WO2016174375A1 - Compresseur électrique avec système d'étanchéité dynamique amélioré - Google Patents

Compresseur électrique avec système d'étanchéité dynamique amélioré Download PDF

Info

Publication number
WO2016174375A1
WO2016174375A1 PCT/FR2016/051029 FR2016051029W WO2016174375A1 WO 2016174375 A1 WO2016174375 A1 WO 2016174375A1 FR 2016051029 W FR2016051029 W FR 2016051029W WO 2016174375 A1 WO2016174375 A1 WO 2016174375A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
shaft
seal
wheel
vent hole
Prior art date
Application number
PCT/FR2016/051029
Other languages
English (en)
Inventor
Nicolas Martin
Nicolas Renard
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Priority to PL16725189.1T priority Critical patent/PL3289222T3/pl
Priority to EP16725189.1A priority patent/EP3289222B1/fr
Publication of WO2016174375A1 publication Critical patent/WO2016174375A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • F05D2260/6022Drainage of leakage having past a seal

Definitions

  • the present invention relates to the field of electric compressors, and more particularly to an electric supercharging compressor comprising a dynamic sealing system.
  • an electric compressor is a device used to supercharge a heat engine, operating with an electric motor. More specifically, the compressor comprises a compressor wheel driven by an electric motor.
  • the electric compressor is placed on the air intake line of an internal combustion engine, in addition to a turbocharger.
  • the electric compressor plays the same role as the turbocharger, namely increase the intake pressure of the fresh gases in the engine, but is used in particular during transient phases to overcome turbocharger response time problems.
  • a dynamic sealing system is put in place between the compressor wheel and the electric motor.
  • This system consists of two segments.
  • a vent hole known from patent application UK1312334.4, is added between the two segments, to prevent the accumulation of possible pollutants that would have passed through the first segment.
  • the vent hole is connected to the turbocharger inlet via a hose which creates a slight depression to purge the vent hole.
  • the vent hole is thus connected to an area which is generally in depression. This is necessary for the protection of the electric motor and its bearings to be effective.
  • pollutants which have accumulated in the vent hole may pass through the 2nd segment. This results in a risk of pollution of the compressor and more particularly the ball bearing can reduce its life.
  • the present invention therefore aims to overcome one or more of the disadvantages of devices of the prior art by providing an electric compressor whose sealing system is improved and thus avoids bearing pollution.
  • the present invention proposes an electric compressor comprising a shaft driven in rotation by an electric motor by means of bearings, the shaft driving a compressor wheel in rotation, the compressor comprising two sealing rings mounted around the shaft between the bearings and the compressor wheel and having a vent hole circuit for circulating pollutant flow to the outside of the compressor, the inlet of which is arranged between the two sealing segments, the compressor comprising at least one bearing protection seal.
  • the seal at least avoids the accumulation of pollutant at the vent hole and also avoids the purge of the internal grease of the bearing under the suction effect through the vent hole.
  • the seal is disposed on a bearing face perpendicular to a longitudinal axis X of the compressor shaft, on the side facing the segments.
  • the seal is a rubbing seal.
  • the seal is made of elastomer.
  • the compressor comprises a baffling upstream of the segment disposed on the side of the wheel.
  • the objective of this baffling is to maximize the pressure drop between the compressor wheel and the segment disposed on the side of the wheel. In this way, the accumulation of pollutants between the 2 segments is reduced. And the need for evacuation through the vent hole is then less.
  • the baffling is performed at the contact between an additional piece fixed circularly to the shaft, and the body of the compressor.
  • the compressor comprises a groove upstream of the baffling.
  • This groove makes it possible to collect the droplets of pollutant such as in particular the oil and to centrifuge them, in order to prevent them from reaching the segment disposed on the side of the wheel.
  • the air at the segment disposed on the side of the wheel is thus freed of a portion of the pollutants.
  • the opening of the groove is formed outwardly, that is to say in the opposite direction to the shaft.
  • the groove is formed in the additional piece.
  • the compressor is an electric supercharging compressor of a heat engine.
  • FIG. 1 is a schematic representation showing an engine assembly incorporating a system according to one embodiment of the invention
  • FIG. 2 is a schematic representation of a sectional view of a part of a compressor incorporating a sealing system
  • FIG. 3 is a schematic representation of a sectional view of a detail A of Figure 2 of a compressor incorporating an improved sealing system according to the invention.
  • the present invention relates to an electric compressor equipped with an improved dynamic sealing system.
  • the dynamic sealing system is formed by at least two segments between which opens a vent hole.
  • the term electric compressor an air compressor, volumetric or not and for example centrifugal or radial, driven by an electric motor, for the purpose of supercharging a heat engine.
  • the electric motor is an asynchronous DC or AC motor.
  • the motor comprises a rotor and a stator.
  • the electric motor is a variable reluctance motor (also called SRM machine for Switched Reluctance Motor according to English terminology).
  • the stator comprises a body constituted by a stack of thin sheets forming a ring, also called a bundle of sheets, whose inner face is provided with notches open towards the inside to receive windings. phase which form a coil.
  • the rotor is permanent magnets.
  • FIG. 1 illustrates an internal combustion engine with three cylinders 1 associated with a device 3 for supplying an intake gas according to one embodiment of the invention.
  • the feed device 3 (marked by a dotted line) comprises a turbocharger 5.
  • the feed device 3 comprises an exhaust gas recirculation valve 6.
  • the feed device 3 comprises a charge air cooler 7.
  • the supply device 3 comprises an electric compressor 9 and a bypass valve of the compressor 10.
  • the turbocharger 5 is fed by the exhaust gases of the engine 1 and by air arriving through an air inlet 8. Part of the exhaust gas is recycled to the inlet of the engine 1 via a valve 6 for recirculating the exhaust gas.
  • the gases coming from the compressor of the turbocharger 5 are then cooled by the cooler 7 and then feed the electric compressor 9.
  • the cooler is disposed downstream of the electric compressor 9.
  • the electric compressor 9 compresses the gases from the turbocharger 5 and supplies the engine 1.
  • the electric compressor 9, illustrated in FIGS. 2 and 3, comprises an electric motor (not visible in FIG. 2), and bearings 16 arranged circularly around the shaft.
  • the electric motor makes it possible to rotate a shaft 13 of the electric compressor via the bearings 16.
  • the shaft 13 thus rotates the wheel 14 of the compressor 9. More precisely, one end of the shaft 13 is rotated by the electric motor, and another end of the shaft 13 rotates the wheel 14 of the compressor.
  • the intermediate portion of the shaft is protected by the compressor body 17. This intermediate portion of the shaft comprises a sealing system, and more specifically a dynamic sealing system.
  • This member is formed of a first sealing segment 29a positioned on the side of the wheel 14 of the compressor and a second sealing segment 29b positioned on the side of the bearings 16. These segments have the role of protecting the bearings of the pollution may come from the wheel 14 of the compressor.
  • Each of the sealing segments 29a, b is disposed in a recess.
  • the two recesses are formed, that is to say machined, directly in the shaft 13.
  • the two recesses 19a, b are formed in an additional piece 131 fixed to the shaft 13.
  • the additional piece has the shape of a ring in which are hollowed out the recesses 19a, b. It is disposed against a flat wall of the shaft 13 or in another recess 132 made in the shaft 13. This other recess 132 is configured to allow easy insertion of the additional part 131 on the shaft 13.
  • the additional piece 131 is formed in a single part or in two parts not shown.
  • vent hole 31 is added between the two segments to prevent the accumulation of any pollutants that would have passed through the first segment 29a.
  • the vent hole 31 is connected to the inlet of the turbocharger.
  • the vent hole 31 is connected to the turbocharger, for example by means of a hose which makes it possible to create a slight depression to purge the vent hole.
  • the vent hole 31 thus passes through part of the compressor.
  • the vent hole 31, more precisely the vent hole circuit extends outside the compressor.
  • the vent hole 31 thus makes it possible to avoid the pollution of the bearings 16 by allowing the evacuation of the pollutants by virtue of a pressure difference between the pressure of the compartment formed between the two sealing segments 29a, 29b and the pressure at the vent hole outlet 35.
  • the pressure between the two segments 29a, 29b is greater than the outlet pressure of the vent hole.
  • accumulation zone is meant the portion of the circuit of the vent hole 31 between the inlet 37 of the vent hole and the outlet 35 of the vent hole.
  • inlet and outlet are defined relative to the flow direction of the flow, in the vent hole, from the sealing compartment to the outside of the compressor.
  • the invention provides at least one seal 100 for protecting at least one bearing.
  • This seal 100 is disposed on one side of the bearing, perpendicular to the longitudinal axis X of the compressor shaft 13. More specifically, the seal 100 is disposed on the face of the bearing oriented towards the segments 29a, b. This seal 100 also protects the electric motor.
  • the seal 100 is located between the balls 165 of the bearing and the segments 29a, b.
  • the seal 100 comprises at least one elastomer part.
  • the entire seal 100 is made of elastomer.
  • the seal 100 is composed of a frame, for example metal and more specifically steel. This frame is covered with an elastomer, for example by overmolding.
  • the elastomer used is of the NBR type (for nitrile butadiene rubber according to the English terminology) or FKM (fluoropolymer) or PTFE (polytetrafluoroethylene) or EPDM (ethylene-propylene-diene monomer) or HNBR (butadiene- hydrogenated acryionitrile) or AEM (ethylene acrylic) or ACM (copolymer of acrylic acid ester and 2-chloroethylvinyl ether according to English terminology).
  • NBR for nitrile butadiene rubber according to the English terminology
  • FKM fluoropolymer
  • PTFE polytetrafluoroethylene
  • EPDM ethylene-propylene-diene monomer
  • HNBR butadiene- hydrogenated acryionitrile
  • AEM ethylene acrylic
  • ACM copolymer of acrylic acid ester and 2-chloroethylvinyl ether according to English terminology
  • the seal is rigidly coupled to the outer ring 166 of the bearing and provides a static seal at its interface with said outer ring.
  • the seal 100 comprises at least one lip (not shown).
  • the seal 100 comprises two lips. This or these lips rub on the inner ring 164 of the bearing thus achieving a dynamic seal.
  • the lip or lips are oriented radially, that is to say they rub on a cylindrical zone.
  • the lip or lips are oriented axially, that is to say they rub on a plane perpendicular to the axis X of rotation of the shaft and therefore the bearing.
  • a lip is oriented radially and another lip is oriented axially.
  • the geometry and the material of the lip or lips are chosen to limit the friction, with for example a friction generating a maximum torque equal to 15Nmm, preferably less than 1mm, while ensuring a seal under differential pressures up to 4 bar.
  • This seal 100 protects the bearing and the balls 165 of the bearing pollutants may contaminate its internal fat.
  • the seal 100 also makes it possible to avoid purging the internal grease of the bearing under the effect of suction through the vent hole.
  • the invention provides a baffling 200 upstream of the segment 29a disposed on the side of the wheel 14.
  • the baffling is formed by at least one baffle.
  • Baffle means a circular passage for air that is non-rectilinear. The air comes from the 14 wheel compressor compartment. This air passage is formed to open between the wheel 14 and the segment 29a disposed on the side of the wheel 14.
  • the baffling 200 is formed directly in the body 140 of the compressor. More specifically, the baffling 200 is achieved through specific shapes arranged in the body 140 of the compressor.
  • the baffling 200 is achieved by specific shapes arranged in the body 140 and the additional piece 131, at the border common to these two parts to create a non-rectilinear path for the air. These forms are complementary.
  • the presence of the additional piece 131 simplifies the mounting of the bearing and increases the bearing surface with the wheel 14.
  • the increase in the contact surface of the wheel with the additional piece avoids the matting or deformation of the wheel 14.
  • the wheel 14 is made of a softer material than the additional piece 131 and the shaft 13.
  • the wheel 14 is made of aluminum and the additional piece 131 and the shaft 13 are made of steel.
  • the baffling 200 is composed of at least two segments oriented in different directions, at least one radial direction and at least one axial direction.
  • the baffling 200 is composed of several segments 201 rectilinear. This configuration forces the flow of air to change direction from a radial direction to an axial direction, or vice versa.
  • the baffling 200 comprises at least 6 segments 201, thus 5 changes of direction. Changes in direction create pressure drop, which is a loss of pressure along the way. This loss of pressure causes a reduction in flow.
  • each segment 201 In order to increase the pressure drop, the section and the length of each segment 201 are chosen so that the section / length ratio of each segment is as small as possible. In fact, the lower the ratio, the more pressure there is, because the smaller the section, the longer the path and the harder it is for the air. circulate. The length of each segment 201 is thus maximized, taking into account congestion constraints.
  • each segment 201 measures, for example, between 1 mm and 5 mm, and preferably between 1 and 3 mm long in the radial direction or in the axial direction or at an angle.
  • the clearance between the body 140 and the additional part 131 must be minimized, taking into account the manufacturing and positioning tolerances of the various components.
  • This clearance is for example less than 0.5 mm, preferably less than 0.25 mm in the radial direction and less than 0.75 mm, preferably less than 0.5 mm in the axial direction.
  • the section evolves, that is to say increases and then decreases significantly to create turbulence to limit the flow.
  • This baffling 200 is to maximize the pressure drop between the compressor wheel and the segment 29a disposed on the side of the wheel 14.
  • the flow rate in this zone, as well as the pressure upstream of the segment 29a disposed on the side of the wheel 14 are then reduced.
  • the leakage through this segment is then reduced. In this way, the accumulation of pollutants between the 2 segments is reduced. And the need for evacuation through the vent hole is then less.
  • the baffling 200 is formed directly in the body 140 of the compressor.
  • the invention provides a groove 300 upstream of the baffling 200.
  • a groove 300 is understood to mean a groove of generally semicircular shape arranged circularly with respect to the axis of the shaft 13.
  • the opening 301 of the groove 300 is formed outwardly, that is to say in the opposite direction to the shaft.
  • the groove is formed in the additional part 131.
  • the groove is defined by a recess of toric shape, around the shaft, disposed at a distance from the shaft defined by the length of the groove. chicanery.
  • the average diameter Di of the toric form, and therefore of the groove is between 10 mm and 20 mm.
  • the proper diameter Dp of the toric form that is to say the diameter Dp of the groove defined parallel to the axis X of the shaft is 1 and 2 mm.
  • This groove 300 makes it possible to collect the droplets of pollutant such as in particular the oil and to centrifuge them so as to prevent them from reaching the segment 29a disposed on the side of the wheel 14. The air at the segment 29a disposed on the side of the wheel 14 is thus rid of a portion of the pollutants.
  • the invention provides for the combination of the three variants described above. More specifically, the compressor according to the invention comprises at least one seal 100 for protecting at least one bearing, a baffle 200 between the wheel 14 and the segment 29a disposed on the side of the wheel 14, and a groove 300 upstream of chicanery.
  • the compressor according to the invention is thus configured to protect the bearings, and also the electric motor, against pollutants such as oil, recirculation gases or any other pollutants.
  • pollutants such as oil, recirculation gases or any other pollutants.
  • the improved sealing of this system reduces the need for depression of the vent hole and even allows a slight overpressure.
  • the seal is maintained under an overpressure of the vent hole of 50mbar relative to the atmospheric pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)
  • Compressor (AREA)

Abstract

Compresseur 9, 17 électrique comportant un arbre 13 entraîné en rotation par un moteur électrique par l'intermédiaire de roulements 16, l'arbre entraiment en rotation une roue de compresseur 14, le compresseur 9 comportant deux segments d'étanchéité 29a, 29b montés autour de l'arbre 13 entre les roulements 16 et la roue de compresseur 14 et comportant un trou d'évent 35, 37 de circulation de flux de polluants vers l'extérieur du compresseur, dont l'entrée est disposée entre les deux segments d'étanchéité, le compresseur comportant au moins un joint 100 de protection des roulements 16.

Description

COMPRESSEUR ELECTRIQUE AVEC SYSTEME
D'ETANCHEITE DYNAMIQUE AMELIORE
La présente invention concerne le domaine des compresseurs électriques, et plus particulièrement un compresseur électrique de suralimentation comportant un système d'étanchéité dynamique.
Dans le cadre de l'invention, un compresseur électrique est un dispositif, utilisé pour suralimenter un moteur thermique, fonctionnant avec un moteur électrique. Plus précisément, le compresseur comporte une roue de compresseur entraînée par un moteur électrique.
Le compresseur électrique est placé sur la ligne d'admission d'air d'un moteur à combustion interne, en complément d'un turbocompresseur. Le compresseur électrique joue le même rôle que le turbocompresseur, à savoir augmenter la pression d'admission des gaz frais dans le moteur, mais est utilisé notamment lors des phases transitoires pour palier aux problèmes de temps de réponse du turbocompresseur.
Afin de protéger le moteur électrique et ses roulements d'un air pouvant contenir différents polluants (huile, gaz de recirculation...), un système d'étanchéité dynamique est mis en place entre la roue du compresseur et le moteur électrique. Ce système est composé de deux segments. Un trou d'évent, connu de la demande de brevet UK1312334.4, est ajouté entre les deux segments, afin d'éviter l'accumulation des éventuels polluants qui auraient traversé le premier segment. Pour plus d'efficacité, le trou d'évent est relié à l'entrée du turbocompresseur par l'intermédiaire d'une durite ce qui permet de créer une légère dépression afin de purger le trou d'évent.
Dans ce type de dispositif, le trou d'évent est ainsi relié à une zone qui est généralement en dépression. Cela est nécessaire pour que la protection du moteur électrique et de ses roulements soit efficace. Cependant, dans certains cas de fonctionnement, et par exemple, lorsque le moteur thermique est éteint, les polluants qui se sont accumulés dans le trou d'évent peuvent traverser le 2eme segment. Il en résulte un risque de pollution du compresseur et plus particulièrement du roulement à billes pouvant réduire sa durée de vie. La présente invention a donc pour objet de pallier un ou plusieurs des inconvénients des dispositifs de l'art antérieur en proposant un compresseur électrique dont le système d'étanchéité est amélioré et permet ainsi d'éviter la pollution des roulements.
Pour cela la présente invention propose, un compresseur électrique comportant un arbre entraîné en rotation par un moteur électrique par l'intermédiaire de roulements, l'arbre entraînant en rotation une roue de compresseur, le compresseur comportant deux segments d'étanchéité montés autour de l'arbre entre les roulements et la roue de compresseur et comportant un circuit de trou d'évent, de circulation de flux de polluants vers l'extérieur du compresseur, dont l'entrée est disposée entre les deux segments d'étanchéité, le compresseur comportant au moins un joint de protection des roulements.
Le joint permet au moins d'éviter l'accumulation de polluant au niveau du trou d'évent et permet également d'éviter la purge de la graisse interne du roulement sous l'effet d'aspiration par le trou d'évent.
Selon un mode de réalisation de l'invention, le joint est disposé sur une face des roulements perpendiculaire à un axe X longitudinal de l'arbre du compresseur, sur la face orientée vers les segments.
Selon un mode de réalisation de l'invention, le joint est un joint frottant.
Selon un mode de réalisation de l'invention, le joint est en élastomère.
Selon un mode de réalisation de l'invention, le compresseur comporte un chicanage en amont du segment disposé du coté de la roue.
L'objectif de ce chicanage est de maximiser la perte de charge entre la roue du compresseur et le segment disposé du coté de la roue. De cette façon, l'accumulation de polluants entre les 2 segments est réduite. Et le besoin d'évacuation par le trou d'évent est alors moindre.
Selon un mode de réalisation de l'invention, le chicanage est réalisé au niveau du contact entre une pièce supplémentaire fixée circulairement à l'arbre, et le corps du compresseur. Selon un mode de réalisation de l'invention, le compresseur comporte une gorge en amont du chicanage.
Cette gorge permet de recueillir les gouttelettes de polluant tels que notamment l'huile et de les centrifuger, afin d'éviter qu'elles n'atteignent le segment disposé du coté de la roue. L'air au niveau du segment disposé du coté de la roue est ainsi débarrassé d'une partie des polluants.
Selon un mode de réalisation de l'invention,, l'ouverture de la gorge est formée vers l'extérieur, c'est à dire dans la direction opposée à l'arbre.
Selon un mode de réalisation de l'invention, la gorge est formée dans la pièce supplémentaire.
Selon un mode de réalisation de l'invention, le compresseur est un compresseur électrique de suralimentation de moteur thermique.
D'autres buts, caractéristiques et avantages de l'invention seront mieux compris et apparaîtront plus clairement à la lecture de la description faite, ci-après, en se référant aux figures annexées, données à titre d'exemple et dans lesquelles:
- la figure 1 est une représentation schématique montrant un ensemble moteur intégrant un système selon une réalisation de l'invention,
- la figure 2 est une représentation schématique d'une vue en coupe d'une partie d'un compresseur intégrant un système d'étanchéité,
- la figure 3 est une représentation schématique d'une vue en coupe d'un détail A de la figure 2 d'un compresseur intégrant un système d'étanchéité amélioré selon l'invention.
La présente invention concerne un compresseur électrique équipé d'un système d'étanchéité dynamique amélioré. Dans le cadre de l'invention, le système d'étanchéité dynamique est formé par au moins deux segments entre lesquels débouche un trou d'évent.
Dans le cadre de l'invention, on entend par compresseur électrique, un compresseur d'air, volumétrique ou non et par exemple centrifuge ou radial, entraîné par un moteur électrique, dans le but de suralimenter un moteur thermique. Selon un mode de réalisation de l'invention, le moteur électrique est un moteur asynchrone à courant continu ou alternatif.
Le moteur comporte un rotor et un stator.
Selon un mode de réalisation de l'invention, le moteur électrique est un moteur à reluctance variable (également appelée machine SRM pour Switched Reluctance Motor selon la terminologie anglaise).
Selon un mode de réalisation de l'invention, le stator comporte un corps constitué par un empilage de tôles minces formant une couronne, encore appelé paquet de tôles, dont la face intérieure est pourvue d'encoches ouvertes vers l'intérieur pour recevoir des enroulements de phase qui forment un bobinage.
Selon un mode de réalisation de l'invention, le rotor est à aimants permanents. La figure 1 illustre un moteur à combustion interne avec trois cylindres 1 associé à un dispositif 3 pour l'alimentation en gaz d'admission conformément à une réalisation de l'invention. Selon un mode de réalisation de l'invention, le dispositif d'alimentation 3 (marquée par une ligne pointillée) comprend un turbocompresseur 5.
Selon un mode de réalisation de l'invention, le dispositif d'alimentation 3 comprend une vanne de recirculation des gaz d'échappement 6.
Selon un mode de réalisation de l'invention, le dispositif d'alimentation 3 comprend un refroidisseur d'air de suralimentation 7.
Selon un mode de réalisation de l'invention, le dispositif d'alimentation 3 comprend un compresseur électrique 9 et une vanne de dérivation du compresseur 10.
Le turbocompresseur 5 est alimenté par les gaz d'échappement du moteur 1 et par de l'air arrivant par une entrée d'air 8. Une partie des gaz d'échappement est recyclé à l'entrée du moteur 1 par l'intermédiaire d'une vanne 6 de recirculation des gaz d'échappement.
Les gaz issus du compresseur du turbocompresseur 5 sont ensuite refroidis par le refroidisseur 7 puis alimentent le compresseur électrique 9.
Selon un autre mode de réalisation de l'invention non illustrée, le refroidisseur est disposé en aval du compresseur électrique 9. Le compresseur électrique 9 compresse les gaz issus du turbocompresseur 5 et alimente le moteur 1. Le compresseur électrique 9, illustré figures 2 et 3, comprend un moteur électrique (non visible figure 2), et des roulements 16 disposés circulairement autour de l'arbre. Le moteur électrique permet la mise en rotation d'un arbre 13 du compresseur électrique via les roulements 16. L'arbre 13 entraine ainsi en rotation la roue 14 du compresseur 9. Plus précisément une extrémité de l'arbre 13 est entraînée en rotation par le moteur électrique, et une autre extrémité de l'arbre 13 entraine en rotation la roue 14 du compresseur. La partie intermédiaire de l'arbre est protégé par le corps 17 de compresseur. Cette partie intermédiaire de l'arbre comporte un système d'étanchéité, et plus précisément un système d'étanchéité dynamique. Cet organe est formé d'un premier segment d'étanchéité 29a positionné du coté de la roue 14 du compresseur et d'un deuxième segment d'étanchéité 29b positionné du coté des roulements 16. Ces segments ont pour rôle de protéger les roulements de la pollution pouvant provenir de la roue 14 du compresseur.
Chacun des segments d'étanchéités 29a, b est disposé dans un évidement.
Selon un mode de réalisation du système selon l'invention non illustré, les deux évidements sont formés, c'est-à-dire usiné, directement dans l'arbre 13.
Selon un autre mode de réalisation du système de l'invention illustré figure 3, les deux évidements 19a, b sont formés dans une pièce supplémentaire 131 fixée à l'arbre 13. La pièce supplémentaire a la forme d'une bague dans laquelle sont creusés les évidements 19a, b. Elle est disposée contre une paroi plane de l'arbre 13 ou dans un autre évidement 132 creusé dans l'arbre 13. Cet autre évidement 132 est configuré de façon à permettre une insertion facile de la pièce supplémentaire 131 sur l'arbre 13.
Selon un mode de réalisation du système selon l'invention, la pièce supplémentaire 131 est formée en une seule partie ou en deux parties non illustrées.
Entre les deux segments d'étanchéités 29a, 29b est positionnée l'entrée 37 d'un trou d'évent 31. Le trou d'évent 31 est ajouté entre les deux segments afin d'éviter l'accumulation des éventuels polluants qui auraient traversé le premier segment 29a. Selon un mode de réalisation de l'invention, pour plus d'efficacité, le trou d'évent 31 est relié à l'entrée du turbocompresseur. Selon un mode de réalisation, le trou d'évent 31 est relié au turbocompresseur par exemple par l'intermédiaire d'une durite ce qui permet de créer une légère dépression afin de purger le trou d'évent. Le trou d'évent 31 traverse ainsi une partie du compresseur. Selon un mode de réalisation de l'invention, le trou d'évent 31, plus précisément le circuit du trou d'évent, se prolonge en dehors du compresseur. Le trou d'évent 31 permet ainsi d'éviter la pollution des roulements 16 en permettant l'évacuation des polluants grâce à une différence de pression entre la pression du compartiment formé entre les deux segments d'étanchéité 29a, 29b et la pression à la sortie du trou d'évent 35. La pression entre les deux segments 29a, 29b étant supérieure à la pression en sortie 35 du trou d'évent.
Dans certains cas d'utilisation du compresseur, et par exemple, lorsque le moteur thermique est éteint, les polluants qui se sont accumulés dans une zone d'accumulation du trou d'évent peuvent traverser le 2eme segment et atteindre les roulements à billes. Dans le cadre de l'invention, on entend par zone d'accumulation la portion du circuit du trou d'évent 31 entre l'entrée 37 du trou d'évent et la sortie 35 du trou d'évent.
Dans le cadre de l'invention, les termes entrée et sortie sont définis par rapport au sens de circulation du flux, dans le trou d'évent, allant du compartiment d'étanchéité vers l'extérieur du compresseur.
Afin d'éviter ce phénomène de pollution, selon une première variante de réalisation, l'invention prévoit au moins un joint 100 de protection d'au moins un roulement. Ce joint 100 est disposé sur une face, du roulement, perpendiculaire à l'axe X longitudinale de l'arbre 13 du compresseur. Plus précisément, le joint 100 est disposé sur la face du roulement orientée vers les segments 29a, b. Ce joint 100 permet également de protéger le moteur électrique.
Selon un mode de réalisation de l'invention, le joint 100 est situé entre les billes 165 du roulement et les segments 29a, b.
Dans le cadre de l'invention, le joint 100 comprend au moins une partie en élastomère.
Selon un premier mode de réalisation, la totalité du joint 100 est en élastomère. Selon un deuxième mode de réalisation de l'invention, le joint 100 est composé d'une armature, par exemple métallique et plus précisément en acier. Cette armature est recouverte d'un élastomère, par exemple par surmoulage. Dans le cadre de l'invention l'élastomère utilisé est de type NBR (pour nitrile butadiene rubber selon la terminologie anglaise) ou FKM (fluoropolymère) ou PTFE (polytétrafluoroéthylène) ou EPDM (éthylène-propylène-diène monomère) ou HNBR (butadiène-acryionitriie hydrogénés) ou AEM (éthylène acrylique) ou ACM (copolymer of acryiic acid ester and 2-chioroethy! vinyi ether selon la terminologie anglaise).
Selon un mode de réalisation de l'invention, le joint est couplé rigidement à la bague externe 166 du roulement et réalise une étanchéité statique au niveau de son interface avec ladite bague externe.
Selon un mode de réalisation de l'invention, le joint 100 comporte au moins une lèvre (non illustrée). Selon un autre mode de réalisation, le joint 100 comporte deux lèvres. Cette ou ces lèvres frottent sur la bague interne 164 du roulement réalisant ainsi une étanchéité dynamique. Selon un mode de réalisation, la ou les lèvres sont orientées radialement, c'est-à-dire qu'elles frottent sur une zone cylindrique. Selon un mode de réalisation, la ou les lèvres sont orientées axialement, c'est-à-dire qu'elles frottent sur un plan perpendiculaire à l'axe X de rotation de l'arbre et donc du roulement. Selon un mode de réalisation de l'invention, une lèvre est orientée radialement et une autre lèvre est orientée axialement.
La géométrie et le matériau de la ou des lèvres sont choisis pour limiter le frottement, avec par exemple un frottement générant un couple maximale égal à 15Nmm, de préférence inférieur à lONmm, tout en assurant une étanchéité sous des pressions différentielles allant jusqu'à 4 bar. Ce joint 100 permet de protéger le roulement et les billes 165 du roulement des polluants pouvant contaminer sa graisse interne.
Le joint 100 permet également d'éviter la purge de la graisse interne du roulement sous l'effet d'aspiration par le trou d'évent.
Selon une deuxième variante de réalisation, l'invention prévoit un chicanage 200 en amont du segment 29a disposé du coté de la roue 14. Le chicanage est formé par au moins une chicane. On entend par chicane un passage circulaire pour l'air qui est non rectiligne. L'air provient du compartiment roue 14 compresseur. Ce passage d'air est formé de façon à déboucher entre la roue 14 et le segment 29a disposé du coté de la roue 14.
Selon un mode de réalisation de l'invention, le chicanage 200 est formé directement dans le corps 140 du compresseur. Plus précisément, le chicanage 200 est réalisé grâce à des formes spécifiques aménagées dans le corps 140 du compresseur.
Selon un autre mode de réalisation de l'invention, le chicanage 200 est réalisé grâce à des formes spécifiques aménagées dans le corps 140 et la pièce supplémentaire 131, au niveau de la frontière commune à ces deux pièces afin de créer un chemin non rectiligne pour l'air. Ces formes sont complémentaires. La présence de la pièce supplémentaire 131 permet de simplifier le montage du roulement et d'augmenter la surface d'appui avec la roue 14. L'augmentation de la surface de contact de la roue avec la pièce supplémentaire permet d'éviter le matage ou déformation de la roue 14. Selon un mode de réalisation de l'invention, la roue 14 est réalisée dans un matériau plus tendre que la pièce supplémentaire 131 et l'arbre 13. Par exemple, la roue 14 est en aluminium et la pièce supplémentaire 131 et l'arbre 13 sont en acier.
Selon un mode de réalisation de l'invention, le chicanage 200 est composé d'au moins 2 segments orientés selon des directions différentes, au moins une direction radiale et au moins une direction axiale. Ainsi le chicanage 200 est composé de plusieurs segments 201 rectilignes. Cette configuration oblige le flux d'air à changer de direction, passant d'une direction radiale à une direction axiale, ou inversement. Une direction intermédiaire entre radial et axial, c'est-à-dire en biais, est également possible.
Selon un mode de réalisation de l'invention, le chicanage 200 comprend au moins 6 segments 201, donc 5 changements de direction. Les changements de direction créent de la perte de charge, c'est-à-dire une perte de pression le long du chemin. Cette perte de pression entraine une réduction du débit.
Afin d'augmenter la perte de charge, la section et la longueur de chaque segment 201 sont choisis de façon à ce que le rapport section/longueur de chaque segment soit le plus faible possible. En effet, plus ce rapport est faible, plus il y'a de perte de charge, car plus la section est petite et plus le chemin est long et plus il est difficile pour l'air de circuler. La longueur de chaque segment 201 est ainsi maximisée, en tenant compte des contraintes d'encombrement.
Selon un mode de réalisation de l'invention, chaque segment 201 mesure, par exemple, entre 1 mm et 5 mm, et de préférence entre 1 et 3 mm de long dans la direction radiale ou dans la direction axiale ou en biais.
Selon un mode de réalisation de l'invention, le jeu entre le corps 140 et la pièce supplémentaire 131 doit être minimisé, en tenant compte des tolérances de fabrication et de positionnement des différents composants. Ce jeu est par exemple inférieur à 0,5mm, de préférence inférieur à 0,25mm dans la direction radiale et inférieur à 0,75mm, de préférence inférieur à 0,5mm dans la direction axiale.
Selon un mode de réalisation, non illustré, la section évolue, c'est-à-dire augmente puis diminue de façon importante afin de créer des turbulences pour limiter le débit.
L'objectif de ce chicanage 200 est de maximiser la perte de charge entre la roue du compresseur et le segment 29a disposé du coté de la roue 14. Le débit dans cette zone, ainsi que la pression en amont du segment 29a disposé du coté de la roue 14 sont alors réduits. La fuite à travers ce segment est alors réduite. De cette façon, l'accumulation de polluants entre les 2 segments est réduite. Et le besoin d'évacuation par le trou d'évent est alors moindre.
Selon un autre mode de réalisation de l'invention, le chicanage 200 est formé directement dans le corps 140 du compresseur.
Selon une troisième variante de réalisation, l'invention prévoit une gorge 300 en amont du chicanage 200. On entend par gorge 300, une rainure de forme en général demi-circulaire, disposée circulairement par rapport à l'axe de l'arbre 13. L'ouverture 301 de la gorge 300 est formée vers l'extérieur, c'est à dire dans la direction opposée à l'arbre.
Selon un mode de réalisation de l'invention, la gorge est formée dans la pièce supplémentaire 131. La gorge est définie par un évidement de forme torique, autour de l'arbre, disposé à une distance de l'arbre définie par la longueur de la chicane.
Selon un mode de réalisation de l'invention, le diamètre moyen Di de la forme torique, et donc de la gorge est compris entre 10 mm et 20 mm. Le diamètre propre Dp de la forme torique, c'est à dire le diamètre Dp de la gorge défini parallèlement à l'axe X de l'arbre est compris 1 et 2 mm. Cette gorge 300 permet de recueillir les gouttelettes de polluant tels que notamment l'huile et de les centrifuger, afin d'éviter qu'elles n'atteignent le segment 29a disposé du coté de la roue 14. L'air au niveau du segment 29a disposé du coté de la roue 14 est ainsi débarrassé d'une partie des polluants.
Selon une autre variante de réalisation, l'invention prévoit l'association des trois variantes décrites précédemment. Plus précisément, le compresseur selon l'invention comporte au moins un joint 100 de protection d'au moins un roulement, une chicane 200 entre la roue 14 et le segment 29a disposé du coté de la roue 14, et une gorge 300 en amont de la chicane.
Le compresseur selon l'invention, est ainsi configuré de façon à protéger les roulements, et également le moteur électrique, contre des polluants tels que de l'huile, des gaz de recirculation ou tous autres polluants. L'étanchéité améliorée de ce système permet de réduire le besoin en dépression du trou d'évent et même d'autoriser une légère surpression. A titre d'exemple, l'étanchéité est maintenue sous une surpression du trou d'évent de 50mbar par rapport à la pression atmosphérique
La portée de la présente invention ne se limite pas aux détails donnés ci-dessus et permet des modes de réalisation sous de nombreuses autres formes spécifiques sans s'éloigner du domaine d'application de l'invention. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, et peuvent être modifiés sans toutefois sortir de la portée définie par les revendications.

Claims

REVENDICATIONS
1. Compresseur électrique 9 comportant un arbre 13 entraîné en rotation par un moteur électrique par l'intermédiaire de roulements 16, l'arbre entraînant en rotation une roue de compresseur 14, le compresseur comportant deux segments d'étanchéité 29a, 29b montés autour de l'arbre 13 entre les roulements 16 et la roue de compresseur 14 et comportant un circuit de trou d'évent 31, de circulation de flux de polluants vers l'extérieur du compresseur 9, dont l'entrée 37 est disposée entre les deux segments d'étanchéité,
caractérisé en ce qu'il comporte au moins un joint 100 de protection des roulements 16.
2. Compresseur 9 selon la revendication 1, dans lequel le joint 100 est disposé sur une face des roulements perpendiculaire à un axe X longitudinal de l'arbre 13 du compresseur, sur la face orientée vers les segments 29a, b.
3. Compresseur 9 selon une des revendications 1 ou 2, dans lequel le joint 100 est un joint frottant. .
4. Compresseur 9 selon une des revendications 1 à 3, dans lequel le joint 100 est en élastomère.
5. Compresseur 9 selon une des revendications 1 à 4, comportant un chicanage 200 en amont du segment 29a disposé du coté de la roue 14.
6. Compresseur 9 selon la revendication 5, dans lequel le chicanage 200 est réalisé au niveau du contact entre une pièce supplémentaire 131 fixée circulairement à l'arbre 13, et le corps 140 du compresseur.
7. Compresseur 9 selon une des revendications 5 ou 6, comportant une gorge 300 en amont du chicanage 200.
8. Compresseur 9 selon la revendication 7, dans lequel l'ouverture 301 de la gorge
300 est formée vers l'extérieur, c'est à dire dans la direction opposée à l'arbre.
9. Compresseur 9 selon une des revendications 7 ou 8, dans lequel la gorge est formée dans la pièce supplémentaire 131.
10. Compresseur 9 selon une des revendications 1 à 9, dans lequel le compresseur est un compresseur électrique de suralimentation de moteur thermique.
PCT/FR2016/051029 2015-04-30 2016-05-02 Compresseur électrique avec système d'étanchéité dynamique amélioré WO2016174375A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL16725189.1T PL3289222T3 (pl) 2015-04-30 2016-05-02 Sprężarka elektryczna z ulepszonym układem uszczelnienia dynamicznego
EP16725189.1A EP3289222B1 (fr) 2015-04-30 2016-05-02 Compresseur électrique avec système d'étanchéité dynamique amélioré

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1553934A FR3035685B1 (fr) 2015-04-30 2015-04-30 Compresseur electrique avec systeme d'etancheite dynamique ameliore
FR1553934 2015-04-30
FR1559872 2015-10-16
FR1559872A FR3035687B1 (fr) 2015-04-30 2015-10-16 Compresseur electrique avec systeme d'etancheite dynamique ameliore

Publications (1)

Publication Number Publication Date
WO2016174375A1 true WO2016174375A1 (fr) 2016-11-03

Family

ID=53674132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/051029 WO2016174375A1 (fr) 2015-04-30 2016-05-02 Compresseur électrique avec système d'étanchéité dynamique amélioré

Country Status (4)

Country Link
EP (1) EP3289222B1 (fr)
FR (2) FR3035685B1 (fr)
PL (1) PL3289222T3 (fr)
WO (1) WO2016174375A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3068086B1 (fr) * 2017-06-25 2019-07-19 Valeo Systemes De Controle Moteur Compresseur electrique avec trou d'event
FR3071976A1 (fr) * 2017-09-29 2019-04-05 Valeo Systemes De Controle Moteur Compresseur electrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966375A (en) * 1958-09-22 1960-12-27 Commissariat Energie Atomique Sealing device for the bearings of compressors or similar machines
US3909154A (en) * 1974-09-05 1975-09-30 Carrier Corp Centrifugal compressor
EP0357246A2 (fr) * 1988-08-03 1990-03-07 Nissan Motor Co., Ltd. Dispositif d'étanchéite pour arbre de turbocompresseur
EP1207310A1 (fr) * 1999-07-23 2002-05-22 Hitachi, Ltd. Machine hydraulique turbo et joint a gaz a sec destine a cette machine
GB2516060A (en) 2013-07-09 2015-01-14 Valeo Air Man Uk Ltd An electric supercharger having a protected bearing assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966375A (en) * 1958-09-22 1960-12-27 Commissariat Energie Atomique Sealing device for the bearings of compressors or similar machines
US3909154A (en) * 1974-09-05 1975-09-30 Carrier Corp Centrifugal compressor
EP0357246A2 (fr) * 1988-08-03 1990-03-07 Nissan Motor Co., Ltd. Dispositif d'étanchéite pour arbre de turbocompresseur
EP1207310A1 (fr) * 1999-07-23 2002-05-22 Hitachi, Ltd. Machine hydraulique turbo et joint a gaz a sec destine a cette machine
GB2516060A (en) 2013-07-09 2015-01-14 Valeo Air Man Uk Ltd An electric supercharger having a protected bearing assembly

Also Published As

Publication number Publication date
EP3289222B1 (fr) 2022-07-27
PL3289222T3 (pl) 2022-11-21
FR3035685B1 (fr) 2019-04-05
EP3289222A1 (fr) 2018-03-07
FR3035685A1 (fr) 2016-11-04
FR3035687A1 (fr) 2016-11-04
FR3035687B1 (fr) 2019-03-22

Similar Documents

Publication Publication Date Title
EP3289222B1 (fr) Compresseur électrique avec système d'étanchéité dynamique amélioré
BE1022576B1 (fr) Element de volute fixe et machine a fluide a volute.
FR3045722B1 (fr) Compresseur electrique avec systeme d'etancheite dynamique ameliore
WO2016174376A1 (fr) Compresseur électrique avec système d'étanchéité dynamique améliore
FR3066533B1 (fr) Ensemble d'etancheite pour une turbomachine
WO2017055717A1 (fr) Systeme d'etancheite ameliore pour arbre tournant
FR3029976B1 (fr) Compresseur electrique
WO2017203178A2 (fr) Compresseur electrique
EP3114379B1 (fr) Dispositif d'etancheite pour arbre tournant
WO2017089666A1 (fr) Ensemble moteur avec compresseur électrique
FR3059054A1 (fr) Compresseur electrique avec trou d'event
EP3292327A1 (fr) Système d'étanchéité amélioré pour arbre tournant
WO2016097563A1 (fr) Compresseur avec systeme d'etancheite
FR3046637B1 (fr) Compresseur electrique avec systeme d'etancheite dynamique ameliore
EP3314127A1 (fr) Compresseur electrique avec roue amelioree
WO2017103353A1 (fr) Compresseur electrique
FR3068086B1 (fr) Compresseur electrique avec trou d'event
FR3058189A1 (fr) Compresseur electrique avec systeme d'etancheite dynamique ameliore
FR3038017B1 (fr) Compresseur electrique avec roue amelioree
EP4222354A1 (fr) Support statorique pour un arbre de soufflante entraine par une boite de reduction de vitesse dans une turbomachine
WO2013083542A2 (fr) Pompe et turbine à palettes
FR3038016A1 (fr) Compresseur electrique avec roue amelioree
FR3024493A1 (fr) Element de turbomachine comprenant un joint d'etancheite entre un stator et un rotor, et procede de montage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16725189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE