WO2016174751A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2016174751A1
WO2016174751A1 PCT/JP2015/062892 JP2015062892W WO2016174751A1 WO 2016174751 A1 WO2016174751 A1 WO 2016174751A1 JP 2015062892 W JP2015062892 W JP 2015062892W WO 2016174751 A1 WO2016174751 A1 WO 2016174751A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
spring
vane
insertion hole
axial direction
Prior art date
Application number
PCT/JP2015/062892
Other languages
French (fr)
Japanese (ja)
Inventor
勝巳 遠藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017515334A priority Critical patent/JP6388715B2/en
Priority to PCT/JP2015/062892 priority patent/WO2016174751A1/en
Priority to CN201610183692.7A priority patent/CN106089709A/en
Priority to CN201620245576.9U priority patent/CN205714766U/en
Publication of WO2016174751A1 publication Critical patent/WO2016174751A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs

Definitions

  • the present invention relates to a compressor that compresses a fluid.
  • Patent Document 1 describes a rotary compressor.
  • This rotary compressor includes a rolling piston, a vane, and a vane spring.
  • the vane spring is accommodated in a spring insertion hole provided in the cylinder.
  • the winding shape of the vane spring and the hole shape of the spring insertion hole are both round.
  • the compression mechanism of the hermetic rotary compressor is fixed by welding a plurality of locations on the outer peripheral surface of the flange portion of the upper bearing or the outer peripheral surface of the rib portion of the cylinder to the sealed container.
  • the cross-sectional area of the bridge portion formed on the back side of the vane groove is reduced.
  • the inner peripheral surface of the cylinder and the vane groove are likely to be distorted. If the distortion of the inner peripheral surface of the cylinder or the vane groove is excessively increased, the airtightness in the compression mechanism is lowered and the compression performance is lowered. Further, since the contact between the cylinder and the sliding component becomes strong, the compressor is likely to fail. Therefore, when the thickness of the cylinder is reduced, the compressor performance cannot be maintained.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a compressor capable of reducing the thickness of a cylinder while maintaining performance.
  • a compressor according to the present invention is in contact with a hollow cylinder housed in a container, a rolling piston that rotates eccentrically along the inner peripheral surface of the cylinder, and an outer peripheral surface of the rolling piston, A vane that divides the space into a suction chamber and a compression chamber; and a vane spring that urges the vane toward the rolling piston.
  • the cylinder has a spring insertion hole into which the vane spring is inserted.
  • the spring insertion hole has a hole shape in which the height dimension in the axial direction of the cylinder is smaller than the width dimension in the tangential direction of the cylinder in at least a part of the spring insertion hole in the axial direction.
  • the vane spring is a coil spring, and the vane spring is at least in the axial direction of the vane spring. In some, in which the height in the axial direction of the cylinder has a smaller winding shape than the width dimension in the tangential direction of the cylinder.
  • the thickness of the cylinder can be reduced while maintaining the performance of the compressor.
  • the general compression mechanism 10 it is a figure which shows collectively the cross-sectional structure in case the thickness of the cylinder 11 is relatively thick, and the cross-sectional structure in case the thickness of the cylinder 11 is relatively thin. It is a perspective view which shows the structure of the cylinder 11 of the compressor 1 which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a compressor 1 according to the present embodiment.
  • the compressor 1 is a fluid machine that compresses and discharges a fluid (in this example, a low-pressure gas refrigerant in a refrigeration cycle), and is one of the components of a refrigeration cycle used in, for example, an air conditioner or a refrigerator.
  • a vertical type hermetic rotary compressor is illustrated as the compressor 1 as the compressor 1, a vertical type hermetic rotary compressor is illustrated.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the positional relationship (for example, vertical relationship etc.) between each structural member in a specification is a thing when it installs in the state which can use a vertical installation sealed rotary compressor in principle.
  • the compressor 1 includes a compression mechanism 10 that compresses a gas refrigerant and an electric mechanism 50 that drives the compression mechanism 10.
  • the compression mechanism 10 and the electric mechanism 50 are accommodated in the sealed container 60 and fixed to the sealed container 60 by welding or shrink fitting, respectively.
  • Refrigerating machine oil that lubricates the sliding portions of the compressor 1 is stored at the bottom of the sealed container 60.
  • the electric mechanism 50 includes a stator 51 and a rotor 52.
  • the outer peripheral portion of the stator 51 is fixed to the inner peripheral surface of the sealed container 60.
  • a drive shaft 53 is coaxially fixed to the rotor 52.
  • the drive shaft 53 is formed with an eccentric portion 53 a having a central axis at a position shifted from the rotation axis of the drive shaft 53.
  • the compression mechanism 10 is disposed below the electric mechanism 50 in the sealed container 60.
  • the compression mechanism 10 includes a hollow cylinder 11 having a cylindrical opening inside, an upper bearing 12 that is disposed at an upper end in the axial direction of the cylinder 11 and rotatably supports the drive shaft 53, and an axial direction of the cylinder 11.
  • the lower bearing 13 is disposed at the lower end and rotatably supports the drive shaft 53.
  • the upper bearing 12 and the lower bearing 13 also serve as an upper end plate and a lower end plate of the cylinder 11, respectively.
  • a discharge muffler 14 is attached to the upper bearing 12.
  • a discharge muffler chamber is formed between the upper bearing 12 and the discharge muffler 14 to reduce the pulsation of the refrigerant compressed and discharged by the compression mechanism 10.
  • FIG. 2 is a perspective view showing a partial cross-sectional configuration of the compression mechanism 10.
  • the upper bearing 12 is not shown.
  • FIG. 3 is a top view showing the configuration of the cylinder 11.
  • a plurality of rib portions 11 b projecting to the outer peripheral side are formed on the outer peripheral portion of the cylinder 11.
  • the outer peripheral surface 11c of the rib portion 11b (hereinafter sometimes referred to as “the outer peripheral surface 11c of the cylinder 11”) is fixed to the inner peripheral surface of the sealed container 60 by welding or the like.
  • a rolling piston 15 slidably fitted in the eccentric portion 53 a is provided in the space in the cylinder 11.
  • the rolling piston 15 rotates eccentrically along the inner peripheral surface 11a of the cylinder 11 as the eccentric portion 53a rotates.
  • a vane groove 16 is formed from the inner peripheral surface 11 a of the cylinder 11 toward the radially outer side of the cylinder 11.
  • a vane 17 that divides the space in the cylinder 11 into a suction chamber and a compression chamber is accommodated in the vane groove 16 so as to be slidable back and forth.
  • a bridge portion 20 is formed on the back side of the vane groove 16 (that is, between the vane groove 16 and the outer peripheral surface 11 c of the cylinder 11).
  • a spring insertion hole 18 penetrating the bridge portion 20 along the radial direction of the cylinder 11 is formed between the vane groove 16 and the outer peripheral surface 11c of the cylinder 11.
  • a vane spring 19 that urges the vane 17 toward the rolling piston 15 is inserted into the spring insertion hole 18 from the outer peripheral surface 11c side.
  • the vane spring 19 is a compression coil spring. Since the spring insertion hole 18 communicates with the space inside the sealed container 60 outside the cylinder 11, the discharge pressure acts on the back side of the vane 17.
  • the vane 17 is pressed against the outer peripheral surface of the rolling piston 15 by the pressing force due to the pressure difference between the back surface side and the tip end side and the urging force by the vane spring 19. Thereby, the vane 17 reciprocates in the vane groove 16 following the eccentric rotation of the rolling piston 15.
  • the compressor 1 is provided adjacent to the outside of the hermetic container 60, and stores the low-pressure refrigerant flowing from the outside (for example, the evaporator side of the refrigeration cycle) and separates the refrigerant from the accumulator. 61, a suction pipe 62 for introducing the gas refrigerant in the accumulator 61 into the sealed container 60, and a suction port 63 for guiding the gas refrigerant introduced into the sealed container 60 to the suction chamber in the cylinder 11. Yes. Further, the compressor 1 is discharged into a space inside the sealed container 60 and a discharge port (not shown) for discharging the high-pressure gas refrigerant compressed in the compression chamber inside the cylinder 11 into the space inside the sealed container 60. And a discharge pipe 64 for discharging high-pressure gas refrigerant to the outside (for example, the condenser side of the refrigeration cycle).
  • the volume of the suction chamber and the compression chamber in the cylinder 11 is gradually changed by the revolving motion of the rolling piston 15 and the reciprocating motion of the vane 17. Due to the volume change of the suction chamber and the compression chamber, the low pressure gas refrigerant is sucked into the suction chamber via the suction pipe 62 and the suction port 63, and the sucked low pressure gas refrigerant is compressed to high temperature and high pressure in the compression chamber.
  • the compressed high-pressure gas refrigerant is discharged from a discharge valve (not shown) provided in the upper bearing 12 to a space in the sealed container 60 via a discharge muffler chamber.
  • the high-pressure gas refrigerant discharged into the space inside the sealed container 60 is discharged from the discharge pipe 64 to the outside of the sealed container 60.
  • FIG. 4 shows a cross-sectional configuration (a) when the cylinder 11 is relatively thick and a cross-sectional configuration (b) when the cylinder 11 is relatively thin in the general compression mechanism 10.
  • the winding diameter and wire diameter of the vane spring 19 are the same, and the inner diameter of the spring insertion hole 18 into which the vane spring 19 is inserted is also the same. This is because if the winding diameter of the vane spring 19 is reduced, the winding length of the vane spring 19 becomes insufficient, so that the stress generated in the vane spring 19 during expansion and contraction increases and the vane spring 19 breaks. It is because it ends. Further, when the winding diameter of the vane spring 19 is reduced, if the wire diameter of the vane spring 19 is reduced in order to maintain the stress generated in the vane spring 19, a sufficient urging force against the vane 17 cannot be secured. It is.
  • the thickness (axial dimension) of the bridge portion 20 is reduced by the reduction in the thickness of the cylinder 11.
  • the cross-sectional area of the bridge portion 20 decreases.
  • FIG. 5 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment.
  • the vertical direction in FIG. 5 represents the axial direction of the cylinder 11.
  • the spring insertion hole 18 of the present embodiment has an elliptical flat hole shape in at least a part of the spring insertion hole 18 in the axial direction (stretching direction) (the whole in this example). have.
  • the inner diameter of the spring insertion hole 18 in the axial direction of the cylinder 11 is set to a height dimension H11, and the tangential direction of the cylinder 11 in a plane perpendicular to the axial direction of the cylinder 11 (hereinafter simply referred to as “tangential line of the cylinder 11”).
  • the height dimension H11 is smaller than the width dimension W11 (H11 ⁇ W11).
  • FIG. 6 is a diagram showing a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction.
  • the vertical direction in FIG. 6 represents the axial direction of the cylinder 11 with the vane spring 19 inserted into the spring insertion hole 18.
  • the vane spring 19 of the present embodiment has an elliptical flat winding shape in at least a part of the vane spring 19 in the axial direction (in this example, the whole).
  • the vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG.
  • the vane spring 19 is inserted such that the winding diameter (height dimension H21) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W21) in the tangential direction of the cylinder 11 (H21 ⁇ W21). It is inserted into the hole 18.
  • the compressor 1 includes the hollow cylinder 11 housed in the sealed container 60, the rolling piston 15 that rotates eccentrically along the inner peripheral surface 11a of the cylinder 11, A vane 17 that contacts the outer peripheral surface of the rolling piston 15 and divides the space in the cylinder 11 into a suction chamber and a compression chamber; and a vane spring 19 that biases the vane 17 toward the rolling piston 15.
  • a spring insertion hole 18 into which the vane spring 19 is inserted is formed.
  • the spring insertion hole 18 has a height dimension H11 in the axial direction of the cylinder 11 at least in a part of the spring insertion hole 18 in the axial direction.
  • the vane spring 19 has a winding shape in which the height dimension H21 in the axial direction of the cylinder 11 is smaller than the width dimension W21 in the tangential direction of the cylinder 11 in at least a part of the vane spring 19 in the axial direction. It is what you have.
  • the thickness of the cylinder 11 can be reduced while suppressing a reduction in the cross-sectional area of the bridge portion 20.
  • the contact length between the cylinder 11 and the sliding component can be shortened, so that the leakage of refrigerant from the high pressure side space to the low pressure side space of the compression chamber can be reduced.
  • the compressor 1 can be reduced in size in the axial direction, and the material for manufacturing the compressor 1 can be reduced. Further, by reducing the thickness of the cylinder 11, it is possible to increase the number of cylinders without increasing the shell capacity of the compressor 1.
  • the cylinder 11 can be thinned while maintaining the performance of the compressor 1.
  • the vane spring 19 has a flat winding shape, a necessary winding length can be ensured even if the height dimension H21 is reduced. Accordingly, it is possible to maintain the durability of the vane spring 19 while ensuring the urging force of the vane spring 19 against the vane 17.
  • the tension of the end winding part located at the end opposite to the vane 17 is used to remove the vane spring 19. It may be fixed to the spring insertion hole 18.
  • the tension applied by the end winding portion is applied to the entire circumference of the inner peripheral surface of the spring insertion hole 18.
  • the entire vane spring 19 including the end winding portion is flat, the direction of the tension applied by the end winding portion can be limited, and the tension itself applied by the end winding portion can be easily adjusted. . Therefore, since the end winding portion can be made difficult to come off from the spring insertion hole 18, the vane spring 19 can be reliably fixed to the spring insertion hole 18.
  • the spring insertion hole 18 is a deep hole, it has been difficult to process the spring insertion hole 18 into a flat hole shape as in the present embodiment with conventional processing equipment such as a drilling machine. However, in recent years, with the progress of processing equipment and processing technology, it is possible to process the spring insertion hole 18 as in the present embodiment.
  • FIG. 7 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment.
  • symbol is attached
  • the spring insertion hole 18 of the present embodiment has an oval shape (for example, two semicircular arcs) in at least a part of the spring insertion hole 18 in the axial direction (the whole in this example). It has a flat hole shape (rounded rectangular shape defined by two parallel straight lines).
  • the height dimension H12 of the spring insertion hole 18 in the axial direction of the cylinder 11 is smaller than the width dimension W12 of the spring insertion hole 18 in the tangential direction of the cylinder 11 (H12 ⁇ W12).
  • FIG. 8 is a diagram illustrating a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction.
  • the vane spring 19 of the present embodiment has an oblong flat winding shape in at least a part of the vane spring 19 in the axial direction (in this example, the whole).
  • the vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG.
  • the vane spring 19 is inserted such that the winding diameter (height dimension H22) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W22) in the tangential direction of the cylinder 11 (H22 ⁇ W22). It is inserted into the hole 18.
  • the same effect as in the first embodiment can be obtained.
  • the circumference of the ellipse is longer than the circumference of the ellipse. Therefore, in this embodiment, the winding length of the vane spring 19 is made longer than that in the first embodiment. be able to.
  • the outer periphery of the ellipse is configured by a straight line and an arc, the drilling process of the spring insertion hole 18 can be performed more easily than in the first embodiment.
  • FIG. 9 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment.
  • symbol is attached
  • the spring insertion hole 18 of the present embodiment has a rectangular flat hole shape in at least a part of the spring insertion hole 18 in the axial direction (in this example, the whole). Yes.
  • the height dimension H13 of the spring insertion hole 18 in the axial direction of the cylinder 11 is smaller than the width dimension W13 of the spring insertion hole 18 in the tangential direction of the cylinder 11 (H13 ⁇ W13).
  • FIG. 10 is a diagram showing a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction.
  • the vane spring 19 of the present embodiment has a rectangular flat winding shape in at least a part of the vane spring 19 in the axial direction (the whole in the present example).
  • the vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG.
  • the vane spring 19 is inserted such that the winding diameter (height dimension H23) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W23) in the tangential direction of the cylinder 11 (H23 ⁇ W23). It is inserted into the hole 18.
  • the same effect as in the first embodiment can be obtained.
  • the circumference of the rectangle is longer than the circumference of the ellipse and the ellipse. Therefore, in the present embodiment, the winding length of the vane spring 19 is greater than those of the first and second embodiments. The length can be increased. Furthermore, since the outer periphery of the rectangle is configured by a straight line, in this embodiment, the drilling of the spring insertion hole 18 can be performed more easily than in the first embodiment.
  • FIG. 11 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment.
  • symbol is attached
  • the spring insertion hole 18 of the present embodiment has a polygonal shape (in this example, a hexagonal shape) in at least a part of the spring insertion hole 18 in the axial direction (in this example, the whole). It has a flat hole shape.
  • the polygon is a shape surrounded by three or more line segments.
  • the height dimension H14 of the spring insertion hole 18 in the axial direction of the cylinder 11 is smaller than the width dimension W14 of the spring insertion hole 18 in the tangential direction of the cylinder 11 (H14 ⁇ W14).
  • FIG. 12 is a diagram showing a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction.
  • the vane spring 19 of the present embodiment is a flat polygonal shape (in this example, a hexagonal shape) in at least a part of the vane spring 19 in the axial direction (in this example, the whole). It has a winding shape.
  • the vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG.
  • the vane spring 19 is inserted such that the winding diameter (height dimension H24) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W24) in the tangential direction of the cylinder 11 (H24 ⁇ W24). It is inserted into the hole 18.
  • the same effect as in the first embodiment can be obtained. Further, since the outer periphery of the polygon is formed of a straight line, in this embodiment, the drilling process of the spring insertion hole 18 can be performed more easily than in the first embodiment.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the vertical type compressor is taken as an example, but the present invention is also applicable to a horizontal type compressor.
  • the compressor having one cylinder is taken as an example, but the present invention is also applicable to a compressor having two or more cylinders.
  • the spring insertion hole and the vane spring each having a shape in which the height dimension is smaller than the width dimension in the whole axial direction are described as examples.
  • the spring insertion hole of the present invention may have a hole shape in which the height dimension is smaller than the width dimension only in a part in the axial direction and the height dimension and the width dimension are the same in other parts in the axial direction.
  • the vane spring of the present invention has a winding shape in which the height dimension is smaller than the width dimension only in one part in the axial direction, and the height dimension and the width dimension are equal in other parts in the axial direction, for example. Also good.
  • each of the spring insertion hole and the vane spring may have a shape in which the height dimension is smaller than the width dimension at least in a portion corresponding to the bridge portion (a portion on the outer peripheral side of the vane groove in the radial direction of the cylinder). desirable. According to this, similarly to the above-described embodiment, it is possible to reduce the thickness of the cylinder while suppressing a reduction in the cross-sectional area of the bridge portion.

Abstract

A compressor (1) comprises: a cylinder (11); a rolling piston (15) that rotates eccentrically along an inner peripheral surface (11a) of the cylinder (11); a vane (17) that is in contact with the outer peripheral surface of the rolling piston (15) and that partitions the space inside the cylinder (11) into a suction chamber and a compression chamber; and a vane spring (19) that impels the vane (17) towards the rolling piston (15) side. A spring insertion hole (18) into which the vane spring (19) is inserted is formed in the cylinder (11), the spring insertion hole (18) has a hole shape such that the height dimension H11 in the axial direction of the cylinder (11) is less than the width dimension W11 in the tangential direction of the cylinder (11), the vane spring (19) is a coil spring, and the vane spring (19) has a spiral shape such that the height dimension H21 in the axial direction of the cylinder (11) is less than the width dimension W21 in the tangential direction of the cylinder (11).

Description

圧縮機Compressor
 本発明は、流体を圧縮する圧縮機に関する。 The present invention relates to a compressor that compresses a fluid.
 特許文献1には、回転式圧縮機が記載されている。この回転式圧縮機は、ローリングピストン、ベーン及びベーンスプリングを備えている。ベーンスプリングは、シリンダに設けられたスプリング挿入穴に収納されている。ベーンスプリングの巻き形状及びスプリング挿入穴の穴形状はいずれも真円状である。 Patent Document 1 describes a rotary compressor. This rotary compressor includes a rolling piston, a vane, and a vane spring. The vane spring is accommodated in a spring insertion hole provided in the cylinder. The winding shape of the vane spring and the hole shape of the spring insertion hole are both round.
特開昭61-49188号公報JP 61-49188
 近年、環境意識の高まりと省エネルギー規制の強化に対応し、冷媒の低GWP化及び圧縮機の高効率化が求められている。冷媒の低GWP化により、冷媒の動作圧力は従来に比べ高圧となっている。このため、密閉型圧縮機において圧縮室の高圧側空間から低圧側空間への冷媒の漏れが生じやすくなっている。 In recent years, there has been a demand for lower GWP refrigerant and higher efficiency compressors in response to increasing environmental awareness and strengthening of energy-saving regulations. Due to the low GWP of the refrigerant, the operating pressure of the refrigerant is higher than before. For this reason, in the hermetic compressor, leakage of refrigerant from the high pressure side space of the compression chamber to the low pressure side space is likely to occur.
 このことから、近年の密閉型回転圧縮機では、圧縮室を形成するシリンダの厚みを薄くする傾向がある。シリンダの厚みを薄くすると、シリンダと摺動部品との接触長さを短くできるため、圧縮室の高圧側空間から低圧側空間への冷媒の漏れを低減させることができる。 For this reason, recent sealed rotary compressors tend to reduce the thickness of the cylinder forming the compression chamber. When the thickness of the cylinder is reduced, the contact length between the cylinder and the sliding component can be shortened, so that leakage of the refrigerant from the high pressure side space to the low pressure side space of the compression chamber can be reduced.
 密閉型回転圧縮機の圧縮機構は、上軸受のツバ部外周面又はシリンダのリブ部の外周面における複数箇所を密閉容器に溶接することにより固定されている。 The compression mechanism of the hermetic rotary compressor is fixed by welding a plurality of locations on the outer peripheral surface of the flange portion of the upper bearing or the outer peripheral surface of the rib portion of the cylinder to the sealed container.
 しかしながら、シリンダの厚みを薄くすると、ベーン溝の背面側に形成されるブリッジ部の断面積が小さくなる。このため、シリンダのリブ部外周を密閉容器に溶接した場合、シリンダの内周面やベーン溝に歪みが生じやすくなる。シリンダの内周面やベーン溝の歪みが過度に増加すると、圧縮機構における気密性が低下して圧縮性能が低下する。また、シリンダと摺動部品との当たりが強くなるため、圧縮機の故障が生じやすくなる。したがって、シリンダの厚みを薄くすると、圧縮機の性能を維持できなくなるという問題点があった。 However, when the thickness of the cylinder is reduced, the cross-sectional area of the bridge portion formed on the back side of the vane groove is reduced. For this reason, when the outer periphery of the rib portion of the cylinder is welded to the sealed container, the inner peripheral surface of the cylinder and the vane groove are likely to be distorted. If the distortion of the inner peripheral surface of the cylinder or the vane groove is excessively increased, the airtightness in the compression mechanism is lowered and the compression performance is lowered. Further, since the contact between the cylinder and the sliding component becomes strong, the compressor is likely to fail. Therefore, when the thickness of the cylinder is reduced, the compressor performance cannot be maintained.
 本発明は、上述のような問題点を解決するためになされたものであり、性能を維持しつつシリンダを薄型化できる圧縮機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a compressor capable of reducing the thickness of a cylinder while maintaining performance.
 本発明に係る圧縮機は、容器内に収容された中空のシリンダと、前記シリンダの内周面に沿って偏芯回転するローリングピストンと、前記ローリングピストンの外周面に接触し、前記シリンダ内の空間を吸入室と圧縮室とに区分するベーンと、前記ベーンを前記ローリングピストン側に付勢するベーンスプリングと、を備え、前記シリンダには、前記ベーンスプリングが挿入されるスプリング挿入穴が形成されており、前記スプリング挿入穴は、前記スプリング挿入穴の軸方向の少なくとも一部において、前記シリンダの軸方向における高さ寸法が前記シリンダの接線方向における幅寸法よりも小さい穴形状を有しており、前記ベーンスプリングは、コイルばねであり、前記ベーンスプリングは、前記ベーンスプリングの軸方向の少なくとも一部において、前記シリンダの軸方向における高さ寸法が前記シリンダの接線方向における幅寸法よりも小さい巻き形状を有しているものである。 A compressor according to the present invention is in contact with a hollow cylinder housed in a container, a rolling piston that rotates eccentrically along the inner peripheral surface of the cylinder, and an outer peripheral surface of the rolling piston, A vane that divides the space into a suction chamber and a compression chamber; and a vane spring that urges the vane toward the rolling piston. The cylinder has a spring insertion hole into which the vane spring is inserted. The spring insertion hole has a hole shape in which the height dimension in the axial direction of the cylinder is smaller than the width dimension in the tangential direction of the cylinder in at least a part of the spring insertion hole in the axial direction. The vane spring is a coil spring, and the vane spring is at least in the axial direction of the vane spring. In some, in which the height in the axial direction of the cylinder has a smaller winding shape than the width dimension in the tangential direction of the cylinder.
 本発明によれば、シリンダの軸方向におけるスプリング挿入穴の寸法を小さくすることができるため、圧縮機の性能を維持しつつシリンダを薄型化できる。 According to the present invention, since the size of the spring insertion hole in the axial direction of the cylinder can be reduced, the thickness of the cylinder can be reduced while maintaining the performance of the compressor.
本発明の実施の形態1に係る圧縮機1の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the compressor 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る圧縮機1の圧縮機構10の部分的な断面構成を示す斜視図である。It is a perspective view which shows the partial cross-sectional structure of the compression mechanism 10 of the compressor 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る圧縮機1のシリンダ11の構成を示す上面図である。It is a top view which shows the structure of the cylinder 11 of the compressor 1 which concerns on Embodiment 1 of this invention. 一般的な圧縮機構10において、シリンダ11の厚みが相対的に厚い場合の断面構成と、シリンダ11の厚みが相対的に薄い場合の断面構成とを併せて示す図である。In the general compression mechanism 10, it is a figure which shows collectively the cross-sectional structure in case the thickness of the cylinder 11 is relatively thick, and the cross-sectional structure in case the thickness of the cylinder 11 is relatively thin. 本発明の実施の形態1に係る圧縮機1のシリンダ11の構成を示す斜視図である。It is a perspective view which shows the structure of the cylinder 11 of the compressor 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。It is a figure which shows the structure which looked at the vane spring 19 of the compressor 1 which concerns on Embodiment 1 of this invention to the axial direction. 本発明の実施の形態2に係る圧縮機1のシリンダ11の構成を示す斜視図である。It is a perspective view which shows the structure of the cylinder 11 of the compressor 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。It is a figure which shows the structure which looked at the vane spring 19 of the compressor 1 which concerns on Embodiment 2 of this invention to the axial direction. 本発明の実施の形態3に係る圧縮機1のシリンダ11の構成を示す斜視図である。It is a perspective view which shows the structure of the cylinder 11 of the compressor 1 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。It is a figure which shows the structure which looked at the vane spring 19 of the compressor 1 which concerns on Embodiment 3 of this invention to the axial direction. 本発明の実施の形態4に係る圧縮機1のシリンダ11の構成を示す斜視図である。It is a perspective view which shows the structure of the cylinder 11 of the compressor 1 which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。It is a figure which shows the structure which looked at the vane spring 19 of the compressor 1 which concerns on Embodiment 4 of this invention to the axial direction.
実施の形態1.
 本発明の実施の形態1に係る圧縮機について説明する。図1は、本実施の形態に係る圧縮機1の概略構成を示す縦断面図である。圧縮機1は、流体(本例では、冷凍サイクル内の低圧ガス冷媒)を圧縮して吐出する流体機械であり、例えば、空気調和装置、冷蔵庫等に用いられる冷凍サイクルの構成要素の1つとなるものである。本実施の形態では、圧縮機1として、縦置き型の密閉型回転圧縮機を例示している。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。また、明細書中における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、縦置き型の密閉型回転圧縮機を使用可能な状態に設置したときのものである。
Embodiment 1 FIG.
A compressor according to Embodiment 1 of the present invention will be described. FIG. 1 is a longitudinal sectional view showing a schematic configuration of a compressor 1 according to the present embodiment. The compressor 1 is a fluid machine that compresses and discharges a fluid (in this example, a low-pressure gas refrigerant in a refrigeration cycle), and is one of the components of a refrigeration cycle used in, for example, an air conditioner or a refrigerator. Is. In the present embodiment, as the compressor 1, a vertical type hermetic rotary compressor is illustrated. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may differ from the actual ones. Moreover, the positional relationship (for example, vertical relationship etc.) between each structural member in a specification is a thing when it installs in the state which can use a vertical installation sealed rotary compressor in principle.
 図1に示すように、圧縮機1は、ガス冷媒を圧縮する圧縮機構10と、圧縮機構10を駆動する電動機構50と、を有している。圧縮機構10及び電動機構50は、密閉容器60内に収容され、それぞれ溶接又は焼嵌め等により密閉容器60に対して固定されている。密閉容器60の底部には、圧縮機1の各摺動部を潤滑する冷凍機油が貯留されている。 As shown in FIG. 1, the compressor 1 includes a compression mechanism 10 that compresses a gas refrigerant and an electric mechanism 50 that drives the compression mechanism 10. The compression mechanism 10 and the electric mechanism 50 are accommodated in the sealed container 60 and fixed to the sealed container 60 by welding or shrink fitting, respectively. Refrigerating machine oil that lubricates the sliding portions of the compressor 1 is stored at the bottom of the sealed container 60.
 電動機構50は、固定子51と回転子52とを備えている。固定子51の外周部は、密閉容器60の内周面に固定されている。回転子52には、駆動軸53が同軸に固定されている。駆動軸53には、当該駆動軸53の回転軸からずれた位置に中心軸を有する偏芯部53aが形成されている。 The electric mechanism 50 includes a stator 51 and a rotor 52. The outer peripheral portion of the stator 51 is fixed to the inner peripheral surface of the sealed container 60. A drive shaft 53 is coaxially fixed to the rotor 52. The drive shaft 53 is formed with an eccentric portion 53 a having a central axis at a position shifted from the rotation axis of the drive shaft 53.
 圧縮機構10は、密閉容器60内において電動機構50の下方に配置されている。圧縮機構10は、円筒状の開口部を内側に備えた中空のシリンダ11と、シリンダ11の軸方向上端に配置され、駆動軸53を回転自在に支持する上軸受12と、シリンダ11の軸方向下端に配置され、駆動軸53を回転自在に支持する下軸受13と、を有している。上軸受12及び下軸受13は、それぞれシリンダ11の上端板及び下端板を兼ねている。上軸受12には、吐出マフラ14が取り付けられている。上軸受12と吐出マフラ14との間には、圧縮機構10で圧縮されて吐出される冷媒の脈動を低減させる吐出マフラ室が形成されている。 The compression mechanism 10 is disposed below the electric mechanism 50 in the sealed container 60. The compression mechanism 10 includes a hollow cylinder 11 having a cylindrical opening inside, an upper bearing 12 that is disposed at an upper end in the axial direction of the cylinder 11 and rotatably supports the drive shaft 53, and an axial direction of the cylinder 11. The lower bearing 13 is disposed at the lower end and rotatably supports the drive shaft 53. The upper bearing 12 and the lower bearing 13 also serve as an upper end plate and a lower end plate of the cylinder 11, respectively. A discharge muffler 14 is attached to the upper bearing 12. A discharge muffler chamber is formed between the upper bearing 12 and the discharge muffler 14 to reduce the pulsation of the refrigerant compressed and discharged by the compression mechanism 10.
 図2は、圧縮機構10の部分的な断面構成を示す斜視図である。図2では、上軸受12の図示を省略している。図3は、シリンダ11の構成を示す上面図である。図2及び図3に示すように、シリンダ11の外周部には、外周側に張り出した複数のリブ部11bが形成されている。リブ部11bの外周面11c(以下、「シリンダ11の外周面11c」という場合がある)は、密閉容器60の内周面に溶接等により固定されている。 FIG. 2 is a perspective view showing a partial cross-sectional configuration of the compression mechanism 10. In FIG. 2, the upper bearing 12 is not shown. FIG. 3 is a top view showing the configuration of the cylinder 11. As shown in FIGS. 2 and 3, a plurality of rib portions 11 b projecting to the outer peripheral side are formed on the outer peripheral portion of the cylinder 11. The outer peripheral surface 11c of the rib portion 11b (hereinafter sometimes referred to as “the outer peripheral surface 11c of the cylinder 11”) is fixed to the inner peripheral surface of the sealed container 60 by welding or the like.
 シリンダ11内の空間には、偏芯部53aに摺動自在に嵌入されたローリングピストン15が設けられている。ローリングピストン15は、偏芯部53aが回転することにより、シリンダ11の内周面11aに沿って偏芯回転する。また、シリンダ11の内周面11aからシリンダ11の径方向外側に向かって、ベーン溝16が形成されている。ベーン溝16には、シリンダ11内の空間を吸入室と圧縮室とに区分するベーン17が往復摺動自在に収容されている。ベーン溝16の背面側(すなわち、ベーン溝16とシリンダ11の外周面11cとの間)には、ブリッジ部20が形成されている。 In the space in the cylinder 11, a rolling piston 15 slidably fitted in the eccentric portion 53 a is provided. The rolling piston 15 rotates eccentrically along the inner peripheral surface 11a of the cylinder 11 as the eccentric portion 53a rotates. A vane groove 16 is formed from the inner peripheral surface 11 a of the cylinder 11 toward the radially outer side of the cylinder 11. A vane 17 that divides the space in the cylinder 11 into a suction chamber and a compression chamber is accommodated in the vane groove 16 so as to be slidable back and forth. A bridge portion 20 is formed on the back side of the vane groove 16 (that is, between the vane groove 16 and the outer peripheral surface 11 c of the cylinder 11).
 ベーン溝16とシリンダ11の外周面11cとの間には、シリンダ11の径方向に沿ってブリッジ部20を貫通したスプリング挿入穴18が形成されている。スプリング挿入穴18には、ベーン17をローリングピストン15側に付勢するベーンスプリング19が外周面11c側から挿入されている。ベーンスプリング19は、圧縮コイルばねである。スプリング挿入穴18は、シリンダ11の外部であって密閉容器60の内部の空間と連通しているため、ベーン17の背面側には吐出圧が作用する。ベーン17は、その背面側と先端部側との差圧による押圧力と、ベーンスプリング19による付勢力とにより、ローリングピストン15の外周面に押し付けられる。これにより、ベーン17は、ローリングピストン15の偏芯回転に追従してベーン溝16内を往復運動する。 Between the vane groove 16 and the outer peripheral surface 11c of the cylinder 11, a spring insertion hole 18 penetrating the bridge portion 20 along the radial direction of the cylinder 11 is formed. A vane spring 19 that urges the vane 17 toward the rolling piston 15 is inserted into the spring insertion hole 18 from the outer peripheral surface 11c side. The vane spring 19 is a compression coil spring. Since the spring insertion hole 18 communicates with the space inside the sealed container 60 outside the cylinder 11, the discharge pressure acts on the back side of the vane 17. The vane 17 is pressed against the outer peripheral surface of the rolling piston 15 by the pressing force due to the pressure difference between the back surface side and the tip end side and the urging force by the vane spring 19. Thereby, the vane 17 reciprocates in the vane groove 16 following the eccentric rotation of the rolling piston 15.
 図1に戻り、圧縮機1は、密閉容器60の外側に隣接して設けられ、外部(例えば、冷凍サイクルの蒸発器側)から流入した低圧冷媒を貯留して当該冷媒を気液分離するアキュムレータ61と、アキュムレータ61内のガス冷媒を密閉容器60内に導入する吸入管62と、密閉容器60内に導入されたガス冷媒をシリンダ11内の吸入室に導く吸入ポート63と、を有している。また、圧縮機1は、シリンダ11内の圧縮室で圧縮された高圧のガス冷媒を密閉容器60内の空間に吐出する吐出ポート(図示せず)と、密閉容器60内の空間に吐出された高圧のガス冷媒を外部(例えば、冷凍サイクルの凝縮器側)に吐出する吐出管64と、を有している。 Returning to FIG. 1, the compressor 1 is provided adjacent to the outside of the hermetic container 60, and stores the low-pressure refrigerant flowing from the outside (for example, the evaporator side of the refrigeration cycle) and separates the refrigerant from the accumulator. 61, a suction pipe 62 for introducing the gas refrigerant in the accumulator 61 into the sealed container 60, and a suction port 63 for guiding the gas refrigerant introduced into the sealed container 60 to the suction chamber in the cylinder 11. Yes. Further, the compressor 1 is discharged into a space inside the sealed container 60 and a discharge port (not shown) for discharging the high-pressure gas refrigerant compressed in the compression chamber inside the cylinder 11 into the space inside the sealed container 60. And a discharge pipe 64 for discharging high-pressure gas refrigerant to the outside (for example, the condenser side of the refrigeration cycle).
 このように構成された圧縮機1では、固定子51への通電により回転子52が回転すると、回転子52に嵌入された駆動軸53が回転する。これにより、駆動軸53の偏芯部53aに摺動自在に嵌入されたローリングピストン15が、シリンダ11の内周面11aに沿って偏芯回転(公転)する。ベーン17は、ベーン溝16内を往復運動することによりローリングピストン15の外周面に常時当接する。 In the compressor 1 configured as described above, when the rotor 52 is rotated by energizing the stator 51, the drive shaft 53 fitted in the rotor 52 is rotated. As a result, the rolling piston 15 slidably fitted into the eccentric portion 53 a of the drive shaft 53 rotates eccentrically (revolves) along the inner peripheral surface 11 a of the cylinder 11. The vane 17 always contacts the outer peripheral surface of the rolling piston 15 by reciprocating in the vane groove 16.
 ローリングピストン15の公転運動とベーン17の往復運動とによって、シリンダ11内の吸入室及び圧縮室の容積は徐々に変化する。吸入室及び圧縮室の容積変化により、吸入管62及び吸入ポート63を介して吸入室内に低圧ガス冷媒が吸入され、吸入された低圧ガス冷媒は圧縮室内で高温高圧に圧縮される。圧縮された高圧ガス冷媒は、上軸受12に設けられた吐出弁(図示せず)から、吐出マフラ室を経由して密閉容器60内の空間に吐出される。密閉容器60内の空間に吐出された高圧ガス冷媒は、吐出管64から密閉容器60の外部に吐出される。 The volume of the suction chamber and the compression chamber in the cylinder 11 is gradually changed by the revolving motion of the rolling piston 15 and the reciprocating motion of the vane 17. Due to the volume change of the suction chamber and the compression chamber, the low pressure gas refrigerant is sucked into the suction chamber via the suction pipe 62 and the suction port 63, and the sucked low pressure gas refrigerant is compressed to high temperature and high pressure in the compression chamber. The compressed high-pressure gas refrigerant is discharged from a discharge valve (not shown) provided in the upper bearing 12 to a space in the sealed container 60 via a discharge muffler chamber. The high-pressure gas refrigerant discharged into the space inside the sealed container 60 is discharged from the discharge pipe 64 to the outside of the sealed container 60.
 ここで、シリンダ11の厚み(軸方向の長さ)を異ならせたときのブリッジ部20の断面積の変化について説明する。図4は、一般的な圧縮機構10において、シリンダ11の厚みが相対的に厚い場合の断面構成(a)と、シリンダ11の厚みが相対的に薄い場合の断面構成(b)とを併せて示す図である。 Here, a change in the cross-sectional area of the bridge portion 20 when the thickness (length in the axial direction) of the cylinder 11 is varied will be described. FIG. 4 shows a cross-sectional configuration (a) when the cylinder 11 is relatively thick and a cross-sectional configuration (b) when the cylinder 11 is relatively thin in the general compression mechanism 10. FIG.
 前提として、図4の(a)及び(b)に示す構成では、ベーンスプリング19の巻き径及び線径は同一であり、ベーンスプリング19が挿入されるスプリング挿入穴18の内径も同一である。これは、ベーンスプリング19の巻き径を小さくしてしまうと、ベーンスプリング19の巻き長さが不足するため、伸縮の際にベーンスプリング19に発生する応力が増加してベーンスプリング19が折損してしまうためである。また、ベーンスプリング19の巻き径を小さくした場合において、ベーンスプリング19に発生する応力を維持するためにベーンスプリング19の線径も小さくしてしまうと、ベーン17に対する付勢力が十分に確保できないためである。 As a premise, in the configuration shown in FIGS. 4A and 4B, the winding diameter and wire diameter of the vane spring 19 are the same, and the inner diameter of the spring insertion hole 18 into which the vane spring 19 is inserted is also the same. This is because if the winding diameter of the vane spring 19 is reduced, the winding length of the vane spring 19 becomes insufficient, so that the stress generated in the vane spring 19 during expansion and contraction increases and the vane spring 19 breaks. It is because it ends. Further, when the winding diameter of the vane spring 19 is reduced, if the wire diameter of the vane spring 19 is reduced in order to maintain the stress generated in the vane spring 19, a sufficient urging force against the vane 17 cannot be secured. It is.
 図4の(a)に示す構成よりもシリンダ11の厚みを薄くした図4の(b)に示す構成では、シリンダ11の厚みが減少した分だけブリッジ部20の厚み(軸方向寸法)が減少しており、結果として、ブリッジ部20の断面積(図4(a)及び(b)においてハッチングを付した部分の面積)が減少することが分かる。 In the configuration shown in FIG. 4B in which the thickness of the cylinder 11 is made thinner than the configuration shown in FIG. 4A, the thickness (axial dimension) of the bridge portion 20 is reduced by the reduction in the thickness of the cylinder 11. As a result, it can be seen that the cross-sectional area of the bridge portion 20 (the area of the hatched portion in FIGS. 4A and 4B) decreases.
 図5は、本実施の形態に係る圧縮機1のシリンダ11の構成を示す斜視図である。図5中の上下方向は、シリンダ11の軸方向を表している。図5に示すように、本実施の形態のスプリング挿入穴18は、当該スプリング挿入穴18の軸方向(延伸方向)の少なくとも一部(本例では、全体)において、楕円形状の扁平な穴形状を有している。具体的には、シリンダ11の軸方向におけるスプリング挿入穴18の内径を高さ寸法H11とし、シリンダ11の軸方向に垂直な平面内でのシリンダ11の接線方向(以下、単に「シリンダ11の接線方向」という場合がある)におけるスプリング挿入穴18の内径を幅寸法W11としたとき、高さ寸法H11は幅寸法W11よりも小さくなっている(H11<W11)。 FIG. 5 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment. The vertical direction in FIG. 5 represents the axial direction of the cylinder 11. As shown in FIG. 5, the spring insertion hole 18 of the present embodiment has an elliptical flat hole shape in at least a part of the spring insertion hole 18 in the axial direction (stretching direction) (the whole in this example). have. Specifically, the inner diameter of the spring insertion hole 18 in the axial direction of the cylinder 11 is set to a height dimension H11, and the tangential direction of the cylinder 11 in a plane perpendicular to the axial direction of the cylinder 11 (hereinafter simply referred to as “tangential line of the cylinder 11”). The height dimension H11 is smaller than the width dimension W11 (H11 <W11).
 図6は、本実施の形態に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。図6の上下方向は、ベーンスプリング19がスプリング挿入穴18に挿入された状態でのシリンダ11の軸方向を表している。図6に示すように、本実施の形態のベーンスプリング19は、当該ベーンスプリング19の軸方向の少なくとも一部(本例では、全体)において、楕円形状の扁平な巻き形状を有している。また、ベーンスプリング19は、図5に示したスプリング挿入穴18に挿入可能な巻き形状を有している。ベーンスプリング19は、シリンダ11の軸方向における巻き径(高さ寸法H21)がシリンダ11の接線方向における巻き径(幅寸法W21)よりも小さくなるような挿入姿勢で(H21<W21)、スプリング挿入穴18に挿入されている。 FIG. 6 is a diagram showing a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction. The vertical direction in FIG. 6 represents the axial direction of the cylinder 11 with the vane spring 19 inserted into the spring insertion hole 18. As shown in FIG. 6, the vane spring 19 of the present embodiment has an elliptical flat winding shape in at least a part of the vane spring 19 in the axial direction (in this example, the whole). The vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG. The vane spring 19 is inserted such that the winding diameter (height dimension H21) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W21) in the tangential direction of the cylinder 11 (H21 <W21). It is inserted into the hole 18.
 以上説明したように、本実施の形態に係る圧縮機1は、密閉容器60内に収容された中空のシリンダ11と、シリンダ11の内周面11aに沿って偏芯回転するローリングピストン15と、ローリングピストン15の外周面に接触し、シリンダ11内の空間を吸入室と圧縮室とに区分するベーン17と、ベーン17をローリングピストン15側に付勢するベーンスプリング19と、を備え、シリンダ11には、ベーンスプリング19が挿入されるスプリング挿入穴18が形成されており、スプリング挿入穴18は、当該スプリング挿入穴18の軸方向の少なくとも一部において、シリンダ11の軸方向における高さ寸法H11がシリンダ11の接線方向における幅寸法W11よりも小さい扁平な穴形状を有しており、ベーンスプリング19は、コイルばねであり、ベーンスプリング19は、当該ベーンスプリング19の軸方向の少なくとも一部において、シリンダ11の軸方向における高さ寸法H21がシリンダ11の接線方向における幅寸法W21よりも小さい巻き形状を有しているものである。 As described above, the compressor 1 according to the present embodiment includes the hollow cylinder 11 housed in the sealed container 60, the rolling piston 15 that rotates eccentrically along the inner peripheral surface 11a of the cylinder 11, A vane 17 that contacts the outer peripheral surface of the rolling piston 15 and divides the space in the cylinder 11 into a suction chamber and a compression chamber; and a vane spring 19 that biases the vane 17 toward the rolling piston 15. A spring insertion hole 18 into which the vane spring 19 is inserted is formed. The spring insertion hole 18 has a height dimension H11 in the axial direction of the cylinder 11 at least in a part of the spring insertion hole 18 in the axial direction. Has a flat hole shape smaller than the width dimension W11 in the tangential direction of the cylinder 11, and the vane spring 19 The vane spring 19 has a winding shape in which the height dimension H21 in the axial direction of the cylinder 11 is smaller than the width dimension W21 in the tangential direction of the cylinder 11 in at least a part of the vane spring 19 in the axial direction. It is what you have.
 この構成によれば、シリンダ11の軸方向におけるスプリング挿入穴18の寸法を小さくすることができるため、ブリッジ部20の断面積の減少を抑えつつ、シリンダ11の厚みを薄くすることができる。シリンダ11の厚みを薄くすることにより、シリンダ11と摺動部品との接触長さを短くできるため、圧縮室の高圧側空間から低圧側空間への冷媒の漏れを低減させることができる。また、シリンダ11の厚みを薄くすることにより、圧縮機1を軸方向に小型化できるとともに、圧縮機1を製造するための材料を削減できる。さらに、シリンダ11の厚みを薄くすることにより、圧縮機1のシェル容量をさほど大きくすることなく多気筒化することができる。 According to this configuration, since the size of the spring insertion hole 18 in the axial direction of the cylinder 11 can be reduced, the thickness of the cylinder 11 can be reduced while suppressing a reduction in the cross-sectional area of the bridge portion 20. By reducing the thickness of the cylinder 11, the contact length between the cylinder 11 and the sliding component can be shortened, so that the leakage of refrigerant from the high pressure side space to the low pressure side space of the compression chamber can be reduced. Further, by reducing the thickness of the cylinder 11, the compressor 1 can be reduced in size in the axial direction, and the material for manufacturing the compressor 1 can be reduced. Further, by reducing the thickness of the cylinder 11, it is possible to increase the number of cylinders without increasing the shell capacity of the compressor 1.
 また、ブリッジ部20の断面積の減少を抑えることができるため、シリンダ11の内周面11aやベーン溝16に歪みを生じさせにくくすることができる。これにより、圧縮機構10における気密性が低下することによる圧縮性能の低下、及びシリンダ11と摺動部品との当たりが強くなることによる圧縮機1の故障等を抑制することができる。したがって、本実施の形態によれば、圧縮機1の性能を維持しつつシリンダ11を薄型化することができる。 Further, since the reduction in the cross-sectional area of the bridge portion 20 can be suppressed, it is possible to make it difficult for the inner peripheral surface 11a of the cylinder 11 and the vane groove 16 to be distorted. Thereby, it is possible to suppress a decrease in compression performance due to a decrease in airtightness in the compression mechanism 10 and a failure of the compressor 1 due to a strong contact between the cylinder 11 and the sliding component. Therefore, according to the present embodiment, the cylinder 11 can be thinned while maintaining the performance of the compressor 1.
 また、ベーンスプリング19は扁平な巻き形状を有しているため、高さ寸法H21を小さくしたとしても必要な巻き長さを確保することができる。したがって、ベーンスプリング19のベーン17に対する付勢力を確保しつつ、ベーンスプリング19の耐久性を維持することができる。 Further, since the vane spring 19 has a flat winding shape, a necessary winding length can be ensured even if the height dimension H21 is reduced. Accordingly, it is possible to maintain the durability of the vane spring 19 while ensuring the urging force of the vane spring 19 against the vane 17.
 さらに、ベーンスプリング19の座巻部が有効部よりも大径に形成されている場合、ベーン17とは反対側の端部に位置する座巻部の張る力を利用して、ベーンスプリング19をスプリング挿入穴18に固定することがある。従来の構成では、ベーンスプリング19の座巻部及びスプリング挿入穴18がいずれも真円形状であるため、座巻部の張る力は、スプリング挿入穴18の内周面の全周にかかっていた。これに対し、本例では、座巻部を含むベーンスプリング19の全体が扁平形状であるため、座巻部の張る力の方向を限定できるとともに、座巻部の張る力自体も容易に調整できる。したがって、座巻部がスプリング挿入穴18から外れにくくすることができるため、ベーンスプリング19をスプリング挿入穴18に確実に固定することができる。 Furthermore, when the end winding part of the vane spring 19 is formed to have a larger diameter than the effective part, the tension of the end winding part located at the end opposite to the vane 17 is used to remove the vane spring 19. It may be fixed to the spring insertion hole 18. In the conventional configuration, since the end winding portion of the vane spring 19 and the spring insertion hole 18 are both round, the tension applied by the end winding portion is applied to the entire circumference of the inner peripheral surface of the spring insertion hole 18. . In contrast, in this example, since the entire vane spring 19 including the end winding portion is flat, the direction of the tension applied by the end winding portion can be limited, and the tension itself applied by the end winding portion can be easily adjusted. . Therefore, since the end winding portion can be made difficult to come off from the spring insertion hole 18, the vane spring 19 can be reliably fixed to the spring insertion hole 18.
 スプリング挿入穴18は深穴であることから、従来のボール盤等の加工設備では、本実施の形態のようにスプリング挿入穴18を扁平な穴形状に加工するのは困難とされていた。しかしながら、近年では、加工設備や加工技術の進歩により、本実施の形態のようなスプリング挿入穴18の加工が可能となっている。 Since the spring insertion hole 18 is a deep hole, it has been difficult to process the spring insertion hole 18 into a flat hole shape as in the present embodiment with conventional processing equipment such as a drilling machine. However, in recent years, with the progress of processing equipment and processing technology, it is possible to process the spring insertion hole 18 as in the present embodiment.
実施の形態2.
 本発明の実施の形態2に係る圧縮機について説明する。図7は、本実施の形態に係る圧縮機1のシリンダ11の構成を示す斜視図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図7に示すように、本実施の形態のスプリング挿入穴18は、当該スプリング挿入穴18の軸方向の少なくとも一部(本例では、全体)において、長円形状(例えば、2つの半円弧と2つの平行直線とで画定される角丸長方形状)の扁平な穴形状を有している。シリンダ11の軸方向におけるスプリング挿入穴18の高さ寸法H12は、シリンダ11の接線方向におけるスプリング挿入穴18の幅寸法W12よりも小さくなっている(H12<W12)。
Embodiment 2. FIG.
A compressor according to Embodiment 2 of the present invention will be described. FIG. 7 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 7, the spring insertion hole 18 of the present embodiment has an oval shape (for example, two semicircular arcs) in at least a part of the spring insertion hole 18 in the axial direction (the whole in this example). It has a flat hole shape (rounded rectangular shape defined by two parallel straight lines). The height dimension H12 of the spring insertion hole 18 in the axial direction of the cylinder 11 is smaller than the width dimension W12 of the spring insertion hole 18 in the tangential direction of the cylinder 11 (H12 <W12).
 図8は、本実施の形態に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。図8に示すように、本実施の形態のベーンスプリング19は、当該ベーンスプリング19の軸方向の少なくとも一部(本例では、全体)において、長円形状の扁平な巻き形状を有している。また、ベーンスプリング19は、図7に示したスプリング挿入穴18に挿入可能な巻き形状を有している。ベーンスプリング19は、シリンダ11の軸方向における巻き径(高さ寸法H22)がシリンダ11の接線方向における巻き径(幅寸法W22)よりも小さくなるような挿入姿勢で(H22<W22)、スプリング挿入穴18に挿入されている。 FIG. 8 is a diagram illustrating a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction. As shown in FIG. 8, the vane spring 19 of the present embodiment has an oblong flat winding shape in at least a part of the vane spring 19 in the axial direction (in this example, the whole). . The vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG. The vane spring 19 is inserted such that the winding diameter (height dimension H22) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W22) in the tangential direction of the cylinder 11 (H22 <W22). It is inserted into the hole 18.
 本実施の形態によれば、上記実施の形態1と同様の効果を得ることができる。また、高さ及び幅が同一の場合、長円の周長は楕円の周長よりも長くなるため、本実施の形態では、上記実施の形態1よりもベーンスプリング19の巻き長さを長くすることができる。さらに、長円の外周は直線と円弧で構成されているため、本実施の形態では、スプリング挿入穴18の穴開け加工を上記実施の形態1よりも容易に行うことができる。 According to the present embodiment, the same effect as in the first embodiment can be obtained. Further, when the height and the width are the same, the circumference of the ellipse is longer than the circumference of the ellipse. Therefore, in this embodiment, the winding length of the vane spring 19 is made longer than that in the first embodiment. be able to. Furthermore, since the outer periphery of the ellipse is configured by a straight line and an arc, the drilling process of the spring insertion hole 18 can be performed more easily than in the first embodiment.
実施の形態3.
 本発明の実施の形態3に係る圧縮機について説明する。図9は、本実施の形態に係る圧縮機1のシリンダ11の構成を示す斜視図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図9に示すように、本実施の形態のスプリング挿入穴18は、当該スプリング挿入穴18の軸方向の少なくとも一部(本例では、全体)において、長方形状の扁平な穴形状を有している。シリンダ11の軸方向におけるスプリング挿入穴18の高さ寸法H13は、シリンダ11の接線方向におけるスプリング挿入穴18の幅寸法W13よりも小さくなっている(H13<W13)。
Embodiment 3 FIG.
A compressor according to Embodiment 3 of the present invention will be described. FIG. 9 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 9, the spring insertion hole 18 of the present embodiment has a rectangular flat hole shape in at least a part of the spring insertion hole 18 in the axial direction (in this example, the whole). Yes. The height dimension H13 of the spring insertion hole 18 in the axial direction of the cylinder 11 is smaller than the width dimension W13 of the spring insertion hole 18 in the tangential direction of the cylinder 11 (H13 <W13).
 図10は、本実施の形態に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。図10に示すように、本実施の形態のベーンスプリング19は、当該ベーンスプリング19の軸方向の少なくとも一部(本例では、全体)において、長方形状の扁平な巻き形状を有している。また、ベーンスプリング19は、図9に示したスプリング挿入穴18に挿入可能な巻き形状を有している。ベーンスプリング19は、シリンダ11の軸方向における巻き径(高さ寸法H23)がシリンダ11の接線方向における巻き径(幅寸法W23)よりも小さくなるような挿入姿勢で(H23<W23)、スプリング挿入穴18に挿入されている。 FIG. 10 is a diagram showing a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction. As shown in FIG. 10, the vane spring 19 of the present embodiment has a rectangular flat winding shape in at least a part of the vane spring 19 in the axial direction (the whole in the present example). The vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG. The vane spring 19 is inserted such that the winding diameter (height dimension H23) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W23) in the tangential direction of the cylinder 11 (H23 <W23). It is inserted into the hole 18.
 本実施の形態によれば、上記実施の形態1と同様の効果を得ることができる。また、高さ及び幅が同一の場合、長方形の周長は楕円及び長円の周長よりも長くなるため、本実施の形態では、上記実施の形態1及び2よりもベーンスプリング19の巻き長さを長くすることができる。さらに、長方形の外周は直線で構成されているため、本実施の形態では、スプリング挿入穴18の穴開け加工を上記実施の形態1よりも容易に行うことができる。 According to the present embodiment, the same effect as in the first embodiment can be obtained. Further, when the height and the width are the same, the circumference of the rectangle is longer than the circumference of the ellipse and the ellipse. Therefore, in the present embodiment, the winding length of the vane spring 19 is greater than those of the first and second embodiments. The length can be increased. Furthermore, since the outer periphery of the rectangle is configured by a straight line, in this embodiment, the drilling of the spring insertion hole 18 can be performed more easily than in the first embodiment.
実施の形態4.
 本発明の実施の形態4に係る圧縮機について説明する。図11は、本実施の形態に係る圧縮機1のシリンダ11の構成を示す斜視図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図11に示すように、本実施の形態のスプリング挿入穴18は、当該スプリング挿入穴18の軸方向の少なくとも一部(本例では、全体)において、多角形状(本例では、六角形状)の扁平な穴形状を有している。ここで、多角形とは、3つ以上の線分で囲まれた形状のことである。シリンダ11の軸方向におけるスプリング挿入穴18の高さ寸法H14は、シリンダ11の接線方向におけるスプリング挿入穴18の幅寸法W14よりも小さくなっている(H14<W14)。
Embodiment 4 FIG.
A compressor according to Embodiment 4 of the present invention will be described. FIG. 11 is a perspective view showing the configuration of the cylinder 11 of the compressor 1 according to the present embodiment. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 11, the spring insertion hole 18 of the present embodiment has a polygonal shape (in this example, a hexagonal shape) in at least a part of the spring insertion hole 18 in the axial direction (in this example, the whole). It has a flat hole shape. Here, the polygon is a shape surrounded by three or more line segments. The height dimension H14 of the spring insertion hole 18 in the axial direction of the cylinder 11 is smaller than the width dimension W14 of the spring insertion hole 18 in the tangential direction of the cylinder 11 (H14 <W14).
 図12は、本実施の形態に係る圧縮機1のベーンスプリング19を軸方向に見た構成を示す図である。図12に示すように、本実施の形態のベーンスプリング19は、当該ベーンスプリング19の軸方向の少なくとも一部(本例では、全体)において、多角形状(本例では、六角形状)の扁平な巻き形状を有している。また、ベーンスプリング19は、図11に示したスプリング挿入穴18に挿入可能な巻き形状を有している。ベーンスプリング19は、シリンダ11の軸方向における巻き径(高さ寸法H24)がシリンダ11の接線方向における巻き径(幅寸法W24)よりも小さくなるような挿入姿勢で(H24<W24)、スプリング挿入穴18に挿入されている。 FIG. 12 is a diagram showing a configuration in which the vane spring 19 of the compressor 1 according to the present embodiment is viewed in the axial direction. As shown in FIG. 12, the vane spring 19 of the present embodiment is a flat polygonal shape (in this example, a hexagonal shape) in at least a part of the vane spring 19 in the axial direction (in this example, the whole). It has a winding shape. The vane spring 19 has a winding shape that can be inserted into the spring insertion hole 18 shown in FIG. The vane spring 19 is inserted such that the winding diameter (height dimension H24) in the axial direction of the cylinder 11 is smaller than the winding diameter (width dimension W24) in the tangential direction of the cylinder 11 (H24 <W24). It is inserted into the hole 18.
 本実施の形態によれば、上記実施の形態1と同様の効果を得ることができる。また、多角形の外周は直線で構成されているため、本実施の形態では、スプリング挿入穴18の穴開け加工を上記実施の形態1よりも容易に行うことができる。 According to the present embodiment, the same effect as in the first embodiment can be obtained. Further, since the outer periphery of the polygon is formed of a straight line, in this embodiment, the drilling process of the spring insertion hole 18 can be performed more easily than in the first embodiment.
その他の実施の形態.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では縦置き型の圧縮機を例に挙げたが、本発明は横置き型の圧縮機にも適用可能である。
Other embodiments.
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above-described embodiment, the vertical type compressor is taken as an example, but the present invention is also applicable to a horizontal type compressor.
 また、上記実施の形態では1つのシリンダを備えた圧縮機を例に挙げたが、本発明は、2つ以上のシリンダを備えた圧縮機にも適用可能である。 In the above embodiment, the compressor having one cylinder is taken as an example, but the present invention is also applicable to a compressor having two or more cylinders.
 また、上記実施の形態では、軸方向の全体において高さ寸法が幅寸法よりも小さい形状をそれぞれ有するスプリング挿入穴及びベーンスプリングを例に挙げたが、本発明はこれに限られない。本発明のスプリング挿入穴は、軸方向の一部のみにおいて高さ寸法が幅寸法よりも小さく、軸方向の他の部分では例えば高さ寸法と幅寸法とが等しい穴形状を有していてもよい。また、本発明のベーンスプリングは、軸方向の一部のみにおいて高さ寸法が幅寸法よりも小さく、軸方向の他の部分では例えば高さ寸法と幅寸法とが等しい巻き形状を有していてもよい。この場合、スプリング挿入穴及びベーンスプリングは、それぞれ少なくともブリッジ部に対応する部分(シリンダの径方向においてベーン溝よりも外周側となる部分)において高さ寸法が幅寸法よりも小さい形状を有することが望ましい。これによると、上記実施の形態と同様に、ブリッジ部の断面積の減少を抑えつつシリンダの厚みを薄くすることができる。 In the above-described embodiment, the spring insertion hole and the vane spring each having a shape in which the height dimension is smaller than the width dimension in the whole axial direction are described as examples. However, the present invention is not limited to this. The spring insertion hole of the present invention may have a hole shape in which the height dimension is smaller than the width dimension only in a part in the axial direction and the height dimension and the width dimension are the same in other parts in the axial direction. Good. In addition, the vane spring of the present invention has a winding shape in which the height dimension is smaller than the width dimension only in one part in the axial direction, and the height dimension and the width dimension are equal in other parts in the axial direction, for example. Also good. In this case, each of the spring insertion hole and the vane spring may have a shape in which the height dimension is smaller than the width dimension at least in a portion corresponding to the bridge portion (a portion on the outer peripheral side of the vane groove in the radial direction of the cylinder). desirable. According to this, similarly to the above-described embodiment, it is possible to reduce the thickness of the cylinder while suppressing a reduction in the cross-sectional area of the bridge portion.
 また、上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。 Also, the above embodiments and modifications can be implemented in combination with each other.
 1 圧縮機、10 圧縮機構、11 シリンダ、11a 内周面、11b リブ部、11c 外周面、12 上軸受、13 下軸受、14 吐出マフラ、15 ローリングピストン、16 ベーン溝、17 ベーン、18 スプリング挿入穴、19 ベーンスプリング、20 ブリッジ部、50 電動機構、51 固定子、52 回転子、53 駆動軸、53a 偏芯部、60 密閉容器、61 アキュムレータ、62 吸入管、63 吸入ポート、64 吐出管。 1 compressor, 10 compression mechanism, 11 cylinder, 11a inner peripheral surface, 11b rib part, 11c outer peripheral surface, 12 upper bearing, 13 lower bearing, 14 discharge muffler, 15 rolling piston, 16 vane groove, 17 vane, 18 spring insertion Hole, 19 vane spring, 20 bridge part, 50 electric mechanism, 51 stator, 52 rotor, 53 drive shaft, 53a eccentric part, 60 sealed container, 61 accumulator, 62 suction pipe, 63 suction port, 64 discharge pipe.

Claims (3)

  1.  容器内に収容された中空のシリンダと、
     前記シリンダの内周面に沿って偏芯回転するローリングピストンと、
     前記ローリングピストンの外周面に接触し、前記シリンダ内の空間を吸入室と圧縮室とに区分するベーンと、
     前記ベーンを前記ローリングピストン側に付勢するベーンスプリングと、を備え、
     前記シリンダには、前記ベーンスプリングが挿入されるスプリング挿入穴が形成されており、
     前記スプリング挿入穴は、前記スプリング挿入穴の軸方向の少なくとも一部において、前記シリンダの軸方向における高さ寸法が前記シリンダの接線方向における幅寸法よりも小さい穴形状を有しており、
     前記ベーンスプリングは、コイルばねであり、
     前記ベーンスプリングは、前記ベーンスプリングの軸方向の少なくとも一部において、前記シリンダの軸方向における高さ寸法が前記シリンダの接線方向における幅寸法よりも小さい巻き形状を有している圧縮機。
    A hollow cylinder housed in a container;
    A rolling piston that rotates eccentrically along the inner circumferential surface of the cylinder;
    A vane that contacts an outer peripheral surface of the rolling piston and divides a space in the cylinder into a suction chamber and a compression chamber;
    A vane spring that urges the vane toward the rolling piston,
    The cylinder has a spring insertion hole into which the vane spring is inserted,
    The spring insertion hole has a hole shape in which the height dimension in the axial direction of the cylinder is smaller than the width dimension in the tangential direction of the cylinder in at least a part of the spring insertion hole in the axial direction;
    The vane spring is a coil spring,
    The said vane spring is a compressor which has the winding shape in which the height dimension in the axial direction of the said cylinder is smaller than the width dimension in the tangential direction of the said cylinder in at least one part of the axial direction of the said vane spring.
  2.  前記スプリング挿入穴の穴形状は、楕円形状、長円形状、長方形状又は多角形状である請求項1に記載の圧縮機。 The compressor according to claim 1, wherein a hole shape of the spring insertion hole is an elliptical shape, an oval shape, a rectangular shape or a polygonal shape.
  3.  前記ベーンスプリングの巻き形状は、楕円形状、長円形状、長方形状又は多角形状である請求項1又は請求項2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein a winding shape of the vane spring is an elliptical shape, an oval shape, a rectangular shape, or a polygonal shape.
PCT/JP2015/062892 2015-04-28 2015-04-28 Compressor WO2016174751A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017515334A JP6388715B2 (en) 2015-04-28 2015-04-28 Compressor
PCT/JP2015/062892 WO2016174751A1 (en) 2015-04-28 2015-04-28 Compressor
CN201610183692.7A CN106089709A (en) 2015-04-28 2016-03-28 Compressor
CN201620245576.9U CN205714766U (en) 2015-04-28 2016-03-28 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062892 WO2016174751A1 (en) 2015-04-28 2015-04-28 Compressor

Publications (1)

Publication Number Publication Date
WO2016174751A1 true WO2016174751A1 (en) 2016-11-03

Family

ID=57198271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062892 WO2016174751A1 (en) 2015-04-28 2015-04-28 Compressor

Country Status (3)

Country Link
JP (1) JP6388715B2 (en)
CN (2) CN205714766U (en)
WO (1) WO2016174751A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111120325A (en) * 2018-10-31 2020-05-08 广东美芝精密制造有限公司 Pump body assembly for compressor and rotary compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388715B2 (en) * 2015-04-28 2018-09-12 三菱電機株式会社 Compressor
CN108252910A (en) * 2017-11-30 2018-07-06 刘悦吟 A kind of compressor
KR102299099B1 (en) * 2018-01-19 2021-09-08 미쓰비시덴키 가부시키가이샤 rotary compressor
JP6887561B2 (en) * 2018-03-23 2021-06-16 三菱電機株式会社 Sealed compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157394U (en) * 1980-04-25 1981-11-24
JPS58167787U (en) * 1982-05-06 1983-11-09 松下冷機株式会社 rotary compressor
JPS5999189U (en) * 1982-12-23 1984-07-04 三菱電機株式会社 rotary compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240797A (en) * 2008-03-07 2008-08-13 广东美芝制冷设备有限公司 Rotation-type compressor sliding blade spring and uses thereof
JP6388715B2 (en) * 2015-04-28 2018-09-12 三菱電機株式会社 Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157394U (en) * 1980-04-25 1981-11-24
JPS58167787U (en) * 1982-05-06 1983-11-09 松下冷機株式会社 rotary compressor
JPS5999189U (en) * 1982-12-23 1984-07-04 三菱電機株式会社 rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111120325A (en) * 2018-10-31 2020-05-08 广东美芝精密制造有限公司 Pump body assembly for compressor and rotary compressor

Also Published As

Publication number Publication date
CN205714766U (en) 2016-11-23
JPWO2016174751A1 (en) 2017-11-30
CN106089709A (en) 2016-11-09
JP6388715B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6388715B2 (en) Compressor
JP2008211873A (en) Stator, motor, and compressor
JP2007255332A (en) Compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP5079670B2 (en) Rotary compressor
JP2007205227A (en) Compressor
JP4172514B2 (en) Compressor
JP5152385B1 (en) Compressor
US20190264687A1 (en) Scroll compressor and refrigeration cycle apparatus
US20100172756A1 (en) Rotary compressor
WO2015114883A1 (en) Hermetic compressor
CN109153063B (en) Compressor, method for manufacturing compressor, and pipe expander
JP2012036822A (en) Compressor
JP2014109204A (en) Compressor
JP5135779B2 (en) Compressor
JP2013139725A (en) Oscillating piston type compressor
JP2008141805A (en) Compressor
JP2008138591A5 (en)
US20130064703A1 (en) Scroll compressor
WO2018138772A1 (en) Closed-type compressor
JP2014190176A (en) Rotary compressor and refrigeration cycle device
JP2008169743A (en) Compressor
JP6400389B2 (en) Hermetic electric compressor
JP2019035391A (en) Compressor
JP6091241B2 (en) Hermetic compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890734

Country of ref document: EP

Kind code of ref document: A1