WO2016172831A1 - 一种形状记忆聚合物及其制备方法和应用 - Google Patents

一种形状记忆聚合物及其制备方法和应用 Download PDF

Info

Publication number
WO2016172831A1
WO2016172831A1 PCT/CN2015/077606 CN2015077606W WO2016172831A1 WO 2016172831 A1 WO2016172831 A1 WO 2016172831A1 CN 2015077606 W CN2015077606 W CN 2015077606W WO 2016172831 A1 WO2016172831 A1 WO 2016172831A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
tpeg
memory polymer
dmaema
polyoxyethylene ether
Prior art date
Application number
PCT/CN2015/077606
Other languages
English (en)
French (fr)
Inventor
陈少军
陈杨扬
莫富年
卓海涛
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2015/077606 priority Critical patent/WO2016172831A1/zh
Priority to CN201580074457.XA priority patent/CN107406555B/zh
Publication of WO2016172831A1 publication Critical patent/WO2016172831A1/zh
Priority to US15/795,311 priority patent/US10364312B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/16Monomers containing no hetero atoms other than the ether oxygen
    • C08F216/18Acyclic compounds
    • C08F216/20Monomers containing three or more carbon atoms in the unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/38Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate

Definitions

  • the invention relates to the field of shape memory materials, in particular to a shape memory polymer and a preparation method and application thereof.
  • Shape memory effect refers to the ability to sense environmental changes (such as temperature, force, electromagnetic, solvent, etc.), can be deformed and fixed to obtain a temporary shape; and after sensing changes in the external environment, it can change the shape back to the original shape.
  • shape memory materials can be divided into shape-memory materials such as heat-sensitive, photo-sensitive, electro-sensitive and chemical-sensitive.
  • shape-memory materials such as heat-sensitive, photo-sensitive, electro-sensitive and chemical-sensitive.
  • polymer shape memory materials are widely used in textile, medical, aerospace, engineering and other fields.
  • researchers at home and abroad have developed and applied a variety of thermotropic shape memory polymers using chemical and physical methods. However, the general comprehensive performance is not ideal.
  • thermotropic shape memory polymer is to meet the clinical application of biomedicine, it needs to have mild stimulation conditions close to human body temperature or biological environment, and moderate biocompatibility and suitable strength. And other comprehensive performance. Therefore, the development of thermal-induced shape memory polymers with low cost, simple processing, multiple properties and good biocompatibility is the development direction of current theoretical and applied research.
  • the technical problem to be solved by the present invention is a novel shape memory polymer.
  • a shape memory polymer consisting of prenol polyoxyethylene ether (English name: Methyl ally polyethenoxy ether; abbreviated as TPEG) and dimethylaminoethyl methacrylate (English name: 2-(dimethylamino)ethyl Methacrylate; abbreviated as: DMAEMA) polymerized to have the structure shown in Formula I:
  • the weight ratio of the raw material isopentenol polyoxyethylene ether to dimethylaminoethyl methacrylate is from 8:2 to 2:8.
  • the weight ratio of polyisoprene polyoxyethylene ether to dimethylaminoethyl methacrylate in the polymer is from 8:2 to 2:8.
  • the shape memory polymer has a molecular weight of from 10,000 to 100,000.
  • the prenol polyoxyethylene ether is TPEG 2400.
  • the synthetic route of the shape memory polymer of the present invention is as follows:
  • the method for preparing a shape memory polymer comprises the steps of: adding isoamyl alcohol polyoxyethylene ether, dimethylaminoethyl methacrylate, water and an initiator under the protection of a protective gas, at 50-80 The reaction was stirred at ° C for 8 to 24 hours, and dried to obtain a shape memory polymer.
  • the shielding gas is nitrogen.
  • water is added in an amount of from 2 to 3 times the total weight of the prenol polyoxyethylene ether and dimethylaminoethyl methacrylate.
  • water is added in an amount of from 2 to 3 times the total weight of the prenol polyoxyethylene ether and dimethylaminoethyl methacrylate.
  • the initiator is ammonium persulfate, and the initiator is used in an amount of 5 to 10 mM.
  • the amount of initiator used is 5 mM.
  • the reaction is stirred at 60 ° C for 10 h.
  • the drying is carried out by adjusting the mass fraction of the shape memory polymer in the solution to 10 to 30% after the reaction, and then pouring it into a mold and drying it in a blower box at 80 to 100 ° C. ⁇ 24h, vacuum drying for another 12 to 24h, to obtain a shape memory polymer.
  • the drying is carried out by adjusting the mass fraction of the shape memory polymer in the solution to 20% after completion of the reaction, and then pouring it into a mold and drying it in a blower box at 80 ° C for 24 hours. Vacuum drying was carried out for 24 h to obtain a shape memory polymer.
  • the shape memory polymer prepared by the invention has good shape memory property and good hydrophilicity and biocompatibility, and is suitable for preparing biomedical materials in the field of biomedicine.
  • Example 1 is an infrared spectrum diagram of a sample TPEG20 of Example 1;
  • Figure 5 is an infrared spectrum of the sample TPEG 40 of Example 3.
  • Figure 8 is a NMR spectrum of the TPEG50 sample of Example 4.
  • Figure 9 is a double shape memory cycle curve of the sample TPEG 50 of Example 4.
  • Figure 10 is an infrared spectrum of the sample of Example 5 TPEG60;
  • Figure 11 is an infrared spectrum of a sample of Example 6 TPEG80;
  • Figure 12 is a graph showing the contact angle of the sample of Example 6 TPEG 80;
  • Figure 13 is a graph showing the dynamic mechanical properties of the samples of Examples 1-5;
  • Figure 14 is a DSC plot of the samples of Examples 1-6.
  • the test method of the shape fixing ratio and the shape recovery rate in the following examples uses the force control mode DMA cycle deformation test method.
  • the spline is fixed in the DMA equipment stretching mold and the temperature is raised to 90 °C.
  • the regulation force is increased from 0 to 1.0N, and the spline is deformed.
  • the deformation exceeds 80%, the tensile deformation E1 is obtained; then, the temperature is rapidly lowered to 20 ° C, and the deformation is fixed for 10 minutes; then, the regulation force is lowered.
  • the shape fixing ratio (F) and the deformation recovery rate (R) of each cycle can be calculated according to the following formula:
  • the contact angle test method of the following examples adopts the static contact angle test method, and the specific reference documents (Shaojun Chen, *Funian Mo, Yan Yang, Florian J. Stadler, Shiguo Chen, Haipeng Yang, Zaochuan Ge, Development of zwitterionic polyurethanes with multi-shape Memory effects and self-healing properties, J. Mater. Chem. A, 2015, 3, 2924.).
  • TPEG2400 prenol polyoxyethylene ether
  • DMAEMA dimethylaminoethyl methacrylate
  • initiator ammonium persulfate 5 mM of initiator ammonium persulfate
  • the reaction was stirred at 60 ° C for 10 h; after the reaction was completed, the mass fraction of the polymer in the solution was adjusted to 20%, and then poured into a mold, dried in a blower box at 80 ° C for 24 h, and then vacuum dried for 24 h to obtain shape memory.
  • Nuclear magnetic resonance 1H-NMR spectrum of TPEG 20 showed that the (-N(CH 3 ) 2 ) methyl proton signal in DMAEMA was detected at 2.19 ppm; (-CH 2 -N(CH) in DMAEMA was detected at 2.63 ppm 3 ) 2 ) methylene proton signal; methylene proton signal of TPEG (-CH 2 -CH 2 -O-) was detected at 3.52 ppm; end (-OH) proton signal of TPEG was detected at 3.11 ppm Nuclear magnetic resonance 1H-NMR spectroscopy indicated that DMAEMA and TPEG were successfully polymerized into TPEG 20.
  • the prepared sample TPEG20 showed better double shape memory performance. As shown in Fig. 2, the initial shape fixing rate was about 98.71%; the first shape recovery rate was about 71.11%; the second shape fixing rate was about 98.72%. The second shape recovery rate is about 62.90%; the third shape fixing rate is about 99.34%, the third The secondary shape recovery rate is approximately 56.92%.
  • TPEG2400 prenol polyoxyethylene ether
  • DMAEMA dimethylaminoethyl methacrylate
  • initiator ammonium persulfate 5 mM of initiator ammonium persulfate
  • Nuclear magnetic resonance 1H-NMR spectrum of TPEG 30 showed that the (-N(CH 3 ) 2 ) methyl proton signal in DMAEMA was detected at 2.19 ppm; (-CH 2 -N(CH) in DMAEMA was detected at 2.63 ppm 3 ) 2 ) methylene proton signal; methylene proton signal of TPEG (-CH 2 -CH 2 -O-) was detected at 3.52 ppm; end (-OH) proton signal of TPEG was detected at 3.11 ppm Nuclear magnetic resonance 1H-NMR spectroscopy indicated that DMAEMA and TPEG were successfully polymerized into TPEG 30.
  • the prepared sample TPEG30 showed better double shape memory performance. As shown in Fig. 4, the initial shape fixing rate was about 98.29%; the first shape recovery rate was about 87.80%; the second shape fixing rate was about 98.03%. The second shape recovery rate is about 91.92%; the third shape fixing rate is about 97.74%, and the third shape recovery rate is about 73.51%.
  • TPEG2400 isopentenol polyoxyethylene ether
  • DMAEMA dimethylaminoethyl methacrylate
  • initiator ammonium persulfate 5 mM of initiator ammonium persulfate
  • Nuclear magnetic resonance 1H-NMR spectrum of TPEG 40 showed (-N(CH 3 ) 2 ) methyl proton signal in DMAEMA detected at 2.19 ppm; (-CH 2 -N(CH) in DMAEMA was detected at 2.63 ppm 3 ) 2 ) methylene proton signal; methylene proton signal of TPEG (-CH 2 -CH 2 -O-) was detected at 3.52 ppm; end (-OH) proton signal of TPEG was detected at 3.11 ppm Nuclear magnetic resonance 1H-NMR spectroscopy indicated that DMAEMA and TPEG were successfully polymerized into TPEG 40.
  • the prepared sample TPEG40 showed better double shape memory performance. As shown in Fig. 6, the initial shape fixing rate was about 98.81%; the first shape recovery rate was about 90.68%; the second shape fixing rate was about 98.81%. The second shape recovery rate is about 86.05%; the third shape fixing rate is about 97.78%, and the third shape recovery rate is about 84.27%.
  • TPEG 2400 prenol polyoxyethylene ether
  • DMAEMA dimethylaminoethyl methacrylate
  • initiator ammonium persulfate 50 g of prenol polyoxyethylene ether (TPEG 2400), 50 g of dimethylaminoethyl methacrylate (DMAEMA), 200 g of water, and 5 mM of initiator ammonium persulfate were added to the three-necked flask.
  • the reaction was stirred at 60 ° C for 10 h; after the reaction was completed, the mass fraction of the polymer in the solution was adjusted to 20%, and then poured into a mold, dried in a blower box at 80 ° C for 24 h, and then vacuum dried for 24 h to obtain shape memory.
  • the polymer, designated TPEG 50 50 indicates that the amount of TPEG used as the starting material is 50% of the total weight of the starting materials TPEG and DMAEMA).
  • the 1 H-NMR spectrum of TPEG 50 showed that the (-N(CH 3 ) 2 ) methyl proton signal in DMAEMA was detected at 2.19 ppm; the DMAEMA was detected at 2.63 ppm (- CH 2 -N(CH 3 ) 2 ) methylene proton signal; methylene proton signal of TPEG (-CH 2 -CH 2 -O-) detected at 3.52 ppm; end of TPEG detected at 3.11 ppm (-OH) proton signal; 1H-NMR spectrum of nuclear magnetic resonance showed that DMAEMA and TPEG were successfully polymerized into TPEG 50.
  • the prepared sample TPEG50 showed better double shape memory performance, as shown in Fig. 9, the initial shape fixing rate was about 98.74%; the first shape recovery rate was about 91.40%; the second shape fixing rate was about 97.90%. The second shape recovery rate is about 89.30%; the third shape fixing rate is about 98.20%, the third The secondary shape recovery rate is approximately 87.95%.
  • TPEG2400 prenol polyoxyethylene ether
  • DMAEMA dimethylaminoethyl methacrylate
  • TPEG 60 60 indicates that the amount of raw material TPEG is 60% of the total weight of the raw materials TPEG and DMAEMA).
  • Nuclear magnetic resonance 1H-NMR spectrum of TPEG 60 showed that the (-N(CH 3 ) 2 ) methyl proton signal in DMAEMA was detected at 2.19 ppm; (-CH 2 -N(CH) in DMAEMA was detected at 2.63 ppm 3 ) 2 ) methylene proton signal; methylene proton signal of TPEG (-CH 2 -CH 2 -O-) was detected at 3.52 ppm; end (-OH) proton signal of TPEG was detected at 3.11 ppm Nuclear magnetic resonance 1H-NMR spectroscopy showed that DMAEMA and TPEG were successfully polymerized into TPEG 60.
  • TPEG2400 prenol polyoxyethylene ether
  • DMAEMA dimethylaminoethyl methacrylate
  • the reaction was stirred at 60 ° C for 10 h; after the reaction, the mass fraction of the polymer in the solution was adjusted to 20%, and then poured into a mold, dried in a blower box at 60 ° C for 24 h, and then vacuum dried for 24 h to obtain shape memory.
  • the polymer, designated TPEG 80 (80 indicates that the amount of TPEG used as the starting material is 80% of the total weight of the starting materials TPEG and DMAEMA).
  • the 1 H-NMR spectrum of TPEG 80 showed that the (-N(CH 3 ) 2 ) methyl proton signal in DMAEMA was detected at 2.19 ppm; (-CH 2 -N(CH) in DMAEMA was detected at 2.63 ppm 3 ) 2 ) methylene proton signal; methylene proton signal of TPEG (-CH 2 -CH 2 -O-) was detected at 3.52 ppm; end (-OH) proton signal of TPEG was detected at 3.11 ppm Nuclear magnetic resonance 1H-NMR spectroscopy showed that DMAEMA and TPEG were successfully polymerized into TPEG 80.
  • the contact angle test of TPEG 80 prepared in Example 6 is shown in Fig. 12.
  • the static contact angle of the sample was about 24°, indicating that the sample had good hydrophilic properties.
  • polyethylene glycol is a biocompatible polymer and also has good hydrophilic properties. Therefore, the contact angle test indicates that the sample TPEG80 also has good biocompatibility.
  • the results of the analysis of the shape memory polymers prepared in Examples 1 to 6 by elemental analyzer are shown in Table 1.
  • the dynamic mechanical properties of the shape memory polymers prepared in Examples 1 to 5 are shown in Fig. 13.
  • the thermal properties of the shape memory polymer prepared in Examples 1 to 6 are shown in Fig. 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及形状记忆材料领域,具体公开了一种形状记忆聚合物及其制备方法和应用。所述的形状记忆聚合物,是由异戊烯醇聚氧乙烯醚与甲基丙烯酸二甲氨乙酯聚合而成。其合成步骤少,制备方法简单,生产成本低。此外,本发明制备得到的形状记忆聚合物具有很好的形状记忆性能以及良好的亲水性和生物相容性,适合用于生物医疗领域制备生物医学材料。

Description

一种形状记忆聚合物及其制备方法和应用 技术领域
本发明涉及形状记忆材料领域,具体涉及一种形状记忆聚合物及其制备方法和应用。
背景技术
形状记忆效应是指能够感知环境变化(如温度、力、电磁、溶剂等的刺激),能够变形并且固定得到临时形状;而在感应外界环境的变化后,又能改变形状回到初始形状。按照刺激条件的不同,形状记忆材料可分为热致敏感型、光致敏感型、电致敏感型及化学感应型等形状记忆材料。目前,聚合物形状记忆材料被广泛应用于纺织,医疗,航空航天,工程等领域。国内外研究者已采用化学和物理的方法开发和应用了多种热致形状记忆聚合物。但普遍综合性能都不够理想,热致形状记忆聚合物若要满足生物医学临床上的应用,需具备与人体体温接近或生物环境相适应的温和刺激条件,以及适度的生物相容性和适宜强度等综合性能。因此,开发出成本较低、加工简单、具有多种性能、生物相容性好的热致形状记忆聚合物是目前理论和应用研究的发展方向。
形状记忆聚合物在生物医疗方面的应用一直是研究的重点,国内外医学界和材料学界的研究者致力于将医用高分子材料智能化,并应用于生物医学领域。然而,目前所研究的大多数形状记忆聚合物的生物相容性有待进一步改善。临床研究发现,聚氨酯形状记忆聚合物长期植入人体内会引起机体的炎症反应。因此,迫切需要开发一种具有良好生物相容性并且综合性能优越的形状记忆聚合物,以满足生物医学临床上的应用需要。
发明内容
本发明所要解决的技术问题是,一种结构新颖的形状记忆聚合物。
一种形状记忆聚合物,由异戊烯醇聚氧乙烯醚(英文名为:Methyl ally polyethenoxy ether;缩写为TPEG)与甲基丙烯酸二甲氨乙酯(英文名为:2-(dimethylamino)ethyl methacrylate;缩写为:DMAEMA)聚合而成,具有式I所示的结构:
Figure PCTCN2015077606-appb-000001
优选地,所述的原料异戊烯醇聚氧乙烯醚与甲基丙烯酸二甲氨乙酯的重量比为8:2~2:8。
优选地,聚合物中聚异戊烯醇聚氧乙烯醚与甲基丙烯酸二甲氨乙酯的重量占比为8:2~2:8。
最优选地,所述形状记忆聚合物的分子量为10000~100000。
优选地,所述的异戊烯醇聚氧乙烯醚为TPEG2400。
本发明所述的形状记忆聚合物的合成路线如下:
Figure PCTCN2015077606-appb-000002
所述的形状记忆聚合物的制备方法,包含如下步骤:在保护气的保护下,加入异戊烯醇聚氧乙烯醚、甲基丙烯酸二甲氨乙酯、水及引发剂,在50~80℃下搅拌反应8~24h,干燥即得形状记忆聚合物。
优选地,所述的保护气为氮气。
优选地,水的加入量为异戊烯醇聚氧乙烯醚和甲基丙烯酸二甲氨乙酯总重量的2~3倍。
优选地,水的加入量为异戊烯醇聚氧乙烯醚和甲基丙烯酸二甲氨乙酯总重量的2~3倍。
优选地,所述的引发剂为过硫酸铵,引发剂的用量为5~10mM。
最优选地,引发剂的用量为5mM。
优选地,在60℃下搅拌反应10h。
优选地,所述的干燥通过如下方法进行:反应结束后将溶液中形状记忆聚合物的质量分数调整至10~30%,然后倒入模具中,放入80~100℃的鼓风箱中干燥12~24h,再进行真空干燥12~24h,即得形状记忆聚合物。
最优选地,所述的干燥通过如下方法进行:将反应结束后将溶液中形状记忆聚合物的质量分数调整至20%,然后倒入模具中,放入80℃的鼓风箱中干燥24h,再进行真空干燥24h,即得形状记忆聚合物。
有益效果:本发明制备得到的形状记忆聚合物具有很好的形状记忆性能以及良好的亲水性和生物相容性,适合用于生物医疗领域制备生物医学材料。
附图说明
图1为实施例1样品TPEG20的红外光谱图;
图2为实施例1样品TPEG20的双重形状记忆循环曲线;
图3为实施例2样品TPEG30的红外光谱图;
图4为实施例2样品TPEG30的双重形状记忆循环曲线;
图5为实施例3样品TPEG40的红外光谱图;
图6为实施例3样品TPEG40的双重形状记忆循环曲线;
图7为实施例4样品TPEG50的红外光谱图;
图8为实施例4样品TPEG50的NMR谱图;
图9为实施例4样品TPEG50的双重形状记忆循环曲线;
图10为实施例5样品TPEG60的红外光谱图;
图11为实施例6样品TPEG80的红外光谱图;
图12为实施例6样品TPEG80的接触角测试图;
图13为实施例1-5样品的动态力学性能曲线;
图14为实施例1-6样品的DSC曲线图。
具体实施方式
以下结合具体实施例来进一步解释本发明,但实施例对本发明不做任何形式的限定。
以下实施例中形状固定率及形状回复率的测试方法使用的是力控模式的DMA循环形变测试法。首先样条固定在DMA设备拉伸模具中,升高温度至90℃ 后,调控力从0增加到1.0N,使样条发生形变,当形变超过80%时,得到拉伸形变E1;然后,快速降低温度至20℃,使形变固定10分钟;然后,调控力降至0N,得到固定形变E2;最后,再次升高温度至90℃,维持该温度约40分钟,形变发生回复;最后得到回复后的形变E3。重复上述操作即可得到循环形变曲线。因此,每一循环的形状固定率(F)和形变回复率(R)可根据下式计算得到:
F=E2/E1*100%
R=(E2-E3)/E2*100%
以下实施例接触角测试方法采用静态接触角测试方法,具体参照文献(Shaojun Chen,*Funian Mo,Yan Yang,Florian J.Stadler,Shiguo Chen,Haipeng Yang,Zaochuan Ge,Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties,J.Mater.Chem.A,2015,3,2924.)。
实施例1
在氮气的保护下,三口烧瓶中依次加入异戊烯醇聚氧乙烯醚(TPEG2400)20g、甲基丙烯酸二甲氨乙酯(DMAEMA)80g、水200g,再加入5mM引发剂过硫酸铵,在60℃下搅拌反应10h;反应结束后将溶液中聚合物的质量分数调整至20%,然后倒入模具中,放入80℃的鼓风箱中干燥24h,再进行真空干燥24h,即得形状记忆聚合物,命名为TPEG 20(20表示原料TPEG用量占原料TPEG和DMAEMA总重的20%)。
对比DMAEMA和TPEG的红外光谱,发现TPEG 20中,没有显示DMAEMA在1640cm-1处的C=C振动峰,说明原料DMAEMA成功聚合。TPEG 20中显示有1721cm-1处的C=O振动峰以及1104-1146cm-1处的C-O-C振动峰,说明DMAEMA和TPEG成功聚合成了TPEG 20,如图1所示。TPEG 20的核磁共振1H-NMR谱显示在2.19ppm处检测到了DMAEMA中的(-N(CH3)2)甲基质子信号;在2.63ppm处检测到了DMAEMA中的(-CH2-N(CH3)2)亚甲基质子信号;在3.52ppm处检测到了TPEG(-CH2-CH2-O-)的亚甲基质子信号;在3.11ppm处检测到了TPEG的末端(-OH)质子信号;核磁共振1H-NMR谱表明,DMAEMA和TPEG成功聚合成了TPEG 20。
所制备的样品TPEG20表现出较好的双重形状记忆性能,如图2所示,初始形状固定率约为98.71%;第一次形状回复率约71.11%;第二次形状固定率约为98.72%,第二次形状回复率约为62.90%;第三次形状固定率约为99.34%,第三 次形状回复率约为56.92%。
实施例2
在氮气的保护下,三口烧瓶中依次加入异戊烯醇聚氧乙烯醚(TPEG2400)30g、甲基丙烯酸二甲氨乙酯(DMAEMA)70g、水200g,再加入5mM引发剂过硫酸铵,在80℃下搅拌反应10h;反应结束后将溶液中聚合物的质量分数调整至30%,然后倒入模具中,放入80℃的鼓风箱中干燥12h,再进行真空干燥24h,即得形状记忆聚合物,命名为TPEG 30(30表示原料TPEG用量占原料TPEG和DMAEMA总重的30%)。
对比DMAEMA和TPEG的红外光谱,发现TPEG 30中,没有显示DMAEMA在1640cm-1处的C=C振动峰,说明原料DMAEMA成功聚合。TPEG 30中显示有1721cm-1处的C=O振动峰以及1104-1146cm-1处的C-O-C振动峰,说明DMAEMA和TPEG成功聚合成了TPEG 30,如图3所示。TPEG 30的核磁共振1H-NMR谱显示在2.19ppm处检测到了DMAEMA中的(-N(CH3)2)甲基质子信号;在2.63ppm处检测到了DMAEMA中的(-CH2-N(CH3)2)亚甲基质子信号;在3.52ppm处检测到了TPEG(-CH2-CH2-O-)的亚甲基质子信号;在3.11ppm处检测到了TPEG的末端(-OH)质子信号;核磁共振1H-NMR谱表明,DMAEMA和TPEG成功聚合成了TPEG 30。
所制备的样品TPEG30表现出较好的双重形状记忆性能,如图4所示,初始形状固定率约为98.29%;第一次形状回复率约87.80%;第二次形状固定率约为98.03%,第二次形状回复率约为91.92%;第三次形状固定率约为97.74%,第三次形状回复率约为73.51%。
实施例3
在氮气的保护下,三口烧瓶中依次加入异戊烯醇聚氧乙烯醚(TPEG2400)40g、甲基丙烯酸二甲氨乙酯(DMAEMA)60g、水200g,再加入5mM引发剂过硫酸铵,在50℃下搅拌反应24h;反应结束后将溶液中聚合物的质量分数调整至10%,然后倒入模具中,放入100℃的鼓风箱中干燥24h,再进行真空干燥12h,即得形状记忆聚合物,命名为TPEG 40(40表示原料TPEG用量占原料TPEG和DMAEMA总重的40%)。
对比DMAEMA和TPEG的红外光谱,发现TPEG 40中,没有显示DMAEMA在1640cm-1处的C=C振动峰,说明原料DMAEMA成功聚合。TPEG 40中显示 有1721cm-1处的C=O振动峰以及1104-1146cm-1处的C-O-C振动峰,说明DMAEMA和TPEG成功聚合成了TPEG 40,如图5所示。TPEG 40的核磁共振1H-NMR谱显示在2.19ppm处检测到了DMAEMA中的(-N(CH3)2)甲基质子信号;在2.63ppm处检测到了DMAEMA中的(-CH2-N(CH3)2)亚甲基质子信号;在3.52ppm处检测到了TPEG(-CH2-CH2-O-)的亚甲基质子信号;在3.11ppm处检测到了TPEG的末端(-OH)质子信号;核磁共振1H-NMR谱表明,DMAEMA和TPEG成功聚合成了TPEG 40。
所制备的样品TPEG40表现出较好的双重形状记忆性能,如图6所示,初始形状固定率约为98.81%;第一次形状回复率约90.68%;第二次形状固定率约为98.81%,第二次形状回复率约为86.05%;第三次形状固定率约为97.78%,第三次形状回复率约为84.27%。
实施例4
在氮气的保护下,三口烧瓶中依次加入异戊烯醇聚氧乙烯醚(TPEG2400)50g、甲基丙烯酸二甲氨乙酯(DMAEMA)50g、水200g,再加入5mM引发剂过硫酸铵,在60℃下搅拌反应10h;反应结束后将溶液中聚合物的质量分数调整至20%,然后倒入模具中,放入80℃的鼓风箱中干燥24h,再进行真空干燥24h,即得形状记忆聚合物,命名为TPEG 50(50表示原料TPEG用量占原料TPEG和DMAEMA总重的50%)。
对比DMAEMA和TPEG的红外光谱,发现TPEG 50红外图谱(见附图1)中,没有显示DMAEMA在1640cm-1处的C=C振动峰,说明原料DMAEMA成功聚合。TPEG 50中显示有1721cm-1处的C=O振动峰以及1104-1146cm-1处的C-O-C振动峰,说明DMAEMA和TPEG成功聚合成了TPEG 50,如图7所示。TPEG 50的核磁共振1H-NMR谱(见附图8)显示在2.19ppm处检测到了DMAEMA中的(-N(CH3)2)甲基质子信号;在2.63ppm处检测到了DMAEMA中的(-CH2-N(CH3)2)亚甲基质子信号;在3.52ppm处检测到了TPEG(-CH2-CH2-O-)的亚甲基质子信号;在3.11ppm处检测到了TPEG的末端(-OH)质子信号;核磁共振1H-NMR谱表明,DMAEMA和TPEG成功聚合成了TPEG 50。
所制备的样品TPEG50表现出较好的双重形状记忆性能,如图9所示,初始形状固定率约为98.74%;第一次形状回复率约91.40%;第二次形状固定率约为97.90%,第二次形状回复率约为89.30%;第三次形状固定率约为98.20%,第三 次形状回复率约为87.95%。
实施例5
在氮气的保护下,三口烧瓶中依次加入异戊烯醇聚氧乙烯醚(TPEG2400)60g、甲基丙烯酸二甲氨乙酯(DMAEMA)40g、水200g,再加入5mM引发剂过硫酸铵,在60℃下搅拌反应10h;反应结束后将溶液中聚合物的质量分数调整至20%,然后倒入模具中,放入60℃的鼓风箱中干燥24h,再进行真空干燥24h,即得形状记忆聚合物,命名为TPEG 60(60表示原料TPEG用量占原料TPEG和DMAEMA总重的60%)。
对比DMAEMA和TPEG的红外光谱,发现TPEG 60中,没有显示DMAEMA在1640cm-1处的C=C振动峰,说明原料DMAEMA成功聚合。TPEG 60中显示有1721cm-1处的C=O振动峰以及1104-1146cm-1处的C-O-C振动峰,说明DMAEMA和TPEG成功聚合成了TPEG 60(见附图10)。TPEG 60的核磁共振1H-NMR谱显示在2.19ppm处检测到了DMAEMA中的(-N(CH3)2)甲基质子信号;在2.63ppm处检测到了DMAEMA中的(-CH2-N(CH3)2)亚甲基质子信号;在3.52ppm处检测到了TPEG(-CH2-CH2-O-)的亚甲基质子信号;在3.11ppm处检测到了TPEG的末端(-OH)质子信号;核磁共振1H-NMR谱表明,DMAEMA和TPEG成功聚合成了TPEG 60。
实施例6
在氮气的保护下,三口烧瓶中依次加入异戊烯醇聚氧乙烯醚(TPEG2400)80g、甲基丙烯酸二甲氨乙酯(DMAEMA)20g、水200g,再加入5mM引发剂过硫酸铵,在60℃下搅拌反应10h;反应结束后将溶液中聚合物的质量分数调整至20%,然后倒入模具中,放入60℃的鼓风箱中干燥24h,再进行真空干燥24h,即得形状记忆聚合物,命名为TPEG 80(80表示原料TPEG用量占原料TPEG和DMAEMA总重的80%)。
对比DMAEMA和TPEG的红外光谱,发现TPEG 80中,没有显示DMAEMA在1640cm-1处的C=C振动峰,说明原料DMAEMA成功聚合。TPEG 80中显示有1721cm-1处的C=O振动峰以及1104-1146cm-1处的C-O-C振动峰,说明DMAEMA和TPEG成功聚合成了TPEG 80(见附图11)。TPEG 80的核磁共振1H-NMR谱显示在2.19ppm处检测到了DMAEMA中的(-N(CH3)2)甲基质子信号;在2.63ppm处检测到了DMAEMA中的(-CH2-N(CH3)2)亚甲基质子信号;在 3.52ppm处检测到了TPEG(-CH2-CH2-O-)的亚甲基质子信号;在3.11ppm处检测到了TPEG的末端(-OH)质子信号;核磁共振1H-NMR谱表明,DMAEMA和TPEG成功聚合成了TPEG 80。
实施例6所制备的TPEG80经接触角测试如图12所示,样品的静态接触角约为24°,表明该样品具有较好的亲水性能。同时,众所周知聚乙二醇是一种生物相容性良好的聚合物,也具有较好的亲水性能。因此,接触角测试预示着样品TPEG80也具有良好的生物相容性。
实施例1~6制备的到的形状记忆聚合物经元素分析仪分析结果见表1所示,实施例1~5制备的到的形状记忆聚合物的动态力学性能如图13所示。实施例1~6制备的到的形状记忆聚合物的热性能如图14所示。
表1.形状记忆聚合物元素分析表
Figure PCTCN2015077606-appb-000003
注:以氮原子重量为基础进行计算

Claims (10)

  1. 一种形状记忆聚合物,其特征在于,由异戊烯醇聚氧乙烯醚与甲基丙烯酸二甲氨乙酯聚合而成,具有式I所示的结构:
    Figure PCTCN2015077606-appb-100001
  2. 根据权利要求1所述的形状记忆聚合物,其特征在于,所述的原料异戊烯醇聚氧乙烯醚与甲基丙烯酸二甲氨乙酯的重量比为8:2~2:8。
  3. 根据权利要求1所述的形状记忆聚合物,其特征在于,聚合物中异戊烯醇聚氧乙烯醚与甲基丙烯酸二甲氨乙酯的重量占比为8:2~2:8。
  4. 根据权利要求1所述的形状记忆聚合物,其特征在于,所述形状记忆聚合物的分子量为10000~100000。
  5. 根据权利要求1所述的形状记忆聚合物,其特征在于,所述的异戊烯醇聚氧乙烯醚为TPEG2400。
  6. 权利要求1~5任一项所述的形状记忆聚合物的制备方法,其特征在于,包含如下步骤:在保护气的保护下,加入异戊烯醇聚氧乙烯醚、甲基丙烯酸二甲氨乙酯、水及引发剂,在50~80℃下搅拌反应8~24h,干燥即得形状记忆聚合物。
  7. 根据权利要求6所述的制备方法,其特征在于,所述的保护气为氮气;水的加入量为异戊烯醇聚氧乙烯醚和甲基丙烯酸二甲氨乙酯总重量的2~3倍。
  8. 根据权利要求6所述的制备方法,其特征在于,所述的引发剂为过硫酸铵,引发剂的用量为5~10mM。
  9. 根据权利要求6所述的制备方法,其特征在于,在60℃下搅拌反应10h。
  10. 根据权利要求6所述的制备方法,其特征在于,所述的干燥通过如下方法进行:反应结束后将溶液中聚合物的质量分数调整至10~30%,然后倒入模具中,放入80~100℃的鼓风箱中干燥12~24h,再进行真空干燥12~24h,即得形状记忆聚合物。
PCT/CN2015/077606 2015-04-28 2015-04-28 一种形状记忆聚合物及其制备方法和应用 WO2016172831A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/077606 WO2016172831A1 (zh) 2015-04-28 2015-04-28 一种形状记忆聚合物及其制备方法和应用
CN201580074457.XA CN107406555B (zh) 2015-04-28 2015-04-28 一种形状记忆聚合物及其制备方法和应用
US15/795,311 US10364312B2 (en) 2015-04-28 2017-10-27 Shape memory polymer, preparation method therefor, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/077606 WO2016172831A1 (zh) 2015-04-28 2015-04-28 一种形状记忆聚合物及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/795,311 Continuation US10364312B2 (en) 2015-04-28 2017-10-27 Shape memory polymer, preparation method therefor, and use thereof

Publications (1)

Publication Number Publication Date
WO2016172831A1 true WO2016172831A1 (zh) 2016-11-03

Family

ID=57197926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077606 WO2016172831A1 (zh) 2015-04-28 2015-04-28 一种形状记忆聚合物及其制备方法和应用

Country Status (3)

Country Link
US (1) US10364312B2 (zh)
CN (1) CN107406555B (zh)
WO (1) WO2016172831A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563906A (zh) * 2019-08-15 2019-12-13 深圳大学 一种形状记忆聚氨酯及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039176A1 (en) * 1998-12-29 2000-07-06 The B.F. Goodrich Company Hydrophilic ampholytic polymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247716A (ja) * 1985-04-26 1986-11-05 Mitsui Toatsu Chem Inc 感温性重合体エマルシヨン
JP5404467B2 (ja) * 2010-02-22 2014-01-29 株式会社日本触媒 カチオン性共重合体およびその製造方法およびその用途
CA2770347A1 (en) * 2012-03-02 2013-09-02 The Governors Of The University Of Alberta Temperature switchable polymers for fine coal dewatering
JP6339818B2 (ja) * 2013-03-21 2018-06-06 株式会社日本触媒 水硬性組成物用添加剤

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039176A1 (en) * 1998-12-29 2000-07-06 The B.F. Goodrich Company Hydrophilic ampholytic polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOWE, A.B.; ET AL.: "Synthesis and Solution Properties of Zwitterionic Polymers", CHEMICAL REVIEWS, vol. 102, no. 11, 25 October 2002 (2002-10-25), pages 4177 - 4189, XP003026079 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563906A (zh) * 2019-08-15 2019-12-13 深圳大学 一种形状记忆聚氨酯及其制备方法和应用
CN110563906B (zh) * 2019-08-15 2021-11-16 深圳大学 一种形状记忆聚氨酯及其制备方法和应用

Also Published As

Publication number Publication date
CN107406555A (zh) 2017-11-28
CN107406555B (zh) 2020-02-14
US10364312B2 (en) 2019-07-30
US20180044458A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
Jiao et al. Rigid and strong thermoresponsive shape memory hydrogels transformed from poly (vinylpyrrolidone-co-acryloxy acetophenone) organogels
Cooper et al. High energy density shape memory polymers using strain-induced supramolecular nanostructures
Yang et al. Assembling of reprocessable polybutadiene-based vitrimers with high strength and shape memory via catalyst-free imine-coordinated boroxine
Qin et al. Combined one-way and two-way shape memory in a glass-forming nematic network
Voit et al. High‐strain shape‐memory polymers
Ahn et al. Shape memory behavior of side-chain liquid crystalline polymer networks triggered by dual transition temperatures
Zhang et al. Mechanically robust, highly adhesive and autonomously low-temperature self-healing elastomer fabricated based on dynamic metal− ligand interactions tailored for functional energetic composites
Pringpromsuk et al. Multifunctional stimuli-responsive shape memory polyurethane gels for soft actuators
Fei et al. Synthesis and characterization of a poly (styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) shape memory ABA triblock copolymer
CN103980490B (zh) 一种化学酰亚胺法制备形状记忆聚酰亚胺及其方法
CN102181054A (zh) 双点击化学制备超支化聚合物的方法
Meng et al. Photoinscription of chain anisotropy into polymer networks
CN102153751A (zh) 连续点击化学制备超支化聚合物的方法
WO2016172831A1 (zh) 一种形状记忆聚合物及其制备方法和应用
Deng et al. Tuning the viscoelastic properties of poly (n-butyl acrylate) ionomer networks through the use of ion-pair comonomers
CN113527686A (zh) 液晶弹性体的制备方法与液晶驱动元件
Acar et al. Evaluation of the Spacer Effect on Adamantane-Containing Vinyl Polymer T g's
Tang et al. Ductile composites with strain hardening behavior constructing highly sensitive electronic sensor
Peng et al. Macrocycle-terminated core-cross-linked star polymers: synthesis and characterization
WO2018213997A1 (zh) 一种可变形的刺激响应材料及其制备方法和刺激响应柔性微电极阵列
Patel et al. Novel physically crosslinked polyurethane‐block‐poly (vinyl pyrrolidone) hydrogel biomaterials
Xu et al. Highly flexible and recyclable F–SiO2/MPU composites for self-powered active motion sensors
Zhang et al. Physical cross-linked aliphatic polycarbonate with shape-memory and self-healing properties
Luu et al. Shape-Persistent Liquid Crystal Elastomers with Cis-Stable Crosslinkers Containing Ortho-Methyl-Substituted Azobenzene
Zhang et al. Self-healing siloxane elastomers constructed by hierarchical covalent crosslinked networks and reversible dynamic bonds for flexible electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC (EPO FORM 1205A DATED 26.03.2018)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.03.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15890211

Country of ref document: EP

Kind code of ref document: A1