WO2016172816A1 - 测耦检波器 - Google Patents

测耦检波器 Download PDF

Info

Publication number
WO2016172816A1
WO2016172816A1 PCT/CN2015/000944 CN2015000944W WO2016172816A1 WO 2016172816 A1 WO2016172816 A1 WO 2016172816A1 CN 2015000944 W CN2015000944 W CN 2015000944W WO 2016172816 A1 WO2016172816 A1 WO 2016172816A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
detector
ceramic crystal
coupled
coupling
Prior art date
Application number
PCT/CN2015/000944
Other languages
English (en)
French (fr)
Inventor
魏继东
Original Assignee
魏继东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 魏继东 filed Critical 魏继东
Priority to EP15890196.7A priority Critical patent/EP3327467A4/en
Publication of WO2016172816A1 publication Critical patent/WO2016172816A1/zh
Priority to US15/795,410 priority patent/US10935679B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/181Geophones
    • G01V1/182Geophones with moving coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/162Details
    • G01V1/166Arrangements for coupling receivers to the ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/181Geophones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/03Assembling devices that include piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2200/00Details of seismic or acoustic prospecting or detecting in general
    • G01V2200/10Miscellaneous details
    • G01V2200/14Quality control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/30Noise handling
    • G01V2210/32Noise reduction
    • G01V2210/324Filtering
    • G01V2210/3246Coherent noise, e.g. spatially coherent or predictable

Definitions

  • the utility model relates to the field of ground vibration measurement by using a sensor, in particular to a probe coupling detector.
  • the geophone-earth coupling system is a linear time-invariant vibration system.
  • pulse excitation is a kind of transient excitation, which should be continuously constant in the range of - ⁇ + ⁇ , which is not present in reality.
  • vibration table, vibration exciter and vibration machine can be used.
  • Equipment such as hammers are “approximate” within a certain frequency range.
  • the above equipment can not meet the requirements of "simulating the pulse received by the detector in seismic exploration”. For this reason, we have invented a new type of coupled detector to solve the above technical problems.
  • a coupled-coupling detector comprising a first piezoelectric ceramic crystal and a detector, the first piezoelectric ceramic crystal being located at the top of the detector.
  • the coupled detector further includes a second piezoelectric ceramic crystal and a third piezoelectric ceramic crystal, the second pressure An electric ceramic crystal is located on a first side of the detector, the third piezoelectric ceramic crystal being located on a second side that is perpendicular to the first side of the second piezoelectric ceramic crystal.
  • the first piezoelectric ceramic crystal is located at a central position of the top of the inside of the detector housing, and the second piezoelectric ceramic crystal is respectively located at the center of the two sides inside the detector housing, and is industrialized. Glue it to the detector housing.
  • the first piezoelectric ceramic crystal, the second piezoelectric ceramic crystal is made of barium titanate BT, lead zirconate titanate PZT, and modified lead zirconate titanate piezoelectric material.
  • the first piezoelectric ceramic crystal, the second piezoelectric ceramic crystal, the shape of the third piezoelectric ceramic crystal is circular or square.
  • the first piezoelectric ceramic crystal, the second piezoelectric ceramic crystal, the size and weight of the third piezoelectric ceramic crystal are determined by experiments according to different materials under the condition that the output has a high signal-to-noise ratio Specific parameters.
  • the first piezoelectric ceramic crystal, the second piezoelectric ceramic crystal, the thickness of the third piezoelectric ceramic crystal is determined according to the type and combination of the piezoelectric ceramics used, and the output vibration has a high letter.
  • the noise ratio is preferably maintained at a distance of not less than 2 mm from the core of the detector.
  • the detector is a moving coil analog detector, a MEMS digital detector, a piezoelectric detector or an eddy current detector.
  • the coupled-coupling detector of the present invention can obtain the impulse response of the geophone-earth coupled system by processing the signal output from the detector excited by the mechanical pulse.
  • the main application techniques of the utility model are related technologies of vibration theory, multi-degree-of-freedom system vibration theory, digital signal processing and analysis, signal and system, and seismic data feature analysis, as well as analysis and processing methods.
  • Figure 1 is a front elevational view of a specific embodiment of the coupled-coupling detector of the present invention
  • FIG. 2 is a left side view of a specific embodiment of the coupled-coupling detector of the present invention.
  • FIG 3 is a top plan view of a specific embodiment of the coupled-coupling detector of the present invention.
  • the coupled-coupling detector is composed of a first piezoelectric ceramic crystal 1, a second piezoelectric ceramic crystal 2, a third piezoelectric ceramic crystal 3, and a detector 4.
  • the first piezoelectric ceramic crystal 1 is located at the top of the detector
  • the second piezoelectric ceramic crystal 2 is located on the first side of the detector 4
  • the third piezoelectric ceramic crystal 3 is located at the first position with the second piezoelectric ceramic crystal 2.
  • the second side of the side is perpendicular to each other.
  • the first piezoelectric ceramic crystal 1, the second piezoelectric ceramic crystal 2, and the third piezoelectric ceramic crystal 3 should be located at the center (top and both sides) inside the casing of the detector 4, and used for industrial use.
  • the glue firmly bonds it to the detector housing.
  • the first piezoelectric ceramic crystal 1, the second piezoelectric ceramic crystal 2, and the third piezoelectric ceramic crystal 3 are piezoelectrically shaped by barium titanate BT, lead zirconate titanate PZT, modified lead zirconate titanate, and the like. Made of materials.
  • the first piezoelectric ceramic crystal 1, the second piezoelectric ceramic crystal 2, and the third piezoelectric ceramic crystal 3 may have a circular or square shape, and the smaller the size and the weight, the better, but the output should be It has a high signal-to-noise ratio (compared to ambient noise), so depending on the material, specific parameters should be determined experimentally.
  • the first piezoelectric ceramic crystal 1, the second piezoelectric ceramic crystal 2, and the third piezoelectric ceramic The thickness of the porcelain crystal 3 depends on the type and combination of the piezoelectric ceramics used, but the output vibration has a high signal-to-noise ratio (relative to environmental noise) and maintains a pitch of not less than 2 mm with the core of the detector. It is appropriate.
  • the detector 4 may be a moving coil analog detector, a MEMS digital detector, a piezoelectric detector, an eddy current detector, or the like.
  • the square wave generator 5 is used to supply power to the piezoelectric ceramic crystal, and the obtained output signal of the detector 4 can be regarded as the coupling of the detector 4 under the coupling condition. response. If the detector 4 has only a vertical component, it is only necessary to retain the first piezoelectric ceramic crystal 1 at the top.
  • the utility model provides a detector with a self-measuring detector-earth coupling response capability, referred to as a “measurement coupled detector”, which comprises a piezoelectric ceramic crystal, a detector and a corresponding power supply circuit, three blocks.
  • the piezoelectric ceramic crystals are respectively located at the top of the detector and on two sides perpendicular to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种测耦检波器,该测耦检波器包括压电陶瓷晶体(1,2,3)、检波器(4)以及相应的供电电路,三块压电陶瓷晶体(1,2,3)分别位于该检波器(4)的顶部以及相互垂直的两个侧面。通过处理该测耦检波器测得的数据,可以得到对应检波器埋置点的检波器-大地耦合响应,进而可以通过计算消除耦合响应对地震数据的影响,提高测耦检波器拾取的地面振动数据的保真度、信噪比与分辨率。

Description

测耦检波器 技术领域
本实用新型涉及利用传感器进行地面振动测量的领域,特别是涉及到一种测耦检波器。
背景技术
从理论讲,检波器-大地耦合系统是一个线性时不变振动系统,给于其一个机械“脉冲”作为输入并测量对应的输出,就可以得到其“脉冲响应”。但是,脉冲激振是一种瞬态激振,其在-∞~+∞频谱范围内应该连续恒定,这在现实中是不存在的,通常只能利用振动台、激振器、起振机、力锤等设备在一定频带范围内进行“近似”。但是经过研究,以上设备均不能满足“模拟地震勘探中检波器接收到的脉冲”的要求,为此我们发明了一种新的测耦检波器,解决了以上技术问题。
实用新型内容
本实用新型的目的是提供一种可以得到检波器-大地耦合系统的脉冲响应的测耦检波器。
本实用新型的目的可通过如下技术措施来实现:测耦检波器,该测耦检波器包括第一压电陶瓷晶体和检波器,该第一压电陶瓷晶体位于该检波器的顶部。
本实用新型的目的还可通过如下技术措施来实现:
该测耦检波器还包括第二压电陶瓷晶体和第三压电陶瓷晶体,该第二压 电陶瓷晶体位于该检波器的第一侧面上,该第三压电陶瓷晶体位于与该第二压电陶瓷晶体所在的第一侧面相互垂直的第二侧面上。
该第一压电陶瓷晶体位于该检波器外壳内部的顶部的中心位置,该第二压电陶瓷晶体,该第三压电陶瓷晶体分别位于检波器外壳内部的两个侧面的中心位置,采用工业用胶将其粘合到该检波器外壳上。
该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体由钛酸钡BT、锆钛酸铅PZT、改性锆钛酸铅压电材料制成。
该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体的形状为圆形或者方形。
该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体的大小、重量为在其出力具有较高的信噪比的条件下,根据不同的材料,通过试验确定具体的参数。
该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体的厚度为根据所采用压电陶瓷的种类以及组合的方式而定,以输出的振动有较高的信噪比且与该检波器内芯保持不少于2mm的间距为宜。
该检波器为动圈式模拟检波器,MEMS数字检波器,压电检波器或涡流检波器。
本实用新型中的测耦检波器,通过处理机械脉冲激发的检波器输出的信号,即可以得到检波器-大地耦合系统的脉冲响应。本实用新型主要运用的技术是振动力学中多自由度系统振动理论,数字信号处理与分析,信号与系统以及地震数据特征分析等方面的相关技术以及及分析、处理方法。利用该实用新型,可以消除检波器-大地耦合响应对地震数据的影响,提高检波器拾 取的地面振动数据的保真度、信噪比与分辨率。
附图说明
图1为本实用新型的测耦检波器的一具体实施例的主视图;
图2为本实用新型的测耦检波器的一具体实施例的左视图;
图3为本实用新型的测耦检波器的一具体实施例的俯视图。
具体实施方式
为使本实用新型的上述和其他目的、特征和优点能更明显易懂,下文特举出较佳实施例,并配合所附图式,作详细说明如下。
如图1到图3所示,该测耦检波器由第一压电陶瓷晶体1,第二压电陶瓷晶体2,第三压电陶瓷晶体3和检波器4组成。第一压电陶瓷晶体1位于检波器的顶部,第二压电陶瓷晶体2位于检波器4的第一侧面上,第三压电陶瓷晶体3位于与第二压电陶瓷晶体2所在的第一侧面相互垂直的第二侧面上。
在一实施例中,第一压电陶瓷晶体1,第二压电陶瓷晶体2,第三压电陶瓷晶体3应该位于检波器4外壳内部的中心位置(顶部以及两个侧面),采用工业用胶将其牢牢的粘合到检波器外壳上。
在一实施例中,第一压电陶瓷晶体1,第二压电陶瓷晶体2,第三压电陶瓷晶体3由钛酸钡BT、锆钛酸铅PZT、改性锆钛酸铅等压电材料制成。
在一实施例中,第一压电陶瓷晶体1,第二压电陶瓷晶体2,第三压电陶瓷晶体3其形状可以为圆形或者方形,大小、重量越小越好,但是其出力应该具有较高的信噪比(较环境噪音),所以根据不同的材料,应该通过试验确定具体的参数。
在一实施例中,第一压电陶瓷晶体1,第二压电陶瓷晶体2,第三压电陶 瓷晶体3的厚度根据所采用压电陶瓷的种类以及组合的方式而定,但是以输出的振动有较高的信噪比(较环境噪音)且与检波器内芯保持不少于2mm的间距为宜。
在一实施例中,检波器4可以为动圈式模拟检波器,MEMS数字检波器,压电检波器,涡流检波器等。
本实用新型的测耦检波器在运行时,采用方波发生器5给压电陶瓷晶体供电,得到的检波器4输出信号经过处理后即可以视为该检波器4在该耦合状况下的耦合响应。如果检波器4只有垂直分量,则只需要保留位于顶部的第一压电陶瓷晶体1。
本实用新型提供的一种具有自行测量检波器-大地耦合响应能力的检波器,简称“测耦检波器”,该测耦检波器包括压电陶瓷晶体、检波器以及相应的供电电路,三块压电陶瓷晶体分别位于该检波器的顶部以及相互垂直的两个侧面。通过处理该测耦检波器测得的数据,可以得到对应检波器埋置点的检波器-大地耦合响应,进而可以通过计算消除耦合响应对地震数据的影响,提高检波器拾取的地面振动数据的保真度、信噪比与分辨率。

Claims (8)

  1. 测耦检波器,其特征在于,该测耦检波器包括第一压电陶瓷晶体和检波器,该第一压电陶瓷晶体位于该检波器的顶部。
  2. 根据权利要求1所述的测耦检波器,其特征在于,该测耦检波器还包括第二压电陶瓷晶体和第三压电陶瓷晶体,该第二压电陶瓷晶体位于该检波器的第一侧面上,该第三压电陶瓷晶体位于与该第二压电陶瓷晶体所在的第一侧面相互垂直的第二侧面上。
  3. 根据权利要求2所述的测耦检波器,其特征在于,该第一压电陶瓷晶体位于该检波器外壳内部的顶部的中心位置,该第二压电陶瓷晶体,该第三压电陶瓷晶体分别位于检波器外壳内部的两个侧面的中心位置,采用工业用胶将其粘合到该检波器外壳上。
  4. 根据权利要求2所述的测耦检波器,其特征在于,该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体由钛酸钡BT、锆钛酸铅PZT、改性锆钛酸铅压电材料制成。
  5. 根据权利要求2所述的测耦检波器,其特征在于,该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体的形状为圆形或者方形。
  6. 根据权利要求2所述的测耦检波器,其特征在于,该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体的大小、重量为在其出力具有较高的信噪比的条件下,根据不同的材料,通过试验确定具体的参数。
  7. 根据权利要求2所述的测耦检波器,其特征在于,该第一压电陶瓷晶体,该第二压电陶瓷晶体,该第三压电陶瓷晶体的厚度为根据所采用压电陶瓷的种类以及组合的方式而定,以输出的振动有较高的信噪比且与该检波器内芯保持不少于2mm的间距为宜。
  8. 根据权利要求1所述的测耦检波器,其特征在于,该检波器为动圈式模拟检波器,MEMS数字检波器,压电检波器或涡流检波器。
PCT/CN2015/000944 2015-04-27 2015-12-31 测耦检波器 WO2016172816A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15890196.7A EP3327467A4 (en) 2015-04-27 2015-12-31 COUPLING MEASUREMENT DETECTOR
US15/795,410 US10935679B2 (en) 2015-04-27 2017-10-27 Coupling evaluation geophone and method for eliminating ground-geophone coupling effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520258826.8 2015-04-27
CN201520258826.8U CN204556849U (zh) 2015-04-27 2015-04-27 测耦检波器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/795,410 Continuation US10935679B2 (en) 2015-04-27 2017-10-27 Coupling evaluation geophone and method for eliminating ground-geophone coupling effect

Publications (1)

Publication Number Publication Date
WO2016172816A1 true WO2016172816A1 (zh) 2016-11-03

Family

ID=53831943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000944 WO2016172816A1 (zh) 2015-04-27 2015-12-31 测耦检波器

Country Status (4)

Country Link
US (1) US10935679B2 (zh)
EP (1) EP3327467A4 (zh)
CN (1) CN204556849U (zh)
WO (1) WO2016172816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531408A (zh) * 2019-09-09 2019-12-03 中煤科工集团西安研究院有限公司 一种矿井掘进工作面自供电分布式地震监测系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204556849U (zh) * 2015-04-27 2015-08-12 魏继东 测耦检波器
CN113687410A (zh) * 2021-08-19 2021-11-23 吉林大学 一种金属矿地震勘探数据采集方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2530108A1 (fr) * 1982-07-12 1984-01-13 Geophysique Cie Gle Nouvel hydrophone
JP2000235042A (ja) * 1999-02-16 2000-08-29 Tokin Corp 圧電型加速度センサ
CN101672924A (zh) * 2009-10-26 2010-03-17 浙江大学 提高灰岩出露区地震信号检测能力的检波器耦合方法
US20100202252A1 (en) * 2009-02-09 2010-08-12 Schlumberger Technology Corporation Multi-mode downhole acoustic source
CN102288988A (zh) * 2011-05-12 2011-12-21 中国科学院地质与地球物理研究所 轻便小型可控震源组合装置
CN102323616A (zh) * 2011-06-08 2012-01-18 浙江大学 提高灰岩出露区地震数据分辨率的分频匹配方法
CN103941283A (zh) * 2014-03-12 2014-07-23 北京矿冶研究总院 一种深孔安装的矿用微震检波器
CN204556849U (zh) * 2015-04-27 2015-08-12 魏继东 测耦检波器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1485733B1 (en) * 2002-03-20 2011-12-14 INOVA Ltd. Adaptive filtering apparatus and method for seismic data acquisition
GB2456313B (en) * 2008-01-10 2010-05-12 Westerngeco Seismic Holdings Sensor devices
US9315663B2 (en) * 2008-09-26 2016-04-19 Mikro Systems, Inc. Systems, devices, and/or methods for manufacturing castings
US20100088039A1 (en) * 2008-10-07 2010-04-08 Mengsu Yang Piezoelectric ceramic sensor and sensor array for detection of molecular makers
US9304216B2 (en) * 2009-02-05 2016-04-05 Westerngeco L.L.C. Seismic acquisition system and technique
US9400337B2 (en) * 2013-03-15 2016-07-26 L-3 Communications Corporation Beam accelerometer
US9304146B2 (en) * 2013-07-18 2016-04-05 National Taiwan University Radio-frequency reflectometry scanning tunneling microscope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2530108A1 (fr) * 1982-07-12 1984-01-13 Geophysique Cie Gle Nouvel hydrophone
JP2000235042A (ja) * 1999-02-16 2000-08-29 Tokin Corp 圧電型加速度センサ
US20100202252A1 (en) * 2009-02-09 2010-08-12 Schlumberger Technology Corporation Multi-mode downhole acoustic source
CN101672924A (zh) * 2009-10-26 2010-03-17 浙江大学 提高灰岩出露区地震信号检测能力的检波器耦合方法
CN102288988A (zh) * 2011-05-12 2011-12-21 中国科学院地质与地球物理研究所 轻便小型可控震源组合装置
CN102323616A (zh) * 2011-06-08 2012-01-18 浙江大学 提高灰岩出露区地震数据分辨率的分频匹配方法
CN103941283A (zh) * 2014-03-12 2014-07-23 北京矿冶研究总院 一种深孔安装的矿用微震检波器
CN204556849U (zh) * 2015-04-27 2015-08-12 魏继东 测耦检波器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327467A4 *
WEI, JIDONG;: "The Vibration Mechanics Explanation for Ground-Geophone Coupling Effect, Mode Identification and Its Impacting to Seismic Data and Eliminating", PROGRESS IN GEOPHYSICS, vol. 28, no. 4, 31 August 2013 (2013-08-31), pages 1983 - 1995, XP009504599, ISSN: 1004-2903 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531408A (zh) * 2019-09-09 2019-12-03 中煤科工集团西安研究院有限公司 一种矿井掘进工作面自供电分布式地震监测系统及方法

Also Published As

Publication number Publication date
US10935679B2 (en) 2021-03-02
CN204556849U (zh) 2015-08-12
EP3327467A1 (en) 2018-05-30
US20180067217A1 (en) 2018-03-08
EP3327467A4 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
TWI500910B (zh) 聲感測器及聲感測器系統
SA519401501B1 (ar) مستشعرات محول كهرومغناطيسي صوتي أسفل البئر محسنة
WO2015013245A3 (en) Interconnectable ultrasound transducer probes and related methods and apparatus
EP2228663A3 (en) Magnetic field detection apparatus and measurement apparatus
WO2016172816A1 (zh) 测耦检波器
Hutchins et al. Structural health monitoring using polymer-based capacitive micromachined ultrasonic transducers (CMUTs)
Lu et al. Magnetoelectric composite Metglas/PZT-based current sensor
WO2015020530A3 (en) Apparatus for in-situ downhole measurements during operations
Luo et al. Development of a novel guided wave generation system using a giant magnetostrictive actuator for nondestructive evaluation
KR20100060257A (ko) 음향방출 기법을 이용한 코팅재의 손상진단을 위한 장치 및방법
CN105651439B (zh) 基于瑞利波偏振极化的电磁超声残余应力和应变检测方法
De Almeida et al. Experimental analysis of piezoelectric transducers for impedance-based structural health monitoring
CN204740263U (zh) 一种加速度传感器
CN108152127B (zh) 一种混凝土结构的工作应力监测装置和方法
CN109444454A (zh) 一种用于测量车轮转速的磁电转速传感器
JP2006275544A (ja) 音源位置標定方法
CN105181818B (zh) 一种宽频带表面波激振器
WO2019207301A8 (en) Multi-frequency wireless sensor
RU198261U1 (ru) Датчик электрического поля магнитоэлектрический
CN204945101U (zh) 一种宽频带表面波激振器
Tone et al. Experiment of receiving ultrasonic wave by using adhesion and a contact type PVDF sensor
CN103954682A (zh) 一种并联谐振电路电感检测非金属材料不连续性的方法
CN218099557U (zh) 一种超磁致伸缩材料参数压力特性综合测量装置
Ozevin et al. Acoustic emission source orientation based on time scale
Xiaoyu et al. Experimental analysis of Galfenol rod Transducer for detecting aluminum plate at low frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015890196

Country of ref document: EP