WO2016170863A1 - Magnetic resonance imaging device and magnetic resonance imaging method - Google Patents

Magnetic resonance imaging device and magnetic resonance imaging method Download PDF

Info

Publication number
WO2016170863A1
WO2016170863A1 PCT/JP2016/057310 JP2016057310W WO2016170863A1 WO 2016170863 A1 WO2016170863 A1 WO 2016170863A1 JP 2016057310 W JP2016057310 W JP 2016057310W WO 2016170863 A1 WO2016170863 A1 WO 2016170863A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
pulse
pulse sequence
magnetic resonance
data
Prior art date
Application number
PCT/JP2016/057310
Other languages
French (fr)
Japanese (ja)
Inventor
延之 吉澤
板垣 博幸
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017514008A priority Critical patent/JP6378426B2/en
Publication of WO2016170863A1 publication Critical patent/WO2016170863A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to a Magnetic Resonance Imaging (hereinafter referred to as MRI) technique, and particularly to a technique for depicting hemodynamics.
  • MRI Magnetic Resonance Imaging
  • An MRI apparatus is a measurement apparatus that obtains an image of a subject using a nuclear magnetic resonance (NMR) phenomenon, and irradiates a subject with a high-frequency magnetic field (hereinafter referred to as RF) pulse, and in response, Measure NMR signals generated by the nuclear spins that make up the tissue. Based on the measured NMR signal, the form and function of the subject's head, abdomen, limbs, etc. are imaged two-dimensionally or three-dimensionally. At the time of imaging, the NMR signal is given different phase encoding and slice encoding by the gradient magnetic field, and frequency encoding is given to the NMR signal, which is measured as time series data. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
  • NMR nuclear magnetic resonance
  • RF high-frequency magnetic field
  • an MRI apparatus there is imaging that displays hemodynamics based on the difference between an image labeled with a blood proton (label image) and an image not labeled (control image) (see, for example, Patent Document 1 and Patent Document 2).
  • label image an image labeled with a blood proton
  • control image an image not labeled
  • ASL Perfusion ArterialerSpin Labeling Perfusion
  • a blood vessel image can be obtained by photographing at the timing before the labeled / controlled blood proton reaches the perfusion region by the method disclosed in Patent Document 1 or Patent Document 2.
  • Non-Patent Document 2 there is a technique for obtaining a quantitative susceptibility map (QSM) from an absolute value image and a phase image. In addition, there is a technique for determining brain oxygen uptake rate (OEF) from QSM.
  • QSM quantitative susceptibility map
  • OEF brain oxygen uptake rate
  • BSI BSI / QSM / OEF
  • the present invention has been made in view of the above circumstances, and acquires a hemodynamic image of blood flowing into the same part and a hemodynamic image of blood flowing out or other information of the part in a short time without misalignment. It aims at providing the technology to do.
  • ⁇ Acquire BSI data in the idle time of the ASL image acquisition sequence time to apply no RF pulse or gradient magnetic field.
  • the BSI data acquired in the free time at the time of acquiring the control image of the ASL image acquisition sequence is arranged in the low spatial frequency region of k space from the BSI data acquired in the free time at the time of acquiring the label image.
  • the data acquired at the timing with less influence of the pre-pulse is arranged in the low spatial frequency region of the k space.
  • the hemodynamic image of blood flowing into the same part and the hemodynamic image of blood flowing out or other information on the part can be acquired in a short time without positional deviation.
  • FIG. 1 is a configuration diagram of the MRI apparatus 100 of the present embodiment.
  • the MRI apparatus 100 obtains a tomographic image of the subject 101 using the NMR phenomenon.
  • the MRI apparatus 100 of the present embodiment includes a static magnetic field generating magnet 102 that generates a static magnetic field around a subject 101, a gradient magnetic field coil 103 that generates a gradient magnetic field in the space, and this region Transmitting RF coil (transmitting coil) 104 that irradiates a high-frequency magnetic field, RF probe (receiving coil) 105 that detects an MR signal generated by the subject 101, signal detection unit 106, signal processing unit 107, and overall control Unit 108, gradient magnetic field power source 109, RF transmission unit 110, subject 101, bed 112 for moving subject 101 in and out of static magnetic field generating magnet 102, display / operation unit 113, Is provided.
  • RF coil transmitting coil
  • RF probe receiveriving coil
  • the static magnetic field generating magnet 102 generates a uniform static magnetic field in the direction perpendicular to the body axis of the subject 101 in the vertical magnetic field method and in the body axis direction in the horizontal magnetic field method.
  • Permanent magnet type, normal conducting type or superconducting type static magnetic field generating source arranged around the.
  • the gradient magnetic field coil 103 is composed of gradient magnetic field coils wound in the three-axis directions of X, Y, and Z that are the real space coordinate system (stationary coordinate system) of the MRI apparatus 100.
  • Each gradient coil is connected to a gradient magnetic field power source 109 that drives the gradient coil, and generates a gradient magnetic field according to a current (signal) supplied via the gradient magnetic field power source 109.
  • the gradient magnetic field power supply 109 of each gradient coil is driven in accordance with a command from the overall control unit 108 described later, and supplies current to each gradient coil.
  • gradient magnetic fields Gx, Gy, and Gz are generated in the three axial directions of X, Y, and Z.
  • a slice gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 101, orthogonal to the slice plane and orthogonal to each other.
  • the phase encoding gradient magnetic field pulse (Gp) and the frequency encoding (lead-out) gradient magnetic field pulse (Gf) are applied in the remaining two directions, and position information in each direction is encoded in the echo signal.
  • the transmission coil 104 is a coil that irradiates the subject 101 with a high-frequency magnetic field (RF) pulse, is connected to the RF transmission unit 110, and applies an RF pulse to the subject 101 in accordance with the high-frequency pulse current supplied from the RF transmission unit 110. Irradiate. As a result, an NMR phenomenon is induced in the nuclear spins of the atoms constituting the biological tissue of the subject 101.
  • the RF transmission unit 110 is driven in accordance with a command from the overall control unit 108 to be described later, the high frequency pulse is amplitude-modulated and amplified, and then the transmission RF coil 104 disposed in the vicinity of the subject 101 is disposed. , The subject 101 is irradiated with an RF pulse.
  • the receiving coil 105 is a coil that receives an NMR signal (echo signal) emitted by the NMR phenomenon of the nuclear spin constituting the living tissue of the subject 101, and is connected to the signal detection unit 106.
  • the echo signal received by the reception coil 105 is sent to the signal detection unit 106.
  • the signal detection unit 106 performs processing for detecting an echo signal received by the reception coil 105. Specifically, an echo signal of the response of the subject 101 induced by the RF pulse irradiated from the RF coil 104 is received by the reception RF coil 105 disposed in the vicinity of the subject 101, and an overall control unit described later In accordance with a command from 108, the signal detection unit 106 amplifies the received echo signal, divides the signal into two orthogonal signals by quadrature detection, and samples a predetermined number (for example, 128, 256, 512, etc.). Each sampling signal is A / D converted to a digital quantity and sent to a signal processing unit 107 described later. Therefore, the echo signal is obtained as time-series digital data (hereinafter referred to as echo data) composed of a predetermined number of sampling data.
  • echo data time-series digital data
  • the signal processing unit 107 performs various processes on the echo data, and sends the processed echo data to the overall control unit 108.
  • the overall control unit 108 controls various data processing and display and storage of processing results, and has a CPU and a memory. Further, a storage device 115 such as an optical disk or a magnetic disk is provided.
  • echo data collection is performed by controlling each unit, and when echo data is input, it is stored in an area corresponding to the k space of the memory based on the encoding information applied to the echo data. .
  • a group of echo data stored in an area corresponding to the k space of the memory is also referred to as k space data.
  • the overall control unit 108 performs processing such as signal processing and image reconstruction by Fourier transform on the k-space data, and the resulting image of the subject 101 is displayed on the display / operation unit 113 described later. It is displayed and recorded in the storage device 115.
  • control unit 108 may be constructed on an information processing apparatus independent of the MRI apparatus 100.
  • the display / operation unit 113 includes a display unit that displays an image of the reconstructed subject 101, a trackball or a mouse that inputs various control information of the MRI apparatus 100 and control information of processing performed by the overall control unit 108, and And an operation unit such as a keyboard.
  • the operation unit is disposed in the vicinity of the display unit, and the operator controls various processes of the MRI apparatus 100 interactively through the operation unit while looking at the display unit.
  • Each function of the overall control unit 108 of the present embodiment includes a CPU, a memory, and a storage device, and is realized by the CPU loading a program stored in the storage device in advance into the memory and executing it. All or some of the functions may be realized by hardware such as ASIC (Application Specific Integrated Circuit) and FPGA (field.-programmable gate array). In addition, various data used for processing of each function and various data generated during the processing are stored in the storage device 115.
  • ASIC Application Specific Integrated Circuit
  • FPGA field.-programmable gate array
  • the transmission coil 104 and the gradient magnetic field coil 103 are opposed to the subject 101 in the static magnetic field space of the static magnetic field generating magnet 102 into which the subject 101 is inserted, in the case of the vertical magnetic field method, If the horizontal magnetic field method is used, the object 101 is installed so as to surround it.
  • the receiving coil 105 is installed so as to face or surround the subject 101.
  • the imaging target of the MRI apparatus 100 is the main constituent substance of the subject, proton.
  • the MRI system 100 can visualize the shape or function of the human head, abdomen, extremities, etc. in two or three dimensions by imaging the spatial distribution of proton density and the relaxation phenomenon of excited protons. Take a picture.
  • phase encodings are given depending on the gradient magnetic field, and echo signals obtained by the respective phase encodings are detected.
  • values such as 128, 256, and 512 are usually selected per image.
  • Each echo signal is usually obtained as a time-series signal composed of 128, 256, 512, and 1024 sampling data.
  • the MRI apparatus 100 creates a single MR image by performing Fourier transform (hereinafter referred to as FT) on these data, performs various analyzes, and presents the results to the user.
  • FT Fourier transform
  • the analysis performed by the MRI apparatus 100 includes, for example, temperature measurement of a subject. In some cases, pre-pulses having various effects are applied prior to the imaging.
  • a first pulse sequence for acquiring data for generating an inflow kinetic image that is a dynamic image of blood flowing into a predetermined site and a pre- And a second pulse sequence for acquiring data for generating the defined information.
  • the second pulse sequence is executed in a free time within the repetition time of the first pulse sequence. Then, the execution of the second pulse sequence is controlled so that the data acquired in the second pulse sequence minimizes the influence of the first pulse sequence.
  • the imaging sequence for acquiring BSI data as the second pulse sequence is used as the first pulse sequence by using an imaging sequence by ASL Perfusion that acquires ASL data (hereinafter, ASL sequence).
  • ASL sequence A case where a sequence (BSI sequence) is used will be described as an example. That is, in the present embodiment, the BSI sequence is executed during the free time of the ASL sequence for acquiring ASL data.
  • the imaging conditions for each pulse sequence are set, the BSI sequence parameters executed in each idle time are adjusted using the imaging conditions.
  • FIG. 2 (a) shows an RF pulse application timing chart as an example of the ASL sequence 300.
  • FIG. As shown in the figure, in the first pulse sequence (ASL sequence 300), after applying a labeling pulse (label RF pulse) 311 as a pre-pulse, a predetermined time (waiting time PLD (post labeling delay)) 313 is set.
  • PLD predetermined time
  • the labeling sequence 310 and the control sequence 320 are alternately executed at each repetition time interval TR.
  • the labeling pulse 311 is a pulse for labeling blood protons (reversed with respect to the direction of the static magnetic field), and the control pulse 321 does not substantially label the blood protons, and the MT effect is applied to the labeling pulse 311 application state. This is a pulse for aligning.
  • the labeling pulse 311 is applied to the labeling pulse application region 610.
  • the blood labeled by the labeling pulse 311 reaches the perfusion region, data at the slice position 620 is acquired.
  • the waiting times PLD313 and 323 are times until the labeled / controlled blood protons flow into the imaging slice, and are generally input by the user for imaging.
  • the PLDs 313 and 323 vary depending on the distance Dis between the labeling pulse application region 610 and the slice position 620 or the blood flow velocity of the subject 101. . Therefore, the PLD may be determined by the system in consideration of such information. Note that the PLD 313 and the PLD 323 have the same length.
  • FIG. 4 (a) shows a typical pulse sequence 340 used as a sequence (data acquisition sequence) executed during the period of ASL data acquisition 312 and 322.
  • a sequence data acquisition sequence
  • an EPI pulse sequence is used in addition to an SE pulse sequence.
  • RF, Gs, Gp, and Gf indicate application axes of the RF pulse, slice selection gradient magnetic field pulse, phase encode gradient magnetic field pulse, and frequency encode gradient magnetic field pulse, respectively.
  • This pulse sequence 340 is executed for the number of slices determined by the imaging conditions.
  • 2A illustrates a pulse sequence in the case of acquiring data by 2D multi-slice, but of course, a pulse sequence capable of acquiring data by 3D may be used as the data acquisition sequence.
  • the ASL perfusion image is obtained by the difference between the label image obtained from the labeling sequence 310 and the control image obtained from the control sequence 320.
  • BSI sequence 400 for acquiring BSI data for example, a 3D Gradient Echo EPI sequence shown in FIG. 4B is used.
  • a 3D RF spoiled SSFP (RF-Spoiled Steady State Free Precession) sequence is shown. The case where the number of echo trains is 5 is illustrated.
  • RF, Gs, Gp, and Gf indicate application axes of the RF pulse, slice selection gradient magnetic field pulse, phase encode gradient magnetic field pulse, and frequency encode gradient magnetic field pulse, respectively.
  • the ASL sequence 300 includes a plurality of (in this case, four) idle times (331, 332, 333, 334) in terms of time.
  • the idle time 331 is the idle time in the labeling sequence 310
  • the idle time 332 is the idle time in the labeling sequence 310, which is the ASL data acquisition 312. This is the time from the end to the application of the control pulse 321.
  • the idle times 333 and 334 are idle times in the control sequence 320.
  • the BSI sequence is executed in at least one of the four free times (331, 332, 333, 334) to acquire BSI data. This realizes simultaneous measurement of ASL and BSI.
  • the BSI data acquired in the free time in the control sequence 320 is arranged in the low spatial frequency region of the k space from the BSI data acquired in the free time in the labeling sequence 310. Further, in the control sequence 320 and the labeling sequence 310, the BSI data acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency region of the k space.
  • the overall control unit 108 of the present embodiment includes an imaging condition reception unit 210, a sequence adjustment unit 220, a measurement unit 230, an image reconstruction unit 240, a display image, as shown in FIG. And a generation unit 250. Details of each part will be described below.
  • the shooting condition reception unit 210 receives various shooting parameter settings from the user as shooting conditions. Accepted parameters are, for example, field of view FOV, repetition time TR, effective echo time TE, slice number Slice #, time interval between echo signals IET (Inter Echo Time), number of echo signals measured with one excitation ETL (echo train length), frequency encoding step number Freq #, phase encoding step number Phase #, and the like.
  • the ASL sequence 300 and the BSI sequence 400 are accepted.
  • the imaging parameters for the ASL sequence 300 for acquiring the data for ASL are shown with the subscript ASL , for example, TR ASL or ETL ASL .
  • ASL Perfusion-specific parameters such as PLD are excluded.
  • imaging parameters for the BSI sequence 400 for acquiring BSI data are shown with a subscript BSI such as TR BSI and ETL BSI .
  • the imaging condition reception unit 210 of the present embodiment displays the imaging parameter reception screen on the display device of the display / operation unit 113 and receives settings via the display / operation unit 113.
  • a plurality of types of shooting parameter sets may be stored in the storage device 115 in advance, the preset parameters selected by the user may be displayed, and the displayed preset parameters may be adjusted by the user.
  • the shooting condition reception screen 500 is shown in FIG. As shown in the figure, the shooting condition reception screen 500 of the present embodiment receives the shooting conditions of the ASL sequence 300, receives the shooting conditions of the ASL shooting condition display field 510 for displaying the received conditions, and the shooting conditions of the BSI sequence 400, And a BSI imaging condition display field 520 for displaying the accepted conditions.
  • the shooting condition reception screen 500 it is desirable that the same shooting condition items are displayed side by side (corresponding to each other) in the ASL shooting condition display field 510 and the BSI shooting condition display field 520. There are photographing conditions that should be equal or multiples in both sequences. By displaying them side by side, it becomes easier to compare and compare the imaging conditions set for both sequences.
  • the measurement unit 230 described later basically performs measurement according to the imaging conditions received by the imaging condition reception unit 210.
  • the sequence adjustment unit 220 in this embodiment suppresses the influence of the labeling pulse 311 of the ASL sequence 300 in this way, the BSI sequence 400 (second pulse sequence) in each idle time (331, 332, 333, 334). ) Encoding amount and execution timing are adjusted.
  • the sequence adjustment unit 220 determines the number of BSI data to be acquired in each free time (331, 332, 333, 334) and the k-space arrangement position based on the shooting conditions set by the user.
  • the sequence adjustment unit 220 of the present embodiment calculates the number of shots and the encoding amount of the BSI sequence 400 to be executed in each free time (331, 332, 333, 334) based on the shooting conditions. Then, the BSI sequence 400 is adjusted so that the data is measured with the calculated number of shots and the calculated encoding amount in each of the idle times (331, 332, 333, 334).
  • the encoding amount to be determined is the phase encoding amount for 2D imaging, and the phase encoding amount and slice encoding amount for 3D imaging.
  • BSI data BSI Data acquired in BSI sequence 400 the data BSI Data for BSI to get free time 333 and 334 in the control sequence 320, idle time in the labeling sequence 310 to get to 331 and 332 disposed in the low spatial frequency region of the k-space from the data BSI data for BSI.
  • the BSI data BSI Data acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency region of the k space.
  • the length of the idle time (331, 332, 333 and 334), respectively, represent the ASL Lab1, ASL Lab2, ASL Cont1, ASL Cont 2, when a period of ASL data acquisition 312 and 322 representing the ASL Acq, between them Have the following relations (1) and (2).
  • ASL is the repetition time of the ASL sequence 300.
  • the ASL data acquisition period ASL Acq is uniquely determined internally depending on the shooting conditions set by the user.
  • the sequence adjustment unit 220 first calculates the number of shots that can be executed in each free time (331, 332, 333, 334).
  • SHOT # 1 the number of shots that can be executed in the free times 331 and 333
  • SHOT # 2 the number of shots that can be executed in the free times 332 and 334
  • the number of data BSI Data acquired in each free time (331, 332, 333, 334) can be calculated by the following equations (5) and (6).
  • the number of data acquired in the free times 331 and 333 is DATA # 1
  • the number of data acquired in the free times 332 and 334 is DATA # 2
  • the number of echo trains is ETL BSI .
  • the sequence adjustment unit 220 determines the k-space arrangement of the data BSI Data acquired at each free time (331, 332, 333, 334). That is, the encoding amount of the data BSI Data acquired in each free time (331, 332, 333, 334) is determined.
  • the data acquired in the free times 331 and 332 are easily affected by labeled blood protons, it is desirable to use data in the high frequency region.
  • the data acquired in the free times 333 and 334 is not affected by the labeled blood protons, and is preferably data in a low spatial frequency region.
  • the idle times 331 and 333 immediately after the labeling pulse 311 and the control pulse 321 are not easily affected by the prepulse because the blood affected by the prepulse has not yet flowed into the imaging slice. Therefore, in the same labeling sequence 310 and control sequence 320, it is desirable that data having a shorter period from pre-pulse application to data acquisition be arranged in a low spatial frequency region.
  • BSI data in the lower spatial frequency region is acquired in the order of the idle times 333, 334, 331, and 332.
  • the sequence adjustment unit 220 calculates each free time (331, 332) so that it is arranged in the k space in the above order based on the number of shots that can be acquired in each free time (331, 332, 333, 334) calculated in advance. 333, 334), the encoding amount of the BSI sequence 400 to be executed is determined.
  • the shot number SHOT # required to fill the kx-ky space is expressed by the following equation (9) using the total phase encoding step number Phase # BSI and RAPID BSI .
  • the sequence adjustment unit 220 of the present embodiment for example, as shown in Table 710 of FIG.7 (b), for the kz direction and the ky direction, from the free time 333 (ASL Cont1 ), Centric (centric)
  • the phase encoding amount and slice encoding amount of the BSI sequence 400 to be executed in each free time (331, 332, 333, 334) are determined so that BSI data in the low spatial frequency region is acquired.
  • the kz direction indicates the slice encoding step
  • the measurement unit 230 applies a high-frequency magnetic field pulse to a desired region of the subject 101, applies a gradient magnetic field pulse to the region, and the subject in accordance with preset imaging conditions and a pulse sequence.
  • the nuclear magnetic resonance signal generated from the region is measured.
  • control is performed so as to execute the first pulse sequence (ASL sequence 300) and the second pulse sequence (BSI sequence 400).
  • the measurement unit 230 converts the second pulse sequence (BSI sequence 400) into free time (331, 332, 333) within the repetition time of the first pulse sequence (ASL sequence 300). , 334).
  • the BSI sequence 400 that is the second pulse sequence is executed according to the adjustment result by the sequence adjustment unit 220.
  • the image reconstruction unit 240 reconstructs an image from data acquired by the first pulse sequence (ASL sequence 300) and data acquired by the second pulse sequence (BSI sequence 400), respectively, according to the imaging conditions.
  • a label image is generated from the data acquired in the labeling sequence 310 of the ASL sequence 300, and a control image is generated from the data acquired in the control sequence 320.
  • phase image and an absolute value image are generated from the data acquired by the BSI sequence 400.
  • the display image generation unit 250 generates a display image to be displayed on the display device of the display / operation unit 113 from the reconstructed image by a predetermined method.
  • the difference between the label image and the control image is taken to generate an ASL image.
  • various types of information are also calculated. For example, using a phase image and an absolute value image generated from data acquired by the BSI sequence 400, a vein image drawn by SWI (Susceptibility Weighted Imaging) or BSI (Blood Sensitivity Imaging), a quantitative magnetic susceptibility map (QSM) (Quantitative Susceptibility Mapping)) and information including at least one of brain oxygen uptake rate (OEF (Oxygen Extraction Fraction)) is generated.
  • SWI Seceptibility Weighted Imaging
  • BSI Breast Imaging
  • QSM quantitative magnetic susceptibility map
  • OEF Oxygen Extraction Fraction
  • This embodiment is characterized in that two different images are obtained in one scan and are compared. Therefore, the display image generation unit 250 of the present embodiment generates a display image so that both can be easily compared.
  • Fig. 8 shows an example of the label / control RF pulse method, 2D / 3D (dimension), and data acquisition sequence of ASL sequence 300, and 2D / 3D (dimension) and data acquisition sequence of BSI sequence 400. Are shown respectively.
  • PASL PASL
  • pCASL pCASL
  • any of the data acquisition sequences is SE-EPI, SSFP-EPI, FSE, VRFA-FSE. Etc. can be used.
  • the dimension is limited to 3D, but as a data acquisition sequence, RF spoiled SSFP (RF-SpoiledoilSteady State Free Precession), SSFP-EPI, or the like can be used.
  • RF spoiled SSFP RF-SpoiledoilSteady State Free Precession
  • SSFP-EPI SSFP-EPI
  • label / control RF pulse system 2D / 3D, and data acquisition sequence can be selected.
  • BSI sequence 400 a data acquisition sequence can be selected. These selections allow simultaneous measurement in various combinations. It is desirable to select a combination suitable for clinical use.
  • the first pulse sequence (ASL sequence 300) is a 2D multi-slice measurement sequence and the second pulse sequence (BSI sequence 400) is a 3D measurement sequence
  • display image generation The unit 250 performs MPR (Multi-Planar Reconstruction) processing on the three-dimensional image data reconstructed from the data obtained by the second pulse sequence, and reconstructs the data obtained by the first pulse sequence.
  • MPR Multi-Planar Reconstruction
  • the display image generation unit 250 displays the imaging conditions (slice position and (Slice thickness) is referred to, MPR is automatically performed internally, and a BSI image is generated and displayed.
  • the 2D / 3D and data acquisition sequence selected for the ASL sequence 300 and the data acquisition sequence selected for the BSI sequence 400 are both 3D SSFP-EPI, they are obtained by the control sequence 320 of the ASL sequence 300.
  • the data can also be used as data for creating BSI data.
  • the application of a high-frequency magnetic field pulse to a desired region of a subject the application of a gradient magnetic field pulse to the region, according to preset imaging conditions and a pulse sequence,
  • a measurement unit 230 that measures a nuclear magnetic resonance signal generated from the region of the subject, and the pulse sequence generates data for generating an inflow dynamic image that is a dynamic image of blood flowing into a predetermined site.
  • a first pulse sequence to be acquired (ASL sequence 300), and a second pulse sequence to acquire data for generating predetermined information other than the inflow dynamic image of the part (BSI sequence 400), and
  • the second pulse sequence (BSI sequence 400) is executed in a free time within the repetition time of the first pulse sequence (ASL sequence 300).
  • the first pulse sequence (ASL sequence 300) includes a labeling sequence 310 that collects data at a predetermined time after applying a labeling pulse 311 as a prepulse, and the prepulse that is executed after the labeling sequence 310. And a control sequence 320 that collects data at a predetermined time after applying the control pulse 321.
  • the labeling sequence 310 and the control sequence 320 are alternately executed.
  • the BSI sequence 400 is executed during the idle time of the ASL sequence 300 to acquire BSI data. Therefore, a hemodynamic image of blood (arteries) flowing into the brain, a hemodynamic image of blood (venouss) flowing out of the brain, a quantitative susceptibility map of the brain, and a brain oxygen uptake rate are taken once. Can be obtained at Since both data are acquired substantially simultaneously, the positional deviation between the images is less than that of the conventional method acquired separately, and the photographing time can be shortened. In addition, the clinical value is expected to identify the shape of the brain tumor.
  • the MRI apparatus 100 of the present embodiment further includes a sequence adjustment unit 220 that adjusts the second pulse sequence (BSI sequence 400), and the first pulse sequence (ASL sequence 300) includes a plurality of idle times. (331, 332, 333, 334), and the sequence adjustment unit 220 performs the second pulse sequence (BSI) to be executed in each of the idle times (331, 332, 333, 334) based on the imaging conditions.
  • the number of shots and the encoding amount of the sequence 400) are calculated, and the second pulse sequence (BSI sequence 400) is adjusted according to the calculation result, and the encoding amount is set to the free times 333 and 334 in the control sequence 320.
  • Data to be acquired is calculated so as to be arranged in a low spatial frequency region of k-space from data acquired in the free times 331 and 332 in the labeling sequence 310. Further, the encoding amount is further calculated so that data acquired at a timing with less influence of the pre-pulse is arranged in a low spatial frequency region of k-space.
  • the data acquired by the BSI sequence 400 is not easily affected by the pre-pulse (labeling pulse 311). Therefore, a high-quality BSI image can be obtained even when it is acquired in the free time.
  • the sequence adjustment unit 220 changes the PLD in order to determine the number of shots and the encoding amount of the BSI sequence 400 executed in each idle time.
  • the optimum BSI sequence 400 can be easily determined. Accordingly, it is possible to flexibly cope with changes in the photographing conditions.
  • Second Embodiment A second embodiment of the present invention will be described.
  • the encoding amount is determined so that the data acquired during the free time with little influence of the labeling pulse 311 is arranged in the low spatial frequency region. Adjust the sequence.
  • the ASL sequence 300 is a 2D imaging sequence
  • the data acquisition order of the imaging slice is also adjusted.
  • the MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment. However, as described above, since the acquisition order of the imaging slices of the ASL sequence 300 is also adjusted, the processing of the imaging condition reception unit 210 and the sequence adjustment unit 220 is different. Hereinafter, the present embodiment will be described focusing on the configuration different from the first embodiment.
  • the BSI data acquired in the free time 332 may be affected by the acquisition of ASL data. Therefore, in this embodiment, in the image (BSI image) generated from the data acquired by the BSI sequence 400 to the user, which is more important is the image on the parietal side (Head side) or the image on the brain base side (Foot side). And automatically change the ASL imaging slice ordering accordingly.
  • the first pulse sequence (ASL sequence 300) is a sequence for two-dimensional multi-slice measurement
  • the second pulse sequence (BSI sequence 400) is a sequence for three-dimensional measurement.
  • the imaging condition includes information (BSI image priority) for specifying a priority side with respect to the slice direction of the first pulse sequence
  • the sequence adjustment unit 220 includes the first pulse sequence.
  • the excitation frequency is further calculated, and at this time, the excitation frequency is calculated so as to be acquired first from the slice on the priority side.
  • the imaging condition reception unit 210 of the present embodiment further receives the priority of the BSI image in addition to the imaging conditions received in the first embodiment.
  • the BSI shooting condition display field 520 displays a shooting condition receiving screen 500a further including an area for specifying priority (priority specifying area) 521, Accept via this screen.
  • the sequence adjustment unit 220 of this embodiment determines the encoding amount of the BSI sequence 400, as in the first embodiment. Further, according to the priority received by the imaging condition reception unit 210, the imaging slice acquisition order of the ASL sequence 300 is also determined.
  • the sequence adjustment unit 220 determines to acquire the imaging slice acquisition order from the higher priority. That is, as illustrated in FIG. 9, when the user selects that the data on the parietal side (Head side) is more important, in the ASL sequence 300, the imaging slice ordering (ASL Slice order) is changed to the Head direction. To Foot direction (HF). On the other hand, if the user selects the Foot side, the ordering is F-H.
  • the imaging slice ordering in the ASL sequence 300 calculated by the sequence adjustment unit 220 may be displayed on the imaging condition reception screen 500a.
  • the ASL shooting condition display field 510 of the shooting condition reception screen 500a includes a slice order display field 511 as shown in FIG.
  • the sequence adjustment unit 220 displays the adjustment result in the slice order display field 511. That is, as shown in this figure, the display of “ASL slice order” 511 changes in conjunction with “BSI priority dir” 521.
  • the MRI apparatus 100 of the present embodiment includes the measurement unit 230 as in the first embodiment, and the second pulse sequence (BSI sequence 400) is changed to the first pulse sequence (ASL sequence). Execute in the free time within the repetition time of 300).
  • the data acquired in the free times 333 and 334 in the control sequence 320 of the ASL sequence 300 is lower in the k space than the data acquired in the free times 331 and 332 in the labeling sequence 310.
  • the encoding amount of the BSI sequence 400 is calculated so that the data that is arranged in the spatial frequency domain and acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency domain of the k space.
  • the first pulse sequence (ASL sequence 300) is a two-dimensional multi-slice measurement sequence
  • the second pulse sequence (BSI sequence 400) is a three-dimensional A sequence for measurement
  • the imaging condition includes information specifying a priority side in the second pulse sequence with respect to the slice direction of the first pulse sequence (ASL sequence 300)
  • the sequence adjustment unit 220 further calculates an excitation frequency of the first pulse sequence (ASL sequence 300), and the excitation frequency is calculated so as to be acquired first from the priority slice.
  • the same effect as the first embodiment can be obtained. Furthermore, the time interval from the ASL top slice (Slice # 1) to the free time 332 can be extended. For this reason, the influence of the labeling pulse 311 in the ASL sequence 300 can be minimized.
  • the MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment. However, as shown in FIG. 10, the overall control unit 108 of the present embodiment also adjusts shooting conditions, and therefore includes a shooting condition adjustment unit 260 in addition to the configuration of the first embodiment.
  • the present embodiment will be described focusing on the configuration different from the first embodiment.
  • the imaging condition adjustment unit 260 of the present embodiment adjusts the imaging conditions received by the imaging condition reception unit 210.
  • This imaging condition adjustment unit 260 adjusts a predetermined imaging condition among the imaging conditions of the second pulse sequence (BSI sequence 400) according to the imaging conditions of the first pulse sequence (ASL sequence 300).
  • the predetermined imaging conditions (adjustment imaging conditions) to be adjusted are the field of view (FOV), each encoding direction, the time interval between echo signals, the number of echo signals measured with one excitation, and the parallel imaging Contains at least one of the double speed numbers.
  • the encoding directions of the field of view (FOV) and read-out / phase / slice are always aligned (same) in both sequences. Further, it is desirable that the IET of the BSI sequence 400, the double speed number of parallel imaging, and the ETL are adjusted to be an integral multiple of those of the ASL sequence 300.
  • the shooting condition adjustment unit 260 holds in the storage device 115 the shooting condition calculation rule (shooting condition calculation rule) of the BSI sequence 400 with respect to the shooting condition of the ASL sequence 300 in advance for the above-described adjusted shooting condition. Then, the shooting condition adjustment unit 260 calculates the shooting condition of the BSI sequence 400 according to the shooting condition calculation rule using the shooting condition input as the shooting condition of the ASL sequence 300, and calculates the shooting condition initially set by the user. Replace with what you did.
  • the imaging condition calculation rule to be retained is FOV, an instruction to make the encoding direction equal, IET, a double speed of parallel imaging, a parameter that is an integer multiple such as ETL, and the multiple thereof.
  • the imaging condition adjustment unit 260 may be configured to display the replaced imaging condition in the BSI imaging condition display field 520 of the imaging condition reception screen 500.
  • the imaging condition adjustment unit 260 is provided and the imaging conditions of the BSI sequence 400 are automatically adjusted according to the imaging conditions of the ASL sequence 300 has been described as an example, but the present invention is not limited to this.
  • the user may input parameters via the shooting condition reception screen 500 and determine whether or not the apparatus is appropriate. In this case, the imaging condition adjustment unit 260 may not be provided.
  • the shooting condition adjustment unit 260 may be configured to perform at least one of a process of notifying a user of a message and a process of automatically setting shooting conditions according to a rule.
  • the shooting condition adjustment unit 260 displays a message that gives a warning to the display / operation unit 113, or an appropriate Suggestion may be displayed as a value, and the user may be prompted to input again.
  • the shooting condition calculation rules stored in the storage device 115 may include rules regarding the number of integrations and spatial resolution.
  • the number of integrations and the spatial resolution are desirably different between both sequences. Therefore, for example, as an imaging condition calculation rule, an adjustment value or a change amount is held in advance for these imaging conditions.
  • the shooting condition adjustment unit 260 displays a message to the user and re-enters it. Encourage or adjust automatically according to the shooting condition calculation rules.
  • the MRI apparatus 100 of the present embodiment includes the measurement unit 230 as in the first embodiment, and the second pulse sequence (BSI sequence 400) is changed to the first pulse sequence (ASL sequence). Execute in the free time within the repetition time of 300).
  • the data acquired in the free times 333 and 334 in the control sequence 320 of the ASL sequence 300 is lower in the k space than the data acquired in the free times 331 and 332 in the labeling sequence 310.
  • the encoding amount of the BSI sequence 400 is calculated so that the data that is arranged in the spatial frequency domain and acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency domain of the k space.
  • the MRI apparatus 100 of the present embodiment further includes an imaging condition adjustment unit 260 that adjusts the imaging conditions, and the imaging condition adjustment unit 260 includes, among the imaging conditions of the second pulse sequence (BSI sequence 400), The predetermined imaging conditions are adjusted according to the imaging conditions of the first pulse sequence (ASL sequence 300).
  • the same effect as that of the first embodiment can be obtained. Furthermore, according to the present embodiment, since the imaging conditions of the ASL sequence 300 and the BSI sequence 400 can be adjusted to the optimum ones, an image optimal for comparison can be obtained by both sequences.
  • the configuration is such that the user input is adjusted even when the shooting conditions of the BSI sequence 400 are automatically set.
  • the present invention is not limited to this.
  • the shooting conditions (adjustment shooting conditions) that can be automatically calculated from the shooting conditions of the ASL sequence 300 in accordance with predetermined shooting condition calculation rules may be configured so that the user does not need to input the shooting conditions of the BSI sequence 400. Good.
  • the shooting condition receiving unit 210 displays the shooting conditions of the first pulse sequence (ASL sequence 300) in the first display column (ASL shooting condition display column 510).
  • the imaging condition adjustment unit 260 generates the imaging condition of the second pulse sequence (BSI sequence 400) according to the imaging condition of the first pulse sequence, and the imaging condition adjustment unit 260 In one display column, the imaging conditions of the received first pulse sequence are displayed, and in the second display field (BSI imaging condition display field 520), the imaging conditions of the generated second pulse sequence are displayed. indicate.
  • the shooting condition reception unit 210 displays the shooting condition reception screen 500 shown in FIG. 6 in such a manner that only the shooting conditions of the ASL sequence 300 can be input as the adjusted shooting conditions. Only the shooting conditions of the ASL sequence 300 are accepted. At this time, other imaging parameters of the BSI sequence 400 are arbitrarily set by the user.
  • the imaging condition adjustment unit 260 calculates the imaging condition of the BSI sequence 400 according to a predetermined imaging condition calculation rule.
  • the calculated shooting conditions are displayed in the corresponding shooting condition fields of the BSI shooting condition display field 520 of the shooting condition reception screen 500, respectively.
  • Predetermined imaging condition calculation rules include, for example, as described above, FOV and readout / phase / slice encoding directions are always aligned (assuming the same), IET of BSI sequence 400, double speed of parallel imaging, ETL Is an integer multiple of those of the ASL sequence 300, and the number of integrations and the spatial resolution are different values.
  • the shooting conditions for the BSI sequence 400 can also be set, so that ASL data and BSI data can be obtained simultaneously in a single scan.
  • the optimal shooting conditions can be set easily.
  • MRI apparatus 101 subject, 102 static magnetic field generating magnet, 103 gradient magnetic field coil, 104 transmission coil, 105 reception coil, 106 signal detection unit, 107 signal processing unit, 108 overall control unit, 109 gradient magnetic field power supply, 110 RF transmission Unit, 112 bed, 113 display / operation unit, 115 storage device, 210 shooting condition reception unit, 220 sequence adjustment unit, 230 measurement unit, 240 image reconstruction unit, 250 display image generation unit, 260 shooting condition adjustment unit, 300 ASL Sequence, 310 Labeling Sequence, 311 Labeling Pulse, 312 ASL Data Acquisition, 313 PLD, 320 Control Sequence, 321 Control Pulse, 322 ASL Data Acquisition, 323 PLD, 331 Free Time, 332 Free Time, 333 Free Time, 334 Free Time, 340 pulse sequence, 400 BSI sequence, 500 shooting condition reception screen, 500a shooting condition reception screen, 510 ASL shooting condition display field, 5 11 Slice order display field, 520 BSI imaging condition display field, 521 Priority specification area,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Through the present invention, BSI data are acquired during open time (in which an RF pulse or gradient magnetic field is not applied) of an ASL image acquisition sequence, in order to acquire a hemodynamic image of blood flowing in and a hemodynamic image of blood flowing out of the same region, or other information of the region, in a short time and without positional misalignment. At this time, BSI data acquired in open time at the time of acquisition of a control image in an ASL image acquisition sequence are disposed in a region of lower spatial frequency in k space than BSI data acquired in open time at the time of acquisition of a label image, and, in open time when each image is acquired, the BSI data are disposed in the region of low spatial frequency in k space to the degree that the data are acquired at a timing at which the effect of a pre-pulse is small.

Description

磁気共鳴イメージング装置および磁気共鳴イメージング方法Magnetic resonance imaging apparatus and magnetic resonance imaging method
 本発明は、Magnetic Resonance Imaging(以下、MRI)技術に関し、特に、血行動態を描出する技術に関する。 The present invention relates to a Magnetic Resonance Imaging (hereinafter referred to as MRI) technique, and particularly to a technique for depicting hemodynamics.
 MRI装置は、核磁気共鳴(NMR)現象を利用して被検体の画像を得る計測装置であって、被検体に高周波磁場(以下、RFという)パルスを照射し、その応答として、被検体の組織を構成する原子核スピンが発生するNMR信号を計測する。そして計測したNMR信号に基づいて、被検体の頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する。撮影の際には、傾斜磁場によって、NMR信号は、異なる位相エンコードやスライスエンコードが付与されると共に、周波数エンコードが付与されて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。 An MRI apparatus is a measurement apparatus that obtains an image of a subject using a nuclear magnetic resonance (NMR) phenomenon, and irradiates a subject with a high-frequency magnetic field (hereinafter referred to as RF) pulse, and in response, Measure NMR signals generated by the nuclear spins that make up the tissue. Based on the measured NMR signal, the form and function of the subject's head, abdomen, limbs, etc. are imaged two-dimensionally or three-dimensionally. At the time of imaging, the NMR signal is given different phase encoding and slice encoding by the gradient magnetic field, and frequency encoding is given to the NMR signal, which is measured as time series data. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
 MRI装置において、血液プロトンをラベルした画像(ラベル画像)とラベルしない画像(コントロール画像)との差分により血行動態を描出する撮影がある(例えば、特許文献1および特許文献2参照)。これらの方法により、非造影で灌流画像を得ることができる。この灌流画像は、一般的にArterial Spin Labeling Perfusion(ASL Perfusion;以下、ASL)画像と呼ばれる。なお、特許文献1または特許文献2に開示の手法で、ラベル/コントロールした血液プロトンが灌流領域に到達する以前のタイミングで撮影すると、血管画像を得ることができる。 In an MRI apparatus, there is imaging that displays hemodynamics based on the difference between an image labeled with a blood proton (label image) and an image not labeled (control image) (see, for example, Patent Document 1 and Patent Document 2). By these methods, a perfusion image can be obtained without contrast. This perfusion image is generally called an ArterialerSpin Labeling Perfusion (ASL Perfusion; ASL) image. Note that a blood vessel image can be obtained by photographing at the timing before the labeled / controlled blood proton reaches the perfusion region by the method disclosed in Patent Document 1 or Patent Document 2.
 一方、絶対値画像および位相画像を利用して静脈を描出する手法がある。この中には、位相画像から位相マスクを作成し、絶対値画像に位相マスクを掛けることで静脈を描出する手法がある(例えば、特許文献3および非特許文献1参照)。位相マスクの作成方法は様々な方法が提案されている。この静脈描出法は、Susceptibility Weighted Imaging(SWI)やBlood Sensitivity Imaging(BSI)などと呼ばれている。 On the other hand, there is a technique for rendering veins using absolute value images and phase images. Among them, there is a method of drawing a vein by creating a phase mask from a phase image and applying the phase mask to the absolute value image (see, for example, Patent Document 3 and Non-Patent Document 1). Various methods for creating a phase mask have been proposed. This vein rendering method is called Susceptibility / Weighted / Imaging (SWI) or Blood / Sensitivity / Imaging (BSI).
 また、非特許文献2のように絶対値画像および位相画像から定量的磁化率マップ(Quantitative Susceptibility Mapping:QSM)を求める技術がある。さらに、QSMから脳酸素摂取率(OEF)を求める技術もある。 Also, as in Non-Patent Document 2, there is a technique for obtaining a quantitative susceptibility map (QSM) from an absolute value image and a phase image. In addition, there is a technique for determining brain oxygen uptake rate (OEF) from QSM.
米国特許第5846197号明細書US Patent No. 5846197 米国特許第7545142号明細書U.S. Pat. 米国特許第6658280号明細書US Pat. No. 6,658,280
 ASL画像とBSI/QSM/OEF(以下、BSIで代表する)画像とにより、同じ部位に流入する血液(動脈)の血行動態と流出する血液(静脈)の血行動態、あるいは、当該部位のその他の情報と、を得ることができる。通常両画像は、別箇独立に取得されたデータから生成される。この場合、比較において、ASLデータとBSIデータの取得が別撮影であることによる画像間の位置ずれが問題となる。また、別撮影であるため撮影時間も長くなる。 Based on the ASL image and BSI / QSM / OEF (hereinafter referred to as BSI) images, the hemodynamics of blood (arteries) flowing into the same site and the blood (venouss) flowing out, or other Information. Usually, both images are generated from data acquired separately. In this case, in the comparison, misalignment between images due to separate acquisition of ASL data and BSI data becomes a problem. In addition, since the shooting is performed separately, the shooting time becomes longer.
 本発明は、上記事情に鑑みてなされたもので、同じ部位に流入する血液の血行動態画像と流出する血液の血行動態画像あるいは当該部位のその他の情報とを、位置ずれなく、短時間で取得する技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and acquires a hemodynamic image of blood flowing into the same part and a hemodynamic image of blood flowing out or other information of the part in a short time without misalignment. It aims at providing the technology to do.
 ASL画像取得用シーケンスの空き時間(RFパルスや傾斜磁場を印加しない時間)に、BSIデータを取得する。このとき、ASL画像取得用シーケンスのコントロール画像取得時の空き時間に取得するBSIデータを、ラベル画像を取得時の空き時間に取得するBSIデータよりk空間の低空間周波数領域に配置する。また、各画像取得時の空き時間においては、プリパルスの影響が少ないタイミングで取得するデータほど、k空間の低空間周波数領域に配置する。 ∙ Acquire BSI data in the idle time of the ASL image acquisition sequence (time to apply no RF pulse or gradient magnetic field). At this time, the BSI data acquired in the free time at the time of acquiring the control image of the ASL image acquisition sequence is arranged in the low spatial frequency region of k space from the BSI data acquired in the free time at the time of acquiring the label image. Moreover, in the idle time at the time of each image acquisition, the data acquired at the timing with less influence of the pre-pulse is arranged in the low spatial frequency region of the k space.
 本発明により、同じ部位に流入する血液の血行動態画像と流出する血液の血行動態画像あるいは当該部位のその他の情報とを、位置ずれなく、短時間で取得できる。 According to the present invention, the hemodynamic image of blood flowing into the same part and the hemodynamic image of blood flowing out or other information on the part can be acquired in a short time without positional deviation.
第一の実施形態のMRI装置の構成図Configuration diagram of the MRI apparatus of the first embodiment (a)一般的なASLシーケンスのシーケンス図(b)は、ASLシーケンスの空き時間を説明するための説明図(a) Sequence diagram of a general ASL sequence (b) is an explanatory diagram for explaining the free time of an ASL sequence (a)および(b)は、PLDを説明するための説明図(a) and (b) are explanatory diagrams for explaining the PLD. (a)は、第一の実施形態のASLシーケンス内のデータ取得シーケンス例のシーケンス図であり、(b)は、第一の実施形態のBSIシーケンス例のシーケンス図(a) is a sequence diagram of a data acquisition sequence example in the ASL sequence of the first embodiment, (b) is a sequence diagram of a BSI sequence example of the first embodiment 第一の実施形態の全体制御部の機能ブロック図Functional block diagram of the overall control unit of the first embodiment 第一の実施形態の撮影条件受付画面例を説明するための説明図Explanatory drawing for demonstrating the imaging condition reception screen example of 1st embodiment (a)は、第一の実施形態の、BSIシーケンス調整手法を説明するための説明図であり、(b)は、具体的なデータ取得順を説明するための説明図(a) is an explanatory diagram for explaining the BSI sequence adjustment method of the first embodiment, (b) is an explanatory diagram for explaining a specific data acquisition order ASLとBSIの撮影方法の組み合わせ例を説明するための説明図Explanatory diagram for explaining an example of combination of ASL and BSI shooting methods 第二の実施形態の撮影条件受付画面例を説明するための説明図Explanatory drawing for demonstrating the example of an imaging condition reception screen of 2nd embodiment 第三の実施形態の全体制御部の機能ブロック図Functional block diagram of the overall control unit of the third embodiment 第三の実施形態の変形例の全体制御部の機能ブロック図Functional block diagram of the overall control unit of a modification of the third embodiment
 <<第一の実施形態>>
 以下、本発明の第一の実施形態を説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは、特に断らない限り、同一符号を付し、その繰り返しの説明は省略する。
<< First Embodiment >>
Hereinafter, a first embodiment of the present invention will be described. Hereinafter, in all the drawings for explaining the embodiments of the present invention, those having the same function are denoted by the same reference numerals unless otherwise specified, and repeated explanation thereof is omitted.
 [MRI装置の構成]
 図1は、本実施形態のMRI装置100の構成図である。このMRI装置100は、NMR現象を利用して被検体101の断層画像を得るものである。本図に示すように、本実施形態のMRI装置100は、被検体101の周囲に静磁場を発生する静磁場発生磁石102と、該空間に傾斜磁場を発生する傾斜磁場コイル103と、この領域に高周波磁場を照射する送信RFコイル(送信コイル)104と、被検体101が発生するMR信号を検出するRFプローブ(受信コイル)105と、信号検出部106と、信号処理部107と、全体制御部108と、傾斜磁場電源109と、RF送信部110と、被検体101を搭載して、その被検体101を静磁場発生磁石102の内部に出し入れするベッド112と、表示・操作部113と、を備える。
[Configuration of MRI system]
FIG. 1 is a configuration diagram of the MRI apparatus 100 of the present embodiment. The MRI apparatus 100 obtains a tomographic image of the subject 101 using the NMR phenomenon. As shown in the figure, the MRI apparatus 100 of the present embodiment includes a static magnetic field generating magnet 102 that generates a static magnetic field around a subject 101, a gradient magnetic field coil 103 that generates a gradient magnetic field in the space, and this region Transmitting RF coil (transmitting coil) 104 that irradiates a high-frequency magnetic field, RF probe (receiving coil) 105 that detects an MR signal generated by the subject 101, signal detection unit 106, signal processing unit 107, and overall control Unit 108, gradient magnetic field power source 109, RF transmission unit 110, subject 101, bed 112 for moving subject 101 in and out of static magnetic field generating magnet 102, display / operation unit 113, Is provided.
 静磁場発生磁石102は、垂直磁場方式であれば被検体101の体軸と直交する方向に、水平磁場方式であれば体軸方向に、それぞれ均一な静磁場を発生させるもので、被検体101の周りに配置される、永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源により構成される。 The static magnetic field generating magnet 102 generates a uniform static magnetic field in the direction perpendicular to the body axis of the subject 101 in the vertical magnetic field method and in the body axis direction in the horizontal magnetic field method. Permanent magnet type, normal conducting type or superconducting type static magnetic field generating source arranged around the.
 傾斜磁場コイル103は、MRI装置100の実空間座標系(静止座標系)であるX、Y、Zの3軸方向に巻かれた傾斜磁場コイルで構成される。それぞれの傾斜磁場コイルは、それを駆動する傾斜磁場電源109に接続され、傾斜磁場電源109を介して供給される電流(信号)に応じてそれぞれ傾斜磁場を発生する。具体的には、各傾斜磁場コイルの傾斜磁場電源109は、それぞれ後述の全体制御部108の命令に従って駆動されて、それぞれの傾斜磁場コイルに電流を供給する。これにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzが発生する。 The gradient magnetic field coil 103 is composed of gradient magnetic field coils wound in the three-axis directions of X, Y, and Z that are the real space coordinate system (stationary coordinate system) of the MRI apparatus 100. Each gradient coil is connected to a gradient magnetic field power source 109 that drives the gradient coil, and generates a gradient magnetic field according to a current (signal) supplied via the gradient magnetic field power source 109. Specifically, the gradient magnetic field power supply 109 of each gradient coil is driven in accordance with a command from the overall control unit 108 described later, and supplies current to each gradient coil. Thereby, gradient magnetic fields Gx, Gy, and Gz are generated in the three axial directions of X, Y, and Z.
 2次元スライス面の撮影時には、スライス面(撮影断面)に直交する方向にスライス傾斜磁場パルス(Gs)が印加されて被検体101に対するスライス面が設定され、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード傾斜磁場パルス(Gp)と周波数エンコード(リードアウト)傾斜磁場パルス(Gf)が印加されて、エコー信号にそれぞれの方向の位置情報がエンコードされる。 When imaging a two-dimensional slice plane, a slice gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 101, orthogonal to the slice plane and orthogonal to each other. The phase encoding gradient magnetic field pulse (Gp) and the frequency encoding (lead-out) gradient magnetic field pulse (Gf) are applied in the remaining two directions, and position information in each direction is encoded in the echo signal.
 送信コイル104は、被検体101に高周波磁場(RF)パルスを照射するコイルであり、RF送信部110に接続され、RF送信部110から供給される高周波パルス電流に応じてRFパルスを被検体101に照射する。これにより、被検体101の生体組織を構成する原子の原子核スピンにNMR現象が誘起される。具体的には、RF送信部110が、後述の全体制御部108からの命令に従って駆動されて、高周波パルスが振幅変調され、増幅された後に被検体101に近接して配置された送信RFコイル104に供給されることにより、RFパルスが被検体101に照射される。 The transmission coil 104 is a coil that irradiates the subject 101 with a high-frequency magnetic field (RF) pulse, is connected to the RF transmission unit 110, and applies an RF pulse to the subject 101 in accordance with the high-frequency pulse current supplied from the RF transmission unit 110. Irradiate. As a result, an NMR phenomenon is induced in the nuclear spins of the atoms constituting the biological tissue of the subject 101. Specifically, the RF transmission unit 110 is driven in accordance with a command from the overall control unit 108 to be described later, the high frequency pulse is amplitude-modulated and amplified, and then the transmission RF coil 104 disposed in the vicinity of the subject 101 is disposed. , The subject 101 is irradiated with an RF pulse.
 受信コイル105は、被検体101の生体組織を構成する原子核スピンのNMR現象により放出されるNMR信号(エコー信号)を受信するコイルであり、信号検出部106に接続される。受信コイル105で受信したエコー信号は、信号検出部106に送られる。 The receiving coil 105 is a coil that receives an NMR signal (echo signal) emitted by the NMR phenomenon of the nuclear spin constituting the living tissue of the subject 101, and is connected to the signal detection unit 106. The echo signal received by the reception coil 105 is sent to the signal detection unit 106.
 信号検出部106は、受信コイル105で受信されたエコー信号の検出処理を行う。具体的には、RFコイル104から照射されたRFパルスによって誘起された被検体101の応答のエコー信号が被検体101に近接して配置された受信RFコイル105で受信され、後述の全体制御部108からの命令に従って、信号検出部106が、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを所定数(例えば128,256,512等)サンプリングし、各サンプリング信号をA/D変換してディジタル量に変換し、後述の信号処理部107に送る。従って、エコー信号は所定数のサンプリングデータからなる時系列のデジタルデータ(以下、エコーデータという)として得られる。 The signal detection unit 106 performs processing for detecting an echo signal received by the reception coil 105. Specifically, an echo signal of the response of the subject 101 induced by the RF pulse irradiated from the RF coil 104 is received by the reception RF coil 105 disposed in the vicinity of the subject 101, and an overall control unit described later In accordance with a command from 108, the signal detection unit 106 amplifies the received echo signal, divides the signal into two orthogonal signals by quadrature detection, and samples a predetermined number (for example, 128, 256, 512, etc.). Each sampling signal is A / D converted to a digital quantity and sent to a signal processing unit 107 described later. Therefore, the echo signal is obtained as time-series digital data (hereinafter referred to as echo data) composed of a predetermined number of sampling data.
 信号処理部107は、エコーデータに対して各種処理を行い、処理されたエコーデータを全体制御部108に送る。 The signal processing unit 107 performs various processes on the echo data, and sends the processed echo data to the overall control unit 108.
 全体制御部108は、各種データ処理と処理結果の表示及び保存等の制御を行うものであって、CPU及びメモリを有する。また、光ディスク、磁気ディスク等の記憶装置115を備える。 The overall control unit 108 controls various data processing and display and storage of processing results, and has a CPU and a memory. Further, a storage device 115 such as an optical disk or a magnetic disk is provided.
 具体的には、各部を制御してエコーデータの収集を実行し、エコーデータが入力されると、そのエコーデータに印加されたエンコード情報に基づいて、メモリのk空間に相当する領域に記憶させる。メモリのk空間に相当する領域に記憶されたエコーデータ群をk空間データともいう。そして、全体制御部108は、このk空間データに対して信号処理やフーリエ変換による画像再構成等の処理を実行し、その結果である被検体101の画像を、後述の表示・操作部113に表示させると共に記憶装置115に記録する。 Specifically, echo data collection is performed by controlling each unit, and when echo data is input, it is stored in an area corresponding to the k space of the memory based on the encoding information applied to the echo data. . A group of echo data stored in an area corresponding to the k space of the memory is also referred to as k space data. Then, the overall control unit 108 performs processing such as signal processing and image reconstruction by Fourier transform on the k-space data, and the resulting image of the subject 101 is displayed on the display / operation unit 113 described later. It is displayed and recorded in the storage device 115.
 なお、全体制御部108は、MRI装置100とは独立した情報処理装置上に構築されてもよい。 Note that the overall control unit 108 may be constructed on an information processing apparatus independent of the MRI apparatus 100.
 表示・操作部113は、再構成された被検体101の画像を表示する表示部と、MRI装置100の各種制御情報や上記全体制御部108で行う処理の制御情報を入力するトラックボール又はマウス及びキーボード等の操作部とを備える。この操作部は表示部に近接して配置され、操作者が表示部を見ながら操作部を通してインタラクティブにMRI装置100の各種処理を制御する。 The display / operation unit 113 includes a display unit that displays an image of the reconstructed subject 101, a trackball or a mouse that inputs various control information of the MRI apparatus 100 and control information of processing performed by the overall control unit 108, and And an operation unit such as a keyboard. The operation unit is disposed in the vicinity of the display unit, and the operator controls various processes of the MRI apparatus 100 interactively through the operation unit while looking at the display unit.
 本実施形態の全体制御部108の各機能は、CPU、メモリおよび記憶装置を備え、予め記憶装置に格納されたプログラムを、CPUがメモリにロードし、実行することにより実現する。また、全部または一部の機能は、ASIC(Application Specific Integrated Circuit)、FPGA(field.-programmable gate array)などのハードウェアによって実現してもよい。また、各機能の処理に用いる各種のデータ、処理中に生成される各種のデータは、記憶装置115に格納される。 Each function of the overall control unit 108 of the present embodiment includes a CPU, a memory, and a storage device, and is realized by the CPU loading a program stored in the storage device in advance into the memory and executing it. All or some of the functions may be realized by hardware such as ASIC (Application Specific Integrated Circuit) and FPGA (field.-programmable gate array). In addition, various data used for processing of each function and various data generated during the processing are stored in the storage device 115.
 なお、図1において、送信コイル104と傾斜磁場コイル103とは、被検体101が挿入される静磁場発生磁石102の静磁場空間内に、垂直磁場方式であれば被検体101に対向して、水平磁場方式であれば被検体101を取り囲むようにして設置される。また、受信コイル105は、被検体101に対向して、或いは取り囲むように設置される。 In FIG. 1, the transmission coil 104 and the gradient magnetic field coil 103 are opposed to the subject 101 in the static magnetic field space of the static magnetic field generating magnet 102 into which the subject 101 is inserted, in the case of the vertical magnetic field method, If the horizontal magnetic field method is used, the object 101 is installed so as to surround it. The receiving coil 105 is installed so as to face or surround the subject 101.
 一般に、MRI装置100の撮影対象は被検体の主たる構成物質、プロトンである。MRI装置100では、プロトン密度の空間分布や、励起されたプロトンの緩和現象の空間分布を画像化することで、人体頭部、腹部、四肢等の形態または機能を、2次元もしくは3次元的に撮影する。 Generally, the imaging target of the MRI apparatus 100 is the main constituent substance of the subject, proton. The MRI system 100 can visualize the shape or function of the human head, abdomen, extremities, etc. in two or three dimensions by imaging the spatial distribution of proton density and the relaxation phenomenon of excited protons. Take a picture.
 上記MRI装置100による撮影方法を説明する。傾斜磁場により異なる位相エンコードを与え、それぞれの位相エンコードで得られるエコー信号を検出する。位相エンコードの数は通常1枚の画像あたり128、256、512等の値が選ばれる。各エコー信号は通常128、256、512、1024個のサンプリングデータからなる時系列信号として得られる。 The imaging method using the MRI apparatus 100 will be described. Different phase encodings are given depending on the gradient magnetic field, and echo signals obtained by the respective phase encodings are detected. As the number of phase encodings, values such as 128, 256, and 512 are usually selected per image. Each echo signal is usually obtained as a time-series signal composed of 128, 256, 512, and 1024 sampling data.
 MRI装置100では、これらのデータをフーリエ変換(以下、FT)して1枚のMR画像を作成したり、各種の解析を行ったりし、その結果をユーザに提示する。MRI装置100でなされる解析には、例えば、被検体の温度計測がある。また、前記撮影に先がけて、様々な効果を持つプリパルスを印加する場合がある。 The MRI apparatus 100 creates a single MR image by performing Fourier transform (hereinafter referred to as FT) on these data, performs various analyzes, and presents the results to the user. The analysis performed by the MRI apparatus 100 includes, for example, temperature measurement of a subject. In some cases, pre-pulses having various effects are applied prior to the imaging.
 本実施形態では、このMRI装置100において、所定の部位に流入する血液の動態画像である流入動態画像を生成するデータを取得する第一のパルスシーケンスと、当該部位の、流入動態画像以外の予め定めた情報を生成するデータを取得する第二のパルスシーケンスと、を実行する。このとき、第二のパルスシーケンスを、第一のパルスシーケンスの繰り返し時間内の空き時間に実行する。そして、第二のパルスシーケンスで取得するデータが、第一のパルスシーケンスの影響を最小限に抑えるよう、第二のパルスシーケンスの実行を制御する。 In the present embodiment, in this MRI apparatus 100, a first pulse sequence for acquiring data for generating an inflow kinetic image that is a dynamic image of blood flowing into a predetermined site, and a pre- And a second pulse sequence for acquiring data for generating the defined information. At this time, the second pulse sequence is executed in a free time within the repetition time of the first pulse sequence. Then, the execution of the second pulse sequence is controlled so that the data acquired in the second pulse sequence minimizes the influence of the first pulse sequence.
 以下、本実施形態では、第一のパルスシーケンスとして、ASL用のデータを取得するASL Perfusionによる撮影シーケンス(以下、ASLシーケンス)を用い、第二のパルスシーケンスとして、BSIデータを取得するための撮影シーケンス(BSIシーケンス)を用いる場合を例にあげて説明する。すなわち、本実施形態では、ASL用のデータを取得するASLシーケンスの空き時間に、BSIシーケンスを実行する。そして、各パルスシーケンスの撮影条件が設定されると、それを用いて、各空き時間に実行するBSIシーケンスのパラメータを調整する。 Hereinafter, in the present embodiment, the imaging sequence for acquiring BSI data as the second pulse sequence is used as the first pulse sequence by using an imaging sequence by ASL Perfusion that acquires ASL data (hereinafter, ASL sequence). A case where a sequence (BSI sequence) is used will be described as an example. That is, in the present embodiment, the BSI sequence is executed during the free time of the ASL sequence for acquiring ASL data. When the imaging conditions for each pulse sequence are set, the BSI sequence parameters executed in each idle time are adjusted using the imaging conditions.
 まず、ASLシーケンスおよびBSIシーケンスの概要を説明する。 First, the outline of ASL sequence and BSI sequence will be explained.
 [ASLシーケンス]
 ASLシーケンス300の一例の、RFパルス印加タイミングチャートを図2(a)に示す。本図に示すように、第一のパルスシーケンス(ASLシーケンス300)は、プリパルスとしてラベリングパルス(ラベルRFパルス)311を印加後、所定の時間(待ち時間PLD(Post Labeling Delay))313をおいてデータを収集する(ASLデータ取得)312、ラベリングシーケンス310と、ラベリングシーケンス310の後(好ましくは直後)に実行する、プリパルスとしてコントロールパルス(コントロールRFパルス)321を印加後、所定の時間(PLD)323をおいてデータを収集する(ASLデータ取得)322、コントロールシーケンス320と、を備える。
[ASL sequence]
FIG. 2 (a) shows an RF pulse application timing chart as an example of the ASL sequence 300. FIG. As shown in the figure, in the first pulse sequence (ASL sequence 300), after applying a labeling pulse (label RF pulse) 311 as a pre-pulse, a predetermined time (waiting time PLD (post labeling delay)) 313 is set. Data collection (ASL data acquisition) 312, labeling sequence 310, executed after (preferably immediately after) labeling sequence 310, a predetermined time (PLD) after applying control pulse (control RF pulse) 321 as a pre-pulse 323 to collect data (ASL data acquisition) 322, and a control sequence 320.
 このASLシーケンス300では、ラベリングシーケンス310とコントロールシーケンス320とは、繰返し時間間隔TRごとに、交互に実行される。 In the ASL sequence 300, the labeling sequence 310 and the control sequence 320 are alternately executed at each repetition time interval TR.
 ラベリングパルス311は、血液プロトンをラベル(静磁場方向に対して反転)するためのパルスであり、コントロールパルス321は、実質的には血液プロトンをラベルせず、MT効果をラベリングパルス311付与状態と揃えるためのパルスである。 The labeling pulse 311 is a pulse for labeling blood protons (reversed with respect to the direction of the static magnetic field), and the control pulse 321 does not substantially label the blood protons, and the MT effect is applied to the labeling pulse 311 application state. This is a pulse for aligning.
 図3(a)および図3(b)に示すように、ラベリングパルス311は、ラベリングパルス印加領域610に印加される。ラベリングパルス311によりラベリングされた血液が灌流領域に到達したところで、スライス位置620のデータを取得する。 As shown in FIGS. 3A and 3B, the labeling pulse 311 is applied to the labeling pulse application region 610. When the blood labeled by the labeling pulse 311 reaches the perfusion region, data at the slice position 620 is acquired.
 待ち時間PLD313、323は、ラベル/コントロールされた血液プロトンが撮影スライスに流入するまでの時間であり、一般的にはユーザが入力して撮影する。ただし、図3(a)および図3(b)に示すように、PLD313、323は、ラベリングパルス印加領域610と、スライス位置620との距離Dis、あるいは、被検体101の血流速度によって変化する。従って、PLDは、これらの情報を勘案してシステムで決定してもよい。なお、PLD313と、PLD323とは、同じ長さとする。 The waiting times PLD313 and 323 are times until the labeled / controlled blood protons flow into the imaging slice, and are generally input by the user for imaging. However, as shown in FIGS. 3 (a) and 3 (b), the PLDs 313 and 323 vary depending on the distance Dis between the labeling pulse application region 610 and the slice position 620 or the blood flow velocity of the subject 101. . Therefore, the PLD may be determined by the system in consideration of such information. Note that the PLD 313 and the PLD 323 have the same length.
 ASLデータ取得312、322の期間に実施されるシーケンス(データ取得シーケンス)として用いられる、代表的なパルスシーケンス340を図4(a)に示す。データ取得シーケンス340には、例えば、図4(a)に示すように、SE系のパルスシーケンスの他、EPI系のパルスシーケンスが用いられる。本図において、RF、Gs、Gp、Gfは、それぞれ、RFパルス、スライス選択傾斜磁場パルス、位相エンコード傾斜磁場パルス、周波数エンコード傾斜磁場パルスの印加軸を示す。このパルスシーケンス340は、撮像条件で定められたスライス数、実行される。 FIG. 4 (a) shows a typical pulse sequence 340 used as a sequence (data acquisition sequence) executed during the period of ASL data acquisition 312 and 322. As the data acquisition sequence 340, for example, as shown in FIG. 4 (a), an EPI pulse sequence is used in addition to an SE pulse sequence. In this figure, RF, Gs, Gp, and Gf indicate application axes of the RF pulse, slice selection gradient magnetic field pulse, phase encode gradient magnetic field pulse, and frequency encode gradient magnetic field pulse, respectively. This pulse sequence 340 is executed for the number of slices determined by the imaging conditions.
 なお、図2(a)には、2Dマルチスライスでデータ取得する場合のパルスシーケンスを例示するが、もちろん、データ取得シーケンスとして、3Dでデータ取得可能なパルスシーケンスを用いてもよい。 2A illustrates a pulse sequence in the case of acquiring data by 2D multi-slice, but of course, a pulse sequence capable of acquiring data by 3D may be used as the data acquisition sequence.
 なお、ASL perfusion画像は、ラベリングシーケンス310から得られたラベル画像とコントロールシーケンス320から得られたコントロール画像との差分により得る。 Note that the ASL perfusion image is obtained by the difference between the label image obtained from the labeling sequence 310 and the control image obtained from the control sequence 320.
 [BSIシーケンス]
 BSI用のデータを取得するBSIシーケンス400には、例えば、図4(b)に示す、3DのGradient Echo系のEPIシーケンスが用いられる。ここでは、一例として、3DのRFスポイルドSSFP(RF-Spoiled Steady State Free Precession)のシーケンスを示す。エコートレイン数は5である場合を例示する。本図においても、RF、Gs、Gp、Gfは、それぞれ、RFパルス、スライス選択傾斜磁場パルス、位相エンコード傾斜磁場パルス、周波数エンコード傾斜磁場パルスの印加軸を示す。
[BSI sequence]
For the BSI sequence 400 for acquiring BSI data, for example, a 3D Gradient Echo EPI sequence shown in FIG. 4B is used. Here, as an example, a 3D RF spoiled SSFP (RF-Spoiled Steady State Free Precession) sequence is shown. The case where the number of echo trains is 5 is illustrated. Also in this figure, RF, Gs, Gp, and Gf indicate application axes of the RF pulse, slice selection gradient magnetic field pulse, phase encode gradient magnetic field pulse, and frequency encode gradient magnetic field pulse, respectively.
 [本実施形態の撮影シーケンス]
 図2(b)に示すように、ASLシーケンス300には、時間的に複数(ここでは、4つ)の空き時間(331、332、333、334)が存在する。空き時間331は、ラベリングシーケンス310内の空き時間であって、ラベリングパルス311印加から、ASLデータ取得312までの時間、空き時間332は、ラベリングシーケンス310内の空き時間であって、ASLデータ取得312終了から、コントロールパルス321印加までの時間である。また、空き時間333、334は、コントロールシーケンス320内の空き時間であって、それぞれ、コントロールパルス321の印加から、ASLデータ取得322までの時間、および、ASLデータ取得322終了から、ラベリングパルス311印加までの時間である。
[Shooting Sequence of this Embodiment]
As shown in FIG. 2 (b), the ASL sequence 300 includes a plurality of (in this case, four) idle times (331, 332, 333, 334) in terms of time. The idle time 331 is the idle time in the labeling sequence 310, the time from the application of the labeling pulse 311 to the ASL data acquisition 312, and the idle time 332 is the idle time in the labeling sequence 310, which is the ASL data acquisition 312. This is the time from the end to the application of the control pulse 321. The idle times 333 and 334 are idle times in the control sequence 320. The time from the application of the control pulse 321 to the ASL data acquisition 322 and the application of the labeling pulse 311 from the end of the ASL data acquisition 322, respectively. It is time until.
 本実施形態では、この4つの空き時間(331、332、333、334)の少なくとも一か所において、BSIシーケンスを実行し、BSI用のデータを取得する。これにより、ASLとBSIとの同時計測を実現する。 In this embodiment, the BSI sequence is executed in at least one of the four free times (331, 332, 333, 334) to acquire BSI data. This realizes simultaneous measurement of ASL and BSI.
 このとき、本実施形態では、コントロールシーケンス320内の空き時間に取得するBSI用のデータを、ラベリングシーケンス310内の空き時間に取得するBSI用のデータよりk空間の低空間周波数領域に配置する。また、コントロールシーケンス320内およびラベリングシーケンス310内で、プリパルスの影響が少ないタイミングで取得するBSI用のデータほど、k空間の低空間周波数領域に配置する。 At this time, in this embodiment, the BSI data acquired in the free time in the control sequence 320 is arranged in the low spatial frequency region of the k space from the BSI data acquired in the free time in the labeling sequence 310. Further, in the control sequence 320 and the labeling sequence 310, the BSI data acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency region of the k space.
 これを実現するため、本実施形態の全体制御部108は、図5に示すように、撮影条件受付部210と、シーケンス調整部220と、計測部230と、画像再構成部240と、表示画像生成部250と、を備える。以下、各部の詳細を説明する。 In order to realize this, the overall control unit 108 of the present embodiment includes an imaging condition reception unit 210, a sequence adjustment unit 220, a measurement unit 230, an image reconstruction unit 240, a display image, as shown in FIG. And a generation unit 250. Details of each part will be described below.
 [撮影条件受付部210]
 撮影条件受付部210は、ユーザから撮影条件として、各種の撮影パラメータの設定を受け付ける。受け付けるパラメータは、例えば、視野FOV、繰返し時間TR、実効エコー時間TE、スライス数Slice#、エコー信号間の時間間隔IET(Inter Echo Time)、1回の励起で計測するエコー信号数ETL(echo train length)、周波数エンコードステップ数Freq#、位相エンコードステップ数Phase#、などである。本実施形態では、ASLシーケンス300、BSIシーケンス400、それぞれについて、受け付ける。
[Shooting condition reception unit 210]
The shooting condition reception unit 210 receives various shooting parameter settings from the user as shooting conditions. Accepted parameters are, for example, field of view FOV, repetition time TR, effective echo time TE, slice number Slice #, time interval between echo signals IET (Inter Echo Time), number of echo signals measured with one excitation ETL (echo train length), frequency encoding step number Freq #, phase encoding step number Phase #, and the like. In the present embodiment, the ASL sequence 300 and the BSI sequence 400 are accepted.
 以下、撮影パラメータのうち、ASL用データ(以下ASLData)を取得するためのASLシーケンス300用の撮影パラメータは、例えば、TRASLやETLASLなどのように、添え字ASLを付して示す。ただし、PLDのようなASL Perfusion固有のパラメータを除く。また、BSI用のデータ(以下BSIData)を取得するためのBSIシーケンス400用の撮影パラメータは、例えば、TRBSIやETLBSIなどのように、添え字BSIを付して示す。 Hereinafter, among the imaging parameters, the imaging parameters for the ASL sequence 300 for acquiring the data for ASL (hereinafter referred to as ASL Data ) are shown with the subscript ASL , for example, TR ASL or ETL ASL . However, ASL Perfusion-specific parameters such as PLD are excluded. In addition, imaging parameters for the BSI sequence 400 for acquiring BSI data (hereinafter referred to as BSI Data ) are shown with a subscript BSI such as TR BSI and ETL BSI .
 本実施形態の撮影条件受付部210は、これらの撮影パラメータを、撮影条件受付画面を表示・操作部113の表示装置に表示し、表示・操作部113を介して設定を受け付ける。なお、予め複数種の撮影パラメータセット(プリセットパラメータ)を記憶装置115に記憶しておき、ユーザが選択したプリセットパラメータを表示し、表示されたプリセットパラメータをユーザが調整するよう構成してもよい。 The imaging condition reception unit 210 of the present embodiment displays the imaging parameter reception screen on the display device of the display / operation unit 113 and receives settings via the display / operation unit 113. Note that a plurality of types of shooting parameter sets (preset parameters) may be stored in the storage device 115 in advance, the preset parameters selected by the user may be displayed, and the displayed preset parameters may be adjusted by the user.
 撮影条件受付画面500を図6に示す。本図に示すように、本実施形態の撮影条件受付画面500は、ASLシーケンス300の撮影条件を受け付け、受け付けた条件を表示するASL撮影条件表示欄510と、BSIシーケンス400の撮影条件を受け付け、受け付けた条件を表示するBSI撮影条件表示欄520とを備える。 The shooting condition reception screen 500 is shown in FIG. As shown in the figure, the shooting condition reception screen 500 of the present embodiment receives the shooting conditions of the ASL sequence 300, receives the shooting conditions of the ASL shooting condition display field 510 for displaying the received conditions, and the shooting conditions of the BSI sequence 400, And a BSI imaging condition display field 520 for displaying the accepted conditions.
 なお、撮影条件受付画面500においては、ASL撮影条件表示欄510と、BSI撮影条件表示欄520とにおいて、同じ撮影条件項目は、(対応づけて)並べて表示されることが望ましい。撮影条件には、両シーケンスにおいて、等しくすべきものや、倍数にすべきものがある。並べて表示されることにより、両シーケンスに設定される撮影条件を対比して見比べやすくなる。 In the shooting condition reception screen 500, it is desirable that the same shooting condition items are displayed side by side (corresponding to each other) in the ASL shooting condition display field 510 and the BSI shooting condition display field 520. There are photographing conditions that should be equal or multiples in both sequences. By displaying them side by side, it becomes easier to compare and compare the imaging conditions set for both sequences.
 [シーケンス調整部]
 後述の計測部230は、基本的に、撮影条件受付部210で受け付けた撮影条件に従って、計測を実行する。しかしながら、本実施形態では、上述のように、BSIシーケンス400の実行において、ASLシーケンス300のラベリングパルス311の影響をできる限り抑える。本実施形態のシーケンス調整部220は、このように、ASLシーケンス300のラベリングパルス311の影響を抑えるよう、各空き時間(331、332、333、334)における、BSIシーケンス400(第二のパルスシーケンス)のエンコード量、実行タイミングを調整する。
[Sequence adjustment section]
The measurement unit 230 described later basically performs measurement according to the imaging conditions received by the imaging condition reception unit 210. However, in the present embodiment, as described above, in the execution of the BSI sequence 400, the influence of the labeling pulse 311 of the ASL sequence 300 is suppressed as much as possible. In this way, the sequence adjustment unit 220 in this embodiment suppresses the influence of the labeling pulse 311 of the ASL sequence 300 in this way, the BSI sequence 400 (second pulse sequence) in each idle time (331, 332, 333, 334). ) Encoding amount and execution timing are adjusted.
 本実施形態のシーケンス調整部220は、ユーザが設定した撮影条件に基づき、各空き時間(331、332、333、334)に取得するBSIデータの数およびk空間配置位置を決定する。 The sequence adjustment unit 220 according to the present embodiment determines the number of BSI data to be acquired in each free time (331, 332, 333, 334) and the k-space arrangement position based on the shooting conditions set by the user.
 すなわち、本実施形態のシーケンス調整部220は、撮影条件に基づいて、各空き時間(331、332、333、334)に実行するBSIシーケンス400のショット数とエンコード量とを算出する。そして、各空き時間(331、332、333、334)に、それぞれ、算出したショット数、算出したエンコード量でデータを計測するよう、BSIシーケンス400を調整する。 That is, the sequence adjustment unit 220 of the present embodiment calculates the number of shots and the encoding amount of the BSI sequence 400 to be executed in each free time (331, 332, 333, 334) based on the shooting conditions. Then, the BSI sequence 400 is adjusted so that the data is measured with the calculated number of shots and the calculated encoding amount in each of the idle times (331, 332, 333, 334).
 ここで、決定するエンコード量は、2D撮影であれば、位相エンコード量、3D撮影であれば、位相エンコード量およびスライスエンコード量である。 Here, the encoding amount to be determined is the phase encoding amount for 2D imaging, and the phase encoding amount and slice encoding amount for 3D imaging.
 上述のように、本実施形態では、BSIシーケンス400で取得するBSIデータBSIDataは、コントロールシーケンス320内の空き時間333、334に取得するBSI用のデータBSIDataを、ラベリングシーケンス310内の空き時間331、332に取得するBSI用のデータBSIDataよりk空間の低空間周波数領域に配置する。また、コントロールシーケンス320内およびラベリングシーケンス310内で、プリパルスの影響が少ないタイミングで取得するBSI用のデータBSIDataほど、k空間の低空間周波数領域に配置する。 As described above, in the present embodiment, BSI data BSI Data acquired in BSI sequence 400, the data BSI Data for BSI to get free time 333 and 334 in the control sequence 320, idle time in the labeling sequence 310 to get to 331 and 332 disposed in the low spatial frequency region of the k-space from the data BSI data for BSI. In the control sequence 320 and the labeling sequence 310, the BSI data BSI Data acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency region of the k space.
 空き時間(331、332、333、334)の長さを、それぞれ、ASLLab1、ASLLab2、ASLCont1、ASLCont2と表し、ASLデータ取得312、322の期間をASLAcqと表すと、これらの間には、以下の式(1)および式(2)の関係がある。 The length of the idle time (331, 332, 333 and 334), respectively, represent the ASL Lab1, ASL Lab2, ASL Cont1, ASL Cont 2, when a period of ASL data acquisition 312 and 322 representing the ASL Acq, between them Have the following relations (1) and (2).
   ASLLab1=ASLCont1=PLD ・・・(1)
   ASLLab2=ASLCont2=TRASL-PLD-ASLAcq・・・(2)
 TRASLは、ASLシーケンス300の繰り返し時間である。なお、ASLデータ取得期間ASLAcqは、ユーザが設定した撮影条件により内部的に一意に決まる。
ASL Lab1 = ASL Cont1 = PLD ··· (1)
ASL Lab2 = ASL Cont2 = TR ASL -PLD-ASL Acq・ ・ ・ (2)
TR ASL is the repetition time of the ASL sequence 300. The ASL data acquisition period ASL Acq is uniquely determined internally depending on the shooting conditions set by the user.
 まず、シーケンス調整部220は、まず、各空き時間(331、332、333、334)に実行可能なショット数を算出する。 First, the sequence adjustment unit 220 first calculates the number of shots that can be executed in each free time (331, 332, 333, 334).
 各空き時間に実行可能なショット数は、各空き時間の長さASLLab1、ASLLab2、ASLCont1、ASLCont2を、それぞれ、BSIシーケンス400の繰り返し時間TRBSIで除算することにより、求まる。ここでは、空き時間331および333で実行可能なショット数をSHOT#1、空き時間332および334で実行可能なショット数をSHOT#2とすると、それぞれ、以下の式(3)および式(4)で算出できる。 The number of shots that can be executed in each idle time, the length ASL Lab1, ASL Lab2, ASL Cont1 , ASL Cont2 of each idle time, respectively, divided by the repetition time TR BSI of BSI sequence 400, determined. Here, assuming that the number of shots that can be executed in the free times 331 and 333 is SHOT # 1 , and the number of shots that can be executed in the free times 332 and 334 is SHOT # 2 , respectively, the following equations (3) and (4) It can be calculated by
   SHOT#1=ASLLab1/TRBSI=PLD/TRBSI ・・・(3)
   SHOT#2=ASLLab2/TRBSI=(TRASL-PLD-ASLAcq)/TRBSI    ・・・(4)
 なお、各空き時間(331、332、333、334)に取得されるデータBSIData数は、以下の式(5)および式(6)で計算できる。空き時間331および333で取得されるデータ数をDATA#1、空き時間332および334で取得されるデータ数をDATA#2とし、エコートレイン数をETLBSIとする。
SHOT # 1 = ASL Lab1 / TR BSI = PLD / TR BSI (3)
SHOT # 2 = ASL Lab2 / TR BSI = (TR ASL -PLD-ASL Acq ) / TR BSI (4)
Note that the number of data BSI Data acquired in each free time (331, 332, 333, 334) can be calculated by the following equations (5) and (6). The number of data acquired in the free times 331 and 333 is DATA # 1 , the number of data acquired in the free times 332 and 334 is DATA # 2, and the number of echo trains is ETL BSI .
   DATA#1=SHOT#1×ETLBSI ・・・(5)
   DATA#2=SHOT#2×ETLBSI ・・・(6)
 次に、シーケンス調整部220は、各空き時間(331、332、333、334)で取得するデータBSIDataのk空間配置を決定する。すなわち、各空き時間(331、332、333、334)で取得するデータBSIDataのエンコード量を決定する。
DATA # 1 = SHOT # 1 × ETL BSI (5)
DATA # 2 = SHOT # 2 × ETL BSI (6)
Next, the sequence adjustment unit 220 determines the k-space arrangement of the data BSI Data acquired at each free time (331, 332, 333, 334). That is, the encoding amount of the data BSI Data acquired in each free time (331, 332, 333, 334) is determined.
 空き時間331、332で取得するデータは、ラベルされた血液プロトンの影響を受けやすいため、高周波領域のデータとすることが望ましい。一方、空き時間333、334で取得するデータは、ラベルされた血液プロトンの影響はないため、低空間周波領域のデータとすることが望ましい。 Since the data acquired in the free times 331 and 332 are easily affected by labeled blood protons, it is desirable to use data in the high frequency region. On the other hand, the data acquired in the free times 333 and 334 is not affected by the labeled blood protons, and is preferably data in a low spatial frequency region.
 また、ラベリングパルス311、コントロールパルス321の直後の空き時間331、333は、これらのプリパルスの影響を受けた血液が、撮影スライスにまだ流れこんでいないため、これらのプリパルスの影響をうけにくい。従って、同じラベリングシーケンス310、コントロールシーケンス320内では、プリパルス印加からデータ取得までの期間が短いデータほど、低空間周波領域に配置することが望ましい。 Also, the idle times 331 and 333 immediately after the labeling pulse 311 and the control pulse 321 are not easily affected by the prepulse because the blood affected by the prepulse has not yet flowed into the imaging slice. Therefore, in the same labeling sequence 310 and control sequence 320, it is desirable that data having a shorter period from pre-pulse application to data acquisition be arranged in a low spatial frequency region.
 従って、空き時間333、334、331、332の順に、より低空間周波領域のBSIDataを取得する。 Accordingly, BSI data in the lower spatial frequency region is acquired in the order of the idle times 333, 334, 331, and 332.
 シーケンス調整部220は、先に算出した、各空き時間(331、332、333、334)で取得可能なショット数に基づき、上記順でk空間に配置されるよう、各空き時間(331、332、333、334)に実行するBSIシーケンス400のエンコード量を決定する。 The sequence adjustment unit 220 calculates each free time (331, 332) so that it is arranged in the k space in the above order based on the number of shots that can be acquired in each free time (331, 332, 333, 334) calculated in advance. 333, 334), the encoding amount of the BSI sequence 400 to be executed is determined.
 図7(a)および図7(b)を用いて、具体例で説明する。ここでは、ユーザが入力した撮影条件の各パラメータを、TRASL=4000ms、PLD=1500ms、ASLデータ取得期間ASLAcq=300ms、TRBSI=50ms、エコートレイン数ETLBSI=5、位相エンコードステップ数Phase#BSI=384、スライス数Slice#BSI=40、パラレルイメージングの倍速数RAPIDBSI=2.0とする。 A specific example will be described with reference to FIGS. 7 (a) and 7 (b). Here, the parameters of the shooting conditions entered by the user are as follows: TR ASL = 4000 ms, PLD = 1500 ms, ASL data acquisition period ASL Acq = 300 ms, TR BSI = 50 ms, echo train number ETL BSI = 5, phase encoding step number Phase # BSI = 384, number of slices Slice # BSI = 40, parallel imaging double speed RAPID BSI = 2.0.
 上記式(1)、式(2)より、ASLLab1=ASLCont1=1500ms、ASLLab2=ASLCont2=2200msであるから、空き時間331および333(ASLLab1およびASLCont1)で実行可能なショット数SHOT#1およびSHOT#2は、上記式(3)、式(4)より、それぞれ、以下の式(7)および式(8)で計算される。 The formula (1), the equation (2), ASL Lab1 = ASL Cont1 = 1500ms, ASL Lab2 = because it is ASL Cont2 = 2200ms, the number of shots that can be executed in the free time 331 and 333 (ASL Lab1 and ASL Cont1) SHOT # 1 and SHOT # 2 are calculated by the following equations (7) and (8) from the above equations (3) and (4), respectively.
   SHOT#1=1500/50=30 ・・・(7)
   SHOT#2=2200/50=44 ・・・(8)
 例えば、BSIシーケンス400に、3DのRFスポイルドSSFP(RF-Spoiled Steady State Free Precession)シーケンスを用いる場合、上記撮影条件から、1ショットあたりETLBSI=5ライン分、ky方向にデータを埋めることができる。よって、kx-ky空間を埋めるために必要なショット数SHOT#は、全位相エンコードステップ数Phase#BSIと、RAPIDBSIと、を用い、以下の式(9)で表される。
SHOT # 1 = 1500/50 = 30 (7)
SHOT # 2 = 2200/50 = 44 (8)
For example, when using a 3D RF spoiled SSFP (RF-Spoiled Steady State Free Precession) sequence for the BSI sequence 400, data can be filled in the ky direction for ETL BSI = 5 lines per shot from the above shooting conditions. . Therefore, the shot number SHOT # required to fill the kx-ky space is expressed by the following equation (9) using the total phase encoding step number Phase # BSI and RAPID BSI .
   SHOT#=Phase#BSI/(RAPIDBSI×ETLBSI)=38.4     ・・・(9)
 必要なショット数が38ショットであるため、シーケンス調整部220は、TEBSIでky=-18~19を取得するよう、各ショットの各データ取得時の位相エンコード量を決定する。なお、割り切れない0.4ショット分のデータはゼロ詰めとすることが望ましいが、これに限定されない。
SHOT # = Phase # BSI / (RAPID BSI × ETL BSI ) = 38.4 (9)
Since the required number of shots is 38, the sequence adjustment unit 220 determines the phase encoding amount at the time of acquiring each data of each shot so as to acquire ky = −18 to 19 by TE BSI . It should be noted that the data for 0.4 shots that cannot be divided are desirably zero-padded, but the present invention is not limited to this.
 また、kz方向については、Slice#BSI=40であるから、kz=-19~20を取得するよう、各データ取得時のスライスエンコード量を決定する。 In the kz direction, since Slice # BSI = 40, the slice encoding amount at the time of each data acquisition is determined so that kz = −19 to 20 is acquired.
 従って、本実施形態のシーケンス調整部220は、例えば、図7(b)の表710に示すように、kz方向およびky方向に対して、空き時間333(ASLCont1)から、Centric(セントリック)に低空間周波領域のBSIDataを取得するよう、各空き時間(331、332、333、334)で実行するBSIシーケンス400の位相エンコード量およびスライスエンコード量を決定する。 Therefore, the sequence adjustment unit 220 of the present embodiment, for example, as shown in Table 710 of FIG.7 (b), for the kz direction and the ky direction, from the free time 333 (ASL Cont1 ), Centric (centric) The phase encoding amount and slice encoding amount of the BSI sequence 400 to be executed in each free time (331, 332, 333, 334) are determined so that BSI data in the low spatial frequency region is acquired.
 なお、図7(b)に示す表710では、kz方向については、スライスエンコードステップを示し、kz方向については、5ラインのうち、中心の位相エンコードステップを示す。すなわち、まず、空き時間333(ASLCont1)において、ky=(76,38,0,-38,-76)の5ラインついて、kz=(-14~15)のスライスをセントリックに取得し、その後、空き時間334(ASLCont2)において、ky=(76,38,0,-38,-76)の5ラインついて、残りのスライスをセントリックに取得後、ky=(75,39,1,-37,-75)の5ラインついて、各スライスをセントリックに取得することを繰り返す。 In Table 710 shown in FIG. 7B, the kz direction indicates the slice encoding step, and the kz direction indicates the center phase encoding step of the five lines. That is, first, the free time 333 (ASL Cont1), ky = (76,38,0, -38, -76) 5 with lines, kz = - a (14-15) slices acquired centric, After that, in the free time 334 (ASL Cont2 ), after acquiring the remaining slices centric for 5 lines of ky = (76, 38, 0, -38, -76), ky = (75, 39, 1, Repeat the acquisition of each slice centricly for 5 lines (-37, -75).
 [計測部]
 本実施形態の計測部230は、予め設定された撮影条件およびパルスシーケンスに従って、被検体101の所望の領域への高周波磁場パルスの印加、当該領域への傾斜磁場パルスの印加、および、前記被検体の当該領域から発生する核磁気共鳴信号の計測を行う。本実施形態では、上述の第一のパルスシーケンス(ASLシーケンス300)と第二のパルスシーケンス(BSIシーケンス400)とを実行するよう、制御する。
[Measurement section]
The measurement unit 230 according to the present embodiment applies a high-frequency magnetic field pulse to a desired region of the subject 101, applies a gradient magnetic field pulse to the region, and the subject in accordance with preset imaging conditions and a pulse sequence. The nuclear magnetic resonance signal generated from the region is measured. In the present embodiment, control is performed so as to execute the first pulse sequence (ASL sequence 300) and the second pulse sequence (BSI sequence 400).
 本実施形態では、計測部230は、上述のように、第二のパルスシーケンス(BSIシーケンス400)を、第一のパルスシーケンス(ASLシーケンス300)の繰り返し時間内の空き時間(331、332、333、334)に実行する。第二のパルスシーケンスであるBSIシーケンス400は、シーケンス調整部220による調整結果に従って、実行する。 In the present embodiment, as described above, the measurement unit 230 converts the second pulse sequence (BSI sequence 400) into free time (331, 332, 333) within the repetition time of the first pulse sequence (ASL sequence 300). , 334). The BSI sequence 400 that is the second pulse sequence is executed according to the adjustment result by the sequence adjustment unit 220.
 [画像再構成部]
 画像再構成部240は、撮影条件に従って、第一のパルスシーケンス(ASLシーケンス300)で取得したデータおよび第二のパルスシーケンス(BSIシーケンス400)で取得したデータから、それぞれ、画像を再構成する。
[Image reconstruction unit]
The image reconstruction unit 240 reconstructs an image from data acquired by the first pulse sequence (ASL sequence 300) and data acquired by the second pulse sequence (BSI sequence 400), respectively, according to the imaging conditions.
 本実施形態では、ASLシーケンス300のラベリングシーケンス310で取得したデータからラベル画像を生成し、コントロールシーケンス320で取得したデータからコントロール画像を生成する。 In this embodiment, a label image is generated from the data acquired in the labeling sequence 310 of the ASL sequence 300, and a control image is generated from the data acquired in the control sequence 320.
 また、BSIシーケンス400で取得したデータから、位相画像、絶対値画像を生成する。 Also, a phase image and an absolute value image are generated from the data acquired by the BSI sequence 400.
 [表示画像生成部]
 表示画像生成部250は、予め定めた手法で、再構成画像から表示・操作部113の表示装置に表示する表示画像を生成する。
[Display image generator]
The display image generation unit 250 generates a display image to be displayed on the display device of the display / operation unit 113 from the reconstructed image by a predetermined method.
 本実施形態では、ラベル画像とコントロール画像との差分を取り、ASL画像を生成する。また、表示画像だけでなく、各種の情報も算出する。例えば、BSIシーケンス400で取得したデータから生成した、位相画像、絶対値画像を用いて、SWI(Susceptibility Weighted Imaging)またはBSI(Blood Sensitivity Imaging)により生成する静脈描出画像、定量的磁化率マップ(QSM(Quantitative Susceptibility Mapping))、および脳酸素摂取率(OEF(Oxygen Extraction Fraction))の少なくとも一つを含む情報を生成する。 In this embodiment, the difference between the label image and the control image is taken to generate an ASL image. In addition to the display image, various types of information are also calculated. For example, using a phase image and an absolute value image generated from data acquired by the BSI sequence 400, a vein image drawn by SWI (Susceptibility Weighted Imaging) or BSI (Blood Sensitivity Imaging), a quantitative magnetic susceptibility map (QSM) (Quantitative Susceptibility Mapping)) and information including at least one of brain oxygen uptake rate (OEF (Oxygen Extraction Fraction)) is generated.
 本実施形態では、1回のスキャンで、2種の異なる画像を得、比較対象とする点に特徴を有する。従って、本実施形態の表示画像生成部250は、両者が比較しやすいよう、表示画像を生成する。 This embodiment is characterized in that two different images are obtained in one scan and are compared. Therefore, the display image generation unit 250 of the present embodiment generates a display image so that both can be easily compared.
 ここで、図8に、ASLシーケンス300のラベル/コントロールRFパルスの方式、2D/3D(次元)、およびデータ取得シーケンス、および、BSIシーケンス400の2D/3D(次元)、およびデータ取得シーケンスの例を、それぞれ示す。 Here, Fig. 8 shows an example of the label / control RF pulse method, 2D / 3D (dimension), and data acquisition sequence of ASL sequence 300, and 2D / 3D (dimension) and data acquisition sequence of BSI sequence 400. Are shown respectively.
 本図に示すように、ASLシーケンス300では、ラベル/コントロール方式として、PASL、pCASLなどを、2D/3Dとして、いずれも、データ取得シーケンスとして、SE-EPI,SSFP-EPI,FSE,VRFA-FSEなどを用いることができる。 As shown in this figure, in the ASL sequence 300, PASL, pCASL, etc. are used as the label / control method, 2D / 3D, and any of the data acquisition sequences is SE-EPI, SSFP-EPI, FSE, VRFA-FSE. Etc. can be used.
 また、BSIシーケンス400では、次元は3Dに限られるが、データ取得シーケンスとして、RFスポイルドSSFP(RF-Spoiled Steady State Free Precession),SSFP-EPIなどを用いることができる。 In the BSI sequence 400, the dimension is limited to 3D, but as a data acquisition sequence, RF spoiled SSFP (RF-SpoiledoilSteady State Free Precession), SSFP-EPI, or the like can be used.
 ASLシーケンス300では、ラベル/コントロールRFパルスの方式、2D/3D、データ取得シーケンスを、それぞれ選択できる。また、BSIシーケンス400では、データ取得シーケンスを選択できる。これらの選択により、様々な組み合わせで同時計測することができる。選択は、臨床用途に合わせた組み合わせとすることが望ましい。 In ASL sequence 300, label / control RF pulse system, 2D / 3D, and data acquisition sequence can be selected. In the BSI sequence 400, a data acquisition sequence can be selected. These selections allow simultaneous measurement in various combinations. It is desirable to select a combination suitable for clinical use.
 例えば、第一のパルスシーケンス(ASLシーケンス300)が、2次元マルチスライス計測用のシーケンスであり、第二のパルスシーケンス(BSIシーケンス400)が、3次元計測用のシーケンスである場合、表示画像生成部250は、第二のパルスシーケンスにより得たデータから再構成された3次元画像データに対し、MPR(Multi Planar Reconstruction)処理を施し、第一のパルスシーケンスにより得たデータから再構成される各スライス位置の画像を表示画像として生成するよう構成してもよい。 For example, if the first pulse sequence (ASL sequence 300) is a 2D multi-slice measurement sequence and the second pulse sequence (BSI sequence 400) is a 3D measurement sequence, display image generation The unit 250 performs MPR (Multi-Planar Reconstruction) processing on the three-dimensional image data reconstructed from the data obtained by the second pulse sequence, and reconstructs the data obtained by the first pulse sequence. You may comprise so that the image of a slice position may be produced | generated as a display image.
 この場合、本実施形態の表示画像生成部250は、BSIシーケンス400により得た3D画像を、ASLシーケンス300により得た2D画像に合わせて表示するために、ASLシーケンス300の撮影条件(スライス位置とスライス厚)を参照し、内部で自動的にMPRし、BSI画像を生成し、これを表示する。 In this case, in order to display the 3D image obtained by the BSI sequence 400 in accordance with the 2D image obtained by the ASL sequence 300, the display image generation unit 250 according to the present embodiment displays the imaging conditions (slice position and (Slice thickness) is referred to, MPR is automatically performed internally, and a BSI image is generated and displayed.
 これにより、スライスおよびスライス厚が一致したASL画像とBSI画像とを表示することができる。従って、視覚的な評価において画像を並べて表示することで評価が容易になることが期待される。 This makes it possible to display an ASL image and a BSI image with the same slice and slice thickness. Therefore, it is expected that evaluation is facilitated by displaying images side by side in visual evaluation.
 なお、ASLシーケンス300用に選択された2D/3Dおよびデータ取得シーケンスとBSIシーケンス400用に選択されたデータ取得シーケンスとが、ともに3D SSFP-EPIであれば、ASLシーケンス300のコントロールシーケンス320で得たデータを、BSIデータ作成用データとして利用することも可能である。 If the 2D / 3D and data acquisition sequence selected for the ASL sequence 300 and the data acquisition sequence selected for the BSI sequence 400 are both 3D SSFP-EPI, they are obtained by the control sequence 320 of the ASL sequence 300. The data can also be used as data for creating BSI data.
 以上説明したように、本実施形態のMRI装置100は、予め設定された撮影条件およびパルスシーケンスに従って、被検体の所望の領域への高周波磁場パルスの印加、当該領域への傾斜磁場パルスの印加、および、前記被検体の当該領域から発生する核磁気共鳴信号の計測を行う計測部230を備え、前記パルスシーケンスは、所定の部位に流入する血液の動態画像である流入動態画像を生成するデータを取得する第一のパルスシーケンス(ASLシーケンス300)と、前記部位の前記流入動態画像以外の予め定めた情報を生成するデータを取得する第二のパルスシーケンス(BSIシーケンス400)と、を備え、前記第二のパルスシーケンス(BSIシーケンス400)は、前記第一のパルスシーケンス(ASLシーケンス300)の繰り返し時間内の空き時間に実行される。 As described above, according to the MRI apparatus 100 of the present embodiment, the application of a high-frequency magnetic field pulse to a desired region of a subject, the application of a gradient magnetic field pulse to the region, according to preset imaging conditions and a pulse sequence, And a measurement unit 230 that measures a nuclear magnetic resonance signal generated from the region of the subject, and the pulse sequence generates data for generating an inflow dynamic image that is a dynamic image of blood flowing into a predetermined site. A first pulse sequence to be acquired (ASL sequence 300), and a second pulse sequence to acquire data for generating predetermined information other than the inflow dynamic image of the part (BSI sequence 400), and The second pulse sequence (BSI sequence 400) is executed in a free time within the repetition time of the first pulse sequence (ASL sequence 300).
 また、前記第一のパルスシーケンス(ASLシーケンス300)は、プリパルスとしてラベリングパルス311を印加後、所定の時間をおいてデータを収集するラベリングシーケンス310と、前記ラベリングシーケンス310の後に実行する、前記プリパルスとしてコントロールパルス321を印加後、前記所定の時間をおいてデータを収集するコントロールシーケンス320と、を備え、前記ラベリングシーケンス310と前記コントロールシーケンス320とは、交互に実行される。 The first pulse sequence (ASL sequence 300) includes a labeling sequence 310 that collects data at a predetermined time after applying a labeling pulse 311 as a prepulse, and the prepulse that is executed after the labeling sequence 310. And a control sequence 320 that collects data at a predetermined time after applying the control pulse 321. The labeling sequence 310 and the control sequence 320 are alternately executed.
 このように、本実施形態によれば、ASLシーケンス300の空き時間に、BSIシーケンス400を実行し、BSI用データを取得する。このため、脳に流入する血液(動脈)の血行動態画像と、脳から流出する血液(静脈)の血行動態画像と、脳の定量的磁化率マップと、脳酸素摂取率とを1回の撮影で取得できる。略同時に両者のデータを取得することになるため、別々に取得していた従来手法よりも各画像間の位置ずれが少なく、かつ撮影時間を短縮できる。また、臨床的な価値としては、脳腫瘍の形状の特定が期待される。 As described above, according to the present embodiment, the BSI sequence 400 is executed during the idle time of the ASL sequence 300 to acquire BSI data. Therefore, a hemodynamic image of blood (arteries) flowing into the brain, a hemodynamic image of blood (venouss) flowing out of the brain, a quantitative susceptibility map of the brain, and a brain oxygen uptake rate are taken once. Can be obtained at Since both data are acquired substantially simultaneously, the positional deviation between the images is less than that of the conventional method acquired separately, and the photographing time can be shortened. In addition, the clinical value is expected to identify the shape of the brain tumor.
 また、本実施形態のMRI装置100は、前記第二のパルスシーケンス(BSIシーケンス400)を調整するシーケンス調整部220をさらに備え、前記第一のパルスシーケンス(ASLシーケンス300)は、複数の空き時間(331、332、333、334)を備え、前記シーケンス調整部220は、前記撮影条件に基づいて、各前記空き時間(331、332、333、334)に実行する前記第二のパルスシーケンス(BSIシーケンス400)のショット数とエンコード量とを算出し、当該算出結果に従って前記第二のパルスシーケンス(BSIシーケンス400)を調整し、前記エンコード量は、前記コントロールシーケンス320内の空き時間333、334に取得するデータが、前記ラベリングシーケンス310内の空き時間331、332に取得するデータよりk空間の低空間周波数領域に配置されるよう算出される。また、前記エンコード量は、さらに、前記プリパルスの影響が少ないタイミングで取得するデータほど、k空間の低空間周波数領域に配置されるよう算出される。 Further, the MRI apparatus 100 of the present embodiment further includes a sequence adjustment unit 220 that adjusts the second pulse sequence (BSI sequence 400), and the first pulse sequence (ASL sequence 300) includes a plurality of idle times. (331, 332, 333, 334), and the sequence adjustment unit 220 performs the second pulse sequence (BSI) to be executed in each of the idle times (331, 332, 333, 334) based on the imaging conditions. The number of shots and the encoding amount of the sequence 400) are calculated, and the second pulse sequence (BSI sequence 400) is adjusted according to the calculation result, and the encoding amount is set to the free times 333 and 334 in the control sequence 320. Data to be acquired is calculated so as to be arranged in a low spatial frequency region of k-space from data acquired in the free times 331 and 332 in the labeling sequence 310. Further, the encoding amount is further calculated so that data acquired at a timing with less influence of the pre-pulse is arranged in a low spatial frequency region of k-space.
 従って、BSIシーケンス400で取得するデータが、プリパルス(ラベリングパルス311)の影響を受けにくい。従って、空き時間に取得する場合であっても、高品質なBSI画像を得ることができる。 Therefore, the data acquired by the BSI sequence 400 is not easily affected by the pre-pulse (labeling pulse 311). Therefore, a high-quality BSI image can be obtained even when it is acquired in the free time.
 なお、ラベルした血液が環流領域に到達するまでの時間には、個人差がある。このため、実臨床では、複数PLDで撮影することが一般的である。本実施形態によれば、設定されたPLDに応じて、シーケンス調整部220が、各空き時間に実行するBSIシーケンス400のショット数とエンコード量とを決定するため、PLDを変更した場合であっても、容易に最適なBSIシーケンス400を決定できる。従って、撮影条件の変更に柔軟に対応できる。 Note that there are individual differences in the time it takes for the labeled blood to reach the reflux region. For this reason, in actual clinical practice, it is common to photograph with multiple PLDs. According to the present embodiment, in accordance with the set PLD, the sequence adjustment unit 220 changes the PLD in order to determine the number of shots and the encoding amount of the BSI sequence 400 executed in each idle time. However, the optimum BSI sequence 400 can be easily determined. Accordingly, it is possible to flexibly cope with changes in the photographing conditions.
 <<第二の実施形態>>
 本発明の第二の実施形態を説明する。第一の実施形態では、ASLシーケンス300の空き時間に実行するBSIシーケンス400について、ラベリングパルス311の影響の少ない空き時間に取得したデータを、低空間周波領域に配置するよう、エンコード量を決定し、シーケンスを調整する。本実施形態では、ASLシーケンス300が2D撮影シーケンスである場合、その撮影スライスのデータ取得順も調整する。
<< Second Embodiment >>
A second embodiment of the present invention will be described. In the first embodiment, for the BSI sequence 400 that is executed during the free time of the ASL sequence 300, the encoding amount is determined so that the data acquired during the free time with little influence of the labeling pulse 311 is arranged in the low spatial frequency region. Adjust the sequence. In the present embodiment, when the ASL sequence 300 is a 2D imaging sequence, the data acquisition order of the imaging slice is also adjusted.
 本実施形態のMRI装置は、基本的に第一の実施形態のMRI装置100と同様の構成を有する。しかしながら、上述のように、ASLシーケンス300の撮影スライスの取得順も調整するため、撮影条件受付部210と、シーケンス調整部220との処理が異なる。以下、本実施形態について、第一の実施形態と異なる構成に主眼をおいて説明する。 The MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment. However, as described above, since the acquisition order of the imaging slices of the ASL sequence 300 is also adjusted, the processing of the imaging condition reception unit 210 and the sequence adjustment unit 220 is different. Hereinafter, the present embodiment will be described focusing on the configuration different from the first embodiment.
 血液は動脈から、灌流領域(ASL Perfusion)を経て、静脈(BSI)という経路を辿るため、空き時間332で取得するBSIデータは、少なからずASLデータ取得の影響を受ける可能性がある。そこで、本実施形態では、ユーザにBSIシーケンス400で取得するデータから生成する画像(BSI画像)において、頭頂側(Head側)の画像と脳底側(Foot側)の画像のどちらがより重要であるかを選択させ、それに応じてASL撮影スライスのオーダリングを自動で変更する。 Since blood follows a route called vein (BSI) from the artery through the perfusion region (ASL Perfusion), the BSI data acquired in the free time 332 may be affected by the acquisition of ASL data. Therefore, in this embodiment, in the image (BSI image) generated from the data acquired by the BSI sequence 400 to the user, which is more important is the image on the parietal side (Head side) or the image on the brain base side (Foot side). And automatically change the ASL imaging slice ordering accordingly.
 すなわち、本実施形態では、第一のパルスシーケンス(ASLシーケンス300)は、2次元マルチスライス計測用のシーケンスであり、第二のパルスシーケンス(BSIシーケンス400)は、3次元計測用のシーケンスであり、撮影条件には、第二のパルスシーケンスにおいて、第一のパルスシーケンスのスライス方向に関して優先する側を特定する情報(BSI画像のプライオリティ)が含まれ、シーケンス調整部220は、第一のパルスシーケンスの、励起周波数をさらに算出し、このとき、励起周波数は、優先する側のスライスから先に取得するよう算出する。 That is, in the present embodiment, the first pulse sequence (ASL sequence 300) is a sequence for two-dimensional multi-slice measurement, and the second pulse sequence (BSI sequence 400) is a sequence for three-dimensional measurement. In the second pulse sequence, the imaging condition includes information (BSI image priority) for specifying a priority side with respect to the slice direction of the first pulse sequence, and the sequence adjustment unit 220 includes the first pulse sequence. The excitation frequency is further calculated, and at this time, the excitation frequency is calculated so as to be acquired first from the slice on the priority side.
 このため、本実施形態の撮影条件受付部210は、第一の実施形態で受け付ける各撮影条件に加え、さらに、BSI画像のプライオリティを受け付ける。これは、図9に示すように、各撮影条件を受け付ける領域に加え、BSI撮影条件表示欄520に、プライオリティを指定する領域(プライオリティ指定領域)521をさらに備える撮影条件受付画面500aを表示し、当該画面を介して受け付ける。 For this reason, the imaging condition reception unit 210 of the present embodiment further receives the priority of the BSI image in addition to the imaging conditions received in the first embodiment. As shown in FIG. 9, in addition to the area for receiving each shooting condition, the BSI shooting condition display field 520 displays a shooting condition receiving screen 500a further including an area for specifying priority (priority specifying area) 521, Accept via this screen.
 また、本実施形態のシーケンス調整部220は、第一の実施形態同様、BSIシーケンス400のエンコード量を決定する。さらに、撮影条件受付部210で受け付けたプライオリティに応じて、ASLシーケンス300の撮影スライス取得順も決定する。 Also, the sequence adjustment unit 220 of this embodiment determines the encoding amount of the BSI sequence 400, as in the first embodiment. Further, according to the priority received by the imaging condition reception unit 210, the imaging slice acquisition order of the ASL sequence 300 is also determined.
 具体的には、シーケンス調整部220は、撮影スライス取得順を、プライオリティの高い方から取得するよう決定する。すなわち、図9に例示するように、ユーザが、頭頂側(Head側)のデータがより重要であることを選択した場合、ASLシーケンス300において、撮影スライスのオーダリング(ASL Slice order)を、Head方向からFoot方向(H-F)とする。一方、ユーザがFoot側を選択した場合、同オーダリングを、F-Hとする。 Specifically, the sequence adjustment unit 220 determines to acquire the imaging slice acquisition order from the higher priority. That is, as illustrated in FIG. 9, when the user selects that the data on the parietal side (Head side) is more important, in the ASL sequence 300, the imaging slice ordering (ASL Slice order) is changed to the Head direction. To Foot direction (HF). On the other hand, if the user selects the Foot side, the ordering is F-H.
 なお、シーケンス調整部220が算出した、ASLシーケンス300における撮影スライスのオーダリングを、撮影条件受付画面500a上で、表示するよう構成してもよい。
この場合、撮影条件受付画面500aのASL撮影条件表示欄510は、図9に示すように、スライス順表示欄511を備える。
Note that the imaging slice ordering in the ASL sequence 300 calculated by the sequence adjustment unit 220 may be displayed on the imaging condition reception screen 500a.
In this case, the ASL shooting condition display field 510 of the shooting condition reception screen 500a includes a slice order display field 511 as shown in FIG.
 シーケンス調整部220は、調整結果をこのスライス順表示欄511に表示する。すなわち、本図に示すように、「BSI priority dir」521に連動して「ASL slice order」511の表示が変わる。 The sequence adjustment unit 220 displays the adjustment result in the slice order display field 511. That is, as shown in this figure, the display of “ASL slice order” 511 changes in conjunction with “BSI priority dir” 521.
 以上説明したように、本実施形態のMRI装置100は、第一の実施形態同様、計測部230を備え、前記第二のパルスシーケンス(BSIシーケンス400)を、前記第一のパルスシーケンス(ASLシーケンス300)の繰り返し時間内の空き時間に実行する。 As described above, the MRI apparatus 100 of the present embodiment includes the measurement unit 230 as in the first embodiment, and the second pulse sequence (BSI sequence 400) is changed to the first pulse sequence (ASL sequence). Execute in the free time within the repetition time of 300).
 また、シーケンス調整部220をさらに備え、ASLシーケンス300のコントロールシーケンス320内の空き時間333、334に取得するデータが、同ラベリングシーケンス310内の空き時間331、332に取得するデータよりk空間の低空間周波数領域に配置され、かつ、前記プリパルスの影響が少ないタイミングで取得するデータほど、k空間の低空間周波数領域に配置されるよう、BSIシーケンス400のエンコード量は算出される。 Further, it further includes a sequence adjustment unit 220, and the data acquired in the free times 333 and 334 in the control sequence 320 of the ASL sequence 300 is lower in the k space than the data acquired in the free times 331 and 332 in the labeling sequence 310. The encoding amount of the BSI sequence 400 is calculated so that the data that is arranged in the spatial frequency domain and acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency domain of the k space.
 さらに、本実施形態のMRI装置100では、前記第一のパルスシーケンス(ASLシーケンス300)は、2次元マルチスライス計測用のシーケンスであり、前記第二のパルスシーケンス(BSIシーケンス400)は、3次元計測用のシーケンスであり、前記撮影条件には、第二のパルスシーケンスにおいて、前記第一のパルスシーケンス(ASLシーケンス300)のスライス方向に関して優先する側を特定する情報が含まれ、前記シーケンス調整部220は、前記第一のパルスシーケンス(ASLシーケンス300)の、励起周波数をさらに算出し、前記励起周波数は、前記優先する側のスライスから先に取得するよう算出される。 Furthermore, in the MRI apparatus 100 of the present embodiment, the first pulse sequence (ASL sequence 300) is a two-dimensional multi-slice measurement sequence, and the second pulse sequence (BSI sequence 400) is a three-dimensional A sequence for measurement, and the imaging condition includes information specifying a priority side in the second pulse sequence with respect to the slice direction of the first pulse sequence (ASL sequence 300), and the sequence adjustment unit 220 further calculates an excitation frequency of the first pulse sequence (ASL sequence 300), and the excitation frequency is calculated so as to be acquired first from the priority slice.
 これにより、本実施形態によれば、第一の実施形態同様の効果を得ることができる。さらに、ASLの頭頂側のスライス(Slice#1)から空き時間332までの時間間隔を広げることができる。このため、ASLシーケンス300におけるラベリングパルス311の影響を最小限にすることができる。 Thereby, according to this embodiment, the same effect as the first embodiment can be obtained. Furthermore, the time interval from the ASL top slice (Slice # 1) to the free time 332 can be extended. For this reason, the influence of the labeling pulse 311 in the ASL sequence 300 can be minimized.
 <<第三の実施形態>>
 本発明の第三の実施形態を説明する。本実施形態では、ユーザが入力した撮影条件についても調整する。
<< Third Embodiment >>
A third embodiment of the present invention will be described. In the present embodiment, the shooting conditions input by the user are also adjusted.
 本実施形態のMRI装置は、第一の実施形態のMRI装置100と基本的に同様の構成を有する。ただし、本実施形態の全体制御部108は、図10に示すように、撮影条件の調整も行うため、第一の実施形態の構成に加え、さらに、撮影条件調整部260を備える。以下、本実施形態について、第一の実施形態と異なる構成に主眼をおいて説明する。 The MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment. However, as shown in FIG. 10, the overall control unit 108 of the present embodiment also adjusts shooting conditions, and therefore includes a shooting condition adjustment unit 260 in addition to the configuration of the first embodiment. Hereinafter, the present embodiment will be described focusing on the configuration different from the first embodiment.
 本実施形態の撮影条件調整部260は、撮影条件受付部210で受け付けた撮影条件を調整する。この撮影条件調整部260は、第二のパルスシーケンス(BSIシーケンス400)の撮影条件のうち、予め定めた撮影条件を、第一のパルスシーケンス(ASLシーケンス300)の撮影条件に応じて調整する。そして、調整する、予め定めた撮影条件(調整撮影条件)は、撮影視野(FOV)、各エンコード方向、エコー信号間の時間間隔、1回の励起で計測するエコー信号数、および、パラレルイメージングの倍速数の少なくとも1つを含む。 The imaging condition adjustment unit 260 of the present embodiment adjusts the imaging conditions received by the imaging condition reception unit 210. This imaging condition adjustment unit 260 adjusts a predetermined imaging condition among the imaging conditions of the second pulse sequence (BSI sequence 400) according to the imaging conditions of the first pulse sequence (ASL sequence 300). The predetermined imaging conditions (adjustment imaging conditions) to be adjusted are the field of view (FOV), each encoding direction, the time interval between echo signals, the number of echo signals measured with one excitation, and the parallel imaging Contains at least one of the double speed numbers.
 以下、ASLシーケンス300とBSIシーケンス400との撮影条件の調整を、具体的に説明する。 Hereinafter, the adjustment of the shooting conditions of the ASL sequence 300 and the BSI sequence 400 will be described in detail.
 撮影視野(FOV)、および、読み出し(read-out)/位相(phase)/スライス(slice)の、各エンコード方向は、常に両シーケンスにおいて、揃える(同じとする)ことが望ましい。また、BSIシーケンス400のIET、パラレルイメージングの倍速数、ETLは、ASLシーケンス300のそれらの整数倍となるように調整することが望ましい。 It is desirable that the encoding directions of the field of view (FOV) and read-out / phase / slice are always aligned (same) in both sequences. Further, it is desirable that the IET of the BSI sequence 400, the double speed number of parallel imaging, and the ETL are adjusted to be an integral multiple of those of the ASL sequence 300.
 撮影条件調整部260は、上記の調整撮影条件について、ASLシーケンス300の撮影条件に対するBSIシーケンス400の撮影条件算出の規則(撮影条件算出規則)を予め記憶装置115に保持しておく。そして、撮影条件調整部260は、ASLシーケンス300の撮影条件として入力された撮影条件を用い、撮影条件算出規則に従って、BSIシーケンス400の撮影条件を算出し、当初、ユーザが設定した撮影条件を算出したものに置き換える。 The shooting condition adjustment unit 260 holds in the storage device 115 the shooting condition calculation rule (shooting condition calculation rule) of the BSI sequence 400 with respect to the shooting condition of the ASL sequence 300 in advance for the above-described adjusted shooting condition. Then, the shooting condition adjustment unit 260 calculates the shooting condition of the BSI sequence 400 according to the shooting condition calculation rule using the shooting condition input as the shooting condition of the ASL sequence 300, and calculates the shooting condition initially set by the user. Replace with what you did.
 保持しておく撮影条件算出規則は、上述のように、FOV、エンコード方向は等しくする指示、IET、パラレルイメージングの倍速数、ETLなどの整数倍とするパラメータについては、その倍数などとする。 As described above, the imaging condition calculation rule to be retained is FOV, an instruction to make the encoding direction equal, IET, a double speed of parallel imaging, a parameter that is an integer multiple such as ETL, and the multiple thereof.
 例えば、撮影条件調整部260は、置き換え後の撮影条件を、撮影条件受付画面500のBSI撮影条件表示欄520に表示するよう構成してもよい。 For example, the imaging condition adjustment unit 260 may be configured to display the replaced imaging condition in the BSI imaging condition display field 520 of the imaging condition reception screen 500.
 なお、ここでは、撮影条件調整部260を備え、ASLシーケンス300の撮影条件に応じて自動的にBSIシーケンス400の撮影条件を調整する場合を例にあげて説明したが、これに限定されない。例えば、撮影条件受付画面500を介して、ユーザがパラメータを入力し、装置側でその適否を判別するものであってもよい。この場合、撮影条件調整部260は備えなくてもよい。 Here, the case where the imaging condition adjustment unit 260 is provided and the imaging conditions of the BSI sequence 400 are automatically adjusted according to the imaging conditions of the ASL sequence 300 has been described as an example, but the present invention is not limited to this. For example, the user may input parameters via the shooting condition reception screen 500 and determine whether or not the apparatus is appropriate. In this case, the imaging condition adjustment unit 260 may not be provided.
 この場合、例えば、図11に示すように、受け付けた撮影条件の適否を判別する判別部270をさらに備え、受け付けた撮影条件が、予め定めた規則(撮影条件算出規則)に反している場合、撮影条件調整部260は、ユーザにメッセージを通知する処理、および、規則に従った撮影条件を自動的に設定する処理の少なくとも一方の処理を行うよう構成してもよい。 In this case, for example, as shown in FIG. 11, it further includes a determination unit 270 that determines the suitability of the accepted shooting conditions, and when the received shooting conditions violate a predetermined rule (shooting condition calculation rule), The shooting condition adjustment unit 260 may be configured to perform at least one of a process of notifying a user of a message and a process of automatically setting shooting conditions according to a rule.
 すなわち、ユーザが上記撮影条件算出規則から外れた値をBSIシーケンス400の撮影条件として入力した場合、撮影条件調整部260は、例えば、表示・操作部113に、警告を与えるメッセージ、あるいは、適切な値としてSuggestionを表示し、ユーザに再入力を促すよう構成してもよい。 That is, when the user inputs a value outside the shooting condition calculation rule as the shooting condition of the BSI sequence 400, the shooting condition adjustment unit 260, for example, displays a message that gives a warning to the display / operation unit 113, or an appropriate Suggestion may be displayed as a value, and the user may be prompted to input again.
 さらに、記憶装置115に保持する撮影条件算出規則には、積算回数や空間分解能に関する規則が含まれていてもよい。これらの積算回数や空間分解能は、両シーケンス間で異なることが望ましい。従って、例えば、撮影条件算出規則として、これらの撮影条件について、予め調整用の値、あるいは、変更量を保持する。 Furthermore, the shooting condition calculation rules stored in the storage device 115 may include rules regarding the number of integrations and spatial resolution. The number of integrations and the spatial resolution are desirably different between both sequences. Therefore, for example, as an imaging condition calculation rule, an adjustment value or a change amount is held in advance for these imaging conditions.
 この場合、ユーザがBSIシーケンス400の撮影条件として、積算回数および/または空間分解能に関し、ASLシーケンス300と同じ撮影条件を入力すると、撮影条件調整部260は、ユーザにメッセージを表示し、再入力を促す、あるいは、自動的に撮影条件算出規則に従って、調整する。 In this case, when the user inputs the same shooting condition as the ASL sequence 300 regarding the number of integrations and / or spatial resolution as the shooting condition of the BSI sequence 400, the shooting condition adjustment unit 260 displays a message to the user and re-enters it. Encourage or adjust automatically according to the shooting condition calculation rules.
 以上説明したように、本実施形態のMRI装置100は、第一の実施形態同様、計測部230を備え、前記第二のパルスシーケンス(BSIシーケンス400)を、前記第一のパルスシーケンス(ASLシーケンス300)の繰り返し時間内の空き時間に実行する。 As described above, the MRI apparatus 100 of the present embodiment includes the measurement unit 230 as in the first embodiment, and the second pulse sequence (BSI sequence 400) is changed to the first pulse sequence (ASL sequence). Execute in the free time within the repetition time of 300).
 また、シーケンス調整部220をさらに備え、ASLシーケンス300のコントロールシーケンス320内の空き時間333、334に取得するデータが、同ラベリングシーケンス310内の空き時間331、332に取得するデータよりk空間の低空間周波数領域に配置され、かつ、前記プリパルスの影響が少ないタイミングで取得するデータほど、k空間の低空間周波数領域に配置されるよう、BSIシーケンス400のエンコード量は算出される。 Further, it further includes a sequence adjustment unit 220, and the data acquired in the free times 333 and 334 in the control sequence 320 of the ASL sequence 300 is lower in the k space than the data acquired in the free times 331 and 332 in the labeling sequence 310. The encoding amount of the BSI sequence 400 is calculated so that the data that is arranged in the spatial frequency domain and acquired at a timing with less influence of the pre-pulse is arranged in the low spatial frequency domain of the k space.
 また、本実施形態のMRI装置100は、前記撮影条件を調整する撮影条件調整部260をさらに備え、前記撮影条件調整部260は、第二のパルスシーケンス(BSIシーケンス400)の撮影条件のうち、予め定めた撮影条件を、第一のパルスシーケンス(ASLシーケンス300)の撮影条件に応じて調整する。 Further, the MRI apparatus 100 of the present embodiment further includes an imaging condition adjustment unit 260 that adjusts the imaging conditions, and the imaging condition adjustment unit 260 includes, among the imaging conditions of the second pulse sequence (BSI sequence 400), The predetermined imaging conditions are adjusted according to the imaging conditions of the first pulse sequence (ASL sequence 300).
 このように、本実施形態によれば、第一の実施形態と同様の構成を有するため、第一の実施形態と同様の効果を奏する。さらに、本実施形態によれば、ASLシーケンス300とBSIシーケンス400の撮影条件を、最適なものに調整できるため、両シーケンスにより、比較に最適な画像を得ることができる。 Thus, according to this embodiment, since it has the same configuration as that of the first embodiment, the same effect as that of the first embodiment can be obtained. Furthermore, according to the present embodiment, since the imaging conditions of the ASL sequence 300 and the BSI sequence 400 can be adjusted to the optimum ones, an image optimal for comparison can be obtained by both sequences.
 これにより、例えば、両計測の撮影シーケンスがEPI系であれば画像歪の計算が容易になる。 This makes it easy to calculate image distortion if, for example, the imaging sequence for both measurements is an EPI system.
 なお、上記実施形態では、BSIシーケンス400の撮影条件について、自動的に設定する場合であっても、ユーザが入力したものを調整するよう構成しているが、これに限定されない。 In the above-described embodiment, the configuration is such that the user input is adjusted even when the shooting conditions of the BSI sequence 400 are automatically set. However, the present invention is not limited to this.
 予め定めた撮影条件算出規則に従ってASLシーケンス300の撮影条件から自動的に算出可能な撮影条件(調整撮影条件)については、BSIシーケンス400の撮影条件のユーザによる入力を不要とするよう構成してもよい。 The shooting conditions (adjustment shooting conditions) that can be automatically calculated from the shooting conditions of the ASL sequence 300 in accordance with predetermined shooting condition calculation rules may be configured so that the user does not need to input the shooting conditions of the BSI sequence 400. Good.
 すなわち、このように構成する場合、調整撮影条件について、撮影条件受付部210は、前記第一のパルスシーケンス(ASLシーケンス300)の撮影条件を、前記第一の表示欄(ASL撮影条件表示欄510)を介して受け付け、撮影条件調整部260は、第一のパルスシーケンスの撮影条件に応じて、第二のパルスシーケンス(BSIシーケンス400)の撮影条件を生成し、撮影条件調整部260は、第一の表示欄には、受け付けた第一のパルスシーケンスの撮影条件を表示し、前記第二の表示欄(BSI撮影条件表示欄520)には、生成された第二のパルスシーケンスの撮影条件を表示する。 That is, when configured in this way, for the adjusted shooting conditions, the shooting condition receiving unit 210 displays the shooting conditions of the first pulse sequence (ASL sequence 300) in the first display column (ASL shooting condition display column 510). ), The imaging condition adjustment unit 260 generates the imaging condition of the second pulse sequence (BSI sequence 400) according to the imaging condition of the first pulse sequence, and the imaging condition adjustment unit 260 In one display column, the imaging conditions of the received first pulse sequence are displayed, and in the second display field (BSI imaging condition display field 520), the imaging conditions of the generated second pulse sequence are displayed. indicate.
 具体的には、撮影条件受付部210は、図6に示す撮影条件受付画面500を、調整撮影条件については、ASLシーケンス300の撮影条件のみ入力可能な態様で表示させる。そして、ASLシーケンス300の撮影条件のみ受け付ける。なお、このとき、BSIシーケンス400の他の撮影パラメータは、ユーザが任意に設定する。 Specifically, the shooting condition reception unit 210 displays the shooting condition reception screen 500 shown in FIG. 6 in such a manner that only the shooting conditions of the ASL sequence 300 can be input as the adjusted shooting conditions. Only the shooting conditions of the ASL sequence 300 are accepted. At this time, other imaging parameters of the BSI sequence 400 are arbitrarily set by the user.
 また、撮影条件調整部260は、撮影条件の設定を受け付けると、予め定めた撮影条件算出規則に従って、BSIシーケンス400の撮影条件を算出する。算出した撮影条件は、撮影条件受付画面500のBSI撮影条件表示欄520の対応する撮影条件欄にそれぞれ表示する。 In addition, when the imaging condition adjustment unit 260 receives the setting of the imaging condition, the imaging condition adjustment unit 260 calculates the imaging condition of the BSI sequence 400 according to a predetermined imaging condition calculation rule. The calculated shooting conditions are displayed in the corresponding shooting condition fields of the BSI shooting condition display field 520 of the shooting condition reception screen 500, respectively.
 予め定めた撮影条件算出規則は、例えば、上述のように、FOV、および、読み出し/位相/スライスエンコード方向は、常に揃える(同じとする)、BSIシーケンス400のIET、パラレルイメージングの倍速数、ETLは、ASLシーケンス300のそれらの整数倍とする、積算回数や空間分解能は異なる値とする、などである。 Predetermined imaging condition calculation rules include, for example, as described above, FOV and readout / phase / slice encoding directions are always aligned (assuming the same), IET of BSI sequence 400, double speed of parallel imaging, ETL Is an integer multiple of those of the ASL sequence 300, and the number of integrations and the spatial resolution are different values.
 このように構成することにより、ASLシーケンス300の撮影条件を設定するだけで、BSIシーケンス400の撮影条件も設定でき、1回のスキャンでASL用のデータと、BSI用のデータとを同時に得るために最適な撮影条件を、容易に設定できる。 By configuring in this way, simply by setting the shooting conditions for the ASL sequence 300, the shooting conditions for the BSI sequence 400 can also be set, so that ASL data and BSI data can be obtained simultaneously in a single scan. The optimal shooting conditions can be set easily.
 なお、本実施形態は、第二の実施形態と組み合わせてもよい。 Note that this embodiment may be combined with the second embodiment.
 100 MRI装置、101 被検体、102 静磁場発生磁石、103 傾斜磁場コイル、104 送信コイル、105 受信コイル、106 信号検出部、107 信号処理部、108 全体制御部、109 傾斜磁場電源、110 RF送信部、112 ベッド、113 表示・操作部、115 記憶装置、210 撮影条件受付部、220 シーケンス調整部、230 計測部、240 画像再構成部、250 表示画像生成部、260 撮影条件調整部、300 ASLシーケンス、310 ラベリングシーケンス、311 ラベリングパルス、312 ASLデータ取得、313 PLD、320 コントロールシーケンス、321 コントロールパルス、322 ASLデータ取得、323 PLD、331 空き時間、332 空き時間、333 空き時間、334 空き時間、340 パルスシーケンス、400 BSIシーケンス、500 撮影条件受付画面、500a 撮影条件受付画面、510 ASL撮影条件表示欄、511 スライス順表示欄、520 BSI撮影条件表示欄、521 プライオリティ指定領域、610 ラベリングパルス印加位置、620 スライス位置、710 表 100 MRI apparatus, 101 subject, 102 static magnetic field generating magnet, 103 gradient magnetic field coil, 104 transmission coil, 105 reception coil, 106 signal detection unit, 107 signal processing unit, 108 overall control unit, 109 gradient magnetic field power supply, 110 RF transmission Unit, 112 bed, 113 display / operation unit, 115 storage device, 210 shooting condition reception unit, 220 sequence adjustment unit, 230 measurement unit, 240 image reconstruction unit, 250 display image generation unit, 260 shooting condition adjustment unit, 300 ASL Sequence, 310 Labeling Sequence, 311 Labeling Pulse, 312 ASL Data Acquisition, 313 PLD, 320 Control Sequence, 321 Control Pulse, 322 ASL Data Acquisition, 323 PLD, 331 Free Time, 332 Free Time, 333 Free Time, 334 Free Time, 340 pulse sequence, 400 BSI sequence, 500 shooting condition reception screen, 500a shooting condition reception screen, 510 ASL shooting condition display field, 5 11 Slice order display field, 520 BSI imaging condition display field, 521 Priority specification area, 610 Labeling pulse application position, 620 Slice position, 710 table

Claims (15)

  1.  予め設定された撮影条件およびパルスシーケンスに従って、被検体の所望の領域への高周波磁場パルスの印加、当該領域への傾斜磁場パルスの印加、および、前記被検体の当該領域から発生する核磁気共鳴信号の計測を行う計測部を備え、
     前記パルスシーケンスは、
     所定の部位に流入する血液の動態画像である流入動態画像を生成するデータを取得する第一のパルスシーケンスと、
     前記部位の前記流入動態画像以外の予め定めた情報を生成するデータを取得する第二のパルスシーケンスと、を備え、
     前記第二のパルスシーケンスは、前記第一のパルスシーケンスの繰り返し時間内の空き時間に実行されることを特徴とする磁気共鳴イメージング装置。
    Application of a high-frequency magnetic field pulse to a desired region of the subject, application of a gradient magnetic field pulse to the region, and a nuclear magnetic resonance signal generated from the region of the subject according to preset imaging conditions and a pulse sequence Equipped with a measuring unit to measure
    The pulse sequence is
    A first pulse sequence for acquiring data for generating an inflow dynamic image that is a dynamic image of blood flowing into a predetermined site;
    A second pulse sequence for obtaining data for generating predetermined information other than the inflow dynamic image of the part, and
    2. The magnetic resonance imaging apparatus according to claim 1, wherein the second pulse sequence is executed in a free time within a repetition time of the first pulse sequence.
  2.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第一のパルスシーケンスは、
     プリパルスとしてラベリングパルスを印加後、所定の時間をおいてデータを収集するラベリングシーケンスと、
     前記ラベリングシーケンスの後に実行する、前記プリパルスとしてコントロールパルスを印加後、前記所定の時間をおいてデータを収集するコントロールシーケンスと、を備え、
     前記ラベリングシーケンスと前記コントロールシーケンスとは、交互に実行されることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The first pulse sequence is:
    After applying a labeling pulse as a pre-pulse, a labeling sequence for collecting data after a predetermined time, and
    A control sequence that is executed after the labeling sequence, collects data after a predetermined time after applying a control pulse as the pre-pulse, and
    The magnetic resonance imaging apparatus, wherein the labeling sequence and the control sequence are executed alternately.
  3.  請求項2記載の磁気共鳴イメージング装置であって、
     前記第二のパルスシーケンスを調整するシーケンス調整部をさらに備え、
     前記第一のパルスシーケンスは、複数の空き時間を備え、
     前記シーケンス調整部は、前記撮影条件に基づいて、各前記空き時間に実行する前記第二のパルスシーケンスのショット数とエンコード量とを算出し、当該算出結果に従って前記第二のパルスシーケンスを調整し、
     前記エンコード量は、前記コントロールシーケンス内の空き時間に取得するデータが、前記ラベリングシーケンス内の空き時間に取得するデータよりk空間の低空間周波数領域に配置されるよう算出されることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 2,
    A sequence adjustment unit for adjusting the second pulse sequence;
    The first pulse sequence comprises a plurality of idle times,
    The sequence adjustment unit calculates the number of shots and the encoding amount of the second pulse sequence to be executed in each idle time based on the imaging condition, and adjusts the second pulse sequence according to the calculation result. ,
    The encoding amount is calculated so that data acquired in a free time in the control sequence is arranged in a low spatial frequency region of k space from data acquired in a free time in the labeling sequence. Magnetic resonance imaging device.
  4.  請求項3記載の磁気共鳴イメージング装置であって、
     前記シーケンス調整部は、さらに、前記プリパルスの影響が少ないタイミングで取得するデータほど、k空間の低空間周波数領域に配置されるよう、前記第二のパルスシーケンスのエンコード量を算出することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 3,
    The sequence adjustment unit further calculates an encoding amount of the second pulse sequence so that data acquired at a timing with less influence of the pre-pulse is arranged in a low spatial frequency region of k-space. Magnetic resonance imaging device.
  5.  請求項3記載の磁気共鳴イメージング装置であって、
     前記第一のパルスシーケンスは、2次元マルチスライス計測用のシーケンスであり、
     前記第二のパルスシーケンスは、3次元計測用のシーケンスであり、
     前記撮影条件には、前記第一のパルスシーケンスのスライス方向に関して優先する側を特定する情報が含まれ、
     前記シーケンス調整部は、前記第一のパルスシーケンスの、励起周波数をさらに算出し、
     前記励起周波数は、前記優先する側のスライスから先に取得するよう算出されることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 3,
    The first pulse sequence is a sequence for two-dimensional multi-slice measurement,
    The second pulse sequence is a sequence for three-dimensional measurement,
    The imaging condition includes information for specifying a priority side with respect to the slice direction of the first pulse sequence,
    The sequence adjustment unit further calculates an excitation frequency of the first pulse sequence,
    The magnetic resonance imaging apparatus according to claim 1, wherein the excitation frequency is calculated so as to be acquired first from the priority slice.
  6.  請求項1記載の磁気共鳴イメージング装置であって、
     前記撮影条件を調整する撮影条件調整部をさらに備え、
     前記撮影条件調整部は、第二のパルスシーケンスの撮影条件のうち、予め定めた撮影条件を、第一のパルスシーケンスの撮影条件に応じて調整することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    A shooting condition adjusting unit for adjusting the shooting condition;
    The imaging condition adjusting unit adjusts a predetermined imaging condition among the imaging conditions of the second pulse sequence according to the imaging conditions of the first pulse sequence.
  7.  請求項6記載の磁気共鳴イメージング装置であって、
     前記予め定めた撮影条件は、撮影視野、各エンコード方向、エコー信号間の時間間隔、1回の励起で計測するエコー信号数、および、パラレルイメージングの倍速数の少なくとも一つを含むことを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 6,
    The predetermined imaging condition includes at least one of an imaging field of view, each encoding direction, a time interval between echo signals, the number of echo signals measured by one excitation, and a parallel imaging multiple speed number. Magnetic resonance imaging device.
  8.  請求項1記載の磁気共鳴イメージング装置であって、
     撮影条件受付画面を介して撮影条件を受け付ける撮影条件受付部をさらに備え、
     前記撮影条件受付画面は、
     前記第一のパルスシーケンスの撮影条件を表示する第一の表示欄と、
     前記第二のパルスシーケンスの撮影条件を表示する第二の表示欄と、を備え、
     前記第一の表示欄と前記第二の表示欄とにおいて、同一の撮像条件の表示欄は、対応づけて配置されることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    A shooting condition receiving unit for receiving shooting conditions via the shooting condition receiving screen;
    The shooting condition reception screen is
    A first display field for displaying imaging conditions of the first pulse sequence;
    A second display field for displaying the imaging conditions of the second pulse sequence,
    In the first display field and the second display field, display fields having the same imaging conditions are arranged in association with each other.
  9.  請求項8記載の磁気共鳴イメージング装置であって、
     前記受け付けた撮影条件の適否を判別する判別部と、
     前記受け付けた撮影条件が、予め定めた規則に反している場合、ユーザにメッセージを通知する処理、および、前記規則に従った撮影条件を設定する処理の少なくとも一方の処理を行う撮影条件調整部と、をさらに備えることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 8,
    A discriminator for discriminating the suitability of the accepted shooting conditions;
    A shooting condition adjustment unit that performs at least one of a process of notifying a user of a message and a process of setting a shooting condition according to the rule when the accepted shooting condition is contrary to a predetermined rule; And a magnetic resonance imaging apparatus.
  10.  請求項8記載の磁気共鳴イメージング装置であって、
     撮影条件調整部をさらに備え、
     前記撮影条件受付部は、前記第一のパルスシーケンスの撮影条件を、前記第一の表示欄を介して受け付け、
     前記撮影条件調整部は、前記第一のパルスシーケンスの撮影条件に応じて、前記第二のパルスシーケンスの撮影条件を生成し、前記第一の表示欄には、前記受け付けた第一のパルスシーケンスの撮影条件を表示し、前記第二の表示欄には、前記生成した第二のパルスシーケンスの撮影条件を表示することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 8,
    A shooting condition adjustment unit,
    The imaging condition receiving unit receives the imaging condition of the first pulse sequence via the first display field,
    The imaging condition adjustment unit generates the imaging condition of the second pulse sequence according to the imaging condition of the first pulse sequence, and the received first pulse sequence is displayed in the first display column. The magnetic resonance imaging apparatus is characterized in that the imaging conditions of the generated second pulse sequence are displayed in the second display column.
  11.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第一のパルスシーケンスで取得したデータおよび前記第二のパルスシーケンスで取得したデータから、それぞれ、画像を再構成する画像再構成部と、
     前記再構成shita画像から表示装置に表示する表示画像を生成する表示画像生成部と、をさらに備え、
     前記第一のパルスシーケンスは、2次元マルチスライス計測用のシーケンスであり、
     前記第二のパルスシーケンスは、3次元計測用のシーケンスであり、
     前記表示画像生成部は、前記第二のパルスシーケンスにより得たデータから再構成された3次元画像データに対し、MPR(Multi Planar Reconstruction)処理を施し、前記第一のパルスシーケンスにより得たデータから再構成される各スライス位置の画像を前記表示画像として生成することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    From the data acquired in the first pulse sequence and the data acquired in the second pulse sequence, respectively, an image reconstruction unit for reconstructing an image,
    A display image generation unit that generates a display image to be displayed on the display device from the reconstructed shita image, and
    The first pulse sequence is a sequence for two-dimensional multi-slice measurement,
    The second pulse sequence is a sequence for three-dimensional measurement,
    The display image generation unit performs MPR (Multi Planar Reconstruction) processing on the three-dimensional image data reconstructed from the data obtained by the second pulse sequence, and from the data obtained by the first pulse sequence. A magnetic resonance imaging apparatus, wherein an image of each reconstructed slice position is generated as the display image.
  12.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第二のパルスシーケンスは、RFスポイルドSSFP(RF-Spoiled Steady State Free Precession)シーケンスおよびSSFP-EPIシーケンスのいずれかであることを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The magnetic resonance imaging apparatus, wherein the second pulse sequence is one of an RF spoiled SSFP (RF-Spoiled Steady State Free Precession) sequence and an SSFP-EPI sequence.
  13.  請求項1記載の磁気共鳴イメージング装置であって、
     前記第二のパルスシーケンスで取得したデータから生成される前記情報は、SWI(Susceptibility Weighted Imaging)またはBSI(Blood Sensitivity Imaging)により生成する静脈描出画像、定量的磁化率マップ(QSM(Quantitative Susceptibility Mapping))、および脳酸素摂取率(OEF(Oxygen Extraction Fraction))の少なくとも一つを含むことを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1,
    The information generated from the data acquired in the second pulse sequence is a SWI (Susceptibility Weighted Imaging) or BSI (Blood Sensitivity Imaging) generated vein image, a quantitative susceptibility map (QSM (Quantitative Susceptibility Mapping) ) And brain oxygen uptake rate (OEF (Oxygen Extraction Fraction)).
  14.  所定の部位に流入する血液の導体画像である流入動態画像を生成するデータを取得する第一のパルスシーケンスの空き時間に、前記部位の前記流入動態画像以外の情報を生成するデータを取得する第二のパルスシーケンスを実行し、
     前記第一のパルスシーケンスにより得られたデータから前記流入動態画像を再構成し、前記第二のパルスシーケンスにより得られたデータから、前記情報を生成することを特徴とする磁気共鳴イメージング方法。
    The data for generating information other than the inflow dynamic image of the part is acquired in the idle time of the first pulse sequence for acquiring the data for generating the inflow dynamic image that is a conductor image of blood flowing into the predetermined part. Perform a second pulse sequence,
    A magnetic resonance imaging method comprising: reconstructing the inflow dynamic image from data obtained by the first pulse sequence, and generating the information from data obtained by the second pulse sequence.
  15.  請求項14記載の磁気共鳴イメージング方法であって、
     前記第一のパルスシーケンスは、
     ラベリングパルスを印加後、データを収集するラベリングシーケンスと、
     前記ラベリングシーケンスの後に実行する、コントロールパルスを印加後、データを収集するコントロールシーケンスと、を備え、
     前記ラベリングシーケンスと前記コントロールシーケンスとは、交互に実行され、
     前記第二のパルスシーケンスは、前記コントロールシーケンス内の空き時間に取得するデータが、k空間の低空間周波数領域に配置されるよう、エンコード量が定められることを特徴とする磁気共鳴イメージング方法。
    The magnetic resonance imaging method according to claim 14,
    The first pulse sequence is:
    A labeling sequence for collecting data after applying a labeling pulse;
    A control sequence that executes after the labeling sequence, collects data after applying a control pulse, and
    The labeling sequence and the control sequence are executed alternately,
    The magnetic resonance imaging method, wherein the second pulse sequence has an encoding amount determined so that data acquired in a free time in the control sequence is arranged in a low spatial frequency region of k-space.
PCT/JP2016/057310 2015-04-22 2016-03-09 Magnetic resonance imaging device and magnetic resonance imaging method WO2016170863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017514008A JP6378426B2 (en) 2015-04-22 2016-03-09 Magnetic resonance imaging apparatus and magnetic resonance imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015087229 2015-04-22
JP2015-087229 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016170863A1 true WO2016170863A1 (en) 2016-10-27

Family

ID=57144431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057310 WO2016170863A1 (en) 2015-04-22 2016-03-09 Magnetic resonance imaging device and magnetic resonance imaging method

Country Status (2)

Country Link
JP (1) JP6378426B2 (en)
WO (1) WO2016170863A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111096748A (en) * 2019-12-19 2020-05-05 首都医科大学宣武医院 Method for dynamically measuring brain oxygen metabolic rate
CN112637478A (en) * 2019-10-08 2021-04-09 株式会社日立制作所 Magnetic resonance imaging apparatus and automatic imaging position setting method
CN113940656A (en) * 2020-07-17 2022-01-18 富士胶片医疗健康株式会社 Magnetic resonance imaging apparatus and control method thereof
CN113940656B (en) * 2020-07-17 2024-06-11 富士胶片医疗健康株式会社 Magnetic resonance imaging apparatus and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283862B1 (en) * 2002-05-16 2007-10-16 General Electric Company Rapid multi-slice MR perfusion imaging with large dynamic range
JP2013128750A (en) * 2011-11-25 2013-07-04 Toshiba Corp Magnetic resonance imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283862B1 (en) * 2002-05-16 2007-10-16 General Electric Company Rapid multi-slice MR perfusion imaging with large dynamic range
JP2013128750A (en) * 2011-11-25 2013-07-04 Toshiba Corp Magnetic resonance imaging apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. YUAN ET AL.: "STAR-TFE Sequence for arterial spin labeling in abdominal organs at 3T", PROCEEDINGS OF ISMRM-ESMRMB JOINT ANNUAL MEETING 2010, May 2010 (2010-05-01), pages 4059, XP055323785 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637478A (en) * 2019-10-08 2021-04-09 株式会社日立制作所 Magnetic resonance imaging apparatus and automatic imaging position setting method
CN111096748A (en) * 2019-12-19 2020-05-05 首都医科大学宣武医院 Method for dynamically measuring brain oxygen metabolic rate
CN113940656A (en) * 2020-07-17 2022-01-18 富士胶片医疗健康株式会社 Magnetic resonance imaging apparatus and control method thereof
CN113940656B (en) * 2020-07-17 2024-06-11 富士胶片医疗健康株式会社 Magnetic resonance imaging apparatus and control method thereof

Also Published As

Publication number Publication date
JPWO2016170863A1 (en) 2018-02-15
JP6378426B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
RU2611082C2 (en) Magnetic resonance (mr) imaging with b1-image
JP6084573B2 (en) MR imaging using multipoint Dixon technology
EP2699926B1 (en) Spatially encoded phase-contrast mri
JP3847512B2 (en) Magnetic resonance imaging system
US8618800B2 (en) Magnetic resonance imaging apparatus, and breath-holding imaging method
US9123121B2 (en) Magnetic resonance imaging apparatus and fluid imaging method
US10222437B2 (en) MR imaging with temperature mapping
US20150042335A1 (en) Mr imaging with b1 mapping
JP6378426B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US11067655B2 (en) Method and apparatus recording two magnetic resonance images
WO2016021440A1 (en) Magnetic resonance imaging device
JP3847519B2 (en) Magnetic resonance imaging system
JP6230882B2 (en) Magnetic resonance imaging apparatus and echo time setting method
US10871538B2 (en) Planning support for selective arterial spin labeling MR imaging methods
JP5508165B2 (en) Magnetic resonance imaging apparatus and T2 map acquisition method
JP6487554B2 (en) Magnetic resonance imaging system
JP6579908B2 (en) Magnetic resonance imaging apparatus and diffusion weighted image calculation method
JP6013324B2 (en) Magnetic resonance imaging apparatus and radial sampling method
JP6234214B2 (en) Magnetic resonance imaging system
JP6341658B2 (en) Magnetic resonance imaging apparatus and retrospective cine imaging condition setting method
JP2019076182A (en) Magnetic resonance imaging apparatus
WO2001058352A1 (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782885

Country of ref document: EP

Kind code of ref document: A1