WO2016171426A1 - Hydrophobic alumina hollow fiber membrane for carbon dioxide absorption and method for preparing same - Google Patents

Hydrophobic alumina hollow fiber membrane for carbon dioxide absorption and method for preparing same Download PDF

Info

Publication number
WO2016171426A1
WO2016171426A1 PCT/KR2016/003835 KR2016003835W WO2016171426A1 WO 2016171426 A1 WO2016171426 A1 WO 2016171426A1 KR 2016003835 W KR2016003835 W KR 2016003835W WO 2016171426 A1 WO2016171426 A1 WO 2016171426A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
carbon dioxide
alumina hollow
och
Prior art date
Application number
PCT/KR2016/003835
Other languages
French (fr)
Korean (ko)
Inventor
박정훈
이홍주
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2016171426A1 publication Critical patent/WO2016171426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption and a method for manufacturing the same, and more particularly, to modify the surface of the alumina hollow fiber membrane obtained by the phase transfer method with perfluoroalkylsilane to prepare a hydrophobic alumina hollow fiber membrane, and
  • the present invention relates to a technique applied to a contact device for absorption.
  • the absorption process using a wet amine is a field that can be stably operated and removes carbon dioxide on a large scale and is relatively easy to design, and thus many studies have been conducted.
  • the existing packed tower absorption process has a problem of high energy consumption, entrainment, flooding, channeling, and foaming (Patent Document 1).
  • the hollow fiber contact membrane has a high surface area per unit volume and the module filling rate compared to the technology using a flat plate or tubular separator is known to enable efficient material transfer.
  • the separator used in the contact membrane requires high hydrophobicity, porosity, low mass transfer resistance, and resistance to chemicals used as an absorbent liquid.
  • Non-Patent Document 1 Non-Patent Document 1
  • the present inventors prepared alumina hollow fiber membrane made of a ceramic material by a conventional phase-transfer method, and if the hydroxy group and the perfluorinated alkylsilane compound, which is a coupling agent, react on the surface of the alumina hollow fiber membrane to be hydrophobically modified, the pores of the membrane
  • the present invention has been completed by contemplating that the hydrophobic alumina hollow fiber membrane can be applied to a hollow fiber membrane contact device for absorbing carbon dioxide.
  • Patent Documents 1. Korean Registered Patent No. 10-0661489
  • Patent Document 2 Korea Patent Publication No. 10-2014-0049702
  • Non-Patent Document 1 Sirichai Koonaphapdeelert et al ., Chem. Eng. Sc i., 64 , 1-8 (2009)
  • an object of the present invention is to improve the hydrophobicity and to facilitate the movement of gas through the pores of the membrane and the resulting material transfer, carbon dioxide absorption is remarkably increased as the absorbent flow rate increases It is an object of the present invention to provide a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide that can be dissolved in an increasing hollow fiber membrane contactor.
  • the present invention for achieving the above object provides a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption comprising a perfluorinated alkylsilane coating layer represented by the following formula.
  • n is an integer of 7 to 10
  • R 1 , R 2 and R 3 -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3
  • R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
  • the perfluorinated alkylsilane represented by the above formula is characterized in that octal perfluorooctyl ethyl trimethoxysilane (perfluorooctyl ethyl trimethoxysilane).
  • the hydrophobic alumina hollow fiber membrane for carbon dioxide absorption is characterized in that the pore size is 0.28 ⁇ 0.31 ⁇ m, porosity is 49.1 ⁇ 56.1%.
  • the present invention comprises the steps of I) mixing the alumina particles, polymer binder and dispersant with an organic solvent to obtain a dope solution; II) supplying and discharging the dope solution together with an internal coagulant to a double spinning nozzle to form hollow fibers; III) contacting the hollow fiber with an external coagulant to obtain a hollow fiber membrane by washing, drying and sintering while undergoing a phase transition process; And IV) immersing the sintered hollow fiber membrane in a perfluorinated alkylsilane solution represented by the following formula for 2 to 150 hours at room temperature; and providing a method for producing a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide.
  • n is an integer of 7 to 10
  • R 1 , R 2 and R 3 -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3
  • R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
  • the polymer binder is characterized in that any one selected from the group consisting of polysulfone, polyethersulfone, polyetherimide, polyamide and polyacrylonitrile.
  • the dispersant is characterized in that the polyvinylpyrrolidone or polyvinyl alcohol.
  • the organic solvent is at least one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO).
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • the content of the alumina particles in the dope solution is characterized in that 50 to 60% by weight.
  • the perfluorinated alkylsilane represented by the above formula is characterized in that octal perfluorooctyl ethyl trimethoxysilane (perfluorooctyl ethyl trimethoxysilane).
  • the perfluoroalkylsilane solution represented by the above formula is characterized in that the concentration is 0.01 mol / L to 0.05 mol / L.
  • the present invention provides a membrane module including the hydrophobic alumina hollow fiber membrane for carbon dioxide absorption.
  • the present invention also provides a hollow fiber membrane contact device including the membrane module.
  • the present invention it is possible to provide a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption in which the amount of carbon dioxide absorption is significantly increased as the flow rate of the absorbent liquid is increased due to the improved hydrophobicity, which facilitates the movement of gases through the pores of the membrane and the subsequent material transfer.
  • the membrane module including the hollow fiber membrane contact device the carbon dioxide absorption can be greatly improved.
  • FIG. 1 is a conceptual view showing that the surface of the alumina hollow fiber membrane is hydrophobically modified by the coupling reaction between the hydroxyl group and the perfluoroalkylsilane on the surface of the alumina hollow fiber membrane according to the present invention.
  • Figure 2 is a sintering process profile of the alumina hollow fiber membrane according to the present invention.
  • Figure 3 is a graph showing the X-ray diffraction characteristics of the alumina particles (a) and the alumina hollow fiber membrane (b) after sintering at 1300 °C according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • FT-IR infrared spectroscopy
  • SEM scanning electron microscope
  • FIG. 7 is a graph showing a change in contact angle over time of modifying (coating) the surface of an alumina hollow fiber membrane sintered from the present invention including an example with a perfluoroalkylsilane (FAS).
  • FAS perfluoroalkylsilane
  • TGA thermogravimetric analysis
  • FAS alkyl fluoride
  • FIG. 9 is a schematic diagram of a hollow fiber membrane contactor to which a membrane module including a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide prepared from the present invention is applied.
  • the present invention provides a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption comprising a perfluorinated alkylsilane coating layer represented by the following formula.
  • n is an integer of 7 to 10
  • R 1 , R 2 and R 3 -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3
  • at least two or more of R 1 to R 3 may be the same as or different from each other as -OCH 3 or -OCH 2 CH 3 )
  • the present invention is a metal oxide material of the hollow fiber membrane to overcome the problem that the porous organic polymer hollow fiber membrane applied to the contact membrane process for absorbing carbon dioxide is deformed due to the swelling phenomenon due to the absorbent liquid and the carbon dioxide absorption rate is drastically reduced.
  • alumina which is a ceramic base.
  • the alumina hollow fiber membrane has hydrophilicity due to the hydroxyl group (-OH) present on the surface, wetting phenomenon occurs when the absorbent fills the pores, and thus, the material transfer through the pores of the membrane is not good, and thus the carbon dioxide absorption rate is also lowered.
  • the FAS is preferably represented by the above formula.
  • n is preferably an integer of 7 to 10, and more preferably n is 7.
  • R 1 , R 2 and R 3 bonded to a silicon atom are preferably at least two or more methoxy groups (-OCH 3 ) or ethoxy groups (-OCH 2 CH 3 ) for smooth coupling reaction with FAS, May be the same or different from each other, and when two of R 1 , R 2 and R 3 are a methoxy group (-OCH 3 ) or an ethoxy group (-OCH 2 CH 3 ), the other is a methyl group (-CH 3 ) or an ethyl group ( -CH 2 CH 3 ) may be used.
  • the perfluoroalkyl silane (FAS) represented by the above formula is more preferably octopyl perfluorooctyl ethyl trimethoxysilane (perfluorooctyl ethyl trimethoxysilane) in consideration of the coupling reactivity on the surface of the alumina and the resulting hydrophobic modification effect, more preferably use.
  • the alumina is preferably the most common alpha-alumina ( ⁇ -Al 2 O 3 ), but gamma-alumina ( ⁇ -Al 2 O 3 ) is known to have a large number of hydroxy groups and a relatively large specific surface area on the surface of the alumina May also be effective when considering pairing reactivity with FAS.
  • the hydrophobic alumina hollow fiber membrane for carbon dioxide absorption according to the present invention has an average pore size of 0.28 to 0.31 ⁇ m, and a porosity of 49.1 to 56.1% is preferred because it can maximize the absorption rate of carbon dioxide.
  • the present invention comprises the steps of I) mixing the alumina particles, polymer binder and dispersant with an organic solvent to obtain a dope solution; II) supplying and discharging the dope solution together with an internal coagulant to a double spinning nozzle to form hollow fibers; III) contacting the hollow fiber with an external coagulant to obtain a hollow fiber membrane by washing, drying and sintering while undergoing a phase transition process; And IV) immersing the sintered hollow fiber membrane in a perfluorinated alkylsilane solution represented by the following formula for 2 to 50 hours at room temperature; and providing a method for producing a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide.
  • n is an integer of 7 to 10
  • R 1 , R 2 and R 3 -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3
  • R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
  • the alumina may be alpha-alumina ( ⁇ -Al 2 O 3 ) or gamma-alumina ( ⁇ -Al 2 O 3 ).
  • the polymer binder serves as a binder of the alumina particles, and may be any one selected from the group consisting of polysulfone, polyether sulfone, polyetherimide, polyamide, and polyacrylonitrile, and polyether sulfone Is preferably used.
  • the dispersant is to improve the dispersibility of the alumina particles in the organic solvent, preferably polyvinylpyrrolidone or polyvinyl alcohol, more preferably polyvinylpyrrolidone.
  • the organic solvent is a solvent capable of dissolving the binder, a polar aprotic solvent-based N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc) And dimethylsulfoxide (DMSO), any one or more selected from the group consisting of, and N-methylpyrrolidone (NMP) is more preferably used.
  • NMP N-methylpyrrolidone
  • the content of the alumina particles in the dope solution is preferably 50 to 60% by weight in consideration of the dispersibility in the dope solution and the ease of film formation in the process of manufacturing the hollow fiber membrane.
  • the use of water as the internal coagulant and the external coagulant can easily obtain a porous membrane having an asymmetric structure by solvent-non-solvent exchange during the process of hollow fiber formation and phase transition.
  • step III the sintering process of step III) as shown in the profile of Figure 2, proceeds while varying the temperature increase rate and isothermal holding time can be sintered at 1300 °C for 4 hours.
  • the surface of the hollow fiber membrane is modified by immersing the sintered hollow fiber membrane in a perfluorinated alkylsilane solution represented by the chemical formula at room temperature for 2 to 150 hours to coat the surface of the hollow fiber membrane.
  • the perfluoroalkyl silane represented by is more preferably octyl perfluorooctyl ethyl trimethoxysilane.
  • the perfluorinated alkylsilane solution represented by the above formula is a perfluoroalkylsilane compound dissolved in an organic solvent such as n-hexane, the concentration is preferably 0.01 mol / L to 0.05 mol / L, perfluorinated If the concentration of the alkylsilane solution is less than 0.01 mol / L, it is difficult to form a coating layer uniformly. If the concentration of the alkyl fluoride solution exceeds 0.05 mol / L, the coating layer may be thickened, and the absorption rate of carbon dioxide may be lowered. It is also not preferable in terms of economics by using a perfluorinated alkylsilane compound.
  • the present invention provides a membrane module comprising a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption surface-modified with the perfluoroalkyl silane represented by the above formula, by applying to the hollow fiber membrane contact device by using such a membrane module It can greatly improve.
  • the hollow fiber was contacted with water, which is an external coagulant, to perform a normal cleaning and drying process while undergoing a phase transition process.
  • the dried film was sintered at 1300 ° C. according to the sintering conditions shown in FIG. 2 using an electric furnace.
  • the sintered film was cut into 100-200 mm lengths and immersed in an octyl perfluoride ethyl trimethoxysilane solution (dissolved in n-hexane at a concentration of 0.02 mol / L) at room temperature for 2 hours to mate. After washing three times with n-hexane to remove the unreacted compound and drying in an oven at 120 ° C. for 24 hours, an alumina hollow fiber membrane surface-modified (coated) with an alkylperfluoride was prepared.
  • the alumina particles contained about 0.1% of impurities such as Na 2 O, SiO 2 , Fe 2 O 3 , and MgO, but were not detected in the X-ray diffraction peaks.
  • ⁇ -Al 2 O 3 structure is shown.
  • the dope solution was prepared using polymer materials such as N-methylpyrrolidone (NMP), polyethersulfone, polyvinylpyrrolidone for spinning the hollow fiber membrane, but the alumina particles were also sintered at 1300 ° C.
  • FIG. 4 shows a scanning electron microscope (SEM) image of the cross section (a) and the membrane wall (b) of the sintered alumina hollow fiber membrane according to the embodiment of the present invention.
  • SEM scanning electron microscope
  • the polyether sulfone used as a binder has a high deposition rate, thereby forming a finger structure, whereas the precipitated polyether sulfone prevents solvent-non-solvent interchange, thereby slowing down the polyether sulfone precipitation in the hollow fiber membrane intermediate layer.
  • FIG. 5 shows infrared spectroscopy (FT-IR) spectra before (no coating) and after (FAS coating) of modifying the surface of the alumina hollow fiber membrane with perfluoroalkylsilane (FAS) according to an embodiment of the present invention.
  • FT-IR infrared spectroscopy
  • the alumina hollow fiber membrane was washed three times with n-hexane in the step of modifying hydrophobicly, and after the process of drying for 24 hours in an oven at 120 ° C., FAS was uniformly coated on the surface.
  • Figure 6 is a scanning electron microscope (SEM) image of the surface (lumen side and shell side) before and after hydrophobic modification of the sintered alumina hollow fiber membrane according to an embodiment of the present invention
  • SEM scanning electron microscope
  • Fig. 7 is a graph showing a change in contact angle with time of modifying (coating) the surface of the alumina hollow fiber membrane sintered from the present invention including the above embodiment with a perfluoroalkyl silane (FAS).
  • FAS perfluoroalkyl silane
  • the coating time for modifying the surface of hydrophobicly is preferably 2 to 50 hours, more preferably 2 to 20 hours.
  • FIG. 8 shows the results of thermogravimetric analysis (TGA) according to the time of modifying (coating) the surface of the alumina hollow fiber membrane sintered from the present invention including the above embodiment with a perfluoroalkylsilane (FAS).
  • TGA thermogravimetric analysis
  • the surface of the sintered alumina hollow fiber membrane is not coated with FAS has almost no change in weight loss even with increasing temperature, compared to the alumina hollow fiber membrane coated with FAS for 2 hours ( Example) All of the coating time was increased up to 150 hours and showed a sharp weight loss after passing about 250 ° C., so that the organic compound FAS was well coated on the surface of the alumina hollow fiber membrane.
  • the weight loss ratio (%) also increases significantly from 2 to 50 hours of coating time, but after 50 hours, it can be seen that the change is not large, which corresponds to the contact angle measurement result of FIG. 7.
  • the minimum break through pressure was measured in order to repeatedly confirm the hydrophobicity characteristics of the surface-modified alumina hollow fiber membrane with FAS prepared from the embodiment of the present invention, and the minimum penetration pressure of the alumina hollow fiber membrane before coating with FAS was measured.
  • This minimum penetration pressure can be represented by the following equation (1) known as the Young-Laplace equation.
  • Is the pore radius of the separator Is the pore radius of the separator.
  • the surface tension has a fixed value, and as shown in FIG. 6, since the pore structure of the hollow fiber membrane is not affected by the FAS, the pore radius is almost the same. Therefore, only the contact angle represented by ⁇ acts as a variable affecting the minimum penetration pressure. As ⁇ increases in the range 0 ° ⁇ ⁇ 180 ° It can be expected to increase the value of, and indirectly confirm that the contact angle is increased by increasing the minimum penetration pressure.
  • the contact angle was measured only on the outer surface of the membrane, but the minimum penetration pressure result showed that the contact angle of the inner surface also increased, and both of them confirmed that hydrophobic surface modification was successful.
  • the minimum penetration pressure increases, the absorption liquid flows into the membrane, and thus the carbon dioxide absorption can be increased because the operation can be performed without wetting even if the liquid pressure is kept higher than the gas during the carbon dioxide absorption experiment. have.
  • a single membrane module was fabricated using the hollow fiber membrane which confirmed the hydrophobic property by measuring the contact angle and the minimum penetration pressure, and the flow rate of the absorbent liquid (distilled water) was 20 to 50 ml / min with the apparatus (see FIG. 9) including the same.
  • Carbon dioxide absorption experiment was carried out while increasing, the results are shown in FIG. It can be seen that the amount of carbon dioxide absorption increases as the flow rate of the absorbent liquid increases, and when the flow rate is 50 ml / min, an absorption amount of up to 1.34 ⁇ 10 ⁇ 3 mol / m 2 ⁇ s was obtained.
  • the overall mass transfer resistance in the contact membrane is expressed as the sum of the gaseous phase, the liquid phase, and the membrane mass transfer resistance as shown in Equation (2) below.
  • the alumina hollow fiber membrane is surface modified by the perfluoroalkyl silane (FAS) coating to show hydrophobicity, so that the gas flow through the pores of the membrane and the resulting material transfer is easy, and as the absorbent flow rate increases
  • FAS perfluoroalkyl silane

Abstract

The present invention relates to a technology for preparing a hydrophobic alumina hollow fiber membrane by modifying a surface of an alumina hollow fiber membrane, obtained by a phase transition method, with fluorinated alkyl silane (FAS). According to the present invention, by surface-modifying an alumina hollow fiber membrane through fluorinated alkyl silane (FAS) coating to allow the alumina hollow fiber membrane to exhibit hydrophobicity, a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption can be provided that facilitates the migration of gas through pores of the membrane and the resultant mass transfer, thereby increasing the flow rate of an absorption liquid, thus remarkably increasing the absorption amount of carbon dioxide; and by applying a membrane module comprising the hydrophobic alumina hollow fiber membrane to a hollow membrane contactor, the absorption rate of carbon dioxide can be greatly improved.

Description

이산화탄소 흡수용 소수성 알루미나 중공사막 및 그 제조방법Hydrophobic Alumina Hollow Fiber Membrane for CO2 Absorption and Manufacturing Method Thereof
본 발명은 이산화탄소 흡수용 소수성 알루미나 중공사막 및 그 제조방법에 관한 것으로, 보다 상세하게는 상전이법으로 얻어진 알루미나 중공사막의 표면을 과불화알킬실란으로 개질하여 소수성 알루미나 중공사막을 제조하고, 이를 이산화탄소의 흡수를 위한 접촉장치에 응용하는 기술에 관한 것이다.The present invention relates to a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption and a method for manufacturing the same, and more particularly, to modify the surface of the alumina hollow fiber membrane obtained by the phase transfer method with perfluoroalkylsilane to prepare a hydrophobic alumina hollow fiber membrane, and The present invention relates to a technique applied to a contact device for absorption.
최근 이산화탄소, 메탄, 아산화질소 또는 프레온 등의 온실가스에 의한 지구온난화현상이 세계적으로 중요한 환경 문제로 대두되고 있다. 상기 온실가스 중에서도 이산화탄소는 대기 중의 농도가 높아 지구온난화현상의 주요한 연구 대상이 되고 있다. 이산화탄소 배출의 약 절반이 석탄발전과 같은 화석연료의 연소 과정에서 발생하는바, 이러한 고정 배출원으로부터 이산화탄소를 포집 및 제거할 수 있는 저에너지-고효율의 기술을 개발하는 연구의 필요성이 증대되고 있다.Recently, global warming caused by greenhouse gases such as carbon dioxide, methane, nitrous oxide or freon has emerged as an important environmental problem worldwide. Among the greenhouse gases, carbon dioxide has a high concentration in the atmosphere and has been a major research subject of global warming. About half of the carbon dioxide emissions come from the combustion of fossil fuels, such as coal-fired power plants, and there is an increasing need for research to develop low-energy-high-efficiency technologies that can capture and remove carbon dioxide from these fixed sources.
일반적으로 습식 아민을 이용한 흡수 공정은 대규모로 이산화탄소를 제거함에 있어서 안정적인 운전이 가능하며 설계가 비교적 쉬워 많은 연구가 진행되어 온 분야이다. 그러나 기존의 충전탑 흡수 공정은 높은 에너지 소비, 비말동반(entrainment), 범람(flooding), 편류(channeling) 및 거품(foaming) 등이 발생하는 문제가 있다(특허문헌 1). In general, the absorption process using a wet amine is a field that can be stably operated and removes carbon dioxide on a large scale and is relatively easy to design, and thus many studies have been conducted. However, the existing packed tower absorption process has a problem of high energy consumption, entrainment, flooding, channeling, and foaming (Patent Document 1).
한편, 근래 연구되고 있는 접촉막 공정에서는 액체와 기체가 분리막을 통하여 접촉하기 때문에 독립적인 운전이 가능하여 기존 흡수 공정에서 발생하는 현상을 해결할 수 있으며 기체 유량을 증가시켜 이산화탄소 흡수 효율을 높일 수 있다. 특히, 중공사 접촉막은 평판형 또는 관형 분리막을 이용한 기술에 비해 단위 부피 당 높은 표면적과 모듈 충진율을 가지기 때문에 효율적인 물질전달이 가능한 것으로 알려져 있다. 상기 접촉막에 사용되는 분리막은 높은 소수성 특성과 기공도, 그리고 낮은 물질전달 저항 및 흡수액으로 사용되는 화학물질에 대한 내성이 필요하다. 이산화탄소 흡수를 위한 접촉막 공정은 대부분 폴리에틸렌, 폴리프로필렌 또는 폴리아미드 등의 고분자로 제조한 다공성막을 적용하여 개발되었으나, 이러한 고분자막은 흡수액으로 인한 팽창현상 때문에 형태가 변형되고 이산화탄소 흡수효율이 급격하게 감소하는 문제점이 지적되고 있다(특허문헌 2).On the other hand, in the contact membrane process that is being studied recently, since the liquid and the gas is contacted through the separation membrane can be independently operated to solve the phenomenon occurring in the existing absorption process and increase the gas flow rate can increase the carbon dioxide absorption efficiency. In particular, the hollow fiber contact membrane has a high surface area per unit volume and the module filling rate compared to the technology using a flat plate or tubular separator is known to enable efficient material transfer. The separator used in the contact membrane requires high hydrophobicity, porosity, low mass transfer resistance, and resistance to chemicals used as an absorbent liquid. Most of the contact membrane process for carbon dioxide absorption was developed by applying a porous membrane made of a polymer such as polyethylene, polypropylene or polyamide, but such a polymer membrane is deformed due to the expansion phenomenon due to the absorbent liquid and the carbon dioxide absorption efficiency is rapidly decreased. A problem is pointed out (patent document 2).
따라서 상기 문제점을 극복하고자 화학적, 열적 안정성이 고분자보다 더 우수한 세라믹 소재의 접촉막 연구가 최근 진행되고 있는바, 대부분의 세라믹 분리막은 금속 산화물을 이용하여 제조하므로 표면에 존재하는 히드록시기(-OH)로 인하여 친수성을 갖는다. 그런데 이러한 친수성의 세라믹 분리막에서는 흡수제가 기공을 채우는 젖음(wetting) 현상이 발생하여 분리막의 기공을 통한 물질전달이 원활하지 않은 단점이 있다(비특허문헌 1).Therefore, in order to overcome the above problems, research on a contact film of a ceramic material having better chemical and thermal stability than a polymer has recently been conducted. Since most ceramic separators are manufactured using a metal oxide, the hydroxy group (-OH) present on the surface is present. Due to it has hydrophilicity. However, the hydrophilic ceramic separator has a disadvantage in that the absorbing agent fills the pores, so that the phenomenon of material transfer through the pores of the separator is not smooth (Non-Patent Document 1).
그러므로 본 발명자는 통상의 상전이법에 의하여 세라믹 소재인 알루미나 중공사막을 제조하고, 그 알루미나 중공사막 표면에 존재하는 히드록시기와 커플링제인 과불화알킬실란 화합물을 반응시켜 소수성으로 개질할 수 있다면, 막의 기공을 통하여 기체가 이동하면서 물질전달을 용이하게 함으로써, 그 소수성 알루미나 중공사막을 이산화탄소 흡수용으로서 중공사막 접촉장치에 응용할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.Therefore, the present inventors prepared alumina hollow fiber membrane made of a ceramic material by a conventional phase-transfer method, and if the hydroxy group and the perfluorinated alkylsilane compound, which is a coupling agent, react on the surface of the alumina hollow fiber membrane to be hydrophobically modified, the pores of the membrane By facilitating material transfer while the gas moves through, the present invention has been completed by contemplating that the hydrophobic alumina hollow fiber membrane can be applied to a hollow fiber membrane contact device for absorbing carbon dioxide.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
특허문헌 1. 한국등록특허 제10-0661489호 Patent Documents 1. Korean Registered Patent No. 10-0661489
특허문헌 2. 한국공개특허 제10-2014-0049702 Patent Document 2. Korea Patent Publication No. 10-2014-0049702
[비특허문헌][Non-Patent Documents]
비특허문헌 1. Sirichai Koonaphapdeelert et al., Chem. Eng. Sci., 64, 1-8(2009)[Non-Patent Document 1] Sirichai Koonaphapdeelert et al ., Chem. Eng. Sc i., 64 , 1-8 (2009)
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 소수성이 향상됨으로써 막의 기공을 통한 기체의 이동 및 그에 따른 물질전달이 용이하여, 흡수액 유량이 증가함에 따라 이산화탄소 흡수량이 현저하게 증가하는 중공사막 접촉장치(membrane contactor)에 용용할 수 있는 이산화탄소 흡수용 소수성 알루미나 중공사막 및 그 제조방법을 제공하고자 하는 것이다.The present invention has been made in view of the above problems, an object of the present invention is to improve the hydrophobicity and to facilitate the movement of gas through the pores of the membrane and the resulting material transfer, carbon dioxide absorption is remarkably increased as the absorbent flow rate increases It is an object of the present invention to provide a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide that can be dissolved in an increasing hollow fiber membrane contactor.
상기한 바와 같은 목적을 달성하기 위한 본 발명은 하기 화학식으로 표시되는 과불화알킬실란 코팅층을 포함하는 이산화탄소 흡수용 소수성 알루미나 중공사막을 제공한다.The present invention for achieving the above object provides a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption comprising a perfluorinated alkylsilane coating layer represented by the following formula.
<화학식><Formula>
Figure PCTKR2016003835-appb-I000001
Figure PCTKR2016003835-appb-I000001
(상기 화학식에서, n은 7 내지 10의 정수이고, R1, R2 및 R3 = -CH3, -CH2CH3, -OCH3 또는 -OCH2CH3이며, R1 내지 R3 중 적어도 둘 이상은 -OCH3 또는 -OCH2CH3로서 서로 동일하거나 상이할 수 있다)Wherein n is an integer of 7 to 10, and R 1 , R 2 and R 3 = -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3 , and R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
상기 화학식으로 표시되는 과불화알킬실란은 과불화옥틸 에틸 트리메톡시실란(perfluorooctyl ethyl trimethoxysilane)인 것을 특징으로 한다.The perfluorinated alkylsilane represented by the above formula is characterized in that octal perfluorooctyl ethyl trimethoxysilane (perfluorooctyl ethyl trimethoxysilane).
상기 이산화탄소 흡수용 소수성 알루미나 중공사막은 기공의 평균 크기가 0.28~0.31 ㎛이고, 기공도는 49.1~56.1%인 것을 특징으로 한다. The hydrophobic alumina hollow fiber membrane for carbon dioxide absorption is characterized in that the pore size is 0.28 ~ 0.31 ㎛, porosity is 49.1 ~ 56.1%.
또한, 본 발명은 I) 알루미나 입자, 고분자 바인더 및 분산제를 유기용매와 혼합하여 도프용액을 얻는 단계; II) 상기 도프용액을 내부응고제와 함께 이중 방사노즐로 공급 및 토출하여 중공사를 형성하는 단계; III) 상기 중공사를 외부응고제와 접촉시켜 상전이 과정을 거치면서 세정, 건조 및 소결시켜 중공사막을 얻는 단계; 및 IV) 상기 소결된 중공사막을 하기 화학식으로 표시되는 과불화알킬실란 용액에 상온에서 2~150 시간 침지시키는 단계;를 포함하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법을 제공한다.In addition, the present invention comprises the steps of I) mixing the alumina particles, polymer binder and dispersant with an organic solvent to obtain a dope solution; II) supplying and discharging the dope solution together with an internal coagulant to a double spinning nozzle to form hollow fibers; III) contacting the hollow fiber with an external coagulant to obtain a hollow fiber membrane by washing, drying and sintering while undergoing a phase transition process; And IV) immersing the sintered hollow fiber membrane in a perfluorinated alkylsilane solution represented by the following formula for 2 to 150 hours at room temperature; and providing a method for producing a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide.
<화학식><Formula>
Figure PCTKR2016003835-appb-I000002
Figure PCTKR2016003835-appb-I000002
(상기 화학식에서, n은 7 내지 10의 정수이고, R1, R2 및 R3 = -CH3, -CH2CH3, -OCH3 또는 -OCH2CH3이며, R1 내지 R3 중 적어도 둘 이상은 -OCH3 또는 -OCH2CH3로서 서로 동일하거나 상이할 수 있다)Wherein n is an integer of 7 to 10, and R 1 , R 2 and R 3 = -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3 , and R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
상기 고분자 바인더는 폴리술폰, 폴리에테르술폰, 폴리에테르이미드, 폴리아미드 및 폴리아크릴로니트릴로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The polymer binder is characterized in that any one selected from the group consisting of polysulfone, polyethersulfone, polyetherimide, polyamide and polyacrylonitrile.
상기 분산제는 폴리비닐피롤리돈 또는 폴리비닐알코올인 것을 특징으로 한다.The dispersant is characterized in that the polyvinylpyrrolidone or polyvinyl alcohol.
상기 유기용매는 N-메틸피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc) 및 디메틸술폭시드(DMSO)로 이루어진 군으로부터 선택된 어느 하나 이상의 것을 특징으로 한다.The organic solvent is at least one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO).
상기 도프용액 내 알루미나 입자의 함량은 50~60 중량%인 것을 특징으로 한다.The content of the alumina particles in the dope solution is characterized in that 50 to 60% by weight.
상기 화학식으로 표시되는 과불화알킬실란은 과불화옥틸 에틸 트리메톡시실란(perfluorooctyl ethyl trimethoxysilane)인 것을 특징으로 한다.The perfluorinated alkylsilane represented by the above formula is characterized in that octal perfluorooctyl ethyl trimethoxysilane (perfluorooctyl ethyl trimethoxysilane).
상기 화학식으로 표시되는 과불화알킬실란 용액은 농도가 0.01 mol/L 내지 0.05 mol/L인 것을 특징으로 한다.The perfluoroalkylsilane solution represented by the above formula is characterized in that the concentration is 0.01 mol / L to 0.05 mol / L.
또한, 본 발명은 상기 이산화탄소 흡수용 소수성 알루미나 중공사막을 포함하는 막 모듈을 제공한다.In addition, the present invention provides a membrane module including the hydrophobic alumina hollow fiber membrane for carbon dioxide absorption.
또한, 본 발명은 상기 막 모듈을 포함하는 중공사막 접촉장치를 제공한다.The present invention also provides a hollow fiber membrane contact device including the membrane module.
본 발명에 따르면, 소수성이 향상됨으로써 막의 기공을 통한 기체의 이동 및 그에 따른 물질전달이 용이하여, 흡수액 유량이 증가함에 따라 이산화탄소 흡수량이 현저하게 증가하는 이산화탄소 흡수용 소수성 알루미나 중공사막을 제공할 수 있고, 이를 포함하는 막 모듈을 이용하여 중공사막 접촉장치에 적용함으로써 이산화탄소 흡수율을 크게 향상시킬 수 있다.According to the present invention, it is possible to provide a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption in which the amount of carbon dioxide absorption is significantly increased as the flow rate of the absorbent liquid is increased due to the improved hydrophobicity, which facilitates the movement of gases through the pores of the membrane and the subsequent material transfer. By applying the membrane module including the hollow fiber membrane contact device, the carbon dioxide absorption can be greatly improved.
도 1은 본 발명에 따라 알루미나 중공사막 표면의 히드록시기와 과불화알킬실란이 커플링 반응에 의하여 알루미나 중공사막 표면이 소수성으로 개질되는 것을 나타낸 개념도.1 is a conceptual view showing that the surface of the alumina hollow fiber membrane is hydrophobically modified by the coupling reaction between the hydroxyl group and the perfluoroalkylsilane on the surface of the alumina hollow fiber membrane according to the present invention.
도 2는 본 발명에 따른 알루미나 중공사막의 소결 과정 프로파일.Figure 2 is a sintering process profile of the alumina hollow fiber membrane according to the present invention.
도 3은 본 발명의 실시예에 따른 알루미나 입자(a) 및 1300℃에서 소결한 후 알루미나 중공사막(b)의 X-선 회절 특성을 나타낸 그래프.Figure 3 is a graph showing the X-ray diffraction characteristics of the alumina particles (a) and the alumina hollow fiber membrane (b) after sintering at 1300 ℃ according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따라 소결된 알루미나 중공사막의 단면(a) 및 막벽(b)을 촬영한 주사전자현미경(SEM) 이미지.4 is a scanning electron microscope (SEM) image of the cross section (a) and the membrane wall (b) of the sintered alumina hollow fiber membrane according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따라 과불화알킬실란(FAS)으로 알루미나 중공사막의 표면을 개질하기 전(No coating)과 후(FAS coating)의 적외선분광광도(FT-IR) 스펙트럼.5 is an infrared spectroscopy (FT-IR) spectrum before (No coating) and after (FAS coating) modifying the surface of an alumina hollow fiber membrane with perfluoroalkylsilane (FAS) according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 소결된 알루미나 중공사막의 소수성 개질 전과 후 안쪽(lumen side) 및 바깥쪽(shell side)의 표면을 촬영한 주사전자현미경(SEM) 이미지[(a) 개질 전 안쪽, (b) 개질 전 바깥쪽, (c) 개질 후 안쪽, (d) 개질 후 바깥쪽].6 is a scanning electron microscope (SEM) image of the surface of the lumen side and the shell side before and after hydrophobic modification of the sintered alumina hollow fiber membrane according to the embodiment of the present invention [(a) before modification Inside, (b) outside before reforming, (c) inside after reforming, (d) outside after reforming].
도 7은 실시예를 포함하여 본 발명으로부터 소결된 알루미나 중공사막의 표면을 과불화알킬실란(FAS)으로 개질(코팅)하는 시간에 따른 접촉각의 변화를 나타낸 그래프.FIG. 7 is a graph showing a change in contact angle over time of modifying (coating) the surface of an alumina hollow fiber membrane sintered from the present invention including an example with a perfluoroalkylsilane (FAS).
도 8은 실시예를 포함하여 본 발명으로부터 소결된 알루미나 중공사막의 표면을 과불화알킬실란(FAS)으로 개질(코팅)하는 시간에 따른 열중량분석(TGA) 결과를 나타낸 그래프.8 is a graph showing the results of thermogravimetric analysis (TGA) over time of modifying (coating) the surface of the alumina hollow fiber membrane sintered from the present invention, including the examples, with alkyl fluoride (FAS).
도 9는 본 발명으로부터 제조되는 이산화탄소 흡수용 소수성 알루미나 중공사막을 포함하는 막 모듈이 적용된 중공사막 접촉장치(hollow fiber membrane contactor)의 개요도.9 is a schematic diagram of a hollow fiber membrane contactor to which a membrane module including a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide prepared from the present invention is applied.
도 10은 흡수액(증류수)의 유량 증가에 따른 이산화탄소의 흡수량 변화를 나타낸 그래프.10 is a graph showing the change in absorption amount of carbon dioxide with increasing flow rate of the absorbent liquid (distilled water).
이하에서는 본 발명에 따른 과불화알킬실란 코팅층을 포함하는 이산화탄소 흡수용 소수성 알루미나 중공사막 및 그 제조방법에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide including a perfluoroalkylsilane coating layer according to the present invention and a method of manufacturing the same will be described in detail with the accompanying drawings.
본 발명은 하기 화학식으로 표시되는 과불화알킬실란 코팅층을 포함하는 이산화탄소 흡수용 소수성 알루미나 중공사막을 제공한다.The present invention provides a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption comprising a perfluorinated alkylsilane coating layer represented by the following formula.
<화학식><Formula>
Figure PCTKR2016003835-appb-I000003
Figure PCTKR2016003835-appb-I000003
(상기 화학식에서, n은 7 내지 10의 정수이고, R1, R2 및 R3 = -CH3, -CH2CH3, -OCH3 또는 -OCH2CH3이며, R1 내지 R3 중 적어도 둘 이상은 -OCH3 또는 -OCH2CH3로서 서로 동일하거나 상이할 수 있다)(In the above formula, n is an integer of 7 to 10, R 1 , R 2 and R 3 = -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3 , at least two or more of R 1 to R 3 may be the same as or different from each other as -OCH 3 or -OCH 2 CH 3 )
본 발명은 종래 이산화탄소 흡수를 위한 접촉막 공정에 적용되는 다공성 유기 고분자 중공사막이 흡수액으로 인한 팽창(swelling)현상 때문에 형태가 변형되어 이산화탄소 흡수율이 급격히 감소하는 문제를 극복하고자 중공사막의 소재를 금속산화물 기반의 세라믹인 알루미나로 정하였다. 그러나 알루미나 중공사막은 표면에 존재하는 히드록시기(-OH)로 인하여 친수성을 갖기 때문에, 흡수제가 기공을 채우는 젖음(wetting) 현상이 발생하여 막의 기공을 통한 물질전달이 원활하지 않아 역시 이산화탄소 흡수율이 떨어지는 단점이 있으므로, 이를 해결하고자 친수성인 알루미나 중공사막의 표면을 소수성으로 개질하여 이산화탄소 흡수율을 향상시키는 것을 기술적 사상으로 한다.The present invention is a metal oxide material of the hollow fiber membrane to overcome the problem that the porous organic polymer hollow fiber membrane applied to the contact membrane process for absorbing carbon dioxide is deformed due to the swelling phenomenon due to the absorbent liquid and the carbon dioxide absorption rate is drastically reduced. Based on alumina, which is a ceramic base. However, since the alumina hollow fiber membrane has hydrophilicity due to the hydroxyl group (-OH) present on the surface, wetting phenomenon occurs when the absorbent fills the pores, and thus, the material transfer through the pores of the membrane is not good, and thus the carbon dioxide absorption rate is also lowered. In order to solve this problem, it is a technical idea to improve the carbon dioxide absorption rate by modifying the surface of the hydrophilic alumina hollow fiber membrane with hydrophobicity.
즉, 도 1에 나타낸 바와 같이 원래 알루미나 중공사막의 표면에는 히드록시기(-OH)가 존재하기 때문에 친수성을 갖는다. 그런데 그 알루미나 중공사막을 커플링제인 과불화알킬실란(perfluoroalkylsilane, FAS)과 반응시키는 경우, FAS 말단의 메틸기(-CH3)에서 수소이온(H)이 알루미나 중공사막 표면의 히드록시기(-OH)와 반응하여 물(H2O)을 내놓는 짝지음 반응(coupling reaction)을 통하여 화학적으로 결합한다. 따라서 FAS의 반대쪽 말단인 탄소사슬이 중공사막 표면으로 나와 친수성기인 히드록시기(-OH)를 가리면서 소수성을 갖게 되는 것이다.That is, as shown in FIG. 1, since a hydroxyl group (-OH) exists on the surface of an alumina hollow fiber membrane originally, it has hydrophilicity. When the alumina hollow fiber membrane is reacted with a perfluoroalkylsilane (FAS), which is a coupling agent, hydrogen ions (H + ) in the methyl group (-CH 3 ) at the end of the FAS are hydroxy group (-OH) on the surface of the alumina hollow fiber membrane. It reacts with and combines chemically through a coupling reaction to give water (H 2 O). Therefore, the carbon chain, which is the other end of the FAS, comes out to the surface of the hollow fiber membrane and becomes hydrophobic while covering the hydroxy group (-OH), which is a hydrophilic group.
특히, FAS 중에서도 상기 화학식으로 표시되는 것이 바람직한바, 상기 화학식에서 충분한 소수성을 부여하기 위하여 n은 7 내지 10의 정수가 바람직하고, n이 7이면 더욱 바람직하다. 게다가 실리콘 원자에 결합된 R1, R2 및 R3는 FAS와의 원활한 짝지음 반응을 위하여 적어도 둘 이상은 메톡시기(-OCH3)또는 에톡시기(-OCH2CH3)인 것이 바람직하고, 이들은 서로 동일하거나 상이할 수 있으며, R1, R2 및 R3중 둘이 메톡시기(-OCH3) 또는 에톡시기(-OCH2CH3)인 경우, 나머지 하나는 메틸기(-CH3) 또는 에틸기(-CH2CH3)라도 좋다.In particular, the FAS is preferably represented by the above formula. In order to impart sufficient hydrophobicity in the above formula, n is preferably an integer of 7 to 10, and more preferably n is 7. Furthermore, R 1 , R 2 and R 3 bonded to a silicon atom are preferably at least two or more methoxy groups (-OCH 3 ) or ethoxy groups (-OCH 2 CH 3 ) for smooth coupling reaction with FAS, May be the same or different from each other, and when two of R 1 , R 2 and R 3 are a methoxy group (-OCH 3 ) or an ethoxy group (-OCH 2 CH 3 ), the other is a methyl group (-CH 3 ) or an ethyl group ( -CH 2 CH 3 ) may be used.
또한, 상기 화학식으로 표시되는 과불화알킬실란(FAS)로서는 과불화옥틸 에틸 트리메톡시실란(perfluorooctyl ethyl trimethoxysilane)인 것이 알루미나 표면에서의 짝지음 반응성 및 그에 따른 소수성 개질 효과를 고려하면, 더욱 바람직하게 사용한다. In addition, the perfluoroalkyl silane (FAS) represented by the above formula is more preferably octopyl perfluorooctyl ethyl trimethoxysilane (perfluorooctyl ethyl trimethoxysilane) in consideration of the coupling reactivity on the surface of the alumina and the resulting hydrophobic modification effect, more preferably use.
또한, 상기 알루미나는 가장 일반적인 알파-알루미나(α-Al2O3)를 바람직하게 사용하지만, 알루미나 표면에 히드록시기의 수가 많고 상대적으로 비표면적이 큰 것으로 알려진 감마-알루미나(γ-Al2O3)를 사용하여도 FAS와의 짝지음 반응성을 고려할 때 효과적일 수 있다.In addition, the alumina is preferably the most common alpha-alumina (α-Al 2 O 3 ), but gamma-alumina (γ-Al 2 O 3 ) is known to have a large number of hydroxy groups and a relatively large specific surface area on the surface of the alumina May also be effective when considering pairing reactivity with FAS.
아울러 본 발명에 따른 이산화탄소 흡수용 소수성 알루미나 중공사막은 기공의 평균 크기가 0.28~0.31 ㎛이고, 기공도는 49.1~56.1%인 것이 이산화탄소의 흡수율을 최대로 할 수 있어 바람직하다.In addition, the hydrophobic alumina hollow fiber membrane for carbon dioxide absorption according to the present invention has an average pore size of 0.28 to 0.31 μm, and a porosity of 49.1 to 56.1% is preferred because it can maximize the absorption rate of carbon dioxide.
또한, 본 발명은 I) 알루미나 입자, 고분자 바인더 및 분산제를 유기용매와 혼합하여 도프용액을 얻는 단계; II) 상기 도프용액을 내부응고제와 함께 이중 방사노즐로 공급 및 토출하여 중공사를 형성하는 단계; III) 상기 중공사를 외부응고제와 접촉시켜 상전이 과정을 거치면서 세정, 건조 및 소결시켜 중공사막을 얻는 단계; 및 IV) 상기 소결된 중공사막을 하기 화학식으로 표시되는 과불화알킬실란 용액에 상온에서 2~50 시간 침지시키는 단계;를 포함하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법을 제공한다.In addition, the present invention comprises the steps of I) mixing the alumina particles, polymer binder and dispersant with an organic solvent to obtain a dope solution; II) supplying and discharging the dope solution together with an internal coagulant to a double spinning nozzle to form hollow fibers; III) contacting the hollow fiber with an external coagulant to obtain a hollow fiber membrane by washing, drying and sintering while undergoing a phase transition process; And IV) immersing the sintered hollow fiber membrane in a perfluorinated alkylsilane solution represented by the following formula for 2 to 50 hours at room temperature; and providing a method for producing a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide.
<화학식><Formula>
Figure PCTKR2016003835-appb-I000004
Figure PCTKR2016003835-appb-I000004
(상기 화학식에서, n은 7 내지 10의 정수이고, R1, R2 및 R3 = -CH3, -CH2CH3, -OCH3 또는 -OCH2CH3이며, R1 내지 R3 중 적어도 둘 이상은 -OCH3 또는 -OCH2CH3로서 서로 동일하거나 상이할 수 있다)Wherein n is an integer of 7 to 10, and R 1 , R 2 and R 3 = -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3 , and R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
먼저, 상술한 바와 같이 상기 알루미나는 알파-알루미나(α-Al2O3) 또는 감마-알루미나(γ-Al2O3)일 수 있다.First, as described above, the alumina may be alpha-alumina (α-Al 2 O 3 ) or gamma-alumina (γ-Al 2 O 3 ).
또한, 상기 고분자 바인더는 알루미나 입자의 결합제 역할을 수행하는 것으로, 폴리술폰, 폴리에테르술폰, 폴리에테르이미드, 폴리아미드 및 폴리아크릴로니트릴로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으며, 폴리에테르술폰을 바람직하게 사용한다.In addition, the polymer binder serves as a binder of the alumina particles, and may be any one selected from the group consisting of polysulfone, polyether sulfone, polyetherimide, polyamide, and polyacrylonitrile, and polyether sulfone Is preferably used.
또한, 상기 분산제는 유기용매에서 알루미나 입자의 분산성을 향상시키기 위한 것으로, 폴리비닐피롤리돈 또는 폴리비닐알코올을 바람직하게 사용하며, 폴리비닐피롤리돈을 더욱 바람직하게 사용한다.In addition, the dispersant is to improve the dispersibility of the alumina particles in the organic solvent, preferably polyvinylpyrrolidone or polyvinyl alcohol, more preferably polyvinylpyrrolidone.
또한, 상기 유기용매는 상기 바인더를 용해시킬 수 있는 것으로서, 극성 비양성자성 용매(polar aprotic solvent) 계열의 N-메틸피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc) 및 디메틸술폭시드(DMSO)로 이루어진 군으로부터 선택된 어느 하나 이상의 것을 사용할 수 있고, N-메틸피롤리돈(NMP)을 더욱 바람직하게 사용한다.In addition, the organic solvent is a solvent capable of dissolving the binder, a polar aprotic solvent-based N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc) And dimethylsulfoxide (DMSO), any one or more selected from the group consisting of, and N-methylpyrrolidone (NMP) is more preferably used.
또한, 상기 도프용액 내 알루미나 입자의 함량은 50~60 중량%인 것이 도프용액 내에서 분산성 및 중공사막을 제조하는 과정에서 제막의 용이성을 고려하면 바람직하다.In addition, the content of the alumina particles in the dope solution is preferably 50 to 60% by weight in consideration of the dispersibility in the dope solution and the ease of film formation in the process of manufacturing the hollow fiber membrane.
또한, 상기 내부응고제 및 외부응고제로서는 물을 사용하는 것이 중공사 형성 및 상전이 과정을 거치는 동안 용매-비용매의 상호교환에 의하여 비대칭 구조의 다공성막을 용이하게 얻을 수 있다.In addition, the use of water as the internal coagulant and the external coagulant can easily obtain a porous membrane having an asymmetric structure by solvent-non-solvent exchange during the process of hollow fiber formation and phase transition.
한편, 상기 III) 단계의 소결과정은 도 2의 프로파일에 그 일례를 나타낸 바와 같이, 승온 속도 및 등온 상태 유지시간을 달리하면서 진행하여 1300℃에서 4시간 동안 소결할 수 있다.On the other hand, the sintering process of step III) as shown in the profile of Figure 2, proceeds while varying the temperature increase rate and isothermal holding time can be sintered at 1300 ℃ for 4 hours.
아울러 상기 IV) 단계에서는 소결된 중공사막을 상기 화학식으로 표시되는 과불화알킬실란 용액에 상온에서 2~150 시간 침지하여 중공사막의 표면을 코팅함으로써 그 표면을 개질하는바, 상술한 바와 같이 상기 화학식으로 표시되는 과불화알킬실란은 과불화옥틸 에틸 트리메톡시실란(perfluorooctyl ethyl trimethoxysilane)인 것이 더욱 바람직하다.In addition, in step IV), the surface of the hollow fiber membrane is modified by immersing the sintered hollow fiber membrane in a perfluorinated alkylsilane solution represented by the chemical formula at room temperature for 2 to 150 hours to coat the surface of the hollow fiber membrane. The perfluoroalkyl silane represented by is more preferably octyl perfluorooctyl ethyl trimethoxysilane.
이때, 상기 화학식으로 표시되는 과불화알킬실란 용액은 n-헥산과 같은 유기용매에 과불화알킬실란 화합물을 용해시킨 것으로, 그 농도가 0.01 mol/L 내지 0.05 mol/L인 것이 바람직한데, 과불화알킬실란 용액의 농도가 0.01 mol/L 미만이면 코팅층이 균일하게 형성되기 어렵고, 과불화알킬실란 용액의 농도가 0.05 mol/L를 초과하면 코팅층이 두꺼워져 이산화탄소의 흡수율이 떨어질 수 있을 뿐만 아니라, 과량의 과불화알킬실란 화합물을 사용함에 따른 경제성 측면에서도 바람직하지 않다.At this time, the perfluorinated alkylsilane solution represented by the above formula is a perfluoroalkylsilane compound dissolved in an organic solvent such as n-hexane, the concentration is preferably 0.01 mol / L to 0.05 mol / L, perfluorinated If the concentration of the alkylsilane solution is less than 0.01 mol / L, it is difficult to form a coating layer uniformly. If the concentration of the alkyl fluoride solution exceeds 0.05 mol / L, the coating layer may be thickened, and the absorption rate of carbon dioxide may be lowered. It is also not preferable in terms of economics by using a perfluorinated alkylsilane compound.
또한, 본 발명에서는 상기 화학식으로 표시되는 과불화알킬실란으로 표면 개질된 이산화탄소 흡수용 소수성 알루미나 중공사막을 포함하는 막 모듈을 제공하며, 이러한 막 모듈을 이용하여 중공사막 접촉장치에 적용함으로써 이산화탄소 흡수율을 크게 향상시킬 수 있다.In addition, the present invention provides a membrane module comprising a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption surface-modified with the perfluoroalkyl silane represented by the above formula, by applying to the hollow fiber membrane contact device by using such a membrane module It can greatly improve.
이하 구체적인 실시예를 첨부된 도면과 함께 상세히 설명한다.Hereinafter, specific embodiments will be described in detail with reference to the accompanying drawings.
(실시예) FAS로 표면 개질(코팅)된 알루미나 중공사막의 제조EXAMPLES Preparation of Alumina Hollow Fiber Membrane Surface Modified (Coated) with FAS
알파-알루미나(α-Al2O3) 입자 60 중량%, 폴리에테르술폰 6 중량% 및 폴리비닐피롤리돈 0.5 중량%를 N-메틸피롤리돈(NMP) 33.5 중량%와 혼합하여 도프용액을 얻었다. 상기 도프용액을 스테인레스 재질의 저장조로 옮기고 1시간 동안 진공상태로 도프용액을 얻는 과정에서 발생한 기포를 완전히 제거하였다. 기어펌프를 통하여 도프용액을 이중 방사노즐로 공급하였고, 그 도프용액을 이중 방사노즐의 바깥쪽 노즐을 통해서 토출하였으며, 이중 방사노즐의 안쪽으로는 내부응고제인 물을 시린지(syringe) 펌프를 통하여 공급시킴으로써 내부응고제와 도프용액 간의 상전이가 시작되어 중공사를 형성하였다. 상기 중공사를 외부응고제인 물과 접촉시켜 상전이 과정을 거치면서 통상의 세정, 건조과정을 수행하였다. 이어서 상기 건조된 막을 전기로를 이용하여 도 2에 나타낸 소결조건에 따라 1300℃에서 소결 하였다. 마지막으로, 상기 소결된 막을 100~200 mm 길이로 절단하여 과불화옥틸 에틸 트리메톡시실란 용액(n-헥산에 0.02 mol/L 농도로 용해시킨 것)에 상온에서 2시간 동안 침지시켜 짝지음 반응시킨 후, n-헥산으로 3회 세척하여 미반응 화합물을 제거하고 120℃ 오븐에서 24시간 동안 건조시킴으로써 과불화알킬실란으로 표면 개질(코팅)된 알루미나 중공사막을 제조하였다.60% by weight of alpha-alumina (α-Al 2 O 3 ) particles, 6% by weight of polyethersulfone and 0.5% by weight of polyvinylpyrrolidone were mixed with 33.5% by weight of N-methylpyrrolidone (NMP) to dope the solution. Got it. The dope solution was transferred to a stainless steel storage tank, and the bubbles generated in the process of obtaining the dope solution under vacuum for 1 hour were completely removed. The dope solution was supplied to the double spinning nozzle through the gear pump, and the dope solution was discharged through the outer nozzle of the double spinning nozzle, and the water, an internal coagulant, was supplied to the inside of the double spinning nozzle through the syringe pump. This initiated a phase transition between the internal coagulant and the dope solution to form hollow fibers. The hollow fiber was contacted with water, which is an external coagulant, to perform a normal cleaning and drying process while undergoing a phase transition process. Subsequently, the dried film was sintered at 1300 ° C. according to the sintering conditions shown in FIG. 2 using an electric furnace. Finally, the sintered film was cut into 100-200 mm lengths and immersed in an octyl perfluoride ethyl trimethoxysilane solution (dissolved in n-hexane at a concentration of 0.02 mol / L) at room temperature for 2 hours to mate. After washing three times with n-hexane to remove the unreacted compound and drying in an oven at 120 ° C. for 24 hours, an alumina hollow fiber membrane surface-modified (coated) with an alkylperfluoride was prepared.
도 3에는 본 발명의 실시예에 따른 알루미나 입자(a) 및 1300℃에서 소결한 후 알루미나 중공사막(b)의 X-선 회절 특성을 나타내었다. 도 3에서 보는 바와 같이, 알루미나 입자의 경우 Na2O, SiO2, Fe2O3, MgO 등의 불순물이 약 0.1% 포함되어 있었으나 X-선 회절 피크에는 검출되지 않았으며 단일상의 알파-알루미나(α-Al2O3) 구조를 보였다. 또한, 중공사막의 방사를 위하여 N-메틸피롤리돈(NMP), 폴리에테르술폰, 폴리비닐피롤리돈 등의 고분자 물질을 이용하여 도프용액을 제조하였으나 1300 ℃에서 소결한 분리막의 경우에도 알루미나 입자와 동일하게 알파-알루미나(α-Al2O3) 피크를 얻을 수 있었다. 이를 통해 소결 온도인 1300 ℃ 이하에서 이러한 고분자가 분해되어 모두 제거되었고, 고온 분해 시 생성되는 물질과 알루미나가 반응하여 불순물이 생성되지 않는 것을 알 수 있었다. 또한 중공사막은 아게이트 몰탈(agate mortar)을 이용하여 분쇄하여 분말 형태로 분석하였기 때문에 한번의 X-선 회절 측정을 통해 분리막의 안쪽과 바깥쪽 모두 불순물이 없는 순수한 알파-알루미나(α-Al2O3)의 구조를 갖는 것을 확인할 수 있었다.3 shows X-ray diffraction characteristics of the alumina particles (a) and the alumina hollow fiber membrane (b) after sintering at 1300 ° C. according to an embodiment of the present invention. As shown in FIG. 3, the alumina particles contained about 0.1% of impurities such as Na 2 O, SiO 2 , Fe 2 O 3 , and MgO, but were not detected in the X-ray diffraction peaks. α-Al 2 O 3 ) structure is shown. In addition, the dope solution was prepared using polymer materials such as N-methylpyrrolidone (NMP), polyethersulfone, polyvinylpyrrolidone for spinning the hollow fiber membrane, but the alumina particles were also sintered at 1300 ° C. In the same manner as in the alpha-alumina (α-Al 2 O 3 ) peak was obtained. Through this, all of these polymers were decomposed and removed at a sintering temperature of 1300 ° C. or less, and it was found that impurities generated by alumina reacting with a material produced at high temperature decomposition. Also, since the hollow fiber membranes were pulverized using agate mortar and analyzed in powder form, pure alpha-alumina (α-Al 2 O) containing no impurities inside and outside of the separator was measured by one X-ray diffraction measurement. It confirmed that it has a structure of 3 ).
또한, 도 4에는 본 발명의 실시예에 따라 소결된 알루미나 중공사막의 단면(a) 및 막벽(b)을 촬영한 주사전자현미경(SEM) 이미지를 나타내었다. 도 4에서 보는 바와 같이, 소결 후의 알루미나 중공사막은 내부와 외부 표면 근처에 손가락 구조(finger-like)층이 있으며 그 사이에 스폰지 구조가 존재하는 비대칭 구조임을 확인할 수 있었다. 이와 같은 구조는 상전이 과정에서 도프용액의 용매와 응고제로 사용한 물의 상호교환에 의해 생성된 것이다. 표면 근처에서는 바인더로 사용한 폴리에테르술폰의 석출 속도가 빠르기 때문에 손가락 구조를 형성하는 반면, 석출된 폴리에테르술폰이 용매-비용매 상호교환을 방해하여 중공사막 중간층에서 폴리에테르술폰 석출 속도를 늦춰서 스폰지 구조를 형성한다.4 shows a scanning electron microscope (SEM) image of the cross section (a) and the membrane wall (b) of the sintered alumina hollow fiber membrane according to the embodiment of the present invention. As shown in FIG. 4, the alumina hollow fiber membrane after sintering has a finger-like layer near the inner and outer surfaces, and it can be confirmed that the asymmetric structure has a sponge structure therebetween. Such a structure is produced by the interchange of water used as a coagulant and a solvent of the dope solution during the phase transition process. In the vicinity of the surface, the polyether sulfone used as a binder has a high deposition rate, thereby forming a finger structure, whereas the precipitated polyether sulfone prevents solvent-non-solvent interchange, thereby slowing down the polyether sulfone precipitation in the hollow fiber membrane intermediate layer. To form.
또한, 도 5에는 본 발명의 실시예에 따라 과불화알킬실란(FAS)으로 알루미나 중공사막의 표면을 개질하기 전(No coating)과 후(FAS coating)의 적외선분광광도(FT-IR) 스펙트럼을 나타내었다. 도 5에서 보는 바와 같이, FAS 코팅 후에 약 772~820 cm-1 범위에서 코팅 전에 발견되지 않았던 피크가 나타났는바, 이는 유기 실란 화합물(organosilane compounds)에서 Si-C 간의 결합에 의해 발생하는 것으로 확인되었다. 이를 통해 알루미나 중공사막을 소수성으로 개질하는 단계에서 n-헥산을 이용하여 3회 세척하고 120℃ 오븐에서 24시간 동안 건조하는 과정을 거친 후에도 FAS가 표면에 균일하게 코팅되어 존재하는 것을 알 수 있었다.In addition, FIG. 5 shows infrared spectroscopy (FT-IR) spectra before (no coating) and after (FAS coating) of modifying the surface of the alumina hollow fiber membrane with perfluoroalkylsilane (FAS) according to an embodiment of the present invention. Indicated. As shown in Figure 5, after the FAS coating peaks that were not found before coating in the range of about 772 ~ 820 cm -1 appeared to be caused by the bonding between Si-C in the organosilane compounds (organosilane compounds) It became. Through this, the alumina hollow fiber membrane was washed three times with n-hexane in the step of modifying hydrophobicly, and after the process of drying for 24 hours in an oven at 120 ° C., FAS was uniformly coated on the surface.
또한, 도 6에는 본 발명의 실시예에 따라 소결된 알루미나 중공사막의 소수성 개질 전과 후 안쪽(lumen side) 및 바깥쪽(shell side)의 표면을 촬영한 주사전자현미경(SEM) 이미지[(a) 개질 전 안쪽, (b) 개질 전 바깥쪽, (c) 개질 후 안쪽, (d) 개질 후 바깥쪽]를 나타내었다. 도 6(a) 및 (b)는 각각 소결된 알루미나 중공사막(소수성 개질 전)의 안쪽(lumen side)과 바깥쪽(shell side) 표면의 형상으로써 기공의 크기나 분포가 비슷한 것을 볼 수 있었다. 이 기공은 안쪽과 바깥쪽이 연결되어 있는 개방기공(open pore) 형태이며, 기체의 투과가 가능한 것으로 확인되었다. 그리고도 6(a)와 (c), 및 (b)와 (d)를 비교해보면, 소수성으로 개질 한 후 분리막 표면의 기공 구조는 거의 변화가 없음을 알 수 있다. 따라서 FAS 코팅에 의하여 소수성으로 개질된 후에도 표면 기공도에 큰 영향을 주지는 않으면서 기공을 막지 않아 기체의 이동에 문제가 없음을 확인할 수 있었다.In addition, Figure 6 is a scanning electron microscope (SEM) image of the surface (lumen side and shell side) before and after hydrophobic modification of the sintered alumina hollow fiber membrane according to an embodiment of the present invention [(a) Inside before modification, (b) outside before modification, (c) inside after modification, and (d) outside after modification. 6 (a) and 6 (b) show the shape of the lumen side and shell side surfaces of the sintered alumina hollow fiber membranes (before hydrophobization modification), respectively, showing similar pore sizes and distributions. These pores are open pores that connect the inside and the outside, and it has been confirmed that gas can be permeated. 6 (a) and (c), and (b) and (d), it can be seen that the pore structure of the surface of the separator is almost unchanged after the modification to hydrophobicity. Therefore, even after the hydrophobically modified by the FAS coating, it was confirmed that there is no problem in gas movement because the pores are not blocked without significantly affecting the surface porosity.
또한, 도 7에는 상기 실시예를 포함하여 본 발명으로부터 소결된 알루미나 중공사막의 표면을 과불화알킬실란(FAS)으로 개질(코팅)하는 시간에 따른 접촉각의 변화를 그래프로 나타내었는바, 도 7에서 보는 바와 같이, FAS로 2시간 동안 코팅한 알루미나 중공사막(실시예)은 접촉각이 119.7°로써 그 표면이 소수성으로 잘 개질된 것을 확인할 수 있다. 게다가 코팅 시간을 150시간까지 증가시키면서 코팅 과정을 수행하였을 때 전반적으로 접촉각이 증가하는 것을 알 수 있으나, 코팅 시간이 50시간을 초과한 이후에는 접촉각의 증가폭에 큰 변화가 없어, 소결된 알루미나 중공사막의 표면을 소수성으로 개질하기 위한 코팅 시간은 2~50시간이면 충분하고, 2~20시간이 더욱 바람직하다.In addition, Fig. 7 is a graph showing a change in contact angle with time of modifying (coating) the surface of the alumina hollow fiber membrane sintered from the present invention including the above embodiment with a perfluoroalkyl silane (FAS). As can be seen, the alumina hollow fiber membrane (Example) coated with FAS for 2 hours can be confirmed that the contact angle is 119.7 °, the surface is hydrophobically well modified. In addition, when the coating process was carried out while increasing the coating time to 150 hours, the overall contact angle increased, but after the coating time exceeded 50 hours, there was no significant change in the increase in the contact angle, and thus the sintered alumina hollow fiber membrane The coating time for modifying the surface of hydrophobicly is preferably 2 to 50 hours, more preferably 2 to 20 hours.
또한, 도 8에는 상기 실시예를 포함하여 본 발명으로부터 소결된 알루미나 중공사막의 표면을 과불화알킬실란(FAS)으로 개질(코팅)하는 시간에 따른 열중량분석(TGA) 결과를 나타내었다. 도 8에서 보는 바와 같이, 소결된 알루미나 중공사막의 표면을 FAS로 코팅하지 않은 것은 온도가 증가하여도 중량감소(weight loss)에 거의 변화가 없는데 비하여, FAS로 2시간 동안 코팅한 알루미나 중공사막(실시예)을 비롯하여 코팅 시간을 150시간 까지 증가시킨 것들 모두가 약 250℃를 지나면서 급격한 중량감소를 보이므로, 알루미나 중공사막 표면에 유기화합물인 FAS가 잘 코팅되었음을 확인할 수 있다. 게다가 그 중량감소 비율(%)도 코팅 시간이 2~50 시간에서 큰 폭으로 증가하다가 50 시간 이후에는 변화가 크지 않은 것으로 보아 도 7의 접촉각 측정 결과와도 상응하는 것을 알 수 있다.In addition, FIG. 8 shows the results of thermogravimetric analysis (TGA) according to the time of modifying (coating) the surface of the alumina hollow fiber membrane sintered from the present invention including the above embodiment with a perfluoroalkylsilane (FAS). As shown in Figure 8, the surface of the sintered alumina hollow fiber membrane is not coated with FAS has almost no change in weight loss even with increasing temperature, compared to the alumina hollow fiber membrane coated with FAS for 2 hours ( Example) All of the coating time was increased up to 150 hours and showed a sharp weight loss after passing about 250 ° C., so that the organic compound FAS was well coated on the surface of the alumina hollow fiber membrane. In addition, the weight loss ratio (%) also increases significantly from 2 to 50 hours of coating time, but after 50 hours, it can be seen that the change is not large, which corresponds to the contact angle measurement result of FIG. 7.
또한, 본 발명의 실시예로부터 제조된 FAS로 표면 개질된 알루미나 중공사막의 소수성 특성을 거듭 확인하기 위하여 최소 침투 압력(break through pressure)을 측정하였는바, FAS로 코팅 전 알루미나 중공사막의 최소 침투 압력은 1.07 bar로 거의 대기압과 비슷한 수준이었으나, 실시예의 경우에는 4.46 bar까지 증가하였다. 이와 같은 최소 침투 압력은 영-라플라스 방정식(Young-Laplace equation)으로 알려져 있는 하기 식(1)로 나타낼 수 있다.In addition, the minimum break through pressure was measured in order to repeatedly confirm the hydrophobicity characteristics of the surface-modified alumina hollow fiber membrane with FAS prepared from the embodiment of the present invention, and the minimum penetration pressure of the alumina hollow fiber membrane before coating with FAS was measured. Was 1.07 bar, which was about the same as atmospheric pressure, but increased to 4.46 bar in the examples. This minimum penetration pressure can be represented by the following equation (1) known as the Young-Laplace equation.
Figure PCTKR2016003835-appb-I000005
(1)
Figure PCTKR2016003835-appb-I000005
(One)
상기 식(1)에서,
Figure PCTKR2016003835-appb-I000006
는 흡수액의 표면장력이고,
Figure PCTKR2016003835-appb-I000007
은 분리막의 기공 반경이다. 본 발명에서는 흡수액으로 증류수를 사용하였기 때문에 표면장력은 고정된 값을 가지며, 도 6에서 확인한 것처럼 FAS로 코팅 전과 후 중공사막의 기공 구조에 영향이 없었기 때문에 기공 반경도 거의 동일하다. 따라서 θ로 나타낸 접촉각만이 최소 침투 압력에 영향을 미치는 변수로써 작용한다. 0° < θ < 180° 범위에서 θ가 증가함에 따라
Figure PCTKR2016003835-appb-I000008
의 값이 커지는 것으로 예상할 수 있으며, 반대로 최소 침투 압력의 증가를 통해 접촉각이 커졌음을 간접적으로 확인할 수 있다. 따라서 접촉각은 분리막 바깥쪽 표면에 대해서만 측정하였으나 최소 침투 압력 결과를 통해서 안쪽 표면의 접촉각도 증가하였음을 알 수 있고 양쪽 모두 소수성 표면 개질이 성공적으로 수행되었음을 확인할 수 있었다. 이와 같이 최소 침투 압력이 증가하면 분리막 내부에 흡수액을 흘려 이산화탄소 흡수 실험 시에 액체의 압력을 기체보다 높게 유지하여도 젖음(wetting) 현상이 발생하지 않으면서 운전이 가능하기 때문에 이산화탄소 흡수량을 증가시킬 수 있다.
In the above formula (1),
Figure PCTKR2016003835-appb-I000006
Is the surface tension of the absorbent liquid,
Figure PCTKR2016003835-appb-I000007
Is the pore radius of the separator. In the present invention, since the distilled water is used as the absorbent liquid, the surface tension has a fixed value, and as shown in FIG. 6, since the pore structure of the hollow fiber membrane is not affected by the FAS, the pore radius is almost the same. Therefore, only the contact angle represented by θ acts as a variable affecting the minimum penetration pressure. As θ increases in the range 0 ° <θ <180 °
Figure PCTKR2016003835-appb-I000008
It can be expected to increase the value of, and indirectly confirm that the contact angle is increased by increasing the minimum penetration pressure. Therefore, the contact angle was measured only on the outer surface of the membrane, but the minimum penetration pressure result showed that the contact angle of the inner surface also increased, and both of them confirmed that hydrophobic surface modification was successful. In this way, when the minimum penetration pressure increases, the absorption liquid flows into the membrane, and thus the carbon dioxide absorption can be increased because the operation can be performed without wetting even if the liquid pressure is kept higher than the gas during the carbon dioxide absorption experiment. have.
또한, 접촉각과 최소 침투 압력 측정을 통하여 소수성 특성을 확인한 중공사막을 이용하여 단일 분리막 모듈을 제작하였고, 이를 포함하는 장치(도 9 참조)로 흡수액(증류수)의 유량을 20~50 ml/min으로 증가시키면서 이산화탄소 흡수 실험을 진행하였으며, 그 결과를 도 10에 나타내었다. 흡수액의 유량이 증가함에 따라 이산화탄소 흡수량이 증가하는 것을 볼 수 있고, 유량이 50 ml/min일 때, 최대 1.34 ×10-3 mol/m2·s의 흡수량을 얻을 수 있었다.In addition, a single membrane module was fabricated using the hollow fiber membrane which confirmed the hydrophobic property by measuring the contact angle and the minimum penetration pressure, and the flow rate of the absorbent liquid (distilled water) was 20 to 50 ml / min with the apparatus (see FIG. 9) including the same. Carbon dioxide absorption experiment was carried out while increasing, the results are shown in FIG. It can be seen that the amount of carbon dioxide absorption increases as the flow rate of the absorbent liquid increases, and when the flow rate is 50 ml / min, an absorption amount of up to 1.34 × 10 −3 mol / m 2 · s was obtained.
한편, 일반적으로 접촉막에서의 총괄 물질 전달 저항은 하기 식(2)에서와 같이 기상과 액상 그리고 분리막 물질 전달 저항의 합으로 표현이 된다.On the other hand, in general, the overall mass transfer resistance in the contact membrane is expressed as the sum of the gaseous phase, the liquid phase, and the membrane mass transfer resistance as shown in Equation (2) below.
Figure PCTKR2016003835-appb-I000009
(2)
Figure PCTKR2016003835-appb-I000009
(2)
상기 식(2)에서,
Figure PCTKR2016003835-appb-I000010
는 총괄 물질 전달 계수(m/s)이며,
Figure PCTKR2016003835-appb-I000011
,
Figure PCTKR2016003835-appb-I000012
,
Figure PCTKR2016003835-appb-I000013
는 각각 기상, 분리막, 액상의 개별 물질 전달 계수(m/s)이다. 그리고
Figure PCTKR2016003835-appb-I000014
는 기체와 액체의 농도 비에 의해 결정되는 무차원의 헨리 상수(Henry's constant)이다. 액체의 유량이 늘어남에 따라 액상의 개별 물질 전달 계수의 값이 커지고, 식 (2)에서 볼 수 있듯이 총괄 물질 전달 계수가 증가한다. 이는 도 10에 나타낸 결과처럼 이산화탄소 흡수량이 증가하는 실험 결과를 통해 확인할 수 있었다. 하지만 유량에 따른 이산화탄소 흡수량 증가폭이 점점 줄어드는 것을 볼 수 있었는데 이는 식 (2)에서 액상의 개별 물질 전달 계수가 증가하여 액체 경막 저항이 0에 가까워질 때, 총괄 물질 전달 계수는 무한히 커지지 않고 일정한 값에 수렴하는 형태와 잘 일치하였다.
In the formula (2),
Figure PCTKR2016003835-appb-I000010
Is the overall mass transfer coefficient (m / s),
Figure PCTKR2016003835-appb-I000011
,
Figure PCTKR2016003835-appb-I000012
,
Figure PCTKR2016003835-appb-I000013
Are the individual mass transfer coefficients (m / s) of the gas phase, membrane and liquid phase, respectively. And
Figure PCTKR2016003835-appb-I000014
Is the dimensionless Henry's constant, determined by the concentration ratio of gas to liquid. As the flow rate of the liquid increases, the value of the individual mass transfer coefficients in the liquid phase increases, and as shown in equation (2), the overall mass transfer coefficient increases. This could be confirmed through an experimental result of increasing carbon dioxide absorption as shown in FIG. However, it can be seen that the increase in carbon dioxide uptake with the flow rate gradually decreases. When the individual mass transfer coefficient of the liquid phase increases in Eq. (2) and the liquid duramic resistance approaches zero, the overall mass transfer coefficient does not increase infinitely and reaches a constant value. It is in good agreement with the converging form.
이와 같이 흡수액으로서 증류수를 이용하는 접촉막에 의한 이산화탄소 흡수 공정은 말레이시아의 A.F. Ismail 연구진을 중심으로 다양한 고분자 중공사막을 이용하여 연구가 진행되어 왔고, 종래 논문에서 배가스 조성인 이산화탄소/질소 혼합 기체에서 최대로 얻을 수 있는 이산화탄소 흡수량은 1.5×10-5 ~ 3.7×10-4 mol/m2·s 수준으로 보고되었으나[Young-Seok Kim et al., Sep. Purif. Technol. 21, 101(2000), M. Mavroudi, et al., Fuel. 82, 2153(2003)], 본 발명에서는 이보다 약 3.62 ~ 89.33배 높은 결과를 얻을 수 있었다.As described above, the carbon dioxide absorption process by the contact membrane using distilled water as the absorbent liquid has been studied using various polymer hollow fiber membranes, mainly by AF Ismail researchers in Malaysia. The amount of carbon dioxide absorption that can be obtained was reported to be 1.5 × 10 −5 to 3.7 × 10 −4 mol / m 2 · s [Young-Seok Kim et al., Sep. Purif. Technol. 21 , 101 (2000), M. Mavroudi, et al., Fuel. 82 , 2153 (2003)], and in the present invention, the results were about 3.62 to 89.33 times higher.
따라서 본 발명에 따르면, 알루미나 중공사막이 과불화알킬실란(FAS) 코팅에 의하여 표면 개질되어 소수성을 나타냄으로써, 막의 기공을 통한 기체의 이동 및 그에 따른 물질전달이 용이하여, 흡수액 유량이 증가함에 따라 이산화탄소 흡수량이 현저하게 증가하는 이산화탄소 흡수용 소수성 알루미나 중공사막을 제공할 수 있고, 이를 포함하는 막 모듈을 이용하여 중공사막 접촉장치(membrane contactor)에 적용함으로써 이산화탄소 흡수율을 크게 향상시킬 수 있다.Therefore, according to the present invention, the alumina hollow fiber membrane is surface modified by the perfluoroalkyl silane (FAS) coating to show hydrophobicity, so that the gas flow through the pores of the membrane and the resulting material transfer is easy, and as the absorbent flow rate increases It is possible to provide a hydrophobic alumina hollow fiber membrane for carbon dioxide absorption in which carbon dioxide absorption is significantly increased, and by applying the membrane module including the same to a hollow fiber membrane contactor, the carbon dioxide absorption rate can be greatly improved.

Claims (12)

  1. 하기 화학식으로 표시되는 과불화알킬실란으로 표면 개질된 이산화탄소 흡수용 소수성 알루미나 중공사막.Hydrophobic alumina hollow fiber membrane for carbon dioxide absorption surface-modified with perfluorinated alkylsilane represented by the following formula.
    <화학식><Formula>
    Figure PCTKR2016003835-appb-I000015
    Figure PCTKR2016003835-appb-I000015
    (상기 화학식에서, n은 7 내지 10의 정수이고, R1, R2 및 R3 = -CH3, -CH2CH3, -OCH3 또는 -OCH2CH3이며, R1 내지 R3 중 적어도 둘 이상은 -OCH3 또는 -OCH2CH3로서 서로 동일하거나 상이할 수 있다)Wherein n is an integer of 7 to 10, and R 1 , R 2 and R 3 = -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3 , and R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
  2. 제1항에 있어서, 상기 화학식으로 표시되는 과불화알킬실란은 과불화옥틸 에틸 트리메톡시실란(perfluorooctyl ethyl trimethoxysilane)인 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막.The hydrophobic alumina hollow fiber membrane for carbon dioxide absorption according to claim 1, wherein the perfluoroalkyl silane represented by the formula is perfluorooctyl ethyl trimethoxysilane.
  3. 제1항에 있어서, 상기 이산화탄소 흡수용 소수성 알루미나 중공사막은 기공의 평균 크기가 0.28~0.31 ㎛이고, 기공도는 49.1~56.1%인 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막.The hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide of claim 1, wherein the hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide has a pore size of 0.28 to 0.31 µm and a porosity of 49.1 to 56.1%.
  4. I) 알루미나 입자, 고분자 바인더 및 분산제를 유기용매와 혼합하여 도프용액을 얻는 단계;I) mixing the alumina particles, the polymeric binder and the dispersant with an organic solvent to obtain a dope solution;
    II) 상기 도프용액을 내부응고제와 함께 이중 방사노즐로 공급 및 토출하여 중공사를 형성하는 단계;II) supplying and discharging the dope solution together with an internal coagulant to a double spinning nozzle to form hollow fibers;
    III) 상기 중공사를 외부응고제와 접촉시켜 상전이 과정을 거치면서 세정, 건조 및 소결시켜 중공사막을 얻는 단계; 및III) contacting the hollow fiber with an external coagulant to obtain a hollow fiber membrane by washing, drying and sintering while undergoing a phase transition process; And
    IV) 상기 소결된 중공사막을 하기 화학식으로 표시되는 과불화알킬실란 용액에 상온에서 2~150 시간 침지시키는 단계;를 포함하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법.IV) immersing the sintered hollow fiber membrane in a perfluorinated alkylsilane solution represented by the following formula at room temperature for 2 to 150 hours; carbon dioxide absorption hydrophobic alumina hollow fiber membrane comprising a.
    <화학식><Formula>
    Figure PCTKR2016003835-appb-I000016
    Figure PCTKR2016003835-appb-I000016
    (상기 화학식에서, n은 7 내지 10의 정수이고, R1, R2 및 R3 = -CH3, -CH2CH3, -OCH3 또는 -OCH2CH3이며, R1 내지 R3 중 적어도 둘 이상은 -OCH3 또는 -OCH2CH3로서 서로 동일하거나 상이할 수 있다)Wherein n is an integer of 7 to 10, and R 1 , R 2 and R 3 = -CH 3 , -CH 2 CH 3 , -OCH 3 or -OCH 2 CH 3 , and R 1 to R 3 At least two may be the same or different from each other as —OCH 3 or —OCH 2 CH 3 );
  5. 제4항에 있어서, 상기 고분자 바인더는 폴리술폰, 폴리에테르술폰, 폴리에테르이미드, 폴리아미드 및 폴리아크릴로니트릴로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법.5. The method of claim 4, wherein the polymer binder is any one selected from the group consisting of polysulfone, polyethersulfone, polyetherimide, polyamide, and polyacrylonitrile. 6. .
  6. 제4항에 있어서, 상기 분산제는 폴리비닐피롤리돈 또는 폴리비닐알코올인 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법.The method of claim 4, wherein the dispersing agent is polyvinylpyrrolidone or polyvinyl alcohol.
  7. 제4항에 있어서, 상기 유기용매는 N-메틸피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc) 및 디메틸술폭시드(DMSO)로 이루어진 군으로부터 선택된 어느 하나 이상의 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법.The method of claim 4, wherein the organic solvent is at least one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO). Method for producing a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide.
  8. 제4항에 있어서, 상기 도프용액 내 알루미나 입자의 함량은 50~60 중량%인 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법.The method of claim 4, wherein the content of the alumina particles in the dope solution is 50 to 60% by weight.
  9. 제4항에 있어서, 상기 화학식으로 표시되는 과불화알킬실란은 과불화옥틸 에틸 트리메톡시실란(perfluorooctyl ethyl trimethoxysilane)인 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법.The method for preparing a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide according to claim 4, wherein the perfluoroalkyl silane represented by the formula is perfluorooctyl ethyl trimethoxysilane.
  10. 제4항에 있어서, 상기 화학식으로 표시되는 과불화알킬실란 용액은 농도가 0.01 mol/L 내지 0.05 mol/L인 것을 특징으로 하는 이산화탄소 흡수용 소수성 알루미나 중공사막의 제조방법. The method according to claim 4, wherein the perfluoroalkylsilane solution represented by the chemical formula has a concentration of 0.01 mol / L to 0.05 mol / L.
  11. 제1항 내지 제3항 중 어느 한 항에 따른 이산화탄소 흡수용 소수성 알루미나 중공사막을 포함하는 막 모듈.A membrane module comprising a hydrophobic alumina hollow fiber membrane for absorbing carbon dioxide according to any one of claims 1 to 3.
  12. 제11항에 따른 막 모듈을 포함하는 중공사막 접촉장치.Hollow fiber membrane contact device comprising the membrane module according to claim 11.
PCT/KR2016/003835 2015-04-21 2016-04-12 Hydrophobic alumina hollow fiber membrane for carbon dioxide absorption and method for preparing same WO2016171426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0055975 2015-04-21
KR1020150055975A KR101713858B1 (en) 2015-04-21 2015-04-21 Hydrophobic alumina hollow fiber membrane for absorption of carbon dioxide and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2016171426A1 true WO2016171426A1 (en) 2016-10-27

Family

ID=57144455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003835 WO2016171426A1 (en) 2015-04-21 2016-04-12 Hydrophobic alumina hollow fiber membrane for carbon dioxide absorption and method for preparing same

Country Status (2)

Country Link
KR (1) KR101713858B1 (en)
WO (1) WO2016171426A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092273A1 (en) * 2018-10-30 2020-05-07 Arizona Board Of Regents On Behalf Of Arizona State University Enhanced sorbent membrane for carbon dioxide capture and method for same
WO2020239452A1 (en) * 2019-05-27 2020-12-03 Unilever N.V. Fibre comprising organosilane for purification of liquids

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250539B1 (en) * 2019-11-06 2021-05-12 한국생산기술연구원 Membrane contactor, method of preparing the same and method for separating acid gas using the same
KR102427811B1 (en) * 2020-09-04 2022-08-01 한국생산기술연구원 Surface modified ceramic hollow fiber membrane, membrane contactor comprising same and method of preparing same
KR102464466B1 (en) * 2021-01-29 2022-11-07 동국대학교 산학협력단 Gas separation device having ceramic hollow fiber membrane contactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124588A (en) * 2012-12-26 2014-07-07 Sekisui Chem Co Ltd Manufacturing method of hollow fiber membrane
KR20150014718A (en) * 2013-07-30 2015-02-09 한국화학연구원 The method for preparing porous hollow fiber membrane and porous hollow fiber membrane thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305342A (en) 2004-04-22 2005-11-04 Noritake Co Ltd Preparation method for alumina separation membrane
KR100661489B1 (en) 2006-02-02 2006-12-27 한국에너지기술연구원 Method of carbon dioxide separation by 2 reactors with regenerating hot gas
KR20080025433A (en) * 2006-09-18 2008-03-21 주식회사 엘지화학 Porous separator of surface treatment for hydrophobic property and electrochemical cell containing the same
KR101440001B1 (en) 2012-10-18 2014-09-12 한국화학연구원 Biogas upgrading process and plants using microporous hollow fiber membranes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124588A (en) * 2012-12-26 2014-07-07 Sekisui Chem Co Ltd Manufacturing method of hollow fiber membrane
KR20150014718A (en) * 2013-07-30 2015-02-09 한국화학연구원 The method for preparing porous hollow fiber membrane and porous hollow fiber membrane thereby

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABIDI, N. ET AL.: "Surface Modification of Mesoporous Membranes by Fluoro-Silane Coupling Reagent for CO2 Separation", JOURNAL OF MEMBRANE SCIENCE, vol. 270, 17 October 2005 (2005-10-17), pages 101 - 107, XP024931328 *
LEE, H. J. ET AL.: "Preparation, Characterization and Laboratory-Scale Application of Modified Hydrophobic Aluminum Oxide Hollow Fiber Membrane for CO2 Capture using H2O as Low- Cost Absorbent", JOURNAL OF MEMBRANE SCIENCE, vol. 494, 28 July 2015 (2015-07-28), pages 143 - 153, XP055323557 *
ZHANG, YUAN ET AL.: "Novel Method for Incorporating Hydrophobic Silica Nanoparticles on Polyetherimide Hollow Fiber Membranes for CO2 Absorption in A Gas-Liquid Membrane Contactor", JOURNAL OF MEMBRANE SCIENCE, vol. 452, 22 December 2013 (2013-12-22), pages 379 - 389, XP055323556 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092273A1 (en) * 2018-10-30 2020-05-07 Arizona Board Of Regents On Behalf Of Arizona State University Enhanced sorbent membrane for carbon dioxide capture and method for same
US20210370230A1 (en) * 2018-10-30 2021-12-02 Arizona Board Of Regents On Behalf Of Arizona State University Enhanced sorbent membrane for carbon dioxide capture and method for same
WO2020239452A1 (en) * 2019-05-27 2020-12-03 Unilever N.V. Fibre comprising organosilane for purification of liquids
CN113766960A (en) * 2019-05-27 2021-12-07 联合利华知识产权控股有限公司 Fibers comprising organosilanes for liquid purification

Also Published As

Publication number Publication date
KR101713858B1 (en) 2017-03-09
KR20160125153A (en) 2016-10-31

Similar Documents

Publication Publication Date Title
WO2016171426A1 (en) Hydrophobic alumina hollow fiber membrane for carbon dioxide absorption and method for preparing same
CN101754796B (en) Hollow fiber carbon membrane and method for production thereof
WO2014171599A1 (en) Composite separating membrane including coating layer of graphene oxide/bile acid or salt thereof and method of manufacturing same
CN104722215B (en) Preparation method of carbon dioxide separation film based on graphene material
Lee et al. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent
WO2015133848A1 (en) Graphene oxide nanocomposite membrane for gas separation, reduced graphene oxide nanocomposite membrane, and method for manufacturing same
WO2014175517A1 (en) Composite separation film comprising graphene oxide coating layer and manufacturing method therefor
CN106474947B (en) Preparation method of porous ceramic membrane with hydrophobic surface
US20070068382A1 (en) Functionalized inorganic membranes for gas separation
WO1991004223A1 (en) Gas separation by semi-permeable membranes
US20130012633A1 (en) Hybrid composition and membrane based on silylated hydrophilic polymer
Qiao et al. Al-DTPA microfiber assisted formwork construction technology for high-performance SiC membrane preparation
CN105771683B (en) A method of improving SAPO-34 molecular screen membrane stability in water vapour environment
CN114749039A (en) Super-hydrophilic and underwater super-oleophobic carbon nanofiber membrane and preparation method thereof
CN104128100A (en) Nano attapulgite based hollow fiber microfiltration membrane and preparation method thereof
US8454732B2 (en) Composition and process for manufacture of a high temperature carbon-dioxide separation membrane
CN103908903A (en) Self-cleaning aramid fiber film, preparation method thereof, and applications thereof in gas separation
KR101855417B1 (en) Hydrophobic ceramics hollow fiber membrane with high efficiency and strength, and preparation method thereof
JP4250473B2 (en) Method for manufacturing fluid separation filter
JP2004275943A (en) Fluid separation filter and method for manufacturing the same
Rana et al. Effect of fluorine doping on the network pore structure of non-porous organosilica bis (triethoxysilyl) propane (BTESP) membranes for use in molecular separation
JP2018126729A (en) Separation method of gas
CN114805812A (en) Trapezoidal phenyl polysilsesquioxane/polycaprolactone/trapezoidal phenyl polysilsesquioxane blend membrane and preparation method thereof
Fu et al. CO2 capture using superhydrophobic ceramic membrane: Preparation and performance analysis
KR102250539B1 (en) Membrane contactor, method of preparing the same and method for separating acid gas using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783360

Country of ref document: EP

Kind code of ref document: A1