WO2016173079A1 - 数字相移横向剪切干涉仪及光学系统波像差测量方法 - Google Patents

数字相移横向剪切干涉仪及光学系统波像差测量方法 Download PDF

Info

Publication number
WO2016173079A1
WO2016173079A1 PCT/CN2015/080419 CN2015080419W WO2016173079A1 WO 2016173079 A1 WO2016173079 A1 WO 2016173079A1 CN 2015080419 W CN2015080419 W CN 2015080419W WO 2016173079 A1 WO2016173079 A1 WO 2016173079A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial light
light modulator
computer
grating
phase shift
Prior art date
Application number
PCT/CN2015/080419
Other languages
English (en)
French (fr)
Inventor
戴凤钊
王向朝
唐锋
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2016173079A1 publication Critical patent/WO2016173079A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Definitions

  • the invention belongs to the field of optical detection, and in particular relates to a digital phase shift transverse shear interferometer and a method for measuring wave aberration of an optical system.
  • the spatial coherence of the light source is low.
  • the traditional two-beam interference based on the reference wave requires the wavefront to be measured to be spatially coherent in the entire pupil to be measured, and the transverse shear interference only requires the spatial coherence length of the light source to be not less than Cutting distance can be;
  • the sensitivity of the measurement system is adjustable, and the sensitivity of the measurement system can be changed by changing the amount of shear. Therefore, lateral shear has been widely used in the field of wavefront measurement, such as surface surface measurement of optical components, wave aberration measurement of optical systems, and X-ray wavefront measurement.
  • the lithography machine is the representative of high-end equipment in the world. It is a highly integrated ultra-precision, large-scale system and engineering limit. Its requirements for each sub-system are very high.
  • the wave aberration of the projection objective system has been controlled below 0.6nm. This puts extremely high demands on the accuracy of the wave aberration detection technology.
  • the transverse shear interference technique is a commercial 193nm lithography projection objective wavefront aberration in-situ detection technology, and its application range covers 90nm node to 1x nm node lithography machine.
  • the transverse shear interference technique is also the mainstream technology for the detection of wavefront aberrations in EUV lithography projections.
  • wavefront shearing There are many methods for generating wavefront shearing, such as plate shearing, prism shearing, grating shearing, polarization shearing, and the like.
  • phase-shifting interference technology is usually needed for high-precision wavefront measurement. Due to the easy introduction of phase shift, grating-shear interference has become a mainstream technology solution in the field of high-precision wavefront measurement, such as 193nm lithography and EUV lithography projection objective.
  • Wavefront aberration detection uses a grating as a shearing spectroscopic device. The grating shear interference is moved laterally in the shear direction by using PZT to drive the spectroscopic grating to change the phase difference between the light of different diffraction orders.
  • the grating shifts for one period, and the phase difference between the 0 and ⁇ 1 order diffracted lights changes. 2 ⁇ , in this way A phase shift is introduced between the two beams participating in the interference.
  • the phase shift using PZT usually requires calibration of its voltage, and the PZT phase shift is susceptible to nonlinear effects such as hysteresis effects, thermal drift, and the like.
  • LC-SLM liquid crystal spatial light modulator
  • the light participating in the interference is the +1 and -1 order diffracted light of the LC-SLM grating, but actually there is high-order diffracted light, and the light participating in the interference has not only the +1 order and -1
  • the light also contains high-order diffracted light of level 0 and above.
  • Method (2) requires a specially designed phase extraction method, the application range is limited, and method (3) can be very It is good to filter out the high-order diffracted light of level 0 and above, so that the +1st-order diffracted light participates in the interference. It is also possible to select the 0-order light and the +1-order (or -1 order) light to participate in the interference by changing the double-window mask. However, the method (3) needs to replace (or rotate) the filter when changing the shear direction or the shear rate, which causes inconvenience to the measurement and introduces additional measurement errors.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a digital phase shifting transverse shearing interferometer and an optical system wave aberration measuring method, wherein the interferometer structure uses a spatial light modulator as an image plane digital spatial filter. It can be used with the digital space filter of the object space to make the change of the cutting direction and shear rate more convenient, eliminating the measurement error caused by replacing or rotating the device.
  • a digital phase shift transverse shear interferometer is characterized in that the interferometer comprises a light source, and the output beam direction along the light source is a small aperture mask, a first spatial light modulator, a second spatial light modulator and a two-dimensional photoelectric a detector, the output end of the two-dimensional photodetector is connected to an input end of the computer; the first spatial light modulator and the second spatial light modulator are respectively disposed on the first three-dimensional displacement stage and the second three-dimensional displacement stage The input ends of the first spatial light modulator and the second spatial light modulator are respectively connected to an output end of the computer;
  • the aperture mask is a square visor having a light-transmissive aperture in the center of the visor, the diameter of the aperture being smaller than the object resolution of the optical system to be tested;
  • the first spatial light modulator is a transmissive spatial light modulator, and is controlled by a computer to generate a digital grating.
  • the wavefront to be measured is diffracted into multi-level diffracted light for shear measurement in the x direction.
  • the lines of the shear grating are distributed along the y direction, including the light transmitting portion and the opaque portion; when the y direction shear measurement is performed, the line of the shear grating includes the light transmitting portion and the opaque portion along the x direction;
  • the second spatial light modulator is a transmissive spatial light modulator, which is controlled by a computer to generate a double window mask, and is used as a spatial filter to filter out high-order diffracted light of level 0 and above for x-direction shear measurement.
  • the center line of the dual window mask includes two light-transmissive windows along the x direction, and the other portions are set to be opaque.
  • the center line of the double-window mask is along the y direction, including two a light-transmissive window, the other parts are set to be opaque;
  • the two-dimensional photosensor is a CCD, CMOS or two-dimensional photodetector array.
  • the shear rate s is generally between 1% and 20%. For high-precision wave aberration measurement, the value is generally between 1% and 5%.
  • the first spatial light modulator is set to a y-direction grating by computer control, that is, the grating line is along the y direction, and the grating period is set to the above-mentioned p; the second spatial light modulator is set to be along the x direction by computer control.
  • Double window mask that is, the center line of the two windows is parallel to the x-axis, the distance between the centers of the two windows is set to the above ⁇ , and the optical axis is at the center of the center line of the two windows;
  • the light source is turned on, and the light source is detected by Detecting the interfering light intensity signal I x1 and transferring I x1 to the computer for storage;
  • the computer controls the first spatial light modulator grating to translate in the +x (or -x) direction, the translation amount is the ⁇ p,
  • the photodetector detects the interfering light intensity signal I x2 and transfers I x2 to the computer for storage; the above phase shift, interferogram detection and preservation steps are performed n times, n is the phase shift step of the phase shift algorithm, and finally the computer saves n Amplitude-shifted interferograms I x1 , I x2 , ..., I xn ; calculated by the computer to calculate the differential wavefront ⁇ W
  • the first spatial light modulator is set to an x-direction grating by computer control, that is, the grating line is along the x direction, and the grating period is set to the value p calculated in step 1; the second spatial light modulator is set to be controlled by computer programming.
  • the photodetector detects the interfering light intensity signal I y1 and transfers I y1 to the computer for storage; the computer controls the first spatial light modulator grating to translate in the +y (or -y) direction, the translation amount is the ⁇ p.
  • the photodetector detects the interfering light intensity signal I y2 and transfers I y2 to the computer for storage; the above phase shift, interferogram detection and preservation steps are performed n times, n is the phase shift step of the phase shift algorithm, and the final computer The n phase shift interferograms I y1 , I y2 , .
  • I yn are saved; the phase difference algorithm is used to calculate the differential wavefront ⁇ W in the y direction by the stored interference signals I y1 , I y2 , . . . , I yn . y ;
  • the wavefront reconstruction W is reconstructed by a wavefront reconstruction algorithm, which may be a mode method or a region method (see :Fengzhao Dai,Feng Tang,Xiangzhao Wang,Osami Sasaki,and Peng Feng,”Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry:comparisons of existing algorithms," Appl. Opt.
  • a wavefront reconstruction algorithm which may be a mode method or a region method (see :Fengzhao Dai,Feng Tang,Xiangzhao Wang,Osami Sasaki,and Peng Feng,”Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry:comparisons of existing algorithms," Appl. Opt.
  • the phase shift algorithm is a method of extracting phases from n interferograms, n represents the number of phase shift steps, and the selection of n is determined according to specific needs.
  • the principle of the invention is: by using a spatial light modulator to generate a digital double window mask, filtering out the higher order diffracted light of level 0 and above, so that the light participating in the interference is only +1 order and -1 order diffracted light, avoiding The influence of high-order diffracted light improves the measurement accuracy; with the first spatial light modulator, the measurement system is more flexible, and the shear rate and shear direction can be adjusted without changing any device, and controlled by computer.
  • the grating of the first spatial light modulator and the double window mask of the second spatial light modulator are both rotated by 90° to achieve a change in the shearing direction, and the period of the first spatial light modulator grating is changed by calculation control and passed through a computer The control changes the distance between the two windows of the second spatial light modulation dual window mask to achieve the adjustment of the shear rate.
  • the present invention has the following advantages:
  • the present invention uses a double window mask to filter out high-order diffracted light of level 0 and above, and suppresses high-order diffracted light of level 0 and above by using an optimized system parameter design method. The effect is better and the measurement accuracy is improved;
  • the present invention is a two-beam interference, which avoids the problem that the three-beam interference phase shift algorithm is limited, and can adopt a more flexible phase shift algorithm for actual situations;
  • the present invention generates a dual window mask by a computer controlled spatial light modulator, and the system of the invention is more flexible and can be realized only by computer programming without replacing or rotating any device.
  • the shear rate is adjustable and the shear direction is variable.
  • FIG. 1 is a schematic structural view of a digital phase shifting transverse shearing interferometer of the present invention
  • FIG. 2 is a schematic view of a small hole mask in the digital transverse shearing interferometer of the present invention
  • FIG. 3 is a schematic view of a y-direction grating disposed on a first spatial light modulator when performing x-direction shear measurement using the digital transverse shear interferometer of the present invention
  • FIG. 4 is a schematic view of a grating arranged in the x direction on the first spatial light modulator when the y-direction shear measurement is performed by the digital transverse shear interferometer of the present invention
  • Figure 5 is a second spatial light modulator for x-direction shear measurement using the digital transverse shear interferometer of the present invention.
  • Figure 6 is a schematic illustration of a y-direction dual window mask disposed on a second spatial light modulator when the y-direction shear measurement is performed using the digital transverse shear interferometer of the present invention.
  • FIG. 1 is a structural diagram of an optical path of a digital transverse shearing interferometer according to the present invention.
  • the digital phase-shifting interfering interferometer of the present invention includes a light source 1, and the direction of the output beam along the light source 1 is sequentially An aperture mask 2, a first spatial light modulator 4, a second spatial light modulator 6 and a two-dimensional photodetector 8, the output of which is connected to the input of the computer 9;
  • the first spatial light modulator 4 and the second spatial light modulator 6 are respectively disposed on the first XYZ three-dimensional stage 5 and the second XYZ three-dimensional stage 7; the first spatial light modulator 4 and the second spatial light
  • the input ends of the modulator 6 are respectively connected to the output of the computer 9;
  • the aperture mask 2 is a square visor having a light-transmissive aperture 21 in the center thereof, the diameter of the aperture 21 being smaller than the object resolution of the optical system 3 to be tested;
  • the first spatial light modulator 4 is a transmissive spatial light modulator controlled by a computer 9 to generate a digital grating.
  • the wavefront to be measured is diffracted into multi-level diffracted light for x-direction shear measurement.
  • the line of the shear grating is distributed along the y direction, the light transmitting portion 401 and the opaque portion 402 are included; when the y direction shear measurement is performed, the line of the shear grating includes the light transmitting portion 411 and the opaque portion along the x direction. Part 412;
  • the second spatial light modulator 6 is a transmissive spatial light modulator, and is controlled by a computer 9 to generate a double window mask.
  • a spatial filter As a spatial filter, the high-order diffracted light of level 0 and above is filtered out, and the x-direction shear is performed.
  • the center line of the double window mask is along the x direction, including two light transmission windows 501, 502, and the other portions are set to be opaque.
  • the center of the double window mask is connected. In the y direction, two light-transmissive windows 511, 512 are included, and other portions are set to be opaque;
  • the two-dimensional photosensor 6 is a CCD, CMOS, or two-dimensional photodetector array
  • the method for measuring the optical system wave aberration using the above digital transverse shear interferometer includes the following steps:
  • the shear rate s is generally between 1% and 20%.
  • the value is generally between 1% and 5%.
  • the optical system 3 to be tested is placed between the aperture mask 2 and the first spatial light modulator 4, and the optical system 3 to be tested is adjusted so that the aperture mask 2 is placed on the object surface of the optical system 3, so that the optical axis passes through
  • the center of the light-transmissive aperture 21 of the aperture mask 2 adjusts the displacement stage 7 of the second spatial light modulator 6 such that the surface of the second spatial light modulator 6 is perpendicular to the optical axis and is in the optical system 3 to be tested.
  • the stage 5 of the first spatial light modulator 4 is adjusted such that the surface of the first spatial light modulator 4 is perpendicular to the optical axis and the distance from the second spatial light modulator 6 is calculated in step 1) Value d;
  • the first spatial light modulator 4 is set as a y-direction grating, that is, the grating lines 401 and 402 are in the y direction, and the grating period is set to the above p; the second spatial light modulator is controlled by the computer 9.
  • the optical axis is in two
  • the center of the window 601, 602 is connected; the light source 1 is turned on, the interference light intensity signal I x1 is detected by the photodetector 8, and I x1 is transmitted to the computer 9 for storage; and the computer 9 controls the first spatial light modulator grating 4 to It is translated in the +x (or -x) direction, the translation amount is ⁇ p, the interfering light intensity signal I x2 is detected by the photodetector 8, and I x2 is transmitted to the computer 9 for storage; the above phase shift, interferogram detection
  • the step of saving is performed n times, n is the phase shift step of the phase shift algorithm, and finally the computer 9 stores n phase shift interferograms I x1 , I x2 ,
  • the first spatial light modulator 4 is set as an x-direction grating, that is, the grating lines 411 and 412 are in the x direction, the grating period is set to the value p calculated in step 1, and the second is programmed by the computer 9, and the second
  • the spatial light modulator 6 is arranged as a double window mask in the y direction, that is, the center lines of the two windows 611, 612 are parallel to the y axis, and the distance between the centers of the two windows 611, 612 is set to the value ⁇ calculated in step 1.
  • the optical axis is at the center of the connection of the two windows 611, 612;
  • the interference light intensity signal I y1 is detected by the photodetector 8 , and I y1 is transmitted to the computer 9 for storage;
  • the computer 9 controls the first spatial light modulator grating 4, Orienting it in the +y (or -y) direction, the amount of translation is ⁇ p, the interfering light intensity signal I y2 is detected by the photodetector 8, and the I y2 is transmitted to the computer 9 for storage;
  • the phase shift and the interferogram The steps of detecting and saving are performed n times, n is the phase shift step of the phase shift algorithm, and finally the computer 9 stores n phase shift interferograms I y1 , I y2 , ..., I yn ; calculated by the computer 9 through the phase shift algorithm Calculated by the stored interference signals I y1 , I y2 , ..., I yn
  • the wavefront reconstruction algorithm may be a method or a pattern zone method, the measured treatment After the wavefront W eliminates the systematic error, the wave aberration of the optical system to be tested can be obtained.
  • the light source adopts He-Ne laser, the wavelength is 632.8nm, the shear rate is set to 1.5%, the image side of the optical system to be tested is 0.3, the image resolution is 1.05 ⁇ m, the magnification is 1/4, and the numerical aperture is The resolution is 0.075, the object side resolution is 4.2 ⁇ m, the diameter of the light transmission aperture on the object aperture mask is set to 1 ⁇ m, the substrate thickness is 100 nm, the material is chromium, the first spatial light modulator and the second spatial light modulation The amplitude-type transmissive spatial light modulator developed by Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences is selected.
  • the model is TSLM029-A, the pixel size is 18 ⁇ m, the number of pixels is 1024 ⁇ 768, and the grating period of the first spatial light modulation is 144 ⁇ m, that is, 8 Pixel, the distance between the centers of the two windows of the second spatial light modulator is 90 ⁇ m, that is, 5 pixels, the two windows are square windows, the side length is 18 ⁇ m, that is, 1 pixel is 1 window, and the number of interference fringes is 20, first The distance between the spatial light modulator and the second spatial light modulator is 10mm.
  • the experiment uses a three-step phase shift algorithm with a phase shift of ⁇ /2 per step.
  • tan -1 [(I 1 -I 3 ) / (2I 2 -I 1 -I 3)]
  • is the measured phase distribution
  • Three phase-shifted interferograms obtained intensity distribution, a moving distance of each step of the grating p / 8, the two-dimensional photodetector 18 ⁇ m ,, i.e. the number of pixels of the CCD 1024 ⁇ 768.
  • the invention Compared with the prior art, the invention has the advantages of suppressing the 0-order and high-order diffracted light, the measurement precision is higher, and the system is flexible, and it is not necessary to move or rotate the optical element when changing the shear rate and the shear direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种数字相移横向剪切干涉仪及光学系统波像差测量方法,干涉仪由光源(1)、小孔掩模(2)、第一空间光调制器(4)、第二空间光调制器(6)、二维光电探测器(8)及计算机(9)组成,通过计算机编程将第一空间光调制器(4)设置为光栅,作为剪切分光器件,将第二空间光调制器(6)设置为双窗口掩模,作为滤波器件,滤除0级与2级以上高级衍射光,使参与干涉的仅有+1级和-1级衍射光。这种数字相移横向剪切干涉仪及光学系统波像差测量方法解决了高级衍射光参与干涉问题的同时,具有不需要更换或旋转任何器件实现剪切方向可变、剪切率可调的优点,系统更灵活。

Description

数字相移横向剪切干涉仪及光学系统波像差测量方法 技术领域
本发明属于光学检测领域,具体涉及一种数字相移横向剪切干涉仪及光学系统波像差的测量方法。
背景技术
横向剪切干涉具有如下优点:
1)待测波前与其自身的横向平移产生干涉,消除了对高精度参考波前的需求,因此具有很高的测量精度;
2)是一种共路干涉系统,因此对机械振动、空气扰动不敏感,测量系统稳定;
3)对光源的空间相干性要求低,传统的基于参考波的双光束干涉要求待测波前在整个待测光瞳内都空间相干,而横向剪切干涉只要求光源的空间相干长度不小于剪切距离即可;
4)测量系统的灵敏度可调,可以通过改变剪切量改变测量系统的灵敏度。因此,横向剪切在波前测量领域得到了广泛的应用,如光学元件的表面面形测量、光学系统的波像差测量、X射线波前测量等。
特别是该技术已经应用于高端光刻机中,用于光刻投影物镜的原位测量。光刻机是全球高端装备的代表,是超精密、大系统、工程极限的高度融合,其对各个分系统的指标要求都非常高,其中投影物镜系统的波像差已经控制在0.6nm以下,这对波像差检测技术的精度提出了极高的要求。而横向剪切干涉技术正是商用的193nm光刻投影物镜波像差原位检测技术,应用范围涵盖90nm节点到1x nm节点的光刻机。另外,横向剪切干涉技术也是极紫外光刻投影物镜波像差检测的主流技术。
产生波前剪切的器件有很多方法,如平板剪切、棱镜剪切、光栅剪切、偏振剪切等。对于高精度的波前测量,通常需要采用相移干涉技术,光栅剪切干涉由于便于引入相移,在高精度波前测量领域成为主流技术方案,如193nm光刻及极紫外光刻的投影物镜波像差检测均采用了光栅作为剪切分光器件。光栅剪切干涉通过采用PZT带动分光光栅在剪切方向横向移动,使不同衍射级次的光之间的相位差发生变化,光栅移动一个周期,0级与±1级衍射光间的相位差变化2π,通过这种方式在 参与干涉的两束光之间引入相移。而使用PZT产生相移通常需要对其电压进行校准,且PZT相移容易受到非线性效应(如迟滞效应、热漂移等)的影响。文献(S.Zhao and P.Chung,“Digital speckle shearing interferometer using a liquid-crystal spatial light modulator,”Opt.Eng.45,105606(2006))提出了一种数字散斑剪切干涉仪,采用反射式液晶空间光调制器(LC-SLM)代替光栅,并用计算控制LC-SLM产生数字光栅,作为剪切分光器件,可以通过计算机编程控制LC-SLM光栅线条移动,实现相移,避免了传统PZT相移存在的问题。但是这种方法理论上是双光束干涉,参与干涉的光为LC-SLM光栅的+1和-1级衍射光,但是实际上存在高级衍射光,参与干涉的光不仅有+1级和-1光,还包含0级及2级以上的高级衍射光。
解决高级衍射光问题的方法有三种:(1)通过优化设计LC-SLM光栅,抑制0级及高级衍射光(在先技术[1]:A.Cornejo and D.Malacara,"Ronchi Test of Aspherical Surfaces,Analysis,and Accuracy,"Appl.Opt.9,1897-1901(1970);(2)通过优化设计LC-SLM光栅,抑制2级以上的高级衍射光,保留0级和+1级和-1级衍射光参与干涉,即三光束干涉,通过特殊的相位提取方法提取出相位(在先技术[2]Si-Hong Zhai,Jianping Ding,Jing Chen,Ya-Xian Fan,and Hui-Tian Wang,“Three-wave shearing interferometer based on spatial light modulator,”Opt.Express 17,970-977(2009));(3)通过采用双窗口掩模,滤除0级及高级衍射光,保证双光束干涉(在先技术[3]:Yucong Zhu,Katsumi Sugisaki,Katsuhiko Murakami,et al.,Shearing Interferometry for at Wavelength Wavefront Measurement of Extreme-Ultraviolet Lithography Projection Optics,Jpn.J.Appl.Phys 42,5844–5847(2003))。在实际应用中,对于普通的LC-SLM,方法(1)很难同时消除0级和2级以上的高级衍射光,方法(2)需要采用特殊设计的相位提取方法,应用范围受到限制,方法(3)能够很好的滤除0级及2级以上的高级衍射光,使+1级衍射光参与干涉,也可以通过改变双窗口掩模,选择0级光与+1级(或-1级)光参与干涉。但是方法(3)在改变剪切方向或剪切率时需要更换(或旋转)滤波器,给测量带来不便,同时也会引入额外的测量误差。
发明内容
本发明的目的在于克服上述在先技术的不足,提供一种数字相移横向剪切干涉仪及光学系统波像差测量方法,该干涉仪结构采用空间光调制器作为像面的数字空间滤波器,可以与物面空间数字滤波器配合使用,使得剪切方向和剪切率的改变更为方便,消除了因更换或旋转器件带来的测量误差。
本发明的技术解决方案如下:
一种数字相移横向剪切干涉仪,其特点在于该干涉仪包括光源,沿该光源输出光束方向依次是小孔掩模、第一空间光调制器、第二空间光调制器与二维光电探测器,该二维光电探测器的输出端与计算机的输入端相连;所述的第一空间光调制器和第二空间光调制器分别置于第一三维位移台和第二三维位移台上;所述的第一空间光调制器和第二空间光调制器的输入端分别与计算机的输出端相连;
所述的小孔掩模是一块方形的遮光板,在该遮光板的中心有一个透光的小孔,该透光小孔的直径小于待测光学系统的物方分辨率;
所述的第一空间光调制器为透射式空间光调制器,受计算机控制产生数字光栅,作为剪切分光器件,将待测波前衍射为多级衍射光,进行x方向剪切测量时,剪切光栅的线条沿y方向分布,包含透光部分和不透光部分;进行y方向剪切测量时,剪切光栅的线条沿x方向,包含透光部分和不透光部分;
所述的第二空间光调制器为透射式空间光调制器,受计算机控制产生双窗口掩模,作为空间滤波器,滤除0级与2级以上的高级衍射光,进行x方向剪切测量时,双窗口掩模的中心连线沿x方向,包含两个透光窗口,其他部分设置为不透光,进行y方向剪切测量时,双窗口掩模中心连线沿y方向,包含两个透光窗口,其他部分设置为不透光;
所述的二维光电传感器是CCD、CMOS或二维光电探测器阵列。
利用所述的数字相移横向剪切干涉仪对光学系统波像差的测量方法,其特点在于该方法包含以下步骤:
1)计算干涉仪系统参数:
设定干涉仪的剪切率s,剪切率s一般在1%~20%之间取值,对于高精度的波像差测量,一般在1%到5%之间取值,设定干涉仪的干涉条纹数量N,一般在20~100之间取值;根据设定的剪切率s,待测光学系统的像方数值孔径NA和光源的波长λ,按公式p=λ/(s×NA)计算出第一空间光调制器的光栅周期p;根据设定的干涉条纹数N,光栅周期p及待测光学系统的像方数值孔径NA,按公式d=N×p/NA计算第一空间光调制器和第二空间光调制器之间的距离d;由第一空间光调制器的光栅周期p、光源的波长λ、第一空间光调制器和第二空间光调制器之间的距离d,按公式Δ=2dλ/p计算第二空间光调制器双窗口掩模两窗口中心之间的距离Δ;根据拟采用的相移算法及每步的相移量ΔΦ,按公式Δp=p×ΔΦ/4π计算每步相移的光栅线条移动量Δp;
2)调整干涉仪系统:
将待测光学系统置于小孔掩模和第一空间光调制器之间,调整待测光学系统, 使小孔掩模处于光学系统的物面,使光轴穿过小孔掩模的透光小孔的中心,调整第二空间光调制器的位移台,使第二空间光调制器的表面垂直于光轴,并处于待测光学系统的物面,调整第一空间光调制器的位移台,使第一空间光调制器的表面垂直于光轴且与第二空间光调制器之间的距离为步骤1)计算得到的值d;
3)光学系统波像差测量:
①x方向剪切干涉测量:
通过计算机控制,将第一空间光调制器设置为y方向光栅,即光栅线条沿y方向,光栅周期设置为所述的p;通过计算机控制,将第二空间光调制器设置为沿x方向的双窗口掩模,即两窗口的中心连线平行于x轴,两窗口中心之间的距离设置为所述的Δ,并使光轴处于两窗口中心连线的中心;开启光源,由光电探测器探测干涉光强信号Ix1,并将Ix1传入计算机保存;计算机控制第一空间光调制器光栅,使其沿+x(或-x)方向平移,平移量为所述的Δp,由光电探测器探测干涉光强信号Ix2,并将Ix2传入计算机保存;上述相移、干涉图探测、保存的步骤进行n次,n为相移算法的相移步数,最终计算机保存n幅相移干涉图Ix1、Ix2、…、Ixn;通过相移算法,由计算机计算通过保存的干涉信号Ix1、Ix2、…、Ixn计算得到x方向的差分波前ΔWx(参见D.Malacara,Optical Shop Testing,3rd ed,(CRC Press,Taylor&Francis,2007));
②y方向剪切干涉测量:
通过计算机控制,将第一空间光调制器设置为x方向光栅,即光栅线条沿x方向,光栅周期设置为步骤1计算得到的值p;通过计算机编程控制,将第二空间光调制器设置为沿y方向的双窗口掩模,即两窗口中心连线平行于y轴,两窗口中心之间的距离设置为步骤1计算得到的值Δ,并使光轴处于两窗口连线的中心;由光电探测器探测干涉光强信号Iy1,并将Iy1传入计算机保存;计算机控制第一空间光调制器光栅,使其沿+y(或-y)方向平移,平移量为所述的Δp,由光电探测器探测干涉光强信号Iy2,并将Iy2传入计算机保存;上述相移、干涉图探测、保存的步骤进行n次,n为相移算法的相移步数,最终计算机保存n幅相移干涉图Iy1、Iy2、…、Iyn;通过相移算法,由计算机计算通过保存的干涉信号Iy1、Iy2、…、Iyn计算得到y方向的差分波前ΔWy
③波前重建:
由所述的x方向差分波前ΔWx和y方向的差分波前ΔWy,通过波前重建算法重建出待测波前W,所述的波前重建算法可以是模式法或者区域法(参见:Fengzhao Dai,Feng Tang,Xiangzhao Wang,Osami Sasaki,and Peng Feng,“Modal wavefront  reconstruction based on Zernike polynomials for lateral shearing interferometry:comparisons of existing algorithms,”Appl.Opt.51,5028-5037(2012)),对待测波前W消除系统误差(参见:Jie Li,Feng Tang,Xiangzhao Wang,Fengzhao Dai,Feibin Wu,“Calibration of system errors in lateral shearing interferometer for EUV-wavefront metrology,”Proc.SPIE 9422,94222O(2015),得到待测光学系统的波像差。
所述的相移算法为从n幅干涉图中提取相位的方法,n表示相移步数,n的选取根据具体需求确定。
本发明的原理为:通过采用空间光调制器产生数字双窗口掩模,滤除0级和2级以上的高级衍射光,使参与干涉的光仅为+1级和-1级衍射光,避免了高级衍射光的影响,提高了测量精度;与第一空间光调制器相配合,使得测量系统更灵活,不需要更换任何器件的条件下实现剪切率和剪切方向可调,通过计算机控制使第一空间光调制器的光栅和第二空间光调制器的双窗口掩模均旋转90°,实现剪切方向的改变,通过计算控制改变第一空间光调制器光栅的周期,并通过计算机控制改变第二空间光调制双窗口掩模两窗口之间的距离,实现剪切率的调节。
本发明与在先技术相比,具有以下优点:
1、与在先技术[1]相比,本发明使用双窗口掩模滤除0级及2级以上高级衍射光,比采用优化系统参数设计的方法抑制0级及2级以上高级衍射光的效果更好,提高了测量精度;
2、与在先技术[2]相比,本发明是双光束干涉,避免了三光束干涉相移算法受限的问题,可以针对实际情况采用更灵活的相移算法;
3、与在先技术[3]相比,本发明通过计算机控制空间光调制器产生双窗口掩模,本发明系统更灵活,可以在不更换或旋转任何器件的条件下,仅通过计算机编程实现剪切率可调及剪切方向可变。
附图说明
图1为本发明数字相移横向剪切干涉仪结构示意图;
图2为本发明数字横向剪切干涉仪中的小孔掩模示意图;
图3为用本发明数字横向剪切干涉仪进行x方向剪切测量时在第一空间光调制器上设置的y方向的光栅示意图;
图4为用本发明数字横向剪切干涉仪进行y方向剪切测量时在第一空间光调制器上设置的x方向的光栅示意图;
图5为用本发明数字横向剪切干涉仪进行x方向剪切测量时在第二空间光调制器 上设置的x方向的双窗口掩模示意图;
图6为用本发明数字横向剪切干涉仪进行y方向剪切测量时在第二空间光调制器上设置的y方向双窗口掩模示意图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
先请参阅图1,图1为本发明数字横向剪切干涉仪的光路结构图,由图1可见,本发明数字相移剪切干涉仪,包括光源1,沿该光源1输出光束方向依次是小孔掩模2、第一空间光调制器4、第二空间光调制器6与二维光电探测器8,该二维光电探测器8的输出端与计算机9的输入端相连;所述的第一空间光调制器4和第二空间光调制器6分别置于第一XYZ三维位移台5和第二XYZ三维位移台7上;所述的第一空间光调制器4和第二空间光调制器6的输入端分别与计算机9的输出端相连;
所述的小孔掩模2是一块方形的遮光板,在该遮光板的中心有一个透光的小孔21,该透光小孔21的直径小于待测光学系统3的物方分辨率;
所述的第一空间光调制器4为透射式空间光调制器,受计算机9控制产生数字光栅,作为剪切分光器件,将待测波前衍射为多级衍射光,进行x方向剪切测量时,剪切光栅的线条沿y方向分布,包含透光部分401和不透光部分402;进行y方向剪切测量时,剪切光栅的线条沿x方向,包含透光部分411和不透光部分412;
所述的第二空间光调制器6为透射式空间光调制器,受计算机9控制产生双窗口掩模,作为空间滤波器,滤除0级与2级以上的高级衍射光,进行x方向剪切测量时,双窗口掩模的中心连线沿x方向,包含两个透光窗口501、502,其他部分设置为不透光,进行y方向剪切测量时,双窗口掩模中心连线沿y方向,包含两个透光窗口511、512,其他部分设置为不透光;
所述的二维光电传感器6是CCD、CMOS,或二维光电探测器阵列;
使用上述数字横向剪切干涉仪进行光学系统波像差的测量方法,包含以下步骤:
1)计算干涉仪系统参数:
设定干涉仪的剪切率s,剪切率s一般在1%~20%之间取值,对于高精度的波像差测量,一般在1%到5%之间取值,设定干涉仪的干涉条纹数量N,一般在20~100之间取值;根据设定的剪切率s,待测光学系统3的像方数值孔径NA和光源1的波长λ,按公式p=λ/(s×NA)计算出第一空间光调制器4的光栅周期p;根据设定的干涉条纹数N,光栅周期p及待测光学系统3的像方数值孔径NA,按公式d=N×p/NA 计算第一空间光调制器4和第二空间光调制器6之间的距离d;由第一空间光调制器4的光栅周期p、光源1的波长λ、第一空间光调制器4和第二空间光调制器6之间的距离d,按公式Δ=2dλ/p计算第二空间光调制器6双窗口掩模两窗口中心之间的距离Δ;根据拟采用的相移算法及每步的相移量ΔΦ,按公式Δp=p×ΔΦ/4π计算每步相移的光栅线条移动量Δp;
2)调整干涉仪系统
将待测光学系统3置于小孔掩模2和第一空间光调制器4之间,调整待测光学系统3,使小孔掩模2处于光学系统3的物面,使光轴穿过小孔掩模2的透光小孔21的中心,调整第二空间光调制器6的位移台7,使第二空间光调制器6的表面垂直于光轴,并处于待测光学系统3的物面,调整第一空间光调制器4的位移台5,使第一空间光调制器4的表面垂直于光轴且与第二空间光调制器6之间的距离为步骤1)计算得到的值d;
3)光学系统波像差测量:
①x方向剪切干涉测量:
通过计算机9控制,将第一空间光调制器4设置为y方向光栅,即光栅线条401与402沿y方向,光栅周期设置为所述的p;通过计算机9控制,将第二空间光调制器6设置为沿x方向的双窗口掩模,即两窗口601、602的中心连线平行于x轴,两窗口601、602中心之间的距离设置为所述的Δ,并使光轴处于两窗口601、602中心连线的中心;开启光源1,由光电探测器8探测干涉光强信号Ix1,并将Ix1传入计算机9保存;计算机9控制第一空间光调制器光栅4,使其沿+x(或-x)方向平移,平移量为所述的Δp,由光电探测器8探测干涉光强信号Ix2,并将Ix2传入计算机9保存;上述相移、干涉图探测、保存的步骤进行n次,n为相移算法的相移步数,最终计算机9保存n幅相移干涉图Ix1、Ix2、…、Ixn;通过相移算法,由计算机9计算通过保存的干涉信号Ix1、Ix2、…、Ixn计算得到x方向的差分波前ΔWx
②y方向剪切干涉测量:
通过计算机9控制,将第一空间光调制器4设置为x方向光栅,即光栅线条411和412沿x方向,光栅周期设置为步骤1计算得到的值p;通过计算机9编程控制,将第二空间光调制器6设置为沿y方向的双窗口掩模,即两窗口611、612中心连线平行于y轴,两窗口611、612中心之间的距离设置为步骤1计算得到的值Δ,并使光轴处于两窗口611、612连线的中心;由光电探测器8探测干涉光强信号Iy1,并将Iy1传入计算机9保存;计算机9控制第一空间光调制器光栅4,使其沿+y(或-y)方向平移,平移量为所述的Δp,由光电探测器8探测干涉光强信 号Iy2,并将Iy2传入计算机9保存;上述相移、干涉图探测、保存的步骤进行n次,n为相移算法的相移步数,最终计算机9保存n幅相移干涉图Iy1、Iy2、…、Iyn;通过相移算法,由计算机9计算通过保存的干涉信号Iy1、Iy2、…、Iyn计算得到y方向的差分波前ΔWy
③波前重建:
由所述的x方向差分波前ΔWx和y方向的差分波前ΔWy通过波前重建算法重建出待测波前W,所述的波前重建算法可以是模式法或者区域法,对待测波前W消除系统误差后,即可得到待测光学系统的波像差。
下面给一个实施例的具体参数:
光源采用He-Ne激光器,波长为632.8nm,剪切率设置为1.5%,待测光学系统像方数值孔径为0.3,像方分辨率为1.05μm,放大倍率为1/4,物方数值孔径为0.075,物方分辨率为4.2μm,物方小孔掩模上的透光小孔的直径设置为1μm,基板厚度为100nm,材料为铬,第一空间光调制器和第二空间光调制均选用中科院西安光机所研发的振幅型透射式空间光调制器,型号为TSLM029-A,像素尺寸为18μm,像素数为1024×768,第一空间光调制的光栅周期为144μm,即8个像素,第二空间光调制器两窗口中心之间的距离为90μm,即5个像素,两窗口为方形窗口,边长为18μm,即1个像素为1窗口,干涉条纹数为20,第一空间光调制器和第二空间光调制器之间的距离为10mm,实验采用三步相移算法,每步相移量π/2,计算公式为Δφ=tan-1[(I1-I3)/(2I2-I1-I3)],Δφ为待测相位分布,I1、I2、I3为三次相移得到的干涉图强度分布,光栅每一步移动距离p/8,即18μm,,二维光电探测器为像素数为1024×768的CCD。
与在先技术相比,本发明抑制0级与高级衍射光效果好,测量精度更高,且系统灵活,改变剪切率和剪切方向时不需要移动或旋转光学元件。

Claims (4)

  1. 一种数字相移横向剪切干涉仪,其特征在于该干涉仪包括光源(1),沿该光源(1)输出光束方向依次是小孔掩模(2)、第一空间光调制器(4)、第二空间光调制器(6)和二维光电探测器(8),该二维光电探测器(8)的输出端与计算机(9)的输入端相连;所述的第一空间光调制器(4)和第二空间光调制器(6)分别置于第一三维位移台(5)和第二三维位移台(7)上;所述的第一空间光调制器(4)和第二空间光调制器(6)的输入端分别与计算机(9)的输出端相连;
    所述的小孔掩模(2)是一块方形的遮光板,在该遮光板的中心有一个透光的小孔(21),该透光小孔(21)的直径小于待测光学系统(3)的物方分辨率;
    所述的第一空间光调制器(4)为透射式空间光调制器,受计算机(9)控制产生数字光栅,作为剪切分光器件,将待测波前衍射为多级衍射光,进行x方向剪切测量时,剪切光栅的线条沿y方向分布,包含透光部分(401)和不透光部分(402);进行y方向剪切测量时,剪切光栅的线条沿x方向,包含透光部分(411)和不透光部分(412);
    所述的第二空间光调制器(6)为透射式空间光调制器,受计算机(9)控制产生双窗口掩模,作为空间滤波器,滤除0级与2级以上的高级衍射光,进行x方向剪切测量时,双窗口掩模的中心连线沿x方向,包含两个透光窗口(501、502),其他部分设置为不透光,进行y方向剪切测量时,双窗口掩模中心连线沿y方向,包含两个透光窗口(511、512),其他部分设置为不透光。
  2. 根据权利要求1所述的数字相移横向剪切干涉仪,其特征在于所述的二维光电传感器(8)是CCD、CMOS或二维光电探测器阵列。
  3. 利用权利要求1所述的数字相移横向剪切干涉仪对光学系统波像差的测量方法,其特征在于该方法包含以下步骤:
    1)计算干涉仪系统参数:
    设定干涉仪的剪切率s,剪切率s一般在1%~20%之间取值,对于高精度的波像差测量,一般在1%到5%之间取值,设定干涉仪的干涉条纹数量N,一般在20~100之间取值;根据设定的剪切率s,待测光学系统(3)的像方数值孔径NA和光源(1)的波长λ,按公式p=λ/(s×NA)计算出第一空间光调制器(4)的光栅周期p;根据设定的干涉条纹数N,光栅周期p及待测光学系统(3)的像方数值孔径NA,按公式d=N×p/NA计算第一空间光调制器(4)和第二空间光调制器(6)之间的距离d;由第一空间光调制器(4)的光栅周期p、光源(1)的波长λ、第一空间光调制器(4) 和第二空间光调制器(6)之间的距离d,按公式Δ=2dλ/p计算第二空间光调制器(6)双窗口掩模两窗口中心之间的距离Δ;根据拟采用的相移算法及每步的相移量ΔΦ,按公式Δp=p×ΔΦ/4π计算每步相移的光栅线条移动量Δp;
    2)调整干涉仪系统:
    将待测光学系统(3)置于小孔掩模(2)和第一空间光调制器(4)之间,调整待测光学系统(3),使小孔掩模(2)处于待测光学系统(3)的物面,所述的小孔掩模(2)的透光小孔(21)的中心位于干涉仪的光轴上,调整第二空间光调制器(6)的位移台(7),使第二空间光调制器(6)的表面垂直于光轴,并处于待测光学系统(3)的像面,调整第一空间光调制器(4)的位移台(5),使第一空间光调制器(4)的表面垂直于光轴且与第二空间光调制器(6)之间的距离为d;
    3)光学系统波像差测量:
    ①x方向剪切干涉测量:
    通过计算机(9)控制,使第一空间光调制器(4)为y方向光栅,即光栅线条(401、402)沿y方向,光栅周期设置为所述的p;通过计算机(9)控制,使第二空间光调制器(6)为沿x方向的双窗口掩模,即两窗口(601、602)的中心连线平行于x轴,两窗口(601、602)中心之间的距离为所述的Δ,并使光轴处于两窗口(601、602)中心连线的中心;开启光源(1),由光电探测器(8)探测干涉光强信号Ix1,该Ix1传入计算机(9)保存;计算机(9)控制第一空间光调制器光栅(4),使其沿+x或-x方向平移,平移量为所述的Δp,由光电探测器(8)探测干涉光强信号Ix2,并将Ix2传入计算机(9)保存;共重复n次,n为相移算法的相移步数,最终计算机(9)保存n幅干涉光强信号Ix1、Ix2、…、Ixn;通过相移算法,由计算机(9)通过干涉光强信号Ix1、Ix2、…、Ixn,计算,得到x方向的差分波前ΔWx
    ②y方向剪切干涉测量:
    通过计算机(9)控制,将第一空间光调制器(4)设置为x方向光栅,即光栅线条(411、412)沿x方向,光栅周期设置为p;通过计算机(9)控制,将第二空间光调制器(6)设置为沿y方向的双窗口掩模,即两窗口(611、612)中心连线平行于y轴,两窗口(611、612)中心之间的距离设置为Δ,并使光轴处于两窗口(611、612)连线的中心;由光电探测器(8)探测干涉光强信号Iy1,并将Iy1传入计算机(9)保存;计算机(9)控制第一空间光调制器光栅(4),使其沿+y或-y方向平移,平移量为所述的Δp,由光电探测器(8)探测干涉光强信号Iy2,并将Iy2传入计算机(9)保存;重复n次,n为相移算法的相移步数,由计算机(9)通过相移算法,计算干涉信号Iy1、Iy2、…、Iyn,得到y方向的差分波前ΔWy
    ③波前重建:
    由所述的x方向差分波前ΔWx和y方向的差分波前ΔWy,通过波前重建算法重建出待测波前W,对待测波前W消除系统误差,得到待测光学系统的波像差。
  4. 根据权利要求3所述的光学系统波像差测量方法,其特征在于所述的波前重建算法可以是模式法或者区域法。
PCT/CN2015/080419 2015-04-30 2015-05-29 数字相移横向剪切干涉仪及光学系统波像差测量方法 WO2016173079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510216017.5A CN104807548A (zh) 2015-04-30 2015-04-30 数字相移横向剪切干涉仪及光学系统波像差测量方法
CN2015102160175 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016173079A1 true WO2016173079A1 (zh) 2016-11-03

Family

ID=53692577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080419 WO2016173079A1 (zh) 2015-04-30 2015-05-29 数字相移横向剪切干涉仪及光学系统波像差测量方法

Country Status (2)

Country Link
CN (1) CN104807548A (zh)
WO (1) WO2016173079A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522573A (zh) * 2017-09-20 2019-03-26 中国科学院长春光学精密机械与物理研究所 一种光学遥感相机主动光学系统的仿真方法
US20220349755A1 (en) * 2019-10-07 2022-11-03 National Institute Of Information And Communications Technology Light interference generator and interference imaging device
US11896303B2 (en) 2017-07-14 2024-02-13 Wavesense Engineering Gmbh Optical apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259738A (zh) * 2015-11-09 2016-01-20 中国科学院上海光学精密机械研究所 光刻机投影物镜多视场点波像差并行检测装置与检测方法
DE102015226571B4 (de) * 2015-12-22 2019-10-24 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zur Wellenfrontanalyse
CN105699057B (zh) * 2016-03-01 2018-03-20 中国科学院上海光学精密机械研究所 利用空间光调制器作检测标记的波像差检测系统及检测方法
CN106644107B (zh) * 2016-12-22 2019-04-12 中国科学院光电研究院 激光光束空间相干长度测量装置及其测量方法
CN106767391B (zh) * 2016-12-23 2019-06-14 浙江大学 四波前横向剪切干涉波前传感器的灵敏度增强装置及方法
CN107036789B (zh) * 2017-03-16 2019-02-26 中国科学院上海光学精密机械研究所 点衍射波像差检测干涉仪及其检测方法
CN109014499A (zh) * 2018-09-25 2018-12-18 北京航空航天大学 一种测量焊接电弧光谱空域信息的方法和装置
CN109470236B (zh) * 2018-11-26 2021-01-15 中国科学院长春光学精密机械与物理研究所 一种星敏感器
CN110736543B (zh) * 2019-10-08 2021-11-02 中国科学院上海光学精密机械研究所 光栅剪切干涉波前传感器的剪切量标定装置及方法
CN113624451B (zh) * 2021-07-08 2023-10-24 中国电子科技集团公司第十一研究所 别汉棱镜光轴一致性检测组件及方法
CN114235023B (zh) * 2021-11-18 2024-05-03 北京卫星制造厂有限公司 相移器在线标定方法及装置
CN114337839A (zh) * 2021-12-30 2022-04-12 苏州六幺四信息科技有限责任公司 一种通用光电元器件分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260985A1 (de) * 2002-12-18 2004-05-13 Carl Zeiss Smt Ag Vorrichtung zur interferometrischen Wellenfrontvermessung eines optischen Abbildungssystems
CN101451890A (zh) * 2008-12-18 2009-06-10 南京大学 一种三光波横向剪切干涉装置及提取差分相位的方法
CN102866001A (zh) * 2012-09-13 2013-01-09 中国科学院上海光学精密机械研究所 基于横向剪切干涉结构的成像系统像差的测量方法
CN103256991A (zh) * 2013-05-08 2013-08-21 中国科学院上海光学精密机械研究所 空间移相横向剪切干涉仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260985A1 (de) * 2002-12-18 2004-05-13 Carl Zeiss Smt Ag Vorrichtung zur interferometrischen Wellenfrontvermessung eines optischen Abbildungssystems
CN101451890A (zh) * 2008-12-18 2009-06-10 南京大学 一种三光波横向剪切干涉装置及提取差分相位的方法
CN102866001A (zh) * 2012-09-13 2013-01-09 中国科学院上海光学精密机械研究所 基于横向剪切干涉结构的成像系统像差的测量方法
CN103256991A (zh) * 2013-05-08 2013-08-21 中国科学院上海光学精密机械研究所 空间移相横向剪切干涉仪

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11896303B2 (en) 2017-07-14 2024-02-13 Wavesense Engineering Gmbh Optical apparatus
CN109522573A (zh) * 2017-09-20 2019-03-26 中国科学院长春光学精密机械与物理研究所 一种光学遥感相机主动光学系统的仿真方法
CN109522573B (zh) * 2017-09-20 2023-03-21 中国科学院长春光学精密机械与物理研究所 一种光学遥感相机主动光学系统的仿真方法
US20220349755A1 (en) * 2019-10-07 2022-11-03 National Institute Of Information And Communications Technology Light interference generator and interference imaging device
US11774288B2 (en) * 2019-10-07 2023-10-03 National Institute Of Information And Communications Technology Light interference generator and interference imaging device

Also Published As

Publication number Publication date
CN104807548A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2016173079A1 (zh) 数字相移横向剪切干涉仪及光学系统波像差测量方法
Chen et al. Measurement of freeform optical surfaces: trade‐off between accuracy and dynamic range
CN102681365B (zh) 一种投影物镜波像差检测装置及方法
TWI636280B (zh) 物鏡系統
CN101236362B (zh) 光刻机投影物镜波像差在线检测方法
CN101655670A (zh) 可标定系统误差的光刻机投影物镜波像差在线检测装置
CN102095385B (zh) 新型球面绝对测量系统及方法
CN111226174B (zh) 量测设备、光刻系统和测量结构的方法
CN102445280B (zh) 一种用于小孔标定的检测装置及方法
WO2016183874A1 (zh) 数字相移点衍射干涉仪及光学系统波像差测量方法
KR20080041671A (ko) 위상 마스크의 간섭 측정장치 및 방법
CN101813894A (zh) 具有标定精度功能的光刻机投影物镜波像差在线检测装置
CN204028565U (zh) 一种投影物镜波像差在线检测干涉仪
CN110736543B (zh) 光栅剪切干涉波前传感器的剪切量标定装置及方法
CN102163008B (zh) 系统误差自校准的光刻机投影物镜波像差的在线检测方法
WO2018064827A1 (zh) 一种可标定系统误差的系统波像差检测方法
Le et al. A single collimating lens based dual-beam exposure system for fabricating long-period grating
Wei et al. Fizeau interferometer with binary phase Fresnel-zone plate reference for precision measurement of large convex lens
Joo et al. Shearing Interferometry: Recent research trends and applications
CN102269937B (zh) 光刻机投影物镜波像差在线检测装置及方法
CN102012561A (zh) 一种在激光干涉光刻中实现相移的方法和系统
CN108254086B (zh) 一种随机光纤点衍射测量方法
Liu et al. A new lateral shearing interferometer for precision surface measurement
Qinglan et al. Review of absolute measurement of wavefront aberration in lithography objective
Liu et al. Using diffractive optical element and Zygo interferometer to test large-aperture convex surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890458

Country of ref document: EP

Kind code of ref document: A1