WO2016170983A1 - 端末装置、基地局装置、集積回路、および、通信方法 - Google Patents
端末装置、基地局装置、集積回路、および、通信方法 Download PDFInfo
- Publication number
- WO2016170983A1 WO2016170983A1 PCT/JP2016/061247 JP2016061247W WO2016170983A1 WO 2016170983 A1 WO2016170983 A1 WO 2016170983A1 JP 2016061247 W JP2016061247 W JP 2016061247W WO 2016170983 A1 WO2016170983 A1 WO 2016170983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- harq
- bit
- uplink
- information
- harq process
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 266
- 238000004891 communication Methods 0.000 title claims description 22
- 230000008569 process Effects 0.000 claims abstract description 202
- 230000005540 biological transmission Effects 0.000 claims description 87
- 230000001360 synchronised effect Effects 0.000 description 75
- 238000012545 processing Methods 0.000 description 67
- 230000004044 response Effects 0.000 description 65
- 230000006870 function Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 21
- 239000000872 buffer Substances 0.000 description 14
- 230000011664 signaling Effects 0.000 description 12
- 230000002776 aggregation Effects 0.000 description 11
- 238000004220 aggregation Methods 0.000 description 11
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 6
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1822—Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1896—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/40—Support for services or applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present invention relates to a terminal device, a base station device, an integrated circuit, and a communication method.
- LTE Long Term Evolution
- EUTRA Evolved Universal Terrestrial Radio Access
- EUTRAN Evolved Universal Terrestrial Radio Access Network
- 3rd Generation Partnership Project: 3GPP 3rd Generation Partnership Project
- a base station apparatus is also called eNodeB (evolvedvolveNodeB), and a terminal device is also called UE (UserUEEquipment).
- LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape. A single base station apparatus may manage a plurality of cells.
- LTE supports Time Division Duplex (TDD).
- TDD Time Division Duplex
- uplink signals and downlink signals are time division multiplexed.
- LTE corresponds to Frequency Division Duplex (FDD).
- FDD Frequency Division Duplex
- LTE provides HARQ (Hybrid Automatic Repeat Rerequire) functionality in the MAC (Medium Access Control) layer.
- the HARQ function in the downlink has the characteristics of asynchronous HARQ
- the HARQ function in the uplink has the characteristics of synchronous HARQ (Non-Patent Document 1).
- Non-Patent Document 2 introduction of asynchronous HARQ in the uplink has been studied (Non-Patent Document 2).
- a specific method for introducing asynchronous HARQ in the uplink has not been sufficiently studied.
- a means for switching between synchronous HARQ and asynchronous HARQ in the uplink has not been sufficiently studied.
- a means for specifying the HARQ process to which the uplink grant corresponds has not been sufficiently studied.
- the processing method of the HARQ buffer has not been sufficiently studied.
- the present invention provides a terminal device capable of efficiently communicating with a base station device, an integrated circuit mounted on the terminal device, a communication method used for the terminal device, a base station device communicating with the terminal device, and the base An integrated circuit mounted on a station apparatus and a communication method used for the base station apparatus.
- the first aspect of the present invention is a terminal device, comprising: a receiving unit that receives a control channel including a DCI (Downlink Control Information) format; and a transmitting unit that transmits a PUSCH (Physical Uplink Shared Channel).
- the DCI format includes information for indicating an uplink index and an HARQ (Hybrid Repeat reQuest) process number, and both the first bit and the second bit of the uplink index are 1
- the HARQ process number of the PUSCH corresponding to the first bit is X
- the HARQ process number of the PUSCH corresponding to the second bit is mod (X + 1, Z).
- mod (X + 1, Z) is a function that outputs the remainder when (X + 1) is divided by Z.
- X is determined based on information for indicating the HARQ process number, and Z is the same value as the maximum number of HARQ processes in the serving cell, which is determined by uplink / downlink configuration.
- the 2nd aspect of this invention is a base station apparatus, Comprising: The transmission part which transmits the control channel containing DCI (Downlink (control) Information) format, and the reception which receives PUSCH (Physical (uplink) Shared (Channel))
- the DCI format includes information for indicating an uplink index and a HARQ (Hybrid Automatic Repeat reQuest) process number, and the first bit and the second bit of the uplink index Are both set to 1, the HARQ process number of the PUSCH corresponding to the first bit is X, and the HARQ process number of the PUSCH corresponding to the second bit is mod (X + 1).
- the 3rd aspect of this invention is a communication method used for a terminal device, Comprising:
- the control channel containing DCI (Downlink (control) Information (format) information is received, PUSCH (Physical (uplink) Shared (Channel) Channel) is transmitted.
- the DCI format includes information for indicating an uplink index and an HARQ (Hybrid Repeat reQuest) process number, and both the first bit and the second bit of the uplink index are set to 1. If set, the HARQ process number of the PUSCH corresponding to the first bit is X, and the HARQ process number of the PUSCH corresponding to the second bit is mod (X + 1, Z).
- Mod (X + 1, Z) is a function that outputs the remainder when (X + 1) is divided by Z.
- X is determined based on information for indicating the HARQ process number
- Z is the same value as the maximum number of HARQ processes in the serving cell, which is determined by uplink / downlink configuration.
- the 4th aspect of this invention is a communication method used for a base station apparatus, Comprising: It transmits a control channel containing DCI (Downlink
- the DCI format includes information for indicating an uplink index and a HARQ (Hybrid Automatic Repeat reQuest) process number, and both the first bit and the second bit of the uplink index are 1
- the HARQ process number of the PUSCH corresponding to the first bit is X
- the HARQ process number of the PUSCH corresponding to the second bit is mod (X + 1, Z).
- mod (X + 1, Z) is a function that outputs the remainder when (X + 1) is divided by Z.
- X is determined based on the information for indicating the HARQ process number, and Z is the same value as the maximum number of HARQ processes in the serving cell, which is determined by uplink / downlink configuration.
- the 5th aspect of this invention is an integrated circuit mounted in a terminal device, Comprising: The receiving circuit which receives a control channel containing DCI (Downlink (R) Control (R) Information) format, PUSCH (Physical
- the X is determined based on information for indicating the HARQ process number, and the Z is determined by the uplink / downlink configuration of the HARQ process in the serving cell. It is the same value as the maximum number.
- the 6th aspect of this invention is an integrated circuit mounted in a base station apparatus, Comprising: The transmission circuit which transmits the control channel containing a DCI (Downlink (control) Information) format, PUSCH (Physical
- the DCI format includes information for indicating an uplink index and an HARQ (Hybrid Automatic Repeat reQuest) process number, and a first bit of the uplink index, And if both of the second bits are set to 1, the HARQ process number of the PUSCH corresponding to the first bit is X and the HARQ process of the PUSCH corresponding to the second bit
- the number is mod (X + 1, Z), and the mod (X + 1, Z) is obtained by dividing (X + 1) by Z.
- the X is determined based on information for indicating the HARQ process number, and Z is determined by the uplink / downlink configuration, and the HARQ process in the serving cell It is the same value as the maximum number of.
- the terminal device can efficiently communicate with the base station device.
- FIG. 1 is a conceptual diagram of the wireless communication system of the present embodiment.
- the radio communication system includes terminal apparatuses 1A to 1C and a base station apparatus 3.
- the terminal devices 1A to 1C are referred to as the terminal device 1.
- the terminal device 1 is set with a plurality of serving cells.
- a technique in which the terminal device 1 communicates via a plurality of serving cells is referred to as cell aggregation or carrier aggregation.
- the present invention may be applied to each of a plurality of serving cells set for the terminal device 1.
- the present invention may be applied to some of the set serving cells.
- the present invention may be applied to each of a plurality of set serving cell groups. Further, the present invention may be applied to a part of the set groups of a plurality of serving cells.
- carrier aggregation a plurality of set serving cells are also referred to as aggregated serving cells.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- TDD may be applied to all of the plurality of serving cells.
- TDD may be applied to all of a plurality of serving cells.
- a serving cell to which TDD is applied and a serving cell to which FDD is applied may be aggregated.
- the set plurality of serving cells include one primary cell and one or more secondary cells.
- the primary cell is a cell in which an initial connection establishment (initial connection establishment) procedure has been performed, a cell that has started a connection ⁇ re-establishment procedure, or a cell designated as a primary cell in a handover procedure.
- a secondary cell may be set / added when an RRC (Radio Resource Control) connection is established or later.
- a carrier corresponding to a serving cell is referred to as a downlink component carrier.
- a carrier corresponding to a serving cell is referred to as an uplink component carrier.
- the downlink component carrier and the uplink component carrier are collectively referred to as a component carrier.
- the uplink component carrier and the downlink component carrier correspond to different carrier frequencies.
- the uplink component carrier and the downlink component carrier correspond to the same carrier frequency.
- the terminal device 1 can perform transmission and / or reception on a plurality of physical channels simultaneously in a plurality of serving cells (component carriers).
- One physical channel is transmitted in one serving cell (component carrier) among a plurality of serving cells (component carriers).
- FIG. 2 is a diagram illustrating an example of the structure of the MAC layer for the uplink in which carrier aggregation is set in the present embodiment.
- the HARQ entity manages multiple HARQ processes in parallel.
- the HARQ process is associated with the HARQ buffer. That is, the HARQ entity is associated with multiple HARQ buffers.
- the HARQ process stores the MAC layer data in the HARQ buffer.
- the HARQ process instructs the physical layer to transmit the MAC layer data.
- At least one transport block is generated for each serving cell for each TTI (Transmission Time Interval).
- TTI Transmission Time Interval
- Each transport block and the HARQ retransmissions for that transport block are mapped to one serving cell.
- TTI is a subframe.
- the transport block is data of the MAC layer transmitted by UL-SCH (uplink shared channel).
- transport block In the uplink of the present embodiment, “transport block”, “MAC PDU (Protocol Data Unit)”, “MAC layer data”, “UL-SCH”, “UL-SCH data”, and “uplink data” "Shall be the same.
- MAC PDU Protocol Data Unit
- the uplink physical channel is used for transmitting information output from an upper layer.
- -PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- PRACH Physical Random Access Channel
- Uplink Control Information includes downlink channel state information (Channel State Information: CSI) and a scheduling request (Scheduling Request: used to request PUSCH (Uplink-Shared Channel: UL-SCH) resources for initial transmission.
- CSI Downlink Channel State Information
- HARQ-ACK Hybrid, Automatic, Repeat, Request, ACKnowledgement
- HARQ-ACK indicates ACK (acknowledgement) or NACK (negative-acknowledgement).
- HARQ-ACK is also referred to as ACK / NACK, HARQ feedback, HARQ response, or HARQ control information.
- the scheduling request includes a positive scheduling request (positive scheduling request) or a negative scheduling request (negative scheduling request).
- a positive scheduling request indicates requesting UL-SCH resources for initial transmission.
- a negative scheduling request indicates that no UL-SCH resource is required for initial transmission.
- the PUSCH is used to transmit uplink data (Uplink-Shared Channel: UL-SCH).
- the PUSCH may also be used to transmit HARQ-ACK and / or channel state information along with uplink data.
- PUSCH may be used to transmit only channel state information. Further, PUSCH may be used to transmit only HARQ-ACK and channel state information.
- the base station device 3 and the terminal device 1 exchange (transmit / receive) signals in a higher layer.
- the base station apparatus 3 and the terminal apparatus 1 may transmit and receive RRC signaling in a radio resource control (RRC: “Radio Resource Control”) layer.
- RRC radio Resource Control
- the base station device 3 and the terminal device 1 may transmit and receive MAC CE in a medium access control (MAC) layer.
- MAC medium access control
- RRC signaling and / or MAC CE is also referred to as higher layer signaling.
- RRC signaling and / or MAC CE is included in the transport block.
- RRC signaling “RRC layer information”, “RRC layer signal”, “RRC layer parameter”, “RRC message”, and “RRC information element” are the same. .
- the PUSCH is used to transmit RRC signaling and MAC CE.
- the RRC signaling transmitted from the base station apparatus 3 may be common signaling for a plurality of terminal apparatuses 1 in the cell.
- the RRC signaling transmitted from the base station device 3 may be signaling dedicated to a certain terminal device 1 (also referred to as dedicated signaling). That is, user apparatus specific (user apparatus specific) information is transmitted to a certain terminal apparatus 1 using dedicated signaling.
- PRACH is used to transmit a random access preamble.
- PRACH indicates the initial connection establishment (initial connection establishment) procedure, handover procedure, connection re-establishment (connection re-establishment) procedure, synchronization (timing adjustment) for uplink transmission, and PUSCH (UL-SCH) resource requirements. Used for.
- uplink physical signals are used.
- the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
- UL RS Uplink Reference Signal
- the downlink physical channel is used for transmitting information output from an upper layer.
- PBCH Physical Broadcast Channel
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid automatic repeat request Indicator Channel
- PDCCH Physical Downlink Control Channel
- EPDCCH Enhanced Physical Downlink Control Channel
- PDSCH Physical Downlink Shared Channel
- PMCH Physical Multicast Channel
- the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in the terminal device 1.
- MIB Master Information Block
- BCH Broadcast Channel
- PCFICH is used for transmitting information indicating a region (OFDM symbol) used for transmission of PDCCH.
- the PHICH is used to transmit an HARQ indicator (HARQ feedback, response information) indicating ACK (ACKnowledgement) or NACK (Negative ACKnowledgement) for uplink data (Uplink Shared Channel: UL-SCH) received by the base station apparatus 3. It is done.
- HARQ indicator HARQ feedback, response information
- ACK acknowledgement
- NACK Negative ACKnowledgement
- PDCCH and EPDCCH are used to transmit downlink control information (Downlink Control Information: DCI).
- DCI Downlink Control Information
- PDCCH Downlink Control Information
- EPDCCH EPDCH
- the downlink control information is also referred to as a DCI format.
- the downlink control information transmitted on one PDCCH includes downlink grant and HARQ information, or uplink grant and HARQ information.
- the downlink grant is also referred to as downlink assignment (downlink allocation) or downlink assignment (downlink allocation).
- the downlink assignment and uplink grant are not transmitted together on one PDCCH.
- FIG. 3 is a diagram showing an example of DCI format 0 in the present embodiment.
- DCI format 0 includes uplink grant and HARQ information.
- DCI format 0 for a serving cell in which UL-DL configuration (uplink-downlink configuration) 0 is configured may include a UL index field.
- the UL index indicates the subframe in which the PUSCH transmission scheduled according to DCI format 0 is adjusted.
- the UL index includes a first bit and a second bit.
- the terminal apparatus 1 adjusts PUSCH transmission to the first subframe.
- the terminal device 1 adjusts PUSCH transmission to the second subframe.
- both the first bit and the second bit are set to “1”, the terminal device 1 adjusts the PUSCH transmission to each of the first subframe and the second subframe.
- the downlink assignment is used for scheduling a single PDSCH within a single cell.
- the downlink assignment is used for PDSCH scheduling in the same subframe as the subframe in which the downlink grant is transmitted.
- the uplink grant is used for scheduling a single PUSCH within a single cell.
- the uplink grant is used for scheduling a single PUSCH in a subframe after the subframe in which the uplink grant is transmitted.
- HARQ information includes information for indicating NDI (New Data Indicator) and transport block size.
- the HARQ information transmitted on the PDCCH together with the downlink assignment includes information indicating the number of the HARQ process in the downlink (downlink HARQ process Identifier / Identity, downlink HARQ process number).
- the HARQ information transmitted on the PDCCH together with the uplink grant related to asynchronous HARQ may also include information indicating the number of the HARQ process in the uplink (uplink HARQ process Identifier / Identity, uplink HARQ process number).
- the HARQ information transmitted on the PDCCH together with the uplink grant related to synchronous HARQ may not include information (uplink HARQ process Identifier / Identity uplink HARQ process number) indicating the number of the HARQ process in the uplink.
- NDI instructs initial transmission or re-transmission.
- a HARQ entity triggers an initial transmission to a HARQ process if the NDI provided by the HARQ information is toggled against the value of the NDI for a previous transmission of the HARQ process. Instruct them to do so.
- the HARQ entity triggers a retransmission to the HARQ process if the NDI provided by the HARQ information is not toggled compared to the value of the NDI for a previous transmission of the HARQ process. Instruct them to do so.
- the HARQ process may determine whether the NDI is toggled.
- the HARQ entity identifies the HARQ process corresponding to the uplink grant and HARQ information, and passes the uplink grant and HARQ information to the identified HARQ process.
- the HARQ process stores the uplink grant and HARQ information passed from the HARQ entity.
- CRC Cyclic Redundancy Check parity bits added to downlink control information transmitted on one PDCCH are C-RNTI (Cell-Radio Network Temporary Identifier), SPS Semi-Persistent Scheduling (C-RNTI), or Temporary. Scrambled with C-RNTI.
- C-RNTI and SPS C-RNTI are identifiers for identifying a terminal device in a cell.
- the Temporary C-RNTI is an identifier for identifying the terminal device 1 that has transmitted the random access preamble during the contention-based random access procedure.
- the C-RNTI and Temporary C-RNTI are used to control PDSCH transmission or PUSCH transmission in a single subframe.
- the SPS C-RNTI is used to periodically allocate PDSCH or PUSCH resources.
- PDSCH is used to transmit downlink data (Downlink Shared Channel: DL-SCH).
- PMCH is used to transmit multicast data (Multicast Channel: MCH).
- the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
- SS Synchronization signal
- DL RS Downlink Reference Signal
- the synchronization signal is used for the terminal device 1 to synchronize the downlink frequency domain and time domain.
- the synchronization signal is arranged in subframes 0, 1, 5, and 6 in the radio frame.
- the synchronization signal is arranged in subframes 0 and 5 in the radio frame.
- the downlink reference signal is used for the terminal device 1 to correct the propagation path of the downlink physical channel.
- the downlink reference signal is used for the terminal device 1 to calculate downlink channel state information.
- the following five types of downlink reference signals are used.
- -CRS Cell-specific Reference Signal
- URS UE-specific Reference Signal
- PDSCH PDSCH
- DMRS Demodulation Reference Signal
- EPDCCH Non-Zero Power Chanel State Information-Reference Signal
- ZP CSI-RS Zero Power Chanel State Information-Reference Signal
- MBSFN RS Multimedia Broadcast and Multicast Service over Single Frequency Network Reference signal
- PRS Positioning Reference Signal
- the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
- the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
- the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
- the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
- BCH, MCH, UL-SCH and DL-SCH are transport channels.
- a channel used in a MAC (Medium Access Control) layer is referred to as a transport channel.
- a transport channel unit used in the MAC layer is also referred to as a transport block (transport block: TB) or a MAC PDU (Protocol Data Unit).
- HARQ HybridbrAutomatic Repeat reQuest
- the transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process is performed for each code word.
- LTE supports two radio frame structures.
- the two radio frame structures are frame structure type 1 and frame structure type 2.
- Frame structure type 1 is applicable to FDD.
- Frame structure type 2 is applicable to TDD.
- FIG. 4 is a diagram showing a schematic configuration of a radio frame according to the present embodiment.
- the horizontal axis is a time axis.
- Each of the type 1 and type 2 radio frames is 10 ms long and is defined by 10 subframes.
- Each subframe is 1 ms long and is defined by two consecutive slots.
- Each of the slots is 0.5 ms long.
- the i-th subframe in the radio frame is composed of a (2 ⁇ i) th slot and a (2 ⁇ i + 1) th slot.
- the downlink subframe is a subframe reserved for downlink transmission.
- the uplink subframe is a subframe reserved for uplink transmission.
- the special subframe is composed of three fields. The three fields are DwPTS (Downlink Pilot Time Slot), GP (Guard Period), and UpPTS (Uplink Pilot Time Slot). The total length of DwPTS, GP, and UpPTS is 1 ms.
- DwPTS is a field reserved for downlink transmission.
- UpPTS is a field reserved for uplink transmission.
- GP is a field in which downlink transmission and uplink transmission are not performed. Note that the special subframe may be composed of only DwPTS and GP, or may be composed of only GP and UpPTS.
- the frame structure type 2 radio frame is composed of at least a downlink subframe, an uplink subframe, and a special subframe.
- the configuration of a frame structure type 2 radio frame is indicated by UL-DL configuration (uplink-downlink configuration).
- the terminal device 1 receives information indicating the UL-DL setting from the base station device 3.
- FIG. 5 is a table showing an example of UL-DL settings in the present embodiment. In FIG. 5, D indicates a downlink subframe, U indicates an uplink subframe, and S indicates a special subframe.
- the HARQ process to which the uplink grant corresponds is related to the subframe in which the uplink grant is received and / or the subframe in which the PUSCH (UL-SCH) corresponding to the uplink grant is transmitted.
- the terminal device 1 performs the HARQ process corresponding to the uplink grant, the subframe in which the uplink grant is received, and / or the subframe in which the PUSCH (UL-SCH) corresponding to the uplink grant is transmitted.
- FIG. 6 is a diagram illustrating an example of synchronous HARQ in the present embodiment.
- one subframe corresponds to one HARQ process.
- the numbers in the squares indicate the corresponding HARQ process numbers.
- the HARQ entity derives the HARQ process from the subframe in which the MAC layer data is transmitted or the subframe in which the DCI format 0 corresponding to the MAC layer data is detected.
- the subframe in which the MAC layer data corresponding to the UL grant is transmitted is derived from the subframe that has received the UL grant.
- the MAC layer data corresponding to the UL grant is transmitted on the PUSCH in a subframe four times after the subframe that has received the UL grant.
- a HARQ indicator is transmitted in PHICH in response to uplink transmission.
- the correspondence between the subframe in which uplink transmission is performed and the subframe in which the corresponding PHICH is transmitted is determined in advance.
- the HARQ indicator for the MAC layer data is transmitted by PHICH in a subframe four times after the subframe in which the MAC layer data is transmitted by PUSCH.
- the MAC layer data is retransmitted by PUSCH.
- FIG. 7 is a diagram illustrating an example of asynchronous HARQ in the present embodiment.
- one subframe corresponds to one HARQ process.
- the numbers in the squares indicate the corresponding HARQ process numbers.
- the HARQ entity derives the HARQ process from the HARQ information (information indicating the HARQ process number) included in the DCI format 0.
- the HARQ indicator is not transmitted in PHICH in response to uplink transmission. That is, in asynchronous HARQ, retransmission of data in the MAC layer is always scheduled via the PDCCH.
- the subframe in which the MAC layer data corresponding to the UL grant is transmitted is derived from the subframe that has received the UL grant.
- the MAC layer data corresponding to the UL grant is transmitted on the PUSCH in a subframe four times after the subframe that has received the UL grant.
- the DCI format may include two pieces of information indicating the HARQ process.
- the UL index is included in the DCI format 0 and both the first bit and the second bit in the UL index are set to “1”, two HARQs indicated by two pieces of information indicating the number of the HARQ process One of the processes may correspond to the first subframe in which PUSCH transmission is adjusted, and the other of the two HARQ processes indicated by the two pieces of information indicating the number of the HARQ process may correspond to the second subframe.
- the DCI format may include one piece of information indicating the HARQ process.
- the UL index is included in the DCI format 0 and both the first bit and the second bit in the UL index are set to “1”, one HARQ indicated by one piece of information indicating the number of the HARQ process
- the process may correspond to both the first subframe and the second subframe in which PUSCH transmission is coordinated.
- the HARQ information (HARQ process) One HARQ process X indicated by the information indicating the number of (1) may correspond to the PUSCH transmission adjusted to the first subframe. If the UL index is included in the DCI format 0, the first bit in the UL index is set to “0”, and the second bit in the UL index is set to “1”, the HARQ information (HARQ process) One HARQ process X indicated by (information indicating the number of the first) may correspond to PUSCH transmission adjusted to the second subframe.
- the HARQ information (information indicating the HARQ process number) indicates 1
- One HARQ process X corresponds to a PUSCH transmission adjusted to the first subframe (PUSCH transmission corresponding to the first bit)
- a HARQ process Y derived from the HARQ process X corresponds to the second subframe May correspond to PUSCH transmission adjusted to (PUSCH transmission corresponding to the second bit).
- Z is the maximum number of HARQ processes that the HARQ entity manages in parallel. That is, the PUSCH HARQ process number corresponding to the second bit in the UL index indicates whether both the first bit and the second bit in the UL index are set to 1, and the HARQ process number. Is provided based at least on information for indicating.
- One HARQ entity corresponding to the FDD serving cell manages eight HARQ processes in parallel.
- the information indicating the number of the HARQ process included in the DCI format 0 for the FDD serving cell to which asynchronous HARQ is applied may be 3 bits.
- FIG. 8 is a diagram illustrating an example of the maximum number of HARQ processes managed in parallel by the HARQ entity corresponding to the TDD serving cell in the present embodiment.
- the maximum number of HARQ processes managed by one HARQ entity corresponding to a TDD serving cell may be derived from the UL-DL configuration configured for the TDD serving cell.
- Information indicating the number of the HARQ process included in the DCI format 0 for the TDD serving cell to which asynchronous HARQ is applied may be derived from the UL-DL configuration configured for the TDD serving cell.
- information indicating the number of the HARQ process included in DCI format 0 for the TDD serving cell is 0 bits.
- FIG. 9 is a diagram illustrating another example of the maximum number of HARQ processes managed in parallel by the HARQ entity corresponding to the TDD serving cell according to the present embodiment.
- the maximum number of HARQ processes managed by one HARQ entity corresponding to a TDD serving cell may be based on whether synchronous HARQ or asynchronous HARQ is applied to the TDD serving cell.
- the maximum number of HARQ processes managed by one HARQ entity corresponding to the TDD serving cell is derived from the UL-DL configuration configured for the TDD serving cell. It is.
- the maximum number of HARQ processes managed by one HARQ entity corresponding to the TDD serving cell is 8 regardless of the UL-DL configuration.
- the number of bits of information indicating the number of the HARQ process included in the DCI format 0 for the TDD serving cell may be based on whether synchronous HARQ or asynchronous HARQ is applied to the TDD serving cell. In FIG. 9, when asynchronous HARQ is applied to a TDD serving cell, the number of bits of information indicating the number of the HARQ process included in DCI format 0 for the TDD serving cell is 3 bits regardless of the UL-DL setting.
- the terminal apparatus 1 may control whether synchronous HARQ or asynchronous HARQ is applied for each serving cell having an uplink component carrier or for each HARQ entity. That is, the HARQ process to which synchronous HARQ is applied and the HARQ process to which asynchronous HARQ is applied may not correspond to the same serving cell. That is, the HARQ process to which synchronous HARQ is applied and the HARQ process to which asynchronous HARQ is applied may not correspond to the same HARQ entity.
- the base station apparatus 3 may transmit information on the RRC layer instructing asynchronous HARQ to a certain serving cell to the terminal apparatus 1.
- the terminal device 1 may apply asynchronous HARQ to the corresponding serving cell (transmission in the corresponding serving cell) when the information of the RRC layer instructing asynchronous HARQ is set in the RRC layer.
- the terminal device 1 may apply synchronous HARQ to a corresponding serving cell when the information of the RRC layer instructing asynchronous HARQ is not set in the RRC layer.
- the information of the RRC layer instructing asynchronous HARQ may be information indicating enablement of asynchronous HARQ.
- the base station apparatus 3 may transmit to the terminal apparatus 1 information on the RRC layer instructing synchronous HARQ or asynchronous HARQ to a certain serving cell.
- the terminal device 1 may apply asynchronous HARQ to the corresponding serving cell when information of the RRC layer instructing asynchronous HARQ is set in the RRC layer.
- the terminal device 1 may apply synchronous HARQ to a corresponding serving cell when the information of the RRC layer instructing synchronous HARQ is not set in the RRC layer.
- FIG. 10 is a diagram illustrating a first example of means for switching between synchronous HARQ and asynchronous HARQ in the present embodiment.
- FIG. 10 which of synchronous HARQ and asynchronous HARQ is applied in the uplink of the serving cell is derived from the type of the serving cell (primary cell, secondary cell).
- synchronous HARQ is always applied to the uplink of the primary cell (uplink transmission in the primary cell).
- synchronous HARQ or asynchronous HARQ is applied to the uplink of the secondary cell (uplink transmission in the secondary cell) based on the RRC layer information for the secondary cell. Accordingly, it is possible to control in the RRC layer whether the synchronous HARQ or the asynchronous HARQ is applied to the secondary cell by using the primary cell so that the synchronous HARQ is always applied in the uplink.
- FIG. 11 is a diagram illustrating a second example of means for switching between synchronous HARQ and asynchronous HARQ in the present embodiment.
- which of synchronous HARQ and asynchronous HARQ is applied in the uplink is derived from an RNTI (Radio Network Temporary Identifier) corresponding to the uplink grant.
- the MAC layer data corresponding to the uplink grant received on the PDCCH including the CRC parity bit scrambled by the Temporary C-RNTI or SPS C-RNTI uplink data Synchronous HARQ is always applied to (transmission).
- synchronous HARQ or asynchronous HARQ is applied to MAC layer data corresponding to an uplink grant received on PDCCH including CRC parity bits scrambled by C-RNTI, based on RRC layer information. Is done.
- FIG. 12 is a diagram illustrating a third example of means for switching between synchronous HARQ and asynchronous HARQ in the present embodiment.
- whether synchronous HARQ or asynchronous HARQ is applied in the uplink is derived from the type of search space in which the uplink grant is received.
- synchronous HARQ is always applied to the MAC layer data corresponding to the uplink grant received in the common search space (Common (Search Space).
- synchronous HARQ or asynchronous HARQ is applied to the MAC layer data corresponding to the uplink grant received in the UE-specific search space (UE-specific Search Space) based on the information of the RRC layer. .
- the UE-specific search space is derived from at least the C-RNTI value set by the terminal device 1. That is, the UE-specific search space is derived individually for each terminal device 1.
- the common search space is a search space common among the plurality of terminal devices 1.
- the terminal device 1 that does not support asynchronous HARQ and the terminal device 1 that supports asynchronous HARQ share the same common search space.
- the common search space broadcasts a common PDCCH to the terminal device 1 that does not support asynchronous HARQ and the terminal device 1 that supports asynchronous HARQ. Therefore, it is preferable that the DCI format 0 transmitted in the common search space has the same payload size as before.
- the DCI format 0 transmitted in the common search space does not include information for indicating the HARQ process number. Only the DCI format 0 transmitted in the UE-specific search space includes information for indicating the number of the HARQ process.
- the number of the HARQ process is assigned to DCI format 0 transmitted in the common search space. It is not necessary to add information for indicating, and the payload size of DCI format 0 transmitted in the common search space is the same as the conventional one.
- FIG. 13 is a diagram illustrating a fourth example of means for switching between synchronous HARQ and asynchronous HARQ in the present embodiment.
- whether synchronous HARQ or asynchronous HARQ is applied in the uplink is derived from the type of random access procedure.
- the MAC layer data corresponding to the uplink grant included in the random access response related to the contention-based random access procedure (contention ⁇ based random access ⁇ ⁇ procedure) is always synchronized.
- HARQ is applied.
- the MAC layer data corresponding to the uplink grant included in the random access response related to the non-contention-based random access procedure is based on the RRC layer information. Synchronous HARQ or asynchronous HARQ is applied.
- asynchronous HARQ may be applied to the primary cell.
- synchronous HARQ may be applied to transmission of the random access message 3 in the primary cell.
- synchronous HARQ may be applied to MAC layer data corresponding to an uplink grant received in the common search space in the primary cell.
- the first to fourth examples have been described with reference to FIGS. 10 to 13, but the specific configuration is not limited to the first to fourth examples. Further, design changes and the like within the scope not departing from the gist of the present invention are included. The present embodiment also includes embodiments obtained by appropriately combining the means of the first to fourth examples within the technical scope of the present invention.
- the random access procedure is described below.
- the random access procedure may be executed in the primary cell and the secondary cell. However, only one random access procedure is executed at any point in the time domain. That is, a plurality of random access procedures are not executed simultaneously.
- a contention-based random access procedure (contention-based random access procedure) and a non-contention-based random access procedure (non-contention-based random access procedure) may be executed in the primary cell.
- a non-contention based random access procedure may be performed in the secondary cell.
- the contention-based random access procedure is not executed in the secondary cell.
- the random access preamble may be transmitted on the PRACH in the primary cell.
- the terminal device 1 receives information (RRC message) related to the random access procedure in the primary cell from the base station device 3.
- the information regarding the random access procedure in the primary cell includes information indicating a set of PRACH resources in the primary cell.
- the random access preamble may be transmitted on the PRACH in the secondary cell.
- the terminal device 1 receives information (RRC message) related to the random access procedure in the secondary cell from the base station device 3.
- the information regarding the random access procedure in the secondary cell includes information indicating a set of PRACH resources in the secondary cell.
- the index of the random access preamble is selected by the terminal device 1 itself.
- an index of a random access preamble is selected based on information received from the base station device 3 by the terminal device 1.
- the contention-based random access procedure is executed by the terminal device 1 and the index of the random access preamble is selected by the terminal device 1 itself.
- the random access response for the primary cell or the secondary cell is transmitted on the PDSCH in the primary cell.
- the random access response includes an uplink grant field mapped to the uplink grant and a Temporary C-RNTI field mapped to information for indicating the Temporary C-RNTI.
- the uplink grant included in the random access response is also referred to as a random access response grant.
- the terminal device 1 selects the random access preamble based on the information received from the base station device 3.
- the station apparatus 1 considers that the non-contention based random access procedure has been successfully completed, and transmits the PUSCH based on the uplink grant included in the random access response.
- the received random access response includes a random access preamble identifier corresponding to the transmitted random access preamble, and the terminal device 1 itself selects the random access preamble
- the random access response that received the Temporary C-RNTI It is set to the value of the included Temporary C-RNTI field, and the random access message 3 is transmitted on the PUSCH based on the uplink grant included in the random access response.
- the PUSCH corresponding to the uplink grant included in the random access response is transmitted in the serving cell in which the corresponding preamble is transmitted on the PRACH.
- the PUSCH corresponding to the uplink grant included in the random access response and the scrambling of PUSCH retransmission of the same transport block are based on C-RNTI.
- Temporary C-RNTI When Temporary C-RNTI is set, the PUSCH corresponding to the uplink grant included in the random access response and the scrambling of PUSCH retransmission of the same transport block are based on Temporary C-RNTI.
- the PUSCH retransmission of the transport block transmitted on the PUSCH corresponding to the uplink grant included in the random access response is accompanied by a CRC parity bit scrambled by the Temporary C-RNTI.
- Scheduled DCI format 0. The DCI format 0 is transmitted on the PDCCH of a common search space (Common Search Space).
- FIG. 14 is a diagram illustrating an example of a random access response in the present embodiment.
- one MAC PDU can contain multiple random access responses.
- MAC RAR Random Access Response
- the MAC PDU of FIG. 14 includes one MAC header, n random access responses, and padding.
- one MAC header includes n E / T / RAPID subheaders (E / T / RAPID field).
- the E / T / RAPID subheader includes an E field (Extension field), a T field (Type field), and a RAPID field (Random field Access Preamble field IDentifier field).
- the E field is a flag that indicates whether many good fields are present in the MAC header.
- the E field is set to “1” to indicate at least another set of E / T / RAPID fields to follow.
- the E field is set to “0” to indicate that MAC RAR or padding starts from the next byte.
- the T field is a flag for indicating whether the MAC subheader includes a RAPID field or a back-off indicator field.
- the T field is set to “1” to indicate the presence of the RAPID field in the MAC subheader.
- the RAPID field specifies the transmitted random access preamble.
- the terminal device 1 considers that the random access response has been successfully received, and processes the corresponding MAC RAR.
- the MAC RAR includes an R field, a timing advance command field, an uplink grant field, and a Temporary C-RNTI field.
- the R field is a reserved bit set to 0.
- Timing advance command field indicates the index value T A which is used to control the amount of timing adjustment for transmission PUSCH / SRS.
- the uplink grant field indicates a PUSCH resource used in the uplink.
- An uplink ring grant is mapped to the uplink grant field.
- the Temporary C-RNTI field indicates the Temporary C-RNTI used by the terminal device 1 during the contention-based random access procedure.
- the HARQ process number corresponding to the uplink grant included in the random access response related to the non-contention based random access procedure is set. There is a problem that cannot be identified.
- the Temporary C-RNTI field included in the random access response related to the non-contention-based random access procedure in the serving cell to which asynchronous HARQ is applied corresponds to the HARQ process corresponding to the uplink grant included in the same random access response.
- Information indicating a number may be mapped. That is, the Temporary C-RNTI field included in the random access response related to the non-contention based random access procedure in the serving cell to which asynchronous HARQ is applied is the HARQ process corresponding to the uplink grant included in the same random access response. It may be reused to identify the number.
- the HARQ information field may be included in place of the Temporary C-RNTI field in the random access response related to the non-contention based random access procedure in the serving cell to which asynchronous HARQ is applied.
- the MAC RAR may include an F field that is a flag indicating which of the Temporary C-RNTI field or the HARQ information field is included.
- the MAC RAR including the F field is referred to as an extended MAC RAR.
- the HARQ information field included in the MAC RAR is mapped to information indicating at least the HARQ process number. That is, the HARQ information field included in the MAC RAR is used at least to indicate the HARQ process number. Also, the HARQ information field included in the MAC RAR may be used to indicate the modulation and coding scheme. Also, the HARQ information field included in the MAC RAR may be used to indicate a redundancy version.
- FIG. 15 is a diagram illustrating an example of the extended MAC RAR in the present embodiment.
- FIG. 15A is a diagram illustrating an example of an extended MAC RAR when the F field is set to “0”.
- the F field included in the extended MAC RAR is set to “0”.
- FIG. 15B is a diagram showing an example of the extended MAC RAR when the F field is set to “1”.
- the F field included in the extended MAC RAR is set to “1”.
- the terminal device 1 can identify the field included in the extended MAC RAR by the F field.
- the F field is set to “0”
- the conventional terminal device can recognize the extended MAC RAR as the conventional MAC RAR. Therefore, even if the conventional MAC RAR and the extended MAC RAR are multiplexed in one MAC PDU, the conventional terminal device is not affected.
- the HARQ process number corresponding to the uplink grant included in the random access response related to the non-contention based random access procedure in the serving cell to which asynchronous HARQ is applied may be a specific value.
- the specific value may be indicated by information of the RRC layer.
- the specific value may be based on whether the serving cell is FDD or TDD.
- the specific value may be based on the UL-DL configuration.
- the specific value may be determined in advance by a specification or the like.
- the terminal apparatus 1 may consider that the uplink grant included in the random access response related to the non-contention based random access procedure in the serving cell to which asynchronous HARQ is applied is invalid. That is, the terminal device 1 may ignore / discard the uplink grant included in the random access response related to the non-contention based random access procedure in the serving cell to which asynchronous HARQ is applied.
- the terminal device 1 can reset / modify the HARQ function for a certain secondary cell. For example, after the terminal device 1 sets asynchronous HARQ for a certain secondary cell according to the information of the RRC layer, the terminal device 1 can reset the synchronous HARQ for the certain secondary cell according to the information of another RRC layer. For example, after the terminal device 1 sets synchronous HARQ for a certain secondary cell according to the information of the RRC layer, the terminal device 1 can reset asynchronous HARQ for the certain secondary cell according to the information of another RRC layer.
- the terminal device 1 sets asynchronous HARQ for a secondary cell according to the information of the RRC layer indicating that the asynchronous HARQ is valid
- the terminal device 1 releases the information of the RRC layer and re-executes synchronous HARQ for the certain secondary cell. Can be set.
- the HARQ function can be controlled flexibly.
- the RRC layer information indicates synchronous HARQ or asynchronous HARQ.
- the RRC layer information may be information instructing the enablement of asynchronous HARQ.
- the terminal device 1 transmits an RRC completion message to the base station device 3 after resetting / modifying the HARQ function.
- the base station device 3 can recognize whether synchronous HARQ or asynchronous HARQ is set as the HARQ function in the terminal device 1.
- the maximum number of HARQ processes managed in parallel by the HARQ entity corresponding to the secondary cell may be different depending on whether synchronous HARQ or asynchronous HARQ is applied to the secondary cell.
- the base station apparatus 3 may not be able to recognize the HARQ process that the terminal apparatus 1 is continuing. .
- the terminal device 1 excludes the buffer related to the random access message 3, and the serving cell among the plurality of HARQ buffers provided in the terminal device 1 Multiple HARQ buffers may be flushed. Further, when the RRC layer information for a certain serving cell is changed (reconfigured or released), the terminal apparatus 1 sets the NDI for the HARQ process corresponding to the serving cell to 0 except for the NDI related to the random access message 3 May be.
- the terminal device 1 and the base station device 3 are related to the HARQ process corresponding to the serving cell except for transmission related to the random access message 3.
- the next transmission may be regarded as an initial transmission.
- the terminal device 1 and the base station device 3 may initialize the HARQ entity corresponding to the serving cell.
- the terminal device 1 flushes a plurality of HARQ buffers for the secondary cell among the plurality of HARQ buffers provided in the terminal device 1. May be. Moreover, when the information of the RRC layer for a certain secondary cell is changed (reconfigured or released), the terminal apparatus 1 may set the NDI for the HARQ process corresponding to the secondary cell to 0. Moreover, when the information of the RRC layer with respect to a certain secondary cell is changed (re-set, released), the terminal device 1 and the base station device 3 indicate that the next transmission related to the HARQ process corresponding to the secondary cell is the initial transmission. May be considered. Moreover, when the information of the RRC layer with respect to a certain secondary cell is changed (reconfiguration, release), the terminal device 1 and the base station apparatus 3 may initialize the HARQ entity corresponding to the secondary cell.
- the base station apparatus 3 transmits information on the RRC layer instructing the reset / modification (modification) of the HARQ function to the terminal apparatus 1, the base station apparatus 3 resets / modifies / after the HARQ function. It is possible to appropriately control the HARQ process.
- FIG. 16 is a schematic block diagram showing the configuration of the terminal device 1 of the present embodiment.
- the terminal device 1 includes a wireless transmission / reception unit 10 and an upper layer processing unit 14.
- the wireless transmission / reception unit 10 includes an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
- the upper layer processing unit 14 includes a medium access control layer processing unit 15 and a radio resource control layer processing unit 16.
- the wireless transmission / reception unit 10 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
- the upper layer processing unit 14 outputs the uplink data (transport block) generated by the user operation or the like to the radio transmission / reception unit 10.
- the upper layer processing unit 14 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing.
- Medium Access Control: MAC Medium Access Control
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- Radio Radio Resource
- the medium access control layer processing unit 15 included in the upper layer processing unit 14 performs processing of the medium access control layer.
- the medium access control layer processing unit 15 performs HARQ control based on various setting information / parameters managed by the radio resource control layer processing unit 16.
- the medium access control layer processing unit 15 manages a plurality of HARQ entities, a plurality of HARQ processes, and a plurality of HARQ buffers.
- the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the radio resource control layer.
- the radio resource control layer processing unit 16 manages various setting information / parameters of the own device.
- the radio resource control layer processing unit 16 sets various setting information / parameters based on the RRC layer signal received from the base station apparatus 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station apparatus 3.
- the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
- the radio transmission / reception unit 10 separates, demodulates, and decodes the signal received from the base station apparatus 3 and outputs the decoded information to the upper layer processing unit 14.
- the radio transmission / reception unit 10 generates a transmission signal by modulating and encoding data, and transmits the transmission signal to the base station apparatus 3.
- the RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down-conversion: down covert), and removes unnecessary frequency components.
- the RF unit 12 outputs the processed analog signal to the baseband unit.
- the baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal.
- the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs fast Fourier transform (FFT) on the signal from which CP has been removed, and generates a frequency domain signal. Extract.
- CP Cyclic Prefix
- FFT fast Fourier transform
- the baseband unit 13 performs inverse fast Fourier transform (Inverse Fastier Transform: IFFT) to generate an SC-FDMA symbol, adds a CP to the generated SC-FDMA symbol, and converts a baseband digital signal into Generating and converting a baseband digital signal to an analog signal.
- IFFT inverse fast Fourier transform
- the baseband unit 13 outputs the converted analog signal to the RF unit 12.
- the RF unit 12 removes an extra frequency component from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the signal via the antenna unit 11. To do.
- the RF unit 12 amplifies power. Further, the RF unit 12 may have a function of controlling transmission power.
- the RF unit 12 is also referred to as a transmission power control unit.
- FIG. 17 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present embodiment.
- the base station apparatus 3 includes a radio transmission / reception unit 30 and an upper layer processing unit 34.
- the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
- the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
- the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
- the upper layer processing unit 34 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing.
- Medium Access Control Medium Access Control: MAC
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- Radio Radio Resource
- Radio Control
- the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the medium access control layer.
- the medium access control layer processing unit 15 performs HARQ control based on various setting information / parameters managed by the radio resource control layer processing unit 16.
- the medium access control layer processing unit 15 generates ACK / NACK and HARQ information for uplink data (UL-SCH).
- ACK / NACK and HARQ information for uplink data (UL-SCH) are transmitted to the terminal device 1 by PHICH or PDCCH.
- the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the radio resource control layer.
- the radio resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC CE (Control Element), etc. arranged in the physical downlink shared channel, or acquires it from the upper node. , Output to the wireless transceiver 30.
- the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
- the radio resource control layer processing unit 36 may set various setting information / parameters for each terminal device 1 via an upper layer signal. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters.
- the function of the wireless transceiver 30 is the same as that of the wireless transceiver 10 and will not be described.
- the terminal apparatus is a terminal apparatus that communicates with a base station apparatus in a plurality of serving cells including one primary cell and one secondary cell, and receives RRC layer information that indicates asynchronous HARQ.
- a receiving unit, a MAC layer processing unit that manages a first HARQ process corresponding to a primary cell and a second HARQ process corresponding to a secondary cell, and instructions from the first HARQ process and the second HARQ process The MAC layer processing unit, regardless of whether or not RRC layer information indicating the asynchronous HARQ is set.
- the base station apparatus of this embodiment is a base station apparatus that communicates with a terminal apparatus in a plurality of serving cells including one primary cell and one secondary cell, and transmits information on an RRC layer that indicates asynchronous HARQ.
- a MAC layer processing unit that manages a first HARQ process corresponding to a primary cell and a second HARQ process corresponding to a secondary cell, a first HARQ process, and a second HARQ process.
- a receiving unit that receives data of the MAC layer, and the MAC layer processing unit, regardless of whether or not RRC layer information that indicates the asynchronous HARQ is set in the terminal device, Instructing the first uplink HARQ process to always perform synchronous HARQ Instructing the second uplink HARQ process to execute the synchronous HARQ or the asynchronous HARQ based on whether or not RRC layer information indicating the asynchronous HARQ is set in the terminal device .
- the primary cell is designated as the cell in which the terminal device has performed an initial connection establishment procedure, the cell in which the terminal device has initiated a connection re-establishment procedure, or the primary cell in a handover procedure. Cell.
- the terminal apparatus transmits RRC layer information indicating asynchronous HARQ, a reception unit that receives an uplink grant, and MAC layer data in a secondary cell according to the uplink grant.
- RRC layer information indicating the asynchronous HARQ is set or not
- received by the physical downlink control channel including CRC parity bits scrambled by Temporary C-RNTI Synchronous HARQ is always applied to the MAC layer data corresponding to the uplink grant, and the uplink grant corresponding to the uplink grant received on the physical downlink control channel including CRC parity bits scrambled by C-RNTI.
- the base station apparatus transmits information on the RRC layer instructing asynchronous HARQ, a transmission unit that transmits an uplink grant, and MAC layer data in a secondary cell according to the uplink grant.
- Synchronous HARQ is always applied to the MAC layer data corresponding to the uplink grant transmitted on the channel, and transmitted on the physical downlink control channel including CRC parity bits scrambled by C-RNTI in the terminal device.
- the uplink graph Whether the synchronous HARQ or the asynchronous HARQ is applied to the data of the MAC layer corresponding to the data is based on whether or not RRC layer information indicating the asynchronous HARQ is set in the terminal device .
- the terminal apparatus includes a physical downlink including a CRC parity bit scrambled by the SPS C-RNTI regardless of whether or not RRC layer information indicating the asynchronous HARQ is set in the terminal apparatus.
- the synchronous HARQ is always applied to the MAC layer data corresponding to the uplink grant received on the link control channel.
- the terminal apparatus includes a receiving unit that receives RRC layer information indicating asynchronous HARQ, and the uplink received by a physical downlink control channel including a CRC parity bit scrambled by C-RNTI.
- a transmission unit that transmits data of the MAC layer according to the grant, and the physical downlink control in the first search space regardless of whether or not the information of the RRC layer that indicates the asynchronous HARQ is set
- Synchronous HARQ is always applied to transmission of MAC layer data corresponding to the uplink grant received on the channel, and corresponds to the uplink grant received on the physical downlink control channel in the second search space.
- the synchronous HARQ and asynchronous HA for MAC layer data transmission Any applies for Q is, based on whether information RRC layer instructs the asynchronous HARQ is set.
- the base station apparatus transmits the uplink transmitted by a transmission unit that transmits information of an RRC layer that indicates asynchronous HARQ and a physical downlink control channel that includes a CRC parity bit scrambled by C-RNTI.
- a receiving unit that receives MAC layer data according to the link grant, regardless of whether or not RRC layer information indicating the asynchronous HARQ is set in the terminal device, in the first search space
- Synchronous HARQ is always applied to the transmission of MAC layer data corresponding to the uplink grant transmitted on the physical downlink control channel, and the uplink transmitted on the physical downlink control channel in the second search space.
- the synchronization with respect to the reception of MAC layer data corresponding to the link grant Which of the ARQ and the asynchronous HARQ is applied, based on whether information RRC layer instructs the asynchronous HARQ in the terminal device is set.
- the first search space is CSS (Common Search Space)
- the second search space is USS (UE-specific Search Space) provided by C-RNTI.
- the terminal device of the present embodiment is a random access response including RRC layer information indicating asynchronous HARQ for a secondary cell, and a field for indicating an uplink grant and a Temporary C-RNTI, and the secondary cell
- a receiving unit that receives a first random access response related to a non-contention based random access procedure, a transmitting unit that transmits data of a MAC layer, a plurality of HARQ processes, and the MAC layer according to an uplink grant
- a MAC layer processing unit that passes the uplink grant to the HARQ process that instructs the transmission unit to transmit the data of the RRC layer when the RRC layer information that indicates the asynchronous HARQ is set. Random access HARQ process of passing the uplink grant included in Ponce is derived from the value of the field to indicate the Temporary C-RNTI included in the first random access response.
- the HARQ process for passing the uplink grant included in the first random access response is the first The random access response is derived from the received subframe.
- the reception unit receives a second random access response related to a contention-based random access procedure in the secondary cell, and RRC layer information indicating the asynchronous HARQ is set.
- the HARQ process for passing the uplink grant included in the second random access response is derived from the subframe that received the second random access response.
- the base station apparatus is a random access response including RRC layer information indicating asynchronous HARQ for a secondary cell, and a field for indicating an uplink grant and a Temporary C-RNTI.
- a transmitting unit that transmits a first random access response related to a non-contention based random access procedure in a cell, a receiving unit that receives data of a MAC layer, and a MAC layer processing unit that manages a plurality of HARQ processes,
- the RRC layer information indicating the asynchronous HARQ is set in the terminal device
- the value of the field for indicating the Temporary C-RNTI included in the first random access response is the first random access. Indicating the HARQ process corresponding to the uplink grant included in the response.
- the HARQ corresponding to the uplink grant included in the first random access response is associated with the subframe that transmitted the first random access response.
- the transmission unit transmits a second random access response related to a contention-based random access procedure in the secondary cell, and information on an RRC layer that indicates the asynchronous HARQ is set.
- the HARQ process corresponding to the uplink grant included in the second random access response is related to the subframe that transmitted the second random access response regardless of whether the second random access response is transmitted.
- the terminal device includes a receiving unit that receives information on the RRC layer that indicates asynchronous HARQ, a transmitting unit that transmits data on the MAC layer, and data on the MAC layer according to an uplink grant.
- a MAC layer processing unit that passes the uplink grant to the HARQ process that instructs the transmission unit to transmit, regardless of whether the information of the RRC layer that indicates the asynchronous HARQ is set or not, the Temporary C-
- the HARQ process for passing the uplink grant received on the physical downlink control channel including the CRC parity bit scrambled by the RNTI includes the uplink on the physical downlink control channel including the CRC parity bit scrambled by the Temporary C-RNTI.
- Link grant The HARQ process passing the uplink grant received on the physical downlink control channel including the CRC parity bit derived from the received subframe and scrambled by the C-RNTI is configured to transmit the CRC parity bit scrambled by the C-RNTI. Which is derived from the HARQ information received on the physical downlink control channel including the subframe received the uplink grant on the physical downlink control channel including the CRC parity bit scrambled by the C-RNTI, This is based on whether or not RRC layer information indicating the asynchronous HARQ is set.
- HARQ that passes an uplink grant included in a random access response related to a contention-based random access procedure, regardless of whether or not RRC layer information indicating asynchronous HARQ is set
- the process is derived from the number of the subframe that received the random access response.
- the HARQ process for passing the uplink grant included in the random access response related to the non-contention based random access procedure is performed using the information included in the random access response and the C-RNTI. Which subframe received the uplink grant on the physical downlink control channel including the scrambled CRC parity bit is based on whether or not RRC layer information indicating the asynchronous HARQ is set.
- the physical downlink control channel including the CRC parity bit scrambled by the SPS C-RNTI regardless of whether or not the RRC layer information indicating the asynchronous HARQ is set.
- the HARQ process for passing the received uplink grant is derived from the subframe that received the uplink grant on the physical downlink control channel including the CRC parity bits scrambled by the SPS C-RNTI.
- the base station apparatus of the present embodiment includes an RRC layer information instructing asynchronous HARQ, a transmission unit that transmits an uplink grant, a reception unit that receives data of a MAC layer, and the uplink grant. And a MAC layer processing unit that passes the uplink grant to a HARQ process that instructs the transmission unit to transmit the data of the MAC layer according to the RRC layer information that indicates the asynchronous HARQ in the terminal device. Regardless of whether it is set, the HARQ process corresponding to the uplink grant transmitted on the physical downlink control channel including the CRC parity bit scrambled by the Temporary C-RNTI was scrambled by the Temporary C-RNTI.
- CRC parity bit A HARQ process for passing the uplink grant transmitted on the physical downlink control channel including a CRC parity bit scrambled by C-RNTI in relation to the subframe that transmitted the uplink grant on the physical downlink control channel; Indicated by HARQ information transmitted on a physical downlink control channel including CRC parity bits scrambled by the C-RNTI, and on the physical downlink control channel including CRC parity bits scrambled by the C-RNTI Whether it is related to the subframe in which the uplink grant is transmitted is based on whether or not RRC layer information indicating the asynchronous HARQ is set in the terminal apparatus.
- the uplink included in the random access response related to the contention-based random access procedure regardless of whether or not RRC layer information indicating the asynchronous HARQ is set in the terminal apparatus
- the HARQ process corresponding to the link grant is related to the subframe that has transmitted the random access response.
- whether the HARQ process corresponding to the uplink grant included in the random access response related to the non-contention based random access procedure is indicated by the information included in the random access response, and Whether the RRC layer information indicating the asynchronous HARQ is set as to whether it is related to a subframe in which the uplink grant is transmitted on a physical downlink control channel including a CRC parity bit scrambled by the C-RNTI Based on how.
- a physical including CRC parity bits scrambled by the SPS C-RNTI regardless of whether or not RRC layer information indicating the asynchronous HARQ is set in the terminal apparatus.
- the HARQ process corresponding to the uplink grant transmitted on the downlink control channel is related to the subframe in which the uplink grant is transmitted on the physical downlink control channel including the CRC parity bit scrambled by the SPS C-RNTI. .
- the terminal device of the present embodiment includes a receiving unit that receives an uplink grant on a physical downlink control channel including a CRC parity bit scrambled by C-RNTI, a transmitting unit that transmits data of a MAC layer, A MAC layer processing unit that passes the uplink grant to a HARQ process that instructs the transmission unit to transmit the data of the MAC layer according to the uplink grant, and information of RRC layer that indicates asynchronous HARQ HARQ process for passing the uplink grant received on the physical downlink control channel in the first search space, regardless of whether or not is set in the physical downlink control channel in the first search space.
- the base station apparatus of the present embodiment includes a transmitter that transmits an uplink grant on a physical downlink control channel including a CRC parity bit scrambled by C-RNTI, a receiver that receives data of a MAC layer, A MAC layer processing unit that manages a plurality of HARQ processes, and the physical downlink in the first search space regardless of whether or not RRC layer information indicating asynchronous HARQ is set in the terminal device
- the HARQ process corresponding to the uplink grant transmitted on the control channel is related to the subframe that transmitted the uplink grant on the physical downlink control channel in the first search space, and the HARQ process in the second search space
- the HARQ process corresponding to the link grant is indicated by HARQ information transmitted on the physical downlink control channel in the second search space, or the uplink grant is set on the physical downlink control channel in the second search space. Whether it is related to the transmitted subframe is based on whether or not RRC layer information indicating
- the terminal device includes a receiving unit that receives RRC layer parameters indicating synchronous HARQ or asynchronous HARQ for the secondary cell, and MAC layer data in the secondary cell based on the RRC layer parameters.
- a MAC layer processing unit that applies synchronous HARQ or asynchronous HARQ to the transmission of a plurality of HARQ buffers, and a plurality of HARQ buffers in which data of the MAC layer is stored, wherein the HARQ control unit changes parameters of the RRC layer / When reset / released, the HARQ buffer for the secondary cell among the plurality of HARQ buffers is flushed.
- the terminal apparatus includes a receiving unit that receives RRC layer parameters indicating synchronous HARQ or asynchronous HARQ for the secondary cell, and MAC layer data in the secondary cell based on the RRC layer parameters.
- a MAC layer processing unit that applies synchronous HARQ or asynchronous HARQ to transmission of the MAC, and the MAC layer processing unit manages a HARQ process related to MAC layer data transmitted in the secondary cell, and the RRC layer
- the NDI for the HARQ process is set to 0 when the above parameters are changed / reconfigured.
- the terminal apparatus includes: a receiving unit that receives RRC layer parameters indicating synchronous HARQ or asynchronous HARQ for a secondary cell; and MAC layer data in the secondary cell based on the RRC layer parameters.
- a MAC layer processing unit that applies synchronous HARQ or asynchronous HARQ to transmission of the MAC, and the MAC layer processing unit manages a HARQ process related to MAC layer data transmitted in the secondary cell, and the RRC layer Is changed / reconfigured, the next transmission for the HARQ process is considered an initial transmission.
- the terminal device includes a receiving unit that receives RRC layer parameters indicating synchronous HARQ or asynchronous HARQ for the secondary cell, and MAC layer data in the secondary cell based on the RRC layer parameters.
- a MAC layer processing unit that applies synchronous HARQ or asynchronous HARQ to the transmission of, and the MAC layer processing unit includes a HARQ entity that manages a plurality of HARQ processes related to MAC layer data in the secondary cell, The HARQ entity is initialized when the RRC layer parameters are changed / reconfigured.
- the terminal apparatus 1 can communicate with the base station apparatus 3 efficiently.
- a program that operates in the base station device 3 and the terminal device 1 related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a computer is functioned) so as to realize the functions of the above-described embodiments related to the present invention Program).
- Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
- the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
- the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes hardware such as an OS and peripheral devices.
- the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
- the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
- a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
- the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
- the base station device 3 in the above-described embodiment can be realized as an aggregate (device group) composed of a plurality of devices.
- Each of the devices constituting the device group may include a part or all of each function or each functional block of the base station device 3 according to the above-described embodiment.
- the device group only needs to have one function or each function block of the base station device 3.
- the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
- the base station apparatus 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
- the base station device 3 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
- a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or may be realized as a chip set.
- Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- an integrated circuit based on the technology can also be used.
- the terminal device is described as an example of the communication device.
- the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors or outdoors,
- the present invention can also be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
- Terminal device 3 Base station device 10 Wireless transmission / reception unit 11 Antenna unit 12 RF unit 13 Baseband unit 14 Upper layer processing unit 15 Medium access control layer processing unit 16 Radio resource control layer processing unit 30 Wireless transmission / reception Unit 31 antenna unit 32 RF unit 33 baseband unit 34 upper layer processing unit 35 medium access control layer processing unit 36 radio resource control layer processing unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
端末装置は、DCIフォーマットを含む制御チャネルを受信し、PUSCHを送信し、前記DCIフォーマットは、上りリンクインデックス、および、HARQプロセス番号を示すための情報を含み、前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、前記Xは前記HARQプロセス番号を示すための情報に基づいて決定され、前記Zは上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である。
Description
本発明は、端末装置、基地局装置、集積回路、および、通信方法に関する。
本願は、2015年4月24日に、日本に出願された特願2015-089377号に基づき優先権を主張し、その内容をここに援用する。
本願は、2015年4月24日に、日本に出願された特願2015-089377号に基づき優先権を主張し、その内容をここに援用する。
セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE)」、「Evolved Universal Terrestrial Radio Access : EUTRA」、または、「Evolved Universal Terrestrial Radio Access Network: EUTRAN」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。LTEでは、基地局装置をeNodeB(evolved NodeB)、端末装置をUE(User Equipment)とも称する。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
LTEは、時分割複信(Time Division Duplex: TDD)に対応している。TDD方式を採用したLTEをTD-LTEまたはLTE TDDとも称する。TDDにおいて、上りリンク信号と下りリンク信号が時分割多重される。また、LTEは、周波数分割複信(Frequency Division Duplex: FDD)に対応している。
LTEは、MAC(Medium Access Control)層においてHARQ(Hybrid Automatic Repeat reQuest)機能(functionality)を提供する。下りリンクにおけるHARQ機能は、非同期(asynchronous)適用(adaptive)HARQの特徴を持つ、そして、上りリンクにおけるHARQ機能は、同期(synchronous)HARQの特徴を持つ(非特許文献1)。3GPPにおいて、上りリンクにおける非同期HARQの導入が検討されている(非特許文献2)。
"3GPP TS 36.300 v12.4.0 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2", 7th November 2015.
"UL HARQ considerations for LTE LAA", R2-151551, NVIDIA, 3GPP TSG RAN WG2 Meeting #89bis, 20th - 24th April 2015.
しかしながら、上りリンクにおいて非同期HARQを導入する際の具体的な方法は十分に検討されていない。例えば、上りリンクにおいて同期HARQと非同期HARQを切り替える手段について十分に検討されていない。また、例えば、上りリンクグラントが対応するHARQプロセスを特定する手段について十分に検討されていない。また、例えば、HARQバッファの処理方法について十分に検討されていない。
本発明は 、基地局装置と効率的に通信することができる端末装置、該端末装置に実装される集積回路、該端末装置に用いられる通信方法、該端末装置と通信する基地局装置、該基地局装置に実装される集積回路、該基地局装置に用いられる通信方法である。
(1)本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、端末装置であって、DCI(Downlink Control Information)フォーマットを含む制御チャネルを受信する受信部と、PUSCH(Physical Uplink Shared Channel)を送信する送信部と、を備え、前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である。
(2)また、本発明の第2の態様は、基地局装置であって、DCI(Downlink Control Information)フォーマットを含む制御チャネルを送信する送信部と、PUSCH(Physical Uplink Shared Channel)を受信する受信部と、を備え、前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である。
(3)また、本発明の第3の態様は、端末装置に用いられる通信方法であって、DCI(Downlink Control Information)フォーマットを含む制御チャネルを受信し、PUSCH(Physical Uplink Shared Channel)を送信し、前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である。
(4)また、本発明の第4の態様は、基地局装置に用いられる通信方法であって、DCI(Downlink Control Information)フォーマットを含む制御チャネルを送信し、PUSCH(Physical Uplink Shared Channel)を受信し、前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である。
(5)また、本発明の第5の態様は、端末装置に実装される集積回路であって、DCI(Downlink Control Information)フォーマットを含む制御チャネルを受信する受信回路と、PUSCH(Physical Uplink Shared Channel)を送信する送信回路と、を備え、前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である。
(6)また、本発明の第6の態様は、基地局装置に実装される集積回路であって、DCI(Downlink Control Information)フォーマットを含む制御チャネルを送信する送信回路と、PUSCH(Physical Uplink Shared Channel)を受信する受信回路と、を備え、前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である。
この発明によれば、端末装置が、効率的に基地局装置と通信することができる。
以下、本発明の実施形態について説明する。
図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1という。
以下、キャリアアグリゲーションについて説明する。
本実施形態では、端末装置1は、複数のサービングセルが設定される。端末装置1が複数のサービングセルを介して通信する技術をセルアグリゲーション、またはキャリアアグリゲーションと称する。端末装置1に対して設定される複数のサービングセルのそれぞれにおいて、本発明が適用されてもよい。また、設定された複数のサービングセルの一部において、本発明が適用されてもよい。また、設定された複数のサービングセルのグループのそれぞれにおいて、本発明が適用されてもよい。また、設定された複数のサービングセルのグループの一部において、本発明が適用されてもよい。キャリアアグリゲーションにおいて、設定された複数のサービングセルを集約されたサービングセルとも称する。
本実施形態の無線通信システムは、TDD(Time Division Duplex)および/またはFDD(Frequency Division Duplex)が適用される。セルアグリゲーションの場合には、複数のサービングセルの全てに対してFDDが適用されてもよい。セルアグリゲーションの場合には、複数のサービングセルの全てに対してTDDが適用されてもよい。また、セルアグリゲーションの場合には、TDDが適用されるサービングセルとFDDが適用されるサービングセルが集約されてもよい。
設定された複数のサービングセルは、1つのプライマリーセルと1つまたは複数のセカンダリーセルとを含む。プライマリーセルは、初期コネクション確立(initial connection establishment)プロシージャが行なわれたセル、コネクション再確立(connection re-establishment)プロシージャを開始したセル、または、ハンドオーバプロシージャにおいてプライマリーセルと指示されたセルである。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、セカンダリーセルが設定/追加されてもよい。
下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリアと称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリアと称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリアと称する。FDDにおいて、上りリンクコンポーネントキャリアと下りリンクコンポーネントキャリアは、異なるキャリア周波数に対応する。TDDにおいて、上りリンクコンポーネントキャリアと下りリンクコンポーネントキャリアは、同じキャリア周波数に対応する。
端末装置1は、複数のサービングセル(コンポーネントキャリア)において同時に複数の物理チャネルでの送信、および/または受信を行うことができる。1つの物理チャネルは、複数のサービングセル(コンポーネントキャリア)のうち1つのサービングセル(コンポーネントキャリア)において送信される。
図2は、本実施形態におけるキャリアアグリゲーションが設定された上りリンクに対するMAC層の構造の一例を示す図である。キャリアアグリゲーションが設定された上りリンクにおいて、サービングセル(上りリンクコンポーネントキャリア)毎に1つの独立したHARQエンティティ(entity)が存在する。HARQエンティティは、複数のHARQプロセスを並行して管理する。HARQプロセスはHARQバッファに関連する。すなわち、HARQエンティティは複数のHARQバッファに関連する。HARQプロセスは、MAC層のデータをHARQバッファにストアする。HARQプロセスは、該MAC層のデータを送信するよう物理層に指示する。
キャリアアグリゲーションが設定された上りリンクにおいて、サービングセル毎にTTI(Transmission Time Interval)毎に少なくとも1つのトランスポートブロックが生成される。トランスポートブロックのそれぞれ、および、そのトランスポートブロックのHARQ再送信は、1つのサービングセルにマップされる。尚、LTEにおいて、TTIはサブフレームである。トランスポートブロックは、UL-SCH(uplink shared channel)で送信されるMAC層のデータである。
本実施形態の上りリンクにおいて、「トランスポートブロック」、「MAC PDU(Protocol Data Unit)」、「MAC層のデータ」、「UL-SCH」、「UL-SCHデータ」、および、「上りリンクデータ」は、同一のものとする。
本実施形態の物理チャネルおよび物理信号について説明する。
端末装置1から基地局装置3への上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)、初期送信のためのPUSCH(Uplink-Shared Channel: UL-SCH)リソースを要求するために用いられるスケジューリングリクエスト(Scheduling Request: SR)、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH)に対するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)を含む。HARQ-ACKは、ACK(acknowledgement)またはNACK(negative-acknowledgement)を示す。HARQ-ACKを、ACK/NACK、HARQフィードバック、HARQ応答、または、HARQ制御情報とも称する。
スケジューリングリクエストは、正のスケジューリングリクエスト(positive scheduling request)、または、負のスケジューリングリクエスト(negative scheduling request)を含む。正のスケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求することを示す。負のスケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求しないことを示す。
PUSCHは、上りリンクデータ(Uplink-Shared Channel: UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共にHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられてもよい。また、PUSCHはチャネル状態情報のみを送信するために用いられてもよい。また、PUSCHはHARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。
ここで、基地局装置3と端末装置1は、上位層(higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCシグナリングを送受信してもよい。また、基地局装置3と端末装置1は、媒体アクセス制御(MAC: Medium Access Control)層において、MAC CEを送受信してもよい。ここで、RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。RRCシグナリング、および/または、MAC CEは、トランスポートブロックに含まれる。
本実施形態において、「RRCシグナリング」、「RRC層の情報」、「RRC層の信号」、「RRC層のパラメータ」、「RRCメッセージ」、および、「RRC情報要素」は、同一のものとする。
PUSCHは、RRCシグナリング、および、MAC CEを送信するために用いられる。ここで、基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置1に対して専用のシグナリングを用いて送信される。
PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられる。
上りリンクの無線通信では、以下の上りリンク物理信号が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・上りリンク参照信号(Uplink Reference Signal: UL RS)
・上りリンク参照信号(Uplink Reference Signal: UL RS)
基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel)
・PCFICH(Physical Control Format Indicator Channel)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel)
・PDCCH(Physical Downlink Control Channel)
・EPDCCH(Enhanced Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
・PMCH(Physical Multicast Channel)
・PBCH(Physical Broadcast Channel)
・PCFICH(Physical Control Format Indicator Channel)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel)
・PDCCH(Physical Downlink Control Channel)
・EPDCCH(Enhanced Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
・PMCH(Physical Multicast Channel)
PBCHは、端末装置1で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。
PCFICHは、PDCCHの送信に用いられる領域(OFDMシンボル)を指示する情報を送信するために用いられる。
PHICHは、基地局装置3が受信した上りリンクデータ(Uplink Shared Channel: UL-SCH)に対するACK(ACKnowledgement)またはNACK(Negative ACKnowledgement)を示すHARQインディケータ(HARQフィードバック、応答情報)を送信するために用いられる。
PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。本実施形態において、便宜的に「PDCCH」は「EPDCCH」を含むとする。下りリンク制御情報を、DCIフォーマットとも称する。1つのPDCCHで送信される下りリンク制御情報は、下りリンクグラント(downlink grant)およびHARQ情報、または、上りリンクグラント(uplink grant)およびHARQ情報を含む。下りリンクグラントは、下りリンクアサインメント(downlink assignment)または下りリンク割り当て(downlink allocation)とも称する。下りリンクアサインメントおよび上りリンクグラントは、1つのPDCCHで一緒に送信されない。
図3は、本実施形態におけるDCIフォーマット0の一例を示す図である。DCIフォーマット0は、上りリンクグラント、および、HARQ情報を含む。UL-DL設定(uplink-downlink configuration)0が設定されるサービングセルに対するDCIフォーマット0は、ULインデックスフィールドを含んでもよい。ULインデックスは、DCIフォーマット0によってスケジュールされるPUSCH送信が調整されるサブフレームを指示する。ULインデックスは第1のビットと第2のビットを含む。端末装置1は、ULインデックスの第1のビットに“1”がセットされている場合、PUSCH送信を第1のサブフレームに調整する。端末装置1は、ULインデックスの第2のビットに“1”がセットされている場合、PUSCH送信を第2のサブフレームに調整する。端末装置1は、第1のビットと第2のビットの両方に“1”がセットされている場合、第1のサブフレームおよび第2のサブフレームのそれぞれにPUSCH送信を調整する。
下りリンクアサインメントは、単一のセル内の単一のPDSCHのスケジューリングに用いられる。下りリンクアサインメントは、該下りリンクグラントが送信されたサブフレームと同じサブフレーム内のPDSCHのスケジューリングに用いられる。
上りリンクグラントは、単一のセル内の単一のPUSCHのスケジューリングに用いられる。上りリンクグラントは、該上りリンクグラントが送信されたサブフレームより後のサブフレーム内の単一のPUSCHのスケジューリングに用いられる。
HARQ情報は、NDI(New Data Indicator)およびトランスポートブロックサイズを示すための情報を含む。下りリンクアサインメントとともにPDCCHで送信されるHARQ情報は、下りリンクにおけるHARQプロセスの番号を示す情報(downlink HARQ process Identifier/Identity, downlink HARQ process number)も含む。非同期(asynchronous)HARQに関する上りリンクグラントとともにPDCCHで送信されるHARQ情報は、上りリンクにおけるHARQプロセスの番号を示す情報(uplink HARQ process Identifier/Identity, uplink HARQ process number)も含んでもよい。同期(synchronous)HARQに関する上りリンクグラントとともにPDCCHで送信されるHARQ情報は、上りリンクにおけるHARQプロセスの番号を示す情報(uplink HARQ process Identifier/Identity, uplink HARQ process number)を含まなくてもよい。
NDIは、初期送信、または、再送信を指示する。HARQエンティティは、あるHARQプロセスに対して、HARQ情報によって提供されるNDIが、該あるHARQプロセスの前の送信に対するNDIの値と比較してトグルされている場合、該HARQプロセスに初期送信をトリガーするよう指示する。HARQエンティティは、あるHARQプロセスに対して、HARQ情報によって提供されるNDIが、該あるHARQプロセスの前の送信に対するNDIの値と比較してトグルされていない場合、該HARQプロセスに再送信をトリガーするよう指示する。尚、HARQプロセスが、NDIがトグルされているかどうかを判定してもよい。
HARQエンティティは、上りリンクグラント、および、HARQ情報が対応するHARQプロセスを特定し、特定したHARQプロセスに上りリンクグラント、および、HARQ情報を渡す。HARQプロセスは、HARQエンティティから渡された上りリンクグラント、および、HARQ情報を記憶(store)する。
1つのPDCCHで送信される下りリンク制御情報に付加されるCRC(Cyclic Redundancy Check)パリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、SPS(Semi Persistent Scheduling)C-RNTI、または、Temporary C-RNTIでスクランブルされる。C-RNTIおよびSPS C-RNTIは、セル内において端末装置を識別するための識別子である。Temporary C-RNTIは、コンテンションベースランダムアクセス手順(contention based random access procedure)中に、ランダムアクセスプリアンブルを送信した端末装置1を識別するための識別子である。
C-RNTIおよびTemporary C-RNTIは、単一のサブフレームにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。SPS C-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。
PDSCHは、下りリンクデータ(Downlink Shared Channel: DL-SCH)を送信するために用いられる。
PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。
下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・下りリンク参照信号(Downlink Reference Signal: DL RS)
・同期信号(Synchronization signal: SS)
・下りリンク参照信号(Downlink Reference Signal: DL RS)
同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。TDD方式において、同期信号は無線フレーム内のサブフレーム0、1、5、6に配置される。FDD方式において、同期信号は無線フレーム内のサブフレーム0と5に配置される。
下りリンク参照信号は、端末装置1が下りリンク物理チャネルの伝搬路補正を行なうために用いられる。下りリンク参照信号は、端末装置1が下りリンクのチャネル状態情報を算出するために用いられる。
本実施形態において、以下の5つのタイプの下りリンク参照信号が用いられる。
・CRS(Cell-specific Reference Signal)
・PDSCHに関連するURS(UE-specific Reference Signal)
・EPDCCHに関連するDMRS(Demodulation Reference Signal)
・NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)
・ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)
・MBSFN RS(Multimedia Broadcast and Multicast Service over Single Frequency Network Reference signal)
・PRS(Positioning Reference Signal)
・CRS(Cell-specific Reference Signal)
・PDSCHに関連するURS(UE-specific Reference Signal)
・EPDCCHに関連するDMRS(Demodulation Reference Signal)
・NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)
・ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)
・MBSFN RS(Multimedia Broadcast and Multicast Service over Single Frequency Network Reference signal)
・PRS(Positioning Reference Signal)
下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号と称する。上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号と称する。下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理信号および上りリンク物理信号を総称して、物理信号と称する。
BCH、MCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC(Medium Access Control)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(transport block: TB)またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行なわれる。
本実施形態の無線フレーム(radio frame)の構造(structure)について説明する。
LTEでは、2つの無線フレーム構造がサポートされる。2つの無線フレーム構造は、フレーム構造タイプ1とフレーム構造タイプ2である。フレーム構造タイプ1はFDDに適用可能である。フレーム構造タイプ2はTDDに適用可能である。
図4は、本実施形態の無線フレームの概略構成を示す図である。図4において、横軸は時間軸である。また、タイプ1およびタイプ2の無線フレームのそれぞれは、10ms長であり、10のサブフレームによって定義される。サブフレームのそれぞれは、1ms長であり、2つの連続するスロットによって定義される。スロットのそれぞれは、0.5ms長である。無線フレーム内のi番目のサブフレームは、(2×i)番目のスロットと(2×i+1)番目のスロットとから構成される。
フレーム構造タイプ2に対して、以下の3つのタイプのサブフレームが定義される。
・下りリンクサブフレーム
・上りリンクサブフレーム
・スペシャルサブフレーム
・下りリンクサブフレーム
・上りリンクサブフレーム
・スペシャルサブフレーム
下りリンクサブフレームは下りリンク送信のためにリザーブされるサブフレームである。上りリンクサブフレームは上りリンク送信のためにリザーブされるサブフレームである。スペシャルサブフレームは3つのフィールドから構成される。該3つのフィールドは、DwPTS(Downlink Pilot Time Slot)、GP(Guard Period)、およびUpPTS(Uplink Pilot Time Slot)である。DwPTS、GP、およびUpPTSの合計の長さは1msである。DwPTSは下りリンク送信のためにリザーブされるフィールドである。UpPTSは上りリンク送信のためにリザーブされるフィールドである。GPは下りリンク送信および上りリンク送信が行なわれないフィールドである。尚、スペシャルサブフレームは、DwPTSおよびGPのみによって構成されてもよいし、GPおよびUpPTSのみによって構成されてもよい。
フレーム構造タイプ2の無線フレームは、少なくとも下りリンクサブフレーム、上りリンクサブフレーム、およびスペシャルサブフレームから構成される。フレーム構造タイプ2の無線フレームの構成は、UL-DL設定(uplink-downlink configuration)によって示される。端末装置1は、基地局装置3からUL-DL設定を示す情報を受信する。図5は、本実施形態におけるUL-DL設定の一例を示す表である。図5において、Dは下りリンクサブフレームを示し、Uは上りリンクサブフレームを示し、Sはスペシャルサブフレームを示す。
以下、上りリンクにおける同期HARQについて説明する。
同期HARQにおいて、上りリンクグラントが対応するHARQプロセスは、上りリンクグラントを受信したサブフレーム、および/または、上りリンクグラントに対応するPUSCH(UL-SCH)が送信されるサブフレームに関連する。端末装置1は、同期HARQにおいて、上りリンクグラントが対応するHARQプロセスを、上りリンクグラントを受信したサブフレーム、および/または、上りリンクグラントに対応するPUSCH(UL-SCH)が送信されるサブフレームから導き出す。
図6は、本実施形態における同期HARQの一例を示す図である。図6において、1つのサブフレームは、1つのHARQプロセスに対応する。図6において、四角の中の数字は対応するHARQプロセスの番号を示す。同期HARQにおいて、HARQエンティティは、HARQプロセスを、MAC層のデータが送信されるサブフレーム、または、MAC層のデータに対応するDCIフォーマット0を検出したサブフレームから導き出される。
図6において、ULグラントに対応するMAC層のデータが送信されるサブフレームは、ULグラントを受信したサブフレームから導き出される。例えば、ULグラントを受信したサブフレームより4つ後のサブフレームにおいて、該ULグラントに対応するMAC層のデータがPUSCHで送信される。
同期HARQにおいて、上りリンク送信に応答してHARQインディケータがPHICHで送信される。上りリンク送信が行われたサブフレームと、対応するPHICHが送信されるサブフレームの対応は、予め定められている。例えば、PUSCHでMAC層のデータを送信したサブフレームより4つ後のサブフレームにおいて、該MAC層のデータに対するHARQインディケータがPHICHで送信される。また、例えば、PHICHでNACKを受信したサブフレームより4つ後のサブフレームにおいて、MAC層のデータがPUSCHで再送信される。
以下、上りリンクにおける非同期HARQについて説明する。
図7は、本実施形態における非同期HARQの一例を示す図である。図7において、1つのサブフレームは、1つのHARQプロセスに対応する。図7において、四角の中の数字は対応するHARQプロセスの番号を示す。非同期HARQにおいて、HARQエンティティは、HARQプロセスを、DCIフォーマット0に含まれるHARQ情報(HARQプロセスの番号を示す情報)から導き出す。非同期HARQにおいて、上りリンク送信に応答してHARQインディケータがPHICHで送信されない。すなわち、非同期HARQにおいて、MAC層のデータの再送信は常にPDCCHを介してスケジュールされる。
図7において、ULグラントに対応するMAC層のデータが送信されるサブフレームは、ULグラントを受信したサブフレームから導き出される。例えば、ULグラントを受信したサブフレームより4つ後のサブフレームにおいて、該ULグラントに対応するMAC層のデータがPUSCHで送信される。
DCIフォーマット0にULインデックスが含まれる場合、該DCIフォーマットにHARQプロセスを示す2つの情報が含まれてもよい。DCIフォーマット0にULインデックスが含まれ、ULインデックス内の第1のビットおよび第2のビットの両方が“1”にセットされている場合、HARQプロセスの番号を示す2つの情報が示す2つのHARQプロセスの一方が、PUSCH送信が調整される第1のサブフレームに対応し、HARQプロセスの番号を示す2つの情報が示す2つのHARQプロセスの他方が第2のサブフレームに対応してもよい。
DCIフォーマット0にULインデックスが含まれる場合、該DCIフォーマットにHARQプロセスを示す1つの情報が含まれてもよい。DCIフォーマット0にULインデックスが含まれ、ULインデックス内の第1のビットおよび第2のビットの両方が“1”にセットされている場合、HARQプロセスの番号を示す1つの情報が示す1つのHARQプロセスが、PUSCH送信が調整される第1のサブフレームおよび第2のサブフレームの両方に対応してもよい。
DCIフォーマット0にULインデックスが含まれ、ULインデックス内の第1のビットが“1”にセットされ、ULインデックス内の第2のビットが“0”にセットされている場合、HARQ情報(HARQプロセスの番号を示す情報)が示す1つのHARQプロセスXが、第1のサブフレームに調整されるPUSCH送信に対応してもよい。DCIフォーマット0にULインデックスが含まれ、ULインデックス内の第1のビットが“0”にセットされ、ULインデックス内の第2のビットが“1”にセットされている場合、HARQ情報(HARQプロセスの番号を示す情報)が示す1つのHARQプロセスXが、第2のサブフレームに調整されるPUSCH送信に対応してもよい。DCIフォーマット0にULインデックスが含まれ、ULインデックス内の第1のビットおよび第2のビットの両方が“1”にセットされている場合、HARQ情報(HARQプロセスの番号を示す情報)が示す1つのHARQプロセスXが、第1のサブフレームに調整されるPUSCH送信(第1のビットに対応するPUSCH送信)に対応し、且つ、HARQプロセスXから導き出されるHARQプロセスYが、第2のサブフレームに調整されるPUSCH送信(第2のビットに対応するPUSCH送信)に対応してもよい。ここで、XとYは、Y=(X+1)modZという関係であってもよい。ここで、Zは、HARQエンティティが並行して管理するHARQプロセスの最大数である。すなわち、ULインデックス内の第2のビットに対応するPUSCHのHARQプロセス番号は、ULインデックス内の第1のビットおよび第2のビットの両方が1にセットされているかどうか、および、前記HARQプロセス番号を示すための情報に少なくとも基づいて与えられる。
以下、1つのHARQプロセスが並行して管理するHARQプロセスの最大数Zについて説明する。
FDDサービングセルに対応する1つのHARQエンティティは、並行して8つのHARQプロセスを管理する。非同期HARQが適用されるFDDサービングセルに対するDCIフォーマット0に含まれるHARQプロセスの番号を示す情報は3ビットであってもよい。
図8は、本実施形態におけるTDDサービングセルに対応するHARQエンティティが並行して管理するHARQプロセスの最大数の一例を示す図である。TDDサービングセルに対応する1つのHARQエンティティが管理するHARQプロセスの最大数は、該TDDサービングセルに対して設定されるUL-DL設定から導き出されてもよい。非同期HARQが適用されるTDDサービングセルに対するDCIフォーマット0に含まれるHARQプロセスの番号を示す情報は、該TDDサービングセルに対して設定されるUL-DL設定から導き出されてもよい。図8において、非同期HARQが適用されるTDDサービングセルに対してUL-DL設定5が設定される場合、該TDDサービングセルに対するDCIフォーマット0に含まれるHARQプロセスの番号を示す情報は0ビットである。
図9は、本実施形態におけるTDDサービングセルに対応するHARQエンティティが並行して管理するHARQプロセスの最大数の別の例を示す図である。TDDサービングセルに対応する1つのHARQエンティティが管理するHARQプロセスの最大数は、該TDDサービングセルに対して同期HARQと非同期HARQの何れが適用されるかに基づいてもよい。図9において、TDDサービングセルに同期HARQが適用される場合、該TDDサービングセルに対応する1つのHARQエンティティが管理するHARQプロセスの最大数は、該TDDサービングセルに対して設定されるUL-DL設定から導き出される。図9において、TDDサービングセルに非同期HARQが適用される場合、該TDDサービングセルに対応する1つのHARQエンティティが管理するHARQプロセスの最大数は、UL-DL設定に関わらず、8である。
TDDサービングセルに対するDCIフォーマット0に含まれるHARQプロセスの番号を示す情報のビット数は、該TDDサービングセルに対して同期HARQと非同期HARQの何れが適用されるかに基づいてもよい。図9において、TDDサービングセルに非同期HARQが適用される場合、該TDDサービングセルに対するDCIフォーマット0に含まれるHARQプロセスの番号を示す情報のビット数は、UL-DL設定に関わらず、3ビットである。
以下、RRC層におけるHARQに関する設定について図10から図13を参照して説明する。
端末装置1は、上りリンクコンポーネントキャリアを持つサービングセル毎に、または、HARQエンティティ毎に、同期HARQおよび非同期HARQの何れが適用されるかを制御してもよい。すなわち、同期HARQが適用されるHARQプロセスと、非同期HARQが適用されるHARQプロセスは同じサービングセルに対応しなくてもよい。すなわち、同期HARQが適用されるHARQプロセスと、非同期HARQが適用されるHARQプロセスは同じHARQエンティティに対応しなくてもよい。
基地局装置3は、あるサービングセルに対して、非同期HARQを指示するRRC層の情報を端末装置1に送信してもよい。端末装置1は、RRC層において非同期HARQを指示するRRC層の情報が設定されている場合、対応するサービングセル(対応するサービングセルにおける送信)に非同期HARQを適用してもよい。端末装置1は、RRC層において非同期HARQを指示するRRC層の情報が設定されていない場合、対応するサービングセルに同期HARQを適用してもよい。非同期HARQを指示するRRC層の情報は、非同期HARQの有効(enable)を示す情報であってもよい。
基地局装置3は、あるサービングセルに対して、同期HARQまたは非同期HARQを指示するRRC層の情報を端末装置1に送信してもよい。端末装置1は、RRC層において非同期HARQを指示するRRC層の情報が設定されている場合、対応するサービングセルに非同期HARQを適用してもよい。端末装置1は、RRC層において同期HARQを指示するRRC層の情報が設定されていない場合、対応するサービングセルに同期HARQを適用してもよい。
図10は、本実施形態における同期HARQと非同期HARQを切り替える手段の第1の例を示す図である。図10において、サービングセルの上りリンクにおいて、同期HARQおよび非同期HARQの何れが適用されるかはサービングセルのタイプ(プライマリーセル、セカンダリーセル)から導き出される。図10において、RRC層の情報に関わらず、プライマリーセルの上りリンク(プライマリーセルにおける上りリンクの送信)に対して常に同期HARQが適用される。図10において、セカンダリーセルの上りリンク(セカンダリーセルにおける上りリンクの送信)に対して、セカンダリーセルに対するRRC層の情報に基づいて、同期HARQまたは非同期HARQが適用される。これによって、上りリンクにおいて常に同期HARQが適用されるようプライマリーセルを用いて、セカンダリーセルに同期HARQまたは非同期HARQの何れが適用されるかをRRC層において制御することが可能になる。
図11は、本実施形態における同期HARQと非同期HARQを切り替える手段の第2の例を示す図である。図11において、上りリンクにおいて、同期HARQおよび非同期HARQの何れが適用されるかは、上りリンクグラントが対応するRNTI(Radio Network Temporary Identifier)から導き出される。図11において、RRC層の情報に関わらず、Temporary C-RNTIまたはSPS C-RNTIによってスクランブルされたCRCパリティビットを含むPDCCHで受信された上りリンクグラントに対応するMAC層のデータ(上りリンクデータの送信)に対して、常に同期HARQが適用される。図11において、C-RNTIによってスクランブルされたCRCパリティビットを含むPDCCHで受信された上りリンクグラントに対応するMAC層のデータに対して、RRC層の情報に基づいて、同期HARQまたは非同期HARQが適用される。
図12は、本実施形態における同期HARQと非同期HARQを切り替える手段の第3の例を示す図である。図12において、上りリンクにおいて、同期HARQおよび非同期HARQの何れが適用されるかは、上りリンクグラントが受信されたサーチスペースのタイプから導き出される。図12において、RRC層の情報に関わらず、コモンサーチスペース(Common Search Space)で受信された上りリンクグラントに対応するMAC層のデータに対して、常に同期HARQが適用される。図12において、UE固有サーチスペース(UE-specific Search Space)で受信された上りリンクグラントに対応するMAC層のデータに対して、RRC層の情報に基づいて、同期HARQまたは非同期HARQが適用される。
UE固有サーチスペースは、少なくとも、端末装置1がセットしているC-RNTIの値から導き出される。すなわち、UE固有サーチスペースは、端末装置1毎に個別に導き出される。コモンサーチスペースは、複数の端末装置1の間で共通のサーチスペースである。非同期HARQをサポートしない端末装置1および非同期HARQをサポートする端末装置1は、同じコモンサーチスペースを共用する。また、コモンサーチスペースは、非同期HARQをサポートしない端末装置1および非同期HARQをサポートする端末装置1に対して共通のPDCCHをブロードキャストする。従って、コモンサーチスペースで送信されるDCIフォーマット0は、従来と同じペイロードサイズであることが好ましい。すなわち、コモンサーチスペースで送信されるDCIフォーマット0は、HARQプロセスの番号を示すための情報を含まない。UE固有サーチスペースで送信されるDCIフォーマット0のみに、HARQプロセスの番号を示すための情報が含まれる。コモンサーチスペースで受信された上りリンクグラントに対応するMAC層のデータに対して、常に同期HARQが適用されるようにすることによって、コモンサーチスペースで送信されるDCIフォーマット0にHARQプロセスの番号を示すための情報を追加する必要がなくなり、コモンサーチスペースで送信されるDCIフォーマット0のペイロードサイズは従来と同じになる。
図13は、本実施形態における同期HARQと非同期HARQを切り替える手段の第4の例を示す図である。図13において、上りリンクにおいて、同期HARQおよび非同期HARQの何れが適用されるかは、ランダムアクセス手順のタイプから導き出される。図13において、RRC層の情報に関わらず、コンテンションベースランダムアクセス手順(contention based random access procedure)に関連するランダムアクセスレスポンスに含まれる上りリンクグラントに対応するMAC層のデータに対して、常に同期HARQが適用される。図13において、非コンテンションベースランダムアクセス手順(non-contention based random access procedure)に関連するランダムアクセスレスポンスに含まれる上りリンクグラントに対応するMAC層のデータに対して、RRC層の情報に基づいて、同期HARQまたは非同期HARQが適用される。
図11から図13において、プライマリーセルに対して非同期HARQが適用されてもよい。この場合において、プライマリーセルにおけるランダムアクセスメッセージ3の送信に対して同期HARQが適用されてもよい。また、プライマリーセルにおけるコモンサーチスペースで受信された上りリンクグラントに対応するMAC層のデータに対して、同期HARQが適用されてもよい。
同期HARQと非同期HARQを切り替える手段に関して、図10から図13を参照して第1から第4の例を記述してきたが、具体的な構成は第1から第4の例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本実施形態は、第1から第4の例の手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、ランダムアクセス手順について説明する。
本実施形態において、プライマリーセルおよびセカンダリーセルにおいてランダムアクセス手順が実行されてもよい。ただし、時間領域における何れのポイントにおいても1つのランダムアクセス手順のみが実行される。すなわち、複数のランダムアクセス手順は同時に実行されない。
本実施形態において、プライマリーセルにおいてコンテンションベースランダムアクセス手順(contention based random access procedure)、および、非コンテンションベースランダムアクセス手順(non-contention based random access procedure)が実行されてもよい。本実施形態において、セカンダリーセルにおいて非コンテンションベースランダムアクセス手順が実行されてもよい。本実施形態において、セカンダリーセルにおいてコンテンションベースランダムアクセス手順は実行されない。
プライマリーセルにおけるPRACHでランダムアクセスプリアンブルが送信されてもよい。端末装置1は、プライマリーセルにおけるランダムアクセス手順に関する情報(RRCメッセージ)を、基地局装置3から受信する。プライマリーセルにおけるランダムアクセス手順に関する情報は、プライマリーセルにおけるPRACHリソースのセットを示す情報を含む。
セカンダリーセルにおいてPRACHでランダムアクセスプリアンブルが送信されてもよい。端末装置1は、セカンダリーセルにおけるランダムアクセス手順に関する情報(RRCメッセージ)を、基地局装置3から受信する。セカンダリーセルにおけるランダムアクセス手順に関する情報は、セカンダリーセルにおけるPRACHリソースのセットを示す情報を含む。
コンテンションベースランダムアクセス手順の場合、端末装置1自身によってランダムアクセスプリアンブルのインデックスが選択される。非コンテンションベースランダムアクセス手順の場合、端末装置1によって基地局装置3から受信した情報に基づいてランダムアクセスプリアンブルのインデックスが選択される。基地局装置3から受信した情報のビットの値が全て0である場合、端末装置1によってコンテンションベースランダムアクセス手順が実行され、端末装置1自身によってランダムアクセスプリアンブルのインデックスが選択される。
プライマリーセルまたはセカンダリーセルに対するランダムアクセスレスポンスは、プライマリーセルにおけるPDSCHで送信される。ランダムアクセスレスポンスは、上りリンクグラントにマップされる上りリンクグラントフィールド、および、Temporary C-RNTIを示すための情報にマップされるTemporary C-RNTIフィールドを含む。ランダムアクセスレスポンスに含まれる上りリンクグラントを、ランダムアクセスレスポンスグラントとも称する。
受信したランダムアクセスレスポンスに、送信したランダムアクセスプリアンブルに対応するランダムアクセスプリアンブル識別子が含まれており、端末装置1によって基地局装置3から受信した情報に基づいてランダムアクセスプリアンブルが選択された場合、移動局装置1は非コンテンションベースランダムアクセス手順が成功裏に完了したとみなし、ランダムアクセスレスポンスに含まれている上りリンクグラントに基づいてPUSCHを送信する。
受信したランダムアクセスレスポンスに、送信したランダムアクセスプリアンブルに対応するランダムアクセスプリアンブル識別子が含まれており、端末装置1自身によってランダムアクセスプリアンブルが選択された場合、Temporary C-RNTIを受信したランダムアクセスレスポンスに含まれるTemporary C-RNTIフィールドの値にセットし、ランダムアクセスレスポンスに含まれている上りリンクグラントに基づいてPUSCHでランダムアクセスメッセージ3を送信する。
ランダムアクセスレスポンスに含まれている上りリンクグラントに対応するPUSCHは、対応するプリアンブルがPRACHで送信されたサービングセルにおいて送信される。
Temporary C-RNTIがセットされていない場合、ランダムアクセスレスポンスに含まれる上りリンクグラントに対応するPUSCH、および、同じトランスポートブロックのPUSCH再送信のスクランブリングは、C-RNTIに基づく。
Temporary C-RNTIがセットされている場合、ランダムアクセスレスポンスに含まれる上りリンクグラントに対応するPUSCH、および、同じトランスポートブロックのPUSCH再送信のスクランブリングは、Temporary C-RNTIに基づく。
Temporary C-RNTIがセットされている場合、ランダムアクセスレスポンスに含まれる上りリンクグラントに対応するPUSCHで送信されたトランスポートブロックのPUSCH再送信は、Temporary C-RNTIによってスクランブルされたCRCパリティビットが付加されたDCIフォーマット0によってスケジュールされる。該DCIフォーマット0はコモンサーチスペース(Common Search Space)のPDCCHで送信される。
図14は、本実施形態におけるランダムアクセスレスポンスの一例を示す図である。
下りリンクにおいて、1つのMAC PDUは複数のランダムアクセスレスポンスを含むことができる。図14において、MAC RAR(Random Access Response)はランダムアクセスレスポンスを示す。図14のMAC PDUは、1つのMACヘッダー、n個のランダムアクセスレスポンス、および、パディングを含む。図14において、1つのMACヘッダーはn個のE/T/RAPIDサブヘッダー(E/T/RAPIDフィールド)を含む。
E/T/RAPIDサブヘッダーは、Eフィールド(Extension field)、Tフィールド(Type field)、および、RAPIDフィールド(Random Access Preamble IDentifier field)を含む。Eフィールドは、よい多くのフィールドがMACヘッダーに存在するかどうかを示すフラグである。少なくともE/T/RAPIDフィールドの他のセット続くことを示すために、Eフィールドは“1”にセットされる。次のバイトからMAC RARまたはパディングがスタートすることを示すためにEフィールドは“0”にセットされる。
Tフィールドは、MACサブヘッダーがRAPIDフィールド、または、バックオフインディケータフィールドの何れを含むかを示すためのフラグである。MACサブヘッダー内のRAPIDフィールドの存在を示すために、Tフィールドは“1”にセットされる。
RAPIDフィールドは、送信されたランダムアクセスプリアンブルを特定する。端末装置1は、端末装置1が送信したランダムアクセスプリアンブルがRAPIDフィールドに対応している場合、ランダムアクセスレスポンスの受信に成功したとみなし、対応するMAC RARを処理する。
MAC RARは、Rフィールド、タイミングアドバンスコマンドフィールド、上りリンクグラントフィールド、および、Temporary C-RNTIフィールドを含む。Rフィールドは、0にセットされる保留ビット(reserved bit)である。タイミングアドバンスコマンドフィールドは、PUSCH/SRSの送信に対するタイミング調整の量を制御するために用いられるインデックス値TAを示す。
上りリンクグラントフィールドは、上りリンクにおいて用いられるPUSCHのリソースを示す。上りリンクグラントフィールドには、上りリンググラントがマップされる。Temporary C-RNTIフィールドは、コンテンションベースランダムアクセス手順の間、端末装置1によって用いられるTemporary C-RNTIを示す。
ランダムアクセスレスポンス(MAC RAR)にはHARQプロセスの番号を示す情報が含まれていないため、非コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスに含まれる上りリンクグラントに対応するHARQプロセスの番号を特定できないという問題がある。
そこで、非同期HARQが適用されるサービングセルにおける非コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスに含まれるTemporary C-RNTIフィールドに、該同じランダムアクセスレスポンスに含まれる上りリンクグラントが対応するHARQプロセスの番号を示す情報をマップしてもよい。すなわち、非同期HARQが適用されるサービングセルにおける非コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスに含まれるTemporary C-RNTIフィールドは、該同じランダムアクセスレスポンスに含まれる上りリンクグラントが対応するHARQプロセスの番号を特定するために再利用されてもよい。
非同期HARQが適用されるサービングセルにおける非コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスに、Temporary C-RNTIフィールドの代わりに、HARQ情報フィールドを含めてもよい。また、MAC RARに、Temporary C-RNTIフィールド、または、HARQ情報フィールドの何れが含まれているかを示すフラグであるFフィールドを含めてもよい。本実施形態において、Fフィールドを含むMAC RARを、拡張されたMAC RARと称する。
MAC RARに含まれるHARQ情報フィールドは、少なくとも、HARQプロセスの番号を示す情報にマップされる。すなわち、MAC RARに含まれるHARQ情報フィールドは、少なくとも、HARQプロセスの番号を示すために用いられる。また、MAC RARに含まれるHARQ情報フィールドは、変調および符号化方式を示すために用いられてもよい。また、MAC RARに含まれるHARQ情報フィールドは、リダンダンシーヴァージョン(redundancy version)を示すために用いられてもよい。
図15は、本実施形態における拡張されたMAC RARの一例を示す図である。図15(a)は、Fフィールドが“0”にセットされる場合の拡張されたMAC RARの一例を示す図である。拡張されたMAC RARにTemporary C-RNTIフィールドが含まれる場合、該拡張されたMAC RARに含まれるFフィールドは“0”にセットされる。図15(b)は、Fフィールドが“1”にセットされる場合の拡張されたMAC RARの一例を示す図である。拡張されたMAC RARにHARQ情報フィールドが含まれる場合、該拡張されたMAC RARに含まれるFフィールドは“1”にセットされる。
これにより、端末装置1は、Fフィールドによって、拡張されたMAC RARに含まれるフィールドを識別することができる。また、Fフィールドが“0”にセットされる場合、従来の端末装置は、拡張されたMAC RARを従来のMAC RARとして認識できる。従って、従来のMAC RARと拡張されたMAC RARを1つのMAC PDU内で多重しても、従来の端末装置は影響されない。
また、非同期HARQが適用されるサービングセルにおける非コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスに含まれる上りリンクグラントが対応するHARQプロセスの番号は、特定の値であってもよい。例えば、特定の値は、RRC層の情報によって示されてもよい。例えば、特定の値は、サービングセルがFDDであるかTDDあるかに基づいてもよい。例えば、特定の値は、UL-DL設定に基づいてもよい。例えば、特定の値は、仕様書などによって予め定められていてもよい。
また、端末装置1が、非同期HARQが適用されるサービングセルにおける非コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスに含まれる上りリンクグラントは無効であるとみなしてもよい。すなわち、端末装置1は、非同期HARQが適用されるサービングセルにおける非コンテンションベースランダムアクセス手順に関連するランダムアクセスレスポンスに含まれる上りリンクグラントを無視/破棄してもよい。
以下、HARQ機能の再設定/修正(modification)について説明する。
前述したように、セカンダリーセルに同期HARQと非同期HARQの何れが適用されるかはRRC層によって制御される。端末装置1は、あるセカンダリーセルに対して、HARQ機能の再設定/修正(modification)が可能である。例えば、端末装置1はRRC層の情報に従ってあるセカンダリーセルに対して非同期HARQを設定した後に、別のRRC層の情報に従って該あるセカンダリーセルに対して同期HARQを再設定することができる。例えば、端末装置1はRRC層の情報に従ってあるセカンダリーセルに対して同期HARQを設定した後に、別のRRC層の情報に従って該あるセカンダリーセルに対して非同期HARQを再設定することができる。例えば、端末装置1は非同期HARQの有効を示すRRC層の情報に従ってあるセカンダリーセルに対して非同期HARQを設定した後に、該RRC層の情報をリリースし、該あるセカンダリーセルに対して同期HARQを再設定することができる。これによって、HARQ機能を柔軟に制御することができる。ここで、RRC層の情報は、同期HARQまたは非同期HARQを指示する。また、RRC層の情報は、非同期HARQの有効(enable)を指示する情報であってもよい。
尚、端末装置1は、HARQ機能の再設定/修正をした後にRRC完了メッセージを基地局装置3に送信する。基地局装置3は、該RRC完了メッセージを受信することによって、端末装置1においてHARQ機能として同期HARQと非同期HARQの何れが設定されているかを認識することができる。
しかしながら、セカンダリーセルに同期HARQおよび非同期HARQの何れが適用されるかによって、該セカンダリーセルに対応するHARQエンティティが並行して管理するHARQプロセスの最大数が異なる可能性がある。これによって、あるセカンダリーセルに対するHARQ機能に関するRRC層の情報が変更(再設定、リリース)された場合、基地局装置3が、端末装置1が継続しているHARQプロセスを認識できなくなる可能性がある。
そこで、端末装置1は、あるサービングセルに対するRRC層の情報が変更(再設定、リリース)された場合に、ランダムアクセスメッセージ3に関するバッファを除いて、端末装置1が備える複数のHARQバッファのうち該サービングセルに対する複数のHARQバッファをフラッシュしてもよい。また、端末装置1は、あるサービングセルに対するRRC層の情報が変更(再設定、リリース)された場合に、ランダムアクセスメッセージ3に関するNDIを除いて、該サービングセルに対応するHARQプロセスに対するNDIを0にセットしてもよい。また、端末装置1および基地局装置3は、あるサービングセルに対するRRC層の情報が変更(再設定、リリース)された場合に、ランダムアクセスメッセージ3に関する送信を除いて、該サービングセルに対応するHARQプロセスに関する次の送信を初期送信だとみなしてもよい。また、端末装置1および基地局装置3は、あるサービングセルに対するRRC層の情報が変更(再設定、リリース)された場合に、該サービングセルに対応するHARQエンティティを初期化してもよい。
そこで、端末装置1は、あるセカンダリーセルに対するRRC層の情報が変更(再設定、リリース)された場合に、端末装置1が備える複数のHARQバッファのうち該セカンダリーセルに対する複数のHARQバッファをフラッシュしてもよい。また、端末装置1は、あるセカンダリーセルに対するRRC層の情報が変更(再設定、リリース)された場合に、該セカンダリーセルに対応するHARQプロセスに対するNDIを0にセットしてもよい。また、端末装置1および基地局装置3は、あるセカンダリーセルに対するRRC層の情報が変更(再設定、リリース)された場合に、該セカンダリーセルに対応するHARQプロセスに関する次の送信を初期送信だとみなしてもよい。また、端末装置1および基地局装置3は、あるセカンダリーセルに対するRRC層の情報が変更(再設定、リリース)された場合に、該セカンダリーセルに対応するHARQエンティティを初期化してもよい。
これによって、基地局装置3がHARQ機能の再設定/修正(modification)を指示するRRC層の情報を端末装置1に送信した場合に、基地局装置3は、HARQ機能の再設定/修正/後のHARQプロセスを適切に制御することが可能になる。
以下、本実施形態における装置の構成について説明する。
図16は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13を含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16を含んで構成される。無線送受信部10を送信部、受信部、または、物理層処理部とも称する。
上位層処理部14は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、無線送受信部10に出力する。上位層処理部14は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
上位層処理部14が備える媒体アクセス制御層処理部15は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部15は、無線リソース制御層処理部16によって管理されている各種設定情報/パラメータに基づいて、HARQの制御を行う。媒体アクセス制御層処理部15は、複数のHARQエンティティ、複数のHARQプロセス、および、複数のHARQバッファを管理する。
上位層処理部14が備える無線リソース制御層処理部16は、無線リソース制御層の処理を行う。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信したRRC層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。
無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、基地局装置3から受信した信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化することによって送信信号を生成し、基地局装置3に送信する。
RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
ベースバンド部13は、RF部12から入力されたアナログ信号を、アナログ信号をディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
ベースバンド部13は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。
図17は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。
上位層処理部34は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
上位層処理部34が備える媒体アクセス制御層処理部35は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部15は、無線リソース制御層処理部16によって管理されている各種設定情報/パラメータに基づいて、HARQの制御を行う。媒体アクセス制御層処理部15は、上りリンクデータ(UL-SCH)に対するACK/NACKおよびHARQ情報を生成する。上りリンクデータ(UL-SCH)に対するACK/NACKおよびHARQ情報は、PHICHまたはPDCCHで端末装置1に送信される。
上位層処理部34が備える無線リソース制御層処理部36は、無線リソース制御層の処理を行う。無線リソース制御層処理部36は、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。
無線送受信部30の機能は、無線送受信部10と同様であるため説明を省略する。
以下、本実施形態における、端末装置、および、基地局装置の種々の態様について説明する。
(1)本実施形態の端末装置は、1つのプライマリーセルおよび1つのセカンダリーセルを含む複数のサービングセルにおいて基地局装置と通信する端末装置であって、非同期HARQを指示するRRC層の情報を受信する受信部と、プライマリーセルに対応する第1のHARQプロセスおよびセカンダリーセルに対応する第2のHARQプロセスを管理するMAC層処理部と、前記第1のHARQプロセスおよび前記第2のHARQプロセスからの指示に応じて、MAC層のデータを送信する送信部と、を備え、前記MAC層処理部は、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、前記第1の上りリンクHARQプロセスに対して、常に同期HARQを実行するよう指示し、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づいて、前記第2の上りリンクHARQプロセスに対して、前記同期HARQまたは前記非同期HARQを実行するよう指示する。
(2)本実施形態の基地局装置は、1つのプライマリーセルおよび1つのセカンダリーセルを含む複数のサービングセルにおいて端末装置と通信する基地局装置であって、非同期HARQを指示するRRC層の情報を送信する送信部と、プライマリーセルに対応する第1のHARQプロセスおよびセカンダリーセルに対応する第2のHARQプロセスを管理するMAC層処理部と、前記第1のHARQプロセスおよび前記第2のHARQプロセスからの指示に応じて、MAC層のデータを受信する受信部と、を備え、前記MAC層処理部は、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、前記第1の上りリンクHARQプロセスに対して、常に同期HARQを実行するよう指示し、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づいて、前記第2の上りリンクHARQプロセスに対して、前記同期HARQまたは前記非同期HARQを実行するよう指示する。
(3)本実施形態において、前記プライマリーセルは、前記端末装置が初期コネクション確立手順を行ったセル、前記端末装置がコネクション再確立手順を開始したセル、または、ハンドオーバ手順において前記プライマリーセルとして指示されるセルである。
(4)本実施形態の端末装置は、非同期HARQを指示するRRC層の情報、および、上りリンクグラントを受信する受信部と、前記上りリンクグラントに応じて、セカンダリーセルにおいてMAC層のデータを送信する送信部と、を備え、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、Temporary C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信した前記上りリンクグラントに対応する前記MAC層のデータに対して、常に同期HARQが適用され、C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信した前記上りリンクグラントに対応する前記MAC層のデータに対して前記同期HARQおよび前記非同期HARQの何れが適用されるかは、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(5)本実施形態の基地局装置は、非同期HARQを指示するRRC層の情報、および、上りリンクグラントを送信する送信部と、前記上りリンクグラントに応じて、セカンダリーセルにおいてMAC層のデータを受信する受信部と、を備え、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、Temporary C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応する前記MAC層のデータに対して、常に同期HARQが適用され、前記端末装置においてC-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応する前記MAC層のデータに対して前記同期HARQおよび前記非同期HARQの何れが適用されるかは、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(6)本実施形態において、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、コンテンションベースランダムアクセス手順に関するランダムアクセスレスポンスに含まれる上りリンクグラントに対応する前記MAC層のデータに対して、常に前記同期HARQが適用される。
(7)本実施形態において、非コンテンションベースランダムアクセス手順に関するランダムアクセスレスポンスに含まれる上りリンクグラントに対応する前記MAC層のデータに対して前記同期HARQおよび前記非同期HARQの何れが適用されるかは、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(8)本実施形態の端末装置は、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、SPS C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信した前記上りリンクグラントに対応する前記MAC層のデータに対して、常に前記同期HARQが適用される。
(9)本実施形態の端末装置は、非同期HARQを指示するRRC層の情報を受信する受信部と、C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信した前記上りリンクグラントに応じて、MAC層のデータを送信する送信部と、を備え、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、第1のサーチスペースにおける前記物理下りリンク制御チャネルで受信した前記上りリンクグラントに対応するMAC層のデータの送信に対して、常に同期HARQが適用され、第2のサーチスペースにおける前記物理下りリンク制御チャネルで受信した前記上りリンクグラントに対応するMAC層のデータの送信に対して前記同期HARQおよび非同期HARQの何れが適用されるかは、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(10)本実施形態の基地局装置は、非同期HARQを指示するRRC層の情報を送信する送信部と、C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで送信した前記上りリンクグラントに応じて、MAC層のデータを受信する受信部と、を備え、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、第1のサーチスペースにおける前記物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応するMAC層のデータの送信に対して、常に同期HARQが適用され、第2のサーチスペースにおける前記物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応するMAC層のデータの受信に対して前記同期HARQおよび非同期HARQの何れが適用されるかは、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(11)本実施形態において、前記第1のサーチスペースは、CSS(Common Search Space)であり、前記第2のサーチスペースは、C-RNTIによって与えられるUSS(UE-specific Search Space)である。
(12)本実施形態の端末装置は、セカンダリーセルに対する非同期HARQを指示するRRC層の情報、および、上りリンクグラントおよびTemporary C-RNTIを示すためのフィールドを含むランダムアクセスレスポンスであり、前記セカンダリーセルにおける非コンテンションベースランダムアクセス手順に関する第1のランダムアクセスレスポンスを受信する受信部と、MAC層のデータを送信する送信部と、複数のHARQプロセスを管理し、上りリンクグラントに応じて前記MAC層のデータを送信するよう前記送信部に指示するHARQプロセスに前記上りリンクグラントを渡すMAC層処理部と、を備え、前記非同期HARQを指示するRRC層の情報が設定されている場合、前記第1のランダムアクセスレスポンスに含まれる上りリンクグラントを渡すHARQプロセスは、前記第1のランダムアクセスレスポンスに含まれるTemporary C-RNTIを示すためのフィールドの値から導き出される。
(13)本実施形態の端末装置において、前記非同期HARQを指示するRRC層の情報が設定されていない場合、前記第1のランダムアクセスレスポンスに含まれる上りリンクグラントを渡すHARQプロセスは、前記第1のランダムアクセスレスポンスを受信したサブフレームから導き出される。
(14)本実施形態の端末装置において、前記受信部は、前記セカンダリーセルにおけるコンテンションベースランダムアクセス手順に関する第2のランダムアクセスレスポンスを受信し、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、前記第2のランダムアクセスレスポンスに含まれる上りリンクグラントを渡すHARQプロセスは、前記第2のランダムアクセスレスポンスを受信したサブフレームから導き出される。
(15)本実施形態の基地局装置は、セカンダリーセルに対する非同期HARQを指示するRRC層の情報、および、上りリンクグラントおよびTemporary C-RNTIを示すためのフィールドを含むランダムアクセスレスポンスであり、前記セカンダリーセルにおける非コンテンションベースランダムアクセス手順に関する第1のランダムアクセスレスポンスを送信する送信部と、MAC層のデータを受信する受信部と、複数のHARQプロセスを管理するMAC層処理部と、を備え、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されている場合、前記第1のランダムアクセスレスポンスに含まれるTemporary C-RNTIを示すためのフィールドの値は、前記第1のランダムアクセスレスポンスに含まれる上りリンクグラントに対応するHARQプロセスを示す。
(16)本実施形態の基地局装置において、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されていない場合、前記第1のランダムアクセスレスポンスに含まれる上りリンクグラントに対応するHARQプロセスは、前記第1のランダムアクセスレスポンスを送信したサブフレームに関連する。
(17)本実施形態の基地局装置において、前記送信部は、前記セカンダリーセルにおけるコンテンションベースランダムアクセス手順に関する第2のランダムアクセスレスポンスを送信し、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、前記第2のランダムアクセスレスポンスに含まれる上りリンクグラントに対応するHARQプロセスは、前記第2のランダムアクセスレスポンスを送信したサブフレームに関連する。
(18)本実施形態の端末装置は、非同期HARQを指示するRRC層の情報を受信する受信部と、MAC層のデータを送信する送信部と、上りリンクグラントに応じて前記MAC層のデータを送信するよう前記送信部に指示するHARQプロセスに前記上りリンクグラントを渡すMAC層処理部と、を備え、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、Temporary C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信した前記上りリンクグラントを渡すHARQプロセスは、前記Temporary C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを受信したサブフレームから導き出され、C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信した前記上りリンクグラントを渡すHARQプロセスが、前記C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信したHARQ情報、および、前記C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを受信したサブフレームの何れから導き出されるかは、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(19)本実施形態の端末装置において、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、コンテンションベースランダムアクセス手順に関するランダムアクセスレスポンスに含まれる上りリンクグラントを渡すHARQプロセスは、前記ランダムアクセスレスポンスを受信したサブフレームの番号から導き出される。
(20)本実施形態の端末装置において、非コンテンションベースランダムアクセス手順に関するランダムアクセスレスポンスに含まれる上りリンクグラントを渡すHARQプロセスが、前記ランダムアクセスレスポンスに含まれる情報、および、前記C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを受信したサブフレームの何れから導き出されるかは、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(21)本実施形態の端末装置において、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、SPS C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで受信した前記上りリンクグラントを渡すHARQプロセスは、前記SPS C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを受信したサブフレームから導き出される。
(22)本実施形態の基地局装置は、非同期HARQを指示するRRC層の情報、および、上りリンクグラントを送信する送信部と、MAC層のデータを受信する受信部と、該上りリンクグラントに応じて前記MAC層のデータを送信するよう前記送信部に指示するHARQプロセスに前記上りリンクグラントを渡すMAC層処理部と、を備え、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、Temporary C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応するHARQプロセスは、前記Temporary C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを送信したサブフレームに関連し、C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで送信した前記上りリンクグラントを渡すHARQプロセスが、前記C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで送信したHARQ情報によって示されるか、および、前記C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを送信したサブフレームに関連するかは、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(23)本実施形態の基地局装置において、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、コンテンションベースランダムアクセス手順に関するランダムアクセスレスポンスに含まれる上りリンクグラントに対応するHARQプロセスは、前記ランダムアクセスレスポンスを送信したサブフレームに関連する。
(24)本実施形態の基地局装置において、非コンテンションベースランダムアクセス手順に関するランダムアクセスレスポンスに含まれる上りリンクグラントに対応するHARQプロセスが、前記ランダムアクセスレスポンスに含まれる情報によって示されるか、および、前記C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを送信したサブフレームに関連するかは、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(25)本実施形態の基地局装置において、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、SPS C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応するHARQプロセスは、前記SPS C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで前記上りリンクグラントを送信したサブフレームに関連する。
(26)本実施形態の端末装置は、C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで上りリンクグラントを受信する受信部と、MAC層のデータを送信する送信部と、前記上りリンクグラントを、前記上りリンクグラントに応じて前記MAC層のデータを送信するよう前記送信部に指示するHARQプロセスに渡すMAC層処理部と、を備え、非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、第1のサーチスペースにおける前記物理下りリンク制御チャネルで受信した前記上りリンクグラントを渡すHARQプロセスは、前記第1のサーチスペースにおける前記物理下りリンク制御チャネルで前記上りリンクグラントを受信したサブフレームから導き出され、第2のサーチスペースにおける前記物理下りリンク制御チャネルで受信した前記上りリンクグラントを渡すHARQプロセスが、前記第2のサーチスペースにおける前記物理下りリンク制御チャネルで受信したHARQ情報、および、前記第2のサーチスペースにおける物理下りリンク制御チャネルで前記上りリンクグラントを受信したサブフレームの何れから導き出されるかは、前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(27)本実施形態の基地局装置は、C-RNTIによってスクランブルされたCRCパリティビットを含む物理下りリンク制御チャネルで上りリンクグラントを送信する送信部と、MAC層のデータを受信する受信部と、複数のHARQプロセスを管理するMAC層処理部と、を備え、前記端末装置において非同期HARQを指示するRRC層の情報が設定されているかどうかに関わらず、第1のサーチスペースにおける前記物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応するHARQプロセスは、前記第1のサーチスペースにおける前記物理下りリンク制御チャネルで前記上りリンクグラントを送信したサブフレームに関連し、第2のサーチスペースにおける前記物理下りリンク制御チャネルで送信した前記上りリンクグラントに対応するHARQプロセスが、前記第2のサーチスペースにおける前記物理下りリンク制御チャネルで送信したHARQ情報によって示されるか、前記第2のサーチスペースにおける物理下りリンク制御チャネルで前記上りリンクグラントを送信したサブフレームに関連するかは、前記端末装置において前記非同期HARQを指示するRRC層の情報が設定されているかどうかに基づく。
(28)本実施形態の端末装置は、セカンダリーセルに対する同期HARQまたは非同期HARQを指示するRRC層のパラメータを受信する受信部と、前記RRC層のパラメータに基づいて、前記セカンダリーセルにおけるMAC層のデータの送信に対して同期HARQまたは非同期HARQを適用するMAC層処理部と、MAC層のデータがストアされる複数のHARQバッファと、を備え、前記HARQ制御部は、前記RRC層のパラメータが変更/再設定/リリースされた場合に、前記複数のHARQバッファのうち前記セカンダリーセルに対するHARQバッファをフラッシュする。
(29)本実施形態の端末装置は、セカンダリーセルに対する同期HARQまたは非同期HARQを指示するRRC層のパラメータを受信する受信部と、前記RRC層のパラメータに基づいて、前記セカンダリーセルにおけるMAC層のデータの送信に対して同期HARQまたは非同期HARQを適用するMAC層処理部と、を備え、前記MAC層処理部は、前記セカンダリーセルにおいて送信されるMAC層のデータに関するHARQプロセスを管理し、前記RRC層のパラメータが変更/再設定された場合に、前記HARQプロセスに対するNDIを0にセットする。
(30)本実施形態の端末装置は、セカンダリーセルに対する同期HARQまたは非同期HARQを指示するRRC層のパラメータを受信する受信部と、前記RRC層のパラメータに基づいて、前記セカンダリーセルにおけるMAC層のデータの送信に対して同期HARQまたは非同期HARQを適用するMAC層処理部と、を備え、前記MAC層処理部は、前記セカンダリーセルにおいて送信されるMAC層のデータに関するHARQプロセスを管理し、前記RRC層のパラメータが変更/再設定された場合に、前記HARQプロセスに関する次の送信を初期送信だとみなす。
(31)本実施形態の端末装置は、セカンダリーセルに対する同期HARQまたは非同期HARQを指示するRRC層のパラメータを受信する受信部と、前記RRC層のパラメータに基づいて、前記セカンダリーセルにおけるMAC層のデータの送信に対して同期HARQまたは非同期HARQを適用するMAC層処理部と、を備え、前記MAC層処理部は、前記セカンダリーセルにおけるMAC層のデータに関する複数のHARQプロセスを管理するHARQエンティティを含み、前記RRC層のパラメータが変更/再設定された場合に、前記HARQエンティティを初期化する。
これにより、端末装置1は、効率的に基地局装置3と通信することができる。
本発明に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
1(1A、1B、1C) 端末装置
3 基地局装置
10 無線送受信部
11 アンテナ部
12 RF部
13 ベースバンド部
14 上位層処理部
15 媒体アクセス制御層処理部
16 無線リソース制御層処理部
30 無線送受信部
31 アンテナ部
32 RF部
33 ベースバンド部
34 上位層処理部
35 媒体アクセス制御層処理部
36 無線リソース制御層処理部
3 基地局装置
10 無線送受信部
11 アンテナ部
12 RF部
13 ベースバンド部
14 上位層処理部
15 媒体アクセス制御層処理部
16 無線リソース制御層処理部
30 無線送受信部
31 アンテナ部
32 RF部
33 ベースバンド部
34 上位層処理部
35 媒体アクセス制御層処理部
36 無線リソース制御層処理部
Claims (12)
- DCI(Downlink Control Information)フォーマットを含む制御チャネルを受信する受信部と、
PUSCH(Physical Uplink Shared Channel)を送信する送信部と、を備え、
前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、
前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、
前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、
前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、
前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である
端末装置。 - 前記第1のビットが0にセットされ、且つ、前記第2のビットが1にセットされている場合、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は前記Xである
請求項1の端末装置。 - 前記受信部は、前記UL/DL設定を示す情報を受信する
請求項1の端末装置。 - 前記UL/DL設定は0である
請求項1の端末装置。 - DCI(Downlink Control Information)フォーマットを含む制御チャネルを送信する送信部と、
PUSCH(Physical Uplink Shared Channel)を受信する受信部と、を備え、
前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、
前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、
前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、
前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、
前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である
基地局装置。 - 前記第1のビットが0にセットされ、且つ、前記第2のビットが1にセットされている場合、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は前記Xである
請求項5の基地局装置。 - 前記送信部は、前記UL/DL設定を示す情報を送信する
請求項5の基地局装置。 - 前記UL/DL設定は0である
請求項5の基地局装置。 - 端末装置に用いられる通信方法であって、
DCI(Downlink Control Information)フォーマットを含む制御チャネルを受信し、
PUSCH(Physical Uplink Shared Channel)を送信し、
前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、
前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、
前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、
前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、
前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である
通信方法。 - 基地局装置に用いられる通信方法であって、
DCI(Downlink Control Information)フォーマットを含む制御チャネルを送信し、
PUSCH(Physical Uplink Shared Channel)を受信し、
前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、
前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、
前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、
前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、
前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である
通信方法。 - 端末装置に実装される集積回路であって、
DCI(Downlink Control Information)フォーマットを含む制御チャネルを受信する受信回路と、
PUSCH(Physical Uplink Shared Channel)を送信する送信回路と、を備え、
前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、
前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、
前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、
前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、
前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である
集積回路。 - 基地局装置に実装される集積回路であって、
DCI(Downlink Control Information)フォーマットを含む制御チャネルを送信する送信回路と、
PUSCH(Physical Uplink Shared Channel)を受信する受信回路と、を備え、
前記DCIフォーマットは、上りリンクインデックス、および、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号を示すための情報を含み、
前記上りリンクインデックスの第1のビット、および、第2のビットの両方が1にセットされている場合、前記第1のビットに対応する前記PUSCHのHARQプロセス番号はXであり、前記第2のビットに対応する前記PUSCHの前記HARQプロセス番号は、mod(X+1、Z)であり、
前記mod(X+1、Z)は、(X+1)をZで割ったときの余りを出力する関数であり、
前記Xは、前記HARQプロセス番号を示すための情報に基づいて決定され、
前記Zは、上りリンク/下りリンク設定によって決定される、サービングセルにおけるHARQプロセスの最大数と同じ値である
集積回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680019608.6A CN107534962B (zh) | 2015-04-24 | 2016-04-06 | 终端装置、基站装置、集成电路及通信方法 |
EP16783004.1A EP3288327B1 (en) | 2015-04-24 | 2016-04-06 | Terminal device, base station device, and communication method |
US15/568,783 US10219266B2 (en) | 2015-04-24 | 2016-04-06 | Terminal device, base station device, integrated circuit, and communication method |
US16/245,974 US20190150128A1 (en) | 2015-04-24 | 2019-01-11 | Terminal device, base station device, integrated circuit, and communication method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015089377A JP2018101821A (ja) | 2015-04-24 | 2015-04-24 | 端末装置、基地局装置、集積回路、および、通信方法 |
JP2015-089377 | 2015-04-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/568,783 A-371-Of-International US10219266B2 (en) | 2015-04-24 | 2016-04-06 | Terminal device, base station device, integrated circuit, and communication method |
US16/245,974 Continuation US20190150128A1 (en) | 2015-04-24 | 2019-01-11 | Terminal device, base station device, integrated circuit, and communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016170983A1 true WO2016170983A1 (ja) | 2016-10-27 |
Family
ID=57144126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061247 WO2016170983A1 (ja) | 2015-04-24 | 2016-04-06 | 端末装置、基地局装置、集積回路、および、通信方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10219266B2 (ja) |
EP (1) | EP3288327B1 (ja) |
JP (1) | JP2018101821A (ja) |
CN (1) | CN107534962B (ja) |
WO (1) | WO2016170983A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6463585B1 (ja) * | 2016-02-03 | 2019-02-06 | オフィノ テクノロジーズ, エルエルシー | 無線デバイスおよび無線ネットワークにおけるハイブリッド自動反復要求 |
JP7498762B2 (ja) | 2018-05-11 | 2024-06-12 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいてアップリンク送信を行う方法及びそのための装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11711171B2 (en) * | 2018-01-11 | 2023-07-25 | Huawei Technologies Co., Ltd. | System and method for reliable transmission over network resources |
EP3788738A2 (en) * | 2018-05-04 | 2021-03-10 | Lenovo (Singapore) Pte. Ltd. | Pusch transmission using an aggregation factor |
CN111200871B (zh) * | 2018-11-16 | 2022-02-18 | 华为技术有限公司 | 接收数据的方法和通信装置 |
JP2020136765A (ja) * | 2019-02-14 | 2020-08-31 | シャープ株式会社 | 端末装置、基地局装置、および、通信方法 |
CN110121192B (zh) * | 2019-03-22 | 2021-09-14 | 西安电子科技大学 | Mac ce、harq进程模式切换方法、切换mac ce的发送和接收方法 |
CN111865501B (zh) * | 2019-04-25 | 2022-09-16 | 中国移动通信有限公司研究院 | 数据重传方法、接收方法、终端及网络设备 |
EP3961949B1 (en) * | 2019-09-30 | 2023-11-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Methods and apparatus for sending and receiving feedback information, terminal, and medium |
US11588586B2 (en) * | 2019-10-30 | 2023-02-21 | Qualcomm Incorporated | HARQ operation for broadcast in FR2 |
US11671975B2 (en) * | 2019-11-19 | 2023-06-06 | Qualcomm Incorporated | Configuration for one-shot hybrid automatic repeat request (HARQ) feedback |
US11595159B2 (en) * | 2020-02-13 | 2023-02-28 | Apple, Inc. | HARQ design for wireless communications |
WO2021163967A1 (zh) * | 2020-02-20 | 2021-08-26 | Oppo广东移动通信有限公司 | 数据传输方法、终端设备和网络设备 |
CN117769017A (zh) * | 2022-05-27 | 2024-03-26 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2685772A1 (en) * | 2011-04-01 | 2014-01-15 | Huawei Technologies Co., Ltd. | Method, device and system for data transmission |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102202408B (zh) | 2010-03-22 | 2014-01-01 | 华为技术有限公司 | 多子帧调度方法、系统和设备 |
CN102223219B (zh) * | 2011-06-16 | 2017-07-18 | 中兴通讯股份有限公司 | Harq‑ack的反馈处理方法及系统 |
JP5933753B2 (ja) * | 2012-01-15 | 2016-06-15 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて制御情報の送信方法及び装置 |
CN103220795A (zh) * | 2012-01-21 | 2013-07-24 | 中兴通讯股份有限公司 | 下行控制信息的发送方法和基站 |
JP5314779B2 (ja) * | 2012-03-14 | 2013-10-16 | シャープ株式会社 | 移動局装置、基地局装置、通信方法、集積回路および無線通信システム |
US20140328260A1 (en) | 2013-02-26 | 2014-11-06 | Samsung Electronics Co., Ltd. | Scheduling over multiple transmission time intervals |
CN105099601B (zh) * | 2014-04-25 | 2020-10-27 | 北京三星通信技术研究有限公司 | 一种灵活fdd系统中上行传输的方法和设备 |
US20170215157A1 (en) * | 2014-08-06 | 2017-07-27 | Lg Electronics Inc. | Method for transmitting uplink signal and user equipment, and method for receiving uplink signal and base station |
US9930654B2 (en) * | 2015-03-17 | 2018-03-27 | Motorola Mobility Llc | Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier |
-
2015
- 2015-04-24 JP JP2015089377A patent/JP2018101821A/ja active Pending
-
2016
- 2016-04-06 WO PCT/JP2016/061247 patent/WO2016170983A1/ja active Application Filing
- 2016-04-06 CN CN201680019608.6A patent/CN107534962B/zh active Active
- 2016-04-06 US US15/568,783 patent/US10219266B2/en active Active
- 2016-04-06 EP EP16783004.1A patent/EP3288327B1/en active Active
-
2019
- 2019-01-11 US US16/245,974 patent/US20190150128A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2685772A1 (en) * | 2011-04-01 | 2014-01-15 | Huawei Technologies Co., Ltd. | Method, device and system for data transmission |
Non-Patent Citations (2)
Title |
---|
See also references of EP3288327A4 * |
ZTE: "Control signalling and HARQ related issues for Licensed-assisted access using LTE", 3GPP TSG RAN WG1 MEETING #80BIS RL-151810, pages 2, XP050934671 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6463585B1 (ja) * | 2016-02-03 | 2019-02-06 | オフィノ テクノロジーズ, エルエルシー | 無線デバイスおよび無線ネットワークにおけるハイブリッド自動反復要求 |
JP2019508956A (ja) * | 2016-02-03 | 2019-03-28 | オフィノ テクノロジーズ, エルエルシー | 無線デバイスおよび無線ネットワークにおけるハイブリッド自動反復要求 |
JP7498762B2 (ja) | 2018-05-11 | 2024-06-12 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいてアップリンク送信を行う方法及びそのための装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3288327A1 (en) | 2018-02-28 |
US20190150128A1 (en) | 2019-05-16 |
EP3288327B1 (en) | 2020-06-24 |
CN107534962A (zh) | 2018-01-02 |
JP2018101821A (ja) | 2018-06-28 |
US10219266B2 (en) | 2019-02-26 |
CN107534962B (zh) | 2021-12-28 |
US20180092069A1 (en) | 2018-03-29 |
EP3288327A4 (en) | 2019-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016170983A1 (ja) | 端末装置、基地局装置、集積回路、および、通信方法 | |
JP6783753B2 (ja) | 端末装置、基地局装置および、通信方法 | |
WO2016175007A1 (ja) | 端末装置、基地局装置、通信方法、および、集積回路 | |
WO2016171010A1 (ja) | 端末装置、基地局装置、集積回路、および、通信方法 | |
WO2018105725A1 (ja) | 端末装置、基地局装置、通信方法、および、集積回路 | |
JP6725516B2 (ja) | 端末装置、および通信方法 | |
US11026256B2 (en) | Terminal apparatus, base station apparatus, and communication method | |
WO2016121850A1 (ja) | 端末装置、基地局装置、集積回路、および、通信方法 | |
JP6774414B2 (ja) | 端末装置、および通信方法 | |
WO2017043255A1 (ja) | 端末装置、基地局装置、通信方法および集積回路 | |
WO2018216701A1 (ja) | 端末装置、基地局装置、および通信方法 | |
WO2017169159A1 (ja) | 端末装置、基地局装置、通信方法、および、集積回路 | |
WO2018163907A1 (ja) | 端末装置、基地局装置、通信方法、および、集積回路 | |
WO2017043257A1 (ja) | 端末装置、基地局装置、通信方法および集積回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16783004 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15568783 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016783004 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |