WO2016170599A1 - Flexible hose - Google Patents

Flexible hose Download PDF

Info

Publication number
WO2016170599A1
WO2016170599A1 PCT/JP2015/062113 JP2015062113W WO2016170599A1 WO 2016170599 A1 WO2016170599 A1 WO 2016170599A1 JP 2015062113 W JP2015062113 W JP 2015062113W WO 2016170599 A1 WO2016170599 A1 WO 2016170599A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible hose
core
packing
pipe end
tube
Prior art date
Application number
PCT/JP2015/062113
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 波谷
昇司 平尾
史和 松下
Original Assignee
東拓工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東拓工業株式会社 filed Critical 東拓工業株式会社
Priority to PCT/JP2015/062113 priority Critical patent/WO2016170599A1/en
Publication of WO2016170599A1 publication Critical patent/WO2016170599A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/10Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/11Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall

Definitions

  • the present invention relates to a flexible hose mainly suitable for chemical applications such as chemicals, chemicals, and solvents. More specifically, the tube main body forming the tube wall of the hose has an inner spiral core made of resin (also referred to as an inner core) and The present invention relates to a flexible hose having a structure sandwiched between outer spiral cores (also referred to as outer cores).
  • a flexible hose having a structure in which a spiral core is reinforced with respect to the inner and outer surfaces of a tube main body having spiral irregularities is called, for example, a dew-line hose, and is used for various applications (for example, patents). Reference 1 to 3).
  • the inner and outer spiral cores are in contact with the concave surface of the tube body in a free state without being fixed (fused) to the tube body. Even if it is twisted or bent, the hose is flexible without breaking.
  • the inner spiral core is made of a material having elasticity (for example, a metal wire), and the inner spiral core always applies a force for urging the tube body, so that the position of the spiral core is shifted. Is not easy to occur. That is, when the hose is manufactured, a tension is applied to the inner spiral core in advance so that the diameter of the spiral is reduced as compared with the free state. In this state, the tube body is covered with the inner spiral core, and the tube The outer spiral core is wound around the outside.
  • the production process is not a continuous production method in which the inner spiral core molding process, tube body molding process, and outer spiral core molding process are performed continuously, but in a batch production method in which production is performed for each finite length. I have to.
  • a material such as a metal wire having elasticity
  • an urging force can be applied, so that the problem of positional deviation of the spiral core during bending can be solved.
  • a metal wire that can give sufficient elastic force, such as when a corrosive fluid that corrodes the metal is passed through the hose. Therefore, instead of a metal wire, a structure in which the entire hose is made of all resin using a resin spiral core is also used.
  • the all-resin hose is not only corrosive but also excellent in terms of weight reduction.
  • a special cutting tool is not required and a simple tool (for example, a nipper) Etc.) is also excellent in that it can be easily cut.
  • the resin inner spiral core that is continuously extruded in a semi-molten state and wound in a spiral shape is like a metal wire due to problems such as breaking. It is difficult to obtain a sufficiently large elastic force. Therefore, it is a case where it is manufactured so as to give an elastic force in the same manufacturing process as the above-described metal wire (a batch production system in which the tube body is covered with a tension reduced on the inner spiral core first). However, a large urging force could not be applied, and the problem of positional displacement of the spiral core was likely to occur.
  • a continuous production system in which the flow from the inner spiral core molding process to the tube main body molding process to the outer spiral core molding process is performed continuously. It is desirable to adopt. That is, by adopting extrusion molding, while forming the inner spiral core, the tube body is continuously molded while covering the surface of the inner spiral core, and further, the outer spiral core is continuously formed on the outer side of the tube body. Wrapping enables continuous production instead of batch production. Such continuous production also makes it possible to produce seamless tubes with no length restrictions.
  • the present invention provides a flexible structure having a structure in which the problem of positional displacement of the spiral core with respect to the tube main body is less likely to occur even when the inner spiral core and the outer spiral core are all resin-made flexible hoses.
  • the purpose is to provide a hose.
  • it is a hose with a structure in which the inner spiral core and the tube main body cannot be biased against the tube main body, such as a flexible hose by continuous production in which the inner spiral core and the tube main body are simultaneously formed in a flow operation. Even if it exists, it aims at providing the flexible hose of the structure which does not produce the problem of the position shift of the spiral core at the time of curvature.
  • the flexible hose of the present invention which has been made to solve the above problems, covers the tube main body 11 on the inner core 10 formed in a spiral shape, and further the outer core 15 formed in a spiral shape on the tube main body 11. , 25 are wound around the inner core 10 so as to form a double spiral structure, and the tube body 11 is formed with a helical irregular surface, and the inner core 10 is made of resin.
  • the tube body 11 is seamlessly formed of a resin material, the outer cores 15 and 25 are formed of a resin material, and the outer cores 15 and 25 are disposed outside the outer cores 15 and 25.
  • outer peripheral surfaces of the outer cores 15 and 25 are covered so as to be in pressure contact with each other and are fused to the outer peripheral surfaces of the outer cores 15 and 25 to suppress the bulges of the outer cores 15 and 25 and the inner core 10 in the radial direction.
  • Cores 15 and 25 Constraining layer 16 to limit the Dohaba is are to be formed.
  • the inner core is molded using a resin material without applying an elastic force that presses the tube body in the radial direction.
  • the inner core and the tube main body are covered in a free state without being fixed.
  • the tube main body and the outer core are also wound so as to form a double spiral structure with the inner core from above the tube main body in a free state without being fixed.
  • a constraining layer is provided outside the outer core so as to cover the outer core and the tube body, and the constraining layer presses the outer peripheral surface of the outer core inward.
  • the constraining layer presses the tube body inward via the outer core, so that the inner core is pressed by the tube body even if the inner core itself does not have an elastic force to urge the tube body. Therefore, there is no inconvenience that the position of the tube body is shifted over the uneven surface.
  • the outer core since the constraining layer is fused to the outer peripheral surface of the outer core and only one outer core cannot be displaced alone, there is no problem of displacement.
  • the tube main body is pressed from the outside via the outer core by the constraining layer, even if a resin inner core with insufficient elasticity is used, there is a problem of positional deviation of the spiral core. Occurrence can be suppressed.
  • the constraining layer is also fused to the outer peripheral surface of the outer core made of resin, positional displacement does not occur unless the entire outer core is moved all at once, so that the problem of positional displacement can be suppressed.
  • the cross-sectional shape of the inner core is rectangular, and when the hose is bent, even if the inner core and the tube body are not biased and are in a free state, a positional shift occurs. Hateful.
  • the constraining layer may be formed of a woven yarn layer and an elastomer layer that sandwiches the woven yarn layer from the front and back sides and gives elasticity.
  • the woven yarn layer is preferably a layer woven in a lattice shape with stretched yarn.
  • a material in which polyester yarn is woven is preferable as a suitable yarn material.
  • the woven yarn layer also includes a layer woven in a cloth shape (woven yarn layer with finely woven texture).
  • the yarn itself is difficult to stretch by making it a layer woven with stretched yarn material, but by making it a woven yarn, the layer itself is a layer that can be easily deformed by following bending and twisting. .
  • a gap for enabling bending is provided between the outer core and the inner core adjacent to each other, and the gap is in contact with the tube body in the most curved state. It may be set. In the curved state, the inner core and the outer core are brought into contact with each other with the tube body interposed therebetween, so that the inner core and the outer core that cause the positional deviation of the spiral core can be prevented from being twisted and rotated. Misalignment can be suppressed.
  • the spiral protective layer 22 may be formed on the outermost periphery. Since the external impact can be received by the spiral protective layer, each part inside thereof can be protected from the external impact.
  • FIG. 1 is a view showing the appearance of a flexible hose according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing an exploded partial cross section thereof.
  • the flexible hose 1 includes an inner core 10, a tube body 11, an outer core 15, and a constraining layer 16 as basic components, and further, a yarn distribution layer 20, an outer winding layer 21, and a protective layer 22 are provided on the outer side. .
  • the inner core 10 is formed of a hard resin material (for example, PP (polypropylene resin)), and is continuously formed by being wound around a mandrel serving as a mold and formed into a spiral shape during extrusion molding. It is.
  • the cross section of the inner core 10 is a square, more specifically, a trapezoid in which the inner surface (lower side) side of the hose is longer than the outer surface (upper side) side in order to expand the bending angle when bending.
  • the tube body 11 is formed as a laminate of resin film layers 12, 13 and 14.
  • the thickness of the laminated body is much thinner than the thickness of the inner core 10 (and the outer core 15).
  • the material and the number of layers of the film layer are changed according to the usage application of the hose. For example, by using a three-layer structure of fluororesin, PP, and fluororesin, a hose having chemical resistance and gas barrier properties can be obtained.
  • the tube main body 11 is formed so that each layer is sequentially formed so as to cover the outer side of the inner core 10 that is previously molded.
  • the laminated body formed at this time is still cylindrical and not in a spiral shape.
  • the outer core 15 is formed by molding a hard resin material (for example, PE (polyethylene resin)), and is spirally wound by extrusion so as to form a double spiral structure with respect to the inner core 10 covered with the laminate. It is formed by walking. As a result, the laminated body (resin film layers 12, 13, 14) sandwiched between the inner core 10 and the outer core 15 is formed with uneven surfaces along the inner core 10 and the outer core 15.
  • the tube main body 11 which consists of a film layer which has a shape unevenness
  • the inner core 10, the tube main body 11, and the outer core 15 are not fixed to each other, but the cross section of the inner core 10 is rectangular, and the tube main body 11 (laminated body) is thin, and the inner core 10 and the outer core 15
  • the length (height) in the radial direction is the same, or the inner core 10 is slightly shorter than the outer core 15. Therefore, in order for the inner core 10 to move over the adjacent outer core 15 when it is bent, it has a structure that has to climb over the same height as the inner core 10, so it is very resistant. The shape is so large that misalignment is unlikely to occur.
  • the outer peripheral surface side of the outer core 15 comes into contact with the constraining layer 16 in a free state.
  • the cross section of the outer core 15 is elliptical (circular) in this embodiment.
  • the lateral width of the outer core 15 and the lateral width of the inner core 10 are determined in relation to the pitch of the irregularities of the tube body 11 (that is, the pitch of the inner core 10). Specifically, the gap (play) necessary to be in a curved state is ensured between the inner core 10 and the tube main body 11 and between the tube main body 11 and the outer core 15 and is most flexible.
  • the left and right inner cores 10 are sandwiched and fixed by the outer core 15 (inner core 10) between them, so that the inner core 10 (outer core 15) extends in the vertical and horizontal directions.
  • the gap is set so as not to cause misalignment (see FIGS. 3A and 3B).
  • a constraining layer 16 is coated on the outer side of the outer core 15 so as to cover the outer core 15 and the tube body 11.
  • the constraining layer 16 includes a weaving yarn layer 18 in which stretched polyester yarns are woven into a lattice shape to give stretchability, and elastomer layers 17 and 19 (for example, sandwiching the weaving yarn layer 18 from both front and back surfaces with a stretchable material). Olefin elastomer, styrene elastomer, ethylene vinyl acetate copolymer (EVA), etc.).
  • the constraining layer 16 covers the outer peripheral surface of the outer core 15 with a tension applied so that the outer core 15 is pressed from the outside.
  • the outer core 15 presses the tube main body 11 inward, and the tube main body 11 presses the inner core 10. Is pressed.
  • the portion P of the outer peripheral surface in contact with the outer core 15 is fused to the constraining layer 16 in a tensioned state.
  • the length of the outer core 15 that can move in the direction of the spiral axis (lateral direction) is limited to the expandable width of the constraining layer 16, and the outer core 15 overcomes the adjacent convex surface of the tube main body 11 and has one outer core. Only 15 is prevented from being displaced.
  • the outer side of the constraining layer 16 is woven with a polyester thread so as to cover the entire constraining layer 16 so as to have a lattice shape in an oblique direction different from the lattice shape of the woven yarn layer 18.
  • the yarn distribution layer 20 that suppresses the axial extension of the hose 1 and the outer winding layer 21 are formed on the outer side thereof. Further, in the curved state, the force applied to the constraining layer 16 varies between the outer region of the outer core 15 and the outer region of the inner core 10, but the force is made uniform by the presence of the yarn distribution layer 20 and the outer winding layer 21. be able to.
  • a protective layer 22 having a spiral protrusion is formed on the outer side of the outer winding layer 21. This protective layer 22 is for receiving an external impact at this protrusion, and thereby, the outer winding layer 21 and each part inside thereof are protected from the external impact.
  • FIG. 3 is a schematic view showing a state when the hose 1 is bent.
  • Fig.3 (a) is a schematic diagram of the part curved in the direction in which the adjacent inner cores 10 (outer cores 15) leave
  • the restraint layer 16 is more tensioned than the state in which the flexible hose 1 is free (not bent), and strongly presses the outer core 15 in the inner direction.
  • the outer peripheral surface side of the outer core 15 is fused to the constraining layer 16. For this reason, the distance between the outer peripheral surfaces of the outer cores 15 cannot be increased against the constrained constraining layer 16, and therefore it cannot be bent by deformation that increases the distance between these parts as compared to the free state. Therefore, in order for the hose 1 to bend at this portion, the hose 1 is deformed so that the gap (play) between the outer core 15 and the inner core 10 is reduced in the vicinity of the inner peripheral surface side of the outer core 15. As the deflection increases, the inner core 10 is sandwiched between the left and right outer cores 15 (via the tube body 11), and the inner core 10 is twisted or rotated in the direction of the helical axis that triggers misalignment.
  • FIG. 3B is a schematic diagram of a portion curved in a direction in which adjacent inner cores 10 (outer cores 15) approach each other (inside the curved portion).
  • the constraining layer 16 is less tensioned than when the flexible hose 1 is free. As the flexure increases, the tension is not applied, but the outer cores 15 approach each other and the inner cores 10 approach each other. As a result, the outer core 15 and the inner core 10 are sandwiched with each other (via the left and right tube bodies 11). Accordingly, the inner core 10 and the outer core 15 are restricted from being further deformed (twisted and rotated), so that no displacement occurs. Since the outer core 15 is also sandwiched from both sides, the positional deviation is less likely to occur.
  • the outer core 15 presses the tube main body 11, and the inner core 10 is pressed by the tube main body 11, so that misalignment hardly occurs. Further, since the inner core 10 is rectangular and the resistance to get over the convex surface is increased, this also prevents misalignment. Further, when the angle of bending increases in the state shown in FIG. 3B, the inner core 10 is also sandwiched by the adjacent outer cores 15 and cannot move vertically and horizontally, so that the same positional displacement as the outer core 15 occurs. Disappear.
  • FIG. 4 is an exploded perspective view showing a partial cross section of a flexible hose 2 according to another embodiment of the present invention.
  • the outer core 25 has a cross-sectional shape similar to that of the inner core 10.
  • the embodiment of FIG. 2 is superior in flexibility, and in contrast to this, the embodiment of FIG. 4 is somewhat inferior in flexibility, but the inner core 10 and the outer core 25 are rectangular. Therefore, the structure is difficult to buckle. Therefore, the one shown in FIG. 4 has a large hose diameter and is suitable for applications requiring pressure resistance and shape retention.
  • a metal wire conductor 23 as a ground wire is embedded in the protective layer 22, so that safety against static electricity can be ensured.
  • the flexible hose with a pipe end joint that uses the flexible hose together with the pipe end joint will be described.
  • it may be connected to other flexible hoses or connected to various devices, etc. It is also used for installation.
  • a packing is provided between the flexible hose and the fastening means, and the packing is pressed by the fastening means so that the flexible hose is brought into close contact with the nipple and stopped.
  • Those that ensure aqueous properties are known (see, for example, JP-A-5-302691).
  • the packing of the pipe end joint described in the document is cut by being provided with a substantially Z-shaped slit so as to be a discontinuous annular body in the circumferential direction. Therefore, the diameter of the packing can be increased or decreased, and the diameter of the packing can be freely changed according to the tightening by the tightening means, and the tube can be brought into close contact with the nipple.
  • the tube body of the flexible hose (tubing body) is composed of a film layer that is liable to be loosened or wrinkled, for example.
  • the diameter is reduced, an excess portion of the film caused by the difference between the nipple diameter and the film diameter is gathered between the slits. Since the collected film surplus portion is located between the slits, it is difficult to be pressed by the packing and causes leakage, but the diameter expansion range is not regulated as in the packing of the above-mentioned document. Since the difference between the time and the diameter reduction tends to be large, the gathering tends to be large, and it is difficult to stably obtain the water stoppage.
  • a flexible hose with a pipe end joint includes a flexible hose 1 as described with reference to FIGS. 1 to 4 and an end of the flexible hose 1.
  • a flexible hose with a pipe end joint comprising a pipe end joint 100 to be attached to the section, wherein the pipe end joint 100 includes a nipple 200 fitted into the flexible hose 1 and the flexible hose 1.
  • a fastening means 400 that tightens the packing 310 from the outside and presses the inner peripheral surface of the flexible hose 1 against the outer peripheral surface of the nipple 200, and the packing 310 has a slit 320.
  • the annular body is discontinuous in the circumferential direction, and the engaging edge 330 that restricts the movement in the direction away from each other in the engaged state is provided at the edge portions facing each other.
  • the engagement of the engagement means 330 restricts the movement of the edge portions in the direction away from each other.
  • the expansion of the diameter is suppressed, the packing shape is not easily collapsed, and handling during assembly and disassembly becomes easy.
  • the engaging means 330 may specifically be flanges formed at the edge portions so as to be engageable with each other. Since the engaging means 330 is a flange formed at the edge so that they can engage with each other, the shape of the non-pressure contact portion generated between the edges becomes complicated, and the slit 320 is linear in the packing axial direction. The water-stopping property is improved as compared with the case where it is formed.
  • the tube main body 11 is extended from the tube end 5 of the flexible hose 1, the tube main body 11 is formed of a film layer, and the packing 310 is externally fitted to the extended tube main body 11. You may make it do. Even when the tube body 11 is made of only a film layer that is likely to be loosened or wrinkled, the film layer is picked up when the packing is contracted by the fastening means (the difference between the nipple diameter and the film diameter). ) Can be prevented, and leakage due to picking up can be prevented.
  • the packing 310 may be provided with a notch 330a in accordance with the shape of the tube end 5.
  • the tube end 5 is formed in a spiral shape along the outer cores 15 and 25 of the flexible hose 1 or the inner core 10, and the outer core or the inner core located at the outermost end is formed.
  • a step 5a corresponding to the helical pitch is formed by cutting the flexible hose 1 in the axial direction, and the notch 330a of the packing 310 is matched to the spiral of the tube end 5 and the shape of the step 5a. It may be provided.
  • the packing 310 has a stepped portion 330b that can be engaged with the stepped portion 5a of the pipe end 5 by approaching any one of the flanges 330 formed at the edge ends so as to be engageable with each other.
  • the flange portion 330 on the side where the stepped portion 330b is provided close to the tube end 5 is opened opposite to the tube end 5, and the stepped portion 330b is engaged with the step 5a of the tube end 5. In this state, it may be possible to engage with the other flange 330.
  • the opening of the flange portion on the side where the step portion 330b is provided is directed to the side opposite to the tube end 5, the flange portion is engaged with the step portion of the packing 310 to the tube end 5. They can be engaged with each other, and the packing 310 can be easily attached without being displaced.
  • the annular body is continuous in the circumferential direction, and is fitted onto the end of the flexible hose 1 and locked to the tightening means 400.
  • the flexible hose 1 may be provided with a retaining packing 340 that prevents the flexible hose 1 from coming off from the nipple 200. Accordingly, it is possible to reliably prevent the flexible hose 1 from coming off from the nipple 200 while ensuring high water-stopping properties.
  • the flexible hose 1 is formed with a spiral protective layer 22 on the outermost periphery, and the retaining packing 340 that is a continuous annular body in the circumferential direction is formed by extending the tube.
  • the main body 11 may be screwed to the protective layer 22 in the vicinity of the base end portion.
  • the durability against pulling out can be improved by screwing the retaining packing (340).
  • the flexible hose 1 is used, for example, as a food transport hose.
  • the same flexible hose 1 as shown in FIG. 1 or FIG. 3 is used. That is, the flexible hose 1 includes, as in FIG. 1, an inner core 10, a tube main body 11 formed of a film layer, an outer core 15, and a constraining layer 16 as basic components, and further a yarn distribution layer 20 on the outer side.
  • An outer winding layer 21 and a spiral protective layer 22 are provided.
  • the end part of the flexible hose 1 is called the pipe end 5 for convenience of explaining the relationship with the pipe end joint attached to the end part of the flexible hose 1 that is a tubular body.
  • the pipe end 5 refers to the position of the inner core 10 or the outer core 15 at the end of the tube body 11 around which the inner core 10 and the outer core 15 are wound.
  • the pipe end joint 100 is provided at the end of the flexible hose 1, and is, for example, a joint (hereinafter referred to as “others”) attached to various devices such as a joint attached to the end of another flexible hose or a storage tank. It is used for the connection with the joint.
  • the pipe end joint 100 is fitted into the end of the flexible hose 1 to connect to other joints, a nipple 200 to be externally fitted to the flexible hose 1, and the packing 300.
  • Tightening means (holder) 400 that presses the inner peripheral surface of the packing 300 against the outer peripheral surface of the flexible hose 1 and presses the inner peripheral surface of the flexible hose 1 against the outer peripheral surface of the nipple 200 by tightening from the outside. And.
  • the nipple 200 is made of, for example, stainless steel, and is formed in a substantially cylindrical shape as shown in FIG. Further, one end side in the axial direction of the nipple 200 is, for example, a straight tube-shaped fitting tube portion 210 that is fitted into the end portion of the flexible hose 1, and the other end side is connected to another joint, for example, a connecting portion with a screw portion. 220. In addition, an annular flange portion 230 protrudes in a radially outward direction at an intermediate portion between the fitting cylinder portion 210 and the connection portion 220 of the nipple 200.
  • the packing 300 is made of, for example, synthetic rubber, and includes two types of packings, namely, a water stopping packing 310 and a retaining packing 340.
  • the water-stop packing 310 is formed as an annular body that is discontinuous in the circumferential direction by the slits 320, and in the engaged state, the end edges facing each other are separated from each other.
  • Engagement means 330 is provided for restricting movement of a predetermined amount or more.
  • the engagement means 330 is a flange portion formed at each edge portion so as to be engageable with each other.
  • a gap corresponding to the width of the slit 320 is generated between the flanges 330 and 330 in the engaged state, and the gap can be moved in the packing circumferential direction by the width of the slit 320.
  • the inner peripheral surface of the water-stop packing 310 is smoothed according to the fitting cylinder part 210 of the nipple 200 whose outer peripheral surface is smooth.
  • the retaining packing 340 is an annular body that is continuous in the circumferential direction, and the inner circumferential surface thereof has irregularities (that is, a protective layer) on the outer circumferential surface of the flexible hose 1.
  • the groove portion 350 corresponding to 22 spiral-shaped irregularities is formed in a spiral shape and can be screwed into the flexible hose 1.
  • the holder 400 includes a pair of halved exterior bodies 410 and 410 that are assembled so as to sandwich the end of the flexible hose 1 from the outside.
  • the pair of half-split outer bodies 410 and 410 are made of, for example, stainless steel and have substantially the same shape as shown in FIGS. 5 and 6, and a substantially half-cylinder main body 420 and the main body 420.
  • a pair of connecting portions 480 and 480 are provided radially outward from both end portions along the axial direction (front-rear direction).
  • Fig.11 (a) has shown the outer peripheral surface side of the halved exterior body 410
  • FIG.11 (b) has shown the inner peripheral surface side.
  • Three linear protrusions 430, 440, and 450 are formed on the inner peripheral surface of the main body 420 in parallel with each other along the circumferential direction.
  • the flange portion 230 of the nipple 200 is loosely fitted into a small fitting groove 460 formed between the linear protrusions 430 and 440.
  • the large mounting groove 470 formed between the linear protrusions 440 and 450 can be further provided with a water-stop packing 310 in the shallow groove portion 470a and a retainer packing 340 in the deep groove portion 470b.
  • a pair of bolt insertion holes 490 and 490 are formed in the pair of connecting portions 480 and 480 at intervals in the axial direction (front-rear direction), respectively.
  • an inner surface that is continuous with the inner peripheral surface of the main body 420 in the connecting portion 480 is an overlapping surface when the holder 400 is assembled.
  • the inner core 10 and the outer core 15 at the end of the flexible hose 1 are removed within a certain range (about the width in the axial direction of the water-stop packing 310), and only the tube body 11 of the film layer from the tube end 5 is removed. And a retaining gasket is externally fitted to a portion of the tube body 11 in the vicinity of the base end portion where the inner core 10 and the outer core 15 are not removed, and the protective layer 22 is screwed. To wear.
  • the fitting of the nipple 200 to the end of the flexible hose 1 is completed by fitting the tube main body 11 extended from the tube end 5 to the fitting cylinder portion 210 of the nipple 200.
  • the retaining packing 340 is made to face the fitting cylinder portion 210 of the nipple 200 through the flexible hose 1.
  • the water-stop packing 310 is fitted on the tube body 11. That is, the inner peripheral surface of the water stop packing 310 is brought into contact with the outside of the tube main body 11 so as to hold the tube main body 11 positioned between the flange portion 230 of the nipple 200 and the retaining packing 340. Further, in this state, the flanges 330 and 330 are engaged with each other to prevent the water-stop packing 310 from unexpectedly dropping and the packing shape from collapsing.
  • the water-stop packing 310 is previously attached to the tube main body 11 before fitting the tube main body 11 or the end of the flexible hose 1 to the fitting cylindrical part 210 of the nipple 200. You may make it fit externally.
  • the half armor 410 is assembled to the end of the flexible hose 1 to which the nipple 200 is attached.
  • a large gap formed between the linear protrusions 440 and 450 so that the flange portion 230 of the nipple 200 is loosely fitted into a small fitting groove 460 formed between the linear protrusions 430 and 440.
  • the mounting grooves 470 the end of the flexible hose 1 is sandwiched so that the water-stop packing 310 is located in the shallow groove 470 a and the retainer packing 340 is located in the deep groove 470 b.
  • the pair of upper and lower halved outer bodies 410 and 410 are overlapped, and the nut 510 is screwed and tightened to the bolt 500 inserted into the bolt insertion hole 490 of the connecting portion 480.
  • the water-stopping packing 310 is gradually reduced in diameter as the holder 400 is tightened, and the tube main body 11 is brought into close contact with the fitting cylinder portion 210 of the nipple 200 without a gap.
  • the retaining packing 340 is locked (contacted) with the linear protrusion 450 provided on the most flexible hose 1 side of the half-wrapped outer body 410, and the flexible hose from the nipple 200 is placed. It will resist the loss of 1.
  • the seal structure 340 that is a ring that is continuous in the circumferential direction is provided. Can be reliably prevented from coming off the flexible hose 1 from the nipple 200.
  • the force acting in the direction in which the flexible hose 1 is pulled out is the packing 340 for retaining from the flexible hose 1, the linear protrusion 450 of the holder 400, the main body 420 of the holder 400, and the wire of the holder 400.
  • the pipe end joint 100 requires periodic maintenance such as cleaning and inspection.
  • the pipe end joint 100 is removed from the end of the flexible hose 1 and disassembled, cleaned and inspected, and then the pipe end joint 100 is attached to the end of the flexible hose 1 again.
  • the engagement of the flange portion 330 of the water-stop packing 310 restricts the movement of the edge portions in the direction away from each other, so that excessive expansion of the packing 310 is suppressed, and the packing is suppressed.
  • the shape is difficult to collapse, and handling during assembly and disassembly becomes easy.
  • the holder 400 It is possible to suppress the pick-up of the tube body 11 when the diameter of the water-stop packing 310 is reduced (collection of surplus film portions caused by the difference between the nipple diameter and the tube body diameter), and to prevent leakage due to the pick-up. Can be prevented. And since the shape of the non-pressure-contact part which arises between edge parts becomes complicated with a bowl shape, it can maintain a high water-stopping whatever slit part 320 is located in the circumferential direction of the tube main body 11. FIG.
  • FIG. 12 is a view showing only the flexible hose 1 and the water-stop packing 310 for the sake of simplicity of explanation, but the inner core 10 which is a reinforcing core when the tube body 11 is extended from the tube end 5 and In order to remove the outer core 15, it is easier to cut in the axial direction than in the circumferential direction of the flexible hose 1.
  • the tube end 5 is spiraled along the inner core 10 or the outer core 15, and the step 5a corresponding to the helical pitch (the tip of the reinforcing core cut in FIG. 12). (Indicated by a dotted line connecting the reinforcing core side portion at a position shifted by one pitch in the axial direction).
  • a notch 330a is provided at the end of the water stop packing 310 on the tube end 5 side so as to match the shape of the spiral or step 5a of the tube end 5 so that the tube main body 11 can be reliably pressed from the tube end 5.
  • a stepped portion 330b is provided so that the stepped portion 330b of the water-stopping packing 310 and the step 5a of the pipe end 5 are not displaced.
  • the opening 330c of the flange portion 330 on the side is opened to the side opposite to the tube end 5 and the stepped portion 330b of the water-stop packing 310 and the stepped portion of the tube end 5 are in contact (engaged)
  • the water-stop packing is not limited to that shown in FIGS. 9 and 12, and may have the form shown in FIG. 13.
  • the water-stop packing 310 shown in FIG. 13A no slit width is provided, and movement in the circumferential direction is restricted. In such a water-stopping packing, the tube body 11 is not picked up at all, and therefore leakage due to the pick-up can be reliably prevented.
  • the water stop packing 310 shown in FIG. 13B since the return portion 330d is provided, the movement in the axial direction is restricted, and the shape of the packing is more difficult to collapse.
  • the engaging means 330 is shaped so as to be provided symmetrically when the collar is viewed from the side of the packing, and the wide tip 330e is the tip. Engagement with an engagement hole 330f provided in accordance with the shape of the wide portion 330e restricts movement in the circumferential direction.
  • FIG. 13 (d) is provided with a plurality of wide end portions 330e and engaging holes 330f.
  • the shape of the engaging means 330 is not limited to the above shape, and various shapes can be used.
  • the holder 400 is not limited to the above-described halved structure, but may be a band plate shape or a C-shape wound around the outer side of the packing 300, and may be tightened by caulking.
  • the flexible hose 1 a tube provided with an outer skin or a reinforcing core on the outside of the tube main body 11, the inner core 10, and the outer core 15 may be used.
  • the present invention can be used as an all-resin flexible pressure-resistant hose.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Provided is a flexible hose 1 in which an inner core 10 is covered by a tube main body 11, and a helical uneven surface is formed on the tube main body 11 by winding an outer core 15 around the tube main body 11 so as to form a double helix structure together with the inner core 10. The inner core 10 is molded using a resin material so as to have a square cross section. The tube main body 11 is seamlessly molded using a resin material. The outer core 15 is molded using a resin material. The flexible hose is structured such that displacement between the inner core and the outer core is unlikely to occur due to the adoption of a structure in which a constrictive layer 17 is formed that inwardly presses and covers an outer circumferential surface of the outer core 15, that is fused to the outer circumferential surface of the outer core 15, and that restrains bulging of the inner core 10 in a radial direction.

Description

可撓性ホースFlexible hose
 本発明は、主として薬品、化学品、溶剤等のケミカル用途に適した可撓性ホースに関し、さらに詳細にはホースの管壁をなすチューブ本体が樹脂製の内側螺旋芯(内芯ともいう)および外側螺旋芯(外芯ともいう)によって挟持された構造の可撓性ホースに関する。 The present invention relates to a flexible hose mainly suitable for chemical applications such as chemicals, chemicals, and solvents. More specifically, the tube main body forming the tube wall of the hose has an inner spiral core made of resin (also referred to as an inner core) and The present invention relates to a flexible hose having a structure sandwiched between outer spiral cores (also referred to as outer cores).
 螺旋状の凹凸を有するチューブ本体の内面と外面に対し、螺旋芯で補強した構造を有する可撓性ホースは、例えば露線式ホース等と称されて種々の用途に用いられている(例えば特許文献1~3参照)。 A flexible hose having a structure in which a spiral core is reinforced with respect to the inner and outer surfaces of a tube main body having spiral irregularities is called, for example, a dew-line hose, and is used for various applications (for example, patents). Reference 1 to 3).
 このような構造の可撓性ホースでは、内側および外側の螺旋芯は、それぞれ互いにチューブ本体に固着(融着)されることなくフリーな状態でチューブ本体の凹面に接するようにしてあり、これにより捩じったり湾曲したりしてもホースが破断することなく可撓性を有するようにしてある。 In the flexible hose having such a structure, the inner and outer spiral cores are in contact with the concave surface of the tube body in a free state without being fixed (fused) to the tube body. Even if it is twisted or bent, the hose is flexible without breaking.
 しかしながらチューブ本体と螺旋芯とが固着されていないことに起因して、ホースを大きく湾曲させると螺旋芯が隣接する凸面を乗り越えて隣の凹面に移動してしまう「螺旋芯の位置ずれ」の不具合が発生するおそれがある。
 そのため従来の可撓性ホースでは、内側螺旋芯に弾性力を有する材料(例えば金属ワイヤ)を用いるようにし、内側螺旋芯がチューブ本体を付勢する力が常に加わるようにして螺旋芯の位置ずれが簡単には発生しないようにしている。
 すなわち、ホース製造時に、予め、内側螺旋芯にテンションを与えてフリーな状態よりも螺旋の径を縮めた状態にしておき、この状態でチューブ本体を内側螺旋芯に被覆するようにし、さらにチューブの外側に外側螺旋芯を巻き付けるようにする。その後、内側螺旋芯をフリーな状態に戻すことで内側螺旋芯が径方向に拡がるようになり、チューブ本体を付勢するようにしてある。この場合、内側螺旋芯にテンションを与えておくには所望の(有限)長さの内側螺旋芯を予め加工し、両側から引張っておかなければならない。そのため、内側螺旋芯の成形工程、チューブ本体の成形工程、外側螺旋芯の成形工程までを続けて流れ作業で行う連続生産方式ではなく、有限長さごとに生産を行うバッチ生産方式で生産するようにしている。
However, due to the fact that the tube main body and the spiral core are not fixed, if the hose is bent greatly, the spiral core moves over the adjacent convex surface and moves to the adjacent concave surface. May occur.
Therefore, in the conventional flexible hose, the inner spiral core is made of a material having elasticity (for example, a metal wire), and the inner spiral core always applies a force for urging the tube body, so that the position of the spiral core is shifted. Is not easy to occur.
That is, when the hose is manufactured, a tension is applied to the inner spiral core in advance so that the diameter of the spiral is reduced as compared with the free state. In this state, the tube body is covered with the inner spiral core, and the tube The outer spiral core is wound around the outside. Thereafter, by returning the inner spiral core to a free state, the inner spiral core expands in the radial direction, and the tube body is biased. In this case, in order to give tension to the inner spiral core, the inner spiral core having a desired (finite) length must be previously processed and pulled from both sides. For this reason, the production process is not a continuous production method in which the inner spiral core molding process, tube body molding process, and outer spiral core molding process are performed continuously, but in a batch production method in which production is performed for each finite length. I have to.
実用新案登録第2546519号公報Utility Model Registration No. 2546519 特許第3556278号公報Japanese Patent No. 3556278 特開平11-257553号公報Japanese Patent Laid-Open No. 11-257553
 上述したように、内側螺旋芯に弾性力を有する金属ワイヤ等の材料を使用する場合には付勢力を与えることができるので湾曲時の螺旋芯の位置ずれの問題を解消することができる。
 しかしながら、ホース内に金属を腐食させる腐食性流体を流す場合のように、ホースの用途によっては十分な弾性力を与えうる金属ワイヤを使用できない場合がある。そこで金属ワイヤに代えて、樹脂製の螺旋芯を用いてホース全体をオール樹脂製にした構造のものも使用されている。オール樹脂製のホースは腐食性だけでなく、軽量化を図ることができる点でも優れており、さらに樹脂製螺旋芯を用いた場合は専用の切断工具を必要とせず、簡単な工具(例えばニッパー等)で容易に切断できる点でも優れている。
As described above, when a material such as a metal wire having elasticity is used for the inner spiral core, an urging force can be applied, so that the problem of positional deviation of the spiral core during bending can be solved.
However, depending on the use of the hose, it may not be possible to use a metal wire that can give sufficient elastic force, such as when a corrosive fluid that corrodes the metal is passed through the hose. Therefore, instead of a metal wire, a structure in which the entire hose is made of all resin using a resin spiral core is also used. The all-resin hose is not only corrosive but also excellent in terms of weight reduction. Furthermore, when a resin spiral core is used, a special cutting tool is not required and a simple tool (for example, a nipper) Etc.) is also excellent in that it can be easily cut.
 しかしながら、すべての構成素材を樹脂製として連続生産しようとしても、半溶融状態で連続的に押し出されて螺旋状に巻き付けられる樹脂製の内側螺旋芯では、破断する等の問題から金属ワイヤのように十分に大きな弾性力を得ることは困難である。それゆえ上述した金属ワイヤと同じ製造工程(先に内側螺旋芯にテンションを与えて径を縮めた状態でチューブ本体を被覆するバッチ生産方式)で弾性力を与えるようにして製造した場合であっても、大きな付勢力を与えることができず、螺旋芯の位置ずれの問題が生じやすくなっていた。 However, even if all the constituent materials are to be continuously produced as a resin, the resin inner spiral core that is continuously extruded in a semi-molten state and wound in a spiral shape is like a metal wire due to problems such as breaking. It is difficult to obtain a sufficiently large elastic force. Therefore, it is a case where it is manufactured so as to give an elastic force in the same manufacturing process as the above-described metal wire (a batch production system in which the tube body is covered with a tension reduced on the inner spiral core first). However, a large urging force could not be applied, and the problem of positional displacement of the spiral core was likely to occur.
 また、オール樹脂製の可撓性ホースを製造する場合、内側螺旋芯の成形工程から、チューブ本体の成形工程を経て、外側螺旋芯の成形工程までを、続けて流れ作業で行う連続生産方式を採用することが望ましい。すなわち、押出成形を採用することによって、内側螺旋芯を成形しながら、続けてチューブ本体を成形しつつ内側螺旋芯の表面に被覆し、さらに続けて外側螺旋芯を成形しながらチューブ本体の外側に巻き付けることにより、バッチ生産ではなく連続生産が可能になる。そしてこのような連続生産によれば長さに制限のないシームレスチューブの製造も可能になる。 In addition, when manufacturing flexible hoses made of all-resin, a continuous production system is used in which the flow from the inner spiral core molding process to the tube main body molding process to the outer spiral core molding process is performed continuously. It is desirable to adopt. That is, by adopting extrusion molding, while forming the inner spiral core, the tube body is continuously molded while covering the surface of the inner spiral core, and further, the outer spiral core is continuously formed on the outer side of the tube body. Wrapping enables continuous production instead of batch production. Such continuous production also makes it possible to produce seamless tubes with no length restrictions.
 しかしながら連続生産方式では、内側螺旋芯の成形工程とチューブ本体の成形工程とが流れ作業で連続して行われるので、内側螺旋芯を両端から引張ってテンションを与えた状態でチューブ本体を被覆することができない。そのため、内側螺旋芯にチューブ本体を付勢する力を付与することができなかった。よって、螺旋芯の位置ずれが生じにくいオール樹脂製の可撓性ホースを連続生産方式で製造することは困難であった。 However, in the continuous production method, the forming process of the inner spiral core and the molding process of the tube body are performed continuously in a flow operation, so the tube body is covered with tension applied by pulling the inner spiral core from both ends. I can't. Therefore, the force which urges | biases a tube main body to an inner side spiral core was not able to be provided. Therefore, it has been difficult to manufacture an all-resin flexible hose that is unlikely to cause a positional shift of the spiral core by a continuous production method.
 そこで本発明は、内側螺旋芯および外側螺旋芯が樹脂材料で形成されたオール樹脂製の可撓性ホースであっても、チューブ本体に対する螺旋芯の位置ずれの問題が生じにくい構造の可撓性ホースを提供することを目的とする。 Therefore, the present invention provides a flexible structure having a structure in which the problem of positional displacement of the spiral core with respect to the tube main body is less likely to occur even when the inner spiral core and the outer spiral core are all resin-made flexible hoses. The purpose is to provide a hose.
 特に、内側螺旋芯とチューブ本体とを流れ作業で同時並行して成形する連続生産による可撓性ホースのように、内側螺旋芯にチューブ本体に付勢する力を与えることができない構造のホースであっても、湾曲時の螺旋芯の位置ずれの問題が生じない構造の可撓性ホースを提供することを目的とする。 In particular, it is a hose with a structure in which the inner spiral core and the tube main body cannot be biased against the tube main body, such as a flexible hose by continuous production in which the inner spiral core and the tube main body are simultaneously formed in a flow operation. Even if it exists, it aims at providing the flexible hose of the structure which does not produce the problem of the position shift of the spiral core at the time of curvature.
 上記課題を解決するためになされた本発明の可撓性ホースは、螺旋状に成形した内芯10上にチューブ本体11を被覆し、さらに当該チューブ本体11上に螺旋状に成形した外芯15、25を前記内芯10と二重螺旋構造をなすように巻き付けることにより、前記チューブ本体11に螺旋状の凹凸面が賦形された可撓性ホース1であって、前記内芯10は樹脂材により断面が方形に成形され、前記チューブ本体11は樹脂材によりシームレスに成形され、前記外芯15、25は樹脂材により成形され、さらに前記外芯15、25の外側には、当該外芯15、25の外周面を内側に圧接するように覆うと共に当該外芯15、25の外周面に融着され、前記外芯15、25および内芯10の径方向への膨らみを抑制すると共に外芯15、25の移動幅を制限する拘束層16が形成されるようにしてある。 The flexible hose of the present invention, which has been made to solve the above problems, covers the tube main body 11 on the inner core 10 formed in a spiral shape, and further the outer core 15 formed in a spiral shape on the tube main body 11. , 25 are wound around the inner core 10 so as to form a double spiral structure, and the tube body 11 is formed with a helical irregular surface, and the inner core 10 is made of resin. The tube body 11 is seamlessly formed of a resin material, the outer cores 15 and 25 are formed of a resin material, and the outer cores 15 and 25 are disposed outside the outer cores 15 and 25. The outer peripheral surfaces of the outer cores 15 and 25 are covered so as to be in pressure contact with each other and are fused to the outer peripheral surfaces of the outer cores 15 and 25 to suppress the bulges of the outer cores 15 and 25 and the inner core 10 in the radial direction. Cores 15 and 25 Constraining layer 16 to limit the Dohaba is are to be formed.
 本発明によれば、内芯は樹脂材を用いて、チューブ本体を径方向へ押圧する弾性力を与えることなく成形してある。そして内芯とチューブ本体とは固着せずにフリーな状態で被覆させてある。チューブ本体と外芯とについても固着せずにフリーな状態でチューブ本体の上から内芯と二重螺旋構造を形成するように巻き付けてある。
 そして、外芯およびチューブ本体を覆うように外芯の外側に拘束層を設けて、拘束層が外芯の外周面を内側に向けて圧接させる。これにより、拘束層が外芯を介してチューブ本体を内側に押圧するようになるので、内芯自体にはチューブ本体を付勢する弾性力が働いていなくても内芯はチューブ本体によって押圧されており、チューブ本体の凹凸面を乗り越えて位置ずれする不具合が生じない。
 外芯についても拘束層が外芯の外周面に融着してあり1つの外芯だけが単独で位置ずれできない構造にしてあるので、やはり位置ずれの不具合は生じない。
According to the present invention, the inner core is molded using a resin material without applying an elastic force that presses the tube body in the radial direction. The inner core and the tube main body are covered in a free state without being fixed. The tube main body and the outer core are also wound so as to form a double spiral structure with the inner core from above the tube main body in a free state without being fixed.
Then, a constraining layer is provided outside the outer core so as to cover the outer core and the tube body, and the constraining layer presses the outer peripheral surface of the outer core inward. As a result, the constraining layer presses the tube body inward via the outer core, so that the inner core is pressed by the tube body even if the inner core itself does not have an elastic force to urge the tube body. Therefore, there is no inconvenience that the position of the tube body is shifted over the uneven surface.
As for the outer core, since the constraining layer is fused to the outer peripheral surface of the outer core and only one outer core cannot be displaced alone, there is no problem of displacement.
 本発明によれば、拘束層によって外側から外芯を介してチューブ本体を押圧するようにしたので、弾性力が十分ではない樹脂製の内芯を用いても、螺旋芯の位置ずれの不具合の発生を抑えることができるようになる。樹脂製の外芯についても外芯の外周面に拘束層が融着してあるので、外芯全体を一挙に移動させなければ位置ずれが起こらないので、位置ずれの不具合を抑えることができる。また、内芯の断面形状を方形にしてあることによっても、ホースを湾曲させた際に、たとえ内芯とチューブ本体とが付勢されておらずフリーな状態にしてあっても位置ずれが生じにくい。 According to the present invention, since the tube main body is pressed from the outside via the outer core by the constraining layer, even if a resin inner core with insufficient elasticity is used, there is a problem of positional deviation of the spiral core. Occurrence can be suppressed. Since the constraining layer is also fused to the outer peripheral surface of the outer core made of resin, positional displacement does not occur unless the entire outer core is moved all at once, so that the problem of positional displacement can be suppressed. Also, the cross-sectional shape of the inner core is rectangular, and when the hose is bent, even if the inner core and the tube body are not biased and are in a free state, a positional shift occurs. Hateful.
 上記発明において、前記拘束層は、織糸層と、当該織糸層を表裏から挟持すると共に弾性を与えるエラストマー層とにより形成されるようにしてもよい。
 ここで、織糸層は延伸させた糸で格子状に織り込んだ層とするのが好ましい。具体的には好適な糸材としてポリエステル糸を織り込んだものが好ましい。なお、織糸層には布状に織り込んだ層(織り目を細かくした織糸層)も含まれる。また延伸させた糸材で織り込んだ層にすることにより、糸自体は伸びにくいが、織糸にすることで層自体としては簡単に湾曲や捩じりに追随して変形可能な層にしてある。
 そして、織糸層の表裏を、弾性を有するエラストマー層で挟持させたことにより、織糸層と共に外芯に融着させることができ、エラストマー層により付勢する力を増やすことができるだけでなく、織糸層が直接、チューブ本体の外周面(内芯の直上の位置)と擦れる状態が繰り返されることによる織糸層の劣化を防ぐことができる。
In the above invention, the constraining layer may be formed of a woven yarn layer and an elastomer layer that sandwiches the woven yarn layer from the front and back sides and gives elasticity.
Here, the woven yarn layer is preferably a layer woven in a lattice shape with stretched yarn. Specifically, a material in which polyester yarn is woven is preferable as a suitable yarn material. The woven yarn layer also includes a layer woven in a cloth shape (woven yarn layer with finely woven texture). In addition, the yarn itself is difficult to stretch by making it a layer woven with stretched yarn material, but by making it a woven yarn, the layer itself is a layer that can be easily deformed by following bending and twisting. .
And by sandwiching the front and back of the woven yarn layer with an elastic elastomer layer, it can be fused to the outer core together with the woven yarn layer, not only can increase the force urged by the elastomer layer, It is possible to prevent deterioration of the yarn layer due to repeated repetition of the state in which the yarn layer directly rubs against the outer peripheral surface of the tube main body (position just above the inner core).
 上記発明において、互いに隣接する前記外芯と前記内芯との間には湾曲を可能にするための間隙が設けられると共に、前記間隙は最も湾曲した状態で前記チューブ本体を挟んで当接するように設定されてもよい。
 湾曲状態で内芯と外芯とがチューブ本体を挟んで当接させることにより、螺旋芯の位置ずれのきっかけとなる内芯、外芯の捩じれ、回転を抑制することができ、さらに螺旋芯の位置ずれを抑えることができる。
In the above invention, a gap for enabling bending is provided between the outer core and the inner core adjacent to each other, and the gap is in contact with the tube body in the most curved state. It may be set.
In the curved state, the inner core and the outer core are brought into contact with each other with the tube body interposed therebetween, so that the inner core and the outer core that cause the positional deviation of the spiral core can be prevented from being twisted and rotated. Misalignment can be suppressed.
 上記発明において、最外周に螺旋状の保護層22が形成されていてもよい。外部衝撃を螺旋状の保護層で受けることができるので、その内側の各部を外部衝撃から保護することができる。 In the above invention, the spiral protective layer 22 may be formed on the outermost periphery. Since the external impact can be received by the spiral protective layer, each part inside thereof can be protected from the external impact.
本発明の一実施形態を示す可撓性ホースの外観図である。It is an external view of the flexible hose which shows one Embodiment of this invention. 図1の可撓性ホースの断面を分解して示した斜視図である。It is the perspective view which decomposed | disassembled and showed the cross section of the flexible hose of FIG. 図1のホースを湾曲させた状態を示す模式図である。It is a schematic diagram which shows the state which curved the hose of FIG. 変形実施例である可撓性ホースの断面を分解して示した斜視図である。It is the perspective view which exploded and showed the section of the flexible hose which is a modification. 本発明の他の実施形態である管端継手付きの可撓性ホースにおける継手構造の分解斜視図である。It is a disassembled perspective view of the joint structure in the flexible hose with a pipe end joint which is other embodiment of this invention. 継手構造を示す分解斜視図である。It is a disassembled perspective view which shows a joint structure. 継手構造を示す斜視図である。It is a perspective view which shows a joint structure. 継手構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows a joint structure. 止水用パッキンを示す斜視図である。It is a perspective view which shows the packing for water stop. 抜け止め用パッキンを示す斜視図である。It is a perspective view which shows packing for retaining. 半割外装体を示す平面図である。It is a top view which shows a halved exterior body. 止水用パッキンの異なる形態を示す斜視図である。It is a perspective view which shows the different form of the packing for water stop. 止水用パッキンのさらに異なる形態を示す斜視図である。It is a perspective view which shows the further different form of the packing for water stop.
 以下、本発明の実施形態について図面を参照しつつ説明する。図1は本発明の一実施形態である可撓性ホースの外観を示す図であり、図2はその一部断面を分解して示した斜視図である。
 この可撓性ホース1は、内芯10、チューブ本体11、外芯15、拘束層16を基本構成として備え、さらに外側に配糸層20、外巻層21、保護層22が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing the appearance of a flexible hose according to an embodiment of the present invention, and FIG. 2 is a perspective view showing an exploded partial cross section thereof.
The flexible hose 1 includes an inner core 10, a tube body 11, an outer core 15, and a constraining layer 16 as basic components, and further, a yarn distribution layer 20, an outer winding layer 21, and a protective layer 22 are provided on the outer side. .
 内芯10は硬質の樹脂材(例えばPP(ポリプロピレン樹脂))を成形したものであり、押出成形時に、型となるマンドレルに巻き付けて螺旋状に成形するようにして連続的に形成していくようにしてある。内芯10の断面は方形、より具体的には撓ませるときの撓み角度を拡げるためにホースの内面(下辺)側が外面(上辺)側よりも長い台形にしてある。 The inner core 10 is formed of a hard resin material (for example, PP (polypropylene resin)), and is continuously formed by being wound around a mandrel serving as a mold and formed into a spiral shape during extrusion molding. It is. The cross section of the inner core 10 is a square, more specifically, a trapezoid in which the inner surface (lower side) side of the hose is longer than the outer surface (upper side) side in order to expand the bending angle when bending.
 チューブ本体11は樹脂製フィルム層12、13、14の積層体として成形されるようにしてある。積層体の厚さは、内芯10(および外芯15)の厚さに比べてはるかに薄くしてある。なお、ホースの使用用途に応じてフィルム層の材質や層数を変更するようにしている。例えばフッ素樹脂、PP、フッ素樹脂の3層構造とすることにより、耐薬品性やガスバリア性を備えたホースとすることができる。
 このチューブ本体11は、例えば回転ダイを用いた押出成形を採用することにより、先に成形される内芯10の後を追うようにして、その外側を被覆するように各層が順次成形される。このとき成形された積層体はまだ円筒状であり、螺旋形状にはなっていない。
The tube body 11 is formed as a laminate of resin film layers 12, 13 and 14. The thickness of the laminated body is much thinner than the thickness of the inner core 10 (and the outer core 15). The material and the number of layers of the film layer are changed according to the usage application of the hose. For example, by using a three-layer structure of fluororesin, PP, and fluororesin, a hose having chemical resistance and gas barrier properties can be obtained.
For example, by adopting extrusion molding using a rotating die, the tube main body 11 is formed so that each layer is sequentially formed so as to cover the outer side of the inner core 10 that is previously molded. The laminated body formed at this time is still cylindrical and not in a spiral shape.
 外芯15は硬質樹脂材(例えばPE(ポリエチレン樹脂))を成形したものであり、上記積層体が被覆された内芯10に対して二重螺旋構造をなすように押出成形で螺旋状に巻き付けていくことにより形成される。
 これにより内芯10と外芯15とにより挟まれた積層体(樹脂製フィルム層12、13、14)は、内芯10、外芯15に沿った凹凸面が賦形され、その結果、螺旋状の凹凸を有するフィルム層からなるチューブ本体11が形成される。そして内芯10の上にチューブ本体11、さらにチューブ本体11の上に外芯15を流れ作業で連続加工することができ、所望の長さのシームレスなホースとして生産することができる。
The outer core 15 is formed by molding a hard resin material (for example, PE (polyethylene resin)), and is spirally wound by extrusion so as to form a double spiral structure with respect to the inner core 10 covered with the laminate. It is formed by walking.
As a result, the laminated body (resin film layers 12, 13, 14) sandwiched between the inner core 10 and the outer core 15 is formed with uneven surfaces along the inner core 10 and the outer core 15. The tube main body 11 which consists of a film layer which has a shape unevenness | corrugation is formed. And the tube main body 11 on the inner core 10 and the outer core 15 on the tube main body 11 can be continuously processed by a flow operation, and can be produced as a seamless hose having a desired length.
 内芯10、チューブ本体11、外芯15は互いに固着されていないが、内芯10の断面は方形にしてあり、しかも、チューブ本体11(積層体)は薄く、内芯10と外芯15の径方向の長さ(高さ)は同じか、内芯10が外芯15よりわずかに短くしてある。よって湾曲したときに内芯10が隣の外芯15を乗り越えて位置ずれするためには、内芯10の高さと同程度の高さを乗り越えなければならない構造となっているため、非常に抵抗が大きく位置ずれが生じにくい形状にしてある。 The inner core 10, the tube main body 11, and the outer core 15 are not fixed to each other, but the cross section of the inner core 10 is rectangular, and the tube main body 11 (laminated body) is thin, and the inner core 10 and the outer core 15 The length (height) in the radial direction is the same, or the inner core 10 is slightly shorter than the outer core 15. Therefore, in order for the inner core 10 to move over the adjacent outer core 15 when it is bent, it has a structure that has to climb over the same height as the inner core 10, so it is very resistant. The shape is so large that misalignment is unlikely to occur.
 また、外芯15と内芯10の高さが同程度であってチューブ本体11は薄いので、フリーな状態で外芯15の外周面側が拘束層16と接触するようになる。外芯15の断面は本実施形態では楕円形(円形)にしてある。
 外芯15の横幅および内芯10の横幅は、チューブ本体11の凹凸のピッチ(すなわち内芯10のピッチ)との関係で定められる。具体的には、湾曲状態となるために必要な間隙(遊び)が内芯10とチューブ本体11との間、および、チューブ本体11と外芯15との間に確保されると共に、最も撓んだ状態で左右の内芯10(外芯15)がその間にある外芯15(内芯10)により挟まれて固定されるようにして、内芯10(外芯15)の上下左右方向への位置ずれが起きなくなる程度の間隙となるようにしてある(図3(a)、(b)参照)。
Moreover, since the outer core 15 and the inner core 10 have the same height and the tube main body 11 is thin, the outer peripheral surface side of the outer core 15 comes into contact with the constraining layer 16 in a free state. The cross section of the outer core 15 is elliptical (circular) in this embodiment.
The lateral width of the outer core 15 and the lateral width of the inner core 10 are determined in relation to the pitch of the irregularities of the tube body 11 (that is, the pitch of the inner core 10). Specifically, the gap (play) necessary to be in a curved state is ensured between the inner core 10 and the tube main body 11 and between the tube main body 11 and the outer core 15 and is most flexible. In such a state, the left and right inner cores 10 (outer core 15) are sandwiched and fixed by the outer core 15 (inner core 10) between them, so that the inner core 10 (outer core 15) extends in the vertical and horizontal directions. The gap is set so as not to cause misalignment (see FIGS. 3A and 3B).
 外芯15の外側には、外芯15およびチューブ本体11を覆うにように拘束層16が被覆してある。拘束層16は延伸されたポリエステル糸を格子状に織り込んで伸縮性を与えるようにした織糸層18と、伸縮可能な材料で織糸層18を表裏両面から挟み込んだエラストマー層17、19(例えばオレフィン系エラストマー、スチレン系エラストマー、エチレン酢酸ビニルコポリマー(EVA)等)とからなる。拘束層16は外芯15の外周面を外側から圧接するようにテンションを与えた状態で被覆してあり、これにより外芯15がチューブ本体11を内側に押圧し、チューブ本体11が内芯10を押圧するようにしてある。
 そして外芯15と接する外周面の部分Pで、テンションが与えられた状態で拘束層16に融着してある。これにより、外芯15どうしの間隔が拡がるためには拘束層16のテンションに抗して拡がる必要があり、よって外芯15どうしの間隔はわずかしか拡がることができないようにしてある。すなわち、外芯15は、螺旋軸方向(横方向)に移動できる長さが拘束層16の伸縮可能な幅に制限されるようになり、チューブ本体11の隣接する凸面を乗り越えて1つの外芯15だけが位置ずれすることがないようにしてある。
A constraining layer 16 is coated on the outer side of the outer core 15 so as to cover the outer core 15 and the tube body 11. The constraining layer 16 includes a weaving yarn layer 18 in which stretched polyester yarns are woven into a lattice shape to give stretchability, and elastomer layers 17 and 19 (for example, sandwiching the weaving yarn layer 18 from both front and back surfaces with a stretchable material). Olefin elastomer, styrene elastomer, ethylene vinyl acetate copolymer (EVA), etc.). The constraining layer 16 covers the outer peripheral surface of the outer core 15 with a tension applied so that the outer core 15 is pressed from the outside. As a result, the outer core 15 presses the tube main body 11 inward, and the tube main body 11 presses the inner core 10. Is pressed.
The portion P of the outer peripheral surface in contact with the outer core 15 is fused to the constraining layer 16 in a tensioned state. Thus, in order to increase the distance between the outer cores 15, it is necessary to expand against the tension of the constraining layer 16, so that the distance between the outer cores 15 can be increased only slightly. That is, the length of the outer core 15 that can move in the direction of the spiral axis (lateral direction) is limited to the expandable width of the constraining layer 16, and the outer core 15 overcomes the adjacent convex surface of the tube main body 11 and has one outer core. Only 15 is prevented from being displaced.
 拘束層16の外側には、ホース1の耐圧性能を向上させるために、拘束層16全体を覆うようにポリエステル糸で織糸層18の格子形状とは異なる斜め方向の格子状となるように織り込まれ、ホース1の軸方向の伸びを抑制する配糸層20と、その外側に外巻層21とが形成してある。また、湾曲状態では拘束層16に加わる力が外芯15の外側領域と内芯10の外側領域とでは変化するが、これら配糸層20、外巻層21の存在により力の均一化を図ることができる。また、大きな内圧が加わったときに、これらの存在によってチューブ本体11が膨張して破損しないようにすることができる。
 さらに外巻層21の外側には、螺旋状の突部が形成された保護層22が形成されている。この保護層22は外部衝撃をこの突部で受けるためのものであり、これにより外巻層21およびその内側の各部が外部衝撃から保護されるようにしてある。
In order to improve the pressure resistance performance of the hose 1, the outer side of the constraining layer 16 is woven with a polyester thread so as to cover the entire constraining layer 16 so as to have a lattice shape in an oblique direction different from the lattice shape of the woven yarn layer 18. The yarn distribution layer 20 that suppresses the axial extension of the hose 1 and the outer winding layer 21 are formed on the outer side thereof. Further, in the curved state, the force applied to the constraining layer 16 varies between the outer region of the outer core 15 and the outer region of the inner core 10, but the force is made uniform by the presence of the yarn distribution layer 20 and the outer winding layer 21. be able to. Further, when a large internal pressure is applied, the tube main body 11 can be prevented from expanding and being damaged due to the presence of these.
Furthermore, a protective layer 22 having a spiral protrusion is formed on the outer side of the outer winding layer 21. This protective layer 22 is for receiving an external impact at this protrusion, and thereby, the outer winding layer 21 and each part inside thereof are protected from the external impact.
 次に、上述した可撓性ホース1を湾曲させた状態について説明する。一般に、内芯10および外芯15が固着されていない可撓性ホース1では、湾曲させた状態で螺旋芯の位置ずれが生じやすい。図3はホース1を湾曲させたときの状態を示した模式図である。
 図3(a)は、隣接する内芯10どうし(外芯15どうし)が離れる方向に湾曲された部分の模式図である(湾曲部分の外側)。
 拘束層16は可撓性ホース1がフリーな状態(湾曲していない状態)よりもテンションが強くなり、外芯15を内側方向に強く押圧する。上述したように外芯15の外周面側は拘束層16と融着されている。そのためテンションがかかった拘束層16に逆らって外芯15どうしの外周面側の間隔が拡がることができないため、この部分の間隔がフリーな状態よりも拡がるような変形によっては湾曲することはできない。したがって、ホース1がこの部分で湾曲するには、外芯15の内周面側付近において、外芯15と内芯10との間隔(遊び)が縮まるように変形することになる。そして撓みが増していくと、内芯10は(チューブ本体11を介して)左右の外芯15に挟まれるようになり、内芯10は位置ずれのきっかけとなる螺旋軸方向の捩じれや回転が生じにくくなる。さらに内芯10の断面形状を方形にしたことによっても捩じれや回転が生じにくくなっている。このようにして、内芯10および外芯15は互いに隣の芯と接近、接触することにより、凸面を乗り越えることはない。
Next, a state where the above-described flexible hose 1 is bent will be described. In general, in the flexible hose 1 in which the inner core 10 and the outer core 15 are not fixed, the spiral core is liable to be displaced in a curved state. FIG. 3 is a schematic view showing a state when the hose 1 is bent.
Fig.3 (a) is a schematic diagram of the part curved in the direction in which the adjacent inner cores 10 (outer cores 15) leave | separate (outside of a curved part).
The restraint layer 16 is more tensioned than the state in which the flexible hose 1 is free (not bent), and strongly presses the outer core 15 in the inner direction. As described above, the outer peripheral surface side of the outer core 15 is fused to the constraining layer 16. For this reason, the distance between the outer peripheral surfaces of the outer cores 15 cannot be increased against the constrained constraining layer 16, and therefore it cannot be bent by deformation that increases the distance between these parts as compared to the free state. Therefore, in order for the hose 1 to bend at this portion, the hose 1 is deformed so that the gap (play) between the outer core 15 and the inner core 10 is reduced in the vicinity of the inner peripheral surface side of the outer core 15. As the deflection increases, the inner core 10 is sandwiched between the left and right outer cores 15 (via the tube body 11), and the inner core 10 is twisted or rotated in the direction of the helical axis that triggers misalignment. It becomes difficult to occur. Furthermore, twisting and rotation are less likely to occur by making the cross-sectional shape of the inner core 10 square. In this way, the inner core 10 and the outer core 15 do not get over the convex surface by approaching and contacting the adjacent cores.
 図3(b)は、隣接する内芯10どうし(外芯15どうし)が接近する方向に湾曲された部分の模式図である(湾曲部分の内側)。
 拘束層16は可撓性ホース1がフリーな状態よりもテンションは弱くなり、撓みが増していくとやがてテンションが加わらない状態になるが、外芯15どうしが接近し、内芯10どうしも接近するようになり、外芯15と内芯10とが互いに(左右のチューブ本体11を介して)挟み付けた状態になる。したがって内芯10および外芯15はそれ以上の変形(捩じり、回転)が制限されて位置ずれが生じない。外芯15についても両側から挟まれた状態になるので位置ずれが生じにくくなる。
FIG. 3B is a schematic diagram of a portion curved in a direction in which adjacent inner cores 10 (outer cores 15) approach each other (inside the curved portion).
The constraining layer 16 is less tensioned than when the flexible hose 1 is free. As the flexure increases, the tension is not applied, but the outer cores 15 approach each other and the inner cores 10 approach each other. As a result, the outer core 15 and the inner core 10 are sandwiched with each other (via the left and right tube bodies 11). Accordingly, the inner core 10 and the outer core 15 are restricted from being further deformed (twisted and rotated), so that no displacement occurs. Since the outer core 15 is also sandwiched from both sides, the positional deviation is less likely to occur.
 以上は外芯15についてであるが、内芯10についても外芯15がチューブ本体11を押圧し、内芯10がチューブ本体11によって押圧されているので位置ずれが生じにくい。さらに内芯10を方形にし、凸面を乗り越えるための抵抗を高くしてあるのでこのことによっても位置ずれが生じにくい。また、図3(b)に示した状態で撓む角度が大きくなると、内芯10についても隣接する外芯15で挟まれて上下左右に動けなくなるので、外芯15と同様に位置ずれが生じなくなる。 The above is for the outer core 15, but also for the inner core 10, the outer core 15 presses the tube main body 11, and the inner core 10 is pressed by the tube main body 11, so that misalignment hardly occurs. Further, since the inner core 10 is rectangular and the resistance to get over the convex surface is increased, this also prevents misalignment. Further, when the angle of bending increases in the state shown in FIG. 3B, the inner core 10 is also sandwiched by the adjacent outer cores 15 and cannot move vertically and horizontally, so that the same positional displacement as the outer core 15 occurs. Disappear.
 図4は本発明の他の一実施形態である可撓性ホース2について、その一部断面を分解して示した斜視図である。図2と同じ構成部分については同符号を付すことにより、説明の一部を省略する。
 この実施形態では外芯25の断面形状を内芯10と同様の方形にしてある。図2の実施形態のものは可撓性で優れており、これに比べて図4の実施形態では多少可撓性は劣るようになるが、内芯10と外芯25とを方形にしたことにより、座屈しにくい構造になる。それゆえ図4のものはホースの口径が大きく、耐圧性、保形性が求められる用途に向いている。
 また、図4のものではアース線としての金属ワイヤの導線23が保護層22に埋め込まれるようにしてあり、これにより静電気に対する安全を確保するようにすることもできる。
FIG. 4 is an exploded perspective view showing a partial cross section of a flexible hose 2 according to another embodiment of the present invention. The same components as those in FIG. 2 are denoted by the same reference numerals, and a part of the description is omitted.
In this embodiment, the outer core 25 has a cross-sectional shape similar to that of the inner core 10. The embodiment of FIG. 2 is superior in flexibility, and in contrast to this, the embodiment of FIG. 4 is somewhat inferior in flexibility, but the inner core 10 and the outer core 25 are rectangular. Therefore, the structure is difficult to buckle. Therefore, the one shown in FIG. 4 has a large hose diameter and is suitable for applications requiring pressure resistance and shape retention.
Further, in FIG. 4, a metal wire conductor 23 as a ground wire is embedded in the protective layer 22, so that safety against static electricity can be ensured.
(変形実施形態)
 次に、可撓性ホースを、管端継手とともに使用する管端継手付きの可撓性ホースについて説明する。
 上述したような可撓性ホースを実際に使用する際に、他の可撓性ホースと連結したり各種機器等と接続したりすることがあり、可撓性ホースの管端に管端継手を取り付けて使用することも行われている。この種の管端継手の継手構造としては、可撓性ホースと締付手段との間にパッキンを設け、締付手段によってパッキンを押圧することで、可撓性ホースをニップルに密着させて止水性を確保するものが知られている(例えば特開平5-302691号公報参照)。
(Modified embodiment)
Next, the flexible hose with a pipe end joint that uses the flexible hose together with the pipe end joint will be described.
When actually using the flexible hose as described above, it may be connected to other flexible hoses or connected to various devices, etc. It is also used for installation. As a joint structure of this type of pipe end joint, a packing is provided between the flexible hose and the fastening means, and the packing is pressed by the fastening means so that the flexible hose is brought into close contact with the nipple and stopped. Those that ensure aqueous properties are known (see, for example, JP-A-5-302691).
 当該文献に記載の管端継手のパッキンは、略Z字状のスリットが設けられて切断され、周方向に不連続な環状体とされている。そのため、パッキンの拡径、縮径が可能であり、締付手段による締め付けに応じてその径を自在に変えて、管体をニップルに密着させることができる。 The packing of the pipe end joint described in the document is cut by being provided with a substantially Z-shaped slit so as to be a discontinuous annular body in the circumferential direction. Therefore, the diameter of the packing can be increased or decreased, and the diameter of the packing can be freely changed according to the tightening by the tightening means, and the tube can be brought into close contact with the nipple.
 しかしながら、当該パッキンでは、管端に管端継手を取り付ける際に、互いに対向する縁端部(略Z字状のスリット面どうしが対向する端部)の、互いに離間する方向への移動を規制する手段がないことから、縁端部がパッキン周方向に自由に移動してしまい、パッキンの形状(環状)が崩れ易くなっていた。そのため、周方向に連続する環状体とされたパッキンに比べて、継手の組み立て作業や分解作業においてその取扱いが煩雑となり、特に組み立て時においては、パッキン形状が崩れると止水性に影響を及ぼすことから、形状を維持するために細心の注意を払う必要があった。 However, in the packing, when the pipe end joint is attached to the pipe end, the movement of the edge parts facing each other (the ends where the substantially Z-shaped slit surfaces face each other) in a direction away from each other is restricted. Since there is no means, the edge end portion freely moves in the packing circumferential direction, and the shape (annular shape) of the packing is easily broken. Therefore, compared to packings that are annular bodies that are continuous in the circumferential direction, the handling of the joints is complicated in the assembly and disassembly operations, and particularly during assembly, if the packing shape collapses, the water stoppage is affected. It was necessary to pay close attention to maintain the shape.
 また、周方向に切断されて不連続の環状体とされたパッキンの場合、可撓性ホース(管体)のチューブ本体が例えば弛みやシワが生じやすいフィルム層で構成されていると、パッキンを縮径させた際、ニップル径とフィルム径との差によって生じるフィルム余剰部分がスリット間に寄せ集められることになる。この寄せ集められたフィルム余剰部分は、スリット間に位置するため、パッキンによって圧接され難く、漏れを引き起こす原因となるが、上記文献のパッキンのように拡径範囲が規制されていないと、拡径時と縮径時との差が大きくなり易いことから、寄せ集めも大きくなり易く、安定して止水性を得ることが困難である。 Also, in the case of packing cut in the circumferential direction into a discontinuous annular body, if the tube body of the flexible hose (tubing body) is composed of a film layer that is liable to be loosened or wrinkled, for example, When the diameter is reduced, an excess portion of the film caused by the difference between the nipple diameter and the film diameter is gathered between the slits. Since the collected film surplus portion is located between the slits, it is difficult to be pressed by the packing and causes leakage, but the diameter expansion range is not regulated as in the packing of the above-mentioned document. Since the difference between the time and the diameter reduction tends to be large, the gathering tends to be large, and it is difficult to stably obtain the water stoppage.
 そこで、パッキンの無制限な拡径、変形を抑制し、接続作業を簡単かつ確実に行うことができる管端継手を取り付けた管端継手付きの可撓性ホースとして、以下に示すような構成をとるようにした。 Therefore, the following configuration is adopted as a flexible hose with a pipe end joint to which a pipe end joint capable of easily and surely performing connection work is suppressed while suppressing unlimited diameter expansion and deformation of the packing. I did it.
 すなわち、本発明の他の一実施形態である管端継手付きの可撓性ホースは、図1~図4に基づいて説明したような可撓性ホース1と、前記可撓性ホース1の端部に取り付ける管端継手100とからなる管端継手付きの可撓性ホースであって、前記管端継手100は、前記可撓性ホース1に内嵌するニップル200と、前記可撓性ホース1に外嵌するパッキン310と、前記パッキン310を外側から締め付けて前記可撓性ホース1の内周面を前記ニップル200の外周面に圧接させる締付手段400とを備え、前記パッキン310はスリット320によって周方向に不連続な環状体とし、互いに対向する縁端部には、係合状態において、互いに離間する方向への移動を規制する係合手段330が設けられる構成とした。 That is, a flexible hose with a pipe end joint according to another embodiment of the present invention includes a flexible hose 1 as described with reference to FIGS. 1 to 4 and an end of the flexible hose 1. A flexible hose with a pipe end joint comprising a pipe end joint 100 to be attached to the section, wherein the pipe end joint 100 includes a nipple 200 fitted into the flexible hose 1 and the flexible hose 1. And a fastening means 400 that tightens the packing 310 from the outside and presses the inner peripheral surface of the flexible hose 1 against the outer peripheral surface of the nipple 200, and the packing 310 has a slit 320. Thus, the annular body is discontinuous in the circumferential direction, and the engaging edge 330 that restricts the movement in the direction away from each other in the engaged state is provided at the edge portions facing each other.
 本発明の管端継手付きの可撓性ホースによれば、係合手段330を係合することにより、縁端部の互いに離間する方向への移動が制限されるため、パッキンの310の過度の拡径が抑制され、パッキン形状が崩れ難くなって、組み立て、分解に際しての取り扱いが容易となる。 According to the flexible hose with a pipe end joint of the present invention, the engagement of the engagement means 330 restricts the movement of the edge portions in the direction away from each other. The expansion of the diameter is suppressed, the packing shape is not easily collapsed, and handling during assembly and disassembly becomes easy.
 ここで、係合手段330は、 具体的には互いに係合可能なように縁端部にそれぞれ形成された鉤部としてもよい。
 係合手段330が、互いに係合可能なように縁端部に形成された鉤部とすることによって縁端部間に生じる非圧接部の形状が複雑となり、スリット320がパッキン軸方向に直線状に形成されている場合に比べて止水性が向上する。
Here, the engaging means 330 may specifically be flanges formed at the edge portions so as to be engageable with each other.
Since the engaging means 330 is a flange formed at the edge so that they can engage with each other, the shape of the non-pressure contact portion generated between the edges becomes complicated, and the slit 320 is linear in the packing axial direction. The water-stopping property is improved as compared with the case where it is formed.
 また、前記可撓性ホース1の管端5からチューブ本体11のみが延出され、前記チューブ本体11がフィルム層で構成され、前記パッキン310は、延出された前記チューブ本体11に外嵌されるようにしてもよい。弛みやシワが生じ易いフィルム層からなるチューブ本体11のみに外嵌させた場合であっても、締付手段によってパッキンを縮径させる際のフィルム層のつまみ上げ(ニップル径とフィルム径との差によって生じるフィルム余剰部分の寄せ集め)を抑制することができ、つまみ上げに起因する漏れを防止することができる。 Further, only the tube main body 11 is extended from the tube end 5 of the flexible hose 1, the tube main body 11 is formed of a film layer, and the packing 310 is externally fitted to the extended tube main body 11. You may make it do. Even when the tube body 11 is made of only a film layer that is likely to be loosened or wrinkled, the film layer is picked up when the packing is contracted by the fastening means (the difference between the nipple diameter and the film diameter). ) Can be prevented, and leakage due to picking up can be prevented.
 ここで、前記パッキン310は、前記管端5の形状に合わせて切欠部330aが設けられるようにしてもよい。具体的には、前記管端5は前記可撓性ホース1の外芯15、25または前記内芯10に沿って螺旋状とされ、且つ、最縁端に位置する前記外芯または内芯を可撓性ホース1の軸方向に向かって切断することで螺旋ピッチ分の段差5aが形成されており、前記パッキン310の切欠部330aは、前記管端5の螺旋及び段差5aの形状に合わせて設けられるようにしてもよい。 Here, the packing 310 may be provided with a notch 330a in accordance with the shape of the tube end 5. Specifically, the tube end 5 is formed in a spiral shape along the outer cores 15 and 25 of the flexible hose 1 or the inner core 10, and the outer core or the inner core located at the outermost end is formed. A step 5a corresponding to the helical pitch is formed by cutting the flexible hose 1 in the axial direction, and the notch 330a of the packing 310 is matched to the spiral of the tube end 5 and the shape of the step 5a. It may be provided.
 管端5の螺旋および段差の形状に合わせて切欠部を設けることにより、管端5から離れた位置にあるフィルム層は勿論のこと、管端近傍のフィルム層をも確実にニップル200に圧接させることができ、内圧によるフィルム層の膨らみを抑えて止水性を向上させることができる。 By providing a notch according to the spiral and step shape of the tube end 5, not only the film layer at a position away from the tube end 5 but also the film layer near the tube end can be surely pressed against the nipple 200. It is possible to suppress the swelling of the film layer due to the internal pressure and improve the water-stopping property.
 さらに、前記パッキン310には、互いに係合可能なように縁端部にそれぞれ形成された鉤部330のいずれか一方に接近して、上記管端5の段差5aと係合可能な段差部330bが設けられており、この段差部330bが近接して設けられた側の鈎部330は、上記管端5とは反対に開口し、上記段差部330bを上記管端5の段差5aに係合させた状態で他方の鈎部330と係合可能とされるようにしてもよい。
 このように、段差部330bが設けられた側の鈎部の開口を管端5とは反対側に向けているため、パッキン310の段差部を管端5に係合させた状態で、鉤部同士の係合を行うことができ、パッキン310を容易かつ位置ずれすることなく取り付けることができる。
Further, the packing 310 has a stepped portion 330b that can be engaged with the stepped portion 5a of the pipe end 5 by approaching any one of the flanges 330 formed at the edge ends so as to be engageable with each other. The flange portion 330 on the side where the stepped portion 330b is provided close to the tube end 5 is opened opposite to the tube end 5, and the stepped portion 330b is engaged with the step 5a of the tube end 5. In this state, it may be possible to engage with the other flange 330.
Thus, since the opening of the flange portion on the side where the step portion 330b is provided is directed to the side opposite to the tube end 5, the flange portion is engaged with the step portion of the packing 310 to the tube end 5. They can be engaged with each other, and the packing 310 can be easily attached without being displaced.
 さらに、また、前記パッキン310の他に、周方向に連続な環状体であって、上記可撓性ホース1の端部に外嵌されるとともに締付手段400に係止されることで、上記可撓性ホース1のニップル200からの抜けを防止する抜け止め用パッキン340を備えるようにしてもよい。
 これにより、高い止水性を確保しながらも、ニップル200からの可撓性ホース1の抜けをも確実に防止することができる。
Furthermore, in addition to the packing 310, the annular body is continuous in the circumferential direction, and is fitted onto the end of the flexible hose 1 and locked to the tightening means 400. The flexible hose 1 may be provided with a retaining packing 340 that prevents the flexible hose 1 from coming off from the nipple 200.
Accordingly, it is possible to reliably prevent the flexible hose 1 from coming off from the nipple 200 while ensuring high water-stopping properties.
 ここで、特に前記可撓性ホース1は、最外周に螺旋状の保護層22が形成されており、周方向に連続な環状体とされた抜け止め用パッキン340は、前記延出されたチューブ本体11の基端部近傍の前記保護層22に螺着されるようにしてもよい。
 このように抜け止め用パッキン(340)が螺着されることにより、引き抜きに対する耐久性を向上させることができる。
Here, in particular, the flexible hose 1 is formed with a spiral protective layer 22 on the outermost periphery, and the retaining packing 340 that is a continuous annular body in the circumferential direction is formed by extending the tube. The main body 11 may be screwed to the protective layer 22 in the vicinity of the base end portion.
Thus, the durability against pulling out can be improved by screwing the retaining packing (340).
 以下、変形実施形態である管端継手付きの可撓性ホースの実施形態について、図面に基づいて説明する。
 図5~図8において、可撓性ホース1は例えば食品輸送用ホースとして使用されるものである。ここでは図1あるいは図3で示した可撓性ホース1と同じものを使用している。すなわち、可撓性ホース1は、図1と同様に、内芯10、フィルム層で形成されるチューブ本体11、外芯15、拘束層16を基本構成として備え、さらに外側に配糸層20、外巻層21、螺旋状の保護層22が設けられている。
 なお、管体である可撓性ホース1の端部に取り付ける管端継手との関係を説明する便宜上、可撓性ホース1の端部を管端5と称する。ここで管端5とは、内芯10、外芯15が巻回されているチューブ本体11の最も端にある内芯10または外芯15の位置をいう。
Hereinafter, an embodiment of a flexible hose with a pipe end joint which is a modified embodiment will be described based on the drawings.
5 to 8, the flexible hose 1 is used, for example, as a food transport hose. Here, the same flexible hose 1 as shown in FIG. 1 or FIG. 3 is used. That is, the flexible hose 1 includes, as in FIG. 1, an inner core 10, a tube main body 11 formed of a film layer, an outer core 15, and a constraining layer 16 as basic components, and further a yarn distribution layer 20 on the outer side. An outer winding layer 21 and a spiral protective layer 22 are provided.
In addition, the end part of the flexible hose 1 is called the pipe end 5 for convenience of explaining the relationship with the pipe end joint attached to the end part of the flexible hose 1 that is a tubular body. Here, the pipe end 5 refers to the position of the inner core 10 or the outer core 15 at the end of the tube body 11 around which the inner core 10 and the outer core 15 are wound.
 管端継手100は、可撓性ホース1の端部に設けられて、例えば他の可撓性ホースの端部に取り付けられた継手や貯蔵タンク等の各種機器に備え付けの継手(以下、「他の継手」という)との連結に使用するものである。この管端継手100は、可撓性ホース1の端部に内嵌して、他の継手と接続するためのニップル200と、可撓性ホース1に外嵌するパッキン300と、このパッキン300を外側から締め付けて、パッキン300の内周面を可撓性ホース1の外周面に押し付けることで、可撓性ホース1の内周面をニップル200の外周面に圧接させる締付手段(ホルダー)400とを備えている。 The pipe end joint 100 is provided at the end of the flexible hose 1, and is, for example, a joint (hereinafter referred to as “others”) attached to various devices such as a joint attached to the end of another flexible hose or a storage tank. It is used for the connection with the joint. The pipe end joint 100 is fitted into the end of the flexible hose 1 to connect to other joints, a nipple 200 to be externally fitted to the flexible hose 1, and the packing 300. Tightening means (holder) 400 that presses the inner peripheral surface of the packing 300 against the outer peripheral surface of the flexible hose 1 and presses the inner peripheral surface of the flexible hose 1 against the outer peripheral surface of the nipple 200 by tightening from the outside. And.
 ニップル200は、例えばステンレス製であって、図5に示すように、全体的に略筒状に形成されている。また、ニップル200の軸方向の一端側が可撓性ホース1の端部に内嵌する例えば直筒状の嵌合筒部210とされ、他端側が他の継手に接続する例えば螺子部付きの接続部220とされている。また、ニップル200の嵌合筒部210と接続部220との間の中間部分において、円環状のフランジ部230が径外方向に張り出した状態で突設されている。 The nipple 200 is made of, for example, stainless steel, and is formed in a substantially cylindrical shape as shown in FIG. Further, one end side in the axial direction of the nipple 200 is, for example, a straight tube-shaped fitting tube portion 210 that is fitted into the end portion of the flexible hose 1, and the other end side is connected to another joint, for example, a connecting portion with a screw portion. 220. In addition, an annular flange portion 230 protrudes in a radially outward direction at an intermediate portion between the fitting cylinder portion 210 and the connection portion 220 of the nipple 200.
 パッキン300は、例えば合成ゴム製であって、止水用パッキン310と抜け止め用パッキン340の二種類で構成されている。 The packing 300 is made of, for example, synthetic rubber, and includes two types of packings, namely, a water stopping packing 310 and a retaining packing 340.
 止水用パッキン310は、図9に示すように、スリット320によって周方向に不連続な環状体とされており、互いに対向する端縁部には、係合状態において、互いに離間する方向への所定量以上の移動を規制する係合手段330が設けられている。係合手段330は具体的には、互いに係合可能なように縁端部にそれぞれ形成された鉤部である。また、係合状態の鈎部330、330間にはスリット320の幅分だけの隙間が生じており、このスリット320の幅分だけパッキン周方向に移動できるようになっている。なお、止水用パッキン310の内周面は外周面平滑とされたニップル200の嵌合筒部210に合わせて平滑とされている。 As shown in FIG. 9, the water-stop packing 310 is formed as an annular body that is discontinuous in the circumferential direction by the slits 320, and in the engaged state, the end edges facing each other are separated from each other. Engagement means 330 is provided for restricting movement of a predetermined amount or more. Specifically, the engagement means 330 is a flange portion formed at each edge portion so as to be engageable with each other. Further, a gap corresponding to the width of the slit 320 is generated between the flanges 330 and 330 in the engaged state, and the gap can be moved in the packing circumferential direction by the width of the slit 320. In addition, the inner peripheral surface of the water-stop packing 310 is smoothed according to the fitting cylinder part 210 of the nipple 200 whose outer peripheral surface is smooth.
 抜け止め用パッキン340は、図10(および図8)に示すように、周方向に連続な環状体とされ、その内周面には、可撓性ホース1の外周面の凹凸(すなわち保護層22の螺旋形状の凹凸)に対応する溝部350が螺旋状に形成されており、可撓性ホース1に螺合可能とされている。 As shown in FIG. 10 (and FIG. 8), the retaining packing 340 is an annular body that is continuous in the circumferential direction, and the inner circumferential surface thereof has irregularities (that is, a protective layer) on the outer circumferential surface of the flexible hose 1. The groove portion 350 corresponding to 22 spiral-shaped irregularities is formed in a spiral shape and can be screwed into the flexible hose 1.
 ホルダー400は可撓性ホース1の端部を外側から挟み込むように組み付ける一対の半割り外装体410、410を備えている。一対の半割り外装体410、410は、例えばステンレス製であって、図5、図6に示すように、略同形状とされており、略半筒状の本体部420と、この本体部420の軸方向(前後方向)に沿った両端部分から径外方向に一対の連結部480、480とを備えている。なお、図11(a)は半割外装体410の外周面側、図11(b)は内周面側を示している。 The holder 400 includes a pair of halved exterior bodies 410 and 410 that are assembled so as to sandwich the end of the flexible hose 1 from the outside. The pair of half-split outer bodies 410 and 410 are made of, for example, stainless steel and have substantially the same shape as shown in FIGS. 5 and 6, and a substantially half-cylinder main body 420 and the main body 420. A pair of connecting portions 480 and 480 are provided radially outward from both end portions along the axial direction (front-rear direction). In addition, Fig.11 (a) has shown the outer peripheral surface side of the halved exterior body 410, and FIG.11 (b) has shown the inner peripheral surface side.
 本体部420の内周面には、その周方向に沿って3本の線状突起430、440、450が互いに平行に形成されている。そして、線状突起430、440間に形成された小幅の嵌合溝460に、ニップル200のフランジ部230が遊嵌するようになっている。また、線状突起440、450間に形成された大幅の装着溝470は、さらに浅溝部470aに止水用パッキン310が、深溝部470bに抜け止め用パッキン340がそれぞれ内装可能とされている。 Three linear protrusions 430, 440, and 450 are formed on the inner peripheral surface of the main body 420 in parallel with each other along the circumferential direction. The flange portion 230 of the nipple 200 is loosely fitted into a small fitting groove 460 formed between the linear protrusions 430 and 440. Further, the large mounting groove 470 formed between the linear protrusions 440 and 450 can be further provided with a water-stop packing 310 in the shallow groove portion 470a and a retainer packing 340 in the deep groove portion 470b.
 一対の連結部480、480には、一対のボルト挿通孔490、490が軸方向(前後方向)に間隔をあけてそれぞれ形成されている。また、これら連結部480における本体部420の内周面に連続する内面がホルダー400の組み付け時の重ね合わせ面とされている。 A pair of bolt insertion holes 490 and 490 are formed in the pair of connecting portions 480 and 480 at intervals in the axial direction (front-rear direction), respectively. In addition, an inner surface that is continuous with the inner peripheral surface of the main body 420 in the connecting portion 480 is an overlapping surface when the holder 400 is assembled.
 次に、上記構成の管端継手100を、可撓性ホース1の端部に取り付ける手順について説明する。まず、可撓性ホース1の端部の内芯10、外芯15を一定の範囲(止水用パッキン310の軸方向の幅程度)で除去し、管端5からフィルム層のチューブ本体11のみを延出させるとともに、この延出されたチューブ本体11の基端部近傍であって内芯10、外芯15を除去していない部分に抜け止め用パッキンを外嵌し、保護層22に螺着する。次に、管端5から延出されたチューブ本体11をニップル200の嵌合筒部210に外嵌させることで、可撓性ホース1の端部へのニップル200の装着を完了する。なお、この際、抜け止め用パッキン340が可撓性ホース1を介してニップル200の嵌合筒部210と対向するようにしておく。 Next, a procedure for attaching the pipe end joint 100 having the above configuration to the end portion of the flexible hose 1 will be described. First, the inner core 10 and the outer core 15 at the end of the flexible hose 1 are removed within a certain range (about the width in the axial direction of the water-stop packing 310), and only the tube body 11 of the film layer from the tube end 5 is removed. And a retaining gasket is externally fitted to a portion of the tube body 11 in the vicinity of the base end portion where the inner core 10 and the outer core 15 are not removed, and the protective layer 22 is screwed. To wear. Next, the fitting of the nipple 200 to the end of the flexible hose 1 is completed by fitting the tube main body 11 extended from the tube end 5 to the fitting cylinder portion 210 of the nipple 200. At this time, the retaining packing 340 is made to face the fitting cylinder portion 210 of the nipple 200 through the flexible hose 1.
 続いて、止水用パッキン310をチューブ本体11に外嵌させる。すなわちニップル200のフランジ部230と抜け止め用パッキン340との間に位置するチューブ本体11を抱持するようにして、チューブ本体11の外側に止水用パッキン310の内周面を当接させる。また、この状態において、鉤部330、330同士を係合させ、止水用パッキン310の不意の落下やパッキン形状の崩れを防止する。なお、止水用パッキン310は、上記取り付け手順の他にも、ニップル200の嵌合筒部210にチューブ本体11や可撓性ホース1の端部を外嵌させる前に、予めチューブ本体11に外嵌させておくようにしてもよい。 Subsequently, the water-stop packing 310 is fitted on the tube body 11. That is, the inner peripheral surface of the water stop packing 310 is brought into contact with the outside of the tube main body 11 so as to hold the tube main body 11 positioned between the flange portion 230 of the nipple 200 and the retaining packing 340. Further, in this state, the flanges 330 and 330 are engaged with each other to prevent the water-stop packing 310 from unexpectedly dropping and the packing shape from collapsing. In addition to the above attachment procedure, the water-stop packing 310 is previously attached to the tube main body 11 before fitting the tube main body 11 or the end of the flexible hose 1 to the fitting cylindrical part 210 of the nipple 200. You may make it fit externally.
 次に、半割外装体410を、ニップル200が装着されている可撓性ホース1の端部に組み付ける。この組み付けに際しては、線状突起430、440間に形成された小幅の嵌合溝460に、ニップル200のフランジ部230が遊嵌されるように、線状突起440、450間に形成された大幅の装着溝470のうち、浅溝部470aに止水用パッキン310が、深溝部470bに抜け止め用パッキン340がそれぞれ位置するようにして、可撓性ホース1の端部を挟み込む。そして上下一対の半割外装体410、410を重ね合わせ、連結部480のボルト挿通孔490に挿通したボルト500にナット510を螺合して締め付ける。 Next, the half armor 410 is assembled to the end of the flexible hose 1 to which the nipple 200 is attached. At the time of this assembly, a large gap formed between the linear protrusions 440 and 450 so that the flange portion 230 of the nipple 200 is loosely fitted into a small fitting groove 460 formed between the linear protrusions 430 and 440. Among the mounting grooves 470, the end of the flexible hose 1 is sandwiched so that the water-stop packing 310 is located in the shallow groove 470 a and the retainer packing 340 is located in the deep groove 470 b. Then, the pair of upper and lower halved outer bodies 410 and 410 are overlapped, and the nut 510 is screwed and tightened to the bolt 500 inserted into the bolt insertion hole 490 of the connecting portion 480.
 このとき、止水用パッキン310は、ホルダー400による締め付けに合わせて徐々に縮径していき、チューブ本体11を隙間なくニップル200の嵌合筒部210に密着させることとなる。 At this time, the water-stopping packing 310 is gradually reduced in diameter as the holder 400 is tightened, and the tube main body 11 is brought into close contact with the fitting cylinder portion 210 of the nipple 200 without a gap.
 また、抜け止め用パッキン340は、半割外装体410の最も可撓性ホース1側に設けられた線状突起450に係止(当接)された状態となり、ニップル200からの可撓性ホース1の抜けに抗することになる。 Further, the retaining packing 340 is locked (contacted) with the linear protrusion 450 provided on the most flexible hose 1 side of the half-wrapped outer body 410, and the flexible hose from the nipple 200 is placed. It will resist the loss of 1.
 このようにして、半割外装体410、410を組み付けて、パッキン300を外側から締め付けることで、チューブ本体11や可撓性ホース1の端部がニップル200の嵌合筒部210に圧接されて、ニップル200が可撓性ホース1の端部に固定され、管端継手100の取り付けが完了する。 In this way, by attaching the halved outer casings 410 and 410 and tightening the packing 300 from the outside, the ends of the tube main body 11 and the flexible hose 1 are pressed against the fitting cylinder portion 210 of the nipple 200. The nipple 200 is fixed to the end of the flexible hose 1, and the attachment of the pipe end joint 100 is completed.
 上記構成の継手構造においては、周方向に不連続な環状とされた止水用パッキン310の他に、周方向に連続な環状とされた抜け止め用パッキン340を備えているため、高い止水性を確保しながらも、ニップル200からの可撓性ホース1の抜けをも確実に防止することができる。具体的に説明すると、可撓性ホース1の抜け方向に働く力が、可撓性ホース1から抜け止め用パッキン340、ホルダー400の線状突起450、ホルダー400の本体部420、ホルダー400の線状突起430、ニップル200のフランジ部230といった経路で伝達されるため、止水用パッキン310に可撓性ホース1の抜け方向の力がほとんど作用することがなく、止水用パッキン310の変形を抑えて止水性を維持し続けることができ、また、抜け止め用パッキン340が連続な環状体であってかつ可撓性ホース1に螺着されていることから力が作用した場合であっても変形し難く、かつ、ズレも生じ難いことから高い耐久性を発揮することができる。 In the joint structure having the above-described configuration, in addition to the water-stopping packing 310 that is a ring that is discontinuous in the circumferential direction, the seal structure 340 that is a ring that is continuous in the circumferential direction is provided. Can be reliably prevented from coming off the flexible hose 1 from the nipple 200. Specifically, the force acting in the direction in which the flexible hose 1 is pulled out is the packing 340 for retaining from the flexible hose 1, the linear protrusion 450 of the holder 400, the main body 420 of the holder 400, and the wire of the holder 400. Is transmitted through a path such as the projection 430 and the flange portion 230 of the nipple 200, so that the force in the pulling direction of the flexible hose 1 hardly acts on the water stop packing 310, and the water stop packing 310 is deformed. Even if the force acts because the retaining gasket 340 is a continuous annular body and is screwed to the flexible hose 1, High durability can be exhibited because it is difficult to be deformed and is not easily displaced.
 また、管端継手100は、洗浄や点検といったメンテナンスが定期的に必要となる。この場合、可撓性ホース1の端部から管端継手100を取り外して分解し、洗浄や点検を行った後、再び可撓性ホース1の端部に管端継手100を取り付けるといった作業を要するが、この際、止水用パッキン310の鈎部330を係合することにより、縁端部の互いに離間する方向への移動が制限されるため、パッキン310の過度の拡径が抑制され、パッキン形状が崩れ難くなって、組み立て分解に際しての取り扱いが容易となる。また、止水用パッキン310の拡径が所定量(スリット幅)に抑えられるため、弛みやシワが生じ易いフィルム層のチューブ本体11に止水用パッキンn310を外嵌させても、ホルダー400によって止水用パッキン310を縮径させる際のチューブ本体11のつまみ上げ(ニップル径とチューブ本体径との差によって生じるフィルム余剰部分の寄せ集め)を抑制することができ、つまみ上げに起因する漏れを防止することができる。しかも、縁端部間に生じる非圧接部の形状が鉤状と複雑になることから、スリット320がチューブ本体11の周方向のどの部分に位置したとしても高い止水性を維持することができる。 Also, the pipe end joint 100 requires periodic maintenance such as cleaning and inspection. In this case, the pipe end joint 100 is removed from the end of the flexible hose 1 and disassembled, cleaned and inspected, and then the pipe end joint 100 is attached to the end of the flexible hose 1 again. However, at this time, the engagement of the flange portion 330 of the water-stop packing 310 restricts the movement of the edge portions in the direction away from each other, so that excessive expansion of the packing 310 is suppressed, and the packing is suppressed. The shape is difficult to collapse, and handling during assembly and disassembly becomes easy. Further, since the expansion of the water stop packing 310 is suppressed to a predetermined amount (slit width), even if the water stop packing n310 is externally fitted to the tube body 11 of the film layer that is likely to be loosened or wrinkled, the holder 400 It is possible to suppress the pick-up of the tube body 11 when the diameter of the water-stop packing 310 is reduced (collection of surplus film portions caused by the difference between the nipple diameter and the tube body diameter), and to prevent leakage due to the pick-up. Can be prevented. And since the shape of the non-pressure-contact part which arises between edge parts becomes complicated with a bowl shape, it can maintain a high water-stopping whatever slit part 320 is located in the circumferential direction of the tube main body 11. FIG.
 次に、本発明のさらに異なる実施形態について詳細に説明する。図12は説明の簡単のために、可撓性ホース1と止水用パッキン310のみを示した図であるが、管端5からチューブ本体11を延出するにあたって補強芯である内芯10および外芯15を取り除くには、可撓性ホース1の周方向に切断するよりも軸方向に向かって切断した方が容易である。ただ、このような切断方法を採った場合、管端5は内芯10又は外芯15に沿って螺旋状とされるとともに、螺旋ピッチ分の段差5a(図12において切断された補強芯先端と軸方向側に1ピッチ分ずれた位置にある補強芯側部とを結ぶ点線で示す)が形成されることになる。 Next, further different embodiments of the present invention will be described in detail. FIG. 12 is a view showing only the flexible hose 1 and the water-stop packing 310 for the sake of simplicity of explanation, but the inner core 10 which is a reinforcing core when the tube body 11 is extended from the tube end 5 and In order to remove the outer core 15, it is easier to cut in the axial direction than in the circumferential direction of the flexible hose 1. However, when such a cutting method is adopted, the tube end 5 is spiraled along the inner core 10 or the outer core 15, and the step 5a corresponding to the helical pitch (the tip of the reinforcing core cut in FIG. 12). (Indicated by a dotted line connecting the reinforcing core side portion at a position shifted by one pitch in the axial direction).
 そのため、図9に示す止水用パッキン310のように管端5側の端面が周方向に平行とされていると、止水用パッキン310と管端5との間に、止水用パッキン310に圧接されないチューブ本体11が生じることになる。この部分は内芯10、外芯15にも支持されていないため、内圧に対する耐久性に乏しく漏れの原因になる。 Therefore, when the end face on the pipe end 5 side is parallel to the circumferential direction as in the water stop packing 310 shown in FIG. 9, the water stop packing 310 is provided between the water stop packing 310 and the pipe end 5. As a result, the tube main body 11 which is not pressed against is formed. Since this portion is not supported by the inner core 10 and the outer core 15, the durability against the internal pressure is poor, causing leakage.
 そこで、管端5の螺旋や段差5aに形状を合わせて止水用パッキン310の管端5側の端部に切欠部330aを設け、チューブ本体11を管端5から確実に圧接できるようにしている。 Therefore, a notch 330a is provided at the end of the water stop packing 310 on the tube end 5 side so as to match the shape of the spiral or step 5a of the tube end 5 so that the tube main body 11 can be reliably pressed from the tube end 5. Yes.
 また、止水用パッキン310の鉤部310同士を係合するにあたって、止水用パッキン310の段差部330bと管端5の段差5aに位置ずれが生じないよう、段差部330bが設けられている側の鉤部330の開口330cを管端5とは反対側に開口させ、止水用パッキン310の段差部330bと管端5の段差とを当接(係合)させた状態において、他方の鉤部330を係合できるように構成している。 Further, when engaging the flanges 310 of the water-stopping packing 310 with each other, a stepped portion 330b is provided so that the stepped portion 330b of the water-stopping packing 310 and the step 5a of the pipe end 5 are not displaced. In the state where the opening 330c of the flange portion 330 on the side is opened to the side opposite to the tube end 5 and the stepped portion 330b of the water-stop packing 310 and the stepped portion of the tube end 5 are in contact (engaged), It is comprised so that the collar part 330 can be engaged.
 以上、具体的な実施形態について説明したが、この発明は、上記実施形態に限定されるものではなく、この発明の範囲内で上記実施形態に多くの修正及び変更を加えることは勿論である。 Although specific embodiments have been described above, the present invention is not limited to the above embodiments, and it is needless to say that many modifications and changes are made to the above embodiments within the scope of the present invention.
 例えば、止水用パッキンとしては、図9や図12に示すものに限らず、図13に示す形態のものを用いてもよい。図13(a)に示す止水用パッキン310においては、スリット幅が設けられておらず、周方向への移動が拘束されている。このような止水用パッキンでは、チューブ本体11のつまみ上げが全く生じないため、つまみ上げに起因する漏れを確実に防止することができる。また、図13(b)に示す止水用パッキン310においては、返し部330dが設けられているため、軸方向への移動が規制されることになり、パッキンの形状がより崩れ難くなる。図13(c)に示す止水用パッキン310においては、係合手段330が、鉤部をパッキン側面から見て左右対称に設けたような形状とされており、先端幅広部330eが、この先端幅広部330eの形状に合わせて設けられた係合孔330fに係合されることで、周方向の移動を規制している。図13(d)は、先端幅広部330eや係合孔330fを複数個設けたものである。なお、係合手段330の形状としては、上記形状に限らず、種々の形状のものを使用可能である。 For example, the water-stop packing is not limited to that shown in FIGS. 9 and 12, and may have the form shown in FIG. 13. In the water-stop packing 310 shown in FIG. 13A, no slit width is provided, and movement in the circumferential direction is restricted. In such a water-stopping packing, the tube body 11 is not picked up at all, and therefore leakage due to the pick-up can be reliably prevented. Moreover, in the water stop packing 310 shown in FIG. 13B, since the return portion 330d is provided, the movement in the axial direction is restricted, and the shape of the packing is more difficult to collapse. In the water-stop packing 310 shown in FIG. 13 (c), the engaging means 330 is shaped so as to be provided symmetrically when the collar is viewed from the side of the packing, and the wide tip 330e is the tip. Engagement with an engagement hole 330f provided in accordance with the shape of the wide portion 330e restricts movement in the circumferential direction. FIG. 13 (d) is provided with a plurality of wide end portions 330e and engaging holes 330f. The shape of the engaging means 330 is not limited to the above shape, and various shapes can be used.
 また、ホルダー400としては、上記半割構造に限らず、パッキン300の外側に巻き付ける帯板状のものやC字状のものであって、加締めによって締め付けを行うものであってもよい。また、可撓性ホース1としては、チューブ本体11と内芯10、外芯15の外側にさらに外皮や補強芯を備えるものを用いてもよい。 Further, the holder 400 is not limited to the above-described halved structure, but may be a band plate shape or a C-shape wound around the outer side of the packing 300, and may be tightened by caulking. As the flexible hose 1, a tube provided with an outer skin or a reinforcing core on the outside of the tube main body 11, the inner core 10, and the outer core 15 may be used.
 本発明はオール樹脂製の可撓性を有する耐圧ホースとして利用することができる。 The present invention can be used as an all-resin flexible pressure-resistant hose.
1    可撓性ホース
5    管端
10   内芯(PP)
11   チューブ本体
12   フィルム層(フッ素樹脂)
13   フィルム層(PP)
14   フィルム層(フッ素樹脂)
15   外芯(PE)
16   拘束層
17   エラストマー層
18   織糸層(ポリエステル糸)
19   エラストマー層
20   配糸層(ポリエステル糸)
21   外巻層
22   保護層
23   アース線
100  管端継手
200  ニップル
310  止水用パッキン
320  スリット
330  係合手段(鉤部)
330a 切欠部
330b 段差部
340  抜け止め用パッキン
400  締付手段(ホルダー)
1 Flexible hose 5 Tube end 10 Inner core (PP)
11 Tube body 12 Film layer (fluororesin)
13 Film layer (PP)
14 Film layer (Fluororesin)
15 Outer core (PE)
16 Constrained layer 17 Elastomer layer 18 Woven yarn layer (polyester yarn)
19 Elastomer layer 20 Distribution layer (polyester yarn)
21 Outer winding layer 22 Protective layer 23 Ground wire 100 Pipe end joint 200 Nipple 310 Water-proof packing 320 Slit 330 Engagement means (buttock)
330a Notch portion 330b Stepped portion 340 Retaining prevention packing 400 Tightening means (holder)

Claims (14)

  1.  螺旋状に成形した内芯(10)上にチューブ本体(11)を被覆し、さらに当該チューブ本体(11)上に螺旋状に成形した外芯(15、25)を前記内芯(10)と二重螺旋構造をなすように巻き付けることにより、前記チューブ本体(11)に螺旋状の凹凸面が賦形された可撓性ホース(1)であって、
     前記内芯(10)は樹脂材により断面が方形に成形され、
     前記チューブ本体(11)は樹脂材によりシームレスに成形され、
     前記外芯(15、25)は樹脂材により成形され、
     さらに前記外芯(15、25)の外側には、当該外芯(15、25)の外周面を内側に圧接するように覆うと共に当該外芯(15、25)の外周面に融着され、前記外芯(15、25)および内芯(10)の径方向への膨らみを抑制すると共に外芯(15、25)の移動幅を制限する拘束層(16)が形成されていることを特徴とする可撓性ホース。
    The inner core (10) formed in a spiral shape is covered with the tube main body (11), and the outer cores (15, 25) formed in a spiral shape on the tube main body (11) are connected to the inner core (10). A flexible hose (1) in which a spiral concavo-convex surface is formed on the tube body (11) by being wound so as to form a double spiral structure,
    The inner core (10) is formed into a square cross section by a resin material,
    The tube body (11) is seamlessly molded from a resin material,
    The outer core (15, 25) is formed of a resin material,
    Further, on the outer side of the outer core (15, 25), the outer peripheral surface of the outer core (15, 25) is covered so as to be inwardly pressed and fused to the outer peripheral surface of the outer core (15, 25), A constraining layer (16) is formed that suppresses the radial expansion of the outer core (15, 25) and the inner core (10) and restricts the movement width of the outer core (15, 25). A flexible hose.
  2.  前記拘束層は、織糸層と、当該織糸層を表裏から挟持すると共に弾性を与えるエラストマー層とにより形成される請求項1に記載の可撓性ホース。 The flexible hose according to claim 1, wherein the constraining layer is formed of a woven yarn layer and an elastomer layer that sandwiches the woven yarn layer from the front and back sides and gives elasticity.
  3.  前記外芯の断面が方形に成形される請求項1または請求項2に記載の可撓性ホース。 The flexible hose according to claim 1 or 2, wherein a cross section of the outer core is formed in a square shape.
  4.  前記外芯の断面が円形または楕円形に成形される請求項1または請求項2に記載の可撓性ホース。 The flexible hose according to claim 1 or 2, wherein a cross section of the outer core is formed into a circle or an ellipse.
  5.  互いに隣接する前記外芯と前記内芯との間には湾曲を可能にするための間隙が設けられると共に、前記間隙は最も湾曲した状態で前記チューブ本体を挟んで当接するように設定されている請求項1~4のいずれかに記載の可撓性ホース。 A gap for enabling bending is provided between the outer core and the inner core adjacent to each other, and the gap is set so as to be in contact with the tube body in the most curved state. The flexible hose according to any one of claims 1 to 4.
  6.  前記可撓性ホース(1)は、最外周に螺旋状の保護層(22)が形成されている請求項1~5のいずれかに記載の可撓性ホース。 The flexible hose (1) according to any one of claims 1 to 5, wherein a spiral protective layer (22) is formed on an outermost periphery of the flexible hose (1).
  7.  請求項1~請求項6のいずれかに記載の可撓性ホース(1)と、前記可撓性ホース(1)の端部に取り付ける管端継手(100)とからなる管端継手付きの可撓性ホースであって、
     前記管端継手(100)は、前記可撓性ホース(1)に内嵌するニップル(200)と、前記可撓性ホース(1)に外嵌するパッキン(310)と、前記パッキン(310)を外側から締め付けて前記可撓性ホース(1)の内周面を前記ニップル(200)の外周面に圧接させる締付手段(400)とを備え、
     前記パッキン(310)はスリット(320)によって周方向に不連続な環状体とし、互いに対向する縁端部には、係合状態において、互いに離間する方向への移動を規制する係合手段(330)が設けられている管端継手付きの可撓性ホース。
    A pipe end joint with a pipe end joint comprising the flexible hose (1) according to any one of claims 1 to 6 and a pipe end joint (100) attached to an end of the flexible hose (1). A flexible hose,
    The pipe end joint (100) includes a nipple (200) fitted inside the flexible hose (1), a packing (310) fitted outside the flexible hose (1), and the packing (310). Tightening means (400) for tightening the outer peripheral surface of the flexible hose (1) by pressing the inner peripheral surface of the flexible hose (1) against the outer peripheral surface of the nipple (200),
    The packing (310) is formed in a ring shape discontinuous in the circumferential direction by a slit (320), and engaging means (330) for restricting movement in directions away from each other at the edge portions facing each other. ) Flexible hose with a pipe end joint.
  8.  前記係合手段(330)は互いに係合可能なように縁端部にそれぞれ形成された鉤部である請求項7に記載の管端継手付きの可撓性ホース。 The flexible hose with a pipe end joint according to claim 7, wherein the engaging means (330) are flanges formed at edge portions so as to be engageable with each other.
  9.  前記可撓性ホース(1)の管端(5)からチューブ本体(11)のみが延出され、前記チューブ本体(11)はフィルム層で構成され、
     前記パッキン(310)は、延出された前記チューブ本体(11)に外嵌される請求項7または請求項8のいずれかに記載の管端継手付きの可撓性ホース。
    Only the tube body (11) extends from the tube end (5) of the flexible hose (1), and the tube body (11) is composed of a film layer,
    The flexible hose with a pipe end joint according to any one of claims 7 and 8, wherein the packing (310) is externally fitted to the extended tube body (11).
  10.  前記パッキン(310)は、前記管端(5)の形状に合わせて切欠部(330a)が設けられている請求項9に記載の管端継手付きの可撓性ホース。 The flexible hose with a pipe end joint according to claim 9, wherein the packing (310) is provided with a notch (330a) according to the shape of the pipe end (5).
  11.  前記管端(5)は前記外芯(15、25)または前記内芯(10)に沿って螺旋状とされ、且つ、最縁端に位置する前記外芯または内芯を可撓性ホース(1)の軸方向に向かって切断することで螺旋ピッチ分の段差(5a)が形成されており、前記パッキン(310)の切欠部(330a)は、前記管端(5)の螺旋及び段差(5a)の形状に合わせて設けられている請求項10に記載の管端継手付きの可撓性ホース。 The tube end (5) is formed in a spiral shape along the outer core (15, 25) or the inner core (10), and the outer core or the inner core located at the outermost end is a flexible hose ( The step (5a) corresponding to the helical pitch is formed by cutting in the axial direction of 1), and the notch (330a) of the packing (310) is formed by the spiral and the step (5) of the pipe end (5). The flexible hose with a pipe end joint according to claim 10, which is provided in accordance with the shape of 5a).
  12.  前記パッキン(310)には、互いに係合可能なように縁端部にそれぞれ形成された鉤部(330)のいずれか一方に接近して、上記管端(5)の段差(5a)と係合可能な段差部(330b)が設けられており、この段差部(330b)が近接して設けられた側の鈎部(330)は、上記管端(5)とは反対に開口し、上記段差部(330b)を上記管端(5)の段差(5a)に係合させた状態で他方の鈎部(330)と係合可能とされている請求項11に記載の管端継手付きの可撓性ホース。 The packing (310) approaches either one of the flanges (330) formed at the edge ends so as to be engageable with each other, and engages with the step (5a) of the pipe end (5). A stepped portion (330b) capable of being joined is provided, and the flange portion (330) on the side where the stepped portion (330b) is provided close to the tube end (5) is opened opposite to the above-described tube end (5). 12. With a pipe end joint according to claim 11, wherein the step (330b) is engageable with the other flange (330) in a state where the step (330b) is engaged with the step (5a) of the pipe end (5). Flexible hose.
  13.  前記パッキン(310)の他に、周方向に連続な環状体であって、上記可撓性ホース(1)の端部に外嵌されるとともに締付手段(400)に係止されることで、上記可撓性ホース(1)のニップル(200)からの抜けを防止する抜け止め用パッキン(340)を備えている請求項9~請求項12に記載の管端継手付きの可撓性ホース。 In addition to the packing (310), it is an annular body that is continuous in the circumferential direction, and is fitted on the end of the flexible hose (1) and locked to the fastening means (400). The flexible hose with a pipe end joint according to any one of claims 9 to 12, further comprising a retaining packing (340) for preventing the flexible hose (1) from coming off from the nipple (200). .
  14.  前記可撓性ホース(1)は、最外周に螺旋状の保護層(22)が形成されており、前記周方向に連続な環状体とされた抜け止め用パッキン(340)は、前記延出されたチューブ本体(11)の基端部近傍の前記保護層(22)に螺着されている請求項13に記載の管端継手付きの可撓性ホース。 The flexible hose (1) has a spiral protective layer (22) formed on the outermost periphery, and the retainer packing (340) formed into a continuous annular body in the circumferential direction extends from the extension. The flexible hose with a pipe end joint according to claim 13, wherein the flexible hose is screwed to the protective layer (22) in the vicinity of the proximal end portion of the tube main body (11).
PCT/JP2015/062113 2015-04-21 2015-04-21 Flexible hose WO2016170599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062113 WO2016170599A1 (en) 2015-04-21 2015-04-21 Flexible hose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062113 WO2016170599A1 (en) 2015-04-21 2015-04-21 Flexible hose

Publications (1)

Publication Number Publication Date
WO2016170599A1 true WO2016170599A1 (en) 2016-10-27

Family

ID=57142938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062113 WO2016170599A1 (en) 2015-04-21 2015-04-21 Flexible hose

Country Status (1)

Country Link
WO (1) WO2016170599A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367643A (en) * 1943-03-12 1945-01-16 Detroit Macoid Corp Plastic conduit
JPS5113020U (en) * 1974-07-17 1976-01-30
JPS63219982A (en) * 1987-03-06 1988-09-13 ユーシー産業株式会社 Synthetic resin pipe and manufacture thereof
JP2008101634A (en) * 2006-10-17 2008-05-01 Meiji Flex:Kk Hose and its manufacturing method
JP2013119912A (en) * 2011-12-07 2013-06-17 Totaku Industries Inc Tube end fitting
JP2015086925A (en) * 2013-10-30 2015-05-07 東拓工業株式会社 Packing and joint structure
JP2015102195A (en) * 2013-11-26 2015-06-04 東拓工業株式会社 Flexible hose

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367643A (en) * 1943-03-12 1945-01-16 Detroit Macoid Corp Plastic conduit
JPS5113020U (en) * 1974-07-17 1976-01-30
JPS63219982A (en) * 1987-03-06 1988-09-13 ユーシー産業株式会社 Synthetic resin pipe and manufacture thereof
JP2008101634A (en) * 2006-10-17 2008-05-01 Meiji Flex:Kk Hose and its manufacturing method
JP2013119912A (en) * 2011-12-07 2013-06-17 Totaku Industries Inc Tube end fitting
JP2015086925A (en) * 2013-10-30 2015-05-07 東拓工業株式会社 Packing and joint structure
JP2015102195A (en) * 2013-11-26 2015-06-04 東拓工業株式会社 Flexible hose

Similar Documents

Publication Publication Date Title
US8844580B2 (en) Low fluid permeation rubber hose
JPH0231272B2 (en)
US10077857B2 (en) Pipe with an outer wrap
MX2013014132A (en) Plugging device.
WO2018133432A1 (en) Telescopic pipe
JP5007165B2 (en) Synthetic resin joint pipe and manufacturing method thereof
WO2016170599A1 (en) Flexible hose
JP2010054052A (en) Silicone reinforced hose
JP6049594B2 (en) Flexible hose
JP6030881B2 (en) Corrugated plastic tube
US10077856B2 (en) Pipe with an outer wrap
WO2010052858A1 (en) Pipe joint and method of manufacturing same
JP2011002011A (en) Flexible pressure-resistant synthetic resin pipe
JP5393019B2 (en) Synthetic resin connecting pipe and its manufacturing method
JP7372631B2 (en) lining material
JP6427686B2 (en) Double hose
JP5350821B2 (en) Flexible pressure tube
JP6415207B2 (en) Manufacturing method of synthetic resin hose
JP7355330B2 (en) Pipe rehabilitation components
JP4649630B2 (en) Silicone reinforced hose
JP5363251B2 (en) Pipe joint and pipe connection structure
JP6271374B2 (en) Synthetic resin hose
JP5626774B2 (en) Synthetic resin pipe
JP7290252B2 (en) Pipe rehabilitation member
JP2009058018A (en) Expansive pipe joint with dust proof cover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP