WO2016171013A1 - Electrical-storage-device module - Google Patents

Electrical-storage-device module Download PDF

Info

Publication number
WO2016171013A1
WO2016171013A1 PCT/JP2016/061565 JP2016061565W WO2016171013A1 WO 2016171013 A1 WO2016171013 A1 WO 2016171013A1 JP 2016061565 W JP2016061565 W JP 2016061565W WO 2016171013 A1 WO2016171013 A1 WO 2016171013A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
power storage
storage device
recess
battery
Prior art date
Application number
PCT/JP2016/061565
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 中條
加藤 崇行
浩生 植田
直人 守作
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015089200A external-priority patent/JP6657590B2/en
Priority claimed from JP2015101108A external-priority patent/JP6547407B2/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016171013A1 publication Critical patent/WO2016171013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to a power storage device module.
  • a battery module including a plurality of prismatic batteries and a plurality of battery holders that respectively hold the plurality of prismatic batteries is known (see, for example, Patent Document 1).
  • the square battery has a case main body with an upper end opened and a lid member that covers and closes the opening of the case main body.
  • the battery holder has a pair of covering portions facing both side surfaces of the case body.
  • the battery module power storage device module
  • the case and the lid member are generally fixed to each other by welding.
  • the shape of the welded portion has some variation. If the welded portion protrudes toward the covering portion, the welded portion and the covering portion may come into contact with each other. In this case, the power storage device cannot be properly positioned with respect to the power storage device holder.
  • An object of one aspect of the present invention is to provide a power storage device module that can appropriately position a power storage device with respect to a power storage device holder.
  • the power storage device module includes an array formed by arranging a plurality of power storage devices held by a power storage device holder, a restraining member that applies a restraining load to the array in the array direction of the power storage device,
  • the power storage device includes a case having an upper end opened, a lid that covers and closes the opening of the case, a welded portion that is disposed between the case and the lid, and welds the opening edge of the case and the edge of the lid.
  • the power storage device holder has a bottom wall portion on which the power storage device is placed and a pair of side wall portions for positioning the power storage device, and is located at a position facing the side surface of the case in the side wall portion.
  • the 1st recessed part is provided and the 2nd recessed part is provided in the position facing the welding part in a side wall part.
  • the first concave portion is provided at a position facing the side surface of the case in the side wall portion.
  • a second recess is provided at a position facing the welded portion in the side wall portion.
  • the first recess may be provided so as to avoid a corner portion of the case.
  • the power storage device can be positioned using corner portions of the case that are difficult to expand, and thus the power storage device can be more appropriately positioned with respect to the power storage device holder.
  • a third recess may be provided at a position of the bottom wall portion facing the bottom surface of the case.
  • the third recess may be provided so as to avoid the lower corner of the case.
  • the power storage device can be positioned using the lower corner portion of the case that is difficult to expand, and thus the power storage device can be more appropriately positioned with respect to the power storage device holder.
  • the power storage device module includes an array formed by arranging a plurality of power storage devices held by a power storage device holder, a restraining member that applies a restraining load to the array in the array direction of the power storage device,
  • the power storage device holder includes a bottom wall portion on which the power storage device is placed and a pair of side wall portions for positioning the power storage device, and is located at a position facing the bottom surface of the power storage device on the bottom wall portion. A recess is provided.
  • the power storage device module when the bottom surface of the power storage device expands due to aging, overcharge, or the like, the expanded portion of the bottom surface of the power storage device enters the recess, so that contact between the expanded portion and the bottom wall portion can be avoided.
  • the power storage device can be appropriately positioned with respect to the power storage device holder.
  • a power storage device module capable of appropriately positioning a power storage device with respect to a power storage device holder.
  • FIG. 4 is an end view taken along line IV-IV in FIG. 3. It is a perspective view which shows the cell holder shown in FIG. It is a figure which shows the experimental result of the expansion amount in the side surface of a case.
  • FIG. 1 is a schematic diagram showing a battery module 1 as an embodiment of a power storage device module.
  • the battery module (power storage device module) 1 includes an array body 2, end plates (constraint members) 3 and 3 that apply a restraining load to the array body 2, and the array body 2 and the end. And an elastic body 4 interposed between the plate 3 and the plate 3.
  • the array body 2 includes a plurality (here, seven bodies) of batteries (power storage devices) 10 and a plurality (here, seven bodies) of cell holders (power storage device holders) 5 that respectively hold the batteries 10. .
  • the array 2 is formed by arranging a plurality of batteries 10 held by the cell holder 5.
  • the battery 10 includes a case 11 whose upper end is open, a lid 12 that covers and closes the opening of the case 11, and a welded portion 13 that welds the opening edge of the case 11 and the edge of the lid 12. And have.
  • the battery 10 is a lithium ion secondary battery, for example.
  • the case 11 has a substantially rectangular parallelepiped shape. More specifically, the case 11 has a front surface 11a and a back surface 11b facing each other, a pair of side surfaces 11c and 11c facing each other, and a bottom surface 11d adjacent to the front surface 11a, the back surface 11b and the side surfaces 11c and 11c. is doing.
  • a pair of first corner portions (corner portions) 11e are provided on the upper side of the case 11.
  • a pair of second corner portions (corner portions) 11 f are provided on the lower side of the case 11.
  • the lid 12 has a rectangular plate shape.
  • the lengths of the case 11 and the lid 12 in the opposing direction (hereinafter referred to as Y direction) of the side surfaces 11c of the case 11 are approximately the same.
  • the case 11 and the lid 12 are made of metal such as aluminum.
  • the lid 12 is thicker than the case 11. For this reason, the lid 12 is less likely to expand than the case 11.
  • the welded portion 13 is disposed between the case 11 and the lid 12.
  • the welding part 13 may be arrange
  • the shape of the welded portion 13 has a certain degree of variation. That is, the welded portion 13 protrudes more outward than the case 11 and the lid 12 at any position of the opening edge of the case 11, and more than the case 11 and the lid 12 at other positions of the opening edge of the case 11. May be recessed inside. In the present embodiment, for convenience of explanation, the welded portion 13 is in a state of protruding outward from the case 11 and the lid 12.
  • the battery 10 includes an electrode assembly 16 accommodated in a case 11 as shown in FIGS. 3 and 4.
  • the electrode assembly 16 includes a positive electrode 17, a negative electrode 18, and a bag-shaped separator 19 disposed between the positive electrode 17 and the negative electrode 18.
  • the positive electrode 17 is accommodated in the separator 19, and the positive electrode 17 and the negative electrode 18 are alternately stacked through the separator 19 along the arrangement direction of the battery 10 (hereinafter, X direction).
  • X direction arrangement direction of the battery 10
  • an organic solvent-based or non-aqueous electrolyte is injected into the case 11.
  • the positive electrode terminal 14 and the negative electrode terminal 15 are disposed so as to be separated from each other.
  • the positive electrode terminal 14 is fixed to the top surface 12a of the lid 12 via the insulating member 14a
  • the negative electrode terminal 15 is fixed to the top surface 12a of the lid 12 via the insulating member 15a.
  • the positive electrode 17 has, for example, a metal foil 17a made of an aluminum foil and a positive electrode active material layer 17b formed on both surfaces of the metal foil 17a.
  • the positive electrode active material layer 17b is formed including a positive electrode active material and a binder.
  • Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur.
  • the composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium.
  • a tab 17 c is formed on the upper edge of the positive electrode 17 in correspondence with the position of the positive electrode terminal 14. The tab 17c extends upward from the upper edge of the positive electrode 17 and is connected to the positive electrode terminal 14 via a conductive member 17d.
  • the negative electrode 18 includes, for example, a metal foil 18a made of copper foil and a negative electrode active material layer 18b formed on both surfaces of the metal foil 18a.
  • the negative electrode active material layer 18b includes a negative electrode active material and a binder (binder).
  • the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal oxides such as metal compounds, and boron-added carbon. It is done.
  • a tab 18 c is formed on the upper edge of the negative electrode 18 in correspondence with the position of the negative electrode terminal 15. The tab 18c extends upward from the upper edge portion of the negative electrode 18 and is connected to the negative electrode terminal 15 via the conductive member 18d.
  • the separator 19 is formed in a bag shape, for example, and accommodates only the positive electrode 17 therein.
  • the material for forming the separator 19 include a porous film made of a polyolefin-based resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like.
  • a separator is not restricted to a bag shape, You may use a sheet-like thing.
  • the cell holder 5 is disposed around the case 11 and the lid 12.
  • the cell holder 5 is integrally formed of a resin material such as polypropylene. The configuration of the cell holder 5 will be described later.
  • the end plate 3 applies a restraining load in the X direction to the array 2.
  • the end plate 3 is a metal plate-like member, for example.
  • One end plate 3 is disposed on one end side of the array body 2 in the X direction, and the other end plate 3 is disposed on the other end side of the array body 2 in the X direction via an elastic body 4.
  • a plurality of bolts 6 are inserted through outer edge portions of the end plates 3 and 3.
  • the nut 7 is screwed onto the tip of each bolt 6 from the outside of the end plate 3, whereby the battery 10 and the elastic body 4 are sandwiched by the end plates 3, 3 to form a unit, and the end plates 3, 3 Restraint load is added.
  • the elastic body 4 is a member used for the purpose of preventing the battery 10 and the end plate 3 from being damaged by a restraining load when the battery 10 is expanded.
  • the elastic body 4 is formed in a rectangular plate shape by, for example, urethane rubber sponge, and is disposed between the battery 10 on one end side in the X direction and the end plate 3.
  • the thickness of the elastic body 4 is equal to or greater than the thickness of the end plate 3.
  • Examples of the material for forming the elastic body 4 include ethylene propylene diene rubber (EPDM), chloroprene rubber, and silicon rubber.
  • the cell holder 5 includes a back wall portion 20, a top wall portion 30, a pair of side wall portions 40 and 40, and a bottom wall portion 50.
  • the back wall 20 is provided at a position facing the back surface 11 b of the battery 10.
  • the back wall portion 20 has, for example, a rectangular plate shape.
  • the top wall portion 30 is provided at a position facing the top surface 12 a of the lid 12.
  • the top wall portion 30 is connected to the upper portion of the back wall portion 20.
  • the top wall portion 30 has a pair of terminal accommodating portions 31 and 31 and a pair of column portions 32 and 32.
  • the positive terminal 14 and the negative terminal 15 of the battery 10 are respectively positioned.
  • the column part 32 is provided with a through hole 32a through which the bolt 6 described above is inserted.
  • the side wall portions 40 and 40 are provided at positions facing the side surfaces 11c and 11c of the case 11, respectively.
  • the side wall portions 40 and 40 are respectively connected to both side portions of the back wall portion 20.
  • the side wall portions 40 and 40 determine the position of the battery 10 in the Y direction.
  • the side wall portions 40, 40 include a pair of first concave portions 41, 41, a pair of second concave portions 42, 42, a pair of first convex portions 43, 43, and a pair of It has the 2nd convex part 44,44.
  • the first concave portion 41 is disposed between the first convex portion 43 and the second convex portion 44.
  • the first convex portion 43 is disposed between the first concave portion 41 and the second concave portion 42.
  • the first recess 41 is provided to allow the case 11 to escape when the battery 10 is expanded. As shown in FIG. 2, the first concave portion 41 is provided at a position facing the side surface 11 c of the case 11 in the side wall portion 40. More specifically, the 1st recessed part 41 is provided so that the 1st corner
  • the 1st recessed part 41 is dented in the side away from the side surface 11c of the case 11 in the Y direction.
  • the first concave portion 41 is formed from one end to the other end of the side wall portion 40 in the X direction. Therefore, when viewed from the X direction (when viewed from the paper surface penetration direction in FIG. 2), the first space S1 along the X direction is between the inner wall surface of the first recess 41 and the side surface 11c of the case 11. Defined.
  • the edge shape of the 1st recessed part 41 which defines 1st space S1 is substantially trapezoid shape, for example.
  • the depth of the first recess 41 (the length in the Y direction) is a depth that takes into account the amount of expansion of the battery 10.
  • the depth of the first recess 41 is a depth corresponding to the amount of expansion in the Y direction of the most inflated region (for example, the central region of the side surface 11c) of the side surface 11c of the case 11.
  • the depth of the first recess 41 is, for example, about 0.5 to 3.0 mm (or 1.0 to 2.0 mm).
  • the second recess 42 is provided to allow the welded portion 13 of the battery 10 to escape.
  • the second concave portion 42 is provided at a position facing the welded portion 13 in the side wall portion 40. That is, the second recess 42 is provided across the lid 12 and the first corner 11 e of the case 11.
  • the second recess 42 is recessed on the side away from the side surface 11c of the case 11 in the Y direction.
  • the second recess 42 is formed from one end to the other end of the side wall 40 in the X direction. Accordingly, when viewed from the X direction (when viewed from the paper surface penetration direction in FIG. 2), the second space S2 along the X direction is between the inner wall surface of the second recess 42 and the side surface 11c of the case 11. Defined.
  • the edge shape of the 2nd recessed part 42 which defines 2nd space S2 is substantially trapezoid shape, for example.
  • the depth of the second recess 42 (the length in the Y direction) is a depth that takes into account the welding variation of the welded portion 13. That is, the depth of the second concave portion 42 is a depth corresponding to the maximum protrusion amount to the outside of the case 11 and the lid 12 among the allowable welding variations of the welded portion 13.
  • the depth of the second recess 42 is, for example, about 0.5 to 2.0 mm.
  • the 1st convex part 43 is provided in the position facing the 1st corner
  • the first convex portion 43 protrudes toward the side approaching the side surface 11c of the case 11 in the Y direction.
  • the tip surface 43 a of the first convex portion 43 is in contact with the first corner portion 11 e of the case 11.
  • the front end surface 43a extends from one end of the side wall portion 40 in the X direction to the other end.
  • the distance between the tip surfaces 43a, 43a of the pair of first convex portions 43, 43 is substantially the same as the length of the case 11 in the Y direction.
  • the second convex portion 44 is provided at a position facing the second corner portion 11 f of the case 11 in the side wall portion 40.
  • the 2nd convex part 44 protrudes to the side which approaches the side surface 11c of the case 11 in the Y direction.
  • the tip surface 44 a of the second convex portion 44 is in contact with the second corner portion 11 f of the case 11.
  • the front end surface 44a extends from one end of the side wall portion 40 in the X direction to the other end.
  • the distance between the tip surfaces 44a, 44a of the pair of second convex portions 44, 44 is approximately the same as the length of the case 11 in the Y direction.
  • the battery 10 is positioned in the Y direction by the tip surfaces 43a and 44a of the first and second convex portions 43 and 44 sandwiching the battery 10. Further, the rotation of the battery 10 around the axis parallel to the X direction is also restricted.
  • the bottom wall portion 50 is disposed at a position facing the bottom surface 11 d of the case 11.
  • the battery 10 is placed on the bottom wall 50.
  • the bottom wall portion 50 includes a third concave portion (concave portion) 51 and a pair of third convex portions 52 and 52.
  • the third recess 51 is disposed between the third protrusions 52 and 52.
  • the third recess 51 is provided to allow the case 11 to escape when the battery 10 is expanded.
  • the third concave portion 51 is provided at a position facing the bottom surface 11 d of the case 11 in the bottom wall portion 50. More specifically, the third recess 51 is provided so as to avoid the second corners 11 f and 11 f of the case 11. In other words, the third recess 51 faces the entire area of the bottom surface 11d of the case 11 excluding the second corners 11f and 11f of the case 11.
  • the third recess 51 is recessed on the side away from the bottom surface 11d of the case 11 in the facing direction of the lid 12 and the case 11 (hereinafter referred to as Z direction).
  • the third recess 51 is formed from one end to the other end of the bottom wall portion 50 in the X direction. Therefore, when viewed from the X direction (when viewed from the paper surface penetration direction in FIG. 2), a third space S3 along the X direction is defined between the third recess 51 and the bottom surface 11d of the case 11.
  • the edge shape of the 3rd recessed part 51 which defines 3rd space S3 is substantially trapezoid shape, for example.
  • the depth of the third recess 51 (the length in the Z direction) is a depth that takes into account the amount of expansion of the battery 10. That is, the depth of the third recess 51 is a depth corresponding to the amount of expansion in the Z direction of the most expanded region (for example, the central region of the bottom surface 11 d) of the bottom surface 11 d of the case 11.
  • the depth of the third recess 51 is, for example, about 0.5 to 4.0 mm (or 1.0 to 3.0 mm).
  • the third convex portions 52 and 52 are provided at positions facing the second corner portions 11f and 11f of the case 11 in the bottom wall portion 50.
  • the 3rd convex part 52 protrudes in the Z direction at the side which approaches the bottom face 11d of the case 11.
  • the tip surface 52 a of the third convex portion 52 is in contact with the second corner portion 11 f of the case 11.
  • the front end surface 52a extends from one end of the bottom wall portion 50 in the X direction to the other end.
  • the battery 10 (case 11) is placed on the tip surfaces 52a, 52a of the third convex portions 52, 52. That is, the tip surfaces 52a and 52a of the third convex portions 52 and 52 position the battery 10 in the Z direction.
  • the bottom wall portion 50 further includes a pair of leg portions 53 and 53.
  • the leg portions 53 and 53 are provided on the opposite side of the case 11 with respect to the third convex portions 52 and 52.
  • the leg portions 53 and 53 are provided with through holes 53a through which the bolts 6 described above are inserted.
  • the first recess 41 is provided at a position facing the side surface 11 c of the case 11 of the battery 10 in the side wall portion 40 of the cell holder 5.
  • the side surface 11c of the case 11 expands due to aging or overcharge, the expansion region of the side surface 11c of the case 11 enters the first space S1 defined by the first recess 41.
  • a second recess 42 is provided at a position facing the welded portion 13 of the battery 10 in the side wall portion 40 of the cell holder 5.
  • the welded portion 13 protrudes toward the side wall portion 40, the welded portion 13 enters the second space S ⁇ b> 2 defined by the second concave portion 42, so that contact between the welded portion 13 and the side wall portion 40 is avoided. It is done.
  • the battery 10 can be appropriately positioned with respect to the cell holder 5.
  • the first recess 41 is provided so as to avoid the first corner 11e and the second corner 11f of the case 11. Thereby, since the battery 10 can be positioned using the first corner portion 11e and the second corner portion 11f that are difficult to expand in the case 11, the battery 10 can be more appropriately positioned with respect to the cell holder 5. it can.
  • a third concave portion 51 is provided at a position facing the bottom surface 11 d of the case 11 in the bottom wall portion 50.
  • the third recess 51 is provided so as to avoid the second corner 11f of the case 11. Thereby, since the battery 10 can be positioned using the second corner portion 11 f that is difficult to expand in the case 11, the battery 10 can be more appropriately positioned with respect to the cell holder 5.
  • the depth of the first recess 41 is about 0.5 to 3.0 mm (or 1.0 to 2.0 mm), and the depth of the third recess 51 is 0.5 to 4.0 mm (or 1).
  • the expansion amount of the case 11 is determined by the materials of the positive electrode 17 and the negative electrode 18, the size of the case 11, and the like. Note that when the size of the case 11 (width direction, height direction, thickness direction dimensions) is increased, the amount of expansion of the case 11 also increases, so that the depth of the first recess 41 and the third recess 51 also increases.
  • the negative electrode active material layer may contain a conductive additive as necessary.
  • the negative electrode active material may include at least one selected from the group consisting of Si, Si compounds, Sn, and Sn compounds.
  • the Si compound include SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , can be used MnSi 2, NbSi 2, TaSi 2 , VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SnSiO 3, LiSiO, SiOv a (0 ⁇ v ⁇ 2) .
  • the Si compound may be SiOx (0.5 ⁇ x ⁇ 1.5).
  • the expansion of the case accompanying charging is generally large. Therefore, in order to avoid contact of the case with the cell holder, it can be said that it is particularly effective to apply the configuration of the power storage device module according to one aspect of the present invention.
  • the end plates 3 and 3 are fastened to each other with the bolt 6 and the nut 7 and a restraining load is applied to the array body 2 and the elastic body 4.
  • Etc. both ends of the restraint band may be fastened to the end plates 3 and 3 with bolts or the like, respectively, and a restraint load may be applied to the array body 2 and the elastic body 4.
  • the power storage device is a secondary battery such as a lithium ion secondary battery.
  • the present invention is not particularly limited to such a secondary battery, such as an electric double layer capacitor or a lithium ion capacitor.
  • the present invention can also be applied to a power storage device module including this power storage device.
  • FIG. 6 shows the experimental results.
  • the horizontal axis in FIG. 6 indicates the distance from the bottom surface of the case on the side surface of the case, and the bottom surface is 0 mm.
  • the total length of the side surface of the case is about 120 mm.
  • shaft of FIG. 6 has shown the expansion amount of the case which goes to a side.
  • the data of “initial special time” in FIG. 6 indicate the amount of expansion of the case after aging the battery (the state at the time of shipment).
  • the data “after 75 ° C. cc cycle” indicates the amount of expansion of the case after a heat cycle test that promotes deterioration and expansion of the battery in an environment at a temperature of 75 ° C. In addition, deterioration and expansion of the battery are promoted as the set temperature during the test is higher.
  • the data on the “positive terminal side” indicates the expansion amount of the side surface on the positive electrode terminal side
  • the data on the “negative electrode terminal side” indicates the expansion amount of the side surface on the negative electrode terminal side.
  • Positive electrode density 3.13 g / cm 3 , thickness 134.4 ⁇ m (including metal foil thickness 15 ⁇ m).
  • Positive electrode active material Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 Zn 0.05 , particle size (median diameter (D50)): 5.7 ⁇ m, specific surface area (by BET method): 0.50 m 2 / g.
  • Negative electrode density 1.40 g / cm 3 , thickness: 166.7 ⁇ m (including metal foil thickness 10 ⁇ m).
  • Negative electrode active material natural graphite, particle size (median diameter (D50)): 20 ⁇ m, specific surface area (by BET method): 3.7 m 2 / g.
  • Electrolyte solution: EC / EMC / DMC 30/30/40 at a ratio of 1.0 MOL / L and vol% of LiPF6.
  • the expansion amount of the case of “Initial Special Post” was within the range of 0 mm to 0.3 mm regardless of the position of the side surface of the case.
  • the amount of expansion of the case after “75 ° C. cc cycle” is a convex shape with a maximum value of 1.6 mm to 1.8 mm at a distance of 60 to 100 mm (especially around 80 mm) from the bottom surface of the case. Became a quadratic curve.
  • region whose distance from the bottom face of a case is 100 mm or more opposes a tab and an electrically-conductive member, the amount of expansion
  • a power storage device module that can appropriately position the power storage device with respect to the power storage device holder is provided.
  • SYMBOLS 1 Battery module (electric storage apparatus module), 2 ... Array, 3 ... End plate (restraint member), 5 ... Cell holder (electric storage apparatus holder), 10 ... Battery (electric storage apparatus), 11 ... Case, 11c ... Side surface, 11d ... bottom surface, 11e ... first corner (corner), 11f ... second corner (corner), 12 ... lid, 13 ... weld, 40 ... side wall, 41 ... first recess, 42 ... second recess 50 ... bottom wall portion, 51 ... third recess.

Abstract

This electrical-storage-device module is provided with: an array body obtained by arraying a plurality of electrical storage devices held by electrical-storage-device holders; and a binding member which adds a binding load to the array body in the direction in which the electrical storage devices are arrayed. The electrical storage devices are each provided with: a case which is open at the upper end; a lid which covers and closes the opening in the case; and a welded portion which is disposed between the case and the lid, and which is obtained by welding the edge of the opening in the case and the edge of the lid. The electrical-storage-device holders are each provided with: a bottom wall part on which one of the electrical storage devices is placed; and a pair of side wall parts which position said electrical storage device. First recesses are provided in the side wall parts in positions facing the side surfaces of the cases. Second recesses are provided in the side wall parts in positions facing the welded portions.

Description

蓄電装置モジュールPower storage module
 本発明の一側面は、蓄電装置モジュールに関する。 One aspect of the present invention relates to a power storage device module.
 従来の蓄電装置モジュールとして、複数の角型電池と、当該複数の角型電池をそれぞれ保持する複数の電池ホルダとを備える電池モジュールが知られている(例えば特許文献1参照)。角型電池は、上端が開口したケース本体と、当該ケース本体の開口を覆い塞ぐ蓋部材とを有している。電池ホルダは、ケース本体の両側面と対向する1対の被覆部を有している。 As a conventional power storage device module, a battery module including a plurality of prismatic batteries and a plurality of battery holders that respectively hold the plurality of prismatic batteries is known (see, for example, Patent Document 1). The square battery has a case main body with an upper end opened and a lid member that covers and closes the opening of the case main body. The battery holder has a pair of covering portions facing both side surfaces of the case body.
特開2014-179306号公報JP 2014-179306 A
 上述したような電池モジュール(蓄電装置モジュール)では、ケース本体の側面が経年劣化または過充電等によって膨張した場合、当該側面が電池ホルダの被覆部と接触する。このため、電池ホルダ(蓄電装置ホルダ)に対して角型電池(蓄電装置)を適切に位置決めすることができない。また、ケースと蓋部材とは、一般的に溶接によって互いに固定されている。このような構造では、溶接部の形状は、ある程度のバラツキを有している。仮に、溶接部が被覆部の側に突出していた場合、溶接部と被覆部とが接触することがある。この場合、蓄電装置ホルダに対して蓄電装置を適切に位置決めすることができない。 In the battery module (power storage device module) as described above, when the side surface of the case body expands due to aging or overcharge, the side surface comes into contact with the covering portion of the battery holder. For this reason, a square battery (power storage device) cannot be properly positioned with respect to the battery holder (power storage device holder). Further, the case and the lid member are generally fixed to each other by welding. In such a structure, the shape of the welded portion has some variation. If the welded portion protrudes toward the covering portion, the welded portion and the covering portion may come into contact with each other. In this case, the power storage device cannot be properly positioned with respect to the power storage device holder.
 本発明の一側面は、蓄電装置ホルダに対して蓄電装置を適切に位置決めすることができる蓄電装置モジュールを提供することを目的とする。 An object of one aspect of the present invention is to provide a power storage device module that can appropriately position a power storage device with respect to a power storage device holder.
 本発明の一側面の蓄電装置モジュールは、蓄電装置ホルダによって保持された蓄電装置を複数配列してなる配列体と、配列体に対して蓄電装置の配列方向に拘束荷重を付加する拘束部材と、を備え、蓄電装置は、上端が開口したケースと、ケースの開口を覆い塞ぐ蓋と、ケースと蓋との間に配置され、ケースの開口縁部と蓋の縁部とを溶接した溶接部と、を有し、蓄電装置ホルダは、蓄電装置が載置される底壁部と、蓄電装置を位置決めする1対の側壁部と、を有し、側壁部におけるケースの側面と対向する位置には、第1凹部が設けられ、側壁部における溶接部と対向する位置には、第2凹部が設けられている。 The power storage device module according to one aspect of the present invention includes an array formed by arranging a plurality of power storage devices held by a power storage device holder, a restraining member that applies a restraining load to the array in the array direction of the power storage device, The power storage device includes a case having an upper end opened, a lid that covers and closes the opening of the case, a welded portion that is disposed between the case and the lid, and welds the opening edge of the case and the edge of the lid. The power storage device holder has a bottom wall portion on which the power storage device is placed and a pair of side wall portions for positioning the power storage device, and is located at a position facing the side surface of the case in the side wall portion. The 1st recessed part is provided and the 2nd recessed part is provided in the position facing the welding part in a side wall part.
 この蓄電装置モジュールでは、側壁部におけるケースの側面と対向する位置には、第1凹部が設けられている。これにより、ケースの側面が経年劣化または過充電等によって膨張した場合、ケースの側面の膨張領域が第1凹部に入り込むため、当該膨張部分と側壁部との接触が避けられる。また、この蓄電装置モジュールでは、側壁部における溶接部と対向する位置には、第2凹部が設けられている。これにより、溶接部が側壁部側に突出していた場合、溶接部が第2凹部に入り込むため、溶接部と側壁部との接触が避けられる。以上により、蓄電装置ホルダに対して蓄電装置を適切に位置決めすることができる。 In this power storage device module, the first concave portion is provided at a position facing the side surface of the case in the side wall portion. As a result, when the side surface of the case expands due to aging or overcharge, the expansion region on the side surface of the case enters the first recess, and contact between the expanded portion and the side wall portion is avoided. Further, in this power storage device module, a second recess is provided at a position facing the welded portion in the side wall portion. Thereby, when the welding part protrudes to the side wall part side, since a welding part enters into the 2nd crevice, contact with a welding part and a side wall part is avoided. As described above, the power storage device can be appropriately positioned with respect to the power storage device holder.
 本発明の一側面の蓄電装置モジュールでは、第1凹部は、ケースの角部を避けるように設けられていてもよい。これにより、ケースのうち膨張しにくい角部を利用して蓄電装置を位置決めすることができるので、蓄電装置ホルダに対して蓄電装置をより適切に位置決めすることができる。 In the power storage device module according to one aspect of the present invention, the first recess may be provided so as to avoid a corner portion of the case. As a result, the power storage device can be positioned using corner portions of the case that are difficult to expand, and thus the power storage device can be more appropriately positioned with respect to the power storage device holder.
 本発明の一側面の蓄電装置モジュールでは、底壁部におけるケースの底面と対向する位置には、第3凹部が設けられていてもよい。これにより、ケースの底面が経年劣化または過充電等によって膨張した場合、ケースの底面の膨張領域が第3凹部に入り込むため、当該膨張部分と底壁部との接触が避けられる。これにより、蓄電装置ホルダに対して蓄電装置をより適切に位置決めすることができる。 In the power storage device module according to one aspect of the present invention, a third recess may be provided at a position of the bottom wall portion facing the bottom surface of the case. As a result, when the bottom surface of the case expands due to aging or overcharge, the expansion region of the bottom surface of the case enters the third recess, so that contact between the expanded portion and the bottom wall portion is avoided. Thereby, a power storage device can be more appropriately positioned with respect to the power storage device holder.
 本発明の一側面の蓄電装置モジュールでは、第3凹部は、ケースの下側の角部を避けるように設けられていてもよい。これにより、ケースのうち膨張しにくい下側の角部を利用して蓄電装置を位置決めすることができるので、蓄電装置ホルダに対して蓄電装置をより適切に位置決めすることができる。 In the power storage device module according to one aspect of the present invention, the third recess may be provided so as to avoid the lower corner of the case. Thus, the power storage device can be positioned using the lower corner portion of the case that is difficult to expand, and thus the power storage device can be more appropriately positioned with respect to the power storage device holder.
 本発明の一側面の蓄電装置モジュールは、蓄電装置ホルダによって保持された蓄電装置を複数配列してなる配列体と、配列体に対して蓄電装置の配列方向に拘束荷重を付加する拘束部材と、を備え、蓄電装置ホルダは、蓄電装置が載置される底壁部と、蓄電装置を位置決めする1対の側壁部と、を有し、底壁部における蓄電装置の底面と対向する位置には、凹部が設けられている。 The power storage device module according to one aspect of the present invention includes an array formed by arranging a plurality of power storage devices held by a power storage device holder, a restraining member that applies a restraining load to the array in the array direction of the power storage device, The power storage device holder includes a bottom wall portion on which the power storage device is placed and a pair of side wall portions for positioning the power storage device, and is located at a position facing the bottom surface of the power storage device on the bottom wall portion. A recess is provided.
 この蓄電装置モジュールでは、蓄電装置の底面が経年劣化または過充電等によって膨張した場合、蓄電装置の底面の膨張部分が凹部に入り込むため、当該膨張部分と底壁部との接触が避けられる。これにより、蓄電装置ホルダに対して蓄電装置を適切に位置決めすることができる。 In this power storage device module, when the bottom surface of the power storage device expands due to aging, overcharge, or the like, the expanded portion of the bottom surface of the power storage device enters the recess, so that contact between the expanded portion and the bottom wall portion can be avoided. Thus, the power storage device can be appropriately positioned with respect to the power storage device holder.
 本発明の一側面によれば、蓄電装置ホルダに対して蓄電装置を適切に位置決めすることができる蓄電装置モジュールを提供することが可能となる。 According to one aspect of the present invention, it is possible to provide a power storage device module capable of appropriately positioning a power storage device with respect to a power storage device holder.
本実施形態に係る蓄電装置モジュールとしての電池モジュールを示す概略図である。It is the schematic which shows the battery module as an electrical storage apparatus module which concerns on this embodiment. 図1に示した電池モジュールに備えられた電池及びセルホルダを示す正面図である。It is a front view which shows the battery and cell holder with which the battery module shown in FIG. 1 was equipped. 図1に示した電池モジュールに備えられた電池の構成を示す断面図である。It is sectional drawing which shows the structure of the battery with which the battery module shown in FIG. 1 was equipped. 図3におけるIV-IV線端面図である。FIG. 4 is an end view taken along line IV-IV in FIG. 3. 図2に示したセルホルダを示す斜視図である。It is a perspective view which shows the cell holder shown in FIG. ケースの側面における膨張量の実験結果を示す図である。It is a figure which shows the experimental result of the expansion amount in the side surface of a case.
 以下、図面を参照しながら、本発明の一側面の実施形態について詳細に説明する。図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, embodiments of one aspect of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、蓄電装置モジュールの一実施形態として電池モジュール1を示す概略図である。同図に示されるように、電池モジュール(蓄電装置モジュール)1は、配列体2と、配列体2に対して拘束荷重を付加するエンドプレート(拘束部材)3,3と、配列体2とエンドプレート3との間に介在する弾性体4と、を備えて構成されている。 FIG. 1 is a schematic diagram showing a battery module 1 as an embodiment of a power storage device module. As shown in the figure, the battery module (power storage device module) 1 includes an array body 2, end plates (constraint members) 3 and 3 that apply a restraining load to the array body 2, and the array body 2 and the end. And an elastic body 4 interposed between the plate 3 and the plate 3.
 配列体2は、複数(ここでは7体)の電池(蓄電装置)10と、各電池10をそれぞれ保持する複数(ここでは7体)のセルホルダ(蓄電装置ホルダ)5と、を有している。配列体2は、セルホルダ5によって保持された電池10を複数配列してなる。 The array body 2 includes a plurality (here, seven bodies) of batteries (power storage devices) 10 and a plurality (here, seven bodies) of cell holders (power storage device holders) 5 that respectively hold the batteries 10. . The array 2 is formed by arranging a plurality of batteries 10 held by the cell holder 5.
 図2に示されるように、電池10は、上端が開口したケース11と、ケース11の開口を覆い塞ぐ蓋12と、ケース11の開口縁部と蓋12の縁部とを溶接した溶接部13とを有している。電池10は、例えばリチウムイオン二次電池である。 As shown in FIG. 2, the battery 10 includes a case 11 whose upper end is open, a lid 12 that covers and closes the opening of the case 11, and a welded portion 13 that welds the opening edge of the case 11 and the edge of the lid 12. And have. The battery 10 is a lithium ion secondary battery, for example.
 ケース11は、略直方体状を呈している。より具体的には、ケース11は、互いに対向する正面11a及び背面11bと、互いに対向する1対の側面11c,11cと、正面11a、背面11b及び側面11c,11cと隣り合う底面11dとを有している。ケース11の上側には、1対の第1角部(角部)11eが設けられている。ケース11の下側には、1対の第2角部(角部)11fが設けられている。 The case 11 has a substantially rectangular parallelepiped shape. More specifically, the case 11 has a front surface 11a and a back surface 11b facing each other, a pair of side surfaces 11c and 11c facing each other, and a bottom surface 11d adjacent to the front surface 11a, the back surface 11b and the side surfaces 11c and 11c. is doing. On the upper side of the case 11, a pair of first corner portions (corner portions) 11e are provided. A pair of second corner portions (corner portions) 11 f are provided on the lower side of the case 11.
 蓋12は、矩形板状を呈している。ケース11の側面11c,11cの対向方向(以下、Y方向)におけるケース11及び蓋12の長さは、同程度である。ケース11及び蓋12は、例えばアルミニウム等の金属によって形成されている。蓋12の厚みは、ケース11の厚みに比べて厚い。このため、蓋12は、ケース11に比べて膨張しにくい。 The lid 12 has a rectangular plate shape. The lengths of the case 11 and the lid 12 in the opposing direction (hereinafter referred to as Y direction) of the side surfaces 11c of the case 11 are approximately the same. The case 11 and the lid 12 are made of metal such as aluminum. The lid 12 is thicker than the case 11. For this reason, the lid 12 is less likely to expand than the case 11.
 溶接部13は、ケース11と蓋12との間に配置されている。溶接部13は、ケース11の開口縁部に沿って矩形環状となるように連続的に配置されてもよいし、間欠的に配置されてもよい。溶接部13の形状は、ある程度のバラツキを有している。すなわち、溶接部13は、ケース11の開口縁部のいずれかの位置では、ケース11及び蓋12よりも外側に突出し、ケース11の開口縁部の他の位置では、ケース11及び蓋12よりも内側に凹んでいる場合がある。本実施形態では、説明の便宜上、溶接部13は、ケース11及び蓋12よりも外側に突出した状態としている。 The welded portion 13 is disposed between the case 11 and the lid 12. The welding part 13 may be arrange | positioned continuously so that it may become a rectangular ring shape along the opening edge part of case 11, and may be arrange | positioned intermittently. The shape of the welded portion 13 has a certain degree of variation. That is, the welded portion 13 protrudes more outward than the case 11 and the lid 12 at any position of the opening edge of the case 11, and more than the case 11 and the lid 12 at other positions of the opening edge of the case 11. May be recessed inside. In the present embodiment, for convenience of explanation, the welded portion 13 is in a state of protruding outward from the case 11 and the lid 12.
 電池10は、図3及び図4に示されるように、ケース11内に収容された電極組立体16を備えている。電極組立体16は、正極17と、負極18と、正極17と負極18との間に配置された袋状のセパレータ19とによって構成されている。電極組立体16は、セパレータ19内に正極17が収容された状態で、正極17と負極18とがセパレータ19を介して電池10の配列方向(以下、X方向)に沿って交互に積層されている。ケース11の内部には、例えば有機溶媒系または非水系の電解液が注入されている。蓋12の頂面12aには、正極端子14と負極端子15とが互いに離間して配置されている。正極端子14は、絶縁部材14aを介して蓋12の頂面12aに固定され、負極端子15は、絶縁部材15aを介して蓋12の頂面12aに固定されている。 The battery 10 includes an electrode assembly 16 accommodated in a case 11 as shown in FIGS. 3 and 4. The electrode assembly 16 includes a positive electrode 17, a negative electrode 18, and a bag-shaped separator 19 disposed between the positive electrode 17 and the negative electrode 18. In the electrode assembly 16, the positive electrode 17 is accommodated in the separator 19, and the positive electrode 17 and the negative electrode 18 are alternately stacked through the separator 19 along the arrangement direction of the battery 10 (hereinafter, X direction). Yes. For example, an organic solvent-based or non-aqueous electrolyte is injected into the case 11. On the top surface 12 a of the lid 12, the positive electrode terminal 14 and the negative electrode terminal 15 are disposed so as to be separated from each other. The positive electrode terminal 14 is fixed to the top surface 12a of the lid 12 via the insulating member 14a, and the negative electrode terminal 15 is fixed to the top surface 12a of the lid 12 via the insulating member 15a.
 正極17は、例えばアルミニウム箔からなる金属箔17aと、金属箔17aの両面に形成された正極活物質層17bとを有している。正極活物質層17bは、正極活物質とバインダとを含んで形成されている。正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。また、正極17の上縁部には、正極端子14の位置に対応してタブ17cが形成されている。タブ17cは、正極17の上縁部から上方に延び、導電部材17dを介して正極端子14に接続されている。 The positive electrode 17 has, for example, a metal foil 17a made of an aluminum foil and a positive electrode active material layer 17b formed on both surfaces of the metal foil 17a. The positive electrode active material layer 17b is formed including a positive electrode active material and a binder. Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium. A tab 17 c is formed on the upper edge of the positive electrode 17 in correspondence with the position of the positive electrode terminal 14. The tab 17c extends upward from the upper edge of the positive electrode 17 and is connected to the positive electrode terminal 14 via a conductive member 17d.
 一方、負極18は、例えば銅箔からなる金属箔18aと、金属箔18aの両面に形成された負極活物質層18bとを有している。負極活物質層18bは、負極活物質とバインダ(結着剤)とを含んで形成されている。負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物等の金属酸化物、ホウ素添加炭素等が挙げられる。また、負極18の上縁部には、負極端子15の位置に対応してタブ18cが形成されている。タブ18cは、負極18の上縁部から上方に延び、導電部材18dを介して負極端子15に接続されている。 On the other hand, the negative electrode 18 includes, for example, a metal foil 18a made of copper foil and a negative electrode active material layer 18b formed on both surfaces of the metal foil 18a. The negative electrode active material layer 18b includes a negative electrode active material and a binder (binder). Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal oxides such as metal compounds, and boron-added carbon. It is done. A tab 18 c is formed on the upper edge of the negative electrode 18 in correspondence with the position of the negative electrode terminal 15. The tab 18c extends upward from the upper edge portion of the negative electrode 18 and is connected to the negative electrode terminal 15 via the conductive member 18d.
 セパレータ19は、例えば袋状に形成され、内部に正極17のみを収容している。セパレータ19の形成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。なお、セパレータは、袋状に限られず、シート状のものを用いてもよい。 The separator 19 is formed in a bag shape, for example, and accommodates only the positive electrode 17 therein. Examples of the material for forming the separator 19 include a porous film made of a polyolefin-based resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like. In addition, a separator is not restricted to a bag shape, You may use a sheet-like thing.
 セルホルダ5は、ケース11及び蓋12の周囲に配置されている。セルホルダ5は、例えばポリプロピレンといった樹脂材料によって一体成型されている。セルホルダ5の構成については、後述する。 The cell holder 5 is disposed around the case 11 and the lid 12. The cell holder 5 is integrally formed of a resin material such as polypropylene. The configuration of the cell holder 5 will be described later.
 図1に示されるように、エンドプレート3は、配列体2に対してX方向に拘束荷重を付加する。エンドプレート3は、例えば金属製の板状部材である。一方のエンドプレート3は、X方向における配列体2の一端側に配置され、他方のエンドプレート3は、X方向における配列体2の他端側に弾性体4を介して配置されている。エンドプレート3,3の外縁部分には、複数のボルト6が挿通される。各ボルト6の先端にエンドプレート3の外側からナット7が螺合されることで、電池10及び弾性体4がエンドプレート3,3により挟持されてユニット化されると共に、エンドプレート3,3により拘束荷重が付加される。 1, the end plate 3 applies a restraining load in the X direction to the array 2. The end plate 3 is a metal plate-like member, for example. One end plate 3 is disposed on one end side of the array body 2 in the X direction, and the other end plate 3 is disposed on the other end side of the array body 2 in the X direction via an elastic body 4. A plurality of bolts 6 are inserted through outer edge portions of the end plates 3 and 3. The nut 7 is screwed onto the tip of each bolt 6 from the outside of the end plate 3, whereby the battery 10 and the elastic body 4 are sandwiched by the end plates 3, 3 to form a unit, and the end plates 3, 3 Restraint load is added.
 弾性体4は、電池10に膨張が生じた場合等に、拘束荷重による電池10及びエンドプレート3の破損を防止する目的で用いられる部材である。弾性体4は、例えばウレタン製のゴムスポンジによって矩形の板状に形成され、X方向の一端側の電池10とエンドプレート3との間に配置されている。弾性体4の厚さは、エンドプレート3の厚さと同等以上となっている。弾性体4の形成材料としては、例えばエチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム、シリコンゴム等が挙げられる。 The elastic body 4 is a member used for the purpose of preventing the battery 10 and the end plate 3 from being damaged by a restraining load when the battery 10 is expanded. The elastic body 4 is formed in a rectangular plate shape by, for example, urethane rubber sponge, and is disposed between the battery 10 on one end side in the X direction and the end plate 3. The thickness of the elastic body 4 is equal to or greater than the thickness of the end plate 3. Examples of the material for forming the elastic body 4 include ethylene propylene diene rubber (EPDM), chloroprene rubber, and silicon rubber.
 続いて、セルホルダ5について詳細に説明する。 Subsequently, the cell holder 5 will be described in detail.
 セルホルダ5は、図2及び図5に示されるように、背壁部20と、頂壁部30と、1対の側壁部40,40と、底壁部50と、を備えている。 2 and 5, the cell holder 5 includes a back wall portion 20, a top wall portion 30, a pair of side wall portions 40 and 40, and a bottom wall portion 50.
 背壁部20は、電池10の背面11bと対向する位置に設けられている。背壁部20は、例えば矩形板状を呈している。 The back wall 20 is provided at a position facing the back surface 11 b of the battery 10. The back wall portion 20 has, for example, a rectangular plate shape.
 頂壁部30は、蓋12の頂面12aと対向する位置に設けられている。頂壁部30は、背壁部20の上部に接続されている。頂壁部30は、1対の端子収容部31,31と、1対の柱部32,32とを有している。端子収容部31,31には、電池10の正極端子14及び負極端子15がそれぞれ位置する。柱部32には、上述したボルト6が挿通される貫通孔32aが設けられている。 The top wall portion 30 is provided at a position facing the top surface 12 a of the lid 12. The top wall portion 30 is connected to the upper portion of the back wall portion 20. The top wall portion 30 has a pair of terminal accommodating portions 31 and 31 and a pair of column portions 32 and 32. In the terminal accommodating portions 31, 31, the positive terminal 14 and the negative terminal 15 of the battery 10 are respectively positioned. The column part 32 is provided with a through hole 32a through which the bolt 6 described above is inserted.
 側壁部40,40は、ケース11の側面11c,11cのそれぞれと対向する位置に設けられている。側壁部40,40は、背壁部20の両側部にそれぞれ接続されている。側壁部40,40は、Y方向における電池10の位置を決める。 The side wall portions 40 and 40 are provided at positions facing the side surfaces 11c and 11c of the case 11, respectively. The side wall portions 40 and 40 are respectively connected to both side portions of the back wall portion 20. The side wall portions 40 and 40 determine the position of the battery 10 in the Y direction.
 より具体的には、側壁部40,40は、1対の第1凹部41,41と、1対の第2凹部42,42と、1対の第1凸部43,43と、1対の第2凸部44,44とを有している。第1凹部41は、第1凸部43と第2凸部44との間に配置されている。第1凸部43は、第1凹部41と第2凹部42との間に配置されている。 More specifically, the side wall portions 40, 40 include a pair of first concave portions 41, 41, a pair of second concave portions 42, 42, a pair of first convex portions 43, 43, and a pair of It has the 2nd convex part 44,44. The first concave portion 41 is disposed between the first convex portion 43 and the second convex portion 44. The first convex portion 43 is disposed between the first concave portion 41 and the second concave portion 42.
 第1凹部41は、電池10の膨張時にケース11を逃がすために設けられている。図2に示されるように、第1凹部41は、側壁部40におけるケース11の側面11cと対向する位置に設けられている。より具体的には、第1凹部41は、ケース11の第1角部11e及び第2角部11fを避けるように設けられている。言い換えると、第1凹部41は、第1角部11e及び第2角部11fを除いたケース11の側面11cの全領域に対向している。第1凹部41は、タブ17c,18c(図3参照)よりも下方に位置している。 The first recess 41 is provided to allow the case 11 to escape when the battery 10 is expanded. As shown in FIG. 2, the first concave portion 41 is provided at a position facing the side surface 11 c of the case 11 in the side wall portion 40. More specifically, the 1st recessed part 41 is provided so that the 1st corner | angular part 11e and the 2nd corner | angular part 11f of case 11 may be avoided. In other words, the first recess 41 faces the entire region of the side surface 11c of the case 11 excluding the first corner portion 11e and the second corner portion 11f. The first recess 41 is located below the tabs 17c and 18c (see FIG. 3).
 第1凹部41は、Y方向において、ケース11の側面11cから離れる側に凹んでいる。第1凹部41は、X方向における側壁部40の一端から他端まで形成されている。したがって、X方向からみたときに(図2の紙面貫通方向からみたときに)、第1凹部41の内壁面とケース11の側面11cとの間には、X方向に沿った第1空間S1が画成される。第1空間S1を画成する第1凹部41の縁形状は、例えば略台形状となっている。第1凹部41の深さ(Y方向の長さ)は、電池10の膨張量を考慮した深さとなっている。すなわち、第1凹部41の深さは、ケース11の側面11cのうちの最も膨張する領域(例えば側面11cの中央領域)のY方向の膨張量に対応した深さとなっている。第1凹部41の深さは、例えば0.5~3.0mm(或いは1.0~2.0mm)程度である。 The 1st recessed part 41 is dented in the side away from the side surface 11c of the case 11 in the Y direction. The first concave portion 41 is formed from one end to the other end of the side wall portion 40 in the X direction. Therefore, when viewed from the X direction (when viewed from the paper surface penetration direction in FIG. 2), the first space S1 along the X direction is between the inner wall surface of the first recess 41 and the side surface 11c of the case 11. Defined. The edge shape of the 1st recessed part 41 which defines 1st space S1 is substantially trapezoid shape, for example. The depth of the first recess 41 (the length in the Y direction) is a depth that takes into account the amount of expansion of the battery 10. That is, the depth of the first recess 41 is a depth corresponding to the amount of expansion in the Y direction of the most inflated region (for example, the central region of the side surface 11c) of the side surface 11c of the case 11. The depth of the first recess 41 is, for example, about 0.5 to 3.0 mm (or 1.0 to 2.0 mm).
 第2凹部42は、電池10の溶接部13を逃がすために設けられている。第2凹部42は、側壁部40における溶接部13と対向する位置に設けられている。すなわち、第2凹部42は、蓋12とケース11の第1角部11eとにまたがって設けられている。第2凹部42は、Y方向において、ケース11の側面11cから離れる側に凹んでいる。第2凹部42は、X方向における側壁部40の一端から他端まで形成されている。したがって、X方向からみたときに(図2の紙面貫通方向からみたときに)、第2凹部42の内壁面とケース11の側面11cとの間には、X方向に沿った第2空間S2が画成される。第2空間S2を画成する第2凹部42の縁形状は、例えば略台形状となっている。第2凹部42の深さ(Y方向の長さ)は、溶接部13の溶接バラツキを考慮した深さとなっている。すなわち、第2凹部42の深さは、許容される溶接部13の溶接バラツキのうち、ケース11及び蓋12の外側への最大突出量に対応した深さとなっている。第2凹部42の深さは、例えば0.5~2.0mm程度である。 The second recess 42 is provided to allow the welded portion 13 of the battery 10 to escape. The second concave portion 42 is provided at a position facing the welded portion 13 in the side wall portion 40. That is, the second recess 42 is provided across the lid 12 and the first corner 11 e of the case 11. The second recess 42 is recessed on the side away from the side surface 11c of the case 11 in the Y direction. The second recess 42 is formed from one end to the other end of the side wall 40 in the X direction. Accordingly, when viewed from the X direction (when viewed from the paper surface penetration direction in FIG. 2), the second space S2 along the X direction is between the inner wall surface of the second recess 42 and the side surface 11c of the case 11. Defined. The edge shape of the 2nd recessed part 42 which defines 2nd space S2 is substantially trapezoid shape, for example. The depth of the second recess 42 (the length in the Y direction) is a depth that takes into account the welding variation of the welded portion 13. That is, the depth of the second concave portion 42 is a depth corresponding to the maximum protrusion amount to the outside of the case 11 and the lid 12 among the allowable welding variations of the welded portion 13. The depth of the second recess 42 is, for example, about 0.5 to 2.0 mm.
 第1凸部43は、側壁部40におけるケース11の第1角部11eと対向する位置に設けられている。第1凸部43は、Y方向において、ケース11の側面11cに近づく側に突出している。第1凸部43の先端面43aは、ケース11の第1角部11eに接触している。先端面43aは、X方向における側壁部40の一端から他端に延びている。1対の第1凸部43,43の先端面43a,43a間の距離は、Y方向におけるケース11の長さと略同一である。 The 1st convex part 43 is provided in the position facing the 1st corner | angular part 11e of the case 11 in the side wall part 40. As shown in FIG. The first convex portion 43 protrudes toward the side approaching the side surface 11c of the case 11 in the Y direction. The tip surface 43 a of the first convex portion 43 is in contact with the first corner portion 11 e of the case 11. The front end surface 43a extends from one end of the side wall portion 40 in the X direction to the other end. The distance between the tip surfaces 43a, 43a of the pair of first convex portions 43, 43 is substantially the same as the length of the case 11 in the Y direction.
 第2凸部44は、側壁部40におけるケース11の第2角部11fと対向する位置に設けられている。第2凸部44は、Y方向において、ケース11の側面11cに近づく側に突出している。第2凸部44の先端面44aは、ケース11の第2角部11fに接触している。先端面44aは、X方向における側壁部40の一端から他端に延びている。1対の第2凸部44,44の先端面44a,44a間の距離は、Y方向におけるケース11の長さと同程度である。 The second convex portion 44 is provided at a position facing the second corner portion 11 f of the case 11 in the side wall portion 40. The 2nd convex part 44 protrudes to the side which approaches the side surface 11c of the case 11 in the Y direction. The tip surface 44 a of the second convex portion 44 is in contact with the second corner portion 11 f of the case 11. The front end surface 44a extends from one end of the side wall portion 40 in the X direction to the other end. The distance between the tip surfaces 44a, 44a of the pair of second convex portions 44, 44 is approximately the same as the length of the case 11 in the Y direction.
 このように、第1凸部43及び第2凸部44の先端面43a,44aが、電池10を挟みこむことで、Y方向において電池10が位置決めされる。また、X方向と平行な軸回りにおける電池10の回転も規制される。 Thus, the battery 10 is positioned in the Y direction by the tip surfaces 43a and 44a of the first and second convex portions 43 and 44 sandwiching the battery 10. Further, the rotation of the battery 10 around the axis parallel to the X direction is also restricted.
 底壁部50は、ケース11の底面11dと対向する位置に配置されている。底壁部50には、電池10が載置されている。底壁部50は、第3凹部(凹部)51と、1対の第3凸部52,52とを有している。第3凹部51は、第3凸部52,52間に配置されている。 The bottom wall portion 50 is disposed at a position facing the bottom surface 11 d of the case 11. The battery 10 is placed on the bottom wall 50. The bottom wall portion 50 includes a third concave portion (concave portion) 51 and a pair of third convex portions 52 and 52. The third recess 51 is disposed between the third protrusions 52 and 52.
 第3凹部51は、電池10の膨張時にケース11を逃がすために設けられている。第3凹部51は、底壁部50におけるケース11の底面11dと対向する位置に設けられている。より具体的には、第3凹部51は、ケース11の第2角部11f,11fを避けるように設けられている。言い換えると、第3凹部51は、ケース11の第2角部11f,11fを除いたケース11の底面11dの全領域に対向している。 The third recess 51 is provided to allow the case 11 to escape when the battery 10 is expanded. The third concave portion 51 is provided at a position facing the bottom surface 11 d of the case 11 in the bottom wall portion 50. More specifically, the third recess 51 is provided so as to avoid the second corners 11 f and 11 f of the case 11. In other words, the third recess 51 faces the entire area of the bottom surface 11d of the case 11 excluding the second corners 11f and 11f of the case 11.
 第3凹部51は、蓋12とケース11との対向方向(以下、Z方向)において、ケース11の底面11dから離れる側に凹んでいる。第3凹部51は、X方向における底壁部50の一端から他端まで形成されている。したがって、X方向からみたときに(図2の紙面貫通方向からみたときに)、第3凹部51とケース11の底面11dとの間には、X方向に沿った第3空間S3が画成される。第3空間S3を画成する第3凹部51の縁形状は、例えば略台形状となっている。第3凹部51の深さ(Z方向の長さ)は、電池10の膨張量を考慮した深さとなっている。すなわち、第3凹部51の深さは、ケース11の底面11dのうちの最も膨張する領域(例えば底面11dの中央領域)のZ方向の膨張量に対応した深さとなっている。第3凹部51の深さは、例えば0.5~4.0mm(或いは1.0~3.0mm)程度である。 The third recess 51 is recessed on the side away from the bottom surface 11d of the case 11 in the facing direction of the lid 12 and the case 11 (hereinafter referred to as Z direction). The third recess 51 is formed from one end to the other end of the bottom wall portion 50 in the X direction. Therefore, when viewed from the X direction (when viewed from the paper surface penetration direction in FIG. 2), a third space S3 along the X direction is defined between the third recess 51 and the bottom surface 11d of the case 11. The The edge shape of the 3rd recessed part 51 which defines 3rd space S3 is substantially trapezoid shape, for example. The depth of the third recess 51 (the length in the Z direction) is a depth that takes into account the amount of expansion of the battery 10. That is, the depth of the third recess 51 is a depth corresponding to the amount of expansion in the Z direction of the most expanded region (for example, the central region of the bottom surface 11 d) of the bottom surface 11 d of the case 11. The depth of the third recess 51 is, for example, about 0.5 to 4.0 mm (or 1.0 to 3.0 mm).
 第3凸部52,52は、底壁部50におけるケース11の第2角部11f,11fと対向する位置に設けられている。第3凸部52は、Z方向において、ケース11の底面11dに近づく側に突出している。第3凸部52の先端面52aは、ケース11の第2角部11fに接触している。先端面52aは、X方向における底壁部50の一端から他端に延びている。第3凸部52,52の先端面52a,52aには、電池10(ケース11)が載置されている。すなわち、第3凸部52,52の先端面52a,52aは、Z方向において、電池10を位置決めする。 The third convex portions 52 and 52 are provided at positions facing the second corner portions 11f and 11f of the case 11 in the bottom wall portion 50. The 3rd convex part 52 protrudes in the Z direction at the side which approaches the bottom face 11d of the case 11. As shown in FIG. The tip surface 52 a of the third convex portion 52 is in contact with the second corner portion 11 f of the case 11. The front end surface 52a extends from one end of the bottom wall portion 50 in the X direction to the other end. The battery 10 (case 11) is placed on the tip surfaces 52a, 52a of the third convex portions 52, 52. That is, the tip surfaces 52a and 52a of the third convex portions 52 and 52 position the battery 10 in the Z direction.
 底壁部50は、1対の脚部53,53を更に有している。脚部53,53は、第3凸部52,52に対してケース11の反対側に設けられている。脚部53,53には、上述したボルト6が挿通される貫通孔53aが設けられている。 The bottom wall portion 50 further includes a pair of leg portions 53 and 53. The leg portions 53 and 53 are provided on the opposite side of the case 11 with respect to the third convex portions 52 and 52. The leg portions 53 and 53 are provided with through holes 53a through which the bolts 6 described above are inserted.
 以上説明したように、電池モジュール1では、セルホルダ5の側壁部40における電池10のケース11の側面11cと対向する位置に第1凹部41が設けられている。これにより、ケース11の側面11cが経年劣化または過充電等によって膨張した場合、ケース11の側面11cの膨張領域が第1凹部41によって画成される第1空間S1に入り込むため、当該膨張部分と側壁部40との接触が避けられる。また、電池モジュール1では、セルホルダ5の側壁部40における電池10の溶接部13と対向する位置に第2凹部42が設けられている。これにより、溶接部13が側壁部40側に突出していた場合、溶接部13が第2凹部42によって画成される第2空間S2に入り込むため、溶接部13と側壁部40との接触が避けられる。以上により、セルホルダ5に対して電池10を適切に位置決めすることができる。 As described above, in the battery module 1, the first recess 41 is provided at a position facing the side surface 11 c of the case 11 of the battery 10 in the side wall portion 40 of the cell holder 5. As a result, when the side surface 11c of the case 11 expands due to aging or overcharge, the expansion region of the side surface 11c of the case 11 enters the first space S1 defined by the first recess 41. Contact with the side wall 40 is avoided. In the battery module 1, a second recess 42 is provided at a position facing the welded portion 13 of the battery 10 in the side wall portion 40 of the cell holder 5. Accordingly, when the welded portion 13 protrudes toward the side wall portion 40, the welded portion 13 enters the second space S <b> 2 defined by the second concave portion 42, so that contact between the welded portion 13 and the side wall portion 40 is avoided. It is done. As described above, the battery 10 can be appropriately positioned with respect to the cell holder 5.
 また、第1凹部41は、ケース11の第1角部11e及び第2角部11fを避けるように設けられている。これにより、ケース11のうち膨張しにくい第1角部11e及び第2角部11fを利用して電池10を位置決めすることができるので、セルホルダ5に対して電池10をより適切に位置決めすることができる。 The first recess 41 is provided so as to avoid the first corner 11e and the second corner 11f of the case 11. Thereby, since the battery 10 can be positioned using the first corner portion 11e and the second corner portion 11f that are difficult to expand in the case 11, the battery 10 can be more appropriately positioned with respect to the cell holder 5. it can.
 また、底壁部50におけるケース11の底面11dと対向する位置には、第3凹部51が設けられている。これにより、ケース11の底面11dが経年劣化または過充電等によって膨張した場合、ケース11の底面11dの膨張領域が第3凹部51によって画成される第3空間S3に入り込むため、当該膨張部分と底壁部50との接触が避けられる。これにより、セルホルダ5に対して電池10をより適切に位置決めすることができる。 Further, a third concave portion 51 is provided at a position facing the bottom surface 11 d of the case 11 in the bottom wall portion 50. As a result, when the bottom surface 11d of the case 11 expands due to aging or overcharge, the expansion region of the bottom surface 11d of the case 11 enters the third space S3 defined by the third recess 51. Contact with the bottom wall 50 is avoided. Thereby, the battery 10 can be more appropriately positioned with respect to the cell holder 5.
 また、第3凹部51は、ケース11の第2角部11fを避けるように設けられている。これにより、ケース11のうち膨張しにくい第2角部11fを利用して電池10を位置決めすることができるので、セルホルダ5に対して電池10をより適切に位置決めすることができる。 The third recess 51 is provided so as to avoid the second corner 11f of the case 11. Thereby, since the battery 10 can be positioned using the second corner portion 11 f that is difficult to expand in the case 11, the battery 10 can be more appropriately positioned with respect to the cell holder 5.
 本発明は、上記実施形態に限られるものではない。例えば、第1凹部41の深さは、0.5~3.0mm(或いは1.0~2.0mm)程度とし、第3凹部51の深さは、0.5~4.0mm(或いは1.0~3.0mm)程度としたが、これらの数値は、ケース11の膨張量に応じて適宜変更されるものとする。例えば、ケース11の膨張量は、正極17及び負極18の材料、ケース11のサイズ等によって決定される。なお、ケース11のサイズ(幅方向、高さ方向、厚み方向の寸法)を大型化すると、ケース11の膨張量も大きくなるので、第1凹部41及び第3凹部51の深さも深くなる。 The present invention is not limited to the above embodiment. For example, the depth of the first recess 41 is about 0.5 to 3.0 mm (or 1.0 to 2.0 mm), and the depth of the third recess 51 is 0.5 to 4.0 mm (or 1). These numerical values are appropriately changed according to the expansion amount of the case 11. For example, the expansion amount of the case 11 is determined by the materials of the positive electrode 17 and the negative electrode 18, the size of the case 11, and the like. Note that when the size of the case 11 (width direction, height direction, thickness direction dimensions) is increased, the amount of expansion of the case 11 also increases, so that the depth of the first recess 41 and the third recess 51 also increases.
 また、負極活物質層は、必要に応じて導電助剤を含んでもよい。また、負極活物質としては、Si、Si化合物、Sn及びSn化合物の群から選択される少なくとも一つを含んでもよい。Si化合物としては、例えば、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SnSiO、LiSiO、SiOv(0<v≦2)を使用することができる。特にSi化合物は、SiOx(0.5≦x≦1.5)であってもよい。このようなシリコン系の負極活性物質を含む電池においては、一般的に充電に伴うケースの膨張が大きい。したがって、セルホルダへのケースの接触を避けるために、本発明の一側面の蓄電装置モジュールの構成を適用することが特に効果的といえる。 Moreover, the negative electrode active material layer may contain a conductive additive as necessary. The negative electrode active material may include at least one selected from the group consisting of Si, Si compounds, Sn, and Sn compounds. Examples of the Si compound include SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , can be used MnSi 2, NbSi 2, TaSi 2 , VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SnSiO 3, LiSiO, SiOv a (0 <v ≦ 2) . In particular, the Si compound may be SiOx (0.5 ≦ x ≦ 1.5). In a battery containing such a silicon-based negative electrode active material, the expansion of the case accompanying charging is generally large. Therefore, in order to avoid contact of the case with the cell holder, it can be said that it is particularly effective to apply the configuration of the power storage device module according to one aspect of the present invention.
 上記実施形態では、エンドプレート3,3同士をボルト6及びナット7で締結して配列体2及び弾性体4に拘束荷重を付加しているが、エンドプレート3,3同士を拘束バンド(金属プレート等)で連結し、拘束バンドの両端部をエンドプレート3,3にそれぞれボルト等で締結して配列体2及び弾性体4に拘束荷重を付加してもよい。 In the above embodiment, the end plates 3 and 3 are fastened to each other with the bolt 6 and the nut 7 and a restraining load is applied to the array body 2 and the elastic body 4. Etc.), and both ends of the restraint band may be fastened to the end plates 3 and 3 with bolts or the like, respectively, and a restraint load may be applied to the array body 2 and the elastic body 4.
 また、上記実施形態では、蓄電装置がリチウムイオン二次電池等の二次電池であるが、本発明は、特にそのような二次電池には限られず、例えば電気二重層キャパシタまたはリチウムイオンキャパシタ等の蓄電装置を備えた蓄電装置モジュールにも適用可能である。
[実験例]
In the above embodiment, the power storage device is a secondary battery such as a lithium ion secondary battery. However, the present invention is not particularly limited to such a secondary battery, such as an electric double layer capacitor or a lithium ion capacitor. The present invention can also be applied to a power storage device module including this power storage device.
[Experimental example]
 電池モジュール1に対応した実験装置を用いて、電池のケースを膨張させる実験を行った。図6には実験結果が示されている。図6の横軸は、ケースの側面におけるケースの底面からの距離を示し、底面を0mmとしている。ケースの側面の全長は、約120mmである。図6の縦軸は、側方に向かうケースの膨張量を示している。 Using the experimental device corresponding to the battery module 1, an experiment was conducted to expand the battery case. FIG. 6 shows the experimental results. The horizontal axis in FIG. 6 indicates the distance from the bottom surface of the case on the side surface of the case, and the bottom surface is 0 mm. The total length of the side surface of the case is about 120 mm. The vertical axis | shaft of FIG. 6 has shown the expansion amount of the case which goes to a side.
 図6の「初期特後」のデータは、電池にエージングを行った後(出荷時の状態)のケースの膨張量を示している。「75℃ccサイクル後」のデータは、温度75℃の環境下において、電池の劣化膨張を促進させるヒートサイクル試験後のケースの膨張量を示している。なお、試験時の設定温度が高いほど、電池の劣化膨張は促進する。また、「正極端子側」のデータは、正極端子側の側面の膨張量を示し、「負極端子側」のデータは、負極端子側の側面の膨張量を示している。 The data of “initial special time” in FIG. 6 indicate the amount of expansion of the case after aging the battery (the state at the time of shipment). The data “after 75 ° C. cc cycle” indicates the amount of expansion of the case after a heat cycle test that promotes deterioration and expansion of the battery in an environment at a temperature of 75 ° C. In addition, deterioration and expansion of the battery are promoted as the set temperature during the test is higher. The data on the “positive terminal side” indicates the expansion amount of the side surface on the positive electrode terminal side, and the data on the “negative electrode terminal side” indicates the expansion amount of the side surface on the negative electrode terminal side.
 実験条件は、以下である。
  正極:密度3.13g/cm、厚み134.4μm(金属箔の厚み15μmを含む)。
  正極活性物質:Li1.1Ni0.5Co0.2Mn0.3Zn0.05、粒径(メジアン径(D50)):5.7μm、比表面積(BET法による):0.50m/g。
  負極:密度1.40g/cm、厚み:166.7μm(金属箔の厚み10μmを含む)。
  負極活性物質:天然黒鉛系、粒径(メジアン径(D50)):20μm、比表面積(BET法による):3.7m/g。
  電解液:LiPF6を1.0MOL/L、vol%の比でEC/EMC/DMC=30/30/40。
The experimental conditions are as follows.
Positive electrode: density 3.13 g / cm 3 , thickness 134.4 μm (including metal foil thickness 15 μm).
Positive electrode active material: Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 Zn 0.05 , particle size (median diameter (D50)): 5.7 μm, specific surface area (by BET method): 0.50 m 2 / g.
Negative electrode: density 1.40 g / cm 3 , thickness: 166.7 μm (including metal foil thickness 10 μm).
Negative electrode active material: natural graphite, particle size (median diameter (D50)): 20 μm, specific surface area (by BET method): 3.7 m 2 / g.
Electrolyte solution: EC / EMC / DMC = 30/30/40 at a ratio of 1.0 MOL / L and vol% of LiPF6.
 図6に示されるように、「初期特後」のケースの膨張量は、ケースの側面の位置に依らず、0mm~0.3mmの範囲に収まった。その一方で、「75℃ccサイクル後」のケースの膨張量は、ケースの底面からの距離が60~100mm(特に80mm近傍で)の位置で最大値1.6mm~1.8mmとなる凸状の二次曲線となった。なお、ケースの底面からの距離が100mm以上の領域は、タブ及び導電部材と対向するため、ケースの膨張量が他の位置よりも少なかった。 As shown in FIG. 6, the expansion amount of the case of “Initial Special Post” was within the range of 0 mm to 0.3 mm regardless of the position of the side surface of the case. On the other hand, the amount of expansion of the case after “75 ° C. cc cycle” is a convex shape with a maximum value of 1.6 mm to 1.8 mm at a distance of 60 to 100 mm (especially around 80 mm) from the bottom surface of the case. Became a quadratic curve. In addition, since the area | region whose distance from the bottom face of a case is 100 mm or more opposes a tab and an electrically-conductive member, the amount of expansion | swelling of a case was less than other positions.
 以上の実験結果から、セルホルダ5の側壁部40に第1凹部41及び第2凹部42を設けることが効果的であることが明らかである。 From the above experimental results, it is clear that it is effective to provide the first concave portion 41 and the second concave portion 42 in the side wall portion 40 of the cell holder 5.
 蓄電装置ホルダに対して蓄電装置を適切に位置決めすることができる蓄電装置モジュールが提供される。 A power storage device module that can appropriately position the power storage device with respect to the power storage device holder is provided.
 1…電池モジュール(蓄電装置モジュール)、2…配列体、3…エンドプレート(拘束部材)、5…セルホルダ(蓄電装置ホルダ)、10…電池(蓄電装置)、11…ケース、11c…側面、11d…底面、11e…第1角部(角部)、11f…第2角部(角部)、12…蓋、13…溶接部、40…側壁部、41…第1凹部、42…第2凹部、50…底壁部、51…第3凹部。 DESCRIPTION OF SYMBOLS 1 ... Battery module (electric storage apparatus module), 2 ... Array, 3 ... End plate (restraint member), 5 ... Cell holder (electric storage apparatus holder), 10 ... Battery (electric storage apparatus), 11 ... Case, 11c ... Side surface, 11d ... bottom surface, 11e ... first corner (corner), 11f ... second corner (corner), 12 ... lid, 13 ... weld, 40 ... side wall, 41 ... first recess, 42 ... second recess 50 ... bottom wall portion, 51 ... third recess.

Claims (5)

  1.  蓄電装置ホルダによって保持された蓄電装置を複数配列してなる配列体と、
     前記配列体に対して前記蓄電装置の配列方向に拘束荷重を付加する拘束部材と、を備え、
     前記蓄電装置は、上端が開口したケースと、前記ケースの開口を覆い塞ぐ蓋と、前記ケースと前記蓋との間に配置され、前記ケースの開口縁部と前記蓋の縁部とを溶接した溶接部と、を有し、
     前記蓄電装置ホルダは、前記蓄電装置が載置される底壁部と、前記蓄電装置を位置決めする1対の側壁部と、を有し、
     前記側壁部における前記ケースの側面と対向する位置には、第1凹部が設けられ、
     前記側壁部における前記溶接部と対向する位置には、第2凹部が設けられている、蓄電装置モジュール。
    An array formed by arranging a plurality of power storage devices held by the power storage device holder;
    A restraining member that applies a restraining load to the array in the array direction of the power storage device, and
    The power storage device is disposed between a case with an open upper end, a lid that covers and closes the opening of the case, and the case and the lid, and welding the opening edge of the case and the edge of the lid A weld, and
    The power storage device holder includes a bottom wall portion on which the power storage device is placed, and a pair of side wall portions that position the power storage device.
    A first recess is provided at a position facing the side surface of the case in the side wall,
    The power storage device module, wherein a second recess is provided at a position facing the welded portion in the side wall portion.
  2.  前記第1凹部は、前記ケースの角部を避けるように設けられている、請求項1記載の蓄電装置モジュール。 The power storage device module according to claim 1, wherein the first concave portion is provided so as to avoid a corner portion of the case.
  3.  前記底壁部における前記ケースの底面と対向する位置には、第3凹部が設けられている、請求項1又は2記載の蓄電装置モジュール。 3. The power storage device module according to claim 1, wherein a third concave portion is provided at a position facing the bottom surface of the case in the bottom wall portion.
  4.  前記第3凹部は、前記ケースの下側の角部を避けるように設けられている、請求項3記載の蓄電装置モジュール。 The power storage device module according to claim 3, wherein the third recess is provided so as to avoid a lower corner of the case.
  5.  蓄電装置ホルダによって保持された蓄電装置を複数配列してなる配列体と、
     前記配列体に対して前記蓄電装置の配列方向に拘束荷重を付加する拘束部材と、を備え、
     前記蓄電装置ホルダは、前記蓄電装置が載置される底壁部と、前記蓄電装置を位置決めする1対の側壁部と、を有し、
     前記底壁部における前記蓄電装置の底面と対向する位置には、凹部が設けられている、蓄電装置モジュール。
    An array formed by arranging a plurality of power storage devices held by the power storage device holder;
    A restraining member that applies a restraining load to the array in the array direction of the power storage device, and
    The power storage device holder includes a bottom wall portion on which the power storage device is placed, and a pair of side wall portions that position the power storage device.
    A power storage device module, wherein a recess is provided at a position facing the bottom surface of the power storage device in the bottom wall portion.
PCT/JP2016/061565 2015-04-24 2016-04-08 Electrical-storage-device module WO2016171013A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-089200 2015-04-24
JP2015089200A JP6657590B2 (en) 2015-04-24 2015-04-24 Power storage device holder and power storage device module
JP2015101108A JP6547407B2 (en) 2015-05-18 2015-05-18 Power storage device module
JP2015-101108 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016171013A1 true WO2016171013A1 (en) 2016-10-27

Family

ID=57143020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061565 WO2016171013A1 (en) 2015-04-24 2016-04-08 Electrical-storage-device module

Country Status (1)

Country Link
WO (1) WO2016171013A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187781A (en) * 2008-02-06 2009-08-20 Toshiba Corp Battery pack
JP2012119157A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Battery pack and electric vehicle equipped with the same
JP2014010983A (en) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd Power supply device, and vehicle and power storage device having the power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187781A (en) * 2008-02-06 2009-08-20 Toshiba Corp Battery pack
JP2012119157A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Battery pack and electric vehicle equipped with the same
JP2014010983A (en) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd Power supply device, and vehicle and power storage device having the power supply device

Similar Documents

Publication Publication Date Title
KR102045886B1 (en) Electric storage device and manufacturing the same
JP6166994B2 (en) Assembled battery
EP3133669B1 (en) Battery module having improved safety and operational lifespan
KR101983939B1 (en) Sealed cell and cell pack
JP2015011919A (en) Power unit
JP6967192B2 (en) Secondary battery and assembled battery
WO2014003032A1 (en) Secondary cell
JP6090469B2 (en) Assembled battery
KR101779156B1 (en) Pouch type secondary battery and method of fabricating the same
KR101726891B1 (en) Secondary Battery Including Damping Member
JP6507321B2 (en) Battery module and battery pack including the same
KR101821488B1 (en) Battery
KR101897223B1 (en) Pouch type secondary battery
JP6488812B2 (en) Battery module
JP6547407B2 (en) Power storage device module
WO2016171013A1 (en) Electrical-storage-device module
US20200295313A1 (en) Pouch-type secondary battery and battery module including the same
JP6507803B2 (en) Battery module
JP7393729B2 (en) Energy storage element
JP2013164967A (en) Square secondary battery
JP2011159389A (en) Sealed flat type secondary battery
KR20170073856A (en) Battery Cell Comprising Integrated Support Member Provided at Edge Sealing Part
KR20160054268A (en) Secondary battery cell and battery module including the same
JP6493144B2 (en) Battery module
CN218586037U (en) Battery cell, battery and power consumption device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783034

Country of ref document: EP

Kind code of ref document: A1