WO2016173203A1 - 一种深度网路分析系统的测试方法和装置 - Google Patents

一种深度网路分析系统的测试方法和装置 Download PDF

Info

Publication number
WO2016173203A1
WO2016173203A1 PCT/CN2015/091126 CN2015091126W WO2016173203A1 WO 2016173203 A1 WO2016173203 A1 WO 2016173203A1 CN 2015091126 W CN2015091126 W CN 2015091126W WO 2016173203 A1 WO2016173203 A1 WO 2016173203A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance data
asset
dna system
data
template
Prior art date
Application number
PCT/CN2015/091126
Other languages
English (en)
French (fr)
Inventor
陈若愚
周敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016173203A1 publication Critical patent/WO2016173203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks

Definitions

  • the present invention relates to communication network testing technologies, and in particular, to a testing method and apparatus for a deep network analysis system.
  • PTN packet traffic monitoring network
  • (c) Optimize the quality of service (QoS) bandwidth parameter configuration of the PTN to carry various types of services, obtain the busy hour mean flow rate and peak flow rate through the PTN network traffic monitoring and analysis, and combine the service network development requirements with the QoS for various services.
  • the bandwidth parameters (such as guaranteed bandwidth and peak bandwidth) are optimized and adjusted to improve the actual use efficiency of the PTN network bandwidth.
  • the Deep Network Analyzer (DNA) system is an analysis system developed to achieve the above objectives.
  • DNA Deep Network Analyzer
  • it is generally necessary to test and adjust the DNA system.
  • the existing scheme when testing DNA systems, it is necessary to use a large number of real performances in the communication network networking environment. Data, because real data is generally not easy to generate, which leads to the test often failing, and it is difficult to achieve the same service in a real network networking environment for network optimization, upgrade and expansion, and early warning in the system monitoring scope. Changes, therefore, existing technical solutions have problems with limited test environment and low test efficiency.
  • an embodiment of the present invention provides a test method and apparatus for a deep network analysis system, which can be free from the limitation of the test environment and can improve the test efficiency.
  • An embodiment of the present invention provides a testing method for a deep network analysis system, where the method includes:
  • the method further includes:
  • the performance data template library is retrieved, and if the required performance data template exists in the performance data template library, the performance data template is invoked to modify the simulated performance data according to the modified simulation performance. The data is tested whether the DNA system is released from the alarm; if the performance data template library does not have the required performance data template, the performance data template is added. Updating the performance data template to the performance data template library, modifying the simulated performance data by using the newly added performance data template, and testing whether the DNA system is released from the alarm according to the modified simulation performance data;
  • the alarm threshold is modified, and the DNA system is tested to cancel the alarm according to the modified alarm threshold.
  • the method further includes:
  • the service path in the network topology is adjusted and the asset file is updated according to the adjustment, and the simulation performance data and the comparison data are generated according to the asset file.
  • the method further includes:
  • the QoS parameter template exists in the QoS parameter template library, the QoS parameter template is invoked and the service parameter is modified, the asset file is updated according to the modified service parameter, and the asset is executed according to the asset
  • the file generates simulated performance data and comparison data
  • the QoS parameter template is added and the QoS parameter template is updated into the QoS parameter template library, and the newly added QoS parameter template is invoked and modified. And updating the asset file according to the modified service parameter, and executing the generating the simulated performance data and the comparison data according to the asset file.
  • the method further includes:
  • the asset is invoked to update the network topology, Performing the generating an asset file according to the configured network topology and service parameters;
  • An embodiment of the present invention further provides an apparatus for testing a deep network analysis system, where the apparatus includes:
  • the configuration module is configured to generate an asset file according to the configured network topology and service parameters
  • Generating a data module configured to generate simulated performance data and comparison data according to the asset file
  • test module configured to test the deep network analysis DNA system by using the simulated performance data, and obtain data obtained by analyzing, by the DNA system, the simulated performance data;
  • the verification module is configured to determine that the DNA system can correctly analyze the network when the data obtained after the analysis processing is verified according to the comparison data is correct data.
  • test module is further configured to:
  • the performance data template library is retrieved, and if the required performance data template exists in the performance data template library, the performance data template is invoked to modify the simulated performance data according to the modified simulation performance. Data testing whether the DNA system releases the alarm; if the performance data template library does not have the required performance data template, adding the performance data template and updating the performance data template to the performance data template library, Modifying the simulated performance data by using the newly added performance data template, and testing whether the DNA system releases the alarm according to the modified simulated performance data;
  • the alarm threshold is modified, and the DNA system is tested to cancel the alarm according to the modified alarm threshold.
  • test module is further configured to:
  • the service path in the network topology is adjusted and the asset file is updated according to the adjustment, and the simulation performance data and the comparison data are generated according to the asset file.
  • test module is further configured to:
  • the QoS parameter template exists in the QoS parameter template library, the QoS parameter template is invoked and the service parameter is modified, the asset file is updated according to the modified service parameter, and the asset is executed according to the asset
  • the file generates simulated performance data and comparison data
  • the QoS parameter template is added and the QoS parameter template is updated into the QoS parameter template library, and the newly added QoS parameter template is invoked and modified. And updating the asset file according to the modified service parameter, and executing the generating the simulated performance data and the comparison data according to the asset file.
  • test module is further configured to:
  • the asset is invoked to update the network topology, and the asset file is generated according to the configured network topology and service parameters;
  • the test method and device for the deep network analysis system simulates the planned network topology and service according to the test requirements, and the DNA system cannot be tested according to the performance data in the real network topology.
  • the parameter generates an asset file, and then root According to the asset file, the simulation performance data and the comparison data are generated, and the simulated performance data is input into the DNA system to complete the DNA system test, and the data obtained after the DNA system analysis and processing is verified according to the comparison data.
  • the DNA system can be tested without being limited by the test environment and can improve the test efficiency.
  • FIG. 1 is a schematic flowchart of a testing method of a deep network analysis system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of implementation of a testing method of a deep network analysis system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a network topology according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another network topology according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of connection of devices in a network topology according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an apparatus for testing a deep network analysis system according to an embodiment of the present invention.
  • the embodiment of the invention provides a testing method for a deep network analysis system. As shown in FIG. 1 , the method includes:
  • Step 101 Generate an asset file according to the configured network topology and service parameters.
  • the network topology and service parameters are configured according to the system test or the collection test service scenario environment, and the asset file is generated according to the network topology and the service parameters, where the network topology is various devices included in the communication network and various devices.
  • the connection relationship, the service parameters include: parameters of various services carried by the communication network, such as traffic parameters, QoS parameters, etc.
  • the asset file includes at least one of the following types of assets or any combination thereof: port, link, network element, Board, pseudowire, tunnel, service, ring network.
  • the content involved in this step can be implemented using known techniques in the related art.
  • Step 102 Generate simulated performance data and comparison data according to the asset file.
  • the simulation performance data is generated by using a predefined performance simulation tool.
  • the simulated performance data of the planned network topology and the comparison data are generated, and the simulated performance data is sent as raw data to the DNA system for analysis and calculation;
  • the comparison database data is the result data generated according to the test requirements, and serves as a reference standard for the final analysis result of the DNA system.
  • Step 103 Test the DNA system by using the simulated performance data, and obtain the data obtained by analyzing and processing the simulated performance data by the DNA system.
  • the simulated performance data generated in step 102 is used as an input of the DNA system, and the data obtained by analyzing and processing the simulated performance data by the DNA system is obtained.
  • the process of analyzing and processing data by the DNA system belongs to the existing technical means.
  • the process of analyzing and processing the data by the DNA system is simply exemplified as follows: the data acquisition module collects the simulated performance data according to a preset time, for example, 15 minutes granularity. After the initial processing, the calculation module is reported to the calculation module; the calculation module calculates all the data according to the definition of the indicator, and summarizes the data according to the granularity of time, day, month, and year; the display module of the system filters the query data according to the custom condition, and displays the data in the table.
  • the alarm module displays the alarm content according to the alarm threshold; the topology module displays the network topology and changes, and the asset management module displays the asset detailed information.
  • Step 104 When the data obtained after the analysis and analysis processing according to the comparison data is correct data, Make sure the DNA system is able to analyze the network correctly.
  • the comparison data generated in step 102 it is verified whether the data obtained after the analysis and processing of the DNA system is correct, and when it is verified by verification that the data is correct, it is determined that the DNA system can correctly analyze the network.
  • the DNA system cannot be tested.
  • the network topology and the business parameters are generated according to the test requirements, and the asset file is generated according to the test requirements.
  • the file generates simulation performance data and comparison data, and the simulated performance data is input into the DNA system to complete the DNA system test, and the data obtained after the analysis and processing of the DNA system is verified according to the comparison data, so that the performance data in the real communication network can be realized independently.
  • the DNA system can be tested.
  • the method may further include:
  • the performance data template library is retrieved. If the required performance data template exists in the performance data template library, the performance data template is invoked to modify the simulation performance data, and the DNA system is released according to the modified simulation performance data. If the performance data template library does not have the required performance data template, the performance data template is added and the performance data template is updated to the performance data template library, and the simulated performance data is modified by the new performance data template, according to the modified simulation performance. Data test whether the DNA system releases the alarm;
  • the DNA system when the DNA system reports an alarm on a highly loaded port, link, network element, etc., it is determined according to actual test requirements whether it is necessary to test the simulated performance data or the data and analysis of the DNA system after the alarm threshold is changed. Whether the information will change accordingly. If not modified To simulate performance data, modify the alarm threshold and feedback the alarm threshold modification information to the DNA system, reset it, and check whether the data color and alarm are correct at the next data collection point. If the simulation performance data is modified, the simulated performance data template is retrieved based on the threshold condition. If the template does not exist, the simulated performance data template library is updated after the template is added. If the template exists, the feedback is sent to step 102, and the performance file meeting the threshold interval is generated and reported to the DNA system for analysis.
  • the method may further include:
  • step 102 is performed.
  • traffic may be switched to the standby path to achieve equalization.
  • balanced traffic it may be necessary to test the ability of the DNA system to obtain the latest data. If you need to test the balanced traffic, change the service path, update the data in the asset library, switch the service to the backup path, and modify the port, link, network element, pseudowire, and tunnel information, and modify the information feedback. Go to step 102, generate new performance data and report it to the DNA system for analysis and summary to verify whether the data after the network traffic change is correct. In addition, it is also possible to test the case where the slave path is switched back to the master path.
  • the method may further include:
  • the QoS parameter template is invoked and the service parameter is modified, and the asset file is updated according to the modified service parameter, and step 102 is performed;
  • the QoS parameter template is added and the QoS parameter template is updated into the QoS parameter template library, and the newly added QoS parameter template is invoked. And modifying the service parameters, updating the asset file according to the modified service parameters, and performing step 102.
  • QoS parameters such as the Committed Information Rate (CIR) and the Peak Information Rate (PIR) may be modified in combination with the development requirements of the service network. Therefore, after testing and modifying the QoS parameters, it may be necessary to test the DNA. The ability of the system to process data. If the QoS parameter is modified, the preset QoS parameter template library is searched. If the corresponding template does not exist, the QoS parameter template library is updated after the template is added; if the required template exists, the template is applied and the QoS parameter modification information is fed back to the step. 102, and then generate the simulated performance data again and report it to the DNA system for analysis and summary, and verify whether the data processed by the DNA system is correct after the QoS parameter changes.
  • CIR Committed Information Rate
  • PIR Peak Information Rate
  • the method may further include:
  • step 101 If the required asset exists in the asset library, the asset is called to update the network topology, and step 101 is performed;
  • step 101 If the required asset does not exist in the asset library, add the asset and update the asset to the asset library, call the newly added asset update network topology, and go to step 101.
  • a communication network due to the increase of access devices, it is often required to expand capacity. Therefore, it may be necessary to test the processing capability of the DNA system topology display and performance data after network expansion.
  • the analog expansion network you can test the topology display of DNA and the processing capability of performance data after adding assets such as network elements, ports, tunnels, pseudowires, and services. If network expansion is required, look for the preset asset library. If there is no required asset in the asset library, add the asset and update the asset library.
  • the network element, port, pseudowire, tunnel, The service is set to be used, and then the new asset information is fed back to step 101, the corresponding asset file is generated, and then the simulated performance data is generated again and reported to the DNA system for analysis and summary to verify whether the data analyzed and processed by the DNA system after the network expansion is correct.
  • the performance data of the port, the link, the network element, the board, the pseudowire, the tunnel, the service, the ring network, and the actual network environment can be simulated on the basis of the generated asset file. There is no difference in the generated data, and the traffic is balanced, the QoS parameters are adjusted, and the network is expanded.
  • Such operations constantly enrich the performance template library, QoS template library, asset library data, use feedback information to guide the reconstruction of performance data, can truly simulate the entire network dynamic adjustment, optimization, early warning, upgrade and expansion process, improve the automation of DNA system testing , the degree of intelligence and coverage, and ultimately achieve the goal of manual testing is difficult to achieve.
  • the embodiment of the invention provides a test method for a deep network analysis system, which generates an asset file according to the configured network topology and service parameters; generates simulation performance data and comparison data according to the asset file; and uses the simulated performance data to test the deep network analysis DNA system,
  • the data obtained by analyzing and processing the simulated performance data of the DNA system is obtained; when the data obtained after the analysis and processing according to the comparison data is correct data, it is determined that the DNA system can correctly analyze the network.
  • the DNA system can be tested without being limited by the test environment and can improve the test efficiency.
  • Step 1 Configure the network topology and service parameters.
  • a network topology is configured.
  • the core layer is configured with 40GE (GE is an abbreviation of Gigabit Ethernet, that is, 1000M transmission rate Ethernet) and a 10GE superimposed ring.
  • GE is an abbreviation of Gigabit Ethernet, that is, 1000M transmission rate Ethernet
  • 10GE superimposed ring.
  • the 40GE core ring is used to carry LTE analog traffic
  • the 10GE core ring is used to carry 2G/3G and group customer analog traffic.
  • the PTN devices NE1, 2, 3, and 4 in the 40GE core ring are network side edge (Provider Edge, PE) devices, and NE3 and 4 are L2/L3 transit points, and L2 is a Layer 2 virtual private network (VPN).
  • PE Network Edge
  • NE3 and 4 are L2/L3 transit points
  • L2 is a Layer 2 virtual private network (VPN).
  • VPN Layer 2 virtual private network
  • L3 represents a three-layer virtual private network.
  • a 10GE ring network is configured on the aggregation layer to configure a 10GE aggregation ring network.
  • the access layer is configured with two access rings and one GE access link. If only 10GE devices are supported, you can configure one GE ring and access link.
  • a network topology of one configuration is shown in FIG. 4, wherein the core layer is configured with a 100GE ring. Integrated carrying LTE analog traffic and 2G/3G and group customer analog traffic.
  • NE1, 2, 3, and 4 are PE devices.
  • NE3 and NE4 are L2/L3 bridge points, and NE3 and NE4 are configured with PTN hybrid boards, and PTN hybrid board aggregation rings are connected.
  • a 100GE aggregation ring and a PTN hybrid card aggregation ring are configured on the aggregation layer.
  • Each 10GE access ring is connected to the aggregation layer. Connect the 10GE access link to the ring.
  • the following table is used to configure each node service.
  • the LTE backhaul service is configured in the L2+L3VPN service and is carried in the 40GE core ring.
  • the 3G backhaul and the group customer service are configured with L2 (Layer 2 VPN) services, which are carried on the 10GE core ring network.
  • the service is carried by a Label Swiching Path (LSP).
  • LSP Label Swiching Path
  • the pseudo-wire (Pseudo Wire, PW) and LSP are configured in a 1:1 configuration.
  • the same LSP is configured for multiple E1 services with the same-same and same-homed (E1 rate is 2M/s, which is suitable for low-speed services).
  • fast reroute FRR is the abbreviation of Fast Reroute
  • virtual LAN VLAN is the abbreviation of Virtual Local Area Network
  • VLAN PRI is a field in VLAN ID, 3 bits, indicating service priority
  • BE, AF1, AF2, AF3, AF4, EF, CS6, and CS7 are the eight priority levels defined in the RFC 2474 standard.
  • the data network analyzer sends a flow rate greater than the group customer service PIR setting value of 10 M/s to test whether the group customer service port speed limit is successful.
  • the differential service code point DSCP is the abbreviation of Differentiated Services Code Point
  • DSCP is a field of the IP header
  • MPLS Multiprotocol Label Switching, Protocol label switching
  • MPLSTC is a field in MPLS, 3 bits for QoS
  • IP Multimedia System IMS is an abbreviation of IP Multimedia Subsystem
  • Packet Switched PS is an abbreviation of Packet Switched.
  • Step 2 As shown in Figure 5, physical information such as network elements and links in the network topology are added to Figure 3, and configuration information such as pseudowires, tunnels, and services is sent, or offline NEs are created to simulate the real networking environment. Generate asset files as needed, then send the asset files to the simulation performance data simulation process to generate simulated performance data.
  • Step 3 defines the format of the analog data according to the test requirements.
  • the configuration file is added with a version, and the specified performance data is specified as “307 index resource interface scheme” or “308 index resource interface scheme”; among them, “307 index resource interface scheme” and “308 index resource interface scheme” "It is the data format of the two tests specified by the operator China Mobile; here is only an example, and it is not limited to the above operators.
  • the simulation performance data generation meets the requirements: 1) the port is divided into 5 files, and the board is divided into 3 files; 2) the performance data of the pseudowire, pseudowire maintenance point, tunnel, and tunnel maintenance point is single point performance data; The pseudowire maintenance point file and the tunnel maintenance point file satisfy the format in the "308 Indicator Resource Interface Scheme";
  • Step 4 generates simulated performance data and comparison data according to the asset file generated in step 2 and the format determined in step 3.
  • the simulated performance data is sent to the DNA system for analysis and processing as raw data; the comparison data is the result data generated according to the test requirements, and serves as a reference standard for the final analysis and processing results of the DNA system.
  • the simulation performance data is constructed: the outgoing traffic of the port 1 of the network element 1 is 5M at a time point, the outgoing traffic of the next time is 10M, and the alarm threshold is 4M, and a severity alarm is triggered. Hosted business Named Business 1, Business 2.
  • the QoS parameters CIR and PIR are both 20M. Record raw data in simulated performance data.
  • the comparison data in addition to recording the original data, the calculated summary data is also recorded, for example, the flow rate of the port is 15M after being summarized by the hour.
  • the associated pseudowires, tunnels, and traffic flow data are also generated in step four.
  • Step 5 The DNA system analyzes and processes according to common logic: taking the outgoing traffic of port 1 as an example, the data acquisition module collects the simulated performance data 5M and 10M in 15 minutes granularity, and reports it to the computing module after preliminary processing; the computing module calculates according to the index definition formula. For other related data, the bandwidth utilization rate is 1%; after the specified time, the data is collected into the database according to the granularity of time, day, month, and year, for example, the outgoing traffic of one hour is 15M.
  • set the custom condition in the display module of the system obtain the outgoing traffic of a network element port 1 within one hour, and compare the obtained data 15M with the correct data in the comparison database. If the data is wrong, end the test after collecting the error message; if the data is correct, proceed to the next step.
  • Step 6 An alarm has been generated because the data is outside the alarm threshold. If you do not test the release warning, proceed to the next step. If the test is released, the simulation performance data is modified. If the simulation performance data is not modified, the alarm threshold needs to be modified so that the alarm threshold can cover the outflow value. For example, the alarm threshold is set to 20M. The modified alarm threshold is fed back to the DNA system, waiting for the data at the next moment to enter, for example, 10M. After the processing, the judgment is performed again. The data is correct and within the alarm threshold of 20M, the alarm is not triggered, and the processing is correct, and the next step is continued. .
  • the performance data template library is first retrieved. If the template does not exist, the new template needs to be imported into the library. If a suitable template exists, the alarm threshold is 4M, and the template is used to calculate the next moment.
  • the data to be modified, in which the outgoing traffic of port 1 is 2M the purpose is not to trigger an alarm, and feedback is sent to step 2, based on which the complete data is generated.
  • the DNA system processes and judges that the outgoing traffic of port 1 is 2M. Within the threshold range, the alarm is not triggered, and the analysis and processing are correct, and the next step is performed.
  • Step 7 If you do not test the equalized traffic, go to the next step. If you test the balanced traffic, you need to evenly allocate the service quantity or service traffic on the existing NEs, links, ports, and other resources.
  • the data in the asset library is updated according to the set allocation principle, and the tunnel and the pseudowire carrying the service 2 are configured not to pass through the port 1, and pass through the port 2 of the network element 2.
  • the modified data is fed back to step two, according to the traffic The equalization requirement allocates the original traffic evenly. It is assumed that the traffic of port 1 in the new environment is 2.5M, and the traffic of port 2 is 2.5M. After receiving the data, the DNA system processes and judges again. After the network optimization, the data is correct and proceeds to the next step.
  • Step 8 If you do not test and adjust the QoS parameters, go to the next step; if the test adjusts the QoS parameters, first retrieve the QoS parameter template library. If there is no suitable template, you need to import the new template into the QoS parameter template library; The template is based on the traffic of 10M. Assume that the template is used to calculate the CIR and PIR are both 12M. The modified configuration is fed back to step one, and the asset file and port 1 performance data 10M are regenerated according to the normal process. After receiving the data, the DNA system processes and judges again that the outgoing traffic of port 1 is 10M, the data is correct, and both CIR and PIR are 12M, which achieves the purpose of optimization adjustment and proceeds to the next step.
  • Step 9 If the network expansion is not tested, the test ends; if the network expansion is tested, the asset library is first retrieved. If there is no required asset, the newly added asset needs to be imported into the library; if there is a required asset, the newly added network element is used. 3 port 3, carrying new services 3.
  • the modified configuration is fed back to step one, and the asset file and port 3 performance data 10M are regenerated according to the normal process. After receiving the data, the DNA system processes and judges again that the outgoing traffic of port 3 is 10M, the data is correct, and new service 3 is provided, and the network expansion test ends.
  • An embodiment of the present invention further provides an apparatus 10 for testing a deep network analysis DNA system.
  • the apparatus 10 includes:
  • the configuration module 11 is configured to generate an asset file according to the configured network topology and service parameters
  • Generating data module 12 configured to generate simulated performance data and comparison data according to the asset file
  • the testing module 13 is configured to use the simulated performance data to test the deep network analysis DNA system, and obtain the data obtained by analyzing and processing the simulated performance data by the DNA system;
  • the verification module 14 is configured to determine that the DNA system can correctly analyze the network when the data obtained after the analysis and analysis processing according to the comparison data is correct data.
  • test module 13 is further configured to:
  • the performance data template library is retrieved. If the required performance data template exists in the performance data template library, the performance data template is invoked to modify the simulation performance data, and the DNA system is released according to the modified simulation performance data. If the performance data template library does not have the required performance data template, the performance data template is added and the performance data template is updated to the performance data template library, and the simulated performance data is modified by the new performance data template, according to the modified simulation performance. Data test whether the DNA system releases the alarm;
  • test module 13 is further configured to:
  • the business path in the network topology is adjusted and the asset file is modified according to the adjustment, and the simulation performance data and the comparison data are generated according to the asset file.
  • test module 13 is further configured to:
  • the QoS parameter template is invoked and the service parameters are modified, the asset file is updated according to the modified service parameter, and the simulated performance data and the comparison data are generated according to the asset file;
  • the QoS parameter template is added and the QoS parameter template is updated to the QoS parameter template library, the newly added QoS parameter template is invoked, and the service parameters are modified according to the modified service.
  • the parameter updates the asset file, and the execution generates simulated performance data and comparison data based on the asset file.
  • test module 13 is further configured to:
  • the asset update network topology is invoked, and the asset file is generated according to the configured network topology and service parameters;
  • the new assets are added and the assets are updated to the asset library.
  • the newly added assets are updated to the network topology, and the asset files are generated according to the configured network topology and business parameters.
  • An apparatus for testing a deep network analysis system generates an asset file according to a configured network topology and service parameters; generates simulated performance data and comparison data according to the asset file; and uses the simulated performance data to test the depth network to analyze the DNA.
  • the system obtains the data obtained by analyzing and processing the simulated performance data of the DNA system; when the data obtained after verifying the analysis and processing according to the comparative data is the correct data, it is determined that the DNA system can correctly analyze the network.
  • the DNA system can be tested without being limited by the test environment and can improve the test efficiency.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • Each of the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each device/function module/functional unit in the above embodiments can be stored in a computer readable storage medium when implemented in the form of a software function module and sold or used as a stand-alone product.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • a test method and device for a deep network analysis system provided by an embodiment of the present invention simulates a planned network topology and business parameters to generate an asset file according to test requirements, and then generates simulated performance data and comparison data according to the asset file, and inputs the simulated performance data into the DNA.
  • the system completes the DNA system test and verifies the correctness of the data obtained after the DNA system analysis and processing based on the comparative data.
  • the DNA system can be tested without being limited by the test environment and can improve the test efficiency.

Abstract

一种深度网络分析系统的测试方法和装置,包括:根据配置的网络拓扑和业务参数生成资产文件;根据资产文件生成模拟性能数据和对比数据;利用模拟性能数据测试深度网络分析DNA系统、获取DNA系统对模拟性能数据分析处理后得到的数据;当根据对比数据验证分析处理后得到的数据为正确数据时,确定DNA系统能够正确分析网络。通过本发明实施例的方案,测试DNA系统时可以不受测试环境的限制并能够提高测试效率。

Description

一种深度网路分析系统的测试方法和装置 技术领域
本发明涉及通信网络测试技术,尤其涉及一种深度网络分析系统的测试方法和装置。
背景技术
随着运营商业务的迅速发展,对网络流量的监测和管理分析提出了如下目标:
1、支撑运营商集团统一规范化管理分组传送网(Packet Transport Network,PTN)网络流量监测和管理分析工作,汇总分析各省市公司的PTN网络流量使用状态,把握业务流量和网络资源使用的整体发展趋势;
2、有利于各省和地市公司规范化开展PTN网络流量监测和管理分析的相关工作,提升PTN网络运维管理能力,包括:
(a)对PTN网络流量实施长期监测和统计分析,为PTN网络容量预警管理、各类业务QoS带宽参数优化配置以及业务网流量经营分析提供所需的流量分析数据和指标;
(b)开展PTN网络预警管理工作,对PTN网络中处于高负载水平的端口和系统进行重点流量监测和统计分析,指导PTN网络实现流量均衡优化,避免出现网络拥塞;指导PTN网络进行资源预警和扩容,满足新增业务需求。
(c)优化PTN承载各类业务的服务质量(Quality of Service,QoS)带宽参数配置,通过PTN网络流量监测分析获得忙时均值流速和峰值流速,结合业务网发展需求,对各类业务的QoS带宽参数(如保证带宽和峰值带宽)进行优化调整,提高PTN网络带宽的实际使用效率。
(d)提供业务流量的历史数据统计分析和发展趋势预测,及时开展第三代移动通信技术(3rd-Generation,3G)和长期演进(Long Term Evolution,LTE)移动基站回传、集团客户专线等业务端口带宽的扩容工作,支撑业务网的流量经营策略,提升客户服务质量。
深度网络分析(Deep Network Analyzer,DNA)系统就是一种为了实现上述目标而开发的分析系统。为了提高DNA系统分析结果的准确度以及分析效率等指标,一般需要对DNA系统进行测试调整,现有的方案中,在对DNA系统进行测试时,需要使用通信网络组网环境中大量真实的性能数据,由于真实数据一般不容易产生获取,导致测试往往无法进行,并且对于系统监测范围内的网络优化、升级扩容、预警等情况,测试时很难在真实的网络组网环境中实现相同的业务变更,因此,现有的技术方案存在测试环境受限以及测试效率低下的问题。
发明内容
为了解决上述技术问题,本发明实施例提供了一种深度网络分析系统的测试方法和装置,可以不受测试环境的限制并能够提高测试效率。
本发明实施例提供了一种深度网络分析系统的测试方法,所述方法包括:
根据配置的网络拓扑和业务参数生成资产文件;
根据所述资产文件生成模拟性能数据和对比数据;
利用所述模拟性能数据测试所述深度网络分析DNA系统、获取所述DNA系统对所述模拟性能数据分析处理后得到的数据;
当根据所述对比数据验证所述分析处理后得到的数据为正确数据时,确定所述DNA系统能够正确分析网络。
可选的,所述方法还包括:
当所述分析处理后得到的数据超过所述DNA系统中预设的告警阈值,触发所述DNA系统告警时,判断是否测试所述DNA系统解除告警的功能;
当测试所述DNA系统解除告警的功能时,判断是否修改所述模拟性能数据;
当修改所述模拟性能数据时,检索性能数据模板库,若所述性能数据模板库中存在需要的性能数据模板,则调用所述性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;若所述性能数据模板库不存在需要的性能数据模板,则新增所述性能数据模板 并将所述性能数据模板更新到所述性能数据模板库中,采用所述新增的性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;
当不修改所述模拟性能数据时,修改所述告警阈值,根据修改后的告警阈值测试所述DNA系统是否解除告警。
可选的,所述方法还包括:
当未触发所述DNA系统告警或者不测试解除告警的功能时,判断是否测试所述DNA系统均衡流量的功能;
当测试所述DNA系统均衡流量的功能时,对所述网络拓扑中的业务路径进行调整并根据所述调整更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据。
可选的,所述方法还包括:
当不测试所述DNA系统均衡流量的功能时,判断是否测试所述DNA系统调整服务质量QoS参数的功能;
当测试所述DNA系统调整QoS参数的功能时,检索QoS参数模板库;
若所述QoS参数模板库中存在需要的QoS参数模板,则调用所述QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据;
若所述QoS参数模板库中不存在需要的QoS参数模板,则新增所述QoS参数模板并将所述QoS参数模板更新到所述QoS参数模板库中,调用新增的QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据。
可选的,所述方法还包括:
当不测试所述DNA系统调整QoS参数的功能时,判断是否测试所述DNA系统网络扩容的功能;
当测试所述DNA系统网络扩容的功能时,检索所述资产库;
若所述资产库中存在需要的资产,则调用所述资产更新所述网络拓扑, 执行所述根据配置的网络拓扑和业务参数生成资产文件;
若所述资产库中不存在需要的资产,则新增所述资产并将所述资产更新到所述资产库中,调用新增的资产更新所述网络拓扑,执行所述根据配置的网络拓扑和业务参数生成资产文件。
本发明实施例还提供一种用于测试深度网络分析系统的装置,所述装置包括:
配置模块,设置为根据配置的网络拓扑和业务参数生成资产文件;
生成数据模块,设置为根据所述资产文件生成模拟性能数据和对比数据;
测试模块,设置为利用所述模拟性能数据测试所述深度网络分析DNA系统、获取所述DNA系统对所述模拟性能数据分析处理后得到的数据;
验证模块,设置为当根据所述对比数据验证所述分析处理后得到的数据为正确数据时,确定所述DNA系统能够正确分析网络。
可选的,所述测试模块还设置为:
当所述分析处理后得到的数据超过所述DNA系统中预设的告警阈值,触发所述DNA系统告警时,判断是否测试所述DNA系统解除告警的功能;
当测试所述DNA系统解除告警的功能时,判断是否修改所述模拟性能数据;
当修改所述模拟性能数据时,检索性能数据模板库,若所述性能数据模板库中存在需要的性能数据模板,则调用所述性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;若所述性能数据模板库不存在需要的性能数据模板,则新增所述性能数据模板并将所述性能数据模板更新到所述性能数据模板库中,采用所述新增的性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;
当不修改所述模拟性能数据时,修改所述告警阈值,根据修改后的告警阈值测试所述DNA系统是否解除告警。
可选的,所述测试模块还设置为:
当未触发所述DNA系统告警或者不测试解除告警的功能时,判断是否测试所述DNA系统均衡流量的功能;
当测试所述DNA系统均衡流量的功能时,对所述网络拓扑中的业务路径进行调整并根据所述调整更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据。
可选的,所述测试模块还设置为:
当不测试所述DNA系统均衡流量的功能时,判断是否测试所述DNA系统调整服务质量QoS参数的功能;
当测试所述DNA系统调整QoS参数的功能时,检索QoS参数模板库;
若所述QoS参数模板库中存在需要的QoS参数模板,则调用所述QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据;
若所述QoS参数模板库中不存在需要的QoS参数模板,则新增所述QoS参数模板并将所述QoS参数模板更新到所述QoS参数模板库中,调用新增的QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据。
可选的,所述测试模块还设置为:
当不测试所述DNA系统调整QoS参数的功能时,判断是否测试所述DNA系统网络扩容的功能;
当测试所述DNA系统网络扩容的功能时,检索资产库;
若所述资产库中存在需要的资产,则调用所述资产更新所述网络拓扑,执行所述根据配置的网络拓扑和业务参数生成资产文件;
若所述资产库中不存在需要的资产,则新增所述资产并将所述资产更新到所述资产库中,调用新增的资产更新所述网络拓扑,执行所述根据配置的网络拓扑和业务参数生成资产文件。
相对于相关技术中无法获取真实的网络拓扑中的性能数据而无法对DNA系统进行测试,本发明实施例提供的一种深度网络分析系统的测试方法和装置,按照测试要求模拟规划网络拓扑以及业务参数生成资产文件,再根 据资产文件生成模拟性能数据及对比数据,将模拟性能数据输入DNA系统完成DNA系统的测试,并根据对比数据验证DNA系统分析处理后得到的数据是否正确。通过本发明实施例的方案,测试DNA系统时可以不受测试环境的限制并能够提高测试效率。
本发明实施例的其它特征和优点将在随后的说明书中阐述。本发明实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来帮助对本发明实施例技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本发明实施例提供的一种深度网络分析系统的测试方法的流程示意图;
图2为本发明实施例提供的一种深度网络分析系统的测试方法的实施示意图;
图3为本发明实施例提供的一种网络拓扑的示意图;
图4为本发明实施例提供的另一种网络拓扑的示意图;
图5为本发明实施例提供的一种网络拓扑中的设备的连接示意图;
图6为本发明实施例提供的一种用于测试深度网络分析系统的装置的结构示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供一种深度网络分析系统的测试方法,如图1所示,该方法包括:
步骤101、根据配置的网络拓扑和业务参数生成资产文件。
示例性的,根据系统测试或集采测试业务场景环境配置网络拓扑和业务参数,并根据网络拓扑和业务参数生成资产文件,其中,网络拓扑为通信网络中包括的各种设备以及各种设备之间的连接关系,业务参数包括:通信网络承载的各种业务的参数例如流量参数、QoS参数等,资产文件中包括以下至少一种类型的资产或其任意组合:端口、链路、网元、单板、伪线、隧道、业务、环网。本步骤涉及的内容可以采用相关技术中的已知技术实现。
步骤102、根据资产文件生成模拟性能数据和对比数据。
示例性的,根据步骤101生成的资产文件以及预先编写的测试计划(测试计划中可以包括:测试时间段、测试场景、汇聚周期等)和测试用例,使用预先定义的性能模拟工具生成模拟性能数据,生成规划的网络拓扑的模拟性能数据以及对比数据,模拟性能数据作为原始数据发送到DNA系统进行分析计算;对比数据库数据是按照测试要求生成的结果数据,作为DNA系统最终分析结果的参照标准。
步骤103、利用模拟性能数据测试DNA系统、获取DNA系统对模拟性能数据分析处理后得到的数据。
示例性的,将步骤102生成的模拟性能数据作为DNA系统的输入、获取DNA系统对模拟性能数据分析处理后得到的数据。
需要说明的是,DNA系统分析处理数据的过程属于现有的技术手段,在此对DNA系统分析处理数据的过程简单举例说明如下:数据采集模块按照预设时间例如15分钟粒度采集模拟性能数据,初步处理后上报给计算模块;计算模块根据指标定义计算出所有数据,按照时、日、月、年的粒度汇总入库;系统的显示模块按照自定义条件筛选查询数据,并显示在表格中,告警模块根据告警阈值显示告警内容;拓扑模块展示网络拓扑和变化情况,资产管理模块显示资产详细信息。
步骤104、当根据对比数据验证分析处理后得到的数据为正确数据时, 确定DNA系统能够正确分析网络。
示例性的,根据步骤102生成的对比数据验证该DNA系统分析处理后得到的数据是否正确,当通过验证确认数据正确时,确定该DNA系统能够正确分析网络。
需要说明的是,当根据对比数据验证分析处理后得到的数据为错误数据时,确定DNA系统不能够正确分析网络,收集故障信息,对DNA系统进行调试。
相对于相关技术中无法获取真实的网络拓扑中的性能数据而无法对DNA系统进行测试,本发明实施例提供的上述方案中,按照测试要求模拟规划网络拓扑以及业务参数生成资产文件,再根据资产文件生成模拟性能数据及对比数据,将模拟性能数据输入DNA系统完成DNA系统的测试,并根据对比数据验证DNA系统分析处理后得到的数据是否正确,从而能够实现不依赖获取真实通信网络中性能数据就能对DNA系统进行测试。
可选的,如图2所示,该方法还可以包括:
当分析处理后得到的数据超过DNA系统中预设的告警阈值、触发DNA系统告警时,判断是否测试DNA系统解除告警的功能;
当测试DNA系统解除告警的功能时,判断是否修改模拟性能数据;
当修改模拟性能数据时,检索性能数据模板库,若性能数据模板库中存在需要的性能数据模板,则调用性能数据模板修改模拟性能数据,根据修改后的模拟性能数据测试DNA系统是否解除告警;若性能数据模板库不存在需要的性能数据模板,则新增性能数据模板并将性能数据模板更新到性能数据模板库中,采用新增的性能数据模板修改模拟性能数据,根据修改后的模拟性能数据测试DNA系统是否解除告警;
当不修改模拟性能数据时,修改告警阈值,根据修改后的告警阈值测试DNA系统是否解除告警。
示例性的,当DNA系统对高负载的端口、链路、网元等上报告警后,根据实际测试需求判断是否需要测试模拟性能数据或告警阈值改变后该DNA系统分析处理后的数据以及告警信息是否会有相应的变化。如果不修改 模拟性能数据,则修改告警阈值并将告警阈值修改信息反馈至DNA系统,重新设置,在下一数据采集点查看数据颜色和告警是否正确;如果修改模拟性能数据,则结合阈值条件检索模拟性能数据模板库,如果不存在相应模板,则新增模板后更新模拟性能数据模板库;如果存在需要的模板,则获取后反馈到步骤102中,生成符合阈值区间的性能文件后再次上报给DNA系统进行分析汇总,验证分析处理后的数据和告警信息能否实时改变。值得一提的是,如果没有触发告警,想要测试DNA系统是否能正常告警时,可以将未超过阈值的模拟性能数据修改到超出阈值,以测试能否产生告警。
可选的,如图2所示,该方法还可以包括:
当未触发DNA系统告警或者不测试解除告警的功能时,判断是否测试DNA系统均衡流量的功能;
当测试DNA系统均衡流量的功能时,对网络拓扑中的业务路径进行调整并根据调整修改更新资产文件,执行步骤102。
示例性的,在一些端口或链路处于高负载时,可能会切换业务流量到备路径以实现均衡,在均衡流量的情况下,可能需要测试DNA系统获取最新数据的能力。如果需要测试均衡流量,则改变业务路径,更新资产库中的数据,将业务切换到备路径上,对端口、链路、网元、伪线、隧道信息全部进行相应修改,并将修改信息反馈到步骤102,生成新的性能数据后再次上报给DNA系统分析汇总,验证网络流量变化后的数据是否正确。另外,也可以再次测试从备路径切换回主路径的情况。
可选的,如图2所示,该方法还可以包括:
当不测试DNA系统均衡流量的功能时,判断是否测试DNA系统调整服务质量QoS参数;
当测试DNA系统调整QoS参数时,检索QoS参数模板库;
若QoS参数模板库中存在需要的QoS参数模板,则调用QoS参数模板并修改业务参数,根据修改后的业务参数更新资产文件,执行步骤102;
若QoS参数模板库中不存在需要的QoS参数模板,则新增QoS参数模板并将QoS参数模板更新到QoS参数模板库中,调用新增的QoS参数模板 并修改业务参数,根据修改后的业务参数更新资产文件,执行步骤102。
示例性的,结合业务网发展需求,可能会修改保证信息率(Committed Information Rate,CIR)和峰值信息率(Peak Information Rate,PIR)等QoS参数,因此需要测试修改QoS参数后,可能需要测试DNA系统处理数据的能力。如果修改QoS参数,则查找预置QoS参数模板库,如果不存在相应模板,则新增模板后更新QoS参数模板库;如果存在需要的模板,则套用该模板并将QoS参数修改信息反馈到步骤102,然后再次生成模拟性能数据后上报给DNA系统分析汇总,并验证QoS参数变化后DNA系统分析处理的数据是否正确。
可选的,如图2所示,该方法还可以包括:
当不测试DNA系统调整QoS参数时,判断是否测试DNA系统网络扩容的功能;
当测试DNA系统网络扩容的功能时,检索资产库;
若资产库中存在需要的资产,则调用该资产更新网络拓扑,执行步骤101;
若资产库中不存在需要的资产,则新增该资产并将资产更新到资产库中,调用新增的资产更新网络拓扑,执行步骤101。
示例性的,对于通信网络,由于接入设备的增加,经常会面临需要扩容,因此,可能需要测试网络扩容后DNA系统拓扑展示和性能数据的处理能力。通过模拟扩容网络,可以测试增加网元、端口、隧道、伪线、业务等资产后,DNA的拓扑展示和性能数据的处理能力。如果需要进行网络扩容,则查找预置资产库,如果资产库中不存在需要的资产,则新增资产并更新资产库;如果存在需要的资产,则将网元、端口、伪线、隧道、业务等设置为已用,然后反馈新增资产信息到步骤101,生成对应的资产文件,然后再次生成模拟性能数据后上报给DNA系统分析汇总,验证网络扩容后DNA系统分析处理的数据是否正确。
值得一提的是,在上述方案中,在生成资产文件的基础上,能够模拟端口、链路、网元、单板、伪线、隧道、业务、环网的性能数据,和实际网络环境中产生的数据没有区别,并且经过流量均衡、调整QoS参数、网络扩容 等操作,不断充实性能模板库、QoS模板库、资产库数据,利用反馈信息指导重新构造性能数据,能够真实地模拟整个网络动态调整、优化、预警、升级扩容等过程,提高DNA系统测试的自动化、智能化程度和覆盖率,最终达到人工测试难以实现的目标。
本发明实施例提供了一种深度网络分析系统的测试方法,根据配置的网络拓扑和业务参数生成资产文件;根据资产文件生成模拟性能数据和对比数据;利用模拟性能数据测试深度网络分析DNA系统、获取DNA系统对模拟性能数据分析处理后得到的数据;当根据对比数据验证分析处理后得到的数据为正确数据时,确定DNA系统能够正确分析网络。通过本发明实施例的方案,测试DNA系统时可以不受测试环境的限制并能够提高测试效率。
为了使本领域技术人员能够更清楚地理解本发明实施例提供的技术方案,下面通过示例,对本发明实施例提供的深度网络分析系统的测试方法进行详细说明:
步骤一配置网络拓扑和业务参数
示例性的,例如图3所示为一个配置的网络拓扑,其中,核心层配置40GE(GE是Gigabit Ethernet的缩写,即1000M传输速率的以太网)和10GE叠加环,仅支持10GE设备时,可配置1个10GE环,不配置40GE汇聚环和10GE接入环。40GE核心环用于承载LTE模拟流量,10GE核心环用于承载2G/3G和集团客户模拟流量。40GE核心环中PTN设备NE1、2、3、4为网络侧边缘(Provider Edge,PE)设备,并且NE3、4为L2/L3转接点,L2表示二层虚拟专用网(Virtual Private Network,VPN),L3表示三层虚拟专用网。汇聚层配置40GE和10GE环网,仅支持10GE设备时配置1个10GE汇聚环网。接入层分别配置10GE和GE两个接入环和1个GE接入链,仅支持10GE设备时,可配置1个GE环和接入链。
又例如图4所示的一个配置的网络拓扑,其中,核心层配置100GE环。综合承载LTE模拟流量和2G/3G和集团客户模拟流量。100GE核心环中NE1、2、3、4为PE设备,其中NE3和NE4为L2/L3桥接点,且NE3和NE4配置PTN混合板卡,下挂PTN混合板卡汇聚环。汇聚层配置1个100GE汇聚环网和1个PTN混合板卡汇聚环,分别下挂一个10GE接入环,其中一个接 入环下挂10GE接入链。
以下,以图3所示的网络拓扑为例进行说明,40GE组网拓扑业务配置及优先级设置:
如下表配置每个节点业务,其中LTE回传业务配置在L2+L3VPN业务,承载在40GE核心环;3G回传及集团客户业务配置L2(二层VPN)业务,承载在10GE核心环网;每条业务采用单独标记交换路径(Label Swiching Path,LSP)承载,伪线(Pseudo Wire,PW)与LSP使用1:1配置方式。对于同源同宿的多条E1业务(E1的速率是2M/s,适用于低速业务)配置使用同一个LSP。
Figure PCTCN2015091126-appb-000001
其中,快速重路由FRR是Fast Reroute的缩写,虚拟局域网VLAN是Virtual Local Area Network的缩写,VLAN PRI是VLAN ID中的一个字段,3个bit,表示业务优先级,BE、AF1、AF2、AF3、AF4、EF、CS6、CS7是RFC 2474标准中定义的8个优先级。
如下表所示,通过数据网络分析仪以大于集团客户业务PIR设置值10M/s发流,测试集团客户业务端口限速是否成功。
Figure PCTCN2015091126-appb-000002
其中,差别服务编码点DSCP是Differentiated Services Code Point的缩写、DSCP是IP头的一个字段,MPLS(Multiprotocol Label Switching,多 协议标签交换)是目前应用比较广泛的一种骨干网技术。MPLSTC是MPLS中的一个字段,3个bit,用于QoS,IP多媒体系统IMS是IP Multimedia Subsystem的缩写,分组交换PS是Packet Switched的缩写。
步骤二如图5所示将网络拓扑中的网元、链路等物理信息添加进图3中,下发伪线、隧道、业务等配置信息,或者创建离线网元,模拟真实组网环境。根据需要生成资产文件,然后将资产文件发送到模拟性能数据模拟流程以便生成模拟性能数据。
步骤三根据测试要求定义模拟数据的格式。
例如:1、配置文件增加版本(version)项,指定生成性能数据为“307指标资源接口方案”或者“308指标资源接口方案”;其中,“307指标资源接口方案”以及“308指标资源接口方案”是运营商中国移动规定的两种测试时的数据格式;这里只是举例说明,实际上并不限于上述运营商。
2、支持生成端口、伪线、伪线维护点、隧道、隧道维护点、单板六种资产类型的15分钟模拟性能数据;
3、模拟性能数据名称、字段参考“308指标资源接口方案”;
4、模拟性能数据生成满足要求:1)端口分为5个文件,单板分为3个文件;2)伪线、伪线维护点、隧道、隧道维护点性能数据为单点性能数据;3)伪线维护点文件、隧道维护点文件满足“308指标资源接口方案”中的格式;
5、只有以太网端口生成性能数据。
需要说明的是,上述内容均属于现有的内容,可参考中国移动制定的测试标准文档,在此不做详细说明。
步骤四根据步骤二生成的资产文件和步骤三确定的格式生成模拟性能数据和对比数据。
模拟性能数据作为原始数据发送到DNA系统进行分析处理;对比数据是按照测试要求生成的结果数据,作为DNA系统最终分析处理结果的参照标准。例如构造模拟性能数据:网元1端口1在一时间点的出流量为5M,下一时刻出流量为10M,告警阈值为4M时触发严重级别告警。承载的业务 名为业务1,业务2。QoS参数CIR和PIR都是20M。在模拟性能数据中记录原始数据。对比数据中除了记录原始数据,还记录计算汇总后的数据,如:按小时汇总后该端口的出流量为15M。相关联的伪线、隧道、业务流量数据也一同在步骤四生成。
步骤五DNA系统按照普通逻辑进行分析处理:以端口1的出流量为例,数据采集模块以15分钟粒度采集模拟性能数据5M和10M,初步处理后上报给计算模块;计算模块根据指标定义公式计算出其他关联数据如出带宽利用率为1%;到规定时间后按照时、日、月、年的粒度将数据汇总入库,如一个小时的出流量为15M。查询时在系统的显示模块设置自定义条件:获取一个网元端口1在一个小时内的出流量,将获取的数据15M和对比数据库中的正确数据进行比较。如果数据错误,收集错误信息后结束测试;如果数据正确,进入下一步骤。
步骤六由于该数据处于告警阈值范围外,已经产生告警。如果不测试解除预警,则进入下一步骤。如果测试解除预警,则判断是否修改模拟性能数据,如果不修改模拟性能数据,就需要修改告警阈值,使告警阈值范围能够覆盖该出流量值,例如将告警阈值设为20M。将修改后的告警阈值反馈到DNA系统,等待下一时刻的数据例如10M进入,处理后再次进行判断,数据正确且在告警阈值20M范围内,不触发告警,处理正确,继续进行下一步骤测试。
如果修改性能数据,首先检索性能数据模板库,如果不存在合适的模板,需要将新增模板导入到库中;如果存在合适的模板,以告警阈值4M为条件,套用该模板计算出下一时刻需要修改的数据,其中端口1的出流量为2M,目的是不触发告警,反馈至步骤二,以此为基础生成完整数据。DNA系统接收数据后再次处理并判断,端口1的出流量为2M,在阈值范围内,不触发告警,分析处理正确,进入下一步骤。
步骤七如果不测试均衡流量,进入下一步骤;如果测试均衡流量,需要在已存在的网元、链路、端口等资源上平均分配业务数量或业务上的流量。根据设定的分配原则更新资产库中的数据,将承载业务2的隧道、伪线配置为不经过端口1,经过网元2的端口2。修改的数据反馈到步骤二,按照流量 均衡的要求将原始流量平均分配,假设生成新环境下端口1的流量为2.5M,端口2的流量为2.5M。DNA系统接收数据后再次处理并判断,网络优化后数据正确,进入下一步骤。
步骤八如果不测试调整QoS参数,进入下一步骤;如果测试调整QoS参数,首先检索QoS参数模板库,如果不存在合适的模板,需要将新增模板导入到QoS参数模板库中;如果存在合适的模板,以流量10M为条件,假设套用该模板计算出CIR和PIR都为12M,将修改后的配置反馈至步骤一,按照正常流程重新生成资产文件和端口1的性能数据10M。DNA系统接收数据后再次处理并判断,端口1的出流量为10M,数据正确,CIR和PIR都为12M,达到了优化调整的目的,进入下一步骤。
步骤九如果不测试网络扩容,测试结束;如果测试网络扩容,首先检索资产库,如果不存在需要的资产,需要将新增资产导入到库中;如果存在需要的资产,使用新增的网元3端口3,承载新业务3。将修改后的配置反馈至步骤一,按照正常流程重新生成资产文件和端口3的性能数据10M。DNA系统接收数据后再次处理并判断,端口3的出流量为10M,数据正确,提供了新增业务3,网络扩容测试结束。
本发明实施例还提供一种用于测试深度网络分析DNA系统的装置10,如图6所示,该装置10包括:
配置模块11,设置为根据配置的网络拓扑和业务参数生成资产文件;
生成数据模块12,设置为根据资产文件生成模拟性能数据和对比数据;
测试模块13,设置为利用模拟性能数据测试深度网络分析DNA系统、获取DNA系统对模拟性能数据分析处理后得到的数据;
验证模块14,设置为当根据对比数据验证分析处理后得到的数据为正确数据时,确定DNA系统能够正确分析网络。
可选的,测试模块13还设置为:
当分析处理后得到的数据超过DNA系统中预设的告警阈值,触发DNA系统告警时,判断是否测试DNA系统解除告警的功能;
当测试DNA系统解除告警的功能时,判断是否修改模拟性能数据
当修改模拟性能数据时,检索性能数据模板库,若性能数据模板库中存在需要的性能数据模板,则调用性能数据模板修改模拟性能数据,根据修改后的模拟性能数据测试DNA系统是否解除告警;若性能数据模板库不存在需要的性能数据模板,则新增性能数据模板并将性能数据模板更新到性能数据模板库中,采用新增的性能数据模板修改模拟性能数据,根据修改后的模拟性能数据测试DNA系统是否解除告警;
当不修改模拟性能数据时,修改告警阈值,根据修改后的告警阈值测试DNA系统是否解除告警。
可选的,测试模块13还设置为:
当未触发DNA系统告警或者不测试解除告警的功能时,判断是否测试DNA系统均衡流量的功能;
当测试DNA系统均衡流量的功能时,对网络拓扑中的业务路径进行调整并根据调整修改资产文件,执行根据资产文件生成模拟性能数据和对比数据。
可选的,测试模块13还设置为:
当不测试DNA系统均衡流量的功能时,判断是否测试DNA系统调整服务质量QoS参数的功能;
当测试DNA系统调整QoS参数的功能时,检索QoS参数模板库;
若QoS参数模板库中存在需要的QoS参数模板,则调用QoS参数模板并修改业务参数,根据修改后的业务参数更新资产文件,执行根据资产文件生成模拟性能数据和对比数据;
若QoS参数模板库中不存在需要的QoS参数模板,则新增QoS参数模板并将QoS参数模板更新到QoS参数模板库中,调用新增的QoS参数模板并修改业务参数,根据修改后的业务参数更新资产文件,执行根据资产文件生成模拟性能数据和对比数据。
可选的,测试模块13还设置为:
当不测试DNA系统调整QoS参数的功能时,判断是否测试DNA系统网络扩容的功能;
当测试DNA系统网络扩容的功能时,检索资产库;
若资产库中存在需要的资产,则调用资产更新网络拓扑,执行根据配置的网络拓扑和业务参数生成资产文件;
若资产库中不存在需要的资产,则新增资产并将资产更新到资产库中,调用新增的资产更新网络拓扑,执行根据配置的网络拓扑和业务参数生成资产文件。
本实施例用于实现上述每个方法实施例,本实施例中每个单元的工作流程和工作原理参见上述每个方法实施例中的描述,在此不再赘述。
本发明实施例提供的一种用于测试深度网络分析系统的装置,根据配置的网络拓扑和业务参数生成资产文件;根据资产文件生成模拟性能数据和对比数据;利用模拟性能数据测试深度网络分析DNA系统、获取DNA系统对模拟性能数据分析处理后得到的数据;当根据对比数据验证分析处理后得到的数据为正确数据时,确定DNA系统能够正确分析网络。通过本发明实施例的方案,测试DNA系统时可以不受测试环境的限制并能够提高测试效率。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
上述实施例中的每个装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的每个装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质 中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
以上所述,仅为本发明实施例的实施方式。因此,本发明的保护范围应以权利要求所述的保护范围为准。
工业实用性
本发明实施例提供的一种深度网络分析系统的测试方法和装置,按照测试要求模拟规划网络拓扑以及业务参数生成资产文件,再根据资产文件生成模拟性能数据及对比数据,将模拟性能数据输入DNA系统完成DNA系统的测试,并根据对比数据验证DNA系统分析处理后得到的数据是否正确。通过本发明实施例的方案,测试DNA系统时可以不受测试环境的限制并能够提高测试效率。

Claims (10)

  1. 一种深度网络分析系统的测试方法,包括:
    根据配置的网络拓扑和业务参数生成资产文件;
    根据所述资产文件生成模拟性能数据和对比数据;
    利用所述模拟性能数据测试所述深度网络分析DNA系统、获取所述DNA系统对所述模拟性能数据分析处理后得到的数据;
    当根据所述对比数据验证所述分析处理后得到的数据为正确数据时,确定所述DNA系统能够正确分析网络。
  2. 根据权利要求1所述的方法,还包括:
    当所述分析处理后得到的数据超过所述DNA系统中预设的告警阈值,触发所述DNA系统告警时,判断是否测试所述DNA系统解除告警的功能;
    当测试所述DNA系统解除告警的功能时,判断是否修改所述模拟性能数据;
    当修改所述模拟性能数据时,检索性能数据模板库,若所述性能数据模板库中存在需要的性能数据模板,则调用所述性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;若所述性能数据模板库不存在需要的性能数据模板,则新增所述性能数据模板并将所述性能数据模板更新到所述性能数据模板库中,采用所述新增的性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;
    当不修改所述模拟性能数据时,修改所述告警阈值,根据修改后的告警阈值测试所述DNA系统是否解除告警。
  3. 根据权利要求2所述的方法,还包括:
    当未触发所述DNA系统告警或者不测试解除告警的功能时,判断是否测试所述DNA系统均衡流量的功能;
    当测试所述DNA系统均衡流量的功能时,对所述网络拓扑中的业务路径进行调整并根据所述调整更新所述资产文件,执行所述根据所述资产文件 生成模拟性能数据和对比数据。
  4. 根据权利要求3所述的方法,还包括:
    当不测试所述DNA系统均衡流量的功能时,判断是否测试所述DNA系统调整服务质量QoS参数的功能;
    当测试所述DNA系统调整QoS参数的功能时,检索QoS参数模板库;
    若所述QoS参数模板库中存在需要的QoS参数模板,则调用所述QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据;
    若所述QoS参数模板库中不存在需要的QoS参数模板,则新增所述QoS参数模板并将所述QoS参数模板更新到所述QoS参数模板库中,调用新增的QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据。
  5. 根据权利要求4所述的方法,还包括:
    当不测试所述DNA系统调整QoS参数的功能时,判断是否测试所述DNA系统网络扩容的功能;
    当测试所述DNA系统网络扩容的功能时,检索所述资产库;
    若所述资产库中存在需要的资产,则调用所述资产更新所述网络拓扑,执行所述根据配置的网络拓扑和业务参数生成资产文件;
    若所述资产库中不存在需要的资产,则新增所述资产并将所述资产更新到所述资产库中,调用新增的资产更新所述网络拓扑,执行所述根据配置的网络拓扑和业务参数生成资产文件。
  6. 一种用于测试深度网络分析系统的装置,所述装置包括:
    配置模块,设置为根据配置的网络拓扑和业务参数生成资产文件;
    生成数据模块,设置为根据所述资产文件生成模拟性能数据和对比数据;
    测试模块,设置为利用所述模拟性能数据测试所述深度网络分析DNA系统、获取所述DNA系统对所述模拟性能数据分析处理后得到的数据;
    验证模块,设置为当根据所述对比数据验证所述分析处理后得到的数据 为正确数据时,确定所述DNA系统能够正确分析网络。
  7. 根据权利要求6所述的装置,其中,所述测试模块还设置为:
    当所述分析处理后得到的数据超过所述DNA系统中预设的告警阈值,触发所述DNA系统告警时,判断是否测试所述DNA系统解除告警的功能;
    当测试所述DNA系统解除告警的功能时,判断是否修改所述模拟性能数据;
    当修改所述模拟性能数据时,检索性能数据模板库,若所述性能数据模板库中存在需要的性能数据模板,则调用所述性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;若所述性能数据模板库不存在需要的性能数据模板,则新增所述性能数据模板并将所述性能数据模板更新到所述性能数据模板库中,采用所述新增的性能数据模板修改所述模拟性能数据,根据修改后的模拟性能数据测试所述DNA系统是否解除告警;
    当不修改所述模拟性能数据时,修改所述告警阈值,根据修改后的告警阈值测试所述DNA系统是否解除告警。
  8. 根据权利要求7所述的装置,其中,所述测试模块还设置为:
    当未触发所述DNA系统告警或者不测试解除告警的功能时,判断是否测试所述DNA系统均衡流量的功能;
    当测试所述DNA系统均衡流量的功能时,对所述网络拓扑中的业务路径进行调整并根据所述调整更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据。
  9. 根据权利要求8所述的装置,其中,所述测试模块还设置为:
    当不测试所述DNA系统均衡流量的功能时,判断是否测试所述DNA系统调整服务质量QoS参数的功能;
    当测试所述DNA系统调整QoS参数的功能时,检索QoS参数模板库;
    若所述QoS参数模板库中存在需要的QoS参数模板,则调用所述QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据;
    若所述QoS参数模板库中不存在需要的QoS参数模板,则新增所述QoS参数模板并将所述QoS参数模板更新到所述QoS参数模板库中,调用新增的QoS参数模板并修改所述业务参数,根据所述修改后的业务参数更新所述资产文件,执行所述根据所述资产文件生成模拟性能数据和对比数据。
  10. 根据权利要求9所述的装置,其中,所述测试模块还设置为:
    当不测试所述DNA系统调整QoS参数的功能时,判断是否测试所述DNA系统网络扩容的功能;
    当测试所述DNA系统网络扩容的功能时,检索资产库;
    若所述资产库中存在需要的资产,则调用所述资产更新所述网络拓扑,执行所述根据配置的网络拓扑和业务参数生成资产文件;
    若所述资产库中不存在需要的资产,则新增所述资产并将所述资产更新到所述资产库中,调用新增的资产更新所述网络拓扑,执行所述根据配置的网络拓扑和业务参数生成资产文件。
PCT/CN2015/091126 2015-04-29 2015-09-29 一种深度网路分析系统的测试方法和装置 WO2016173203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510213791.0 2015-04-29
CN201510213791.0A CN106209484A (zh) 2015-04-29 2015-04-29 一种深度网路分析系统的测试方法和装置

Publications (1)

Publication Number Publication Date
WO2016173203A1 true WO2016173203A1 (zh) 2016-11-03

Family

ID=57198914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091126 WO2016173203A1 (zh) 2015-04-29 2015-09-29 一种深度网路分析系统的测试方法和装置

Country Status (2)

Country Link
CN (1) CN106209484A (zh)
WO (1) WO2016173203A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637118A (zh) * 2020-11-10 2021-04-09 国网浙江省电力有限公司双创中心 基于内外网引流异常的流量分析实现方法
CN113364623A (zh) * 2021-06-04 2021-09-07 上海天旦网络科技发展有限公司 基于路径图与网络性能指标减少告警误判的方法和系统
WO2021180127A1 (zh) * 2020-03-10 2021-09-16 华为技术有限公司 网络设备的扩容方法和相关装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213783B (zh) * 2019-05-16 2022-09-30 北京中科晶上科技股份有限公司 基站的监测方法及装置、系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614941A (zh) * 2004-12-02 2005-05-11 上海交通大学 建立复杂网络运行环境模拟仿真平台的方法
US20050240386A1 (en) * 2004-04-22 2005-10-27 International Business Machines Corporation Method and system for interactive modeling of high-level network performance with low-level link design
CN103856975A (zh) * 2012-12-04 2014-06-11 中国电信股份有限公司 网络分析设备准确性的检测方法与系统
CN103870642A (zh) * 2014-03-05 2014-06-18 湖州师范学院 一种基于拓扑结构的复杂供应网络的鲁棒性能分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240386A1 (en) * 2004-04-22 2005-10-27 International Business Machines Corporation Method and system for interactive modeling of high-level network performance with low-level link design
CN1614941A (zh) * 2004-12-02 2005-05-11 上海交通大学 建立复杂网络运行环境模拟仿真平台的方法
CN103856975A (zh) * 2012-12-04 2014-06-11 中国电信股份有限公司 网络分析设备准确性的检测方法与系统
CN103870642A (zh) * 2014-03-05 2014-06-18 湖州师范学院 一种基于拓扑结构的复杂供应网络的鲁棒性能分析方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180127A1 (zh) * 2020-03-10 2021-09-16 华为技术有限公司 网络设备的扩容方法和相关装置
CN112637118A (zh) * 2020-11-10 2021-04-09 国网浙江省电力有限公司双创中心 基于内外网引流异常的流量分析实现方法
CN113364623A (zh) * 2021-06-04 2021-09-07 上海天旦网络科技发展有限公司 基于路径图与网络性能指标减少告警误判的方法和系统

Also Published As

Publication number Publication date
CN106209484A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
US10686671B1 (en) Methods, systems, and computer readable media for testing network elements of an in-band network telemetry capable network
US10389596B2 (en) Discovering application topologies
US9680722B2 (en) Method for determining a severity of a network incident
US8848544B2 (en) Event correlation using network data flow simulation over unmanaged network segments
US7898971B2 (en) Method and apparatus for automating hub and spoke Internet Protocol Virtual Private Network trouble diagnostics
US9692671B2 (en) Method and apparatus for automatically determining causes of service quality degradation
WO2020101950A1 (en) Algorithmic problem identification and resolution in fabric networks by software defined operations, administration, and maintenance
US20190068619A1 (en) Systems and methods for dynamic analysis and resolution of network anomalies
CN102449957B (zh) Ip网络故障定位方法、装置及系统
WO2016173203A1 (zh) 一种深度网路分析系统的测试方法和装置
WO2014202026A1 (zh) 虚拟网络映射保护方法、系统及计算机存储介质
US10277470B2 (en) Methods and apparatus to identify network topologies
US10708155B2 (en) Systems and methods for managing network operations
CN105052076B (zh) 一种基于云计算的网元管理系统及网元管理方法
WO2018010555A1 (zh) 一种北向接口lte业务自动配置方法、北向接口装置及存储介质
WO2021047011A1 (zh) 数据处理方法及装置、计算机存储介质
US11894969B2 (en) Identifying root causes of network service degradation
WO2022105675A1 (zh) 一种跨域故障分析的方法及系统
Javed et al. A stochastic model for transit latency in OpenFlow SDNs
CN113453260B (zh) 基于动态调度算法实现5g传输子切片随选和保障的方法
WO2019001101A1 (zh) 路由路径分析方法及设备
CN114285778A (zh) 一种电力调度数据网组网安全测试系统及测试方法
US8775597B2 (en) Technique for management of communication networks
KR100454684B1 (ko) 다중 프로토콜 레이블 스위칭 망에서 모의실험과 최적화를이용한 트래픽 엔지니어링 수행방법 및 그를 위한 서버
Gammel et al. Ambassador Project Final Tech Report

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890578

Country of ref document: EP

Kind code of ref document: A1