WO2016174810A1 - Clothes dryer - Google Patents
Clothes dryer Download PDFInfo
- Publication number
- WO2016174810A1 WO2016174810A1 PCT/JP2016/001501 JP2016001501W WO2016174810A1 WO 2016174810 A1 WO2016174810 A1 WO 2016174810A1 JP 2016001501 W JP2016001501 W JP 2016001501W WO 2016174810 A1 WO2016174810 A1 WO 2016174810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drying
- air
- clothes dryer
- dehumidified water
- output signal
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/32—Control of operations performed in domestic laundry dryers
- D06F58/34—Control of operations performed in domestic laundry dryers characterised by the purpose or target of the control
- D06F58/36—Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
- D06F58/38—Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/28—Air properties
- D06F2103/32—Temperature
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/58—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to condensation, e.g. condensate water level
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/58—Indications or alarms to the control system or to the user
Definitions
- the present invention relates to a clothes dryer for drying textiles such as clothes.
- a drier that performs a drying operation using a heat pump device has been provided in place of a conventional drier operation using a heater for heating.
- the heat pump device is configured by connecting a compressor, a condenser, a capillary tube, and an evaporator in a closed loop by a refrigerant pipe.
- the dryer includes an air circulation path for circulating the air in the drying chamber in which clothes are stored through the evaporator and the condenser in order to return the air to the drying chamber.
- An air blower is provided in the circulation ventilation path, and the air for drying circulates by driving the air blower. The drying air is heated by the condenser and supplied into the drying chamber.
- the drying method using the heat pump device is superior in energy efficiency to the drying method using a heater, and has advantages such as a low heating temperature and less wrinkles and shrinkage.
- a conventional dryer includes a temperature detection unit in an air circulation path, and performs a drying completion determination based on a temperature difference of the temperature detection unit (see, for example, Patent Document 1). This type of dryer will be specifically described with reference to FIGS. 7, 8, and 9.
- FIG. FIG. 7 is a cross-sectional view of a conventional dryer.
- FIG. 8 is a diagram illustrating a schematic configuration of a conventional air circulation mechanism and a heat pump device.
- FIG. 9 is a diagram showing a change in temperature at the entrance and exit of the drying chamber during a drying operation in a conventional dryer.
- the dryer 102 includes a drying chamber 101 in which clothes are accommodated and a blower 119.
- the drying chamber 101 has an outer tub 103 and a rotating drum 104.
- the blower 119 circulates the air in the drying chamber 101 so as to return to the drying chamber 101 (the outer tub 103 and the rotating drum 104) through the circulation ventilation path 114 when the drying step is executed.
- the dryer 102 detects the heat pump device 123 in which the evaporator 117 and the condenser 118 are arranged in the circulation ventilation path 114, and the inlet air temperature supplied to the drying chamber 101 and the outlet air temperature discharged.
- An inlet temperature sensor 125 and an outlet temperature sensor 124 are provided.
- a control unit 127 that controls the overall operation of the dryer 102 and determines the completion of drying based on the temperature difference between the inlet air temperature and the outlet air temperature is provided.
- the evaporator 117 and the condenser 118 constitute a heat pump cycle in which the refrigerant circulates by the operation of the compressor 121 and the like. That is, the high-humidity air discharged from the drying chamber 101 is cooled by the evaporator 117 and dehumidified.
- the drying air whose absolute humidity has decreased reaches the condenser 118 through the circulation ventilation path 114.
- the drying air that has passed through the condenser 118 is heated to become high-temperature and low-humidity air, and is blown into the drying chamber 101 from the air supply port 120 through the circulation ventilation path 114 to dry the clothes.
- each mechanism of the dryer 102 described above is controlled by the control unit 127.
- the control unit 127 determines the end of the drying step as follows. That is, the inlet temperature sensor 125 that detects the temperature of the drying air at the inlet portion of the drying chamber 101 and the outlet that detects the temperature of the drying air at the outlet portion of the drying chamber 101 provided in the circulation ventilation path 114. A signal from the temperature sensor 124 is input to the control unit 127. After starting the drying step, the controller 127 constantly monitors the temperature difference between the inlet air temperature and the outlet air temperature detected by the temperature sensors.
- the temperature detected by the inlet temperature sensor 125 of the drying chamber 101 becomes constant.
- the wet clothing in the drying chamber 101 takes away the amount of heat of the heated drying air flowing from the drying chamber inlet.
- the temperature detected by the outlet temperature sensor 124 is considerably lower than the temperature detected by the inlet temperature sensor 125. That is, the difference between the temperatures detected by the two temperature sensors is considerably different at the start of drying, but gradually decreases as the drying of the clothing proceeds.
- the control unit 127 determines that the drying is completed when the temperature difference falls below a predetermined value (for example, 10 ° C.).
- the difference between the temperature of the inlet air detected by the two temperature sensors and the temperature of the outlet air gradually decreases as the clothes are dried, but the degree of change in the temperature difference is considerably small. . Specifically, in the diagram shown in FIG. 9, from the timing when the operation time is about 60 minutes and the clothes are actually dried about 90% to the timing when the operation is actually finished after about 100 minutes. The degree of change in temperature difference is extremely small. In addition, this temperature difference is greatly affected by the ambient temperature of the place where the dryer is installed. For example, when the ambient temperature is low, the temperature difference value remains large for a long time because heat is also taken away from the outside air in addition to the wet clothing, and the variation factor of the temperature difference detection is large. Therefore, the detection accuracy of drying completion that determines that the clothes are dry is low, and the operation ends with the clothes remaining undried, or the operation time becomes longer and the clothes become over-dried, such as cloth damage and shrinkage. Have problems such as causing problems.
- a circuit for converting a small output signal of the light receiving element into a predetermined pulse signal is provided as a dehumidified water detection unit, which outputs a detection unit signal at a predetermined voltage.
- the control unit detects the output signal at a predetermined interval and determines that the dehumidified water has passed.
- the timing when one drop of dehumidified water is dropped depends on the detection range of the optical sensor and the dropping speed, but is about 50 msec. it is conceivable that.
- the output signal from the dehumidified water detection unit will also be short, and if an output signal is detected by a normal sampling control unit, it will be missed.
- the pipe where the optical sensor is installed is full of moisture, and depending on the ambient temperature of the place where the dryer is installed, the moisture may adhere to the side wall of the pipe, and the output signal of the optical sensor There is a problem that it leads to minute noise and a decrease in the baseline.
- the present invention solves the conventional problems as described above, and is dehumidified without being affected by the temperature difference between the inlet and outlet of the drying chamber and the ambient temperature of the place where the dryer is installed.
- a clothes dryer that can reliably detect an output signal of a water detector, accurately determine the timing of completion of drying, and suppress the occurrence of defects in clothes.
- a clothes dryer communicates a drying chamber having an air supply port and an exhaust port for drying air, and an air supply port and an exhaust port inside the housing. It has an air passage to be connected, a blower for blowing drying air into the drying chamber through the air passage, and a heat pump device having an evaporator and a condenser disposed in the air passage.
- the clothes dryer further includes a dewatering path for collecting and draining dehumidified water generated by the heat pump device, and a dehumidified water detecting unit that non-contactly detects that the water has passed through the drainage path. And a control unit for controlling the drying operation.
- the dehumidified water detection unit is configured to output an output signal of a predetermined time or more according to a result of comparing an input signal from the dehumidified water sensor with a predetermined threshold.
- the dehumidified water generated in the evaporator of the heat pump device in the drying operation flows through the drainage path, and the dehumidified water detection unit reliably detects the dehumidified water in a non-contact manner for a predetermined time or more. Output the output signal.
- the control unit will not miss this output signal, and will be able to accurately and accurately determine the timing of completion of drying without being affected by the temperature of the air path and surroundings, thereby suppressing the occurrence of defects in clothing. it can.
- FIG. 1 is a schematic diagram for explaining the internal structure of a clothes dryer according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing an optical sensor, which is a dehumidifying water sensor of the clothes dryer in the embodiment of the present invention, and how the dehumidifying water passes.
- FIG. 3 is a circuit diagram of a dehumidified water detection unit of the clothes dryer in the embodiment of the present invention.
- FIG. 4 is a diagram showing transition of the output signal of the dehumidified water detection unit during the drying operation of the clothes dryer in the embodiment of the present invention.
- FIG. 5 is a flowchart showing a processing procedure in the drying operation of the clothes dryer in the embodiment of the present invention.
- FIG. 6 is a diagram illustrating a transition of the count number of the output signal of the dehumidified water detection unit during the drying operation of the clothes dryer in the embodiment of the present invention.
- FIG. 7 is a schematic view for explaining the internal structure of a conventional dryer.
- FIG. 8 is a diagram showing a schematic configuration of an air circulation mechanism and a heat pump device in a conventional dryer.
- FIG. 9 is a diagram showing a change in temperature at the entrance and exit of the drying chamber during a drying operation in a conventional dryer.
- FIG. 1 is a schematic diagram for explaining an internal structure of a clothes dryer 50 according to an example of an embodiment of the present invention.
- an outer tub 1 constitutes a drying chamber.
- the outer tub 1 is elastically supported by a plurality of vibration isolation mechanisms 3 inside the housing 2 of the clothes dryer 50.
- the drum 4 is provided in the outer tub 1 and accommodates laundry clothes 5.
- the drum 4 has an insertion port 6 through which a garment 5 is taken in and out on the front side, is configured in a bottomed cylindrical shape, and is rotatably supported by a rotary shaft 11.
- the drum 4 has a plurality of inflow holes 8a through which drying air flows into the bottom wall 7a, and a plurality of discharge holes 8b through which the drying air is discharged into the peripheral wall 7b.
- a stirring baffle 9 for efficiently lifting the garment 5 is provided on the inner surface of the peripheral wall 7b.
- the outer tub 1, the drum 4 and the rotating shaft 11 are disposed so as to be inclined forwardly by an angle ⁇ (for example, 10 ° to 20 °) with respect to the horizontal.
- ⁇ for example, 10 ° to 20 °
- a driving device 10 such as a motor is provided outside the outer tub 1 and rotates the drum 4 in the forward direction or the reverse direction via the rotating shaft 11.
- the opening of the outer tub 1 facing the charging port 6 is connected to the housing 2 by a packing 13 while ensuring airtightness.
- the driving method of the driving device 10 is not limited to the direct driving method that is provided outside the back surface of the outer tub 1 and directly drives the drum 4, and may be a belt driving method, a gear driving method, or the like.
- An air circulation path 14 is formed above the outer tank 1 as an air path including the outer tank 1 and the drum 4.
- air circulating in the air circulation path 14 is referred to as drying air.
- the air circulation path 14 passes through the lint filter 16, the evaporator 17, the condenser 18, and the blower 19 in this order, and the drying air that has exited from the exhaust port 15 that is the outlet of the outer tank 1 passes through the air circulation path 14. It is configured to circulate again into the outer tub 1 and the drum 4 through a certain air supply port 20.
- the lint filter 16 captures lint such as hair and cotton waste generated from the clothing 5 and contained in the drying air. Thereby, clogging due to lint accumulation in the evaporator 17, the condenser 18, and the blower 19 is prevented, and problems such as a decrease in the air volume are suppressed.
- the lint filter 16 is detachable from the clothes dryer main body, and the lint captured by the user can be discarded.
- the blower 19 includes a fan motor 19 a that drives a fan, and blows and circulates drying air through the air circulation path 14 to the outer tub 1.
- the evaporator 17 and the condenser 18 are heat exchangers configured by piping through which the refrigerant flows and fins that promote heat exchange between the refrigerant and the air.
- the heat pump device 23 includes a compressor 21 that compresses and discharges the sucked refrigerant, a condenser 18 that exchanges heat between the compressed high-pressure and high-temperature refrigerant and air, a throttle unit 22 that depressurizes the high-pressure refrigerant, and a reduced pressure. It has an evaporator 17 for exchanging heat between the refrigerant and the air that has become low in temperature, and these are connected so that the refrigerant can circulate through a pipe.
- the heat pump device 23 is provided above the outer tub 1 or inside the housing 2 in accordance with the arrangement of the air circulation path 14.
- the drainage / drainage path 26 is a drainage flow path disposed below the evaporator 17, collects dehumidified water generated by condensation of moisture in the drying air by the evaporator 17, and discharges it to the outside of the housing 2. .
- the dehumidified water detection part 29 has the dehumidification water sensor 28 which detects water.
- the dehumidified water sensor 28 is attached to a position not far from the evaporator 17 in the middle of the collection / drainage path 26 and detects that the dehumidification water has passed through the collection / drainage path 26.
- the form and method of the dehumidified water sensor 28 are not particularly limited as long as the dehumidified water can detect that the dehumidified water has passed through the collection / drainage path 26, but in the present embodiment, the light-emitting element 28a and the light-receiving element are not limited. A method using an optical sensor composed of the element 28b will be specifically described.
- FIG. 2 is a schematic diagram showing an optical sensor that is a dehumidifying water sensor of the clothes dryer 50 according to an example of the embodiment of the present invention and a state in which the dehumidifying water passes.
- the dehumidified water sensor 28 is provided in close contact with the outside of the side surface of the drainage path 26 so that the pair of light emitting elements 28a and light receiving elements 28b face each other.
- the dehumidified water sensor 28 is incorporated in a circuit of the dehumidified water detection unit 29 described later, and the light receiving element 28b receives light from the light emitting element 28a and measures the light intensity. Thereby, the passage of the dehumidified water generated in the evaporator 17 of the heat pump device 23 can be detected.
- the light receiving element 28b when there is no dehumidified water, light enters the light receiving element 28b as it is from the light emitting element 28a. However, when the dehumidified water flows, the light from the light emitting element 28a is blocked by the dehumidified water and is received by the light receiving element 28b. As the incident light decreases, the output of the light receiving element 28b changes, and the presence or absence of dehumidified water can be detected.
- the non-contact type dehumidified water sensor 28 does not have protrusions in the collection / drainage path 26 as compared with the contact type sensor. For this reason, there is an advantage that lint such as cotton lint and hair mixed in the dehumidified water is not caught by the sensor unit.
- control unit 27 is provided in the upper part of the front surface in the housing 2.
- the control unit 27 controls the driving device 10 and the blower 19 while monitoring the input from various detection units based on the operation setting performed by the user from the operation display unit 27a, and executes the operation of the clothes dryer 50. To do.
- the drum 4 rotates with the wet clothing 5 accommodated therein.
- the drying air circulates through the air circulation path 14 by the blower 19.
- the drying air heated by the condenser 18 flows into the drum 4 from the air supply port 20 through the outer tub 1.
- the drying air that has flowed into the drum 4 comes into contact with the wet clothing 5.
- the clothes 5 are heated by the drying air, and the moisture evaporates to dry.
- the drying air is deprived of heat by the clothing and decreases in temperature, resulting in a high humidity state containing a large amount of moisture.
- the high-humidity drying air in the drum 4 flows out from the exhaust port 15 through the outer tub 1.
- the drying air that has flowed out of the outer tub 1 absorbs heat, that is, is cooled and dehumidified by the evaporator 17. Thereafter, the drying air reaches the condenser 18 and is heated again to become high-temperature and low-humidity air. Thus, the drying air circulates in the air circulation path 14 to dry the clothes 5 in the drum 4.
- the thermal energy released from the condenser 18 to the drying air is approximately equal to the sum of the amount of heat corresponding to the power consumption of the compressor 21 and the amount of heat absorbed by the evaporator 17. For this reason, the output more than the electric power input into the compressor 21 is obtained from the condenser 18, and the garment 5 can be dried with less power consumption compared with an electric heater.
- the temperature of the evaporator 17 is always in a cold state of 5 ° C to 15 ° C.
- the high-humidity drying air that has flowed out of the drum 4 is rapidly cooled by the evaporator 17.
- water is condensed on the surface of the evaporator 17 to generate water droplets.
- the water droplets generated here are combined to form a water droplet of a certain size, the water droplet is dropped below the evaporator 17 as dehumidified water.
- the dehumidified water dripped is collected in the collection / drainage path 26 and flows in the collection / drainage path 26 intermittently, not a continuous flow like a river flow.
- the dehumidified water sensor 28 detects that the dehumidified water has passed through the drainage path 26 in a non-contact manner, and outputs a signal.
- the output of this signal is high when dehumidified water is present (for example, 4.5 V), and is low when dehumidified water is not present (for example, less than 4 V).
- the dehumidified water sensor 28 always detects the presence or absence of dehumidified water.
- FIG. 3 is a circuit diagram of the dehumidified water detection unit 29 of the clothes dryer 50 in the present embodiment.
- the light receiving element 28b of the dehumidified water sensor 28 incorporated in the dehumidified water detection unit 29 is composed of an infrared light receiving photodiode.
- the dehumidified water detection unit 29 includes a comparator circuit 29a that compares the magnitudes of the signals, and a light intensity signal received by the light receiving element 28b is input to the comparator circuit 29a.
- the comparator circuit 29a compares this input signal with a predetermined threshold value and generates an output signal according to the result.
- this threshold is set as a first threshold, for example, at a voltage that can distinguish between the passage of dehumidified water and noise due to fogging of the dehumidified water sensor 28.
- the comparator circuit 29a is set to output a predetermined signal when the magnitude of the input signal is greater than or equal to the first threshold value.
- the comparator circuit 29a is an inverting comparator, which generates an output signal of 5V when the input signal is less than the first threshold, and when there is an input signal greater than or equal to the first threshold, It is set to generate an output signal.
- the dehumidified water detection unit 29 has an output signal fixing circuit 29b.
- the output signal fixing circuit 29b outputs the output signal so that it becomes an output signal for a predetermined time.
- the comparator circuit 29a if the first threshold value of the input signal in the comparator circuit 29a is set to 4 V, for example, when there is usually nothing, the comparator circuit 29a has an input signal of less than 4 V, and the comparator circuit 29a Generates a 5V output signal. Then, when the dehumidified water passes through and the light reaching the light receiving element 28b is reduced, and the input signal of 4V or more which is the first threshold value is input to the comparator circuit 29a, the comparator circuit 29a generates an output signal of 0V. . Furthermore, when this 0V output signal is generated, if it is left as it is, for example, 50 msec. In some cases, the output signal fixing circuit 29b causes a predetermined time, for example, 100 msec. During this period, the output signal is maintained. As a result, the control unit 27 can accurately detect minute dehumidified water without losing the output signal of the dehumidified water detection unit 29.
- FIG. 4 is a diagram showing the transition of the output signal of the dehumidified water detection unit 29 during the drying operation of the clothes dryer 50 in the present embodiment. It is plotted so that “with water passage” or “without water passage” can be determined based on the output signal of the dehumidification water detection unit 29 that detects the timing when the dehumidification water passes through the collection and drainage path 26.
- the clothes dryer 50 in the present embodiment has a temperature detection unit (a thermistor at the drum outlet) at each of the entrances and exits of the drum 4 that is a drying chamber, in the same manner as the completion detection by the conventional dryer. 24, and a thermistor 25) at the drum inlet, and these temperature transitions are also shown.
- dehumidified water is generated as the drying operation is started and the garment 5 is dried, and continuously passes through the drainage channel 26 when about 25 minutes have passed. Then, when about 60 minutes have elapsed from the start of operation, the output signal from the dehumidified water detection unit 29 gradually decreases. This indicates that the drying has progressed sufficiently.
- the clothing 5 is already dried at the timing when the output signal from the dehumidified water detection unit 29 is lost, and if the drying operation is further continued, the clothes 5 are overdried. Therefore, it is necessary to determine that drying is completed before that and set an appropriate drying extension time.
- the control unit 27 counts how many times the output signal from the dehumidified water detection unit 29 is obtained per unit time, for example, per minute. For example, 100 msec. Every other minute, the second threshold is set to 2 V, for example, and the presence or absence of an output signal is detected, and output signals equal to or lower than the second threshold are counted. Then, the control unit 27 determines that the drying is completed when the predetermined number of conditions is satisfied, for example, when the count number is equal to or less than a predetermined value. For example, the control unit 27 outputs an output signal from the dehumidified water detection unit 29 to 100 msec. When counting every other minute, it will be detected 600 times in total, but if the number of times that the dehumidified water gradually decreases and the output signal is detected becomes 20 counts or less per minute, for example, it is determined that the drying is completed. can do.
- FIG. 5 is a flowchart showing a processing procedure in the drying operation of the clothes dryer 50 in the present embodiment.
- clothes 5 to be dried are put into the drum 4 of the clothes dryer 50 by the user (step S0).
- the user performs operation settings such as the degree of drying of the clothes 5 by using the operation display unit 27a, and presses the operation button.
- the control unit 27 rotates the drum 4 by the driving device 10 to detect the capacity of the clothing 5, activates the heat pump device 23, and starts a drying operation (step S1).
- the drying operation starts, the drying air warmed by the heat pump device 23 is supplied into the rotating drum 4, and the drying air heats the clothes 5 and is then discharged from the drum 4.
- the control unit 27 waits for the clothing 5 to be warmed by the drying air when the operation of the heat pump device 23 is started, and detects the drum inlet temperature (thermistor 25), for example, after 10 minutes (step S2). When the drum inlet temperature reaches a predetermined temperature, for example, 50 ° C. or higher, the output signal of the dehumidified water detection unit 29 is detected to determine whether or not the drying is completed (step S3).
- the dehumidified water detection unit 29 when the dehumidified water sensor 28 detects dehumidified water, a signal is output according to the change in the amount of received light.
- the output signal is input to the comparator circuit 29a and output as a pulse signal. Further, in the output signal fixing circuit 29b, a predetermined time, for example, 100 msec. An output signal is output as a pulse signal.
- the controller 27 adjusts to the time length of the output signal, for example, 100 msec. In the case of a pulse signal of 100 msec. Each time, this output signal is detected (step S4).
- the output signal is 100 msec. In the case of the pulse signal, the control unit 27 is at least 100 msec. If the detection is performed at the following timing, the output signal is not missed, and if the time length is matched, the number of output signals can be detected accurately.
- the control unit 27 determines whether or not the detected output signal is equal to or lower than the second threshold (2V) (step S5), and is equal to or lower than the second threshold (Yes in step S5) for a predetermined time (for example, 1 minute). The number of times is counted (step S6). Note that the output signal is basically 5 V or 0 V, but a second threshold is provided in consideration of the influence of noise and the like. The number of counts for a predetermined time (for example, 1 minute) is held in a plurality of histories (step S7), and it is determined whether or not the number of counts is equal to or less than a third threshold (for example, a total of 150 counts in the last 2 minutes).
- a third threshold for example, a total of 150 counts in the last 2 minutes.
- step S8 if not less than the third threshold (No in step S8), the process returns to step S4 and repeats a predetermined count. Moreover, if it becomes below a 3rd threshold value (Yes of step S8), the remaining time display currently displayed on the operation display part 27a will be changed (step S9).
- the remaining time displayed here is a time that needs a little more drying, for example, 30 minutes.
- step S10 the control unit 27 determines that the drying is completed.
- step S11 the control unit 27 changes the remaining time display.
- the remaining time displayed here is the drying extension time for finishing, for example, 10 minutes is displayed (step S12).
- the control unit 27 ends the drying operation after continuing the drying operation for the extended drying time (step S13).
- FIG. 6 is a graph showing the transition of the count number of the output signal of the dehumidified water detector in the drying operation of the clothes dryer 50 of the present embodiment. It can be seen that as the drying state progresses, the count number of the output signal of the dehumidified water detection unit 29 decreases, and the number of times the dehumidified water is dropped is decreased. Therefore, the control unit 27 determines that the drying is completed when the count number satisfies the fourth threshold, and thereafter, after the drying operation is continued for a predetermined drying extension time, the drying operation is terminated. Accordingly, the garment 5 can be dried to an appropriate state without causing problems such as undried garment 5 and fabric damage or shrinkage due to overdrying.
- the third threshold value, the fourth threshold value, and the drying extension time until the completion of drying can be changed according to the clothing capacity detected at the start of the drying operation.
- the total count for the last two minutes may be decreased as the clothing capacity is decreased.
- the fourth threshold value that is the determination of the completion of drying the count number per unit time and the duration time may be changed.
- the drying extension time is conventionally set to 20 minutes, for example, regardless of the capacity of the clothing 5, but if automatic setting is possible depending on the clothing capacity, the drying extension time is set to 20 when the clothing capacity is a specified amount. It is possible to change such as 10 minutes when the minute and half of the specified amount, and 5 minutes when the amount is small. By using the optimum drying extension time in this way, energy consumption can be reduced and the drying operation can be terminated in an appropriate drying state according to the clothing capacity.
- control unit 27 may be configured to calculate a drying rate of the clothing 5 by obtaining a drying speed from a change in the number of counts per unit time. With such a configuration, the control unit 27 can determine the drying speed during the drying operation and calculate the drying rate, thereby predicting the timing of completion of drying and accurately determining the timing.
- the dehumidified water sensor 28 may be composed of an electrostatic sensor whose capacitance changes as the water passes through the collection / drainage path 26.
- the control unit 27 detects the dehumidified water passing through the collection and drainage path 26 in a non-contact manner by the electrostatic sensor, measures the period time based on the change in capacitance, and detects the amount of the dehumidified water. be able to.
- the drying air heated by the condenser of the heat pump device heats the clothes in the drum to evaporate moisture, and then dries.
- the working air is dehumidified by an evaporator to generate dehumidified water, and the dehumidified water flows through the collection and drainage path.
- the dehumidified water detection unit is configured to output an output signal for a predetermined time based on a result of comparing an input signal from the dehumidified water sensor that has detected the passage of the dehumidified water with a predetermined threshold (first threshold).
- control unit can accurately and accurately determine the timing at which the clothes in the drum are dried indirectly without missing the output signal, and can suppress the occurrence of defects in the clothes. Furthermore, the timing of the completion of drying can be accurately detected without being affected by the temperature difference between the inlet and outlet of the drum and without being affected by the ambient temperature of the environment where the clothes dryer is installed.
- control unit detects the output signal of the dehumidified water detection unit at intervals of a predetermined time or less, counts the number of times the output signal is detected, and completes the drying when a predetermined condition (fourth threshold value) is satisfied. It is configured to determine. With such a configuration, the control unit can accurately determine the completion of drying.
- control unit includes an operation display unit that displays time, and is configured to display the remaining time of the drying operation on the operation display unit when the count number becomes a predetermined number (third threshold value) or less. Yes.
- control unit can inform the user of the remaining time of the drying operation.
- control unit extends the drying operation by a predetermined operation time, and displays the remaining time based on the extended predetermined operation time (dry extension time) on the operation display unit. It is configured. With such a configuration, the clothes can be dried with good finish, and the user can be informed of the exact remaining time of the drying operation.
- the control unit includes a temperature detection unit that detects the temperature of the drying air, and is configured to determine the completion of drying after the drying air exceeds a predetermined temperature.
- a clothes dryer communicates a drying chamber having an air supply port and an exhaust port for drying air, and an air supply port and an exhaust port inside the housing.
- a clothes dryer according to an example of the embodiment of the present invention further includes a heat pump device having an evaporator and a condenser disposed in an air passage, and a dewatering water collected and drained by the heat pump device.
- a drainage path, a dehumidified water detection unit having a dehumidification water sensor that detects non-contact that water has passed through the drainage path, and a control unit that controls the drying operation are provided.
- the dehumidified water detection unit is configured to output an output signal for a predetermined time based on a result of comparing an input signal from the dehumidified water sensor with a predetermined threshold.
- the dehumidified water generated in the evaporator of the heat pump device in the drying operation flows through the drainage path.
- the dehumidified water detection unit reliably detects the dehumidified water in a non-contact manner and outputs an output signal for a predetermined time.
- the controller does not miss this output signal and accurately determines the timing of completion of drying without being affected by the air path and the surrounding temperature. Thereby, it can suppress that a malfunction generate
- the control unit detects the output signal at intervals of a predetermined time or less and counts the number of times the output signal is detected. For example, it may be configured to determine that the drying is completed when the fourth threshold value is satisfied. With such a configuration, the control unit can accurately determine the completion of drying.
- control unit may be configured to calculate a drying rate by obtaining a drying speed from a change in the number of counts per unit time.
- control unit can determine the drying speed during the drying operation and calculate the drying rate, thereby predicting the timing of completion of drying and determining with high accuracy.
- the control unit includes a display unit for displaying time, and when the count number becomes a predetermined number or less, the display unit displays the remaining time of the drying operation. It may be configured to. With such a configuration, the control unit can inform the user of the remaining time of the drying operation.
- the control unit when the control unit determines that the drying is completed, the control unit extends the drying operation by a predetermined operation time, and extends the predetermined operation time (drying) to the display unit.
- the remaining time based on the extended time) may be displayed.
- the control unit includes a temperature detection unit that detects the temperature of the drying air, and determines that the drying is completed after the drying air exceeds a predetermined temperature. It may be configured. With such a configuration, when the ambient temperature of the environment in which the clothes dryer is installed is low, the drying operation is performed even when the temperature rise of the drying air by the condenser is slow and the temperature of the clothes in the drying chamber is slow. It can be completed with good timing.
- the dehumidified water sensor may be configured by an optical sensor that changes the amount of light when water passes through the drainage path.
- the control unit can detect the dehumidified water passing through the collection and drainage path in a non-contact manner with the optical sensor, measure the period time based on the change in the amount of light, and detect the amount of the dehumidified water.
- the dehumidified water sensor may be configured by an electrostatic sensor whose capacitance changes as water passes through the collection and drainage path.
- the control unit can detect dehumidified water passing through the drainage path in a non-contact manner with an electrostatic sensor, measure a period time based on a change in capacitance, and detect the amount of dehumidified water. it can.
- the present invention provides a clothes dryer that can accurately detect completion of drying of clothes by detecting dehumidified water generated from clothes in a non-contact manner in a drying operation using a heat pump device. Therefore, the present invention can be widely used not only for clothes dryers but also for washing dryers having a drying function.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Control Of Washing Machine And Dryer (AREA)
- Detail Structures Of Washing Machines And Dryers (AREA)
Abstract
This clothes dryer includes, inside a housing (2): an outer tank (1) which has an air inlet (20) and an air outlet (15) for air for drying; an air circulation path (14) which communicably connects the air inlet (20) and the air outlet (15); and a blower (19) which sends air for drying into the outer tank (1) through the air circulation path (14). The clothes dryer further includes: a heat pump device (23) which has an evaporator (17) and a condenser (18) disposed inside the air circulation path (14); a collection and drainage channel (26) in which water condensate generated in the heat pump device (23) is collected and drained; a water condensate detection unit (29) which has a water condensate sensor (28) that contactlessly detects that water has passed through the collection and drainage channel (26); and a control unit (27) which controls drying operations. The water condensate detection unit is configured to output an output signal for a predetermined time based on the result of comparison between an input signal from the water condensate sensor (28) and a first threshold value.
Description
本発明は、衣類等の繊維製品の乾燥を行う衣類乾燥機に関する。
The present invention relates to a clothes dryer for drying textiles such as clothes.
近年、例えば家庭用の乾燥機において、従来の加熱用のヒータを用いて乾燥運転を行うものに代えて、ヒートポンプ装置を用いて乾燥運転を行う乾燥機が提供されている。ヒートポンプ装置は、圧縮機、凝縮器、キャピラリチューブおよび蒸発器が冷媒管路により閉ループ状に接続されて構成されている。乾燥機は、衣類が収容された乾燥室内の空気を蒸発器および凝縮器を順に通して乾燥室内に戻すための循環用通風路を備えている。循環用通風路に送風機が設けられ、送風機が駆動されることにより、乾燥用空気が循環する。乾燥用空気は、凝縮器で加熱されて乾燥室内に供給され、衣類等の洗濯物の水分を奪った後、蒸発器で冷却されるとともに除湿され、再び凝縮器で加熱される。このように乾燥用空気は循環される。ヒートポンプ装置が用いられた乾燥方法は、ヒータが用いられた乾燥方法に比べて、エネルギー効率に優れるとともに、加熱温度が低く設定され、しわおよび縮みが少ない等のメリットがある。
In recent years, for example, in a domestic drier, a drier that performs a drying operation using a heat pump device has been provided in place of a conventional drier operation using a heater for heating. The heat pump device is configured by connecting a compressor, a condenser, a capillary tube, and an evaporator in a closed loop by a refrigerant pipe. The dryer includes an air circulation path for circulating the air in the drying chamber in which clothes are stored through the evaporator and the condenser in order to return the air to the drying chamber. An air blower is provided in the circulation ventilation path, and the air for drying circulates by driving the air blower. The drying air is heated by the condenser and supplied into the drying chamber. After the moisture of the laundry such as clothes is taken away, the air is cooled by the evaporator, dehumidified, and heated again by the condenser. In this way, the drying air is circulated. The drying method using the heat pump device is superior in energy efficiency to the drying method using a heater, and has advantages such as a low heating temperature and less wrinkles and shrinkage.
従来の乾燥機は、空気循環路に温度検知手段を備え、温度検知手段の温度差を元に乾燥の完了判定を行う(例えば、特許文献1参照)。この種の乾燥機について、具体的に、図7、図8および図9を用いて説明する。図7は、従来の乾燥機の断面図である。図8は、従来の空気循環機構およびヒートポンプ装置の概略構成を示す図である。図9は、従来の乾燥機における乾燥運転時の乾燥室出入口の温度の推移を示す図である。
A conventional dryer includes a temperature detection unit in an air circulation path, and performs a drying completion determination based on a temperature difference of the temperature detection unit (see, for example, Patent Document 1). This type of dryer will be specifically described with reference to FIGS. 7, 8, and 9. FIG. FIG. 7 is a cross-sectional view of a conventional dryer. FIG. 8 is a diagram illustrating a schematic configuration of a conventional air circulation mechanism and a heat pump device. FIG. 9 is a diagram showing a change in temperature at the entrance and exit of the drying chamber during a drying operation in a conventional dryer.
図7および図8に示されるように、乾燥機102は、衣類が収容される乾燥室101と、送風機119とを備えている。乾燥室101は、外槽103および回転ドラム104を有する。送風機119は、乾燥ステップの実行時において、乾燥室101内の空気を循環用通風路114を通して乾燥室101(外槽103および回転ドラム104)内に戻すように循環させる。また、乾燥機102は、蒸発器117および凝縮器118が循環用通風路114内に配置されているヒートポンプ装置123と、乾燥室101に供給される入口空気温度および排出される出口空気温度を検出する入口温度センサ125および出口温度センサ124とを備えている。さらに、乾燥機102の運転全般を制御し、入口空気温度と出口空気温度との温度差に基づいて乾燥完了を判定する制御部127を備えている。蒸発器117および凝縮器118は、圧縮機121などの運転により冷媒が循環するヒートポンプサイクルを構成する。つまり、乾燥室101から排出された高湿空気は、蒸発器117で冷却されて除湿される。ここで絶対湿度が低下した乾燥用空気は、循環用通風路114を介して凝縮器118に至る。凝縮器118を通過した乾燥用空気は、加熱され高温低湿空気となって循環用通風路114を介して給気口120より乾燥室101内に吹き込まれ、衣類を乾燥させる。
7 and 8, the dryer 102 includes a drying chamber 101 in which clothes are accommodated and a blower 119. The drying chamber 101 has an outer tub 103 and a rotating drum 104. The blower 119 circulates the air in the drying chamber 101 so as to return to the drying chamber 101 (the outer tub 103 and the rotating drum 104) through the circulation ventilation path 114 when the drying step is executed. Further, the dryer 102 detects the heat pump device 123 in which the evaporator 117 and the condenser 118 are arranged in the circulation ventilation path 114, and the inlet air temperature supplied to the drying chamber 101 and the outlet air temperature discharged. An inlet temperature sensor 125 and an outlet temperature sensor 124 are provided. Furthermore, a control unit 127 that controls the overall operation of the dryer 102 and determines the completion of drying based on the temperature difference between the inlet air temperature and the outlet air temperature is provided. The evaporator 117 and the condenser 118 constitute a heat pump cycle in which the refrigerant circulates by the operation of the compressor 121 and the like. That is, the high-humidity air discharged from the drying chamber 101 is cooled by the evaporator 117 and dehumidified. Here, the drying air whose absolute humidity has decreased reaches the condenser 118 through the circulation ventilation path 114. The drying air that has passed through the condenser 118 is heated to become high-temperature and low-humidity air, and is blown into the drying chamber 101 from the air supply port 120 through the circulation ventilation path 114 to dry the clothes.
上述した乾燥機102の各機構は、制御部127により運転制御される。制御部127は、乾燥ステップの終了を次のようにして判断する。すなわち、循環用通風路114に設けられた、乾燥室101の入口部分の乾燥用空気の温度を検出する入口温度センサ125、および、乾燥室101の出口部分の乾燥用空気の温度を検出する出口温度センサ124の信号が、制御部127に入力される。制御部127は、乾燥ステップの開始後、それら温度センサにより検出された入口空気温度と出口空気温度との温度差を常に監視する。
The operation of each mechanism of the dryer 102 described above is controlled by the control unit 127. The control unit 127 determines the end of the drying step as follows. That is, the inlet temperature sensor 125 that detects the temperature of the drying air at the inlet portion of the drying chamber 101 and the outlet that detects the temperature of the drying air at the outlet portion of the drying chamber 101 provided in the circulation ventilation path 114. A signal from the temperature sensor 124 is input to the control unit 127. After starting the drying step, the controller 127 constantly monitors the temperature difference between the inlet air temperature and the outlet air temperature detected by the temperature sensors.
図9に示されるように、乾燥運転が開始されて乾燥機の機体が温まり、本格的に衣類の乾燥が進むと、乾燥室101の入口温度センサ125が検知する温度は一定となる。一方で、乾燥室101内の湿った衣類は、乾燥室入口より流入する加熱された乾燥用空気の熱量を奪う。このため、出口温度センサ124が検知する温度は、入口温度センサ125が検知する温度に比べてかなり低い。つまり、この2つの温度センサが検知する温度の差は、乾燥開始時はかなり差があるが、衣類の乾燥が進むにつれて徐々に小さくなる。制御部127は、温度差が所定値(例えば10℃)より下回った場合、乾燥完了と判定する。
As shown in FIG. 9, when the drying operation is started and the body of the dryer is warmed, and the clothing is fully dried, the temperature detected by the inlet temperature sensor 125 of the drying chamber 101 becomes constant. On the other hand, the wet clothing in the drying chamber 101 takes away the amount of heat of the heated drying air flowing from the drying chamber inlet. For this reason, the temperature detected by the outlet temperature sensor 124 is considerably lower than the temperature detected by the inlet temperature sensor 125. That is, the difference between the temperatures detected by the two temperature sensors is considerably different at the start of drying, but gradually decreases as the drying of the clothing proceeds. The control unit 127 determines that the drying is completed when the temperature difference falls below a predetermined value (for example, 10 ° C.).
しかしながら、従来の乾燥機は、2つの温度センサが検知する入口空気温度と出口空気温度との温度の差は、衣類の乾燥が進むにつれて徐々に小さくなるが、温度差の変化度合いはかなり小さくなる。具体的には、図9に示された図において、運転時間が60分ぐらいで実際に衣類が9割ほど乾いたタイミングから、運転時間が100分ぐらいで実際に運転を終了させたタイミングまでは、温度差の変化度合いは極めて小さい。また、この温度差は乾燥機が設置される場所の雰囲気温度に大きく影響を受ける。例えば、雰囲気温度が低い場合、湿った衣類以外に外気にも熱が奪われることで、長時間にわたり温度差値が大きいままである等、温度差検知のバラツキ要因が大きい。そのため、衣類が乾いたと判定する乾燥完了の検知精度が低くなり、衣類が未乾燥のまま運転が終了したり、運転時間が長くなって衣類が過乾燥となったりし、布傷みおよび布縮みなどの不具合を引き起こすなどの問題を有している。
However, in the conventional dryer, the difference between the temperature of the inlet air detected by the two temperature sensors and the temperature of the outlet air gradually decreases as the clothes are dried, but the degree of change in the temperature difference is considerably small. . Specifically, in the diagram shown in FIG. 9, from the timing when the operation time is about 60 minutes and the clothes are actually dried about 90% to the timing when the operation is actually finished after about 100 minutes. The degree of change in temperature difference is extremely small. In addition, this temperature difference is greatly affected by the ambient temperature of the place where the dryer is installed. For example, when the ambient temperature is low, the temperature difference value remains large for a long time because heat is also taken away from the outside air in addition to the wet clothing, and the variation factor of the temperature difference detection is large. Therefore, the detection accuracy of drying completion that determines that the clothes are dry is low, and the operation ends with the clothes remaining undried, or the operation time becomes longer and the clothes become over-dried, such as cloth damage and shrinkage. Have problems such as causing problems.
そこで、温度センサを用いずに、除湿水の通過を発光素子と受光素子とで構成された光センサで検知する方法もある。この場合、受光素子の小さな出力信号を所定のパルス信号に変換する回路が設けられて除湿水検知部とし、検知部信号として所定の電圧で出力している。制御部は、その出力信号を所定の間隔で検知して除湿水の通過として判断している。
Therefore, there is a method of detecting the passage of dehumidified water with an optical sensor composed of a light emitting element and a light receiving element without using a temperature sensor. In this case, a circuit for converting a small output signal of the light receiving element into a predetermined pulse signal is provided as a dehumidified water detection unit, which outputs a detection unit signal at a predetermined voltage. The control unit detects the output signal at a predetermined interval and determines that the dehumidified water has passed.
しかしながら、除湿水1滴が滴下する時のタイミングは、光センサの検知範囲と滴下スピードにもよるが、約50msec.と考えられる。このような瞬間的な除湿水の通過を光センサで検知した場合、除湿水検知部からの出力信号も短時間となり、通常のサンプリング方式の制御部でその出力信号を検知しようとすると、取りこぼしてしまうことがあるという問題がある。また、光センサが設置されている配管内は湿気が充満しており、乾燥機が設置される場所の雰囲気温度によっては、その湿気が配管側壁に付着したりして、光センサの出力信号に対する微小ノイズおよびベースラインの低下につながるという問題がある。
However, the timing when one drop of dehumidified water is dropped depends on the detection range of the optical sensor and the dropping speed, but is about 50 msec. it is conceivable that. When such a momentary passage of dehumidified water is detected with an optical sensor, the output signal from the dehumidified water detection unit will also be short, and if an output signal is detected by a normal sampling control unit, it will be missed. There is a problem that sometimes. Also, the pipe where the optical sensor is installed is full of moisture, and depending on the ambient temperature of the place where the dryer is installed, the moisture may adhere to the side wall of the pipe, and the output signal of the optical sensor There is a problem that it leads to minute noise and a decrease in the baseline.
本発明は、上記のような従来の問題を解決するもので、乾燥室の入口と出口の温度差の影響、および、乾燥機が設置される場所の雰囲気温度の影響などを受けずに、除湿水検知部の出力信号を確実に検知し、乾燥完了のタイミングを的確に判定し、衣類に不具合が発生することを抑制できる衣類乾燥機を提供する。
The present invention solves the conventional problems as described above, and is dehumidified without being affected by the temperature difference between the inlet and outlet of the drying chamber and the ambient temperature of the place where the dryer is installed. Provided is a clothes dryer that can reliably detect an output signal of a water detector, accurately determine the timing of completion of drying, and suppress the occurrence of defects in clothes.
具体的には、本発明の実施の形態の一例による衣類乾燥機は、筐体の内部に、乾燥用空気の給気口および排気口を有する乾燥室と、給気口と排気口とを連通接続する風路と、風路を通して乾燥室内に乾燥用空気を送風する送風機と、風路内に配設された蒸発器および凝縮器を有するヒートポンプ装置とを有する。衣類乾燥機は、さらに、ヒートポンプ装置で発生する除湿水が集められて排水される集排水経路と、集排水経路を水が通過したことを非接触で検知する除湿水センサを有する除湿水検知部と、乾燥運転を制御する制御部とを備える。除湿水検知部は、除湿水センサからの入力信号を所定の閾値と比較した結果によって所定時間以上の出力信号を出力するように構成されている。
Specifically, a clothes dryer according to an example of an embodiment of the present invention communicates a drying chamber having an air supply port and an exhaust port for drying air, and an air supply port and an exhaust port inside the housing. It has an air passage to be connected, a blower for blowing drying air into the drying chamber through the air passage, and a heat pump device having an evaporator and a condenser disposed in the air passage. The clothes dryer further includes a dewatering path for collecting and draining dehumidified water generated by the heat pump device, and a dehumidified water detecting unit that non-contactly detects that the water has passed through the drainage path. And a control unit for controlling the drying operation. The dehumidified water detection unit is configured to output an output signal of a predetermined time or more according to a result of comparing an input signal from the dehumidified water sensor with a predetermined threshold.
上記のような構成によれば、乾燥運転でヒートポンプ装置の蒸発器で発生した除湿水は集排水経路を流れ、除湿水検知部は非接触でこの除湿水を確実に検知して所定時間以上の出力信号を出力する。また、制御部は、この出力信号を取りこぼすことがなく、風路および周囲の温度の影響を受けずに、乾燥完了のタイミングを精度良く的確に判定し、衣類に不具合が発生することを抑制できる。
According to the above configuration, the dehumidified water generated in the evaporator of the heat pump device in the drying operation flows through the drainage path, and the dehumidified water detection unit reliably detects the dehumidified water in a non-contact manner for a predetermined time or more. Output the output signal. In addition, the control unit will not miss this output signal, and will be able to accurately and accurately determine the timing of completion of drying without being affected by the temperature of the air path and surroundings, thereby suppressing the occurrence of defects in clothing. it can.
以下、本発明の実施の形態の一例について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態)
図1は、本発明の実施の形態の一例による衣類乾燥機50の内部構造を説明するための概略図である。図1において、外槽1は乾燥室を構成する。外槽1は、衣類乾燥機50の筐体2の内部で、複数の防振機構3により弾性的に支持されている。ドラム4は、外槽1内に設けられ、洗濯物の衣類5を収容する。ドラム4は、正面側に衣類5を出し入れする投入口6を有し、有底筒状に構成され、回転シャフト11で回転可能に支持されている。また、ドラム4は、底壁7aに乾燥用空気が流入する複数の流入孔8aを有し、周壁7bに乾燥用空気が排出される複数の排出孔8bを有する。また、周壁7bの内面には、衣類5を効率的に持ち上げるための攪拌バッフル9を備えている。外槽1、ドラム4および回転シャフト11は、水平に対して角度θ(例えば10°~20°)だけ前上がりに傾けられて配置されている。なお、外槽1、ドラム4および回転シャフト11は、傾けられて配置される態様に限定されるものではなく、水平に配置されていてもよい。 (Embodiment)
FIG. 1 is a schematic diagram for explaining an internal structure of aclothes dryer 50 according to an example of an embodiment of the present invention. In FIG. 1, an outer tub 1 constitutes a drying chamber. The outer tub 1 is elastically supported by a plurality of vibration isolation mechanisms 3 inside the housing 2 of the clothes dryer 50. The drum 4 is provided in the outer tub 1 and accommodates laundry clothes 5. The drum 4 has an insertion port 6 through which a garment 5 is taken in and out on the front side, is configured in a bottomed cylindrical shape, and is rotatably supported by a rotary shaft 11. The drum 4 has a plurality of inflow holes 8a through which drying air flows into the bottom wall 7a, and a plurality of discharge holes 8b through which the drying air is discharged into the peripheral wall 7b. A stirring baffle 9 for efficiently lifting the garment 5 is provided on the inner surface of the peripheral wall 7b. The outer tub 1, the drum 4 and the rotating shaft 11 are disposed so as to be inclined forwardly by an angle θ (for example, 10 ° to 20 °) with respect to the horizontal. In addition, the outer tub 1, the drum 4, and the rotating shaft 11 are not limited to the aspect arrange | positioned inclined, You may arrange | position horizontally.
図1は、本発明の実施の形態の一例による衣類乾燥機50の内部構造を説明するための概略図である。図1において、外槽1は乾燥室を構成する。外槽1は、衣類乾燥機50の筐体2の内部で、複数の防振機構3により弾性的に支持されている。ドラム4は、外槽1内に設けられ、洗濯物の衣類5を収容する。ドラム4は、正面側に衣類5を出し入れする投入口6を有し、有底筒状に構成され、回転シャフト11で回転可能に支持されている。また、ドラム4は、底壁7aに乾燥用空気が流入する複数の流入孔8aを有し、周壁7bに乾燥用空気が排出される複数の排出孔8bを有する。また、周壁7bの内面には、衣類5を効率的に持ち上げるための攪拌バッフル9を備えている。外槽1、ドラム4および回転シャフト11は、水平に対して角度θ(例えば10°~20°)だけ前上がりに傾けられて配置されている。なお、外槽1、ドラム4および回転シャフト11は、傾けられて配置される態様に限定されるものではなく、水平に配置されていてもよい。 (Embodiment)
FIG. 1 is a schematic diagram for explaining an internal structure of a
モータなどの駆動装置10は、外槽1の外部に設けられ、回転シャフト11を介してドラム4を正方向または逆方向に回転させる。筐体2の前面には、衣類5が出し入れされる略円形状の投入口6と、これを開閉する扉12が設けられている。投入口6と対向する外槽1の開口部は、パッキン13によって筐体2と気密性を確保して連結されている。なお、駆動装置10の駆動方式は、外槽1の背面外部に設けられてドラム4を直接駆動する直接駆動方式に限られず、ベルト駆動方式およびギア駆動方式などであってもよい。
A driving device 10 such as a motor is provided outside the outer tub 1 and rotates the drum 4 in the forward direction or the reverse direction via the rotating shaft 11. On the front surface of the housing 2, there are provided a substantially circular slot 6 through which clothes 5 are put in and out and a door 12 for opening and closing the slot. The opening of the outer tub 1 facing the charging port 6 is connected to the housing 2 by a packing 13 while ensuring airtightness. The driving method of the driving device 10 is not limited to the direct driving method that is provided outside the back surface of the outer tub 1 and directly drives the drum 4, and may be a belt driving method, a gear driving method, or the like.
外槽1の上方には、外槽1およびドラム4を含む風路として空気循環路14が構成されている。なお、本実施の形態では、空気循環路14内を循環する空気を乾燥用空気と称する。空気循環路14は、外槽1の出口である排気口15から出た乾燥用空気が、リントフィルタ16、蒸発器17、凝縮器18および送風機19の順に通過して、外槽1の入口である給気口20を介して再度、外槽1およびドラム4の内部へ循環するように構成されている。
An air circulation path 14 is formed above the outer tank 1 as an air path including the outer tank 1 and the drum 4. In the present embodiment, air circulating in the air circulation path 14 is referred to as drying air. The air circulation path 14 passes through the lint filter 16, the evaporator 17, the condenser 18, and the blower 19 in this order, and the drying air that has exited from the exhaust port 15 that is the outlet of the outer tank 1 passes through the air circulation path 14. It is configured to circulate again into the outer tub 1 and the drum 4 through a certain air supply port 20.
リントフィルタ16は、衣類5から発生して乾燥用空気に含まれる毛および綿くずなどのリントを捕捉する。これにより、蒸発器17、凝縮器18および送風機19でのリント堆積による目詰まりを防止し、風量低下などの不具合を抑制する。リントフィルタ16は、衣類乾燥機本体から脱着可能に設けられており、使用者が捕捉されたリントを廃棄することができる。送風機19は、ファンを駆動するファンモータ19aを具備し、空気循環路14を通して外槽1に乾燥用空気を送風し、循環させる。
The lint filter 16 captures lint such as hair and cotton waste generated from the clothing 5 and contained in the drying air. Thereby, clogging due to lint accumulation in the evaporator 17, the condenser 18, and the blower 19 is prevented, and problems such as a decrease in the air volume are suppressed. The lint filter 16 is detachable from the clothes dryer main body, and the lint captured by the user can be discarded. The blower 19 includes a fan motor 19 a that drives a fan, and blows and circulates drying air through the air circulation path 14 to the outer tub 1.
蒸発器17および凝縮器18は、冷媒が流れる配管と、冷媒と空気との熱交換を促進させるフィンとで構成される熱交換器である。ヒートポンプ装置23は、吸入した冷媒を圧縮して吐出する圧縮機21、圧縮されて高圧高温となった冷媒と空気とを熱交換させる凝縮器18、高圧の冷媒を減圧する絞り部22、減圧されて低温となった冷媒と空気とを熱交換させる蒸発器17を有し、これらが配管により冷媒が循環できるように接続されて構成されている。ヒートポンプ装置23は、空気循環路14の配置に合わせて、外槽1の上方もしくは筐体2の内部の上方に設けられている。
The evaporator 17 and the condenser 18 are heat exchangers configured by piping through which the refrigerant flows and fins that promote heat exchange between the refrigerant and the air. The heat pump device 23 includes a compressor 21 that compresses and discharges the sucked refrigerant, a condenser 18 that exchanges heat between the compressed high-pressure and high-temperature refrigerant and air, a throttle unit 22 that depressurizes the high-pressure refrigerant, and a reduced pressure. It has an evaporator 17 for exchanging heat between the refrigerant and the air that has become low in temperature, and these are connected so that the refrigerant can circulate through a pipe. The heat pump device 23 is provided above the outer tub 1 or inside the housing 2 in accordance with the arrangement of the air circulation path 14.
集排水経路26は、蒸発器17の下方に配設された排水流路であり、蒸発器17により乾燥用空気の水分が凝縮されて発生する除湿水を集めて筐体2の外に排出する。また、除湿水検知部29は、水を検知する除湿水センサ28を有する。除湿水センサ28は、集排水経路26の途中で蒸発器17とはさほど離れない位置に取り付けられて、除湿水が集排水経路26を通過したことを検知する。除湿水センサ28は、除湿水が集排水経路26を通過したことを非接触で検知できるものであれば、その形態や方式は特に限定されないが、本実施の形態においては、発光素子28aと受光素子28bとで構成された光センサを用いた方式について具体的に説明する。
The drainage / drainage path 26 is a drainage flow path disposed below the evaporator 17, collects dehumidified water generated by condensation of moisture in the drying air by the evaporator 17, and discharges it to the outside of the housing 2. . Moreover, the dehumidified water detection part 29 has the dehumidification water sensor 28 which detects water. The dehumidified water sensor 28 is attached to a position not far from the evaporator 17 in the middle of the collection / drainage path 26 and detects that the dehumidification water has passed through the collection / drainage path 26. The form and method of the dehumidified water sensor 28 are not particularly limited as long as the dehumidified water can detect that the dehumidified water has passed through the collection / drainage path 26, but in the present embodiment, the light-emitting element 28a and the light-receiving element are not limited. A method using an optical sensor composed of the element 28b will be specifically described.
図2は、本発明の実施の形態の一例による衣類乾燥機50の除湿水センサである光センサ、および、除湿水が通過する様子を示した模式図である。除湿水センサ28は、1対の発光素子28aと受光素子28bとが対向するように、集排水経路26の側面外側に密着して設けられている。除湿水センサ28は、後述する除湿水検知部29の回路に組み込まれ、発光素子28aからの光を受光素子28bが受けて光強度を測定する。これによって、ヒートポンプ装置23の蒸発器17発生した除湿水の通過を検知することができる。具体的には、除湿水が無い場合は、発光素子28aから受光素子28bに光がそのまま入射するが、除湿水が流れると、発光素子28aからの光は除湿水によって遮られ、受光素子28bに入射する光が減少することで受光素子28bの出力が変化し、除湿水の有無を検知することができる。
FIG. 2 is a schematic diagram showing an optical sensor that is a dehumidifying water sensor of the clothes dryer 50 according to an example of the embodiment of the present invention and a state in which the dehumidifying water passes. The dehumidified water sensor 28 is provided in close contact with the outside of the side surface of the drainage path 26 so that the pair of light emitting elements 28a and light receiving elements 28b face each other. The dehumidified water sensor 28 is incorporated in a circuit of the dehumidified water detection unit 29 described later, and the light receiving element 28b receives light from the light emitting element 28a and measures the light intensity. Thereby, the passage of the dehumidified water generated in the evaporator 17 of the heat pump device 23 can be detected. Specifically, when there is no dehumidified water, light enters the light receiving element 28b as it is from the light emitting element 28a. However, when the dehumidified water flows, the light from the light emitting element 28a is blocked by the dehumidified water and is received by the light receiving element 28b. As the incident light decreases, the output of the light receiving element 28b changes, and the presence or absence of dehumidified water can be detected.
なお、非接触式の除湿水センサ28は、接触式のセンサと比較して集排水経路26の内部に突起物がない。このため、除湿水に混じっている綿くずおよび毛などのリントがセンサ部に引っかかることがないという利点がある。
In addition, the non-contact type dehumidified water sensor 28 does not have protrusions in the collection / drainage path 26 as compared with the contact type sensor. For this reason, there is an advantage that lint such as cotton lint and hair mixed in the dehumidified water is not caught by the sensor unit.
また、制御部27は、筐体2内の前面上部に備えられている。制御部27は、使用者が操作表示部27aから行う運転設定に基づいて、各種検知部からの入力などを監視しながら駆動装置10および送風機19などを制御し、衣類乾燥機50の運転を実行する。
Further, the control unit 27 is provided in the upper part of the front surface in the housing 2. The control unit 27 controls the driving device 10 and the blower 19 while monitoring the input from various detection units based on the operation setting performed by the user from the operation display unit 27a, and executes the operation of the clothes dryer 50. To do.
以上のように構成された衣類乾燥機50について、以下にその動作および作用を説明する。
About the clothes dryer 50 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
制御部27が乾燥運転を開始すると、ドラム4は濡れた衣類5を内部に収容した状態で回転する。乾燥用空気は、送風機19によって空気循環路14を循環する。まず、凝縮器18によって加熱された乾燥用空気は、給気口20から外槽1を経てドラム4内に流入する。ドラム4内に流入した乾燥用空気は、濡れた衣類5と接触する。衣類5は、乾燥用空気により熱せられ、水分が蒸発して乾く。一方、乾燥用空気は、衣類に熱を奪われて温度が下がり、水分を多量に含んだ高湿状態となる。ドラム4内の高湿状態の乾燥用空気は、外槽1を経て排気口15から流出する。外槽1から流出した乾燥用空気は、蒸発器17で吸熱、すなわち冷却されて除湿される。その後、乾燥用空気は、凝縮器18に至り、再び加熱されて高温低湿の空気となる。乾燥用空気は、このように空気循環路14内を循環してドラム4内の衣類5を乾燥させる。
When the control unit 27 starts the drying operation, the drum 4 rotates with the wet clothing 5 accommodated therein. The drying air circulates through the air circulation path 14 by the blower 19. First, the drying air heated by the condenser 18 flows into the drum 4 from the air supply port 20 through the outer tub 1. The drying air that has flowed into the drum 4 comes into contact with the wet clothing 5. The clothes 5 are heated by the drying air, and the moisture evaporates to dry. On the other hand, the drying air is deprived of heat by the clothing and decreases in temperature, resulting in a high humidity state containing a large amount of moisture. The high-humidity drying air in the drum 4 flows out from the exhaust port 15 through the outer tub 1. The drying air that has flowed out of the outer tub 1 absorbs heat, that is, is cooled and dehumidified by the evaporator 17. Thereafter, the drying air reaches the condenser 18 and is heated again to become high-temperature and low-humidity air. Thus, the drying air circulates in the air circulation path 14 to dry the clothes 5 in the drum 4.
このとき、凝縮器18から乾燥用空気へ放出される熱エネルギーは、圧縮機21の消費電力相当分の熱量と蒸発器17で吸熱される熱量との和にほぼ等しい。このため、圧縮機21へ入力された電力以上の出力が凝縮器18から得られ、電気ヒータと比較して少ない消費電力で衣類5を乾燥できる。
At this time, the thermal energy released from the condenser 18 to the drying air is approximately equal to the sum of the amount of heat corresponding to the power consumption of the compressor 21 and the amount of heat absorbed by the evaporator 17. For this reason, the output more than the electric power input into the compressor 21 is obtained from the condenser 18, and the garment 5 can be dried with less power consumption compared with an electric heater.
ヒートポンプ装置23を用いた乾燥運転中は、蒸発器17の温度は、5℃~15℃と常に冷たい状態になる。ドラム4から流出した高湿状態の乾燥用空気は、蒸発器17により急激に冷やされる。これにより、蒸発器17の表面で水分が凝縮して水滴が発生する。ここで発生した水滴同士が結合し、ある程度の大きさの水滴となると、除湿水として蒸発器17の下方に滴下する。滴下した除湿水は、集排水経路26に集められ、川の流れのような常に継続した流れではなく、断続的に集排水経路26内を流れる。このとき、除湿水センサ28は、除湿水が集排水経路26を通過したことを非接触で検知し、信号を出力する。この信号は、除湿水が存在すると出力が高くなり(例えば、4.5V)、除湿水が存在しないと出力が低くなる(例えば、4V未満)。なお、除湿水センサ28は、本実施の形態においては、常に除湿水の有無を検知している。
During the drying operation using the heat pump device 23, the temperature of the evaporator 17 is always in a cold state of 5 ° C to 15 ° C. The high-humidity drying air that has flowed out of the drum 4 is rapidly cooled by the evaporator 17. Thereby, water is condensed on the surface of the evaporator 17 to generate water droplets. When the water droplets generated here are combined to form a water droplet of a certain size, the water droplet is dropped below the evaporator 17 as dehumidified water. The dehumidified water dripped is collected in the collection / drainage path 26 and flows in the collection / drainage path 26 intermittently, not a continuous flow like a river flow. At this time, the dehumidified water sensor 28 detects that the dehumidified water has passed through the drainage path 26 in a non-contact manner, and outputs a signal. The output of this signal is high when dehumidified water is present (for example, 4.5 V), and is low when dehumidified water is not present (for example, less than 4 V). In this embodiment, the dehumidified water sensor 28 always detects the presence or absence of dehumidified water.
図3は、本実施の形態における衣類乾燥機50の除湿水検知部29の回路図である。図3において、除湿水検知部29に組み込まれた除湿水センサ28の受光素子28bは、赤外受光フォトダイオードで構成されている。除湿水検知部29は、信号の大きさを比較するコンパレータ回路29aを有しており、受光素子28bが受けた光強度の信号がコンパレータ回路29aに入力される。コンパレータ回路29aは、この入力信号を所定の閾値と比較し、その結果によって出力信号を発生する。本実施の形態では、この閾値は第1の閾値として、例えば、除湿水の通過と、除湿水センサ28の曇りなどによるノイズとを区別できる程度の電圧に設定される。コンパレータ回路29aは、入力信号の大きさが第1の閾値以上のときに所定の信号を出力するように設定されている。なお、本実施の形態では、コンパレータ回路29aは、反転コンパレータであり、第1の閾値未満の入力信号では5Vの出力信号を発生し、第1の閾値以上の入力信号があったときには、0Vの出力信号を発生させるように設定されている。
FIG. 3 is a circuit diagram of the dehumidified water detection unit 29 of the clothes dryer 50 in the present embodiment. In FIG. 3, the light receiving element 28b of the dehumidified water sensor 28 incorporated in the dehumidified water detection unit 29 is composed of an infrared light receiving photodiode. The dehumidified water detection unit 29 includes a comparator circuit 29a that compares the magnitudes of the signals, and a light intensity signal received by the light receiving element 28b is input to the comparator circuit 29a. The comparator circuit 29a compares this input signal with a predetermined threshold value and generates an output signal according to the result. In the present embodiment, this threshold is set as a first threshold, for example, at a voltage that can distinguish between the passage of dehumidified water and noise due to fogging of the dehumidified water sensor 28. The comparator circuit 29a is set to output a predetermined signal when the magnitude of the input signal is greater than or equal to the first threshold value. In the present embodiment, the comparator circuit 29a is an inverting comparator, which generates an output signal of 5V when the input signal is less than the first threshold, and when there is an input signal greater than or equal to the first threshold, It is set to generate an output signal.
また、除湿水検知部29は、出力信号固定回路29bを有している。出力信号固定回路29bは、その出力信号が所定時間の出力信号となるように出力する。
The dehumidified water detection unit 29 has an output signal fixing circuit 29b. The output signal fixing circuit 29b outputs the output signal so that it becomes an output signal for a predetermined time.
具体的には、コンパレータ回路29aにおける入力信号の第1の閾値が、例えば4Vに設定されているとすると、通常何もないときは、コンパレータ回路29aに4V未満の入力信号があり、コンパレータ回路29aは5Vの出力信号を発生している。そして、除湿水が通過して受光素子28bに達する光が少なくなり、コンパレータ回路29aに第1の閾値である4V以上の入力信号が入力されると、コンパレータ回路29aは0Vの出力信号を発生させる。さらに、この0Vの出力信号が発生した場合、そのままでは除湿水が通過する一瞬のタイミングで、例えば50msec.程度の場合もあるので、出力信号固定回路29bにより、所定時間、例えば100msec.の間、出力信号を維持する。これによって、制御部27は、除湿水検知部29の出力信号を取りこぼすことなく、微小な除湿水も的確に検知することができるようになる。
Specifically, if the first threshold value of the input signal in the comparator circuit 29a is set to 4 V, for example, when there is usually nothing, the comparator circuit 29a has an input signal of less than 4 V, and the comparator circuit 29a Generates a 5V output signal. Then, when the dehumidified water passes through and the light reaching the light receiving element 28b is reduced, and the input signal of 4V or more which is the first threshold value is input to the comparator circuit 29a, the comparator circuit 29a generates an output signal of 0V. . Furthermore, when this 0V output signal is generated, if it is left as it is, for example, 50 msec. In some cases, the output signal fixing circuit 29b causes a predetermined time, for example, 100 msec. During this period, the output signal is maintained. As a result, the control unit 27 can accurately detect minute dehumidified water without losing the output signal of the dehumidified water detection unit 29.
図4は、本実施の形態における衣類乾燥機50の乾燥運転時における除湿水検知部29の出力信号の推移を示す図である。除湿水が集排水経路26を通過したタイミングを検知した除湿水検知部29の出力信号により、「水通過あり」または「水通過なし」を判断することができるようにプロットされている。なお、本実施の形態における衣類乾燥機50は、従来の乾燥機で完了検知をしていたのと同様に、乾燥室であるドラム4の出入口の各々に、温度検知部(ドラム出口にはサーミスタ24、および、ドラム入口にはサーミスタ25)を備えており、これらの温度の推移も示している。
FIG. 4 is a diagram showing the transition of the output signal of the dehumidified water detection unit 29 during the drying operation of the clothes dryer 50 in the present embodiment. It is plotted so that “with water passage” or “without water passage” can be determined based on the output signal of the dehumidification water detection unit 29 that detects the timing when the dehumidification water passes through the collection and drainage path 26. Note that the clothes dryer 50 in the present embodiment has a temperature detection unit (a thermistor at the drum outlet) at each of the entrances and exits of the drum 4 that is a drying chamber, in the same manner as the completion detection by the conventional dryer. 24, and a thermistor 25) at the drum inlet, and these temperature transitions are also shown.
図4より、乾燥運転が開始され、衣類5の乾燥が進むにつれて除湿水が発生し、約25分経過した時点で集排水経路26を連続的に通過していることがわかる。そして、運転開始から約60分経過した時点で、徐々に除湿水検知部29からの出力信号が少なくなってきている。これは、乾燥が十分に進んできていることを示す。この運転の例で言えば、除湿水検知部29からの出力信号がなくなったタイミングでは衣類5はすでに乾燥してしまっている状態であり、これ以上乾燥運転を続行すると過乾燥の状態となる。したがって、それ以前に乾燥完了と判定し、適切な乾燥延長時間を設定する必要がある。
From FIG. 4, it can be seen that dehumidified water is generated as the drying operation is started and the garment 5 is dried, and continuously passes through the drainage channel 26 when about 25 minutes have passed. Then, when about 60 minutes have elapsed from the start of operation, the output signal from the dehumidified water detection unit 29 gradually decreases. This indicates that the drying has progressed sufficiently. In the example of this operation, the clothing 5 is already dried at the timing when the output signal from the dehumidified water detection unit 29 is lost, and if the drying operation is further continued, the clothes 5 are overdried. Therefore, it is necessary to determine that drying is completed before that and set an appropriate drying extension time.
制御部27は、除湿水検知部29からの出力信号が、単位時間当たり、例えば1分間に何回得られたかをカウントする。例えば、100msec.おきに1分間、第2の閾値を例えば2Vとして出力信号の有無を検知し、第2の閾値以下の出力信号をカウントする。そして、制御部27は、このカウント数が所定値以下になるなどして所定の条件を満足すれば、乾燥完了と判定する。例えば、制御部27が、除湿水検知部29からの出力信号を100msec.おきに1分間カウントする場合、全部で600回検知することとなるが、除湿水が徐々に少なくなって出力信号を検知した回数が、例えば1分間に20カウント以下になれば、乾燥完了と判定することができる。
The control unit 27 counts how many times the output signal from the dehumidified water detection unit 29 is obtained per unit time, for example, per minute. For example, 100 msec. Every other minute, the second threshold is set to 2 V, for example, and the presence or absence of an output signal is detected, and output signals equal to or lower than the second threshold are counted. Then, the control unit 27 determines that the drying is completed when the predetermined number of conditions is satisfied, for example, when the count number is equal to or less than a predetermined value. For example, the control unit 27 outputs an output signal from the dehumidified water detection unit 29 to 100 msec. When counting every other minute, it will be detected 600 times in total, but if the number of times that the dehumidified water gradually decreases and the output signal is detected becomes 20 counts or less per minute, for example, it is determined that the drying is completed. can do.
つぎに、本実施の形態における乾燥運転の処理手順を説明する。図5は、本実施の形態における衣類乾燥機50の乾燥運転における処理手順を示すフローチャートである。
Next, the processing procedure of the drying operation in the present embodiment will be described. FIG. 5 is a flowchart showing a processing procedure in the drying operation of the clothes dryer 50 in the present embodiment.
まず、衣類乾燥機50のドラム4内に、乾燥させたい衣類5が使用者により投入される(ステップS0)。使用者は、操作表示部27aにより衣類5の乾燥度合いなどの運転設定を行い、運転ボタンを押下する。制御部27は、駆動装置10によりドラム4を回転させて衣類5の容量を検知し、ヒートポンプ装置23を起動して、乾燥運転を開始する(ステップS1)。乾燥運転がスタートすると、ヒートポンプ装置23によって暖められた乾燥用空気が回転するドラム4内に供給され、乾燥用空気が衣類5を熱した後、ドラム4から排出される。
First, clothes 5 to be dried are put into the drum 4 of the clothes dryer 50 by the user (step S0). The user performs operation settings such as the degree of drying of the clothes 5 by using the operation display unit 27a, and presses the operation button. The control unit 27 rotates the drum 4 by the driving device 10 to detect the capacity of the clothing 5, activates the heat pump device 23, and starts a drying operation (step S1). When the drying operation starts, the drying air warmed by the heat pump device 23 is supplied into the rotating drum 4, and the drying air heats the clothes 5 and is then discharged from the drum 4.
制御部27は、ヒートポンプ装置23の運転が始まって、乾燥用空気によって衣類5が暖められるのを待ち、例えば10分後からドラム入口温度(サーミスタ25)の検知を行う(ステップS2)。ドラム入口温度が所定の温度、例えば50℃以上になったら、除湿水検知部29の出力信号を検知して乾燥が完了したかどうかの判定を開始する(ステップS3)。
The control unit 27 waits for the clothing 5 to be warmed by the drying air when the operation of the heat pump device 23 is started, and detects the drum inlet temperature (thermistor 25), for example, after 10 minutes (step S2). When the drum inlet temperature reaches a predetermined temperature, for example, 50 ° C. or higher, the output signal of the dehumidified water detection unit 29 is detected to determine whether or not the drying is completed (step S3).
除湿水検知部29において、除湿水センサ28が除湿水を検知すると、受光量の変化に応じて信号が出力される。その出力された信号がコンパレータ回路29aに入力されてパルス信号として出力される。さらに、出力信号固定回路29bで所定時間、例えば100msec.のパルス信号として出力信号が出力される。制御部27は、出力信号の時間長さに合わせて、例えば100msec.のパルス信号の場合は100msec.ごとに、この出力信号を検知する(ステップS4)。出力信号が100msec.のパルス信号の場合は、制御部27は、少なくとも100msec.以下のタイミングで検知すれば、出力信号を取りこぼすことがなく、時間長さを合わせれば、出力信号の回数を正確に検知することができる。
In the dehumidified water detection unit 29, when the dehumidified water sensor 28 detects dehumidified water, a signal is output according to the change in the amount of received light. The output signal is input to the comparator circuit 29a and output as a pulse signal. Further, in the output signal fixing circuit 29b, a predetermined time, for example, 100 msec. An output signal is output as a pulse signal. The controller 27 adjusts to the time length of the output signal, for example, 100 msec. In the case of a pulse signal of 100 msec. Each time, this output signal is detected (step S4). The output signal is 100 msec. In the case of the pulse signal, the control unit 27 is at least 100 msec. If the detection is performed at the following timing, the output signal is not missed, and if the time length is matched, the number of output signals can be detected accurately.
制御部27は、検知した出力信号が第2の閾値(2V)以下であるかどうかを判定し(ステップS5)、所定時間(例えば1分間)における第2の閾値以下(ステップS5のYes)の回数をカウントする(ステップS6)。なお、出力信号は、基本的には5Vか0Vであるが、ノイズなどの影響を考慮して第2の閾値が設けられている。所定時間(例えば1分間)のカウント数を複数の履歴で保持しておき(ステップS7)、このカウント数が第3の閾値(例えば、直近2分間で合計150カウント)以下であるかどうかを判断し(ステップS8)、第3の閾値以下にならなければ(ステップS8のNo)、ステップS4に戻って所定のカウントを繰り返して行う。また、第3の閾値以下になったら(ステップS8のYes)、操作表示部27aに表示されている残時間表示を変更する(ステップS9)。ここで表示される残時間は、もう少し乾燥が必要な時間、例えば30分を表示する。
The control unit 27 determines whether or not the detected output signal is equal to or lower than the second threshold (2V) (step S5), and is equal to or lower than the second threshold (Yes in step S5) for a predetermined time (for example, 1 minute). The number of times is counted (step S6). Note that the output signal is basically 5 V or 0 V, but a second threshold is provided in consideration of the influence of noise and the like. The number of counts for a predetermined time (for example, 1 minute) is held in a plurality of histories (step S7), and it is determined whether or not the number of counts is equal to or less than a third threshold (for example, a total of 150 counts in the last 2 minutes). However (step S8), if not less than the third threshold (No in step S8), the process returns to step S4 and repeats a predetermined count. Moreover, if it becomes below a 3rd threshold value (Yes of step S8), the remaining time display currently displayed on the operation display part 27a will be changed (step S9). The remaining time displayed here is a time that needs a little more drying, for example, 30 minutes.
さらに、除湿水検知部29の出力信号の検知およびカウントは継続されており、カウント数が第3の閾値より小さい条件である第4の閾値(例えば、1分間20カウント以下が3分間継続)が満足されたら(ステップS10のYes)、制御部27は乾燥完了と判定する(ステップS11)。制御部27は、乾燥完了と判定すると、残時間表示を変更する。ここで表示される残時間は、仕上げのための乾燥延長時間であり、例えば10分が表示される(ステップS12)。制御部27は、この乾燥延長時間だけ乾燥運転を継続した後、乾燥運転を終了する(ステップS13)。
Furthermore, detection and counting of the output signal of the dehumidified water detection unit 29 are continued, and a fourth threshold value (for example, 20 counts per minute or less continues for 3 minutes), which is a condition where the count number is smaller than the third threshold value. If satisfied (Yes in step S10), the control unit 27 determines that the drying is completed (step S11). When determining that the drying is completed, the control unit 27 changes the remaining time display. The remaining time displayed here is the drying extension time for finishing, for example, 10 minutes is displayed (step S12). The control unit 27 ends the drying operation after continuing the drying operation for the extended drying time (step S13).
図6は、本実施の形態の衣類乾燥機50の乾燥運転における除湿水検知部の出力信号のカウント数の推移を示す図である。乾燥状態が進んでいくにつれて除湿水検知部29出力信号のカウント数が少なくなって、除湿水の滴下の回数が少なくなってきていることがわかる。従って、制御部27は、このカウント数が第4の閾値を満足すると乾燥完了と判定し、それ以降は所定の乾燥延長時間だけ乾燥運転を継続した後、乾燥運転を終了させる。これにより、衣類5の未乾燥、および、過乾燥による布傷みや布縮みなどの不具合が発生することなく、衣類5を適切な状態に乾燥させることができる。
FIG. 6 is a graph showing the transition of the count number of the output signal of the dehumidified water detector in the drying operation of the clothes dryer 50 of the present embodiment. It can be seen that as the drying state progresses, the count number of the output signal of the dehumidified water detection unit 29 decreases, and the number of times the dehumidified water is dropped is decreased. Therefore, the control unit 27 determines that the drying is completed when the count number satisfies the fourth threshold, and thereafter, after the drying operation is continued for a predetermined drying extension time, the drying operation is terminated. Accordingly, the garment 5 can be dried to an appropriate state without causing problems such as undried garment 5 and fabric damage or shrinkage due to overdrying.
なお、乾燥完了の判定までの第3の閾値や第4の閾値、および乾燥延長時間などは、乾燥運転開始時に検知された衣類容量に応じて変更することができる。例えば、第3の閾値において、衣類容量が少ないほど直近2分間の合計カウントを小さくするなど変更してもよい。また、乾燥完了の判定となる第4の閾値において、単位時間当たりのカウント数および継続時間を変更しても良い。また、乾燥延長時間は、従来、衣類5の容量に関係なく、例えば20分間と設定されていたが、衣類容量によって自動設定が可能とすると、衣類容量が規定量のときは乾燥延長時間を20分、規定量の半分程度のときは10分、および、少量のときは5分と設定されて運転する、などのように変更することが可能となる。このように最適な乾燥延長時間を用いることによって、エネルギー消費を少なくして、衣類容量に応じて適切な乾燥状態で乾燥運転を終了させることができる。
It should be noted that the third threshold value, the fourth threshold value, and the drying extension time until the completion of drying can be changed according to the clothing capacity detected at the start of the drying operation. For example, in the third threshold value, the total count for the last two minutes may be decreased as the clothing capacity is decreased. Further, in the fourth threshold value that is the determination of the completion of drying, the count number per unit time and the duration time may be changed. Further, the drying extension time is conventionally set to 20 minutes, for example, regardless of the capacity of the clothing 5, but if automatic setting is possible depending on the clothing capacity, the drying extension time is set to 20 when the clothing capacity is a specified amount. It is possible to change such as 10 minutes when the minute and half of the specified amount, and 5 minutes when the amount is small. By using the optimum drying extension time in this way, energy consumption can be reduced and the drying operation can be terminated in an appropriate drying state according to the clothing capacity.
また、制御部27は、単位時間当たりのカウント数の変化から乾燥速度を求め、衣類5の乾燥率を算出するように構成されていてもよい。このような構成により、制御部27は乾燥運転の途中に乾燥速度を求め、乾燥率を算出することにより、乾燥完了のタイミングを予測して精度良く判定することができる。
Further, the control unit 27 may be configured to calculate a drying rate of the clothing 5 by obtaining a drying speed from a change in the number of counts per unit time. With such a configuration, the control unit 27 can determine the drying speed during the drying operation and calculate the drying rate, thereby predicting the timing of completion of drying and accurately determining the timing.
また、除湿水センサ28は、水が集排水経路26を通過することで静電容量が変化する静電センサで構成されていてもよい。このような構成により、制御部27は、集排水経路26を通過する除湿水を静電センサにより非接触で検知し、静電容量の変化で周期時間を計測し、除湿水の量を検知することができる。
Further, the dehumidified water sensor 28 may be composed of an electrostatic sensor whose capacitance changes as the water passes through the collection / drainage path 26. With such a configuration, the control unit 27 detects the dehumidified water passing through the collection and drainage path 26 in a non-contact manner by the electrostatic sensor, measures the period time based on the change in capacitance, and detects the amount of the dehumidified water. be able to.
以上説明したように、本発明の実施の形態の一例による衣類乾燥機50の構成により、ヒートポンプ装置の凝縮器により熱せられた乾燥用空気は、ドラム内の衣類を熱して水分を蒸発させ、乾燥用空気は蒸発器により除湿されて除湿水を発生させ、除湿水は集排水経路を流れる。除湿水検知部は、除湿水の通過を検知した除湿水センサからの入力信号を所定の閾値(第1の閾値)と比較した結果によって所定時間の出力信号を出力するように構成されている。このような構成により、制御部は、出力信号を取りこぼすことがなく、間接的にドラム内の衣類が乾燥したタイミングを精度良く的確に判定し、衣類に不具合が発生することを抑制できる。さらに、ドラムの入口と出口の温度差に影響を受けない上に、衣類乾燥機の設置される環境の雰囲気温度の影響も受けずに、乾燥完了のタイミングを精度良く検知できる。
As described above, with the structure of the clothes dryer 50 according to an example of the embodiment of the present invention, the drying air heated by the condenser of the heat pump device heats the clothes in the drum to evaporate moisture, and then dries. The working air is dehumidified by an evaporator to generate dehumidified water, and the dehumidified water flows through the collection and drainage path. The dehumidified water detection unit is configured to output an output signal for a predetermined time based on a result of comparing an input signal from the dehumidified water sensor that has detected the passage of the dehumidified water with a predetermined threshold (first threshold). With such a configuration, the control unit can accurately and accurately determine the timing at which the clothes in the drum are dried indirectly without missing the output signal, and can suppress the occurrence of defects in the clothes. Furthermore, the timing of the completion of drying can be accurately detected without being affected by the temperature difference between the inlet and outlet of the drum and without being affected by the ambient temperature of the environment where the clothes dryer is installed.
また、制御部は、除湿水検知部の出力信号を所定時間以下の間隔で検知し、出力信号を検知した回数をカウントして所定の条件(第4の閾値)を満足したときに乾燥完了と判定するように構成されている。このような構成により、制御部は、乾燥完了を的確に判定することができる。
Further, the control unit detects the output signal of the dehumidified water detection unit at intervals of a predetermined time or less, counts the number of times the output signal is detected, and completes the drying when a predetermined condition (fourth threshold value) is satisfied. It is configured to determine. With such a configuration, the control unit can accurately determine the completion of drying.
また、制御部は、時間を表示する操作表示部を備え、カウント数が所定数(第3の閾値)以下になったとき、操作表示部に乾燥運転の残り時間を表示するように構成されている。このような構成により、制御部は乾燥運転の残り時間を使用者に知らせることができる。
In addition, the control unit includes an operation display unit that displays time, and is configured to display the remaining time of the drying operation on the operation display unit when the count number becomes a predetermined number (third threshold value) or less. Yes. With such a configuration, the control unit can inform the user of the remaining time of the drying operation.
また、制御部は、乾燥完了と判定したとき、乾燥運転を所定の運転時間だけ延長し、操作表示部に、延長された所定の運転時間(乾燥延長時間)に基づく残り時間を表示するように構成されている。このような構成により、衣類を仕上がりよく乾燥させることができるとともに、乾燥運転の正確な残り時間を使用者に知らせることができる。
In addition, when it is determined that the drying is completed, the control unit extends the drying operation by a predetermined operation time, and displays the remaining time based on the extended predetermined operation time (dry extension time) on the operation display unit. It is configured. With such a configuration, the clothes can be dried with good finish, and the user can be informed of the exact remaining time of the drying operation.
また、制御部は、乾燥用空気の温度を検知する温度検知部を備え、乾燥用空気が所定温度を超えてから乾燥完了を判定するように構成されている。このような構成により、衣類乾燥機が設置される環境の雰囲気温度が低いときに、凝縮器による乾燥用空気の温度上昇が遅く、乾燥室内の衣類の温度上昇が遅い場合においても、乾燥運転を良好なタイミングで終了することができる。
The control unit includes a temperature detection unit that detects the temperature of the drying air, and is configured to determine the completion of drying after the drying air exceeds a predetermined temperature. With such a configuration, when the ambient temperature of the environment in which the clothes dryer is installed is low, the drying operation is performed even when the temperature rise of the drying air by the condenser is slow and the temperature of the clothes in the drying chamber is slow. It can be completed with good timing.
また、乾燥運転を開始してからしばらくは、衣類から水分が蒸発しないため、除湿水が検知されない。このため、乾燥運転が開始されてから所定時間は、除湿水が検知できなくても乾燥完了検知をさせないように設定されている。このような構成により、乾燥運転の開始より間もないタイミングでの誤った乾燥完了の判定を回避できる。
In addition, since moisture does not evaporate from the clothing for a while after starting the drying operation, dehumidified water is not detected. For this reason, a predetermined time after the start of the drying operation is set so that the drying completion is not detected even if the dehumidified water cannot be detected. With such a configuration, it is possible to avoid an erroneous determination of the completion of drying at a timing shortly after the start of the drying operation.
以上述べたとおり、本発明の実施の形態の一例による衣類乾燥機は、筐体の内部に、乾燥用空気の給気口および排気口を有する乾燥室と、給気口と排気口とを連通接続する風路と、風路を通して乾燥室内に乾燥用空気を送風する送風機とを有する。本発明の実施の形態の一例による衣類乾燥機は、さらに、風路内に配設された蒸発器および凝縮器を有するヒートポンプ装置と、ヒートポンプ装置で発生する除湿水が集められて排水される集排水経路と、集排水経路を水が通過したことを非接触で検知する除湿水センサを有する除湿水検知部と、乾燥運転を制御する制御部とを備える。除湿水検知部は、除湿水センサからの入力信号を所定の閾値と比較した結果によって所定時間の出力信号を出力するように構成されている。
As described above, a clothes dryer according to an example of the embodiment of the present invention communicates a drying chamber having an air supply port and an exhaust port for drying air, and an air supply port and an exhaust port inside the housing. An air path to be connected and a blower that blows drying air into the drying chamber through the air path. A clothes dryer according to an example of the embodiment of the present invention further includes a heat pump device having an evaporator and a condenser disposed in an air passage, and a dewatering water collected and drained by the heat pump device. A drainage path, a dehumidified water detection unit having a dehumidification water sensor that detects non-contact that water has passed through the drainage path, and a control unit that controls the drying operation are provided. The dehumidified water detection unit is configured to output an output signal for a predetermined time based on a result of comparing an input signal from the dehumidified water sensor with a predetermined threshold.
このような構成により、乾燥運転においてヒートポンプ装置の蒸発器で発生した除湿水は、集排水経路を流れる。除湿水検知部は、この除湿水を非接触で確実に検知して、所定時間の出力信号を出力する。制御部は、この出力信号を取りこぼすことがなく、風路および周囲の温度の影響を受けずに、乾燥完了のタイミングを精度良く的確に判定する。これにより、衣類に不具合が発生することを抑制できる。
With such a configuration, the dehumidified water generated in the evaporator of the heat pump device in the drying operation flows through the drainage path. The dehumidified water detection unit reliably detects the dehumidified water in a non-contact manner and outputs an output signal for a predetermined time. The controller does not miss this output signal and accurately determines the timing of completion of drying without being affected by the air path and the surrounding temperature. Thereby, it can suppress that a malfunction generate | occur | produces in clothing.
また、本発明の実施の形態の一例による衣類乾燥機において、制御部は、出力信号を所定時間以下の間隔で検知して出力信号を検知した回数をカウントし、このカウント数が所定の条件(例えば第4の閾値)を満足したときに乾燥完了と判定するように構成されていてもよい。このような構成により、制御部は、乾燥完了を的確に判定することができる。
In the clothes dryer according to an example of the embodiment of the present invention, the control unit detects the output signal at intervals of a predetermined time or less and counts the number of times the output signal is detected. For example, it may be configured to determine that the drying is completed when the fourth threshold value is satisfied. With such a configuration, the control unit can accurately determine the completion of drying.
また、本発明の実施の形態の一例による衣類乾燥機において、制御部は、単位時間当たりのカウント数の変化から乾燥速度を求め、衣類の乾燥率を算出するように構成されていてもよい。このような構成により、制御部は乾燥運転の途中に乾燥速度を求め、乾燥率を算出することにより、乾燥完了のタイミングを予測して精度良く判定することができる。
Further, in the clothes dryer according to an example of the embodiment of the present invention, the control unit may be configured to calculate a drying rate by obtaining a drying speed from a change in the number of counts per unit time. With such a configuration, the control unit can determine the drying speed during the drying operation and calculate the drying rate, thereby predicting the timing of completion of drying and determining with high accuracy.
また、本発明の実施の形態の一例による衣類乾燥機において、制御部は、時間を表示する表示部を備え、カウント数が所定数以下になったとき、表示部に乾燥運転の残り時間を表示するように構成されていてもよい。このような構成により、制御部は乾燥運転の残り時間を使用者に知らせることができる。
Further, in the clothes dryer according to the example of the embodiment of the present invention, the control unit includes a display unit for displaying time, and when the count number becomes a predetermined number or less, the display unit displays the remaining time of the drying operation. It may be configured to. With such a configuration, the control unit can inform the user of the remaining time of the drying operation.
また、本発明の実施の形態の一例による衣類乾燥機において、制御部は、乾燥完了と判定したとき、乾燥運転を所定の運転時間だけ延長し、表示部に延長された所定の運転時間(乾燥延長時間)に基づく残り時間を表示するように構成されていてもよい。このような構成により、衣類を適度に乾燥させることができるとともに、乾燥運転の正確な残り時間を使用者に知らせることができる。
In the clothes dryer according to the example of the embodiment of the present invention, when the control unit determines that the drying is completed, the control unit extends the drying operation by a predetermined operation time, and extends the predetermined operation time (drying) to the display unit. The remaining time based on the extended time) may be displayed. With such a configuration, the clothes can be appropriately dried, and the user can be informed of the exact remaining time of the drying operation.
また、本発明の実施の形態の一例による衣類乾燥機において、制御部は、乾燥用空気の温度を検知する温度検知部を備え、乾燥用空気が所定温度を超えてから乾燥完了を判定するように構成されていてもよい。このような構成により、衣類乾燥機が設置される環境の雰囲気温度が低いときに、凝縮器による乾燥用空気の温度上昇が遅く、乾燥室内の衣類の温度上昇が遅い場合においても、乾燥運転を良好なタイミングで終了することができる。
In the clothes dryer according to the example of the embodiment of the present invention, the control unit includes a temperature detection unit that detects the temperature of the drying air, and determines that the drying is completed after the drying air exceeds a predetermined temperature. It may be configured. With such a configuration, when the ambient temperature of the environment in which the clothes dryer is installed is low, the drying operation is performed even when the temperature rise of the drying air by the condenser is slow and the temperature of the clothes in the drying chamber is slow. It can be completed with good timing.
また、本発明の実施の形態の一例による衣類乾燥機において、除湿水センサは、水が集排水経路を通過することで光量が変化する光センサで構成されていてもよい。このような構成により、制御部は、集排水経路を通過する除湿水を光センサにより非接触で検知し、光量の変化で周期時間を計測し、除湿水の量を検知することができる。
Further, in the clothes dryer according to an example of the embodiment of the present invention, the dehumidified water sensor may be configured by an optical sensor that changes the amount of light when water passes through the drainage path. With such a configuration, the control unit can detect the dehumidified water passing through the collection and drainage path in a non-contact manner with the optical sensor, measure the period time based on the change in the amount of light, and detect the amount of the dehumidified water.
また、本発明の実施の形態の一例による衣類乾燥機において、除湿水センサは、水が集排水経路を通過することで静電容量が変化する静電センサで構成されていてもよい。このような構成により、制御部は、集排水経路を通過する除湿水を静電センサにより非接触で検知し、静電容量の変化で周期時間を計測し、除湿水の量を検知することができる。
Further, in the clothes dryer according to an example of the embodiment of the present invention, the dehumidified water sensor may be configured by an electrostatic sensor whose capacitance changes as water passes through the collection and drainage path. With such a configuration, the control unit can detect dehumidified water passing through the drainage path in a non-contact manner with an electrostatic sensor, measure a period time based on a change in capacitance, and detect the amount of dehumidified water. it can.
以上述べたように、本発明は、ヒートポンプ装置を用いた乾燥運転において、衣類から発生した除湿水を非接触で検知することで衣類の乾燥完了を精度良く検知できる衣類乾燥機を提供する。よって、本発明は、衣類乾燥機のみならず、乾燥機能を備えた洗濯乾燥機等に広く利用されることができる。
As described above, the present invention provides a clothes dryer that can accurately detect completion of drying of clothes by detecting dehumidified water generated from clothes in a non-contact manner in a drying operation using a heat pump device. Therefore, the present invention can be widely used not only for clothes dryers but also for washing dryers having a drying function.
1 外槽(乾燥室)
2 筐体
3 防振機構
4 ドラム
5 衣類
6 投入口
7a 底壁
7b 周壁
8a 流入孔
8b 排出孔
9 攪拌バッフル
10 駆動装置
11 回転シャフト
12 扉
13 パッキン
14 空気循環路(風路)
15 排気口
16 リントフィルタ
17 蒸発器
18 凝縮器
19 送風機
19a ファンモータ
20 給気口
21 圧縮機
22 絞り部
23 ヒートポンプ装置
24 サーミスタ(温度検知部)
25 サーミスタ(温度検知部)
26 集排水経路
27 制御部
27a 操作表示部
28 除湿水センサ
29 除湿水検知部 1 Outer tank (drying room)
DESCRIPTION OFSYMBOLS 2 Case 3 Anti-vibration mechanism 4 Drum 5 Clothing 6 Input port 7a Bottom wall 7b Perimeter wall 8a Inflow hole 8b Outlet hole 9 Stirring baffle 10 Drive apparatus 11 Rotating shaft 12 Door 13 Packing 14 Air circulation path (air path)
DESCRIPTION OFSYMBOLS 15 Exhaust port 16 Lint filter 17 Evaporator 18 Condenser 19 Blower 19a Fan motor 20 Air supply port 21 Compressor 22 Restriction part 23 Heat pump apparatus 24 Thermistor (temperature detection part)
25 Thermistor (temperature detector)
26 Collection /drainage path 27 Control unit 27a Operation display unit 28 Dehumidified water sensor 29 Dehumidified water detection unit
2 筐体
3 防振機構
4 ドラム
5 衣類
6 投入口
7a 底壁
7b 周壁
8a 流入孔
8b 排出孔
9 攪拌バッフル
10 駆動装置
11 回転シャフト
12 扉
13 パッキン
14 空気循環路(風路)
15 排気口
16 リントフィルタ
17 蒸発器
18 凝縮器
19 送風機
19a ファンモータ
20 給気口
21 圧縮機
22 絞り部
23 ヒートポンプ装置
24 サーミスタ(温度検知部)
25 サーミスタ(温度検知部)
26 集排水経路
27 制御部
27a 操作表示部
28 除湿水センサ
29 除湿水検知部 1 Outer tank (drying room)
DESCRIPTION OF
DESCRIPTION OF
25 Thermistor (temperature detector)
26 Collection /
Claims (8)
- 筐体の内部に、
乾燥用空気の給気口および排気口を有する乾燥室と、
前記給気口と前記排気口とを連通接続する風路と、
前記風路を通して前記乾燥室内に乾燥用空気を送風する送風機と、
前記風路内に配設された蒸発器および凝縮器を有するヒートポンプ装置と、
前記ヒートポンプ装置で発生する除湿水が集められて排水される集排水経路と、
前記集排水経路を水が通過したことを非接触で検知する除湿水センサを有する除湿水検知部と、
乾燥運転を制御する制御部とを備え、
前記除湿水検知部は、前記除湿水センサからの入力信号を所定の閾値と比較した結果によって所定時間の出力信号を出力するように構成された衣類乾燥機。 Inside the housing,
A drying chamber having an inlet and an outlet for drying air;
An air passage connecting the air supply port and the exhaust port in communication with each other;
A blower for blowing drying air into the drying chamber through the air passage;
A heat pump device having an evaporator and a condenser disposed in the air passage;
A drainage path through which dehumidified water generated in the heat pump device is collected and drained;
A dehumidified water detector having a dehumidified water sensor that detects non-contact that water has passed through the drainage path;
A control unit for controlling the drying operation,
The said dehumidified water detection part is a clothes dryer comprised so that the output signal of predetermined time might be output by the result of having compared the input signal from the said dehumidified water sensor with a predetermined threshold value. - 前記制御部は、前記出力信号の有無を前記所定時間以下の間隔で検知して前記出力信号を検知した回数をカウントし、前記回数が所定の条件を満足したときに乾燥完了と判定するように構成された請求項1記載の衣類乾燥機。 The control unit detects the presence / absence of the output signal at intervals of the predetermined time or less, counts the number of times the output signal is detected, and determines that the drying is completed when the number of times satisfies a predetermined condition. The clothes dryer of Claim 1 comprised.
- 前記制御部は、単位時間当たりに前記出力信号を検知した前記回数の変化から乾燥速度を求め、衣類の乾燥率を算出するように構成された請求項1または2に記載の衣類乾燥機。 The clothes dryer according to claim 1 or 2, wherein the control unit is configured to calculate a drying rate by calculating a drying rate from a change in the number of times the output signal is detected per unit time.
- 前記制御部は、時間を表示する表示部を備え、前記単位時間当たりに前記出力信号を検知した前記回数が所定数以下になったとき、前記表示部に前記乾燥運転の残り時間を表示するように構成された請求項1~3のうちいずれか1項に記載の衣類乾燥機。 The control unit includes a display unit that displays a time, and displays the remaining time of the drying operation on the display unit when the number of times the output signal is detected per unit time becomes a predetermined number or less. The clothes dryer according to any one of claims 1 to 3, wherein the clothes dryer is configured as follows.
- 前記制御部は、乾燥完了と判定したとき、前記乾燥運転を所定の運転時間だけ延長し、請求項4に記載の前記表示部に前記所定の運転時間に基づく残り時間を表示するように構成された請求項1~4のうちいずれか1項に記載の衣類乾燥機。 The control unit is configured to extend the drying operation by a predetermined operation time when it is determined that the drying is completed, and to display a remaining time based on the predetermined operation time on the display unit according to claim 4. The clothes dryer according to any one of claims 1 to 4.
- 前記制御部は、前記乾燥用空気の温度を検知する温度検知部を備え、前記乾燥用空気が所定温度を超えてから乾燥完了を判定するように構成された請求項1~5のうちいずれか1項に記載の衣類乾燥機。 6. The control unit according to claim 1, further comprising a temperature detection unit configured to detect a temperature of the drying air, and configured to determine completion of drying after the drying air exceeds a predetermined temperature. The clothes dryer according to item 1.
- 前記除湿水検知部は、水が前記集排水経路を通過することで光量が変化する光センサで構成された請求項1~6のうちいずれか1項に記載の衣類乾燥機。 The clothes dryer according to any one of claims 1 to 6, wherein the dehumidified water detection unit includes an optical sensor that changes a light amount when water passes through the collection and drainage path.
- 前記除湿水検知部は、水が前記集排水経路を通過することで静電容量が変化する静電センサで構成された請求項1~6のうちいずれか1項に記載の衣類乾燥機。 The clothes dryer according to any one of claims 1 to 6, wherein the dehumidified water detection unit includes an electrostatic sensor whose capacitance changes as water passes through the drainage path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680002290.0A CN106715782A (en) | 2015-04-28 | 2016-03-16 | Clothes dryer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015091025A JP2016202781A (en) | 2015-04-28 | 2015-04-28 | Clothing dryer |
JP2015-091025 | 2015-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016174810A1 true WO2016174810A1 (en) | 2016-11-03 |
Family
ID=57198247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/001501 WO2016174810A1 (en) | 2015-04-28 | 2016-03-16 | Clothes dryer |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016202781A (en) |
CN (1) | CN106715782A (en) |
WO (1) | WO2016174810A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018196673A (en) * | 2017-05-25 | 2018-12-13 | パナソニックIpマネジメント株式会社 | Clothes dryer |
TWI782087B (en) * | 2017-09-28 | 2022-11-01 | 日商松下知識產權經營股份有限公司 | Air supply device |
CN109957955B (en) * | 2017-12-25 | 2021-05-28 | 无锡小天鹅电器有限公司 | Control method and control device of washing and drying integrated machine and washing and drying integrated machine |
JP7054354B2 (en) * | 2018-03-02 | 2022-04-13 | 東芝ライフスタイル株式会社 | Clothes dryer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5570300A (en) * | 1978-11-20 | 1980-05-27 | Tokyo Shibaura Electric Co | Dryer |
JPH08141290A (en) * | 1994-11-28 | 1996-06-04 | Matsushita Electric Ind Co Ltd | Method for detecting volume of clothing to be dried in clothing dryer and method for estimating drying time |
JP2013090811A (en) * | 2011-10-26 | 2013-05-16 | Panasonic Corp | Washing machine |
JP2013226249A (en) * | 2012-04-25 | 2013-11-07 | Toshiba Corp | Clothes dryer |
WO2014016879A1 (en) * | 2012-07-24 | 2014-01-30 | パナソニック株式会社 | Washing and drying machine |
WO2014171117A1 (en) * | 2013-04-16 | 2014-10-23 | パナソニックIpマネジメント株式会社 | Dryer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120088034A (en) * | 2010-10-19 | 2012-08-08 | 엘지전자 주식회사 | laundry machine having a drying function |
CN102517861B (en) * | 2011-12-19 | 2017-09-26 | 青岛海尔滚筒洗衣机有限公司 | Clothes drying temperature detection control method and dryer |
-
2015
- 2015-04-28 JP JP2015091025A patent/JP2016202781A/en not_active Withdrawn
-
2016
- 2016-03-16 WO PCT/JP2016/001501 patent/WO2016174810A1/en active Application Filing
- 2016-03-16 CN CN201680002290.0A patent/CN106715782A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5570300A (en) * | 1978-11-20 | 1980-05-27 | Tokyo Shibaura Electric Co | Dryer |
JPH08141290A (en) * | 1994-11-28 | 1996-06-04 | Matsushita Electric Ind Co Ltd | Method for detecting volume of clothing to be dried in clothing dryer and method for estimating drying time |
JP2013090811A (en) * | 2011-10-26 | 2013-05-16 | Panasonic Corp | Washing machine |
JP2013226249A (en) * | 2012-04-25 | 2013-11-07 | Toshiba Corp | Clothes dryer |
WO2014016879A1 (en) * | 2012-07-24 | 2014-01-30 | パナソニック株式会社 | Washing and drying machine |
WO2014171117A1 (en) * | 2013-04-16 | 2014-10-23 | パナソニックIpマネジメント株式会社 | Dryer |
Also Published As
Publication number | Publication date |
---|---|
JP2016202781A (en) | 2016-12-08 |
CN106715782A (en) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102658780B1 (en) | Control method for laundry drying machine | |
EP2415927B1 (en) | Dehumidifying-warming apparatus and clothes drier | |
US10724169B2 (en) | Laundry treatment apparatus and method for operating a laundry treatment apparatus | |
WO2016174810A1 (en) | Clothes dryer | |
CN107489008B (en) | Method for operating a condensation dryer and condensation dryer | |
JP6104571B2 (en) | Clothes dryer | |
EP3135805A1 (en) | Laundry dryer | |
JP2013180162A (en) | Washing machine | |
JP6421336B2 (en) | Dryer | |
JP2011087623A (en) | Clothes dryer | |
JP2016165369A (en) | Clothes dryer | |
JP2015204859A (en) | clothes dryer | |
JP5093204B2 (en) | Drum type washer / dryer | |
KR20060046994A (en) | Drying control apparatus and its method for washer combined with dryer or dryer | |
JP6466093B2 (en) | Clothes dryer | |
JP7345082B2 (en) | clothes dryer | |
JP2016165368A (en) | Clothes dryer | |
JP2016036482A (en) | Dryer | |
WO2014171117A1 (en) | Dryer | |
JP5397035B2 (en) | Clothes dryer | |
JP2016036480A (en) | Drying machine | |
JP2016093415A (en) | Clothes dryer | |
JP2016036481A (en) | Drying machine | |
KR101565405B1 (en) | A Luandry Dryer and a Controlling Method of the Laundry Dryer | |
US11846064B2 (en) | Lint filter clogging detection in a dryer appliance using compressor temperature and referigerant mass flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16786092 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16786092 Country of ref document: EP Kind code of ref document: A1 |