
  • the two functions of the hydraulic pressure control of the hydraulic pressure chambers 11 and 12 and the hydraulic pressure control of the pressure release chambers 30 to 32 are performed by the single electromagnetic switching valve 60.
  • the second spool valve 63 and the first spool valve 65 are coaxially arranged, and the second spool valve 63 is interlocked according to the axial movement position of the first spool valve 65 to move in the axial direction.
  • the axial position of both the spool valves 63 and 65 is collectively controlled by the single electromagnetic solenoid 67 so that the two functions can be obtained.
  • the device can be miniaturized as compared with an electromagnetic switching valve which requires separate electromagnetic solenoids for position control of the first and second spool valves 63 and 65. Further, since it is not necessary to control the first and second spool valves 63 and 65 by cooperation of a plurality of electronic controllers, it is possible to simplify the control.
  • both the spool valves 63 and 65 are disposed in series. Since the axial width of the electromagnetic switching valve 60 can be shortened compared to the case where the valve switching control valve 60 is used, the axial length of the valve timing control device can be shortened, and the freedom of layout is improved.
  • the axial position of the second spool valve 63 can be controlled only by the contact between the one end portion (the lid member 81) of the second spool valve 63 and the one end side of the first spool valve 65, the electromagnetic The structure of the switching valve 60 can be simplified.
  • the partition wall 86 that divides the internal space of the first spool valve 65 in the axial direction is integrally formed with the first spool valve 65, the number of parts can be reduced. Furthermore, in the present embodiment, since the remaining portion of the first spool valve 65 at the time of drilling is used as the partition 86, there is no need to newly process the partition 86, so the work process is simplified. Can be implemented.
  • the check valve 92 is provided in the second oil passage hole 88 used for supplying and discharging the hydraulic oil to each lock port 20a of the first spool valve 65, the operation that has flowed into each lock port 20a It is possible to prevent the backflow of oil to the second reintroduction port 73c. As a result, the hydraulic pressure supplied into the release pressure receiving chambers 30 to 32 can be kept high, so that the unlocking operation can be performed more reliably.
  • Second Embodiment The basic configuration of the second embodiment of the present invention shown in FIG. 19 is the same as that of the first embodiment, but the first spool valve 65 is divided into two in the axial direction at the partition 86. It is comprised by two cylindrical 1st spool valve structure parts 65A and 65B.
  • the first spool valve 65 in this embodiment is integrated by axially butting the bottom walls 86a and 86b of the two first spool valve components 65A and 65B from each other.
  • the first spool valve components 65A and 65B may be in contact with the bottom walls 86a and 86b without being integrated.
  • first spool valve components 65A and 65B are described as being cylindrical with a bottom, but one of them may be cylindrical without a bottom wall.
  • the partition 86 is constituted only by the other bottom wall.
  • Third Embodiment The basic configuration of the third embodiment of the present invention shown in FIG. 20 is the same as that of the first embodiment, but a partition is provided separately from the first spool valve 65.
  • a through hole is formed along the axial direction by drilling or the like, and a wedge-shaped press-fit plug 108, which is a partition, is formed on the inner peripheral surface of the through hole.
  • the internal space is divided in the axial direction by press-fitting.
  • the electromagnetic switching valve 60 constituting the hydraulic circuit 5 is provided separately without being directly incorporated into the valve timing control device.
  • the electromagnetic switching valve 60 in this embodiment is a 6-port, 7-position proportional valve, and has a substantially cylindrical valve body 61 and a cylinder slidably provided in the valve body 61 in the axial direction.
  • a cylindrical first spool valve 65 slidably provided in the axial direction 63 and an inner one end side of the second spool valve 63 are provided in the left direction in the figure of the first spool valve 65.
  • the first valve spring 66 for urging the valve body 61 and the other end of the valve body 61 are provided, and the first and second spool valves 63 and 65 are controlled according to the operating condition etc. 64, 66 springs
  • valve body 61 does not have a function as a cam bolt, and is provided in the engine while being caulked and fixed to the claw portion 101 a provided on the solenoid casing 101 of the electromagnetic solenoid 67. It is housed and fixed in the outer valve housing hole.
  • check valve chamber 71 at one end side of the retainer 70 is eliminated from the valve body 61, and the introduction port 69, the outlet port 73a and the check valve 74 are eliminated accordingly.
  • the first and second reintroduction ports 73b and 73c are eliminated, and the two reintroduction ports 73b and 73c are provided at the positions where the two reintroduction ports 73b and 73c were provided.
  • the first and second introduction ports 109a and 109b having substantially the same shape are formed.
  • the hydraulic oil is directly supplied from the discharge passage 41b to both the introduction ports 109a and 109b.
  • the check valve 74 removed from the valve body 61 is disposed in the discharge passage 41b, and the backflow at the time of introducing the hydraulic oil to the first and second introduction ports 109a and 109b is suppressed. It is supposed to be.
  • second drain ports 110 are formed in a penetrating manner along the cruciform radial direction on the tip end side of the retardation port 18a of the peripheral wall.
  • the second drain port 110 is connected to the oil pan 44 via the second drain passage 43.
  • the first spool valve 65 four fifteenth communication holes 99f are formed through at predetermined positions in the axial direction of the guide portion 96 along the cross radial direction.
  • the 14th communication holes 85i and the 15th communication holes 99f are always in communication with each other through groove grooves formed on the outer periphery of the 15th communication holes 99f. It always communicates with the second drain port 110 via a groove formed on the outer periphery.
  • the first oil passage hole 87 in the first spool valve 65 is always in communication with the oil pan 44 through the fourteenth and fifteenth communication holes 85i and 99f and the second drain port 110. There is.
  • the hydraulic circuit 5 supplies and removes hydraulic pressure to the respective retard hydraulic chambers 11 via the respective retard side oil holes 11 a, and the respective advance hydraulic chambers 12.
  • Advance passage 19 for supplying and discharging hydraulic pressure through the advance side oil holes 12a, and the first through third pressure receiving chambers 30 through 32 through the branch passages 30a, 31a, 32a.
  • lock passages 20 for supplying and discharging hydraulic pressure, respectively.
  • each of the retardation passage 18 and the advancing passage 19 is connected to the retardation port 18a and the advancing port 19a of the electromagnetic switching valve 60, and the other end is the retardation. It is connected to the side and advance side oil holes 11a and 12a.
  • One end of the lock passage 20 is connected to each lock port 20a of the electromagnetic switching valve 60, and the other end is connected to the branch passages 30a, 31a and 32a.
  • the electromagnetic switching valve 60 can perform the same position control as that of the first embodiment, it is possible to obtain the same function and effect as that of the first embodiment.
  • valve timing control device is applied to the intake side, but it is also possible to apply this to the exhaust side.
  • the first spool valve 65 has been described as being formed smaller in diameter than the second spool valve 63 and housed inside the second spool valve 63, both 63,
  • the shape and arrangement relationship of 65 is not limited to this, For example, while forming the said 1st, 2nd spool valve 63 and 65 in the shape of the substantially same diameter, arrange
  • hydraulic control valve based on the embodiment described above and a valve timing control device for an internal combustion engine using the hydraulic control valve, for example, those of the aspect described below can be considered.
  • the hydraulic control valve in one aspect thereof, is provided movably in the axial direction in a hollow valve body in which a plurality of ports through which hydraulic fluid flows in the radial direction of the peripheral wall are formed, A first spool valve that switches the communication state of hydraulic fluid to the plurality of ports according to the movement position, and coaxially disposed with the first spool valve, according to the movement position of the first spool valve in the axial direction And a second spool valve configured to move in the axial direction inside the valve body in conjunction with the first spool valve and to switch the communication state of the hydraulic fluid to the plurality of ports.
  • the second spool valve is formed in a hollow shape, and the first spool valve is movably disposed inside the second spool valve.
  • one axial end side of the first spool valve is in contact with one axial side end of the second spool valve. Operate at
  • the other end side of the first spool valve in the axial direction is in contact with the other end side in the axial direction of the second spool valve.
  • the one end side has the 3rd position contact
  • the first spool valve is hollow and the internal space is divided by a partition provided at an intermediate position in the internal axial direction. It is done.
  • the partition wall is integrally formed with the first spool valve.
  • the first spool valve is axially divided by the partition wall.
  • the partition wall is formed of a separate member.
  • the hydraulic control valve is a hydraulic control valve used in a valve timing control device for an internal combustion engine that operates the movable member by supplying and discharging hydraulic oil to control the relative rotational phase of the camshaft with respect to the crankshaft.
  • a hollow cam bolt in which the movable member is axially fixed to the end portion of the camshaft and through which a supply / discharge port for making the hydraulic oil flow in the radial direction of the peripheral wall is penetrated;
  • a first spool valve movably provided to switch the communication state of the hydraulic fluid to the supply / discharge port according to the movement position, and coaxially disposed with the first spool valve, the axial direction of the first spool valve In accordance with the first spool valve, and moves axially inside the cam bolt to communicate the hydraulic fluid to the supply / discharge port.
  • a second spool valve changing Ri, and a.
  • the hydraulic control valve is disposed and fixed along the axial direction on the outer peripheral surface of the cam bolt, and is formed penetrating in the radial direction of the peripheral wall to communicate with the supply and discharge port
  • An internal hollow sleeve is formed in the axial direction of the inner peripheral surface and has a communication hole communicating with any of the supply and discharge ports, and the second spool valve is hollow and the second spool is formed.
  • the first spool valve is movably disposed inside the valve.
  • an introduction port for introducing the hydraulic oil is formed at an axial tip end of the cam bolt.
  • the first spool valve is formed in a hollow shape, and an internal space portion is divided by a partition provided at an intermediate position in the inner axial direction. And a check valve is provided on one end side in the axial direction of the partition wall of the space portion.
  • a driving rotating body to which a rotational force is transmitted from a crankshaft and in which an operating chamber is formed; It is fixed to one axial end of a camshaft and rotatably accommodated in the drive rotor to separate the working chamber into an advancing working chamber and a retarding working chamber, and to the working fluid for both working chambers
  • the supply and discharge of the hydraulic fluid restricts the relative rotation of the driven rotor relative to the drive rotor and the driven rotor relative to the drive rotor relative to the drive rotor, and the relative rotation of the driven rotor relative to the drive rotor.
  • a lock mechanism for releasing the oil pressure an oil pressure control valve for controlling supply and discharge of hydraulic oil pumped from an oil pump to both operation chambers, and an actuator provided outside the camshaft to operate the oil pressure control valve;
  • the hydraulic control valve advances the hydraulic fluid to fix the driven rotating body to the end of the camshaft from the axial direction and circulate the hydraulic fluid in the radial direction of the peripheral wall to the advance operating chamber and the retarding operating chamber.
  • a cylindrical cam bolt in which a lock port for letting the hydraulic oil flow through the lock mechanism is formed so as to be axially movable inside the cam bolt, and the advance port or the like according to the movement position
  • a first spool valve that switches the communication state of hydraulic fluid to the retard port and the lock port, and the first spool valve is disposed coaxially with the first spool valve, and the first spool valve moves according to the axial movement position of the first spool valve.
  • a second spool valve which moves axially inside the cam bolt and switches the communication state of hydraulic fluid to the advance port, the retard port and the lock port.
  • the first spool valve and the second spool valve are each formed in a hollow shape, and the first spool valve is an inside of the second spool valve.
  • a partition is disposed movably at a middle position in the inner axial direction and axially divides an inner space portion.
  • one axial end side of the first spool valve across the partition wall communicates and shuts off hydraulic oil to the lock port.
  • the other axial end of the first spool valve is provided for communication and blocking of hydraulic fluid to and from the advance port and the retard port.
  • a check valve is disposed in an internal space portion on one axial end side of the partition wall of the first spool valve. The backflow of the hydraulic oil from the lock port is suppressed.

Abstract

An oil pressure control valve is equipped with: a hollow valve body (61) in the peripheral wall of which multiple ports for circulating operating oil are formed penetrating the peripheral wall in the radial direction; a first spool valve (65), which is provided so as to be movable in the axial direction inside the valve body (61), thereby switching the connected state of the operating oil with respect to the multiple ports in accordance with the position to which the spool valve is moved; and a second spool valve (63), which is provided coaxially with the first spool valve (65) and moves in the axial direction inside the valve body (61), thereby switching the connected state of the operating oil with respect to the multiple ports, in conjunction with the first spool valve (65) and in accordance with the position to which the first spool valve (65) has moved in the axial direction. Thus, it is possible to simplify control and reduce the size of the device.

Description

油圧制御弁及び該油圧制御弁が用いられた内燃機関のバルブタイミング制御装置Hydraulic control valve and valve timing control device for internal combustion engine using the hydraulic control valve
 本発明は、例えば車両の運転状態等に応じて複数の油圧通路に対する作動油の給排を切り替え可能な油圧制御弁及び該油圧制御弁が用いられた内燃機関のバルブタイミング制御装置に関する。 The present invention relates to a hydraulic control valve capable of switching supply and discharge of hydraulic fluid to and from a plurality of hydraulic passages according to, for example, an operating state of a vehicle, and a valve timing control device of an internal combustion engine using the hydraulic control valve.
 従来の油圧制御弁としては、以下の特許文献1に記載された内燃機関のバルブタイミング制御装置に適用されたものが知られている。この油圧制御弁は、周壁の径方向に作動油を流通させる給排ポートが貫通形成された円筒状のカムボルトと、該カムボルトの内部を軸方向に移動可能に設けられ、移動位置に応じて位相変更機構に対する作動油の給排を切り替える第1スプール弁と、該第1スプール弁と同軸に配置され、移動位置に応じてロック機構に対する作動油の給排を切り替える第2スプール弁と、を備えている。 As a conventional hydraulic control valve, what was applied to the valve timing control device of the internal-combustion engine described in the following patent documents 1 is known. The hydraulic control valve is provided with a cylindrical cam bolt in which a supply / discharge port for letting hydraulic fluid flow in the radial direction of the peripheral wall penetrates, and the inside of the cam bolt can be moved axially in the axial direction. It has a first spool valve that switches the supply and discharge of hydraulic fluid to and from the change mechanism, and a second spool valve that is coaxially arranged with the first spool valve and that switches the supply and discharge of hydraulic fluid to the lock mechanism according to the movement position. ing.
 前記第1,第2スプール弁は、それぞれ別個の電磁アクチュエータに接続され、該各電磁アクチュエータによって個々に軸方向位置が制御されるようになっている。 The first and second spool valves are respectively connected to separate electromagnetic actuators, and the axial position is individually controlled by the respective electromagnetic actuators.
 しかしながら、前記従来の油圧制御弁は、前記第1,第2スプール弁の軸方向位置を前記各電磁アクチュエータによってそれぞれ独立して制御しなければならないことから、制御の複雑化を招来してしまうと共に、複数の電磁アクチュエータを設けることで装置の大型化を招来してしまう。 However, since the conventional hydraulic control valve has to independently control the axial position of the first and second spool valves by the respective electromagnetic actuators, it causes complication of control. By providing a plurality of electromagnetic actuators, the size of the apparatus is increased.
特開2012-193731号公報JP, 2012-193731, A
 本発明は、前記従来の技術的課題に鑑みて案出されたもので、第1,第2スプール弁を連動可能とすることにより、制御の複雑化及び装置の大型化を抑制し得る油圧制御弁及び該油圧制御弁が用いられたバルブタイミング制御装置を提供することを目的としている。 The present invention has been made in view of the above-described conventional technical problems, and hydraulic control that can suppress complication of control and upsizing of the device by enabling interlocking of the first and second spool valves. It is an object of the present invention to provide a valve and a valve timing control device in which the valve and the hydraulic control valve are used.
 本発明は、周壁の径方向に作動油を流通させる複数のポートが貫通形成された中空のバルブボディと、前記バルブボディの内部で軸方向に移動可能に設けられ、移動位置に応じて前記複数のポートに対する作動油の連通状態を切り換える第1スプール弁と、前記第1スプール弁と同軸上に配置され、前記第1スプール弁の軸方向の移動位置に応じて、前記第1スプール弁と連動して前記バルブボディの内部で軸方向に移動し、前記複数のポートに対する作動油の連通状態を切り換える第2スプール弁と、を備えたことを特徴としている。 The present invention is provided with a hollow valve body in which a plurality of ports through which hydraulic fluid circulates in the radial direction of the peripheral wall are formed, and the valve body is axially movably provided inside the valve body. And a first spool valve for switching the communication state of the hydraulic fluid to the port, and coaxial with the first spool valve, and interlocked with the first spool valve according to the axial movement position of the first spool valve And a second spool valve which moves in the axial direction inside the valve body and switches the communication state of the hydraulic fluid to the plurality of ports.
 本発明によれば、制御の簡素化と小型化が図れる。 According to the present invention, simplification and miniaturization of control can be achieved.
本発明の実施形態に係るバルブタイミング制御装置を断面して示す全体構成図である。1 is an overall configuration diagram showing a valve timing control device according to an embodiment of the present invention in cross section. 本実施形態に供されるベーンロータが最遅角位相の位置に回転した状態を示す正面図である。It is a front view which shows the state which the vane rotor provided to this embodiment rotated to the position of the most retarded phase. 同ベーンロータが中間位相の位置に回転した状態を示す正面図である。It is a front view which shows the state which the said vane rotor rotated to the position of the middle phase. 同ベーンロータが最進角位相の位置に回転した状態を示す正面図である。It is a front view which shows the state which the same vane rotor rotated to the position of the most advance angle phase. 本実施形態のベーンロータが最遅角寄りに位置する場合の各ロックピンの作動を示す展開断面図である。It is an expanded sectional view showing operation of each lock pin in case a vane rotor of this embodiment is located near the most retarded angle. 同ベーンロータが交番トルクによってやや進角側に回転した場合の各ロックピンの作動を示す展開断面図である。It is an expanded sectional view showing operation of each lock pin when the same vane rotor rotates to the advance side a little by alternating torque. 同ベーンロータがさらに進角側に回転した場合の各ロックピンの作動を示す展開断面図である。It is an expanded sectional view showing operation of each lock pin when the same vane rotor rotates further to an advance side. 同ベーンロータがさらに進角側に回転した場合の各ロックピンの作動を示す展開断面図である。It is an expanded sectional view showing operation of each lock pin when the same vane rotor rotates further to an advance side. 同ベーンロータがさらに進角側に回転した場合の各ロックピンの作動を示す展開断面図である。It is an expanded sectional view showing operation of each lock pin when the same vane rotor rotates further to an advance side. 同ベーンロータがさらに進角側に回転した場合の各ロックピンの作動を示す展開断面図である。It is an expanded sectional view showing operation of each lock pin when the same vane rotor rotates further to an advance side. 本実施形態における電磁切換弁を、第1,第2スプール弁が第1ポジションにある状態で断面した縦断面図である。It is the longitudinal cross-sectional view which disconnected the electromagnetic switching valve in this embodiment in the state which has a 1st, 2nd spool valve in a 1st position. 第1,第2スプール弁の第2ポジションを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd position of a 1st, 2nd spool valve. 第1,第2スプール弁の第3ポジションを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 3rd position of a 1st, 2nd spool valve. 第1,第2スプール弁の第4ポジションを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 4th position of a 1st, 2nd spool valve. 第1,第2スプール弁の第5ポジションを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 5th position of a 1st, 2nd spool valve. 第1,第2スプール弁の第6ポジションを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 6th position of a 1st, 2nd spool valve. 第1,第2スプール弁の第7ポジションを示す縦断面図である。It is a longitudinal cross-sectional view which shows the 7th position of a 1st, 2nd spool valve. 第1スプール弁のストローク量と各油圧室及びロック通路への作動油の給排との関係を示す表である。FIG. 6 is a table showing the relationship between the stroke amount of the first spool valve and the supply and discharge of hydraulic oil to each hydraulic pressure chamber and lock passage. 第2実施形態に係る電磁切換弁の縦断面図である。It is a longitudinal cross-sectional view of the electromagnetic switching valve concerning 2nd Embodiment. 第3実施形態に係る電磁切換弁の縦断面図である。It is a longitudinal cross-sectional view of the electromagnetic switching valve concerning 3rd Embodiment. 第4実施形態に係るバルブタイミング制御装置の全体構成図である。It is a whole block diagram of the valve timing control apparatus which concerns on 4th Embodiment.
 以下、本発明に係る油圧制御弁を内燃機関のバルブタイミング制御装置に適用した各実施形態を図面に基づいて説明する。なお、各実施形態では、前記バルブタイミング制御装置を、例えばハイブリット車やアイドルストップ車などの内燃機関の吸気弁側に適用したものを示している。
〔第1実施形態〕
 前記バルブタイミング制御装置は、図1及び図2に示すように、機関のクランクシャフトにより図外のタイミングチェーンを介して回転駆動される駆動回転体であるスプロケット1と、機関前後方向に沿って配置されて、前記スプロケット1に対して相対回転可能に設けられた吸気側のカムシャフト2と、前記スプロケット1とカムシャフト2との間に配置されて、該両者1,2の相対回転位相を変換する位相変更機構3と、該位相変更機構3を、最進角位相と最遅角位相の間の中間位相位置でロックさせるロック機構4と、前記位相変更機構3とロック機構4にそれぞれ油圧を給排して作動させる油圧回路5と、を備えている。
Hereinafter, embodiments in which the hydraulic control valve according to the present invention is applied to a valve timing control device for an internal combustion engine will be described based on the drawings. In each embodiment, the valve timing control device is applied to the intake valve side of an internal combustion engine such as a hybrid car or an idle stop car, for example.
First Embodiment
The valve timing control device, as shown in FIG. 1 and FIG. 2, is disposed along a longitudinal direction of the engine with a sprocket 1 which is a drive rotating body rotationally driven by a crankshaft of the engine via a timing chain (not shown). And is disposed between the intake side camshaft 2 rotatably provided relative to the sprocket 1 and the sprocket 1 and the camshaft 2 so as to convert the relative rotational phase of the both 1 and 2 The hydraulic pressure is applied to the phase change mechanism 3, the lock mechanism 4 that locks the phase change mechanism 3 at an intermediate phase position between the most advanced phase and the most retarded phase, and the phase change mechanism 3 and the lock mechanism 4. And a hydraulic circuit 5 that operates to supply and discharge.
 前記スプロケット1は、後述するハウジング7の後端開口を閉塞するリアカバーとして構成され、ほぼ肉厚円板状に形成されて、外周に前記タイミングチェーンが巻回された歯車部1aを有していると共に、中央には前記カムシャフト2の一端部2aの外周に回転可能に支持される支持孔1bが貫通形成されている。また、前記スプロケット1は、外周側の周方向等間隔位置に4つの雌ねじ孔1c(図示外)が形成されている。 The sprocket 1 is configured as a rear cover that closes the rear end opening of the housing 7 described later, and is formed in a substantially thick disc shape, and has a gear portion 1a around which the timing chain is wound. At the same time, a support hole 1b rotatably supported on the outer periphery of the one end 2a of the camshaft 2 is formed in the center through. Further, in the sprocket 1, four female screw holes 1 c (not shown) are formed at circumferentially equally spaced positions on the outer peripheral side.
 前記カムシャフト2は、図外のシリンダヘッドに複数のカム軸受を介して回転自在に支持され、外周面には機関弁である図外の吸気弁を開作動させる複数の卵型の回転カムが軸方向の所定位置に一体に固定されていると共に、前記一端部2aの内部軸心方向にカムボルトとしての機能を有する後述のバルブボディ61が螺着されるボルト孔6が形成されている。このボルト孔6は、前記一端部2aの先端側から内部軸線方向に沿って穿設されている。また、前記ボルト孔6は、先端側から内底側に向かって段差縮径状に形成され、先端側の大径部6aの内周面に後述するスリーブ62の一端部が嵌着されている一方、内底側の小径部6bに雌ねじ部6cが形成され、この雌ねじ部6cに前記バルブボディ61の雄ねじ部61cが螺着されている。 The camshaft 2 is rotatably supported by a cylinder head (not shown) via a plurality of cam bearings, and has a plurality of egg-shaped rotary cams for opening the intake valve (not shown), which is an engine valve, on the outer peripheral surface. While integrally fixed at a predetermined position in the axial direction, a bolt hole 6 into which a later-described valve body 61 having a function as a cam bolt is screwed is formed in the axial direction of the one end portion 2a. The bolt holes 6 are formed along the internal axial direction from the tip end side of the one end portion 2a. Further, the bolt hole 6 is formed in a step diameter reduction shape from the tip end side to the inner bottom side, and one end portion of a sleeve 62 described later is fitted to the inner peripheral surface of the large diameter portion 6a at the tip end side. On the other hand, a female screw 6c is formed in the small diameter portion 6b on the inner bottom side, and a male screw 61c of the valve body 61 is screwed to the female screw 6c.
 また、前記ボルト孔6の小径部6bよりも内底側には、後述するオイルポンプ45から作動油が圧送される油圧導入室6dが形成されている。 Further, on the inner bottom side of the small diameter portion 6b of the bolt hole 6, there is formed a hydraulic pressure introducing chamber 6d to which hydraulic oil is pressure fed from an oil pump 45 described later.
 前記位相変更機構3は、図1及び図2に示すように、前記スプロケット1に軸方向から一体的に設けられたハウジング7と、前記バルブボディ61を介して前記カムシャフト2に固定されて、前記ハウジング7内に回転自在に収容された従動回転体であるベーンロータ(可動部材)9と、前記ハウジング7の内周面に内方(中心)に向かって突設された後述する4つの第1~第4シュー10a~10dと前記ベーンロータ9とによって隔成されたそれぞれ4つの遅角、進角作動室である遅角油圧室11及び進角油圧室12と、を備えている。 The phase change mechanism 3 is fixed to the camshaft 2 via the valve body 61 and a housing 7 integrally provided in the axial direction of the sprocket 1 as shown in FIGS. 1 and 2. A vane rotor (movable member) 9, which is a driven rotating member rotatably accommodated in the housing 7, and four first members which are provided on the inner peripheral surface of the housing 7 so as to protrude inward (center). There are provided four retarding angles, a retarding hydraulic pressure chamber 11 and an advancing hydraulic pressure chamber 12, which are advance working chambers, respectively, which are separated by the fourth shoes 10a to 10d and the vane rotor 9.
 前記ハウジング7は、円筒状のハウジング本体10と、プレス成形によって形成され、前記ハウジング本体10の前端開口を閉塞するフロントプレート13と、後端開口を閉塞するリアカバーとしての前記スプロケット1と、から構成されている。 The housing 7 comprises a cylindrical housing body 10, a front plate 13 formed by press molding to close the front end opening of the housing body 10, and the sprocket 1 as a rear cover closing the rear end opening. It is done.
 前記ハウジング本体10は、焼結金属によって一体に形成され、内周面の円周方向ほぼ等間隔位置に4つの前記各シュー10a~10dが一体に突設されていると共に、該各シュー10a~10dの外周側にはボルト挿通孔10eがそれぞれ軸方向に貫通形成されている。 The housing body 10 is integrally formed of a sintered metal, and the four shoes 10a to 10d are integrally protruded at substantially equal positions in the circumferential direction of the inner peripheral surface, and the shoes 10a to 10d are integrally formed. Bolt insertion holes 10 e are respectively formed to penetrate in the axial direction on the outer peripheral side of 10 d.
 前記フロントプレート13は、金属製の薄板円盤状に形成されて、中央に貫通孔13aが形成されていると共に、外周側の周方向の等間隔位置に4つのボルト挿通孔13b(図示外)が貫通形成されている。 The front plate 13 is formed in the shape of a thin disc made of metal and has a through hole 13a at the center, and four bolt insertion holes 13b (not shown) at equally spaced positions in the circumferential direction on the outer peripheral side. It is formed through.
 前記スプロケット1とハウジング本体10及びフロントプレート13は、前記各ボルト挿通孔13b、10eを挿通して前記各雌ねじ孔1cに螺着する4本のボルト14(図示外)によって共締め固定されている。 The sprocket 1, the housing body 10 and the front plate 13 are cofastened and fixed by four bolts 14 (not shown) which are inserted through the bolt insertion holes 13b and 10e and screwed to the female screw holes 1c. .
 なお、図2中の1eは、前記スプロケット内側面1dの外周側に取り付けられた位置決め用ピンであって、この位置決め用ピン1eは、前記ハウジング本体10の第1シュー10aの外周面に形成された位置決め用溝10fに嵌入して、組付時のスプロケット1に対するハウジング本体10の位置決めを行うようになっている。 Incidentally, 1e in FIG. 2 is a positioning pin attached to the outer peripheral side of the inner surface 1d of the sprocket, and the positioning pin 1e is formed on the outer peripheral surface of the first shoe 10a of the housing main body 10. The housing main body 10 is positioned relative to the sprocket 1 at the time of assembly by being fitted into the positioning groove 10f.
 前記ベーンロータ9は、金属材によって一体に形成され、図1及び図2に示すように、前記カムシャフト2の一端部に前記バルブボディ61によって固定されたロータ15と、該ロータ15の外周面の円周方向ほぼ90°等間隔位置に放射状に突設された4つの第1~第4ベーン16a~16dと、から構成されている。 The vane rotor 9 is integrally formed of a metal material, and as shown in FIGS. 1 and 2, a rotor 15 fixed to the one end of the camshaft 2 by the valve body 61 and an outer peripheral surface of the rotor 15. It is composed of four first to fourth vanes 16a to 16d radially projected at equal intervals of approximately 90 ° in the circumferential direction.
 前記ロータ15は、軸方向に比較的肉厚な短尺円柱状に形成され、ほぼ中央位置にボルト挿通孔15aが貫通形成されていると共に、前端に前記バルブボディ61の後述する頭部61aが着座する円形状の着座面15bが形成されている。 The rotor 15 is formed in a relatively thick, short cylindrical shape in the axial direction, and a bolt insertion hole 15a is formed substantially at the center position, and a head portion 61a of the valve body 61 described later is seated at the front end A circular seating surface 15b is formed.
 また、前記ロータ15は、全体の外径が均一な大径状に形成されており、この外周面に径方向から対向する前記各シュー10a~10dは、その突出量がロータ15の外径に対応して比較的短く設定されて、側面ほぼ長方形状に形成されている。 Further, the rotor 15 is formed in a large diameter shape having a uniform outer diameter as a whole, and the amount of protrusion of each of the shoes 10a to 10d facing the outer peripheral surface in the radial direction is equal to the outer diameter of the rotor 15. Correspondingly, it is set relatively short and is formed in a substantially rectangular shape on the side.
 また、前記第1~第4シュー10a~10dの各先端縁には、前記ロータ15の外周面に摺接するシール部材17aがそれぞれ嵌着固定されている。この各シール部材17aは、ほぼコ字形状に形成されて、各シール溝の底面側に設けられた図外の板ばねによってロータ15の外周面方向へ付勢されている。 In addition, seal members 17a which are in sliding contact with the outer peripheral surface of the rotor 15 are respectively fitted and fixed to the end edges of the first to fourth shoes 10a to 10d. Each seal member 17a is formed substantially in a U-shape, and is urged toward the outer peripheral surface of the rotor 15 by a plate spring (not shown) provided on the bottom surface side of each seal groove.
 前記各ベーン16a~16dは、その全体の突出長さがほぼ同一に設定されていると共に、円周方向の巾がほぼ同一の比較的薄肉に形成されて、それぞれが各シュー10a~10dの間に配置されている。 Each of the vanes 16a to 16d is set so that the total projection length is substantially the same, and the circumferential width is substantially the same and relatively thin, and each of the vanes 16a to 16d is between the shoes 10a to 10d. Is located in
 また、前記各ベーン16a~16dの先端外周部には、断面矩形状のシール溝が軸方向に沿って形成されていると共に、該各シール溝には、前記ハウジング本体10の内周面に摺接するコ字形状のシール部材17bがそれぞれ設けられている。 Further, a seal groove having a rectangular cross section is formed along the axial direction on the tip outer peripheral portion of each of the vanes 16a to 16d, and the seal groove slides on the inner peripheral surface of the housing main body 10. U-shaped seal members 17 b are provided to be in contact with each other.
 前記各シュー10a~10dと各ベーン16a~16dの各シール部材17a,17bによって、前記遅角油圧室11と進角油圧室12との間を常時シールするようになっている。 Between the retard hydraulic chamber 11 and the advance hydraulic chamber 12 is constantly sealed by the shoes 10a to 10d and the seal members 17a and 17b of the vanes 16a to 16d.
 また、前記ベーンロータ9は、図2に示すように、遅角側へ相対回転すると第1ベーン16aの一側面が対向する前記第1シュー10aの対向側面に当接して最大遅角側の回転位置が規制され、図4に示すように、進角側へ相対回転すると第1ベーン16aの他側面が対向する他の第2シュー10bの対向側面に当接して最大進角側の回転位置が規制されるようになっている。つまり、前記第1,2シュー10a,10bが、第1ベーン16aを介してベーンロータ9のストッパ機能を発揮するようになっている。 Further, as shown in FIG. 2, when the vane rotor 9 relatively rotates toward the retard side, the vane rotor 9 abuts against the opposing side face of the first shoe 10 a where one side face of the first vane 16 a faces, and the rotational position on the maximum retard side As shown in FIG. 4, when the relative rotation to the advance side is performed, the other vanes of the first vane 16a abut against the opposite side surface of the other second shoe 10b, and the rotational position on the maximum advance side is restricted. It is supposed to be That is, the first and second shoes 10a and 10b exhibit the stopper function of the vane rotor 9 via the first vane 16a.
 このとき、他のベーン16b~16dは、両側面が円周方向から対向する各シュー10a~10dの対向面に当接せずに離間状態にある。したがって、前記第1ベーン16aと第1,第2シュー10a,10bとの当接精度が向上すると共に、後述する各油圧室11,12への油圧の供給速度が速くなってベーンロータ9の正逆回転応答性が高くなる。 At this time, the other vanes 16b to 16d are in a separated state without contacting the opposing surfaces of the shoes 10a to 10d whose both side surfaces are opposed in the circumferential direction. Therefore, the contact accuracy between the first vane 16a and the first and second shoes 10a and 10b is improved, and the supply speed of the hydraulic pressure to the hydraulic chambers 11 and 12 described later is increased. Rotational response is high.
 なお、前記ベーンロータ9は、ハウジング7との通常の相対回転制御時には、前記第1ベーン16aが対応する第1シュー10aや第2シュー10bにそれぞれ当接した最遅角位相と最進角位相よりも内側で、つまり僅かに中間寄りの範囲内で相対回転制御されるようになっている。 In the normal relative rotation control with the housing 7, the vane rotor 9 is in contact with the first shoe 10a or the second shoe 10b to which the first vane 16a corresponds, according to the most retarded phase and the most advanced phase. The relative rotation control is also performed inside, that is, in a slightly middle range.
 前記各ベーン16a~16dの正逆回転方向の両側面と各シュー10a~10dの両側面との間に、前述した各遅角油圧室11と各進角油圧室12が隔成されている。この各遅角油圧室11と各進角油圧室12は、前記ロータ15の内部径方向に沿ってそれぞれ形成された遅角側油孔11aと進角側油孔12aを介して前記油圧回路5のそれぞれに連通している。 The aforementioned retarded oil pressure chambers 11 and advance oil pressure chambers 12 are separated between the side surfaces in the forward and reverse rotational directions of the vanes 16a to 16d and the side surfaces of the shoes 10a to 10d. The respective retarding hydraulic chambers 11 and the advancing hydraulic chambers 12 are provided with the hydraulic circuit 5 via the retarding oil holes 11a and the advancing oil holes 12a formed along the inner diameter direction of the rotor 15, respectively. It communicates with each of the
 前記ロック機構4は、機関の停止状態に応じて、前記ハウジング7に対して前記ベーンロータ9を最遅角側の回転位置(図2の位置)と最進角側の回転位置(図4の位置)との間の中間回転位相位置(図3の位置)に保持するものである。 The lock mechanism 4 rotates the vane rotor 9 with respect to the housing 7 at the most retarded side relative to the housing 7 (the position shown in FIG. 2) and at the most advanced angled position (the position shown in FIG. 4). ) And the intermediate rotational phase position (position in FIG. 3).
 すなわち、図1~図5に示すように、前記スプロケット1のロータ15側の内側面(スプロケット内側面1d)の所定位置に形成された第1~第3ロック凹部である第1~第3ロック穴24~26と、前記ロータ15の内部周方向の3箇所に設けられて、前記各ロック穴24~26にそれぞれ係脱する3つの第1~第3ロック部材である第1~3ロックピン27~29と、該各ロックピン27~29の前記各ロック穴24~26に対する係合を解除させる第1~第3解除用受圧室30~32と、から主として構成されている。 That is, as shown in FIGS. 1 to 5, first to third locks which are first to third lock recesses formed at predetermined positions on the inner surface (sprocket inner surface 1d) of the sprocket 1 on the rotor 15 side. First to third lock pins which are three first to third lock members provided at three locations in the circumferential direction of the holes 15 to 26 and the inner circumferential direction of the rotor 15 and engaged with the respective lock holes 24 to 26 respectively 27 to 29, and first to third release pressure receiving chambers 30 to 32 for releasing the engagement of the lock pins 27 to the lock holes 24 to 26, respectively.
 前記第1ロック穴24は、第1大径部15c側の前記スプロケット内側面1dに形成され、後述する第1ロックピン27の小径な先端部27aの外径よりも大径な円形状に形成されて、係入した前記先端部27aが円周方向へ僅かに移動可能になっている。また、第1ロック穴24は、前記スプロケット内側面1dの前記ベーンロータ9の最遅角側の回転位置よりも進角側に寄った中間位置に形成されている。さらに、この第1ロック穴24は、底面24aの深さが後述の第2,第3ロック穴25,26の第2底面25b,26bとほぼ同じ深さに設定されている。 The first lock hole 24 is formed in the inner surface 1d of the sprocket on the side of the first large diameter portion 15c, and formed in a circular shape having a diameter larger than the outer diameter of the small diameter tip 27a of the first lock pin 27 described later. As a result, the inserted tip 27a is slightly movable in the circumferential direction. Further, the first lock hole 24 is formed at an intermediate position closer to the advancing side than the rotational position on the most retarded side of the vane rotor 9 of the inner surface 1 d of the sprocket. Further, in the first lock hole 24, the depth of the bottom surface 24a is set to be substantially the same depth as the second bottom surfaces 25b and 26b of the second and third lock holes 25 and 26 described later.
 したがって、第1ロックピン27は、ベーンロータ9の進角方向の回転に伴って先端部27aが前記第1ロック穴24に係入して底面24aに当接すると、先端部27aの側縁が第1ロック穴24周方向の内側縁24bに当接した時点でベーンロータ9の遅角方向への移動を規制するようになっている。 Therefore, when the tip end portion 27a of the first lock pin 27 is engaged with the first lock hole 24 and abuts against the bottom surface 24a as the vane rotor 9 rotates in the advancing direction, the side edge of the tip end portion 27a The movement in the retard direction of the vane rotor 9 is restricted at the time when it abuts against the inner edge 24 b in the circumferential direction of the lock hole 24.
 前記第2ロック穴25は、第1ロック穴24と同じく前記第1大径部15c側のスプロケット内側面1dに形成され、円周方向に沿った長溝の階段状に形成されている。つまり、前記スプロケット内側面1dを最上段として、これより第1底面25a、第2底面25bと順次低くなる階段状に形成され、遅角側の各内側面は垂直に立ち上がった壁面になっていると共に、第2底面25bの進角側の内側縁25cも垂直に立ち上がった壁面になっている。 The second lock hole 25 is formed in the sprocket inner surface 1 d on the side of the first large diameter portion 15 c as in the first lock hole 24, and is formed in a step shape of a long groove along the circumferential direction. That is, with the sprocket inner side surface 1d as the uppermost step, it is formed in a step-like shape in which the first bottom surface 25a and the second bottom surface 25b sequentially become lower than this. At the same time, the inner side edge 25c on the advance side of the second bottom surface 25b is also a wall surface rising vertically.
 前記第2底面25bは、円周方向に沿って進角側へ僅かに長く形成されて、ここに係合した状態で前記第2ロックピン28が図9、図10に示すように、進角方向へ僅かに移動可能になっている。 The second bottom surface 25b is formed slightly longer in the circumferential direction on the advance side, and the second lock pin 28 is in the advanced state as shown in FIGS. It can move slightly in the direction.
 前記第3ロック穴26は、前記第2大径部15d側に前記第2ロック穴25よりも長くスプロケット1の円周方向に延びた円弧長溝状に形成されていると共に、前記スプロケット内側面1dの前記ベーンロータ9の最遅角側の回転位置よりも進角側に寄った中間位置に形成されている。また、この第3ロック穴26は、その底面が遅角側から進角側に亘って低くなる3段の階段状に形成されて、これがロック案内溝として機能するようになっている。 The third lock hole 26 is formed in a circular arc long groove shape extending in the circumferential direction of the sprocket 1 longer than the second lock hole 25 on the second large diameter portion 15 d side, and the sprocket inner side surface 1 d The vane rotor 9 is formed at an intermediate position closer to the advancing side than the rotational position on the most retarded side of the vane rotor 9. Further, the third lock hole 26 is formed in a three-step shape in which the bottom surface is lowered from the retardation side to the advance side, and this functions as a lock guide groove.
 つまり、第3ロック穴26は、前記スプロケット内側面1dを最上段として、これより第1底面26a、第2底面26bと順次低くなる階段状に形成され、遅角側の各内側面は垂直に立ち上がった壁面になっていると共に、第2底面26bの進角側の内側縁26cも垂直に立ち上がった壁面になっている。 That is, the third lock hole 26 is formed in a step-like shape in which the first inner bottom surface 26a and the second bottom surface 26b sequentially become lower with the inner surface 1d of the sprocket as the uppermost step. Along with the wall surface that has risen, the inner edge 26c on the advancing side of the second bottom surface 26b also becomes a wall surface that has stood upright.
 なお、前記各ロック穴24~26は、前記スプロケット1に形成された保持穴に嵌合固定された穴形成部材によって形成されている。 The lock holes 24 to 26 are formed by hole forming members fitted and fixed in the holding holes formed on the sprocket 1.
 前記第1ロックピン27は、ロータ15の第1ロック穴24側の内部軸方向に貫通形成された第1ピン孔33a内に摺動可能に配置され、小径の先端部27aと、該先端部27aの後側に位置する中空状の大径部位27bと、先端部27aと大径部位27bとの間に形成された段差受圧面27cと、によって一体に形成されている。前記先端部27aは、先端面が前記第1ロック穴24の底面24aに密着状態に当接可能な平坦面状に形成されている。 The first lock pin 27 is slidably disposed in a first pin hole 33a formed in an axial direction penetrating in an inner axial direction on the side of the first lock hole 24 of the rotor 15, and has a small diameter tip 27a and the tip A hollow large-diameter portion 27b located on the rear side of 27a and a step pressure receiving surface 27c formed between the tip 27a and the large-diameter portion 27b are integrally formed. The tip end portion 27 a is formed in a flat surface shape such that the tip end surface can be in close contact with the bottom surface 24 a of the first lock hole 24.
 また、この第1ロックピン27は、大径部位27bの内部の凹溝底面とフロントプレート13の内面との間に弾装された付勢部材である第1スプリング36のばね力によって第1ロック穴24に係合する方向へ付勢されている。 Further, the first lock pin 27 is a first lock by a spring force of a first spring 36, which is a biasing member resiliently mounted between the bottom of the concave groove in the large diameter portion 27b and the inner surface of the front plate 13. It is biased in a direction to engage the hole 24.
 前記第1解除用受圧室30は、図2及び図5に示すように、前記ロータ15の内部径方向に沿って形成された第1分岐通路30aを介して前記油圧回路5に連通しており、該油圧回路5から油圧が供給されると、この油圧を前記段差受圧面27cに作用させて、前記第1ロックピン27を前記第1スプリング36のばね力に抗して後退移動させることで、前記第1ロックピン27と第1ロック穴24との係合を解除するようになっている。 As shown in FIGS. 2 and 5, the first release pressure receiving chamber 30 communicates with the hydraulic circuit 5 via a first branch passage 30a formed along the inner radial direction of the rotor 15. When the hydraulic pressure is supplied from the hydraulic circuit 5, the hydraulic pressure acts on the step pressure receiving surface 27c to move the first lock pin 27 backward against the spring force of the first spring 36. The engagement between the first lock pin 27 and the first lock hole 24 is released.
 前記第2ロックピン28は、前記ロータ15の前記第2ロック穴25側の内部軸方向に貫通形成された第2ピン孔33b内に摺動可能に配置され、外径が段差径状に形成されて、小径の先端部28aと、該先端部28aの後側に位置する中空状の大径部位28bと、先端部28aと大径部位28bとの間に形成された段差受圧面28cと、によって一体に形成されている。前記先端部28aは、先端面が前記第2ロック穴25の各底面25a、25bに密着状態に当接可能な平坦面状に形成されている。 The second lock pin 28 is slidably disposed in a second pin hole 33b formed in the axial direction of the rotor 15 on the side of the second lock hole 25 so that the outer diameter is formed in a step diameter shape. A small diameter distal end portion 28a, a hollow large diameter portion 28b located on the rear side of the distal end portion 28a, and a step pressure receiving surface 28c formed between the distal end portion 28a and the large diameter portion 28b; Are integrally formed. The tip end portion 28a is formed in a flat surface shape such that the tip end surface can be in contact with the bottom surfaces 25a and 25b of the second lock hole 25 in a close contact state.
 また、この第2ロックピン28は、大径部位28bの後端側から内部軸方向に形成された凹溝底面とフロントプレート13の内面との間に弾装された付勢部材である第2スプリング37のばね力によって第2ロック穴25に係合する方向へ付勢されている。 The second lock pin 28 is a biasing member resiliently mounted between the bottom surface of the recessed groove formed in the axial direction from the rear end side of the large diameter portion 28 b and the inner surface of the front plate 13. The spring force of the spring 37 urges the second lock hole 25 to engage.
 前記第2解除用受圧室31は、前記ロータ15の内部径方向に沿って形成された第2分岐通路31aを介して前記油圧回路5に連通しており、該油圧回路5から油圧が供給されると、この油圧を前記段差受圧面28cに作用させて、前記第2ロックピン28を前記第2スプリング37のばね力に抗して後退移動させることで、前記第2ロックピン28と第2ロック穴25との係合を解除するようになっている。 The second release pressure receiving chamber 31 communicates with the hydraulic circuit 5 via a second branch passage 31 a formed along the inner radial direction of the rotor 15, and the hydraulic pressure is supplied from the hydraulic circuit 5. The second lock pin 28 and the second lock pin 28 are moved backward by moving the second lock pin 28 against the spring force of the second spring 37 by acting the hydraulic pressure on the step pressure receiving surface 28c. The engagement with the lock hole 25 is released.
 前記第3ロックピン29は、前記ロータ15の第3ロック穴26側の内部軸方向に貫通形成された第3ピン孔33c内に摺動可能に配置され、外径が段差径状に形成されて、小径な前記先端部29aと、該先端部29aより後部側に位置する中空状の大径部位29bと、先端部29aと大径部位29bとの間に形成された段差受圧面29cと、によって一体に形成されている。前記先端部29aは、先端面が前記第3ロック穴26の各底面26a、26bに密着状態に当接可能な平坦面状に形成されている。 The third lock pin 29 is slidably disposed in a third pin hole 33c which is formed to penetrate in the inner axial direction on the third lock hole 26 side of the rotor 15, and the outer diameter is formed in a step diameter shape. A small diameter tip portion 29a, a hollow large diameter portion 29b located rearward of the tip portion 29a, and a step pressure receiving surface 29c formed between the tip portion 29a and the large diameter portion 29b; Are integrally formed. The distal end portion 29a is formed in a flat surface shape such that the distal end surface can be in close contact with the bottom surfaces 26a and 26b of the third lock hole 26.
 また、この第3ロックピン29は、大径部位29bの後端側から内部軸方向に形成された凹溝底面とフロントプレート13の内面との間に弾装された付勢部材である第3スプリング38のばね力によって第3ロック穴26に係合する方向へ付勢されている。 The third lock pin 29 is a biasing member resiliently mounted between the bottom surface of the concave groove formed in the axial direction from the rear end side of the large diameter portion 29 b and the inner surface of the front plate 13. The spring force of the spring 38 biases the third lock hole 26 in a direction in which it is engaged.
 前記第3解除用受圧室32は、前記ロータ15の内部径方向に沿って形成された第3分岐通路32aを介して前記油圧回路5に連通しており、該油圧回路5から油圧が供給されると、この油圧を前記段差受圧面29cに作用させて、前記第3ロックピン29を前記第3スプリング38のばね力に抗して後退移動させることで、前記第3ロックピン29と第3ロック穴26との係合を解除するようになっている。 The third release pressure receiving chamber 32 is in communication with the hydraulic circuit 5 via a third branch passage 32 a formed along the inner radial direction of the rotor 15, and hydraulic pressure is supplied from the hydraulic circuit 5. This hydraulic pressure acts on the step pressure receiving surface 29c to move the third lock pin 29 backward against the spring force of the third spring 38, whereby the third lock pin 29 and the third lock pin 29 are moved. The engagement with the lock hole 26 is released.
 なお、前記第1~第3ピン孔33a~33cの後端側は、各ロックピン27、28,29の良好な摺動性を確保するために図外の呼吸孔を介して大気に連通している。 The rear end sides of the first to third pin holes 33a to 33c communicate with the atmosphere through a breathing hole (not shown) in order to ensure good slidability of the lock pins 27, 28 and 29. ing.
 また、前記各ベーン16a~16dを挟んで互いに隣接している各一対の前記遅角側油孔11aと進角側油孔12aとの間には、図1~図4に示すように、前記遅角側油孔11aと進角側油孔12aとを適宜連通あるいは連通を遮断(規制)する2つの通路制御機構50,50が設けられている。 Further, as shown in FIGS. 1 to 4, between each pair of the retarding side oil hole 11 a and the advancing side oil hole 12 a which are adjacent to each other with the vanes 16 a to 16 d interposed therebetween, Two passage control mechanisms 50, 50 are provided to appropriately block or restrict communication between the retard side oil hole 11a and the advance side oil hole 12a.
 前記両通路制御機構50,50は同じ構成であるから、便宜上、一方側について以下に具体的に説明する。すなわち、前記各通路制御機構50は、前記ロータ15の各ピン孔33a~33cと反対側のほぼ対称位置に設けられており、前記ロータ15の内部軸方向に沿って前記遅角側油孔11aと進角側油孔12aとを跨いで穿設された連通用孔51と、該連通用孔51内に摺動可能に設けられ、摺動位置に応じて前記連通用孔51を介して前記両油孔11a,12aの連通状態を変化させる弁体52と、該弁体52を前記各油孔11a,12aが連通する方向に付勢するばね部材であるスプリング53と、前記ロータ15の内周部端面に径方向に穿設されて、弁体52をスプリング53のばね力に抗して各油孔11a、12aの連通を遮断する方向に作用させる油通路孔54と、から主として構成されている。 Since both the passage control mechanisms 50, 50 have the same configuration, one side will be specifically described below for convenience. That is, the passage control mechanisms 50 are provided at substantially symmetrical positions on the opposite side of the pin holes 33 a to 33 c of the rotor 15, and the retarding oil holes 11 a along the internal axial direction of the rotor 15. And the advance-side oil hole 12a, and is provided slidably in the communication hole 51, and the communication hole 51 is provided via the communication hole 51 according to the sliding position. The valve body 52 which changes the communication state of both oil holes 11a and 12a, the spring 53 which is a spring member which biases the valve body 52 in the direction in which the oil holes 11a and 12a communicate, and the rotor 15 An oil passage hole 54, which is bored in a radial direction on the end face of the peripheral part and acts in a direction to block the communication of each oil hole 11a, 12a against the spring force of the spring 53, mainly formed. ing.
 前記連通用孔51は、図1~図4に示すように、その内径が前記各ピン孔33a~33cとほぼ同じ大きさに設定されて、隣接する前記遅角側油孔11aと進角側油孔12aの間に跨って形成されている。 As shown in FIGS. 1 to 4, the communication hole 51 has an inner diameter set to substantially the same size as each of the pin holes 33 a to 33 c, and the advancing side and the retard side oil hole 11 a adjacent to each other. It is formed across the oil holes 12a.
 前記弁体52は、中央の小径な弁軸52aと、該弁軸52aの両端部に形成された同一大径の弁部52b及び摺動部52cと、前記弁部52bの先端面に突設された突部52dから構成されている。前記弁軸52aは、外周に環状溝52eが形成されて、弁体52全体が前記スプリング53のばね力によって図1に示すように最大右方向に付勢された位置で、前記環状溝52eを介して前記両油孔11a,12aを連通させるようになっている。また、前記弁部52bは、軸方向の長さが少なくとも前記進角側油孔12aの開口端を閉塞する長さに設定されている。 The valve body 52 has a small diameter valve shaft 52a at the center, a valve portion 52b and a sliding portion 52c of the same large diameter formed at both ends of the valve shaft 52a, and a tip end surface of the valve portion 52b. The projection 52d is formed. An annular groove 52e is formed on the outer periphery of the valve shaft 52a, and the entire valve body 52 is urged to the right by the spring force of the spring 53 as shown in FIG. The two oil holes 11a and 12a are in communication with each other. Further, the valve portion 52b is set such that its axial length at least closes the open end of the advance side oil hole 12a.
 前記スプリング53は、一端部が中空な前記摺動部52cの底面に弾接している一方、他端部が前記フロントプレート13の内面に弾接して、前記弁体52全体を図1中の右方向に付勢している。 The spring 53 has one end resiliently in contact with the bottom surface of the hollow sliding portion 52c, while the other end resiliently contacts the inner surface of the front plate 13 so that the entire valve body 52 can be seen in FIG. It is biased in the direction.
 前記油通路孔54は、前記突部52dの先端面である受圧面52f側に配置されていると共に、後述する電磁切換弁60のロック連通孔78に連通するように形成されている。そして、前記ロック連通孔78を介して供給された油圧を前記受圧面52fに作用させることで、図1の一点鎖線で示すように、前記弁体52を左方向に押圧して、前記環状溝52eを介しての前記両油孔11a,12aの連通を遮断するようになっている。 The oil passage hole 54 is disposed on the side of the pressure receiving surface 52f, which is the tip end surface of the projection 52d, and is formed to communicate with a lock communication hole 78 of the electromagnetic switching valve 60 described later. Then, the hydraulic pressure supplied through the lock communication hole 78 acts on the pressure receiving surface 52f, thereby pressing the valve body 52 in the left direction as shown by a dashed dotted line in FIG. Communication between the two oil holes 11a and 12a through 52e is shut off.
 前記油圧回路5は、図1に示すように、前記各遅角油圧室11や各進角油圧室12及び各第1~第3解除用受圧室30~32に対する作動油の給排を切り換える油圧制御弁である単一の電磁切換弁60と、オイルパン44から吸入した作動油を前記電磁切換弁60に供給する供給通路41と、前記各遅角油圧室11や各進角油圧室12及び各第1~第3解除用受圧室30~32から前記電磁切換弁60を介して排出された作動油を前記オイルパン44に戻す第1,第2ドレン通路42,43と、を備えている。 As shown in FIG. 1, the hydraulic circuit 5 is a hydraulic pressure that switches the supply and discharge of hydraulic fluid to the retarding hydraulic chambers 11, the advancing hydraulic chambers 12, and the first to third pressure receiving chambers 30 to 32, as shown in FIG. A single electromagnetic switching valve 60 which is a control valve, a supply passage 41 for supplying hydraulic oil drawn from an oil pan 44 to the electromagnetic switching valve 60, the retarding hydraulic chambers 11 and the advancing hydraulic chambers 12 and The first and second drain passages 42 and 43 for returning the hydraulic oil discharged from the first to third release pressure receiving chambers 30 to 32 through the electromagnetic switching valve 60 to the oil pan 44 .
 前記供給通路41は、流路の途中にオイルポンプ45が設けられていると共に、このオイルポンプ45よりも上流側が吸入通路41aとして形成されている一方、前記オイルポンプ45よりも下流側が吐出通路41bとして形成されている。 The supply passage 41 is provided with an oil pump 45 in the middle of the flow passage, and an upstream side of the oil pump 45 is formed as a suction passage 41a, and a downstream side of the oil pump 45 is a discharge passage 41b. It is formed as.
 前記第1ドレン通路42は、その一端部が、前記カムシャフト2の径方向に沿って形成されたドレン孔42aを介して前記電磁切換弁60の後述するスリーブ62のドレン連通孔79(図11参照)に接続されている一方、他端部が前記オイルパン44に接続されている。 One end of the first drain passage 42 is a drain communication hole 79 of a sleeve 62 (described later) of the electromagnetic switching valve 60 via a drain hole 42a formed along the radial direction of the camshaft 2 (FIG. 11). While the other end is connected to the oil pan 44.
 前記第2ドレン通路43は、その一端部が、前記電磁切換弁60の後述する第1スプール弁65のドレン孔90(図11参照)に接続されている一方、他端部が前記オイルパン44に接続されている。 One end of the second drain passage 43 is connected to a drain hole 90 (see FIG. 11) of the first spool valve 65 described later of the electromagnetic switching valve 60, and the other end is the oil pan 44. It is connected to the.
 前記オイルポンプ45は、機関のクランクシャフトによって回転駆動するトロコイドポンプなどの一般的なものであって、アウター、インナーロータの回転によって前記オイルパン44内から前記吸入通路41aを介して吸入された作動油が前記吐出通路41bを介して吐出されて、その一部がメインオイルギャラリーM/Gから内燃機関の各摺動部などに供給されると共に、他が前記電磁切換弁60側に供給されるようになっている。なお、前記吐出通路41bの下流側には、該吐出通路41bから吐出された過剰な作動油を、環流通路46を介して前記吸入通路41aに戻して適正な流量に制御する流量制御弁47と、作動油内の異物を捕集して濾過する濾過フィルタ48とが設けられている。 The oil pump 45 is a general one such as a trochoid pump rotationally driven by a crankshaft of an engine, and is operated by being sucked from the inside of the oil pan 44 through the suction passage 41a by rotation of the outer and inner rotors. Oil is discharged through the discharge passage 41b, and a part of the oil is supplied from the main oil gallery M / G to each sliding portion of the internal combustion engine, and the other is supplied to the electromagnetic switching valve 60 side. It is supposed to be. A flow control valve 47 is provided downstream of the discharge passage 41b for returning the excess hydraulic oil discharged from the discharge passage 41b to the suction passage 41a via a reflux passage 46 and controlling the flow to an appropriate flow rate. And a filtration filter 48 for collecting and filtering foreign matter in the hydraulic oil.
 前記電磁切換弁60は、図1及び図11に示すように、6ポート7位置の比例型弁であって、ほぼ円筒状のバルブボディ61と、該バルブボディ61の外周面に固定された円筒状のスリーブ62と、前記バルブボディ61内に軸方向へ摺動可能に設けられた第2スプール弁63と、前記バルブボディ61の内部一端側に設けられて、前記第2スプール弁63を図1中の左方向へ付勢する第2バルブスプリング64と、前記第2スプール弁63内に軸方向へ摺動可能に設けられた第1スプール弁65と、前記第2スプール弁63の内部一端側に設けられて、前記第1スプール弁65を図1中の左方向へ付勢する第1バルブスプリング66と、前記バルブボディ61の他端側に配置されて、運転状態等に応じて前記第1,第2スプール弁63,65を前記第1,第2バルブスプリング64,66のばね力に抗して図1中の右方向へ移動させるアクチュエータである電磁ソレノイド67と、から主として構成されている。 The electromagnetic switching valve 60 is, as shown in FIGS. 1 and 11, a 6-port, 7-position proportional valve including a substantially cylindrical valve body 61 and a cylinder fixed to the outer peripheral surface of the valve body 61. Sleeve 62, a second spool valve 63 axially slidably provided in the valve body 61, and an inner end of the valve body 61, the second spool valve 63 is shown in FIG. A second valve spring 64 biased leftward in 1; a first spool valve 65 slidably provided in the second spool valve 63 in the axial direction; and an inner end of the second spool valve 63 The first valve spring 66 is provided on the side to urge the first spool valve 65 in the left direction in FIG. 1 and the other end side of the valve body 61, and the first valve spring 66 is First and second spool valves 63, Wherein the 5 first, and the second solenoid 67 is an actuator that moves against the spring force of the valve spring 64, 66 to the right in FIG. 1, and is mainly comprised.
 前記バルブボディ61は、図11に示すように、鉄系金属材によって形成されて、前述のようにカムボルトとして機能し、他端部に設けられ、外周にスパナ等の締め付け治具が嵌合可能な六角部が形成された頭部61aと、該頭部61aの付け根部から軸方向へ延出し、先端部外周面に前記カムシャフト2の雌ねじ部6cに螺着する雄ねじ部61cが形成された円筒状の軸部61bと、から主として構成されている。 As shown in FIG. 11, the valve body 61 is formed of an iron-based metal material, functions as a cam bolt as described above, is provided at the other end, and a fastening jig such as a spanner can be fitted on the outer periphery A head portion 61a having a hexagonal portion is formed, and an externally threaded portion 61c axially extending from the base of the head portion 61a and screwed to the internally threaded portion 6c of the camshaft 2 is formed on the outer peripheral surface of the tip portion. And a cylindrical shaft portion 61b.
 また、前記バルブボディ61のほぼ軸心位置には、前記軸部61bの先端面側から前記頭部61a側に向かって穴部68が穿設されている。この穴部68は、段差径状に形成され、前記軸部61b側の開口端から内部軸方向のほぼ1/3までの大径穴部68aと、該大径穴部68aに円環状の段差面68cを介して接続され、前記頭部61aの内部にまで延設された小径穴部68bと、から構成されている。 Further, a hole 68 is bored at a substantially axial position of the valve body 61 from the tip end surface side of the shaft 61b toward the head 61a. The hole 68 is formed in a step diameter shape, and a large diameter hole 68a from the opening end on the side of the shaft 61b to approximately 1/3 of the inner axial direction, and an annular step in the large diameter hole 68a. And a small diameter hole 68b connected to the surface 68c and extended to the inside of the head 61a.
 また、前記穴部68は、前記バルブボディ61の軸方向先端部側に有する開口端部が前記吐出通路41bの下流端に接続される導入ポート69として形成されている。この導入ポート69には、前記吐出通路41bから吐出された作動油が前記ボルト孔6の油圧導入室6dを介して導入されるようになっている。 Further, the hole 68 is formed as an introduction port 69 whose open end on the tip end side in the axial direction of the valve body 61 is connected to the downstream end of the discharge passage 41 b. The hydraulic fluid discharged from the discharge passage 41 b is introduced into the introduction port 69 via the hydraulic pressure introducing chamber 6 d of the bolt hole 6.
 さらに、前記穴部68は、内周面にカップ状のリテーナ70が前記段差面68cに当接した状態で圧入固定され、このリテーナ70によって、内部空間が、前記オイルポンプ45から作動油が直接的に導入される前記雄ねじ部61c側のチェック弁収容室71と、前記第2スプール弁63を収容保持する前記頭部61a側の第2スプール弁収容室72と、に隔成されている。 Further, the hole portion 68 is press-fitted and fixed to the inner circumferential surface in a state where the cup-shaped retainer 70 is in contact with the step surface 68c, and the working oil is directly supplied from the oil pump 45 to the internal space by the retainer 70. It is separated into a check valve chamber 71 on the side of the male screw portion 61c, which is introduced as described above, and a second spool valve chamber 72 on the side of the head 61a which houses and holds the second spool valve 63.
 前記チェック弁収容室71は、その周壁に、内部に導入した作動油を導出させる導出ポート73aが十字径方向に沿って4つ貫通形成されていると共に、該導出ポート73aよりも前記導入ポート69側の内周面に、前記オイルポンプ45から吐出された作動油の逆流を規制するチェック弁74が取り付け固定されている。 In the check valve storage chamber 71, four lead ports 73a for guiding the hydraulic oil introduced into the inside are formed in a penetrating manner along the cruciform radial direction in the peripheral wall, and the introduction port 69 is inserted from the lead port 73a. A check valve 74 for restricting the backflow of the hydraulic fluid discharged from the oil pump 45 is attached and fixed to the inner peripheral surface of the side.
 このチェック弁74は、有底円筒状のボディ部74aと、該ボディ部74aの内部に軸方向へ移動可能に収容されたボール弁体74bと、を備えている。 The check valve 74 includes a bottomed cylindrical body portion 74a and a ball valve body 74b axially movably accommodated in the body portion 74a.
 前記ボディ部74aは、先端側に前記バルブボディ61の導入ポート69と連通する開口孔74cが形成されている。 The body portion 74a is formed with an opening hole 74c communicating with the introduction port 69 of the valve body 61 on the tip end side.
 前記ボール弁体74bは、コイルばね74dによって前記開口孔74cの内端孔縁に着座して該開口孔74cを閉塞する方向に付勢されていると共に、前記導入ポート69に作用する所定以上の油圧によって前記コイルばね74dのばね力に抗して後退移動して、前記開口孔74cを開口するようになっている。この開口孔74cから前記ボディ部74a内部に導入された作動油は、該ボディ部74aに形成された油通路74eを介して前記導出ポート73a側に流動するようになっている。 The ball valve body 74b is biased by a coil spring 74d in a direction to be seated on the inner end hole edge of the opening hole 74c to close the opening hole 74c, and also acts on the introduction port 69 or more. It is moved backward against the spring force of the coil spring 74d by oil pressure to open the opening hole 74c. The hydraulic oil introduced into the body portion 74a from the opening hole 74c flows toward the outlet port 73a through an oil passage 74e formed in the body portion 74a.
 前記第2スプール弁収容室72は、周壁に前記雄ねじ部61c側から頭部61a側に向かって順次、ドレンポート21aと、ロックポート20aと、第1再導入ポート73bと、進角ポート19aと、第2再導入ポート73c及び遅角ポート18aが、それぞれ前記第2スプール弁収容室72の十字径方向に沿って貫通形成され、それぞれ4つずつ設けられている。 The second spool valve accommodating chamber 72 has a drain wall 21a, a lock port 20a, a first reintroduction port 73b, and an advance port 19a in the circumferential wall sequentially from the male screw portion 61c to the head 61a. The second reintroduction port 73c and the retardation port 18a are respectively formed in a penetrating manner along the cross radial direction of the second spool valve accommodating chamber 72, and four are provided.
 また、前記各導出ポート73aと各第1,第2再導入ポート73b,73cは、円周方向のほぼ同一の角度位置にそれぞれ形成されている一方、他のポート18a,19a,20a及び21aとは円周方向における角度位置が重合しないように設定されている。 Each of the outlet ports 73a and the first and second reintroduction ports 73b and 73c are formed at substantially the same angular position in the circumferential direction, while the other ports 18a, 19a, 20a and 21a and Is set so that the angular position in the circumferential direction does not overlap.
 また、前記穴部68の底壁には、該穴部68の小径穴部68bの内径よりも小径な貫通孔68dが軸方向に沿って貫通形成されている。 Further, on the bottom wall of the hole 68, a through hole 68d having a diameter smaller than the inner diameter of the small diameter hole 68b of the hole 68 is formed to penetrate in the axial direction.
 前記スリーブ62は、合成樹脂材によって形成されていると共に、径方向から半割状に二分割形成されて、この両分割部を径方向から突き合わせて例えば溶着法によって接合することで円筒状一体に形成されている。 The sleeve 62 is formed of a synthetic resin material, and is divided into two in the radial direction, and the two divided portions are radially butted and joined by, for example, a welding method to form a cylindrical integral. It is formed.
 また、前記スリーブ62は、内径が前記バルブボディ61の軸部61bの外径とほぼ同一に形成され、内周面が前記軸部61bの外周面に外方から被嵌状態に固定されている。さらに、このスリーブ62は、内周面の前記電磁ソレノイド67側の端部に円柱状の位置決め突部62aが突設されており、この位置決め突部62aを、前記軸部61bの頭部61a近傍の外周面に穿設された位置決め穴61dと嵌合させることで、前記バルブボディ61に対する円周方向及び軸方向の位置決めがされるようになっている。 The inner diameter of the sleeve 62 is substantially the same as the outer diameter of the shaft portion 61b of the valve body 61, and the inner peripheral surface is fixed to the outer peripheral surface of the shaft portion 61b from the outside. . Further, in the sleeve 62, a cylindrical positioning protrusion 62a protrudes from an end of the inner peripheral surface on the side of the electromagnetic solenoid 67, and the positioning protrusion 62a is used in the vicinity of the head 61a of the shaft 61b. The valve body 61 can be positioned in the circumferential direction and the axial direction by fitting it with a positioning hole 61 d drilled on the outer peripheral surface of the valve body 61.
 また、前記スリーブ62は、内周面に前記各導出ポート73aにそれぞれ連通する4つの連通溝75が軸方向に沿って形成されている。 Further, in the sleeve 62, four communicating grooves 75 respectively communicating with the respective outlet ports 73a are formed on the inner peripheral surface along the axial direction.
 前記各連通溝75は、その内周面と前記バルブボディ61の軸部61bの外周面との間に連通路を構成し、前記雄ねじ部61c側の一端部が前記各導出ポート73aとそれぞれ重合している一方、他端部が前記各第1,第2再導入ポート73b,73cと連通する位置まで延設されている。これにより、前記各導出ポート73aが、前記各連通溝75を介して前記各第1,第2再導入ポート73b,73cとそれぞれ常時連通されるようになっている。 Each of the communication grooves 75 constitutes a communication passage between the inner peripheral surface thereof and the outer peripheral surface of the shaft portion 61b of the valve body 61, and one end portion on the male screw portion 61c overlaps with each of the outlet ports 73a. On the other hand, the other end is extended to a position where it communicates with the first and second reintroduction ports 73b and 73c. Thus, the outlet ports 73a are always in communication with the first and second reintroduction ports 73b and 73c through the communication grooves 75, respectively.
 また、前記スリーブ62の周壁には、前記各遅角側油孔11aと各遅角ポート18aとを連通させる遅角連通孔76と、前記各進角側油孔12aと各進角ポート19aとを連通させる進角連通孔77と、前記各分岐通路30a,31a,32aと各ロックポート20aとを連通させるロック連通孔78と、前記各ドレン孔42aと各ドレンポート21aとを連通させるドレン連通孔79と、が形成されている。 Further, in the peripheral wall of the sleeve 62, a retard communication hole 76 for communicating the respective retard side oil holes 11a with the respective retard ports 18a, the respective advance side oil holes 12a, the respective advance ports 19a, and the like. , The lock communication hole 78 for communicating the branch passages 30a, 31a and 32a with the lock port 20a, and the drain communication for communicating the drain hole 42a with the drain port 21a. Holes 79 are formed.
 前記各連通孔76~79は、それぞれ軸心位置が対応する各ポート18a,19a,20a及び21aの軸心位置に対して軸方向にオフセット(偏倚)した状態に設けられていると共に、それぞれ前記スリーブ62内周側に軸方向へ沿って延びる軸方向溝を有している。前記各連通孔76~79は、これら各軸方向溝を介して前記各ポート18a,19a,20a及び21aにそれぞれ連通している。また、前記各ドレン連通孔79のスリーブ62外周側の部位には、円環状のグルーブ溝79aが形成されている。 The communication holes 76 to 79 are axially offset (biased) with respect to the axial positions of the corresponding ports 18a, 19a, 20a and 21a, respectively. The sleeve 62 has an axial groove extending in the axial direction on the inner peripheral side of the sleeve 62. The communication holes 76 to 79 respectively communicate with the ports 18a, 19a, 20a and 21a via the axial grooves. Further, an annular groove groove 79a is formed at a portion on the outer peripheral side of the sleeve 62 of each of the drain communication holes 79.
 前記第2スプール弁63は、前記リテーナ70側の一端部63aが開口した有底中空状に形成されていると共に、その内部空間が前記第1スプール弁65を軸方向へ移動可能に収容保持する第1スプール弁収容室80として構成されている。 The second spool valve 63 is formed in a bottomed hollow shape with one end 63a on the retainer 70 side open, and the internal space thereof accommodates and holds the first spool valve 65 so as to be movable in the axial direction. It is configured as a first spool valve storage chamber 80.
 また、前記第2スプール弁63は、他端部63b側の底壁に円柱状の摺動用孔63cが貫通形成されていると共に、該摺動用孔63cの内部に前記第1スプール弁65が摺動可能に挿通されている。 In the second spool valve 63, a cylindrical sliding hole 63c is formed through the bottom wall on the other end 63b side, and the first spool valve 65 is slid in the sliding hole 63c. It is inserted in a movable manner.
 さらに、この第2スプール弁63は、一端部63aの開口部の内周面に形成された環状溝の内周面に被嵌された蓋部材81により前記開口部が閉止されている。 Furthermore, in the second spool valve 63, the opening is closed by a lid member 81 fitted on the inner peripheral surface of an annular groove formed on the inner peripheral surface of the opening of the one end portion 63a.
 この蓋部材81は、金属材により形成されて、有底円筒状の蓋本体81aと、該蓋本体81aの開口端縁から外径方向に突出形成されて前記環状溝に嵌着されたフランジ部81bと、を備えている。 The lid member 81 is formed of a metal material, and has a bottomed cylindrical lid main body 81a, and a flange portion which is formed so as to protrude radially outward from the opening end edge of the lid main body 81a and is fitted in the annular groove And 81b.
 前記蓋部材81は、前記蓋本体81aの内部に前記第1バルブスプリング66を収容保持すると共に、前記フランジ部81bの内端縁に前記第1スプール弁65の一端部の端面が当接可能となっている。 The lid member 81 accommodates and holds the first valve spring 66 inside the lid main body 81a, and the end face of one end of the first spool valve 65 can be in contact with the inner end edge of the flange portion 81b. It has become.
 また、前記フランジ部81bの外端縁は、前記第2バルブスプリング64の一端を弾接保持するようになっている。 In addition, the outer end edge of the flange portion 81 b elastically holds one end of the second valve spring 64.
 さらに、前記蓋本体81aの底壁には、軸方向に沿って円柱状の貫通孔81cが貫通形成されており、この貫通孔81cが前記第1ドレン通路42の一部を構成している。 Furthermore, in the bottom wall of the lid main body 81a, a cylindrical through hole 81c is formed in a penetrating manner along the axial direction, and the through hole 81c constitutes a part of the first drain passage 42.
 前記第2バルブスプリング64は、一端が前記フランジ部81bの外端面に軸方向から弾接している一方、他端が前記リテーナ70の内底面に軸方向から弾接して、前記第2スプール弁63を前記電磁ソレノイド67側に常時付勢している。 One end of the second valve spring 64 elastically contacts the outer end surface of the flange portion 81 b in the axial direction, and the other end elastically contacts the inner bottom surface of the retainer 70 in the axial direction. Is always urged toward the electromagnetic solenoid 67 side.
 また、前記第2スプール弁63は、他端部63b側の外周面に該第2スプール弁63を前記第2スプール弁収容室72の内周面に摺動案内する円筒状のガイド部82が形成されていると共に、該ガイド部82よりも一端部63a側の外周面に8つの第1~第8ランド部83a~83hが軸方向へ所定間隔をもって設けられている。 In the second spool valve 63, a cylindrical guide portion 82 slidingly guiding the second spool valve 63 to the inner circumferential surface of the second spool valve chamber 72 is provided on the outer circumferential surface on the other end 63b side. While being formed, eight first to eighth land portions 83a to 83h are provided at predetermined intervals in the axial direction on the outer peripheral surface closer to the one end portion 63a than the guide portion 82.
 前記各ランド部83a~83hは、それぞれ外周面が前記第2スプール弁収容室72の内周面に微小な隙間をもって摺接しつつ、軸方向の移動が案内されるようになっている。 The land portions 83a to 83h are guided in axial movement while the outer peripheral surface thereof is in sliding contact with the inner peripheral surface of the second spool valve accommodating chamber 72 with a minute gap.
 前記第1ランド部83aとこれに隣接する第2ランド部83bとの間の外周面に、前記ロックポート20aと常時連通しつつ、前記ドレンポート21aと適宜連通する第1グルーブ溝84aが形成されている。 On the outer peripheral surface between the first land portion 83a and the second land portion 83b adjacent thereto, there is formed a first groove groove 84a which appropriately communicates with the drain port 21a while always communicating with the lock port 20a. ing.
 また、前記第2ランド部83bとこれに隣接する第3ランド部83cとの間の外周面に、前記第1再導入ポート73bと適宜連通する第2グルーブ溝84bが形成されている。さらに、前記第3ランド部83cとこれに隣接する第4ランド部83dとの間の外周面に、前記進角ポート19aと適宜連通する第3グルーブ溝84cが形成されている。 Further, a second groove groove 84b appropriately communicated with the first reintroduction port 73b is formed on the outer peripheral surface between the second land portion 83b and the third land portion 83c adjacent to the second land portion 83b. Further, a third groove 84c is formed on the outer peripheral surface between the third land portion 83c and the fourth land portion 83d adjacent to the third land portion 83c. The third groove 84c appropriately communicates with the advance port 19a.
 また、前記第4ランド部83dとこれに隣接する第5ランド部83eとの間の外周面に、前記進角ポート19aと常時連通する第4グルーブ溝84dが形成されている。さらに、前記第5ランド部83eとこれに隣接する第6ランド部83fとの間の外周面に、前記進角ポート19a及び第2再導入ポート73cと適宜連通する第5グルーブ溝84eが形成されている。 In addition, a fourth groove groove 84d always communicating with the advance port 19a is formed on the outer peripheral surface between the fourth land portion 83d and the fifth land portion 83e adjacent thereto. Further, a fifth groove groove 84e appropriately communicated with the advance port 19a and the second reintroduction port 73c is formed on the outer peripheral surface between the fifth land portion 83e and the sixth land portion 83f adjacent thereto. ing.
 また、前記第6ランド部83fとこれに隣接する第7ランド部83gとの間の外周面に、前記第2再導入ポート73c及び遅角ポート18aと適宜連通する第6グルーブ溝84fが形成されている。さらに、前記第7ランド部83gとこれに隣接する第8ランド部83hとの間の外周面に、前記遅角ポート18aと常時連通する第7グルーブ溝84gが形成されている。 Further, on the outer peripheral surface between the sixth land portion 83f and the seventh land portion 83g adjacent thereto, there is formed a sixth groove groove 84f which appropriately communicates with the second reintroduction port 73c and the retardation port 18a. ing. Further, a seventh groove 84g always communicating with the retardation port 18a is formed on the outer peripheral surface between the seventh land 83g and the eighth land 83h adjacent thereto.
 また、前記第8ランド部83hとこれに隣接する前記ガイド部82との間の外周面に、前記遅角ポート18aと適宜連通する第8グルーブ溝84hが形成されている。 Further, an eighth groove groove 84h appropriately communicating with the retardation port 18a is formed on an outer peripheral surface between the eighth land portion 83h and the guide portion 82 adjacent thereto.
 前記第1~第8グルーブ溝84a~84hは、これらの各底壁の軸方向及び円周方向の所定位置に、前記第1スプール弁収容室80と常時連通する第1~第8連通孔85a~85hが径方向に沿ってそれぞれ貫通形成されている。 The first to eighth groove grooves 84a to 84h are first to eighth communication holes 85a constantly communicating with the first spool valve accommodating chamber 80 at predetermined positions in the axial direction and circumferential direction of the respective bottom walls. The through holes 85 h are formed to penetrate in the radial direction.
 前記第1スプール弁65は、ほぼ円筒状に形成されて、前記リテーナ70側の一端部65aから他端部65b側の大部分が前記第1スプール弁収容室80内に収容されている一方、他端部65bが前記バルブボディ61の貫通孔68d及び前記第2スプール弁63の摺動用孔63cを介して前記バルブボディ61の外方へ突出している。 The first spool valve 65 is formed in a substantially cylindrical shape, and most of the side from the one end 65 a to the other end 65 b on the side of the retainer 70 is accommodated in the first spool valve accommodation chamber 80, The other end 65 b protrudes outward of the valve body 61 through the through hole 68 d of the valve body 61 and the sliding hole 63 c of the second spool valve 63.
 また、前記第1スプール弁65は、その内部空間が作動油を通流させる油通路として構成されていると共に、該油通路の軸方向の中間位置に作動油の通流を遮断する隔壁部86が一体に形成されている。この隔壁部86によって、前記油通路は、その内部空間が他端部65b側の第1油通路穴87と、一端部65a側の第2油通路穴88とに隔成されている。なお、この隔壁部86は、前記第1スプール弁65を両端側からドリル等によって穴開け加工をした際の残余部を利用して形成されたものである。 Further, the first spool valve 65 is configured as an oil passage through which the working oil flows, and the partition portion 86 for blocking the flow of the working oil at an axial intermediate position of the oil passage. Are integrally formed. The oil passage is separated by the partition 86 into a first oil passage hole 87 on the other end 65b side and a second oil passage hole 88 on the one end 65a side. In addition, this partition part 86 is formed using the remaining part at the time of carrying out drilling processing of the said 1st spool valve 65 by a drill etc. from both ends.
 前記第1油通路穴87は、その開口端がボール状の盲栓89によって閉止されていると共に、該開口端近傍の周壁に上下一対のドレン孔90が径方向に沿って貫通形成されている。このドレン孔90は、第2ドレン通路43を介して前記オイルパン44に連通している。これにより、前記第1油通路穴87内に流入した作動油は、前記両ドレン孔90及び第2ドレン通路43を介して前記オイルパン44へ常時還流されるようになっている。 The opening end of the first oil passage hole 87 is closed by a ball-shaped blind plug 89, and a pair of upper and lower drain holes 90 are formed penetrating in the radial direction in the peripheral wall near the opening end. . The drain hole 90 communicates with the oil pan 44 via the second drain passage 43. As a result, the hydraulic oil flowing into the first oil passage hole 87 is always returned to the oil pan 44 via the two drain holes 90 and the second drain passage 43.
 前記第2油通路穴88は、開口部の内周面に環状溝が形成されていると共に、この環状溝の内周面に被嵌された円盤状の栓体91により前記開口部が閉止されている。 The second oil passage hole 88 has an annular groove formed on the inner peripheral surface of the opening, and the opening is closed by a disc-like plug 91 fitted on the inner peripheral surface of the annular groove. ing.
 前記第1バルブスプリング66は、一端が前記栓体91のリテーナ70側の端面に軸方向から弾接している一方、他端が第2スプール弁63の蓋部材81の内底面に軸方向から弾接して、前記第1スプール弁65を前記電磁ソレノイド67側に常時付勢している。 One end of the first valve spring 66 is in elastic contact with the end face of the plug body 91 on the side of the retainer 70 in the axial direction, and the other end is elastic against the inner bottom face of the lid member 81 of the second spool valve 63 from the axial direction. At the same time, the first spool valve 65 is always urged toward the electromagnetic solenoid 67 side.
 また、前記第2油通路穴88の内部には、前記各ロックポート20aから前記各解除用受圧室30~32へ供給した作動油が第1再導入ポート73bに逆流するのを抑制する逆止弁92が収容されている。 In addition, a non-return that prevents the hydraulic oil supplied from the lock port 20a to the release pressure receiving chambers 30 to 32 from flowing back to the first reintroduction port 73b inside the second oil passage hole 88. A valve 92 is housed.
 この逆止弁92は、前記第2油通路穴88の内周面に圧入され、ほぼ軸心位置に開口孔93aが貫通形成された円環状のバルブシート93と、前記第2油通路穴88のバルブシート93よりも開口部側に設けられ、該バルブシート93の開口孔93aの孔縁に離着座自在に設けられた金属製のボール弁体94と、該ボール弁体94を前記バルブシート93側へ常時付勢するコイルばね95と、を備えている。 The check valve 92 is press-fit into the inner peripheral surface of the second oil passage hole 88, and an annular valve seat 93 having an opening hole 93a formed substantially at the axial center position, and the second oil passage hole 88 A metal ball valve body 94 provided on the opening side of the valve seat 93 of the valve seat 93 so as to be able to be seated on the hole edge of the opening hole 93a of the valve seat 93; And a coil spring 95 always biased toward the side 93.
 前記逆止弁92は、前記第1再導入ポート73bから前記第2油通路穴88内に作動油が導入されない場合に、前記コイルばね95によって前記開口孔93aの孔縁に着座して該開口孔93aを閉塞することで、前記ロックポート20aからの作動油の逆流を抑制するようになっている。一方、作動油が導入された場合には、この作動油の油圧によって前記ボール弁体94を前記コイルばね95のばね力に抗して後退移動させることで、前記ロックポート20aへ作動油を導出するようになっている。 When the hydraulic oil is not introduced into the second oil passage hole 88 from the first reintroduction port 73b, the check valve 92 is seated on the hole edge of the opening hole 93a by the coil spring 95 to open the opening. By closing the hole 93a, a backflow of hydraulic oil from the lock port 20a is suppressed. On the other hand, when the hydraulic oil is introduced, the hydraulic pressure of the hydraulic oil is drawn back against the spring force of the coil spring 95 by the hydraulic pressure of the hydraulic oil to lead the hydraulic oil to the lock port 20a. It is supposed to
 また、前記第1スプール弁65は、他端部65b側の外周面に該第1スプール弁65を前記第1スプール弁収容室80の内周面に摺動案内する円筒状のガイド部96が形成されていると共に、該ガイド部96よりも一端側の外周面に7つの第9~第15ランド部97a~97gが軸方向へ所定間隔をもって一体に形成されている。 Further, the first spool valve 65 has a cylindrical guide portion 96 slidingly guiding the first spool valve 65 to the inner peripheral surface of the first spool valve storage chamber 80 on the outer peripheral surface on the other end 65b side. As well as being formed, seven ninth to fifteenth land portions 97a to 97g are integrally formed on the outer peripheral surface on one end side with respect to the guide portion 96 at predetermined intervals in the axial direction.
 前記各ランド部97a~97gは、それぞれ外周面が前記第1スプール弁収容室80の内周面に微小な隙間をもって摺接され、軸方向の移動が案内されるようになっている。 The lands 97a to 97g have their outer peripheral surfaces in sliding contact with the inner peripheral surface of the first spool valve accommodating chamber 80 with a minute gap, and are guided in axial movement.
 前記第9ランド部97aよりも一端側の外周面に、前記第2スプール弁63の第1連通孔85aに適宜連通する第9グルーブ溝98aが形成されている。 A ninth groove 98a is formed on the outer peripheral surface on one end side of the ninth land 97a so as to appropriately communicate with the first communication hole 85a of the second spool valve 63.
 また、前記第9ランド部97aとこれに隣接する第10ランド部97bとの間の外周面に、前記第1連通孔85aに適宜連通する第10グルーブ溝98bが形成されている。さらに、前記第10ランド部97bとこれに隣接する第11ランド部97cとの間の外周面に、前記第2連通孔85bに常時連通する第11グルーブ溝98cが形成されている。 Further, a tenth groove groove 98b appropriately communicated with the first communication hole 85a is formed on the outer peripheral surface between the ninth land portion 97a and the tenth land portion 97b adjacent thereto. Further, an eleventh groove groove 98c always communicating with the second communication hole 85b is formed on the outer peripheral surface between the tenth land portion 97b and the eleventh land portion 97c adjacent thereto.
 また、前記第11ランド部97cとこれに隣接する第12ランド部97dとの間の外周面に、前記第2スプール弁63の第3連通孔85cに適宜連通する第12グルーブ溝98dが形成されている。さらに、前記第12ランド部97dとこれに隣接する第13ランド部97eとの間の外周面に、前記第4,第5連通孔85d,85eに適宜連通する第13グルーブ溝98eが形成されている。 Further, a twelfth groove groove 98d appropriately communicated with the third communication hole 85c of the second spool valve 63 is formed on the outer peripheral surface between the eleventh land portion 97c and the twelfth land portion 97d adjacent thereto. ing. Further, on the outer peripheral surface between the twelfth land portion 97d and the thirteenth land portion 97e adjacent thereto, a thirteenth groove groove 98e appropriately communicated with the fourth and fifth communication holes 85d and 85e is formed. There is.
 また、前記第13ランド部97eとこれに隣接する第14ランド部97fとの間の外周面に、前記第5,第6連通孔85e,85fに適宜連通する第14グルーブ溝98fが形成されている。さらに、前記第14ランド部97fとこれに隣接する第15ランド部97gとの間の外周面に、前記第7連通孔85gに適宜連通する第15グルーブ溝98gが形成されている。 Further, a fourteenth groove groove 98f appropriately communicated with the fifth and sixth communication holes 85e and 85f is formed on an outer peripheral surface between the thirteenth land portion 97e and a fourteenth land portion 97f adjacent thereto. There is. Further, a fifteenth groove groove 98g appropriately communicated with the seventh communication hole 85g is formed on an outer peripheral surface between the fourteenth land portion 97f and a fifteenth land portion 97g adjacent thereto.
 また、前記第15ランド部97gとこれに隣接するガイド部96との間の外周面に、前記第8連通孔85hに常時連通する第16グルーブ溝98hが形成されている。 A sixteenth groove groove 98h always communicating with the eighth communication hole 85h is formed on the outer peripheral surface between the fifteenth land portion 97g and the guide portion 96 adjacent thereto.
 前記第10,第11グルーブ溝98b,98cは、各底壁の軸方向及び円周方向の所定位置に、前記第2油通路穴88と常時連通する第9,第10連通孔99a,99bが径方向に沿ってそれぞれ貫通形成されている。このうち、前記第9連通孔99aは、前記第2油通路穴88のバルブシート93よりも開口部側に連通する一方、前記第10連通孔99bは、前記第2油通路穴88のバルブシート93よりも隔壁部側に連通するように形成位置が設定されている。 In the tenth and eleventh groove grooves 98b and 98c, ninth and tenth communication holes 99a and 99b constantly communicating with the second oil passage hole 88 at predetermined positions in the axial direction and circumferential direction of each bottom wall. It penetrates along the radial direction, respectively. Among them, the ninth communication hole 99 a communicates with the opening side of the second oil passage hole 88 relative to the valve seat 93, and the tenth communication hole 99 b communicates with the valve seat of the second oil passage hole 88. The formation position is set to communicate with the partition wall side more than 93.
 また、前記第12,第15,第16グルーブ溝98d,98g,98hは、各底壁の軸方向及び円周方向の所定位置に、前記第1油通路穴87と常時連通する第11~第13連通孔99c~99eが十字径方向に沿ってそれぞれ貫通形成されている。 The twelfth, fifteenth, and sixteenth groove grooves 98d, 98g, and 98h communicate with the first oil passage hole 87 at predetermined positions in the axial direction and circumferential direction of each bottom wall. 13 communication holes 99c to 99e are respectively formed penetrating along the cross radial direction.
 前記電磁ソレノイド67は、図1に示すように、図外のチェーンカバーにボルト等を介して前記バルブボディ61と同軸上に配置固定された円筒状のソレノイドケーシング101と、該ソレノイドケーシング101の内部に収容保持されて、前記バルブボディ61と同軸となるように取り付けられ、後述する電子コントローラ107から制御電流が出力される電磁コイル102と、該電磁コイル102の内周側に固定された有底円筒状の固定ヨーク103と、該固定ヨーク103の内部に軸方向へ摺動可能に設けられた可動プランジャ104と、該可動プランジャ104の先端部に一体に形成されて、先端部105aが前記第2バルブスプリング64のばね力、または前記第1,第2バルブスプリング64,66のばね力に抗して前記第1スプール弁65の盲栓89を図1中の右方向へ押圧する駆動ロッド105と、から主として構成されている。 The electromagnetic solenoid 67 is, as shown in FIG. 1, a cylindrical solenoid casing 101 coaxially arranged and fixed to the valve body 61 via a bolt or the like on a chain cover (not shown), and the inside of the solenoid casing 101. And an electromagnetic coil 102 to which a control current is output from an electronic controller 107 described later, and a bottomed end fixed to the inner peripheral side of the electromagnetic coil 102. A cylindrical fixed yoke 103, a movable plunger 104 axially slidably provided inside the fixed yoke 103, and a distal end portion of the movable plunger 104 are integrally formed, and the distal end portion 105a is The first biasing force against the spring force of the two-valve spring 64 or the spring force of the first and second valve springs 64 and 66 A drive rod 105 for pressing the blind plug 89 pools valve 65 to the right in FIG. 1, and is mainly comprised.
 前記ソレノイドケーシング101は、後端側に前記電子コントローラ107に電気的に接続される端子106aを有する合成樹脂製のコネクタ106が設けられている。 The solenoid casing 101 is provided with a synthetic resin connector 106 having a terminal 106 a electrically connected to the electronic controller 107 at the rear end side.
 前記電子コントローラ107は、内部のコンピュータが図外のクランク角センサ(機関回転数検出)やエアーフローメータ、機関水温センサ、機関温度センサ、スロットルバルブ開度センサ及びカムシャフト2の現在の回転位相を検出するカム角センサなどの各種センサ類からの情報信号を入力して現在の機関運転状態を検出すると共に、前述したように、前記電磁切換弁60の電磁コイル102に制御パルス電流を出力して前記第1,第2スプール弁63,65の移動位置を制御し、前記各ポートを選択的に切換制御するようになっている。
〔スプール弁のポジション制御〕
 以下において、図18に示す第1スプール弁65のストローク量と各油圧室11,12や、前記第1~第3解除用受圧室30~32への作動油の給排の関係を示す表を参照しながら、図11~図17に基づいて前記第1,第2スプール弁63,65のポジション制御を具体的に説明する。
In the electronic controller 107, the internal computer uses the current rotational phase of a crank angle sensor (engine speed detection), an air flow meter, an engine water temperature sensor, an engine temperature sensor, a throttle valve opening sensor, and a camshaft 2 not shown. An information signal from various sensors such as a cam angle sensor to be detected is input to detect the current engine operating condition, and as described above, a control pulse current is output to the electromagnetic coil 102 of the electromagnetic switching valve 60. The movement positions of the first and second spool valves 63 and 65 are controlled to selectively switch the ports.
[Position control of spool valve]
In the following, a table showing the relationship between the stroke amount of the first spool valve 65 shown in FIG. 18 and the supply and discharge of hydraulic oil to the respective hydraulic pressure chambers 11, 12 and the first through third pressure receiving chambers 30 through 32 will be described. The position control of the first and second spool valves 63 and 65 will be specifically described with reference to FIGS.
 まず、前記電子コントローラ107から前記電磁ソレノイド67に通電されておらず、前記第1,第2スプール弁63,65が、図11に示すように、前記第1,第2バルブスプリング64,66のばね力によってそれぞれ最大左方向に位置している場合、すなわち、前記第2スプール弁63の他端面が前記第2スプール弁収容室72の他端面に当接していると共に、前記第1スプール弁65の他端面が前記第1スプール弁収容室80の他端面と当接している場合(第1ポジション)は、前記遅角ポート18aが前記各ドレン孔90に前記第7グルーブ溝84g、第7連通孔85g、第15グルーブ溝98g、第12連通孔99d及び第1油通路穴87を介して連通されていると共に、前記ロックポート20aがドレンポート21aに前記第1グルーブ溝84a、第1連通孔85a、第9グルーブ溝98a、第1スプール弁収容室80、前記蓋部材81の貫通孔81c及び第2スプール弁収容室72を介して連通されている。 First, the electromagnetic solenoid 67 is not energized from the electronic controller 107, and the first and second spool valves 63 and 65 are configured of the first and second valve springs 64 and 66 as shown in FIG. When the second spool valve 63 is positioned in the maximum left direction by the spring force, that is, the other end surface of the second spool valve 63 is in contact with the other end surface of the second spool valve accommodating chamber 72 and the first spool valve 65 When the other end face is in contact with the other end face of the first spool valve storage chamber 80 (first position), the retardation port 18a is connected to the drain hole 90 for the seventh groove groove 84g and the seventh communication The lock port 20a is connected to the drain port 21a through the hole 85g, the fifteenth groove groove 98g, the twelfth communication hole 99d, and the first oil passage hole 87. The groove groove 84a, the first communication hole 85a, the ninth groove groove 98a, the first spool valve storage chamber 80, the through hole 81c of the lid member 81, and the second spool valve storage chamber 72 communicate with each other.
 このとき、前記進角ポート19aは、前記第4連通孔85dが前記第12ランド部97dによって閉止されることで、いずれのポートとも連通されないようになっている。 At this time, the advance port 19a is configured not to communicate with any port by closing the fourth communication hole 85d by the twelfth land portion 97d.
 したがって、前記第1ポジジョンでは、図18に示すように、前記遅角油圧室11内の作動油が、前記遅角油通路11aから前記電磁切換弁60の遅角ポート18aに流入した後、前記各ドレン孔90から前記第2ドレン通路43を介して前記オイルパン44に排出されると共に、前記第1~第3解除用受圧室30~32内の作動油が、それぞれ前記第1~第3分岐通路30a,30b,30cから前記ロックポート20aに流入した後、前記ドレンポート21aから前記第1ドレン通路42を介して同じく前記オイルパン44に排出される。 Therefore, in the first position, as shown in FIG. 18, after the hydraulic oil in the retardation hydraulic chamber 11 flows from the retardation oil passage 11a into the retardation port 18a of the electromagnetic switching valve 60, The hydraulic oil is discharged from the drain holes 90 to the oil pan 44 through the second drain passage 43, and the hydraulic oil in the first to third pressure receiving chambers 30 to 32 for release is the first to third, respectively. After flowing into the lock port 20a from the branch passages 30a, 30b, 30c, the oil is discharged from the drain port 21a to the oil pan 44 via the first drain passage 42 as well.
 一方、前記進角油圧室12の作動油は、前述した進角ポート19aの閉止に伴い前記進角油圧室12内に保持された状態になる。 On the other hand, the hydraulic oil in the advance hydraulic chamber 12 is held in the advance hydraulic chamber 12 as the advance port 19a is closed.
 ただし、この第1ポジションにおいては、図1の実線で示すように、前記各通路制御機構50への油圧の供給が停止されていることから、前記遅角油圧室11と進角油圧室12が前記各環状溝52e(各連通用孔51)を介して連通状態となっている。このため、前記進角油圧室12の作動油も、実際には前記遅角油圧室11内へ流入した後、該遅角油圧室11内の作動油と同様の経路を通じて前記オイルパン44へ排出されるようになっている。 However, at this first position, as shown by the solid line in FIG. 1, since the supply of hydraulic pressure to each of the passage control mechanisms 50 is stopped, the retard hydraulic chamber 11 and the advance hydraulic chamber 12 A communication state is established through the annular grooves 52e (the communication holes 51). For this reason, after the hydraulic oil of the advance hydraulic chamber 12 also flows into the retard hydraulic chamber 11 in practice, it is discharged to the oil pan 44 through the same path as the hydraulic oil in the retard hydraulic chamber 11. It is supposed to be
 次に、前記第1スプール弁65が、図12に示すように、前記電子コントローラ107から前記電磁ソレノイド67への通電により、前記第1バルブスプリング66のばね力に抗して僅かに右方向へ移動して、前記第1スプール弁収容室80の一端面にも他端面にも当接していない場合(第2ポジション)は、前記ロックポート20aとドレンポート21aとの連通が維持されると共に、前記遅角ポート18aが前記ドレン孔90との連通を遮断される一方、前記第2再導入ポート73cに対して前記第5グルーブ溝84e、第5連通孔85e、第14グルーブ溝98f、第6連通孔85f及び第6グルーブ溝84fを介して連通される。これと同時に、前記進角ポート19aも、前記第2再導入ポート73cに対して前記第5グルーブ溝84e、第5連通孔85e、第13グルーブ溝98e、第4連通孔85d及び第4グルーブ溝84dを介して連通される。 Next, as shown in FIG. 12, when the first spool valve 65 is energized from the electronic controller 107 to the electromagnetic solenoid 67, it slightly resists the spring force of the first valve spring 66 and moves to the right. When it moves and is not in contact with one end surface or the other end surface of the first spool valve storage chamber 80 (second position), the communication between the lock port 20a and the drain port 21a is maintained, The retardation port 18a is interrupted in communication with the drain hole 90, and the fifth groove groove 84e, the fifth communication hole 85e, the fourteenth groove groove 98f, and the sixth with respect to the second reintroduction port 73c. Communication is made via the communication hole 85 f and the sixth groove groove 84 f. At the same time, the advance port 19a also has the fifth groove groove 84e, the fifth communication hole 85e, the thirteenth groove groove 98e, the fourth communication hole 85d, and the fourth groove groove with respect to the second reintroduction port 73c. Communication is made via 84d.
 したがって、第2ポジションでは、図18に示すように、前記第1~第3解除用受圧室30~32の作動油の排出状態が維持される一方、前記オイルポンプ45から吐出された作動油が、前記吐出通路41b及び油圧導入室6dを介して前記電磁切換弁60の導入ポート69に導入された後、前記第2再導入ポート73cからそれぞれ前記遅角、進角ポート18a,19aを介して前記遅角、進角油圧室11,12に供給される。 Therefore, at the second position, as shown in FIG. 18, the discharge state of the hydraulic oil of the first to third pressure receiving chambers 30 to 32 is maintained, while the hydraulic oil discharged from the oil pump 45 is After being introduced to the introduction port 69 of the electromagnetic switching valve 60 through the discharge passage 41b and the hydraulic pressure introduction chamber 6d, the second re-introduction port 73c is connected to the retarding and advancing ports 18a and 19a, respectively. The retard and advance hydraulic pressure chambers 11, 12 are supplied.
 前記第1スプール弁65が、図13に示すように、前記電磁ソレノイド67への大きな通電により、さらに僅かに右方向へ移動して、前記第1スプール弁収容室80の一端面に当接した場合(第3ポジション)は、前記第2再導入ポート73cに対する前記遅角、進角ポート18a,19aの連通が維持されると共に、前記ロックポート20aが、前記ドレンポート21aとの連通を遮断される一方、前記第1再導入ポート73bに対して前記第2グルーブ溝84b、第2連通孔85b、第11グルーブ溝98c、第10連通孔99b、第2油通路穴88、第1連通孔85a及び第1グルーブ溝84aを介して連通される。 The first spool valve 65 is further moved slightly to the right by large energization of the electromagnetic solenoid 67 as shown in FIG. 13 and abuts on one end surface of the first spool valve storage chamber 80. In the case (third position), the communication of the retardation and advance ports 18a and 19a with the second reintroduction port 73c is maintained, and the lock port 20a is shut off from the drain port 21a. The second groove groove 84b, the second communication hole 85b, the eleventh groove groove 98c, the tenth communication hole 99b, the second oil passage hole 88, and the first communication hole 85a with respect to the first reintroduction port 73b. And the first groove groove 84a.
 したがって、第3ポジションでは、図18に示すように、前記遅角、進角油圧室11,12への作動油の供給が維持されると共に、前記オイルポンプ45から吐出されて前記第1再導入ポート73bに流入した作動油が、前記ロックポート20aから前記第1~第3分岐通路30a,31a,32aを介して前記各解除用受圧室30~32に供給される。 Accordingly, at the third position, as shown in FIG. 18, the supply of hydraulic oil to the retarded and advancing hydraulic pressure chambers 11 and 12 is maintained, and the oil is discharged from the oil pump 45 and the first reintroduction is provided. The hydraulic oil having flowed into the port 73b is supplied from the lock port 20a to the release pressure receiving chambers 30 to 32 through the first to third branch passages 30a, 31a, 32a.
 前記第1スプール弁65が、図14に示すように、さらに僅かに右方向へ移動すると、前記第2スプール弁63も、前記第1スプール弁65に押圧されて前記第2バルブスプリング64のばね力に抗しつつ、右方向へ僅かに移動する。この場合(第4ポジション)は、前記遅角ポート18aと第2再導入ポート73cとの連通及び前記ロックポート20aと第1再導入ポート73bとの連通が維持されると共に、前記進角ポート19aが前記第2再導入ポート73cとの連通を遮断される一方、前記ドレン孔90に対して前記第3グルーブ溝84c、第3連通孔85c、第12グルーブ溝98d、第11連通孔99c及び第1油通路穴87を介して連通される。 When the first spool valve 65 moves slightly further to the right as shown in FIG. 14, the second spool valve 63 is also pressed by the first spool valve 65 and the spring of the second valve spring 64 Move slightly to the right while resisting the force. In this case (fourth position), the communication between the retardation port 18a and the second reintroduction port 73c and the communication between the lock port 20a and the first reintroduction port 73b are maintained, and the advance port 19a is maintained. Is blocked from communicating with the second reintroduction port 73c, while the third groove groove 84c, the third communication hole 85c, the twelfth groove groove 98d, the eleventh communication hole 99c, and the first drain hole 90 with respect to the drain hole 90. (1) It is communicated via an oil passage hole 87.
 したがって、第4ポジションでは、図18に示すように、前記遅角油圧室11及び各解除用受圧室30~32に対する作動油の供給状態が維持される一方、前記進角油圧室12内の作動油が、前記進角油通路12aから進角ポート19aに流入した後、前記各ドレン孔90から前記第2ドレン通路43を介して前記オイルパン44に排出される。 Therefore, in the fourth position, as shown in FIG. 18, the supply state of the hydraulic oil to the retardation hydraulic chamber 11 and the pressure receiving chambers for release 30 to 32 is maintained, while the operation in the advancing hydraulic chamber 12 is performed. After the oil flows from the advance oil passage 12a to the advance port 19a, the oil is discharged from the drain holes 90 to the oil pan 44 through the second drain passage 43.
 前記第1,第2スプール弁63,65が、図15に示すように、さらに僅かに右方向へ移動した場合(第5ポジション)は、前記ロックポート20aと第1再導入ポート73cとの連通が維持される一方、前記遅角ポート18aと第2再導入ポート73cとの連通及び前記進角ポート19aとドレン孔90との連通が前記第2スプール弁63及び第1スプール弁65の相対位置関係に応じて遮断され、前記遅角、進角ポート18a,19aがそれぞれ閉止された状態となっている。 When the first and second spool valves 63 and 65 move slightly to the right as shown in FIG. 15 (fifth position), communication between the lock port 20a and the first reintroduction port 73c is performed. The communication between the retarding port 18a and the second reintroduction port 73c and the communication between the advancing port 19a and the drain hole 90 are performed at the relative positions of the second spool valve 63 and the first spool valve 65. It is cut off according to the relationship, and the retardation and advance ports 18a and 19a are closed.
 したがって、第5ポジションでは、図18に示すように、前記各解除用受圧室30~32に対する作動油の供給状態が維持される一方、前記遅角、進角油圧室11,12内の作動油が、前述した遅角、進角ポート18a,19aの閉止に伴い、それぞれ両油圧室11,12の内部に保持された状態になる。 Therefore, at the fifth position, as shown in FIG. 18, the supply state of the hydraulic oil to the release pressure receiving chambers 30 to 32 is maintained, while the hydraulic oil in the retard and advance hydraulic chambers 11 and 12 is maintained. However, with the closing of the retarding and advancing ports 18a and 19a described above, the hydraulic pressure chambers 11 and 12 are held inside.
 前記第1,第2スプール弁63,65が、図16に示すように、さらに僅かに右方向へ移動した場合(第6ポジション)は、前記ロックポート20aと第1再導入ポート73cとの連通が維持される一方、前記遅角ポート18aが前記ドレン孔90に対して前記第8グルーブ溝84h、第8連通孔85h、第16グルーブ溝98h、第13連通孔99e及び第1油通路穴87を介して連通されている。また、前記進角ポート19aが前記第2再導入ポート73cに対して前記第5グルーブ溝84eを介して連通される。 When the first and second spool valves 63 and 65 move slightly further to the right as shown in FIG. 16 (sixth position), communication between the lock port 20a and the first reintroduction port 73c is performed. While the retard port 18a is in contact with the drain hole 90, the eighth groove groove 84h, the eighth communication hole 85h, the sixteenth groove groove 98h, the thirteenth communication hole 99e, and the first oil passage hole 87. It is connected via. Further, the advance port 19a is communicated with the second reintroduction port 73c through the fifth groove groove 84e.
 したがって、第6ポジションでは、図18に示すように、前記各解除用受圧室30~32に対する作動油の供給状態が維持されると共に、前記遅角油圧室11内の作動油が前記遅角油通路11aから遅角ポート18aに流入した後、前記各ドレン孔90から前記第2ドレン通路43を介して前記オイルパン44に排出される。一方、前記進角油圧室12には、前記オイルポンプ45から吐出された作動油が、前記吐出通路41b及び油圧導入室6dを介して前記電磁切換弁60の導入ポート69に導入された後、前記第2再導入ポート73cから前記進角ポート19aを介して前記進角油圧室12に供給される。 Accordingly, at the sixth position, as shown in FIG. 18, the supply state of the hydraulic oil to the release pressure receiving chambers 30 to 32 is maintained, and the hydraulic oil in the retard hydraulic chamber 11 is the retard oil. After flowing into the retardation port 18 a from the passage 11 a, the oil is discharged from the drain holes 90 to the oil pan 44 via the second drain passage 43. On the other hand, after the hydraulic oil discharged from the oil pump 45 is introduced into the advance hydraulic pressure chamber 12 via the discharge passage 41b and the hydraulic pressure introduction chamber 6d into the introduction port 69 of the electromagnetic switching valve 60, It is supplied to the advance hydraulic chamber 12 from the second reintroduction port 73 c via the advance port 19 a.
 また、前記第1,第2スプール弁63,65が、図17に示すように、前記電磁ソレノイド67への最大の通電量によって最大右方向へ移動した場合(第7ポジション)は、前記遅角ポート18aとドレン孔90との連通が維持される一方、前記進角ポート19aと第2再導入ポート73cとの連通が遮断される。また、前記ロックポート20aは、前記第1再導入ポート73bとの連通が遮断される一方、前記第1グルーブ溝84aを介してドレンポート21aに連通される。 In addition, when the first and second spool valves 63 and 65 move in the maximum right direction (the seventh position) by the maximum energization amount to the electromagnetic solenoid 67 as shown in FIG. While the communication between the port 18a and the drain hole 90 is maintained, the communication between the advance angle port 19a and the second reintroduction port 73c is blocked. The lock port 20a is disconnected from the first reintroduction port 73b, and is communicated with the drain port 21a through the first groove groove 84a.
 したがって、第7ポジションでは、図18に示すように、前記遅角油圧室11内の作動油及び前記各解除用受圧室30~32内の作動油がそれぞれ前記第1、第2ドレン通路42,43を介して前記オイルパン44に排出される一方、前記進角油圧室12の作動油が、前記進角油圧室12内に保持された状態になる。 Therefore, at the seventh position, as shown in FIG. 18, the hydraulic fluid in the retarding hydraulic pressure chamber 11 and the hydraulic fluid in each of the pressure receiving chambers 30 to 32 for release are respectively the first and second drain passages 42, While the oil is discharged to the oil pan 44 through 43, the hydraulic oil of the advance hydraulic chamber 12 is held in the advance hydraulic chamber 12.
 すなわち、作動油の通流する経路は異なるものの、連通状態は前述した第1ポジションと同様のものとなる。 That is, although the path through which the hydraulic oil flows is different, the communication state is the same as the first position described above.
 なお、前記進角油圧室12内の作動油が前記各前記各通路制御機構50の各環状溝52e(各連通用孔51)を介して前記遅角油圧室11と連通している点も第1ポジションと同様となっている。このため、前記進角油圧室12の作動油も、第1ポジションの場合と同じく、前記遅角油圧室11の作動油と同様の経路を通じて前記オイルパン44へ排出されるようになっている。 The hydraulic oil in the advance hydraulic chamber 12 communicates with the retard hydraulic chamber 11 through the annular grooves 52e (the communication holes 51) of the passage control mechanism 50. It is the same as 1 position. Therefore, the hydraulic oil of the advance hydraulic chamber 12 is also discharged to the oil pan 44 through the same path as the hydraulic oil of the retard hydraulic chamber 11 as in the case of the first position.
 このように、機関運転状態に応じて、前記第1,第2スプール弁63,65の軸方向の移動位置を変更することによって、各ポートを選択的に切り換えて前記スプロケット1に対する前記ベーンロータ9の相対回転角度を変化させると共に、前記各ロックピン27~29のロック穴24~26へのロック及びロック解除を選択的に行って、前記ベーンロータ9の自由な回転を許容及び規制するようになっている。 As described above, each port is selectively switched by changing the axial movement position of the first and second spool valves 63 and 65 in accordance with the engine operating condition, and the vane rotor 9 with respect to the sprocket 1 is The relative rotation angle is changed, and the locking and unlocking of the lock pins 27 to 29 to the lock holes 24 to 26 is selectively performed to allow and restrict free rotation of the vane rotor 9. There is.
 〔本実施形態の作動〕
 以下、本実施形態のバルブタイミング制御装置の具体的な作動を説明する。
[Operation of this embodiment]
Hereinafter, the specific operation of the valve timing control device of the present embodiment will be described.
 まず、車両の通常走行後にイグニッションスイッチをオフ操作して機関を停止させた場合には、前記オイルポンプ45の駆動も停止されることから、前記各油圧室11,12や各解除用受圧室30~32への作動油の供給が停止される。 First, when the engine is stopped by turning off the ignition switch after the vehicle normally travels, the driving of the oil pump 45 is also stopped. Supply of hydraulic fluid to 32 to 32 is stopped.
 この機関停止前のアイドリング回転時において、前記各遅角油圧室11に作動油圧が供給されて、前記ベーンロータ9が進角側の回転位置になっている状態でイグニッションスイッチがオフ操作されると、機関の停止直前に前記カムシャフト2に作用する正負の交番トルクが発生する。特に、負のトルクによって前記ベーンロータ9が遅角側から進角側へ回転して中間位相位置になると、前記各ロックピン27~29が、図10に示すように、各スプリング36~38のばね力でそれぞれ進出移動して各先端部27a,28a及び29aが対応する前記ロック穴24~26に係合する。これによって、前記ベーンロータ9は、図3に示す最進角と最遅角の間の中間位相位置に保持されることとなる。 When the working oil pressure is supplied to the respective retarding oil pressure chambers 11 and the vane rotor 9 is at the advancing side rotation position during idling rotation before the engine stop, if the ignition switch is turned off, A positive and negative alternating torque acting on the camshaft 2 is generated immediately before the engine stops. In particular, when the vane rotor 9 is rotated from the retard side to the advance side by the negative torque to be in the intermediate phase position, as shown in FIG. 10, the respective lock pins 27 to 29 are springs of the respective springs 36 to 38. The distal end portions 27a, 28a and 29a engage with the corresponding lock holes 24 to 26, respectively. Thus, the vane rotor 9 is held at an intermediate phase position between the most advanced angle and the most retarded angle shown in FIG.
 すなわち、図5に位置する前記ベーンロータ9が、前記カムシャフト2に作用する負の交番トルクによって僅かに進角側(図5中矢印方向)に回転すると、この時点で、前記電磁切換弁60へのパルス電流の出力が停止されて、前記各解除用受圧室30~32への油圧の供給が停止される。 That is, when the vane rotor 9 located in FIG. 5 slightly rotates on the advance side (in the direction of the arrow in FIG. 5) by the negative alternating torque acting on the camshaft 2, at this time, The output of the pulse current is stopped, and the supply of the hydraulic pressure to each of the release pressure receiving chambers 30 to 32 is stopped.
 したがって、図5に示すように、前記第1,第2ロックピン27,28の各先端部27a,28aが前記第1,第2スプリング36,37の付勢力で前記スプロケット内側面1dに弾接した状態で進角側へ摺動すると共に、前記第3ロックピン29の先端部29aが、図6に示すように、前記第3スプリング38の付勢力によって前記第3ロック穴26の第1底面26aに係合当接する。ここで、前記ベーンロータ9に正の交番トルクが作用して遅角側へ回転しようとするが、前記第3ロックピン29の先端部29aの側縁が前記第1底面26aの立ち上がり段差面に当接して遅角側(図6中矢印方向)への回転が規制される。 Therefore, as shown in FIG. 5, the tip portions 27a and 28a of the first and second lock pins 27 and 28 resiliently contact the inner surface 1d of the sprocket by the biasing force of the first and second springs 36 and 37. The distal end portion 29a of the third lock pin 29 slides on the advance side in the above state, and the first bottom surface of the third lock hole 26 is moved by the biasing force of the third spring 38, as shown in FIG. Engage and abut on 26a. Here, although positive alternating torque acts on the vane rotor 9 and tries to rotate to the retard side, the side edge of the tip portion 29a of the third lock pin 29 contacts the rising step surface of the first bottom surface 26a. The rotation to the retard side (in the direction of the arrow in FIG. 6) is restricted.
 その後、負のトルクにしたがって前記ベーンロータ9が進角側へ回転するに伴い前記第3ロックピン29が、図7に示すように、順次階段を下りるように移動して第2底面26bに係合当接する共に、第2底面26b上を進角方向へラチェット作用を受けながら中間位置まで移動する。 After that, as the vane rotor 9 rotates to the advance side according to the negative torque, the third lock pin 29 moves to move down the stairs sequentially and engages with the second bottom surface 26b as shown in FIG. It abuts, and moves to the intermediate position on the second bottom surface 26b while receiving a ratcheting action in the advancing direction.
 そうすると、今度は前記第2ロックピン28の先端部28aが、前記第2スプリング37の付勢力によって、図8に示すように、前記第2ロック穴25の第1底面25aに当接係合する。その後、前記ベーンロータ9がさらに進角側へ回転すると、図9に示すように、前記第3ロックピン29が内側縁26c近傍に移動すると共に、前記第2ロックピン28が第2ロック穴25の第2底面25bにラチェット作用を受けながら当接係合する。 Then, the tip end portion 28a of the second lock pin 28 abuts and engages with the first bottom surface 25a of the second lock hole 25 by the biasing force of the second spring 37, as shown in FIG. . Thereafter, when the vane rotor 9 further rotates to the advancing side, the third lock pin 29 moves to the vicinity of the inner edge 26c and the second lock pin 28 of the second lock hole 25 as shown in FIG. The second bottom surface 25b is in contact and engaged while receiving a ratcheting action.
 さらに、前記ベーンロータ9が負のトルクによってさらに進角側へ移動すると、図10に示すように、前記第2,第3ロックピン28,29の同方向への移動に伴って前記第1ロックピン27が第1ロック穴24に係入すると共に、前述したように、該第1ロックピン27と第2ロックピン28によって前記各ロック穴24,25の対向内側縁24b、25cの間を挟持するように配置される。これによって、前記ベーンロータ9は、図3に示すように、最遅角と最進角の中間位置に安定かつ確実に保持される。 Further, when the vane rotor 9 is further advanced to the advancing side by the negative torque, as shown in FIG. 10, the first lock pin is moved with the movement of the second and third lock pins 28 and 29 in the same direction. 27 is engaged with the first lock hole 24 and held between the opposed inner edges 24b, 25c of the respective lock holes 24, 25 by the first lock pin 27 and the second lock pin 28 as described above. Arranged as. As a result, as shown in FIG. 3, the vane rotor 9 is stably and reliably held at an intermediate position between the most retarded angle and the most advanced angle.
 また、車両の通常走行後にイグニッションスイッチをオフ操作して機関を停止させた場合には、前記電磁切換弁60への通電も遮断されることから、前記第1,第2スプール弁63,65は、図11で示すように、前記第1,第2バルブスプリング64,66のばね力で前述した第1ポジションに保持される。これによって、前記遅角ポート18aと前記第2ドレン通路43が連通されると共に、前記ロックポート20aと第1ドレン通路42が連通され、前記遅角油圧室11及び前記各解除用受圧室30~32内の作動油が、それぞれ前記各ドレン通路42,43を介して前記オイルパン44へ排出されることとなる。 Also, when the engine is stopped by turning off the ignition switch after the vehicle normally travels, the energization of the electromagnetic switching valve 60 is also cut off, so the first and second spool valves 63 and 65 As shown in FIG. 11, the spring force of the first and second valve springs 64 and 66 holds the first position described above. As a result, the retarding port 18a and the second drain passage 43 are communicated with each other, and the lock port 20a and the first drain passage 42 are communicated with each other, so that the retarding hydraulic pressure chamber 11 and the pressure receiving chambers 30 to 30 The hydraulic oil in 32 is discharged to the oil pan 44 through the drain passages 42 and 43, respectively.
 このとき、前記進角ポート19aは、図18にも示すように閉止された状態となっているが、前記進角油圧室12内の作動油も、前記遅角油圧室11と同様に前記各通路制御機構50を介して前記オイルパン44へ排出されるようになっている。 At this time, although the advance port 19a is in the closed state as shown in FIG. 18, the hydraulic oil in the advance hydraulic chamber 12 is also the same as the retard hydraulic chamber 11 as in the retard hydraulic chamber 11. It is discharged to the oil pan 44 via the passage control mechanism 50.
 すなわち、前記電磁切換弁60に通電されていない状態では、前記ロックポート20aから前記各通路制御機構50への油圧の供給も停止していることから、前記各弁体52が、図1の実線で示すように、前記各スプリング53のばね力によって右方向へ移動している。このため、前記各通路制御機構50側では、前記各環状溝52e(各連通用孔51)を介して前記遅角側油孔11aと進角側油孔12aとがそれぞれ連通状態になる。 That is, since the supply of the hydraulic pressure from the lock port 20a to each passage control mechanism 50 is also stopped in a state where the electromagnetic switching valve 60 is not energized, each valve body 52 is a solid line in FIG. As shown in FIG. 5, the spring force of each spring 53 causes the head to move to the right. Therefore, on the side of each passage control mechanism 50, the retard side oil hole 11a and the advance side oil hole 12a are in communication with each other through the annular grooves 52e (the communication holes 51).
 したがって、前記各進角油圧室12内の作動油を、各進角側油孔12aと前記各環状溝52eを介して前記各遅角側油孔11aに置換流動させて、ここから前記第2ドレン通路43へ導出させることが可能になる。これにより、前記ベーンロータ9が前記各油圧室11,12の油圧の影響を受けることなく回転移動できることから、ばたつき量が大きくなって前述のラチェット作用を十分に発揮させることができる。 Therefore, the hydraulic oil in each advance angle hydraulic chamber 12 is made to flow in substitution to the respective retard side oil holes 11a via the respective advance angle oil holes 12a and the respective annular grooves 52e, and from here the second It is possible to lead to the drain passage 43. As a result, the vane rotor 9 can be rotationally moved without being affected by the hydraulic pressure of each of the hydraulic pressure chambers 11, 12, so that the amount of fluttering can be increased and the aforementioned ratcheting action can be sufficiently exhibited.
 その後、機関を始動するために、イグニッションスイッチをオン操作すると、その直後の初爆(クランキング開始)によって前記オイルポンプ45が駆動するものの、このオイルポンプ45による吐出油圧が不安定なアイドリング運転時には、前記電磁切換弁60への通電は行われずに前記第1,第2スプール弁63,65の第1ポジションが維持される。 Thereafter, when the ignition switch is turned on to start the engine, the oil pump 45 is driven by the first explosion (cranking start) immediately thereafter, but the oil pressure discharged by the oil pump 45 is unstable during idling operation The first position of the first and second spool valves 63 and 65 is maintained without energization of the electromagnetic switching valve 60.
 続いて、例えば機関低回転低負荷域や高回転高負荷域に移行する前には、前記電子コントローラ107から前記電磁切換弁60に制御電流が出力されて、前記第1スプール弁65が、図12に示すように、前記第1バルブスプリング66のばね力に抗して僅かに他方向へ移動する(第2ポジション)。これによって、前記遅角、進角油圧室11,12に作動油(油圧)が供給されて、前記各ロックピン27~29と各ロック穴24~26とのロック状態を解除するための準備が完了する。 Subsequently, for example, before shifting to the engine low rotation low load region or the high rotation high load region, a control current is outputted from the electronic controller 107 to the electromagnetic switching valve 60, and the first spool valve 65 As shown in FIG. 12, it moves slightly in the other direction against the spring force of the first valve spring 66 (second position). As a result, hydraulic oil (hydraulic pressure) is supplied to the retarding and advancing hydraulic chambers 11 and 12 and preparation for releasing the lock state between the lock pins 27 to 29 and the lock holes 24 to 26 is made. Complete.
 続いて、例えば機関低回転低負荷域や高回転高負荷域に移行する直前には、前記電磁切換弁60にさらに大きな制御電流が出力されて、前記第1スプール弁65が、図13に示すように、前記第1バルブスプリング66のばね力に抗してさらに右側に移動する(第3ポジション)。そうすると、前記第1~第3解除用受圧室30~32に作動油(油圧)が供給されるので、前記各ロックピン27~29は、前記各スプリング36~38のばね力に抗して後退移動して前記先端部27a~29aが前記各ロック穴24~26から抜け出す。これによって、それぞれの係合が解除され、前記ベーンロータ9の自由な正逆回転が許容される。 Subsequently, for example, immediately before the transition to the low engine speed low load area or the high engine speed high load area, a larger control current is output to the electromagnetic switching valve 60, and the first spool valve 65 is shown in FIG. Thus, it moves further to the right against the spring force of the first valve spring 66 (third position). Then, since the hydraulic oil (hydraulic pressure) is supplied to the first to third pressure receiving chambers 30 to 32 for release, the lock pins 27 to 29 are retracted against the spring force of the springs 36 to 38. The distal end portions 27a-29a move out of the lock holes 24-26. By this, the respective engagements are released, and free and reverse rotation of the vane rotor 9 is permitted.
 このとき、第2ポジションにおいて前記両油圧室11,12内に油圧を供給して解除準備を行ったことで、前記各ロックピン27~29の各ロック穴24~26への食い込み現象やばたつき等を抑制することができる。 At this time, since the hydraulic pressure is supplied to both the hydraulic pressure chambers 11 and 12 at the second position to prepare for release, the biting phenomenon to the lock holes 24 to 26 of the lock pins 27 to 29, the flapping, etc. Can be suppressed.
 その後、例えば機関低回転低負荷域に移行した場合は、前記電磁切換弁60にさらに大きな制御電流が出力されて、図14に示すように、前記第1スプール弁65が、前記第1バルブスプリング66のばね力に抗してさらに右側に移動すると共に、前記第1スプール弁65の一端部に押圧されることによって、前記第2スプール弁63が前記第2バルブスプリング64のばね力に抗して僅かに右側に移動する(第4ポジション)。これによって、前記各ロックピン27~29は、前記各ロック穴24~26から抜け出た状態が維持される。また、前記ベーンロータ9は、前記各進角油圧室12が油圧の排出に伴い低圧になる一方、前記各遅角油圧室11が相対的に高圧となることから、前記ハウジング7に対して最遅角側に回転する。したがって、前記カムシャフト2は、図2の矢印で示すように、前記スプロケット1に対して最遅角の相対回転位相に変換される。 Thereafter, for example, in the case of transition to a low engine speed low load region, a larger control current is output to the electromagnetic switching valve 60, and as shown in FIG. 14, the first spool valve 65 is the first valve spring. The second spool valve 63 resists the spring force of the second valve spring 64 by being moved further to the right against the spring force of 66 and being pressed by one end of the first spool valve 65. Move slightly to the right (fourth position). As a result, the lock pins 27-29 are maintained in the state of being pulled out of the lock holes 24-26. Further, the vane rotor 9 has a low pressure as the advance hydraulic chambers 12 are discharged as the hydraulic pressure is discharged, while the retard hydraulic chambers 11 become relatively high pressure. Rotate to the corner side. Therefore, the camshaft 2 is converted into a relative rotational phase of the most retarded angle with respect to the sprocket 1 as shown by the arrow in FIG.
 よって、吸気弁と排気弁のバルブオーバーラップが小さくなって筒内の残留ガスが減少して燃焼効率が向上し、機関回転の安定化と燃費の向上が図れる。 Therefore, the valve overlap between the intake valve and the exhaust valve is reduced, the residual gas in the cylinder is reduced, the combustion efficiency is improved, and the engine rotation can be stabilized and the fuel consumption can be improved.
 その後、例えば機関高回転高負荷域に移行した場合は、前記電磁切換弁60にさらに大きな制御電流が供給されて、図16に示すように、前記第1,第2スプール弁63,65が大きく右方向へ移動する(第6ポジション)。これによって、前記各ロックピン27~29の係合が解除された状態になっていると共に、前記遅角油圧室11が低圧になる一方、前記進角油圧室12が高圧になる。このため、前記ベーンロータ9は、前記ハウジング7に対して最進角側に回転する。したがって、前記カムシャフト2は、図4の矢印で示すように、前記スプロケット1に対して最進角の相対回転位相に変換される。 After that, for example, in the case of transition to the high engine speed high load region, a larger control current is supplied to the electromagnetic switching valve 60, and the first and second spool valves 63 and 65 become large as shown in FIG. Move to the right (6th position). As a result, the engagement between the lock pins 27 to 29 is released, and the retard hydraulic chamber 11 has a low pressure, while the advance hydraulic chamber 12 has a high pressure. Therefore, the vane rotor 9 rotates to the most advanced side with respect to the housing 7. Therefore, the camshaft 2 is converted to the relative rotational phase of the most advanced angle with respect to the sprocket 1 as shown by the arrow in FIG.
 よって、吸気弁と排気弁のバルブオーバーラップが大きくなって、吸気充填効率が高くなって機関の出力トルクの向上が図れる。 Therefore, the valve overlap between the intake valve and the exhaust valve is increased, the intake charging efficiency is increased, and the output torque of the engine can be improved.
 また、前記ロックポート20aに吐出通路41bから油圧が供給されている状態では、前記各通路制御機構50の各弁体52の弁部52bの受圧面52fにも油圧が作用して、前記各弁体52が、図1の一点鎖線で示すように、前記各スプリング53のばね力に抗して左方向に移動する。このため、前記弁部52bが、前記進角側油孔12aを閉止して前記遅角側油孔11aとの連通を遮断する。したがって、前記遅角油圧室11と進角油圧室12との間の作動油の置換流動はない。このため、前記各油圧室11,12のいずれか一方への油圧によって前記ベーンロータ9は速やかに遅角側あるいは進角側へ相対回転する。 Further, in a state where the oil pressure is supplied to the lock port 20a from the discharge passage 41b, the oil pressure acts on the pressure receiving surface 52f of the valve portion 52b of each valve body 52 of each passage control mechanism 50, The body 52 moves leftward against the spring force of each of the springs 53, as indicated by the one-dot chain line in FIG. Therefore, the valve portion 52b closes the advance side oil hole 12a to shut off the communication with the retard side oil hole 11a. Therefore, there is no substitution flow of hydraulic fluid between the retardation hydraulic chamber 11 and the advance hydraulic chamber 12. For this reason, the vane rotor 9 is relatively rotated to the retard side or the advance side promptly by the hydraulic pressure to one of the hydraulic chambers 11 and 12.
 また、前記機関低回転低負荷域や高回転高負荷域からアイドリング運転に移行した場合は、前記電子コントローラ107から前記電磁切換弁60への制御電流の通電が遮断されて、前記第1,第2スプール弁63,65が、前記第1,第2バルブスプリング64,66のばね力によってそれぞれ最大左方向に移動して前述した第1ポジションに制御される。 Further, when transitioning to idling from the low engine speed low load area or the high engine speed high load area, the control current from the electronic controller 107 to the electromagnetic switching valve 60 is de-energized, and the first, the first and the second The two spool valves 63 and 65 are respectively moved in the maximum left direction by the spring force of the first and second valve springs 64 and 66 and controlled to the first position described above.
 このため、前記ベーンロータ9は、たとえ遅角側位置にあった場合でも、前述したように、カムシャフト2に作用する前記交番トルクによって進角側に回転する。これによって、前記各ロックピン27~29が、前記各スプリング36~38のばね力で進出移動して、前述したラチェット作用を得ながら前記各ロック穴24~26に係合する。このため、前記ベーンロータ9は、図3に示す最進角と最遅角の間の中間位相位置にロック保持される。 Therefore, even when the vane rotor 9 is at the retarded position, the vane rotor 9 rotates to the advancing side by the alternating torque acting on the camshaft 2 as described above. As a result, the lock pins 27 to 29 move forward by the spring force of the springs 36 to 38 and engage with the lock holes 24 to 26 while obtaining the above-mentioned ratchet action. Therefore, the vane rotor 9 is locked at an intermediate phase position between the most advanced angle and the most retarded angle shown in FIG.
 また、機関を停止した際も、前述したように、イグニッションスイッチをオフ操作すると、前記各ロックピン27~29は前記各ロック穴24~26から抜け出すことなく係合状態を維持する。 Further, even when the engine is stopped, as described above, when the ignition switch is turned off, the lock pins 27 to 29 maintain the engaged state without coming out of the lock holes 24 to 26.
 さらに、所定の運転域が継続されている場合は、前記電磁切換弁60に通電されて、図15に示すように、前記第1,第2スプール弁63,65が前記第4ポジションと第6ポジションの間の軸方向位置にそれぞれ移動する(第5ポジション)。これによって、前記各遅角油圧室11と各進角油圧室12の内部にそれぞれ作動油が保持された状態になると共に、前記各ロックピン27~29が、前記各ロック穴24~26から抜け出たロック解除状態に維持される。 Furthermore, when the predetermined operation range is continued, the electromagnetic switching valve 60 is energized, and as shown in FIG. 15, the first and second spool valves 63 and 65 are in the fourth position and the sixth position. Move to the axial position between the positions (5th position). As a result, the hydraulic oil is held in the retarding hydraulic chambers 11 and the advancing hydraulic chambers 12, respectively, and the lock pins 27 to 29 are disengaged from the lock holes 24 to 26, respectively. It is maintained in the unlocked state.
 したがって、前記ベーンロータ9が所望の回転位置に保持されて、前記カムシャフト2も前記ハウジング7に対して所望の相対回転位置に保持されることから、吸気弁が所定のバルブタイミングに保持される。 Therefore, since the vane rotor 9 is held at a desired rotational position and the camshaft 2 is also held at a desired relative rotational position with respect to the housing 7, the intake valve is held at a predetermined valve timing.
 このように、機関の運転状態に応じて、前記電子コントローラ107が前記電磁切換弁60に所定の通電量で通電、あるいは通電を遮断して前記各スプール弁63,65の軸方向の移動を制御して、前記所定のポジション位置に制御する。これによって、前記位相変更機構と3とロック機構4を制御して前記スプロケット1に対する前記カムシャフト2の最適な相対回転位置に制御することから、バルブタイミングの制御精度の向上を図ることができる。 Thus, according to the operating state of the engine, the electronic controller 107 controls the movement of the respective spool valves 63 and 65 in the axial direction by deenergizing or de-energizing the electromagnetic switching valve 60 with a predetermined amount of energization. Control to the predetermined position position. As a result, since the phase change mechanism, 3 and the lock mechanism 4 are controlled to control to the optimum relative rotational position of the camshaft 2 with respect to the sprocket 1, the control accuracy of the valve timing can be improved.
 さらに、前記電子コントローラ107に通電された電磁切換弁60の前記第1,第2スプール弁63,65が軸方向への移動中に、作動油に混入した金属粉等のコンタミが前記各ランド部と各ポートの孔縁との間などに噛み込まれてロックし、流路の切り換えができなくなった場合には、以下の作動を行う。 Furthermore, while the first and second spool valves 63 and 65 of the electromagnetic switching valve 60 energized in the electronic controller 107 are moved in the axial direction, contamination such as metal powder mixed in the hydraulic oil is the lands. If it is locked by locking between the port and the hole edge of each port, etc. and the flow path can not be switched, the following operation is performed.
 すなわち、前記第1,第2スプール弁63,65の移動不能状態によって、前記ベーンロータ9の回転位相制御ができなくなると、この異常状態を前記カムシャフト2の回転位置から検出した前記電子コントローラ107が、前記電磁切換弁60の電磁ソレノイド67に最大の通電量の制御電流を出力する。 That is, when the rotation phase control of the vane rotor 9 can not be performed due to the immovable state of the first and second spool valves 63 and 65, the electronic controller 107 detects this abnormal state from the rotational position of the camshaft 2. The control current of the maximum energization amount is output to the electromagnetic solenoid 67 of the electromagnetic switching valve 60.
 そうすると、前記第1,第2スプール弁63,65は、図17に示すように、強い押圧力によって前記コンタミを切断するか、あるいは噛み込みを開放させつつ、右方向の最大位置に移動する(第7ポジション)。これにより、前記第1,第2スプール弁63,65の移動不能状態を強制的に解除することができる。 Then, as shown in FIG. 17, the first and second spool valves 63 and 65 cut the contamination with a strong pressing force or move to the maximum position in the right direction while releasing the biting ( 7th position). Thus, the immovable state of the first and second spool valves 63 and 65 can be forcibly released.
 そして、本実施形態では、前記各油圧室11,12の油圧制御用と前記各解除用受圧室30~32の油圧制御用の2つの機能を単一の電磁切換弁60によって行うようにした。 Further, in the present embodiment, the two functions of the hydraulic pressure control of the hydraulic pressure chambers 11 and 12 and the hydraulic pressure control of the pressure release chambers 30 to 32 are performed by the single electromagnetic switching valve 60.
 すなわち、前記第2スプール弁63と第1スプール弁65とを同軸上に配置すると共に、前記第2スプール弁63を前記第1スプール弁65の軸方向移動位置に応じて連動して軸方向へ移動するようにしたことで、単一の前記電磁ソレノイド67によって前記両スプール弁63,65の軸方向位置を一括制御して、前記2つの機能が得られるようにした。 That is, the second spool valve 63 and the first spool valve 65 are coaxially arranged, and the second spool valve 63 is interlocked according to the axial movement position of the first spool valve 65 to move in the axial direction. By moving, the axial position of both the spool valves 63 and 65 is collectively controlled by the single electromagnetic solenoid 67 so that the two functions can be obtained.
 これにより、前記第1,第2スプール弁63,65の位置制御に際して別個の電磁ソレノイドを必要とする電磁切換弁と比べて装置の小型化を図ることができる。また、前記第1,第2スプール弁63,65を複数の電子コントローラの協働によって制御する必要もないことから、制御の簡易化を図ることも可能となる。 As a result, the device can be miniaturized as compared with an electromagnetic switching valve which requires separate electromagnetic solenoids for position control of the first and second spool valves 63 and 65. Further, since it is not necessary to control the first and second spool valves 63 and 65 by cooperation of a plurality of electronic controllers, it is possible to simplify the control.
 しかも、本実施形態では、前記第1スプール弁65を、前記第2スプール弁63の内側の第1スプール弁収容室80に収容配置したことから、前記両スプール弁63,65を直列的に配置した場合に比べて、前記電磁切換弁60の軸方向巾長さを短尺とすることができるため、バルブタイミング制御装置の軸方向の長さを短くでき、レイアウトの自由度が向上する。 Moreover, in the present embodiment, since the first spool valve 65 is accommodated and disposed in the first spool valve accommodating chamber 80 inside the second spool valve 63, both the spool valves 63 and 65 are disposed in series. Since the axial width of the electromagnetic switching valve 60 can be shortened compared to the case where the valve switching control valve 60 is used, the axial length of the valve timing control device can be shortened, and the freedom of layout is improved.
 また、前記第2スプール弁63の一端部(前記蓋部材81)と前記第1スプール弁65の一端側との当接のみによって前記第2スプール弁63の軸方向位置を制御できることから、前記電磁切換弁60の構造を簡素化できる。 Further, since the axial position of the second spool valve 63 can be controlled only by the contact between the one end portion (the lid member 81) of the second spool valve 63 and the one end side of the first spool valve 65, the electromagnetic The structure of the switching valve 60 can be simplified.
 また、前記第1スプール弁65の内部空間を軸方向に分割する前記隔壁部86を、前記第1スプール弁65と一体に形成したことから、部品点数の削減を図ることができる。さらに、本実施形態では、前記第1スプール弁65の穴開け加工時の残余部を前記隔壁部86として利用したことから、該隔壁部86を新たに加工する必要がないため、作業工程の簡素化を図ることができる。 In addition, since the partition wall 86 that divides the internal space of the first spool valve 65 in the axial direction is integrally formed with the first spool valve 65, the number of parts can be reduced. Furthermore, in the present embodiment, since the remaining portion of the first spool valve 65 at the time of drilling is used as the partition 86, there is no need to newly process the partition 86, so the work process is simplified. Can be implemented.
 さらに、前記第1スプール弁65の各ロックポート20aへの作動油の給排に供される第2油通路穴88に逆止弁92を設けたことから、前記各ロックポート20aに流入した作動油の前記各第2再導入ポート73c側への逆流を阻止できる。これにより、前記各解除用受圧室30~32内へ供給される油圧を高い状態に保つことができるため、ロック解除動作をより確実におこなうことができる。また、前記各ロックポート20aに導入される作動油の脈動が前記逆止弁92によって抑制されることから、前記脈動に伴う前記各ロックピン27~29の振動が低減されるため、該各ロックピン27~29の各ロック穴24~26への食い込み現象等を抑制することができる。
〔第2実施形態〕
 図19に示す本発明の第2実施形態は、基本構成は第1実施形態と同様であるが、前記第1スプール弁65を、前記隔壁部86の個所で軸方向へ2分割された有底円筒状の2つの第1スプール弁構成部65A,65Bによって構成したものである。すなわち、この実施形態における前記第1スプール弁65は、前記両第1スプール弁構成部65A,65Bのそれぞれ底壁86a,86bを軸方向から突き合わせて結合することにより一体化されている。尚、第1スプール弁構成部65Aと65Bは、一体化せずに底壁86aと86bとを当接させておくだけでも良い。
Furthermore, since the check valve 92 is provided in the second oil passage hole 88 used for supplying and discharging the hydraulic oil to each lock port 20a of the first spool valve 65, the operation that has flowed into each lock port 20a It is possible to prevent the backflow of oil to the second reintroduction port 73c. As a result, the hydraulic pressure supplied into the release pressure receiving chambers 30 to 32 can be kept high, so that the unlocking operation can be performed more reliably. Further, since the pulsation of the hydraulic oil introduced into each lock port 20a is suppressed by the check valve 92, the vibration of each lock pin 27 to 29 accompanying the pulsation is reduced, so that each lock The biting phenomenon and the like of the pins 27 to 29 into the lock holes 24 to 26 can be suppressed.
Second Embodiment
The basic configuration of the second embodiment of the present invention shown in FIG. 19 is the same as that of the first embodiment, but the first spool valve 65 is divided into two in the axial direction at the partition 86. It is comprised by two cylindrical 1st spool valve structure parts 65A and 65B. That is, the first spool valve 65 in this embodiment is integrated by axially butting the bottom walls 86a and 86b of the two first spool valve components 65A and 65B from each other. The first spool valve components 65A and 65B may be in contact with the bottom walls 86a and 86b without being integrated.
 したがって、この実施形態によっても、第1実施形態と同様の作用効果を得ることができる。 Therefore, also according to this embodiment, it is possible to obtain the same effects as those of the first embodiment.
 なお、この実施形態では、前記第1スプール弁構成部65A,65Bを、それぞれ有底円筒状のものとして説明したが、このうち一方は底壁を有さない円筒状であってもよい。この場合、前記隔壁部86は他方の底壁のみによって構成される。
〔第3実施形態〕
 図20に示す本発明の第3実施形態は、基本構成は第1実施形態と同様であるが、隔壁部を前記第1スプール弁65と別体に設けたものである。
In this embodiment, the first spool valve components 65A and 65B are described as being cylindrical with a bottom, but one of them may be cylindrical without a bottom wall. In this case, the partition 86 is constituted only by the other bottom wall.
Third Embodiment
The basic configuration of the third embodiment of the present invention shown in FIG. 20 is the same as that of the first embodiment, but a partition is provided separately from the first spool valve 65.
 すなわち、この実施形態における第1スプール弁65は、ドリル加工等によって軸方向に沿って貫通孔が形成されており、この貫通孔の内周面に、隔壁部である椀状の圧入プラグ108が圧入固定されることで、内部空間が軸方向に分割されている。 That is, in the first spool valve 65 in this embodiment, a through hole is formed along the axial direction by drilling or the like, and a wedge-shaped press-fit plug 108, which is a partition, is formed on the inner peripheral surface of the through hole. The internal space is divided in the axial direction by press-fitting.
 したがって、この実施形態によれば、第1実施形態と同様の作用効果が得られるのは勿論のこと、前記第1スプール弁65を孔開け加工する際に、軸方向両端側から加工をする必要がなく、片側一方向からの加工のみで済むことから、工程数を削減することができる。
〔第4実施形態〕
 図21に示す本発明の第4実施形態は、油圧回路5を構成する電磁切換弁60が、前記バルブタイミング制御装置へ直接的に組み込まれずに分離して設けられたものである。
Therefore, according to this embodiment, it goes without saying that the same function and effect as the first embodiment can be obtained, but when drilling the first spool valve 65, it is necessary to process it from both axial end sides There is no need for processing, and only one side of the process is required, so the number of processes can be reduced.
Fourth Embodiment
In the fourth embodiment of the present invention shown in FIG. 21, the electromagnetic switching valve 60 constituting the hydraulic circuit 5 is provided separately without being directly incorporated into the valve timing control device.
 すなわち、この実施形態における電磁切換弁60は、6ポート7位置の比例型弁であって、ほぼ円筒状のバルブボディ61と、該バルブボディ61内に軸方向へ摺動可能に設けられた円筒状の第2スプール弁63と、前記バルブボディ61の内部一端側に設けられて、前記第2スプール弁63を図中の左方向へ付勢する第2バルブスプリング64と、前記第2スプール弁63内に軸方向へ摺動可能に設けられた円筒状の第1スプール弁65と、前記第2スプール弁63の内部一端側に設けられて、前記第1スプール弁65を図中の左方向へ付勢する第1バルブスプリング66と、前記バルブボディ61の外部他端側に設けられ、運転状態等に応じて前記第1,第2スプール弁63,65を前記第1,第2バルブスプリング64,66のばね力に抗して図中の右方向へ移動させるアクチュエータである電磁ソレノイド67と、から主として構成されている。 That is, the electromagnetic switching valve 60 in this embodiment is a 6-port, 7-position proportional valve, and has a substantially cylindrical valve body 61 and a cylinder slidably provided in the valve body 61 in the axial direction. -Shaped second spool valve 63, a second valve spring 64 provided on one end side inside the valve body 61 and biasing the second spool valve 63 in the left direction in the figure, and the second spool valve A cylindrical first spool valve 65 slidably provided in the axial direction 63 and an inner one end side of the second spool valve 63 are provided in the left direction in the figure of the first spool valve 65. The first valve spring 66 for urging the valve body 61 and the other end of the valve body 61 are provided, and the first and second spool valves 63 and 65 are controlled according to the operating condition etc. 64, 66 springs An electromagnetic solenoid 67 that is an actuator for moving to the right in the drawing against, and is mainly comprised.
 以下、この実施形態における電磁切換弁60の各構成要素について説明するが、第1実施形態と同様の構成については説明を省略し、相違点のみを説明する。 Hereinafter, although each component of the electromagnetic switching valve 60 in this embodiment is demonstrated, description is abbreviate | omitted about the structure similar to 1st Embodiment, and only a different point is demonstrated.
 前記バルブボディ61は、第1実施形態と異なりカムボルトとしての機能を有しておらず、前記電磁ソレノイド67のソレノイドケーシング101に設けられた爪部101aにかしめ固定されつつ、機関に設けられた図外のバルブ収容孔に収容固定されている。 Unlike the first embodiment, the valve body 61 does not have a function as a cam bolt, and is provided in the engine while being caulked and fixed to the claw portion 101 a provided on the solenoid casing 101 of the electromagnetic solenoid 67. It is housed and fixed in the outer valve housing hole.
 また、前記バルブボディ61は、前記リテーナ70よりも一端側のチェック弁収容室71が廃止され、これに伴って前記導入ポート69と導出ポート73a及びチェック弁74が廃止されている。 Further, the check valve chamber 71 at one end side of the retainer 70 is eliminated from the valve body 61, and the introduction port 69, the outlet port 73a and the check valve 74 are eliminated accordingly.
 さらに、前記バルブボディ61は、前記第1,第2再導入ポート73b,73cが廃止されると共に、該両再導入ポート73b,73cが設けられていた位置に該両再導入ポート73b,73cとほぼ同形状の第1,第2導入ポート109a,109bが形成されている。これら両導入ポート109a,109bには、前記吐出通路41bから直接的に作動油が供給されるようになっている。なお、前記吐出通路41bには、前記バルブボディ61から廃止された前記チェック弁74が配設され、前記第1,第2導入ポート109a,109bへ作動油を導入する際の逆流が抑制されるようになっている。 Furthermore, in the valve body 61, the first and second reintroduction ports 73b and 73c are eliminated, and the two reintroduction ports 73b and 73c are provided at the positions where the two reintroduction ports 73b and 73c were provided. The first and second introduction ports 109a and 109b having substantially the same shape are formed. The hydraulic oil is directly supplied from the discharge passage 41b to both the introduction ports 109a and 109b. In addition, the check valve 74 removed from the valve body 61 is disposed in the discharge passage 41b, and the backflow at the time of introducing the hydraulic oil to the first and second introduction ports 109a and 109b is suppressed. It is supposed to be.
 また、前記バルブボディ61は、周壁の前記遅角ポート18aよりも先端側に、第2ドレンポート110が十字径方向に沿って4つ貫通形成されている。この第2ドレンポート110は、前記第2ドレン通路43を介して前記オイルパン44に接続されている。 Further, in the valve body 61, four second drain ports 110 are formed in a penetrating manner along the cruciform radial direction on the tip end side of the retardation port 18a of the peripheral wall. The second drain port 110 is connected to the oil pan 44 via the second drain passage 43.
 前記第2スプール弁63は、前記ガイド部82の軸方向所定位置に、十字径方向に沿って第14連通孔85iが4つ貫通形成されている。 In the second spool valve 63, four fourteenth communication holes 85i are formed at predetermined positions in the axial direction of the guide portion 82 along the cruciform radial direction.
 一方、前記第1スプール弁65は、前記ガイド部96の軸方向所定位置に、十字径方向に沿って第15連通孔99fが4つ貫通形成されている。 On the other hand, in the first spool valve 65, four fifteenth communication holes 99f are formed through at predetermined positions in the axial direction of the guide portion 96 along the cross radial direction.
 この前記各第14連通孔85iと各第15連通孔99fは、該各第15連通孔99fの外周に形成されたグルーブ溝を介して常時連通していると共に、前記各第14連通孔85iの外周に形成されたグルーブ溝を介して前記第2ドレンポート110に常時連通している。 The 14th communication holes 85i and the 15th communication holes 99f are always in communication with each other through groove grooves formed on the outer periphery of the 15th communication holes 99f. It always communicates with the second drain port 110 via a groove formed on the outer periphery.
 これにより、前記第1スプール弁65内部の第1油通路穴87は、前記各第14,15連通孔85i,99f及び前記第2ドレンポート110を介して、前記オイルパン44に常時連通している。 Thus, the first oil passage hole 87 in the first spool valve 65 is always in communication with the oil pan 44 through the fourteenth and fifteenth communication holes 85i and 99f and the second drain port 110. There is.
 そして、前記油圧回路5は、前記各遅角油圧室11に対して前記各遅角側油孔11aを介して油圧を給排する遅角通路18と、前記各進角油圧室12に対して前記各進角側油孔12aを介して油圧を給排する進角通路19と、前記各第1~第3解除用受圧室30~32に対して前記各分岐通路30a,31a,32aを介してそれぞれ油圧を給排するロック通路20と、を備えている。 The hydraulic circuit 5 supplies and removes hydraulic pressure to the respective retard hydraulic chambers 11 via the respective retard side oil holes 11 a, and the respective advance hydraulic chambers 12. Advance passage 19 for supplying and discharging hydraulic pressure through the advance side oil holes 12a, and the first through third pressure receiving chambers 30 through 32 through the branch passages 30a, 31a, 32a. And lock passages 20 for supplying and discharging hydraulic pressure, respectively.
 前記遅角通路18と進角通路19とは、それぞれの一端側が前記電磁切換弁60の各遅角ポート18aと各進角ポート19aにそれぞれ接続されている一方、他端側がそれぞれ前記各遅角側、進角側油孔11a,12aに接続されている。 One end side of each of the retardation passage 18 and the advancing passage 19 is connected to the retardation port 18a and the advancing port 19a of the electromagnetic switching valve 60, and the other end is the retardation. It is connected to the side and advance side oil holes 11a and 12a.
 前記ロック通路20は、一端側が前記電磁切換弁60の各ロックポート20aに接続されている一方、他端側が前記各分岐通路30a,31a,32aに接続されている。 One end of the lock passage 20 is connected to each lock port 20a of the electromagnetic switching valve 60, and the other end is connected to the branch passages 30a, 31a and 32a.
 したがって、この実施形態によっても、前記電磁切換弁60が第1実施形態と同様のポジション制御を行うことが可能であることから、該第1実施形態と同様の作用効果を得ることができる。 Therefore, also according to this embodiment, since the electromagnetic switching valve 60 can perform the same position control as that of the first embodiment, it is possible to obtain the same function and effect as that of the first embodiment.
 本発明は、前記各実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲で構成を変更することも可能である。 The present invention is not limited to the configuration of each of the above-described embodiments, and the configuration can be changed without departing from the scope of the invention.
 例えば、前記各実施形態では、前記バルブタイミング制御装置を吸気側に適用したものを示したが、これを排気側に適用することも可能である。 For example, in each of the above embodiments, the valve timing control device is applied to the intake side, but it is also possible to apply this to the exhaust side.
 また、前記各実施形態では、前記第1スプール弁65を前記第2スプール弁63よりも小径に形成して該第2スプール弁63の内部に収容配置するものとして説明したが、該両者63,65の形状や配置関係はこれに限定されず、例えば、前記第1,第2スプール弁63,65をほぼ同一径状に形成すると共に、直列的に配置して、一方のスプール弁の一端部と他方のスプール弁の他端部とを当接させることにより両者63,65を連動可能としてもよい。 In each of the above embodiments, the first spool valve 65 has been described as being formed smaller in diameter than the second spool valve 63 and housed inside the second spool valve 63, both 63, The shape and arrangement relationship of 65 is not limited to this, For example, while forming the said 1st, 2nd spool valve 63 and 65 in the shape of the substantially same diameter, arrange | positioning in series, the one end part of one spool valve The two 63, 65 may be interlocked by bringing the other end of the other spool valve into contact with the other.
 この場合においても、単一の前記電磁ソレノイド67によって前記第1,第2スプール弁63,65の位置制御を行えることから、複数の電磁ソレノイドを有する構成と比較して制御の簡素化及び装置の小型化を図ることができる。 Also in this case, since the position control of the first and second spool valves 63 and 65 can be performed by the single electromagnetic solenoid 67, simplification of control and device as compared with the configuration having a plurality of electromagnetic solenoids Miniaturization can be achieved.
 以上説明した実施形態に基づく油圧制御弁及び該油圧制御弁が用いられた内燃機関のバルブタイミング制御装置としては、例えば、以下に述べる態様のものが考えられる。 As a hydraulic control valve based on the embodiment described above and a valve timing control device for an internal combustion engine using the hydraulic control valve, for example, those of the aspect described below can be considered.
 油圧制御弁は、その一つの態様において、周壁の径方向に作動油を流通させる複数のポートが貫通形成された中空のバルブボディと、前記バルブボディの内部で軸方向に移動可能に設けられ、移動位置に応じて前記複数のポートに対する作動油の連通状態を切り換える第1スプール弁と、前記第1スプール弁と同軸上に配置され、前記第1スプール弁の軸方向の移動位置に応じて、前記第1スプール弁と連動して前記バルブボディの内部で軸方向に移動し、前記複数のポートに対する作動油の連通状態を切り換える第2スプール弁と、を備えている。 The hydraulic control valve, in one aspect thereof, is provided movably in the axial direction in a hollow valve body in which a plurality of ports through which hydraulic fluid flows in the radial direction of the peripheral wall are formed, A first spool valve that switches the communication state of hydraulic fluid to the plurality of ports according to the movement position, and coaxially disposed with the first spool valve, according to the movement position of the first spool valve in the axial direction And a second spool valve configured to move in the axial direction inside the valve body in conjunction with the first spool valve and to switch the communication state of the hydraulic fluid to the plurality of ports.
 前記油圧制御弁の好ましい態様において、前記第2スプール弁は、中空状に形成されていると共に、前記第1スプール弁は、前記第2スプール弁の内部に移動可能に配置されている。 In a preferred aspect of the hydraulic control valve, the second spool valve is formed in a hollow shape, and the first spool valve is movably disposed inside the second spool valve.
 別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記第2スプール弁は、前記第1スプール弁の軸方向一端側が、前記第2スプール弁の軸方向一端側に当接した状態において作動する。 In another preferable aspect, in any of the aspects of the hydraulic control valve, in the second spool valve, one axial end side of the first spool valve is in contact with one axial side end of the second spool valve. Operate at
 さらに別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記第1スプール弁は、該第1スプール弁の軸方向他端側が、前記第2スプール弁の軸方向他端側に当接した第1ポジションと、前記第1スプール弁の軸方向両端側が、前記第2スプール弁の軸方向一端側と他端側の両方から離間した第2ポジションと、前記第1スプール弁の軸方向一端側が、該第2スプール弁の軸方向一端側に当接した第3ポジションと、を有する。 In still another preferred aspect, in any of the aspects of the hydraulic control valve, the other end side of the first spool valve in the axial direction is in contact with the other end side in the axial direction of the second spool valve. The first position in contact, the second position in which both axial ends of the first spool valve are separated from both the axial one end and the other end of the second spool valve, and the axial direction of the first spool valve The one end side has the 3rd position contact | abutted to the axial direction one end side of this 2nd spool valve.
 さらに別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記第1スプール弁は、中空状に形成され、内部軸方向の中間位置に設けられた隔壁によって、内部の空間部が分割されている。 In still another preferred aspect, in any of the aspects of the hydraulic control valve, the first spool valve is hollow and the internal space is divided by a partition provided at an intermediate position in the internal axial direction. It is done.
 さらに別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記隔壁は、前記第1スプール弁と一体形成されている。 In still another preferred aspect, in any of the aspects of the hydraulic control valve, the partition wall is integrally formed with the first spool valve.
 さらに別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記第1スプール弁は、前記隔壁で軸方向に分割して形成されている。 In still another preferred aspect, in any of the aspects of the hydraulic control valve, the first spool valve is axially divided by the partition wall.
 さらに別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記隔壁は、別部材にて形成されている。 In still another preferred aspect, in any of the aspects of the hydraulic control valve, the partition wall is formed of a separate member.
 また、油圧制御弁は、別の観点から、作動油の給排によって可動部材を作動させてクランクシャフトに対するカムシャフトの相対回転位相を制御する内燃機関のバルブタイミング制御装置に用いられる油圧制御弁であって、前記可動部材を前記カムシャフト端部に軸方向から固定すると共に、周壁の径方向に作動油を流通させる給排ポートが貫通形成された中空のカムボルトと、前記カムボルトの内部で軸方向に移動可能に設けられ、移動位置に応じて前記給排ポートに対する作動油の連通状態を切り換える第1スプール弁と、前記第1スプール弁と同軸上に配置され、前記第1スプール弁の軸方向の移動位置に応じて、前記第1スプール弁と連動して前記カムボルトの内部で軸方向に移動し、前記給排ポートに対する作動油の連通状態を切り換える第2スプール弁と、を備えている。 Also, from another point of view, the hydraulic control valve is a hydraulic control valve used in a valve timing control device for an internal combustion engine that operates the movable member by supplying and discharging hydraulic oil to control the relative rotational phase of the camshaft with respect to the crankshaft. A hollow cam bolt in which the movable member is axially fixed to the end portion of the camshaft and through which a supply / discharge port for making the hydraulic oil flow in the radial direction of the peripheral wall is penetrated; A first spool valve movably provided to switch the communication state of the hydraulic fluid to the supply / discharge port according to the movement position, and coaxially disposed with the first spool valve, the axial direction of the first spool valve In accordance with the first spool valve, and moves axially inside the cam bolt to communicate the hydraulic fluid to the supply / discharge port. A second spool valve changing Ri, and a.
 前記油圧制御弁の好ましい態様において、前記油圧制御弁は、前記カムボルトの外周面に軸方向に沿って配置固定され、周壁の径方向に貫通形成されて、前記給排ポートと連通する連通孔及び内周面の軸方向に形成されて前記給排ポートのいずれかに連通する連通孔を有する内部中空状のスリーブを有すると共に、前記第2スプール弁が中空状に形成されて、該第2スプール弁の内部に前記第1スプール弁が移動可能に配置されている。 In a preferred aspect of the hydraulic control valve, the hydraulic control valve is disposed and fixed along the axial direction on the outer peripheral surface of the cam bolt, and is formed penetrating in the radial direction of the peripheral wall to communicate with the supply and discharge port An internal hollow sleeve is formed in the axial direction of the inner peripheral surface and has a communication hole communicating with any of the supply and discharge ports, and the second spool valve is hollow and the second spool is formed. The first spool valve is movably disposed inside the valve.
 別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記カムボルトの軸方向の先端部に、前記作動油を導入する導入ポートが形成されている。 In another preferred aspect, in any of the aspects of the hydraulic control valve, an introduction port for introducing the hydraulic oil is formed at an axial tip end of the cam bolt.
 さらに別の好ましい態様では、前記油圧制御弁の態様のいずれかにおいて、前記第1スプール弁は、中空状に形成され、内部軸方向の中間位置に設けられた隔壁によって内部の空間部が分割されていると共に、該空間部の前記隔壁よりも軸方向の一端側に、逆止弁が設けられている。 In still another preferred aspect, in any of the aspects of the hydraulic control valve, the first spool valve is formed in a hollow shape, and an internal space portion is divided by a partition provided at an intermediate position in the inner axial direction. And a check valve is provided on one end side in the axial direction of the partition wall of the space portion.
 内燃機関のバルブタイミング制御装置は、その一つの態様において、クランクシャフトから回転力が伝達され、内部に作動室が形成された駆動回転体と、
 カムシャフトの軸方向一端部に固定され、前記駆動回転体内に回転可能に収容されて前記作動室を進角作動室と遅角作動室に隔成すると共に、該両作動室に対して作動油を給排することによって、前記駆動回転体に対して進角側あるいは遅角側に相対回転する従動回転体と、前記駆動回転体に対する前記従動回転体の相対回転を作動油の給排によって規制又は解除するロック機構と、オイルポンプから圧送された作動油を前記両作動室に給排制御する油圧制御弁と、前記油圧制御弁を動作させるべく前記カムシャフトの外部に設けられたアクチュエータと、を備え、前記油圧制御弁は、前記従動回転体を前記カムシャフト端部に軸方向から固定すると共に、周壁の径方向に前記進角作動室と遅角作動室に作動油を流通させる進角ポートと遅角ポート及び、前記ロック機構に作動油を流通させるロックポートが貫通形成された筒状のカムボルトと、前記カムボルトの内部で軸方向に移動可能に設けられ、移動位置に応じて前記進角ポートや前記遅角ポート及び前記ロックポートに対する作動油の連通状態を切り換える第1スプール弁と、前記第1スプール弁と同軸上に配置され、前記第1スプール弁の軸方向の移動位置に応じて、前記カムボルトの内部で軸方向に移動し、前記進角ポートや前記遅角ポート及び前記ロックポートに対する作動油の連通状態を切り換える第2スプール弁と、を有している。
In one aspect of a valve timing control device for an internal combustion engine, a driving rotating body to which a rotational force is transmitted from a crankshaft and in which an operating chamber is formed;
It is fixed to one axial end of a camshaft and rotatably accommodated in the drive rotor to separate the working chamber into an advancing working chamber and a retarding working chamber, and to the working fluid for both working chambers The supply and discharge of the hydraulic fluid restricts the relative rotation of the driven rotor relative to the drive rotor and the driven rotor relative to the drive rotor relative to the drive rotor, and the relative rotation of the driven rotor relative to the drive rotor. A lock mechanism for releasing the oil pressure, an oil pressure control valve for controlling supply and discharge of hydraulic oil pumped from an oil pump to both operation chambers, and an actuator provided outside the camshaft to operate the oil pressure control valve; The hydraulic control valve advances the hydraulic fluid to fix the driven rotating body to the end of the camshaft from the axial direction and circulate the hydraulic fluid in the radial direction of the peripheral wall to the advance operating chamber and the retarding operating chamber. Port and Retard And a cylindrical cam bolt in which a lock port for letting the hydraulic oil flow through the lock mechanism is formed so as to be axially movable inside the cam bolt, and the advance port or the like according to the movement position A first spool valve that switches the communication state of hydraulic fluid to the retard port and the lock port, and the first spool valve is disposed coaxially with the first spool valve, and the first spool valve moves according to the axial movement position of the first spool valve. And a second spool valve which moves axially inside the cam bolt and switches the communication state of hydraulic fluid to the advance port, the retard port and the lock port.
 前記内燃機関のバルブタイミング制御装置の好ましい態様において、前記第1スプール弁と前記第2スプール弁は、それぞれ中空状に形成されていると共に、前記第1スプール弁は、前記第2スプール弁の内部に移動可能に配置され、内部軸方向の中間位置に内部の空間部を軸方向に分割する隔壁が設けられている。 In a preferable aspect of the valve timing control device of the internal combustion engine, the first spool valve and the second spool valve are each formed in a hollow shape, and the first spool valve is an inside of the second spool valve. A partition is disposed movably at a middle position in the inner axial direction and axially divides an inner space portion.
 別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記隔壁を挟んだ前記第1スプール弁の軸方向の一端側は、前記ロックポートに対する作動油の連通及び遮断に供され、前記第1スプール弁の軸方向の他端側は、前記進角ポート及び前記遅角ポートに対する作動油の連通及び遮断に供される。 In another preferable aspect, in any of the aspects of the valve timing control device of the internal combustion engine, one axial end side of the first spool valve across the partition wall communicates and shuts off hydraulic oil to the lock port. The other axial end of the first spool valve is provided for communication and blocking of hydraulic fluid to and from the advance port and the retard port.
 さらに別の好ましい態様では、前記内燃機関のバルブタイミング制御装置の態様のいずれかにおいて、前記第1スプール弁の前記隔壁よりも軸方向一端側の内部の空間部には、逆止弁が配置されており、前記ロックポートからの作動油の逆流を抑制している。 In still another preferable aspect, in any of the aspects of the valve timing control device of the internal combustion engine, a check valve is disposed in an internal space portion on one axial end side of the partition wall of the first spool valve. The backflow of the hydraulic oil from the lock port is suppressed.

Claims (16)

  1.  周壁の径方向に作動油を流通させる複数のポートが貫通形成された中空のバルブボディと、
     前記バルブボディの内部で軸方向に移動可能に設けられ、移動位置に応じて前記複数のポートに対する作動油の連通状態を切り換える第1スプール弁と、
     前記第1スプール弁と同軸上に配置され、前記第1スプール弁の軸方向の移動位置に応じて、前記第1スプール弁と連動して前記バルブボディの内部で軸方向に移動し、前記複数のポートに対する作動油の連通状態を切り換える第2スプール弁と、
     を備えたことを特徴とする油圧制御弁。
    A hollow valve body in which a plurality of ports through which hydraulic fluid flows in the radial direction of the peripheral wall are formed;
    A first spool valve provided so as to be axially movable inside the valve body, and switching a communication state of hydraulic fluid to the plurality of ports according to a movement position;
    The first spool valve is coaxially disposed, and is axially moved inside the valve body in conjunction with the first spool valve in accordance with the axial movement position of the first spool valve; A second spool valve that switches fluid communication with the port of
    The hydraulic control valve characterized by having.
  2.  請求項1に記載の油圧制御弁において、
     前記第2スプール弁は、中空状に形成されていると共に、
     前記第1スプール弁は、前記第2スプール弁の内部に移動可能に配置されていることを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 1,
    The second spool valve is hollow, and
    The hydraulic control valve according to claim 1, wherein the first spool valve is movably disposed in the second spool valve.
  3.  請求項2に記載の油圧制御弁において、
     前記第2スプール弁は、前記第1スプール弁の軸方向一端側が、前記第2スプール弁の軸方向一端側に当接した状態において作動することを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 2,
    A hydraulic control valve characterized in that the second spool valve is operated in a state where one axial end side of the first spool valve is in contact with one axial side end of the second spool valve.
  4.  請求項3に記載の油圧制御弁において、
     前記第1スプール弁は、
     該第1スプール弁の軸方向他端側が、前記第2スプール弁の軸方向他端側に当接した第1ポジションと、
     前記第1スプール弁の軸方向両端側が、前記第2スプール弁の軸方向一端側と他端側の両方から離間した第2ポジションと、
     前記第1スプール弁の軸方向一端側が、該第2スプール弁の軸方向一端側に当接した第3ポジションと、
     を有することを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 3,
    The first spool valve is
    A first position in which the other axial end of the first spool valve is in contact with the other axial end of the second spool valve;
    A second position in which both axial ends of the first spool valve are separated from both axial one end and the other end of the second spool valve;
    A third position in which one axial end of the first spool valve is in contact with one axial end of the second spool valve;
    Hydraulic control valve characterized by having.
  5.  請求項4に記載の油圧制御弁において、
     前記第1スプール弁は、中空状に形成され、内部軸方向の中間位置に設けられた隔壁によって、内部の空間部が分割されていることを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 4,
    A hydraulic control valve characterized in that the first spool valve is formed in a hollow shape, and an internal space portion is divided by a partition provided at an intermediate position in the inner axial direction.
  6.  請求項5に記載の油圧制御弁において、
     前記隔壁は、前記第1スプール弁と一体形成されていることを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 5,
    The hydraulic control valve, wherein the partition wall is integrally formed with the first spool valve.
  7.  請求項5に記載の油圧制御弁において、
     前記第1スプール弁は、前記隔壁で軸方向に分割して形成されていることを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 5,
    A hydraulic control valve characterized in that the first spool valve is divided in the axial direction by the partition wall.
  8.  請求項5に記載の油圧制御弁において、
     前記隔壁は、別部材にて形成されていることを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 5,
    The said partition is formed by another member, The hydraulic control valve characterized by the above-mentioned.
  9.  作動油の給排によって可動部材を作動させてクランクシャフトに対するカムシャフトの相対回転位相を制御する内燃機関のバルブタイミング制御装置に用いられる油圧制御弁であって、
     前記可動部材を前記カムシャフト端部に軸方向から固定すると共に、周壁の径方向に作動油を流通させる給排ポートが貫通形成された中空のカムボルトと、
     前記カムボルトの内部で軸方向に移動可能に設けられ、移動位置に応じて前記給排ポートに対する作動油の連通状態を切り換える第1スプール弁と、
     前記第1スプール弁と同軸上に配置され、前記第1スプール弁の軸方向の移動位置に応じて、前記第1スプール弁と連動して前記カムボルトの内部で軸方向に移動し、前記給排ポートに対する作動油の連通状態を切り換える第2スプール弁と、
     を備えたことを特徴とする油圧制御弁。
    A hydraulic control valve used in a valve timing control device for an internal combustion engine, which operates a movable member by supplying and discharging hydraulic oil to control the relative rotational phase of a camshaft with respect to a crankshaft,
    A hollow cam bolt in which the movable member is axially fixed to the end portion of the camshaft, and through which a supply and discharge port for making the hydraulic oil flow in the radial direction of the peripheral wall.
    A first spool valve which is axially movably provided inside the cam bolt and switches the communication state of the hydraulic fluid to the supply / discharge port according to the movement position;
    The first spool valve is coaxially disposed, and is axially moved inside the cam bolt in conjunction with the first spool valve in accordance with the axial movement position of the first spool valve, and the supply and discharge A second spool valve that switches hydraulic fluid communication with the port;
    The hydraulic control valve characterized by having.
  10.  請求項9に記載の油圧制御弁は、
     前記カムボルトの外周面に軸方向に沿って配置固定され、周壁の径方向に貫通形成されて、前記給排ポートと連通する連通孔及び内周面の軸方向に形成されて前記給排ポートのいずれかに連通する連通孔を有する内部中空状のスリーブを有すると共に、
     前記第2スプール弁が中空状に形成されて、該第2スプール弁の内部に前記第1スプール弁が移動可能に配置されていることを特徴とする油圧制御弁。
    The hydraulic control valve according to claim 9 is
    The cam bolt is disposed and fixed along the axial direction on the outer peripheral surface of the cam bolt, and is formed penetrating in the radial direction of the peripheral wall, and is formed in the axial direction of the communication hole and the inner peripheral surface communicating with the supply and discharge port. And an internal hollow sleeve having a communication hole communicating therewith;
    A hydraulic control valve, wherein the second spool valve is formed in a hollow shape, and the first spool valve is movably disposed in the second spool valve.
  11.  請求項10に記載の油圧制御弁において、
     前記カムボルトの軸方向の先端部に、前記作動油を導入する導入ポートが形成されていることを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 10,
    An oil pressure control valve characterized in that an introduction port for introducing the hydraulic oil is formed at an axial tip end of the cam bolt.
  12.  請求項11に記載の油圧制御弁において、
     前記第1スプール弁は、中空状に形成され、内部軸方向の中間位置に設けられた隔壁によって内部の空間部が分割されていると共に、該空間部の前記隔壁よりも軸方向の一端側に、逆止弁が設けられていることを特徴とする油圧制御弁。
    In the hydraulic control valve according to claim 11,
    The first spool valve is formed in a hollow shape, and an inner space portion is divided by a partition provided at an intermediate position in the inner axial direction, and the first spool valve is closer to one end in the axial direction than the partition of the space portion. A hydraulic control valve characterized in that a check valve is provided.
  13.  クランクシャフトから回転力が伝達され、内部に作動室が形成された駆動回転体と、
     カムシャフトの軸方向一端部に固定され、前記駆動回転体内に回転可能に収容されて前記作動室を進角作動室と遅角作動室に隔成すると共に、該両作動室に対して作動油を給排することによって、前記駆動回転体に対して進角側あるいは遅角側に相対回転する従動回転体と、
     前記駆動回転体に対する前記従動回転体の相対回転を作動油の給排によって規制又は解除するロック機構と、
     オイルポンプから圧送された作動油を前記両作動室に給排制御する油圧制御弁と、
     前記油圧制御弁を動作させるべく前記カムシャフトの外部に設けられたアクチュエータと、
     を備え、
     前記油圧制御弁は、
     前記従動回転体を前記カムシャフト端部に軸方向から固定すると共に、周壁の径方向に前記進角作動室と遅角作動室に作動油を流通させる進角ポートと遅角ポート及び、前記ロック機構に作動油を流通させるロックポートが貫通形成された筒状のカムボルトと、
     前記カムボルトの内部で軸方向に移動可能に設けられ、移動位置に応じて前記進角ポートや前記遅角ポート及び前記ロックポートに対する作動油の連通状態を切り換える第1スプール弁と、
     前記第1スプール弁と同軸上に配置され、前記第1スプール弁の軸方向の移動位置に応じて、前記カムボルトの内部で軸方向に移動し、前記進角ポートや前記遅角ポート及び前記ロックポートに対する作動油の連通状態を切り換える第2スプール弁と、
     を有したことを特徴とする内燃機関のバルブタイミング制御装置。
    A driving rotating body having a working chamber formed therein, to which a rotational force is transmitted from a crankshaft;
    It is fixed to one axial end of a camshaft and rotatably accommodated in the drive rotor to separate the working chamber into an advancing working chamber and a retarding working chamber, and to the working fluid for both working chambers A driven rotor that rotates relative to the drive rotor with respect to the advancing side or the retarding side by supplying and discharging the
    A lock mechanism which regulates or cancels relative rotation of the driven rotary body with respect to the drive rotary body by supply and discharge of hydraulic oil;
    An oil pressure control valve that controls the supply and discharge of hydraulic oil pumped from an oil pump to both working chambers;
    An actuator provided outside the camshaft to operate the hydraulic control valve;
    Equipped with
    The hydraulic control valve is
    An advancing port and a retarding port for fixing the driven rotor to the end of the camshaft from the axial direction and allowing hydraulic fluid to flow through the advancing and actuating chambers in the radial direction of the peripheral wall, and the lock A cylindrical cam bolt in which a lock port is formed to allow hydraulic oil to flow through the mechanism;
    A first spool valve provided so as to be axially movable inside the cam bolt, and switching the communication state of hydraulic fluid to the advance port, the retard port and the lock port according to the movement position;
    The first spool valve is coaxially disposed, and is axially moved inside the cam bolt according to the axial movement position of the first spool valve, and the advance port, the retard port, and the lock A second spool valve that switches hydraulic fluid communication with the port;
    A valve timing control device for an internal combustion engine, comprising:
  14.  請求項13に記載の内燃機関のバルブタイミング制御装置において、
     前記第1スプール弁と前記第2スプール弁は、それぞれ中空状に形成されていると共に、
     前記第1スプール弁は、前記第2スプール弁の内部に移動可能に配置され、内部軸方向の中間位置に内部の空間部を軸方向に分割する隔壁が設けられていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control apparatus for an internal combustion engine according to claim 13.
    The first spool valve and the second spool valve are each formed in a hollow shape, and
    The first spool valve is movably disposed inside the second spool valve, and a partition is provided at an intermediate axial position to axially divide an internal space portion. Engine valve timing control device.
  15.  請求項14に記載の内燃機関のバルブタイミング制御装置において、
     前記隔壁を挟んだ前記第1スプール弁の軸方向の一端側は、前記ロックポートに対する作動油の連通及び遮断に供され、
     前記第1スプール弁の軸方向の他端側は、前記進角ポート及び前記遅角ポートに対する作動油の連通及び遮断に供されることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 14.
    One end side of the first spool valve in the axial direction sandwiching the partition wall is provided for communication and blocking of the hydraulic oil with respect to the lock port,
    A valve timing control device for an internal combustion engine, wherein the other end side of the first spool valve in the axial direction is used for communication and interruption of hydraulic fluid to and from the advance port and the retard port.
  16.  請求項15に記載の内燃機関のバルブタイミング制御装置において、
     前記第1スプール弁の前記隔壁よりも軸方向一端側の内部の空間部には、逆止弁が配置されており、前記ロックポートからの作動油の逆流を抑制していることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 15.
    A check valve is disposed in an internal space at one end side in the axial direction with respect to the partition wall of the first spool valve, and a backflow of hydraulic oil from the lock port is suppressed. Valve timing control system for internal combustion engines.
PCT/JP2016/058906 2015-04-27 2016-03-22 Oil pressure control valve and valve timing control device for internal combustion engine using oil pressure control valve WO2016174957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-089910 2015-04-27
JP2015089910A JP2018105308A (en) 2015-04-27 2015-04-27 Hydraulic control valve, and valve timing controller of internal combustion engine using the same

Publications (1)

Publication Number Publication Date
WO2016174957A1 true WO2016174957A1 (en) 2016-11-03

Family

ID=57198364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058906 WO2016174957A1 (en) 2015-04-27 2016-03-22 Oil pressure control valve and valve timing control device for internal combustion engine using oil pressure control valve

Country Status (2)

Country Link
JP (1) JP2018105308A (en)
WO (1) WO2016174957A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192010A (en) * 2017-04-21 2019-08-30 株式会社电装 Valve timing adjustment device
CN110192009A (en) * 2017-01-19 2019-08-30 株式会社电装 Valve timing adjustment device
WO2020008626A1 (en) * 2018-07-06 2020-01-09 三菱電機株式会社 Check valve, oil control valve, and valve timing adjustment device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071061A1 (en) * 2018-10-04 2020-04-09 日立オートモティブシステムズ株式会社 Oil pump and control valve
WO2022185847A1 (en) * 2021-03-03 2022-09-09 株式会社山田製作所 Relief valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303642A (en) * 2006-05-15 2007-11-22 Nabtesco Corp Valve unit and hydraulic circuit using the same
JP2012122457A (en) * 2010-12-10 2012-06-28 Denso Corp Valve timing adjusting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303642A (en) * 2006-05-15 2007-11-22 Nabtesco Corp Valve unit and hydraulic circuit using the same
JP2012122457A (en) * 2010-12-10 2012-06-28 Denso Corp Valve timing adjusting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192009A (en) * 2017-01-19 2019-08-30 株式会社电装 Valve timing adjustment device
CN110192009B (en) * 2017-01-19 2021-04-23 株式会社电装 Valve timing adjusting device
CN110192010A (en) * 2017-04-21 2019-08-30 株式会社电装 Valve timing adjustment device
CN110192010B (en) * 2017-04-21 2021-11-09 株式会社电装 Valve timing adjusting device
WO2020008626A1 (en) * 2018-07-06 2020-01-09 三菱電機株式会社 Check valve, oil control valve, and valve timing adjustment device

Also Published As

Publication number Publication date
JP2018105308A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6280986B2 (en) Control valve for valve timing control device and valve timing control device for internal combustion engine
JP5713823B2 (en) Control valve used in valve timing control device
WO2016174957A1 (en) Oil pressure control valve and valve timing control device for internal combustion engine using oil pressure control valve
JP5801666B2 (en) Hydraulic control mechanism used in valve timing control device and controller of the hydraulic control mechanism
JP4484843B2 (en) Valve timing control device for internal combustion engine
JP5270525B2 (en) Control valve device
JP6373464B2 (en) Valve timing control device for internal combustion engine
JP5739305B2 (en) Valve timing control device for internal combustion engine
JP5722743B2 (en) Valve timing control device for internal combustion engine
JP6093134B2 (en) Valve timing control device for internal combustion engine
JP6084562B2 (en) Hydraulic control valve used for hydraulic control valve and valve timing control device of internal combustion engine
JP5916441B2 (en) Valve timing control device for internal combustion engine
JP2013147934A (en) Valve timing control apparatus for internal combustion engine
JP2013119842A (en) Valve timing control apparatus of internal combustion engine
WO2016021328A1 (en) Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve
EP2843201A1 (en) Variable valve timing control device
JP6295160B2 (en) Electromagnetic valve, electromagnetic valve and electromagnetic actuator used for valve timing control device of internal combustion engine
JP2018112080A (en) Hydraulic control valve for valve timing control device for internal combustion engine and valve timing control device for internal combustion engine
JP2018059415A (en) Hydraulic control valve and valve timing control device of internal combustion engine
JP5980086B2 (en) Valve timing control device for internal combustion engine
WO2018100909A1 (en) Hydraulic control valve and internal-combustion-engine valve-timing control device
JP2010116779A (en) Valve timing control system for internal combustion engine
JP2018048557A (en) Hydraulic control valve of valve timing control device of internal combustion engine, and valve timing control device of internal combustion engine
WO2020085057A1 (en) Valve timing control device for internal combustion engine
JP6720069B2 (en) Valve timing control device for internal combustion engine and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP