WO2016170589A1 - Surface current vector measurement system and failure diagnosis system using same - Google Patents
Surface current vector measurement system and failure diagnosis system using same Download PDFInfo
- Publication number
- WO2016170589A1 WO2016170589A1 PCT/JP2015/062028 JP2015062028W WO2016170589A1 WO 2016170589 A1 WO2016170589 A1 WO 2016170589A1 JP 2015062028 W JP2015062028 W JP 2015062028W WO 2016170589 A1 WO2016170589 A1 WO 2016170589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surface current
- current vector
- vector
- measurement
- probe
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/08—Circuits for altering the measuring range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
Definitions
- the present invention relates to a surface current vector measurement system and an electronic device failure diagnosis system using the same.
- a scanning electron beam type semiconductor inspection and measurement device for inspecting and measuring the shape of a wiring pattern formed on a semiconductor wafer is installed in a vacuum housing, an acceleration electrode for accelerating an electron beam, an electron beam diameter
- a sample on the stage is irradiated with an electron beam through a plurality of electrodes, such as a plurality of diaphragm electrodes for focusing and a plurality of deflection electrodes for adjusting the irradiation position of the electron beam, and secondary electrons and reflected electrons from the sample are irradiated. Is detected, and the wiring pattern shape is inspected and measured.
- a scanning electron beam type drawing apparatus for forming a wiring pattern on a semiconductor wafer, similarly, by irradiating a resist laminated on the semiconductor wafer with an electron beam through a plurality of electrodes, A wiring pattern is formed.
- electrodes for controlling a plurality of charged particle beams are provided, and a plurality of control boards for controlling each electrode are mounted.
- Patent Document 1 Japanese Patent No. 5461799
- Non-Patent Document 1 As a method for measuring the current and the electromagnetic field generated therewith, the consumption described in Japanese Patent Application Laid-Open No. 2012-44001 (Patent Document 2) and “Measurement of Electromagnetic Field and Visualization thereof” (Non-Patent Document 1) There is a technique for detecting a change in electric current and an electromagnetic field associated therewith. When a circuit is opened due to a failure of a current consumption element or a connector is not properly fitted, or a circuit board wiring is short-circuited, a current different from that during normal operation flows in the power supply circuit. The occurrence of this abnormal current is observed to detect a faulty part of the device.
- Patent Document 1 When the electromagnetic field distribution measuring method described in Patent Document 1 is applied to a drawing apparatus equipped with a DAC amplifier unit that does not have a circuit diagnosis function, it is necessary to replace all the DAC amplifier units, resulting in high cost. It will take. Further, it is necessary to stop the apparatus in order to replace the DAC amplifier unit.
- the electromagnetic field distribution measuring method described in Patent Document 2 measures an electromagnetic field of a substrate inside a device or a control unit, and an electromagnetic field corresponding to the electromagnetic field at a place where the electromagnetic field is measured. It realizes that a vector is grasped three-dimensionally. In this case, since the electromagnetic field around the internal substrate and the control device is measured, it is considered that the fluctuation of the electromagnetic field due to the current inside the apparatus can be monitored without stopping the apparatus.
- the current fluctuation of the power supply circuit that occurs at the time of failure occurs not only in the substrate and power supply device inside the device but also in the device external casing connected to the external ground.
- a system for detecting an abnormality can be provided by measuring the current flowing through the casing and comparing it with a current measurement value obtained under normal conditions.
- the housing of the device has a structure with irregularities such as a cylindrical shape and a protruding portion of a cable connector in addition to a flat surface.
- the conventional electromagnetic field measurement has a problem that an error occurs in the magnetic field measurement value and the measurement coordinate depending on the attitude of the magnetic field probe.
- the strength of the magnetic field generated by the current on the surface of the conductor is inversely proportional to the square of the distance, it is possible to measure a smaller magnetic field if the magnetic field sensor is close to the housing surface. If the magnetic field sensor is separated from the housing surface, it is necessary to calibrate the magnetic field measurement value by measuring the distance.
- the magnetic flux interlinking with the coil cross section is maximized, the voltage generated at both ends of the coil is maximized, and when the coil cross section and the case surface are parallel, the voltage at both ends is minimized.
- the magnetic field intensity to be measured is also different, and calibration of the magnetic field measurement is necessary.
- the rotation angle about the vertical axis of the sensor housing surface changes, the magnetic flux linked to the coil cross section changes, so the magnetic field measurement value needs to be calibrated.
- the angle between the magnetic field probe and the vertical surface of the housing, the distance from the housing surface, and the vertical axis of the housing surface are used as axes.
- the present application enables measurement by avoiding obstacles such as large devices such as trains, curved housings, cables attached to the devices, and by inserting sensors in narrow places.
- a failure diagnosis system that can be applied to an existing apparatus without stopping the system is provided.
- the present invention provides a surface current vector measurement system for measuring a magnetic field generated based on a surface current flowing through a measurement object, a coil for measuring the magnetic flux density of the magnetic field, and detecting the position and orientation of the probe.
- a surface current measurement probe comprising a position / posture sensor that performs amplification and an amplifier that amplifies the output signal of the coil, and a position of the probe and a position vector orientation information, and a measurement coil cross section vector and a measurement target housing surface vertical vector, And a surface current vector calculating unit that calculates the surface current vector from the corrected magnetic flux density by correcting the magnetic flux density by the angle ⁇ .
- the surface current vector calculation unit includes a case surface vertical vector based on position information of the probe and case surface information of the measurement target.
- the angle ⁇ between the measurement coil cross-section vector and the measurement target case surface vertical vector is calculated from the posture information of the probe, and the magnetic field measurement data measured by the probe is corrected by the angle ⁇ to obtain the magnetic flux density.
- the surface current vector is calculated from the corrected magnetic flux density.
- a failure diagnosis system is obtained by a surface current vector measurement system that measures the magnetic field intensity generated by a current flowing from a control board of a diagnosis target device, and the surface current vector measurement system.
- a memory for storing the distribution data of the surface current vector during normal operation of the device to be diagnosed, a comparison unit for comparing the storage data of the memory and the distribution data of the surface current vector obtained by the surface current vector measurement system;
- a failure diagnosing unit that determines that the diagnosis target device is faulty when the difference data in units of surface current vectors compared by the comparing unit exceeds a predetermined threshold value.
- a monitor is further connected via an external interface, and the fault diagnosis unit is a surface current measured by the surface current vector measurement system at the time of diagnosis.
- the surface current vector I at the probe position P on the scanning path on the surface of the case of the diagnosis target device displayed in three dimensions and on the surface of the case of the diagnosis target device displayed in a two-dimensional development view. (f) was configured to be displayed on the monitor.
- the error due to the position / orientation information of the magnetic field sensor is calibrated to provide a high-precision magnetic field measurement means, which is attached to a large apparatus such as a train, a casing having unevenness and a curved surface, and an apparatus. Therefore, it is possible to provide a fault diagnosis system that can be applied to an existing apparatus without stopping the apparatus. It can be realized at low cost, can be installed without stopping the device, and can detect a failure of the device or the control board.
- FIG. 1 shows the structure of the failure diagnosis system which is the 1st Embodiment of this invention. It is a figure which shows an example of a structure of the surface current measurement probe provided with the position and attitude
- FIG. 1 shows a configuration of a failure diagnosis system 100 according to the first embodiment of the present invention.
- the failure diagnosis system 100 includes, for example, a failure diagnosis device 120 configured on one substrate or a single device configuration and a monitor 108 connected to an external interface 109.
- the failure diagnosis apparatus 120 includes a surface current vector measurement system 101 that measures a surface current flowing through a casing of a diagnosis target apparatus or a control board in the apparatus, and the surface current vector measurement system 101.
- Memory 103 for storing the distribution data 110 of the surface current vector acquired at the timing of setting the initial state to the initial state (the timing at which the device to be diagnosed can be regarded as operating normally), the storage data of the memory 103, and the A crest value comparison unit 104 that compares crest values with the distribution data 110 of the surface current vector acquired at an arbitrary timing for diagnosing the diagnosis target device acquired by the surface current vector measurement system 101, and a frequency characteristic that compares the frequency characteristics Comparison of angle of surface current vector with comparison unit 105 and comparison of surface current vector angle And 106, the comparison data outputted from the respective comparator unit is configured to include a fault diagnosis unit 107 for outputting a diagnostic result to determine the fault state of the control board of the diagnosis target device or the apparatus.
- the surface current vector measuring system 101 is connected to the surface current measuring probe 200 by, for example, a cable 111 and taken out to the surface of the casing of the target device for failure diagnosis or a control board in the device. It is configured to be able to scan the vicinity.
- the surface current measurement probe 200 detects a magnetic field generated due to the surface current flowing on the surface of the casing of the device to be diagnosed or a control board mounted in the device.
- the surface current vector distribution data 110 is calculated by the surface current vector calculation unit 102 based on the detected magnetic field measurement data.
- Examples of the surface current measurement probe 200 include a method using a magnetic field measurement probe of a loop coil or a flux gate sensor.
- the loop coil is a method of measuring a magnetic field and a current from a voltage induced at both ends of a coil, which is composed of a conductive wire formed in a loop shape and changes with time in the magnetic flux interlinking with the loop.
- the fluxgate sensor is composed of a magnetic core, an excitation coil wound around the magnetic core, and a detection coil.
- An AC magnetic field with a magnitude that causes the magnetic core to be magnetically saturated is applied by the excitation coil. This is a method of measuring a magnetic field and a current from a voltage induced in the.
- the loop coil is a method of measuring a magnetic field from an induced voltage generated in proportion to a time change of the flux linkage, there is a possibility that the detection sensitivity to a low frequency magnetic field of several Hz to several tens Hz or less may be lowered.
- the fluxgate sensor uses a magnetic material having a high magnetic permeability, the frequency characteristic of the magnetic material is a rate-determining condition, and the sensitivity is greatly reduced for a magnetic field of several tens of kHz or more.
- a surface current vector measurement system using a magnetic field measurement probe of a loop coil or a fluxgate sensor can achieve the effect of the present invention.
- the surface current measurement probe is used in a wide band. It is very useful to increase the sensitivity.
- FIG. 2 shows an example of the configuration of a surface current measurement probe 200 having a position / posture detection function.
- the probe includes a coil 201 in the current probe, an analog amplifier 211 that amplifies an output signal of the coil, and a position / posture sensor 206 that outputs probe position / posture information 210.
- the coil 201 includes, for example, a flux gate sensor, a loop coil, a Hall element, and other sensors that can detect a magnetic field according to the minimum frequency of measurement. Further, an A / D converter for converting the output signal of the amplifier 211 into a digital signal and a digital signal processing means 208 are provided.
- the surface current measurement probe 200 outputs magnetic field measurement data 209 converted into a digital signal by an A / D converter and digital signal processing means 208, and probe position / posture information 210.
- the surface current vector calculation unit 102 receives the output of the surface current measurement probe 200 and uses the position information (CAD data or the like) of the housing surface 202 of the diagnosis target device that is separately prepared, and uses the housing surface vertical vector 203. And a distance 204 between the housing surface and the surface current measurement probe, and a vector 205 of the cross section of the magnetic field measurement coil 201 in the current probe, and a magnetic field measurement coil cross section vector 205 in the current probe An angle ⁇ 207 formed with the casing surface vertical vector 203 is calculated. Subsequently, calibration calculation of the magnetic field measurement data 209 that is the output of the surface current measurement probe 200 is performed.
- CAD data or the like position information
- FIG. 3 illustrates the processing of the surface current vector calculation unit 102 of the surface current vector measurement system 101.
- step S101 it calculates the casing surface vertical vector 203 of the probe position output from the position and orientation sensor 206 coordinate P 0 (previously determined representative points P R representing the position of the probe.).
- a probe position P (x 1 , y 1 , z 1 ) 401 is obtained by mapping the probe position coordinates P 0 onto the housing surface 402 by using a 3D CAD or a digital still camera. Is calculated.
- step S102 an angle ⁇ 207 formed by the measurement coil cross-section vector 205 of the magnetic field in the current probe and the housing surface vertical vector 203 is calculated.
- the probe inclination angle ( ⁇ x , ⁇ y , ⁇ z ) output from the position / orientation sensor 206 of the surface current measurement probe 200 is a unit vector C (x 5 , y 5 , z 5 ) of the measurement coil cross section of the probe.
- step S103 correction calculation of the magnetic field measurement data 209 measured by the surface current measurement probe 200 is performed.
- step S104 the surface current is calculated from the magnetic flux density calculated in S103.
- ⁇ 0 is the Coulomb magnetic constant.
- the output of the surface current vector calculation unit 102 of the surface current vector measurement system 101 is the probe position P (x 1 , y 1) obtained by mapping the probe position coordinates P 0 onto the housing surface. , z 1 ) and the surface current vector I (f) are output by the number of measurement points. That is, surface current vector distribution data 110 is output.
- FIG. 6 is a flowchart for explaining failure diagnosis processing of the failure diagnosis system 100 according to the present embodiment.
- the surface current measurement probe 200 is scanned manually or by mechanical means along the surface of the casing of the diagnosis target device or the surface of the control board in the diagnosis target device, for example, probe position information. Each time 210 changes by a predetermined scanning distance, the surface current is measured, and the surface current vector calculation unit 102 calculates and outputs the surface current vector.
- step S201 the failure diagnosis system 100 measures the surface current by scanning the surface of the casing of the diagnosis target device or the surface of the control board in the diagnosis target device at the first timing by the surface current vector measurement system 101 to be mounted.
- step S 202 the measured surface current vector distribution data 110 is stored in the memory 103.
- the “first timing” at which the surface current vector measurement system 101 measures the distribution of the surface current is a timing measured when it is confirmed that the diagnosis target device is operating normally prior to the failure diagnosis process. .
- the distribution data 110 of the surface current vector measured here is stored in the memory 103, and the stored data in the memory 103 is always read and used in subsequent failure diagnosis processing. If it is determined that there is no change in the surface current vector during normal operation, such as when the specification of the diagnosis target device is changed, the data stored in the memory is not updated.
- the processing up to storing the surface current vector distribution data in the memory in S202 is implemented as a program for registering surface current vector distribution data during normal operation, and the subsequent failure diagnosis processing is implemented as a separate program. However, in the flowchart of FIG. 6, the steps of both programs are described in succession.
- step S ⁇ b> 203 the surface current vector measurement system 101 scans the surface of the casing of the diagnostic target device or the surface of the control board in the diagnostic target device at the second timing to scan the surface current. Measure.
- step S204 the surface current vector distribution data 110 stored in the memory 103 is compared with the surface current vector distribution data 110 measured at the second timing.
- the “second timing” means that when a failure diagnosis process of the diagnosis target device is started and a predetermined diagnosis cycle time provided in the failure diagnosis system 100 is reached, or an instruction to start diagnosis is input to the failure diagnosis system 100 It is the time.
- the comparison process of the distribution data of the surface current vector in step S204 is executed by the peak value comparison unit 104, the frequency characteristic comparison unit 105, and the surface current vector angle comparison unit 106 of the failure diagnosis apparatus 120.
- the surface current vector distribution data 110 cannot always accurately compare surface current vectors at the same position depending on the scanning method of the probe and the difference in the position where the data is captured. However, in the measurement of the surface current at the first and second timings, the probe scanning method and the data capturing position are operated as close as possible. In the comparison process of the distribution data 110 of the surface current vectors, the surface current vectors I (f) whose probe positions P (x 1 , y 1 , z 1 ) are within the allowable error range are compared.
- the peak value comparison unit 104 extracts the difference in current intensity of the surface current vector I (f) at the same frequency f.
- One or more frequencies f to be compared are set in advance.
- the frequency characteristic comparison unit 105 for example, when the difference in current intensity at a specific frequency f in the frequency spectrum of both surface current vectors I (f) to be compared is equal to or greater than an allowable error, the frequency characteristics do not match. Is determined. In the main frequency f (a frequency is designated in advance) in the frequency spectrum of the surface current vector I (f), a match / mismatch is similarly determined. The frequency characteristic comparison unit 105 executes the processing for comparing the above frequency characteristics. If the number of mismatches occurs at one or more locations, for example, the frequency spectra of both surface current vectors I (f) to be compared are determined to be mismatched.
- the surface current vector angle comparison unit 106 extracts a difference between angles of both surface current vectors I (f) to be compared.
- step S205 it is determined whether or not the difference in surface current is within a predetermined threshold. That is, in the surface current vector distribution data 110 to be compared, step S204 is performed for all combinations of surface current vectors I (f) whose probe positions P (x 1 , y 1 , z 1 ) are within an allowable error range. Then, the result of the comparison process is input to determine whether it is normal.
- the output of the difference between the surface currents in the peak value comparison unit 104, the frequency characteristic comparison unit 105, and the surface current vector angle comparison unit 106 is compared with a preset threshold value.
- the difference in current intensity of the surface current vector I (f) at the set frequency f is set to the first threshold value (a plurality of threshold values may be set for each frequency f) and the difference in frequency characteristics.
- the comparison between the output of each of these comparison units and the threshold value may be determined by only the output of one of the comparison units, if necessary, or any combination or output of all the comparison units.
- step S208 is performed. Migrate to
- step S206 the probe position P (x 1 , y 1 , z 1 ) of the surface current vector I (f) determined to be abnormal is used as the surface current vector I (f) at the same frequency f that is, for example, a crest value comparison.
- the difference value to be compared may be a difference in frequency characteristics or an angle difference between both surface current vectors I (f).
- step S207 the probe position P (x 1 , y 1 , z 1 ) of the surface current vector I (f) having the maximum surface current difference compared in step S206 is determined as the failure location, An internal module or the like closest to the position is specified and displayed on the monitor 108.
- step S208 at the second timing, no abnormality is found in the surface current measured by scanning the surface of the casing of the diagnosis target device or the surface of the control board in the diagnosis target device, and the result determined to be normal is monitored. The failure diagnosis process is terminated.
- the surface current vector measurement system 101 of the present embodiment scans the surface of the cylindrical casing of the diagnostic target device, and the distribution data 110 of the surface current vector I (f) is obtained.
- An example is shown in which the distribution data 110 of the surface current vector I (f) as a measurement result is displayed on the monitor 108 by the fault diagnosis system 100 after measurement.
- a measurement result at the second timing for example, 3 result of scanning lines, the probe position P on the scanning path (x 1, y 1, z 1) by the surface current vector I (f ) Is displayed.
- 5A is an example in which a cylindrical housing surface 502 is displayed in a three-dimensional manner
- FIG. 5B is an example of a housing surface 503 in a two-dimensional development view.
- the surface current vector I (f) 501 determined to be an abnormal surface current vector as a result of the failure diagnosis process in the failure diagnosis system 100 is displayed thickly or by changing its color. Further, in FIG. 5B, the fault location 504 causing the abnormal current is identified and displayed upstream of the abnormal surface current vector 501. Further, when the internal modules 505-1 to 505-4 of the structure inside the housing are displayed in accordance with the development view 503, the failed module can be specified.
- FIG. 9 shows an embodiment in which this fault diagnosis system is applied to a scanning electron beam type semiconductor inspection / measurement apparatus.
- the scanning electron beam type semiconductor inspection / measurement apparatus includes an electron gun 901 that emits an electron beam, an acceleration electrode 912 that accelerates the electron beam, aperture electrodes 902-1 and 902-2 for reducing the electron beam diameter, Deflection electrodes 903-1 and 903-2 for adjusting the irradiation position of the electron beam, a stage 904 on which the sample 905 is set, a detector 906 for detecting secondary electrons emitted from the sample 905, and a detection signal are amplified.
- a signal detection board 907 that performs signal processing by converting it into a digital signal
- a monitor 908 that displays an image of the signal processed data
- control boards 911-1 and 911- for applying a control voltage or control current to each electrode.
- This is an electron microscope composed of 2,911-3 and 911-4.
- a fault diagnosis system composed of a surface current measuring probe 200 and a fault diagnosis device 120 includes a current that flows from the control board to the electrode, and a surface current that flows from the control board to the ground through the housing of the electron microscope. It is installed to scan the control board and the surface of the housing, measure the surface current, and perform fault diagnosis of the scanning electron beam semiconductor inspection / measurement device Yes.
- FIG. 10 is a diagram showing a form in which the failure diagnosis system of the present embodiment is applied to an automobile.
- a plurality of control units 1004 and 1005 for controlling an engine, a brake system, a navigation system, and the like are mounted in the automobile, and an inverter 1002 and a power supply unit 1003 for controlling the motor 1001 are mounted.
- FIG. 7 shows an example of the configuration of a surface current measurement probe 700 having a position / attitude detection function used in the surface current vector measurement system 101 according to the second embodiment of the present invention.
- This probe includes a current-in-probe coil 701, an analog amplifier 711 that amplifies the output signal of the coil, and a position / posture sensor 706 that outputs probe position / posture information 710.
- the coil 701 includes, for example, a flux gate sensor, a loop coil, a Hall element, and other sensors that can detect a magnetic field according to the minimum frequency of measurement. Further, an A / D converter for converting the output signal of the amplifier 711 into a digital signal and a digital signal processing means 708 are provided.
- the surface current measurement probe 700 outputs magnetic field measurement data 709 converted into a digital signal by an A / D converter and digital signal processing means 708, and probe position / posture information 710.
- the surface current vector calculation unit 102 receives the output of the surface current measurement probe 700, and uses the position information (CAD data or the like) of the housing surface 702 of the diagnosis target device that is separately prepared, and uses the housing surface vertical vector 703. And a distance 704 between the housing surface 702 and the surface current measurement probe 700 is calculated, and further, a cross-sectional vector 705 of the magnetic field measurement coil 701 in the current probe is used to calculate the magnetic field measurement coil cross section in the current probe. An angle ⁇ 707 formed by the vector 705 and the casing surface vertical vector 703 is calculated. Further, the magnetic field measurement data 709 which is the output of the surface current measurement probe 700 is calibrated and calculated using the curvature ⁇ ′ 712 of the housing surface.
- FIG. 8 illustrates the processing of the surface current vector calculation unit 102 of the surface current vector measurement system 101.
- step S301 similarly to step S101, and calculates the casing surface vertical vector 703 of the probe position output from the position and orientation sensor 706 coordinate P 0 (previously determined representative points P R representing the position of the probe.) .
- step S302 as in step S102, the angle ⁇ 707 formed by the measurement coil cross-section vector 705 of the magnetic field in the current probe and the casing surface vertical vector 703 is calculated.
- step S303 similarly to step S103, correction calculation of the magnetic field measurement data 709 measured by the surface current measurement probe 700 is performed.
- step S304 the surface current is calculated from the magnetic flux density B (f) calculated in S303.
- the surface current vector I (f) is given by the following equation according to Bio-Savart's law.
- I (f) B (f) * 2 ⁇ a / ⁇ 0
- a represents the distance between the surface current and the probe
- ⁇ 0 represents the magnetic constant of Coulomb
- Measurement of the surface current vector based on this flowchart makes it possible to measure the surface current vector on the surface of the housing with unevenness with high sensitivity.
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
Provided is a failure diagnosis system for industrial and medical devices that has a low cost and is easy to install. This failure diagnosis system is configured so as to be provided with a surface current vector measurement system for measuring the strength of the magnetic field generated by the current flowing through a control board of a device to be diagnosed, memory for storing the surface current vector distribution data for the device to be diagnosed acquired by the surface current vector measurement system during normal operation, a comparison unit for comparing the saved data in the memory and the surface current vector distribution data acquired by the surface current vector measurement system, and a failure diagnosis unit for determining that there is a failure in the device to be diagnosed if the difference data per surface current vector compared by the comparison unit exceeds a prescribed threshold.
Description
本発明は、表面電流ベクトル測定システムおよびこれを用いた電子機器の故障診断システムに関するものである。
The present invention relates to a surface current vector measurement system and an electronic device failure diagnosis system using the same.
半導体ウェハ上に形成した配線パターンの形状を検査、計測するための走査型電子ビーム式の半導体検査、計測装置は、真空の筐体内に設置した、電子ビームを加速する加速電極、電子ビーム径を絞るための複数の絞り電極、電子ビームの照射位置を調整する複数の偏向電極などの、複数の電極を介して、ステージ上のサンプルに電子ビームを照射し、サンプルからの二次電子や反射電子を検出して、配線パターン形状を検査、計測する。また、半導体ウェハ上に配線パターンを形成するための走査型電子ビーム式の描画装置においても、同様に、複数の電極を介して、電子ビームを半導体ウェハ上に積層したレジストに照射することで、配線パターンを形成する。上記のように、半導体製造装置や半導体検査計測装置では、複数の荷電粒子ビームを制御するための電極が設けられており、各電極を制御するための複数の制御基板が搭載されている。
A scanning electron beam type semiconductor inspection and measurement device for inspecting and measuring the shape of a wiring pattern formed on a semiconductor wafer is installed in a vacuum housing, an acceleration electrode for accelerating an electron beam, an electron beam diameter A sample on the stage is irradiated with an electron beam through a plurality of electrodes, such as a plurality of diaphragm electrodes for focusing and a plurality of deflection electrodes for adjusting the irradiation position of the electron beam, and secondary electrons and reflected electrons from the sample are irradiated. Is detected, and the wiring pattern shape is inspected and measured. Also, in a scanning electron beam type drawing apparatus for forming a wiring pattern on a semiconductor wafer, similarly, by irradiating a resist laminated on the semiconductor wafer with an electron beam through a plurality of electrodes, A wiring pattern is formed. As described above, in the semiconductor manufacturing apparatus and the semiconductor inspection / measurement apparatus, electrodes for controlling a plurality of charged particle beams are provided, and a plurality of control boards for controlling each electrode are mounted.
これらの制御基板が故障すると、測定精度や形成パターン精度の低下、半導体ウェハの破壊、製造ラインの停止による機会損失を招くため、早期に故障箇所を特定してメンテナンスすることが求められる。
If these control boards fail, the measurement accuracy and formation pattern accuracy are reduced, the semiconductor wafer is destroyed, and the opportunity is lost due to the stop of the production line. Therefore, it is required to identify the failure point and perform maintenance at an early stage.
荷電粒子ビーム描画装置の故障箇所の検知方法として、特許第5461799号公報(特許文献1)に記載の技術がある。
There is a technique described in Japanese Patent No. 5461799 (Patent Document 1) as a method for detecting a failure location of a charged particle beam drawing apparatus.
一方で、電流及びそれに伴い発生する電磁界の計測方法として、特開2012-42401号公報(特許文献2)及び、「電磁界の計測とその可視化」(非特許文献1)に記載の、消費電流及びこれに伴う電磁界の変化を検出する技術がある。消費電流の素子の故障またはコネクタの勘合不良による回路の開放や、基板配線のショートが発生すると、電源回路の電流は正常動作時と異なる電流が流れる。この異常電流の発生を観測して装置の故障箇所を検知する。
On the other hand, as a method for measuring the current and the electromagnetic field generated therewith, the consumption described in Japanese Patent Application Laid-Open No. 2012-44001 (Patent Document 2) and “Measurement of Electromagnetic Field and Visualization thereof” (Non-Patent Document 1) There is a technique for detecting a change in electric current and an electromagnetic field associated therewith. When a circuit is opened due to a failure of a current consumption element or a connector is not properly fitted, or a circuit board wiring is short-circuited, a current different from that during normal operation flows in the power supply circuit. The occurrence of this abnormal current is observed to detect a faulty part of the device.
特許文献1に記載の電磁界分布の計測方法は、回路診断機能を持たないDACアンプユニットを搭載している描画装置に適用する場合、全てのDACアンプユニットを交換する必要があり、高いコストがかかることになる。また、DACアンプユニットを交換するために装置を停止する必要がある。
When the electromagnetic field distribution measuring method described in Patent Document 1 is applied to a drawing apparatus equipped with a DAC amplifier unit that does not have a circuit diagnosis function, it is necessary to replace all the DAC amplifier units, resulting in high cost. It will take. Further, it is necessary to stop the apparatus in order to replace the DAC amplifier unit.
一方で、特許文献2に記載の、電磁界分布の計測方法は、装置内部の基板や、制御ユニットの電磁界を計測し、電磁界が測定された場所で、当該電磁界に対応する電磁界ベクトルが3次元的に把握されることを実現する。この場合、内部基板や制御機器の周囲の電磁界を計測するため、装置を停止することなく、装置内部電流に伴う電磁界の変動を監視することができると考えられる。
On the other hand, the electromagnetic field distribution measuring method described in Patent Document 2 measures an electromagnetic field of a substrate inside a device or a control unit, and an electromagnetic field corresponding to the electromagnetic field at a place where the electromagnetic field is measured. It realizes that a vector is grasped three-dimensionally. In this case, since the electromagnetic field around the internal substrate and the control device is measured, it is considered that the fluctuation of the electromagnetic field due to the current inside the apparatus can be monitored without stopping the apparatus.
しかしながら、故障時に生じる電源回路の電流変動は、装置内部の基板や電源装置のみならず、外部接地に接続された装置外部筐体にも発生する。この筐体に流れる電流を測定して、既に測定しておいた正常時の電流測定値と比較することにより、異常を検知するシステムを提供できる可能性がある。
However, the current fluctuation of the power supply circuit that occurs at the time of failure occurs not only in the substrate and power supply device inside the device but also in the device external casing connected to the external ground. There is a possibility that a system for detecting an abnormality can be provided by measuring the current flowing through the casing and comparing it with a current measurement value obtained under normal conditions.
当該装置の筐体は平面の他に、円筒形状やケーブル用コネクタの突出部分等の凹凸のある構造を有している。従来の技術になる電磁界計測は、磁界プローブの姿勢により、磁界測定値と測定座標に誤差が生じる課題がある。
The housing of the device has a structure with irregularities such as a cylindrical shape and a protruding portion of a cable connector in addition to a flat surface. The conventional electromagnetic field measurement has a problem that an error occurs in the magnetic field measurement value and the measurement coordinate depending on the attitude of the magnetic field probe.
導体の表面の電流が作る磁界の強度は距離の2乗に反比例するので、磁界センサを筐体表面に近接すればより微少な磁界を計測することが可能になる。もし、磁界センサが筐体表面から離れている場合は、その距離を計測して、磁界測定値を校正する必要がある。また、コイル断面と筐体表面の鉛直が一致する場合にコイル断面に鎖交する磁束は最大となり、コイル両端に生じる電圧も最大、コイル断面と筐体表面が平行になると両端の電圧は最小になる。このように、磁界プローブ内のコイル断面と筐体表面の鉛直軸との角度が異なる場合は、計測する磁界強度も異なり磁界測定の校正が必要である。センサの筐体表面の鉛直軸を軸とした回転角が変ると、コイル断面に鎖交する磁束は変化するので磁界測定値を校正する必要がある。
Since the strength of the magnetic field generated by the current on the surface of the conductor is inversely proportional to the square of the distance, it is possible to measure a smaller magnetic field if the magnetic field sensor is close to the housing surface. If the magnetic field sensor is separated from the housing surface, it is necessary to calibrate the magnetic field measurement value by measuring the distance. In addition, when the coil cross section and the case surface vertical match, the magnetic flux interlinking with the coil cross section is maximized, the voltage generated at both ends of the coil is maximized, and when the coil cross section and the case surface are parallel, the voltage at both ends is minimized. Become. Thus, when the angle between the coil cross section in the magnetic field probe and the vertical axis of the housing surface is different, the magnetic field intensity to be measured is also different, and calibration of the magnetic field measurement is necessary. When the rotation angle about the vertical axis of the sensor housing surface changes, the magnetic flux linked to the coil cross section changes, so the magnetic field measurement value needs to be calibrated.
このように、装置筐体の表面の電流が発生する磁界を測定するためには、磁界プローブと筐体表面の鉛直との角度や、筐体表面との距離、筐体表面の鉛直軸を軸とした回転角を正確に把握して、磁界測定値と測定座標を校正する課題がある。
As described above, in order to measure the magnetic field generated by the current on the surface of the apparatus housing, the angle between the magnetic field probe and the vertical surface of the housing, the distance from the housing surface, and the vertical axis of the housing surface are used as axes. There is a problem of accurately grasping the rotation angle and calibrating magnetic field measurement values and measurement coordinates.
本願は、上記課題に鑑み、電車等の大形の装置や、曲面筐体、装置に付随するケーブル等の障害物を回避しての測定、狭い場所へセンサ挿入して測定を可能とし、装置を停止することなく既存装置に適用可能な故障診断システムを提供するものである。
In view of the above problems, the present application enables measurement by avoiding obstacles such as large devices such as trains, curved housings, cables attached to the devices, and by inserting sensors in narrow places. A failure diagnosis system that can be applied to an existing apparatus without stopping the system is provided.
上記課題を解決するために本発明では、測定対象を流れる表面電流に基いて発生する磁界を測定する表面電流ベクトル測定システムを、磁界の磁束密度を計測するコイルと、プローブの位置、姿勢を検出する位置・姿勢センサと、前記コイルの出力信号を増幅するアンプとを備えた表面電流測定プローブと、前記プローブの位置、姿勢情報より、計測コイル断面のベクトルと測定対象の筐体表面鉛直ベクトルとの成す角度θを算出し、前記角度θにより前記磁束密度を補正し、補正した磁束密度から表面電流ベクトルを算出する表面電流ベクトル算出部とを備えて構成した。
In order to solve the above problems, the present invention provides a surface current vector measurement system for measuring a magnetic field generated based on a surface current flowing through a measurement object, a coil for measuring the magnetic flux density of the magnetic field, and detecting the position and orientation of the probe. A surface current measurement probe comprising a position / posture sensor that performs amplification and an amplifier that amplifies the output signal of the coil, and a position of the probe and a position vector orientation information, and a measurement coil cross section vector and a measurement target housing surface vertical vector, And a surface current vector calculating unit that calculates the surface current vector from the corrected magnetic flux density by correcting the magnetic flux density by the angle θ.
また、上記課題を解決するために本発明では、前記表面電流ベクトル測定システムにおいて、前記表面電流ベクトル算出部は、前記プローブの位置情報と、前記測定対象の筐体表面情報より筐体表面鉛直ベクトルを算出し、前記プローブの姿勢情報より計測コイル断面のベクトルと測定対象の筐体表面鉛直ベクトルとの成す角度θを算出し、プローブにより計測した磁界計測データを前記角度θにより補正して磁束密度を算出し、補正した磁束密度から表面電流ベクトルを算出するように構成した。
In order to solve the above problem, in the present invention, in the surface current vector measurement system, the surface current vector calculation unit includes a case surface vertical vector based on position information of the probe and case surface information of the measurement target. The angle θ between the measurement coil cross-section vector and the measurement target case surface vertical vector is calculated from the posture information of the probe, and the magnetic field measurement data measured by the probe is corrected by the angle θ to obtain the magnetic flux density. And the surface current vector is calculated from the corrected magnetic flux density.
また、上記課題を解決するために本発明では、故障診断システムを、診断対象装置の制御基板より流れる電流で発生する磁界強度を測定する表面電流ベクトル測定システムと、前記表面電流ベクトル測定システムで取得した前記診断対象装置の正常動作時の表面電流ベクトルの分布データを記憶するメモリと、前記メモリの保存データと前記表面電流ベクトル測定システムで取得した表面電流ベクトルの分布データとを比較する比較部と、前記比較部で比較した表面電流ベクトル単位の差分データが所定のしきい値を超過した場合に前記診断対象装置の故障と判定する故障診断部とを備えて構成した。
In order to solve the above problems, in the present invention, a failure diagnosis system is obtained by a surface current vector measurement system that measures the magnetic field intensity generated by a current flowing from a control board of a diagnosis target device, and the surface current vector measurement system. A memory for storing the distribution data of the surface current vector during normal operation of the device to be diagnosed, a comparison unit for comparing the storage data of the memory and the distribution data of the surface current vector obtained by the surface current vector measurement system; And a failure diagnosing unit that determines that the diagnosis target device is faulty when the difference data in units of surface current vectors compared by the comparing unit exceeds a predetermined threshold value.
また、上記課題を解決するために本発明では、前記故障診断システムにおいて、更に、外部インタフェースを介してモニタが接続され、前記故障診断部は、診断時に前記表面電流ベクトル測定システムが測定した表面電流ベクトルの分布データを、3次元表示した診断対象装置の筐体表面上に、及び2次元展開図表示した診断対象装置の筐体表面上に、それぞれ走査経路上のプローブ位置Pに表面電流ベクトルI(f)を、モニタ上に表示するように構成した。
In order to solve the above-mentioned problem, in the present invention, in the fault diagnosis system, a monitor is further connected via an external interface, and the fault diagnosis unit is a surface current measured by the surface current vector measurement system at the time of diagnosis. The surface current vector I at the probe position P on the scanning path on the surface of the case of the diagnosis target device displayed in three dimensions and on the surface of the case of the diagnosis target device displayed in a two-dimensional development view. (f) was configured to be displayed on the monitor.
本発明によれば、磁界センサの位置・姿勢情報による誤差を校正して、高精度な磁界計測手段を具備し、電車等の大形の装置や、凹凸や曲面を有する筐体、装置に付随するケーブル等の障害物を回避しての測定、狭い場所へセンサ挿入して測定を可能とし、装置を停止することなく既存装置に適用可能な故障診断システムを提供することができる。低コストで実現でき、かつ、装置を停止させることなく設置でき、装置や制御基板の故障を検知できる。
According to the present invention, the error due to the position / orientation information of the magnetic field sensor is calibrated to provide a high-precision magnetic field measurement means, which is attached to a large apparatus such as a train, a casing having unevenness and a curved surface, and an apparatus. Therefore, it is possible to provide a fault diagnosis system that can be applied to an existing apparatus without stopping the apparatus. It can be realized at low cost, can be installed without stopping the device, and can detect a failure of the device or the control board.
以降の実施形態では、当業者が本発明を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本発明の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能である。
The following embodiments have been described in sufficient detail for those skilled in the art to practice the present invention, but other implementations and forms are possible and depart from the scope and spirit of the technical idea of the present invention. It is possible to change the structure and structure and replace various elements.
図1は、本発明の第1の実施形態である故障診断システム100の構成を表している。故障診断システム100は、例えば、1枚の基板上に構成された、または1台の装置構成となる故障診断装置120と外部インタフェース109に接続されたモニタ108により構成される。
FIG. 1 shows a configuration of a failure diagnosis system 100 according to the first embodiment of the present invention. The failure diagnosis system 100 includes, for example, a failure diagnosis device 120 configured on one substrate or a single device configuration and a monitor 108 connected to an external interface 109.
故障診断装置120は、診断対象の装置の筐体、または装置内の制御基板などに流れる表面電流を測定する表面電流ベクトル測定システム101と、前記表面電流ベクトル測定システム101で、前記故障診断装置120を初期状態に設定するタイミング(前記診断対象装置が正常に稼働していると見做せるタイミング)で取得した表面電流ベクトルの分布データ110を格納するメモリ103と、前記メモリ103の格納データと前記表面電流ベクトル測定システム101で取得した前記診断対象装置を診断する任意のタイミングで取得した表面電流ベクトルの分布データ110との波高値を比較する波高値比較部104と、周波数特性を比較する周波数特性比較部105と、表面電流ベクトルの角度を比較する表面電流ベクトル角度比較部106と、前記各比較部から出力された比較データから、前記診断対象装置あるいは装置内の制御基板の故障状態を判定して診断結果を出力する故障診断部107とを備えて構成されている。
The failure diagnosis apparatus 120 includes a surface current vector measurement system 101 that measures a surface current flowing through a casing of a diagnosis target apparatus or a control board in the apparatus, and the surface current vector measurement system 101. Memory 103 for storing the distribution data 110 of the surface current vector acquired at the timing of setting the initial state to the initial state (the timing at which the device to be diagnosed can be regarded as operating normally), the storage data of the memory 103, and the A crest value comparison unit 104 that compares crest values with the distribution data 110 of the surface current vector acquired at an arbitrary timing for diagnosing the diagnosis target device acquired by the surface current vector measurement system 101, and a frequency characteristic that compares the frequency characteristics Comparison of angle of surface current vector with comparison unit 105 and comparison of surface current vector angle And 106, the comparison data outputted from the respective comparator unit is configured to include a fault diagnosis unit 107 for outputting a diagnostic result to determine the fault state of the control board of the diagnosis target device or the apparatus.
また、表面電流ベクトル測定システム101には、表面電流測定プローブ200が例えばケーブル111で接続されて、外部に取り出されて、故障診断の対象装置の筐体表面、または装置内に在る制御基板の近傍を走査可能なように構成されている。表面電流測定プローブ200は、診断対象装置の筐体表面、または装置内に実装されている制御基板を流れる表面電流に起因して発生する磁界を検知する。検知した磁界計測データを表面電流ベクトル算出部102により表面電流ベクトルの分布データ110を算出する。
Further, the surface current vector measuring system 101 is connected to the surface current measuring probe 200 by, for example, a cable 111 and taken out to the surface of the casing of the target device for failure diagnosis or a control board in the device. It is configured to be able to scan the vicinity. The surface current measurement probe 200 detects a magnetic field generated due to the surface current flowing on the surface of the casing of the device to be diagnosed or a control board mounted in the device. The surface current vector distribution data 110 is calculated by the surface current vector calculation unit 102 based on the detected magnetic field measurement data.
前記表面電流測定プローブ200として、ループコイルやフラックスゲートセンサの磁界測定プローブを用いた方法が挙げられる。ループコイルは、ループ状に形成した導電線で構成され、ループと鎖交する磁束の時間変化に応じてコイルの両端に誘起される電圧から磁界や電流を測定する方法である。
Examples of the surface current measurement probe 200 include a method using a magnetic field measurement probe of a loop coil or a flux gate sensor. The loop coil is a method of measuring a magnetic field and a current from a voltage induced at both ends of a coil, which is composed of a conductive wire formed in a loop shape and changes with time in the magnetic flux interlinking with the loop.
フラックスゲートセンサは、磁性体コアと、磁性体コアに巻き回された励磁コイルと検出コイルからなり、磁性体コアが磁気飽和する大きさの交流磁界を励磁コイルで印加し、その際に検出コイルに誘起される電圧から磁界、電流を測定する方法である。
The fluxgate sensor is composed of a magnetic core, an excitation coil wound around the magnetic core, and a detection coil. An AC magnetic field with a magnitude that causes the magnetic core to be magnetically saturated is applied by the excitation coil. This is a method of measuring a magnetic field and a current from a voltage induced in the.
ループコイルは、鎖交磁束の時間変化に比例して発生する誘起電圧から磁界を測定する方法であるので、数Hzから数十Hz以下の低周波数の磁界に対する検出感度が低下する可能性がある。また、フラックスゲートセンサは、高透磁率の磁性体を利用するため、磁性体の周波数特性が律速条件となり、数十kHz以上の磁界に対しては感度が大きく低下する。
Since the loop coil is a method of measuring a magnetic field from an induced voltage generated in proportion to a time change of the flux linkage, there is a possibility that the detection sensitivity to a low frequency magnetic field of several Hz to several tens Hz or less may be lowered. . Further, since the fluxgate sensor uses a magnetic material having a high magnetic permeability, the frequency characteristic of the magnetic material is a rate-determining condition, and the sensitivity is greatly reduced for a magnetic field of several tens of kHz or more.
ループコイルやフラックスゲートセンサの磁界測定プローブを用いた表面電流ベクトル計測システムでも、本発明の効果を得ることはできるが、制御基板の故障診断精度をより向上する上で、表面電流測定プローブを広帯域化、高感度化することは非常に有用である。
A surface current vector measurement system using a magnetic field measurement probe of a loop coil or a fluxgate sensor can achieve the effect of the present invention. However, in order to improve the fault diagnosis accuracy of the control board, the surface current measurement probe is used in a wide band. It is very useful to increase the sensitivity.
図2に、位置・姿勢検出機能を備えた表面電流測定プローブ200の構成の一例を示す。本プローブは、電流プローブ内コイル201と、同コイルの出力信号を増幅するアナログアンプ211と、プローブ位置、姿勢情報210を出力する位置・姿勢センサ206を備える。コイル201は測定の最小の周波数に応じて例えば、フラックスゲートセンサ、ループコイル、ホール素子他、磁界を検出できるセンサを備える。またアンプ211の出力信号をディジタル信号に変換するA/D変換器、ディジタル信号処理手段208を有する。
表面電流測定プローブ200は、A/D変換器、ディジタル信号処理手段208によりディジタル信号に変換された磁界計測データ209と、プローブ位置、姿勢情報210を出力する。 FIG. 2 shows an example of the configuration of a surfacecurrent measurement probe 200 having a position / posture detection function. The probe includes a coil 201 in the current probe, an analog amplifier 211 that amplifies an output signal of the coil, and a position / posture sensor 206 that outputs probe position / posture information 210. The coil 201 includes, for example, a flux gate sensor, a loop coil, a Hall element, and other sensors that can detect a magnetic field according to the minimum frequency of measurement. Further, an A / D converter for converting the output signal of the amplifier 211 into a digital signal and a digital signal processing means 208 are provided.
The surfacecurrent measurement probe 200 outputs magnetic field measurement data 209 converted into a digital signal by an A / D converter and digital signal processing means 208, and probe position / posture information 210.
表面電流測定プローブ200は、A/D変換器、ディジタル信号処理手段208によりディジタル信号に変換された磁界計測データ209と、プローブ位置、姿勢情報210を出力する。 FIG. 2 shows an example of the configuration of a surface
The surface
表面電流ベクトル算出部102は、表面電流測定プローブ200の出力を受けて、また、別途用意する診断対象装置の筐体表面202の位置情報(CADデータなど)を用いて、筐体表面鉛直ベクトル203及び筐体表面と表面電流測定プローブ間の距離204を算出し、更に、電流プローブ内の磁界の計測コイル201の断面のベクトル205を用いて、電流プローブ内の磁界の計測コイル断面のベクトル205と筐体表面鉛直ベクトル203との成す角θ207を算出する。続いて、表面電流測定プローブ200の出力である磁界計測データ209の校正計算を行う。
The surface current vector calculation unit 102 receives the output of the surface current measurement probe 200 and uses the position information (CAD data or the like) of the housing surface 202 of the diagnosis target device that is separately prepared, and uses the housing surface vertical vector 203. And a distance 204 between the housing surface and the surface current measurement probe, and a vector 205 of the cross section of the magnetic field measurement coil 201 in the current probe, and a magnetic field measurement coil cross section vector 205 in the current probe An angle θ207 formed with the casing surface vertical vector 203 is calculated. Subsequently, calibration calculation of the magnetic field measurement data 209 that is the output of the surface current measurement probe 200 is performed.
図3に、表面電流ベクトル測定システム101の表面電流ベクトル算出部102の処理を説明する。
FIG. 3 illustrates the processing of the surface current vector calculation unit 102 of the surface current vector measurement system 101.
ステップS101において、位置・姿勢センサ206から出力されたプローブ位置座標P0(プローブの位置を表す代表点PRを決めておく。)の筐体表面鉛直ベクトル203を算出する。
先ず、図4に示すように、3D CAD又はディジタルスチルカメラにより、プローブ位置座標P0を筐体表面402に写像した(最短距離の座標)プローブ位置P(x1,y1,z1)401を算出する。次に、プローブ位置P(x1,y1,z1)に対して、筐体表面上の点の中から、近傍位置にある2点Q(x2,y2,z2)404、R(x3,y3,z3)405を選択する。
プローブ位置P(x1,y1,z1)における筐体表面の鉛直ベクトルX403は、プローブ位置Pと点Qを結ぶベクトルPQ407、プローブ位置Pと点Rを結ぶベクトルPR406と直交するので内積はゼロである。ゆえに、
(数1) X・PQ=0
(数2) X・PR=0 が成り立つ。
また、筐体表面鉛直ベクトルX(x4,y4,z4)を単位ベクトルとし、(x4,y4,z4)座標の2乗平均は1であり、
(数3) x4^2+y4^2+z4^2 = 1 が成り立つ。
数1、数2、数3の方程式を解き、筐体表面鉛直ベクトルX(x4,y4,z4)を得る。 In step S101, it calculates the casing surfacevertical vector 203 of the probe position output from the position and orientation sensor 206 coordinate P 0 (previously determined representative points P R representing the position of the probe.).
First, as shown in FIG. 4, a probe position P (x 1 , y 1 , z 1 ) 401 is obtained by mapping the probe position coordinates P 0 onto thehousing surface 402 by using a 3D CAD or a digital still camera. Is calculated. Next, with respect to the probe position P (x 1 , y 1 , z 1 ), two points Q (x 2 , y 2 , z 2 ) 404 and R located in the vicinity from the points on the surface of the housing. (x 3 , y 3 , z 3 ) 405 is selected.
Since the vertical vector X403 on the housing surface at the probe position P (x 1 , y 1 , z 1 ) is orthogonal to the vector PQ407 connecting the probe position P and the point Q and the vector PR406 connecting the probe position P and the point R, the inner product is Zero. therefore,
(Equation 1) X · PQ = 0
(Equation 2) X · PR = 0 holds.
Further, the case surface vertical vector X (x 4 , y 4 , z 4 ) is a unit vector, and the mean square of (x 4 , y 4 , z 4 ) coordinates is 1.
(Formula 3) x 4 ^ 2 + y 4 ^ 2 + z 4 ^ 2 = 1 holds.
The equations (1), ( 2 ), and (3) are solved to obtain a housing surface vertical vector X (x 4 , y 4 , z 4 ).
先ず、図4に示すように、3D CAD又はディジタルスチルカメラにより、プローブ位置座標P0を筐体表面402に写像した(最短距離の座標)プローブ位置P(x1,y1,z1)401を算出する。次に、プローブ位置P(x1,y1,z1)に対して、筐体表面上の点の中から、近傍位置にある2点Q(x2,y2,z2)404、R(x3,y3,z3)405を選択する。
プローブ位置P(x1,y1,z1)における筐体表面の鉛直ベクトルX403は、プローブ位置Pと点Qを結ぶベクトルPQ407、プローブ位置Pと点Rを結ぶベクトルPR406と直交するので内積はゼロである。ゆえに、
(数1) X・PQ=0
(数2) X・PR=0 が成り立つ。
また、筐体表面鉛直ベクトルX(x4,y4,z4)を単位ベクトルとし、(x4,y4,z4)座標の2乗平均は1であり、
(数3) x4^2+y4^2+z4^2 = 1 が成り立つ。
数1、数2、数3の方程式を解き、筐体表面鉛直ベクトルX(x4,y4,z4)を得る。 In step S101, it calculates the casing surface
First, as shown in FIG. 4, a probe position P (x 1 , y 1 , z 1 ) 401 is obtained by mapping the probe position coordinates P 0 onto the
Since the vertical vector X403 on the housing surface at the probe position P (x 1 , y 1 , z 1 ) is orthogonal to the vector PQ407 connecting the probe position P and the point Q and the vector PR406 connecting the probe position P and the point R, the inner product is Zero. therefore,
(Equation 1) X · PQ = 0
(Equation 2) X · PR = 0 holds.
Further, the case surface vertical vector X (x 4 , y 4 , z 4 ) is a unit vector, and the mean square of (x 4 , y 4 , z 4 ) coordinates is 1.
(Formula 3) x 4 ^ 2 + y 4 ^ 2 + z 4 ^ 2 = 1 holds.
The equations (1), ( 2 ), and (3) are solved to obtain a housing surface vertical vector X (x 4 , y 4 , z 4 ).
ステップS102において、電流プローブ内の磁界の計測コイル断面のベクトル205と筐体表面鉛直ベクトル203の成す角θ207を算出する。
先ず、表面電流測定プローブ200の位置・姿勢センサ206から出力されるプローブ傾きAngle(θx,θy,θz)は、プローブの計測コイル断面の単位ベクトルC(x5,y5,z5)を、
(数4) C(x5,y5,z5)=tan(Angle(θx,θy,θz)) で求める。
プローブの計測コイル断面の単位ベクトルC(x5,y5,z5)と、筐体表面鉛直ベクトルX(x4,y4,z4)の成す角θは、
(数5) cosθ= C・X より算出する。(・は内積を表す。)
ステップS103において、表面電流測定プローブ200において測定した磁界計測データ209の補正計算を行う。
磁束密度の磁界計測データBm(f)は、筐体表面に鉛直に測定プローブを接した場合に最大となり、
(数6) Bm(f)=B(f)cosθ で表せる。
数6より、磁束密度B(f)を算出する。fは周波数であり、磁束密度は周波数毎に計算する。 In step S102, an angle θ207 formed by the measurementcoil cross-section vector 205 of the magnetic field in the current probe and the housing surface vertical vector 203 is calculated.
First, the probe inclination angle (θ x , θ y , θ z ) output from the position /orientation sensor 206 of the surface current measurement probe 200 is a unit vector C (x 5 , y 5 , z 5 ) of the measurement coil cross section of the probe. )
(Equation 4) C (x 5 , y 5 , z 5 ) = tan (Angle (θ x , θ y , θ z ))
The angle θ formed by the unit vector C (x 5 , y 5 , z 5 ) of the probe measurement coil cross section and the housing surface vertical vector X (x 4 , y 4 , z 4 ) is
(Expression 5) Calculated from cos θ = C · X. (・ Represents inner product.)
In step S103, correction calculation of the magneticfield measurement data 209 measured by the surface current measurement probe 200 is performed.
The magnetic field measurement data Bm (f) of the magnetic flux density becomes maximum when the measurement probe is vertically contacted with the surface of the casing.
(Expression 6) Bm (f) = B (f) cosθ
From Equation 6, the magnetic flux density B (f) is calculated. f is a frequency, and the magnetic flux density is calculated for each frequency.
先ず、表面電流測定プローブ200の位置・姿勢センサ206から出力されるプローブ傾きAngle(θx,θy,θz)は、プローブの計測コイル断面の単位ベクトルC(x5,y5,z5)を、
(数4) C(x5,y5,z5)=tan(Angle(θx,θy,θz)) で求める。
プローブの計測コイル断面の単位ベクトルC(x5,y5,z5)と、筐体表面鉛直ベクトルX(x4,y4,z4)の成す角θは、
(数5) cosθ= C・X より算出する。(・は内積を表す。)
ステップS103において、表面電流測定プローブ200において測定した磁界計測データ209の補正計算を行う。
磁束密度の磁界計測データBm(f)は、筐体表面に鉛直に測定プローブを接した場合に最大となり、
(数6) Bm(f)=B(f)cosθ で表せる。
数6より、磁束密度B(f)を算出する。fは周波数であり、磁束密度は周波数毎に計算する。 In step S102, an angle θ207 formed by the measurement
First, the probe inclination angle (θ x , θ y , θ z ) output from the position /
(Equation 4) C (x 5 , y 5 , z 5 ) = tan (Angle (θ x , θ y , θ z ))
The angle θ formed by the unit vector C (x 5 , y 5 , z 5 ) of the probe measurement coil cross section and the housing surface vertical vector X (x 4 , y 4 , z 4 ) is
(Expression 5) Calculated from cos θ = C · X. (・ Represents inner product.)
In step S103, correction calculation of the magnetic
The magnetic field measurement data Bm (f) of the magnetic flux density becomes maximum when the measurement probe is vertically contacted with the surface of the casing.
(Expression 6) Bm (f) = B (f) cosθ
From Equation 6, the magnetic flux density B (f) is calculated. f is a frequency, and the magnetic flux density is calculated for each frequency.
ステップS104において、S103で算出した磁束密度から表面電流を計算する。
表面電流ベクトルI(f)は、ビオ・サバールの法則により以下の式で与えられる。
(数7) I(f)=B(f)*2πa/μ0
ここで、aは表面電流とプローブの距離を現しており、筐体表面とプローブ間の距離t及びプローブの個別のばらつき係数Kpにより、
(数8) a=Kp*t で計算する。
また、ここでμ0はクーロンの磁気定数である。 In step S104, the surface current is calculated from the magnetic flux density calculated in S103.
The surface current vector I (f) is given by the following equation according to Bio-Savart's law.
(Expression 7) I (f) = B (f) * 2πa / μ 0
Here, a represents the distance between the surface current and the probe, and the distance t between the housing surface and the probe and the individual variation coefficient Kp of the probe,
(Equation 8) Calculate by a = Kp * t.
Here, μ 0 is the Coulomb magnetic constant.
表面電流ベクトルI(f)は、ビオ・サバールの法則により以下の式で与えられる。
(数7) I(f)=B(f)*2πa/μ0
ここで、aは表面電流とプローブの距離を現しており、筐体表面とプローブ間の距離t及びプローブの個別のばらつき係数Kpにより、
(数8) a=Kp*t で計算する。
また、ここでμ0はクーロンの磁気定数である。 In step S104, the surface current is calculated from the magnetic flux density calculated in S103.
The surface current vector I (f) is given by the following equation according to Bio-Savart's law.
(Expression 7) I (f) = B (f) * 2πa / μ 0
Here, a represents the distance between the surface current and the probe, and the distance t between the housing surface and the probe and the individual variation coefficient Kp of the probe,
(Equation 8) Calculate by a = Kp * t.
Here, μ 0 is the Coulomb magnetic constant.
図1の故障診断システム100の説明に戻り、表面電流ベクトル測定システム101の表面電流ベクトル算出部102の出力は、プローブ位置座標P0を筐体表面に写像したプローブ位置P(x1,y1,z1)と、表面電流ベクトルI(f)の組合せのデータが、測定点の数だけ出力される。すなわち、表面電流ベクトルの分布データ110が出力される。
Returning to the description of the failure diagnosis system 100 in FIG. 1, the output of the surface current vector calculation unit 102 of the surface current vector measurement system 101 is the probe position P (x 1 , y 1) obtained by mapping the probe position coordinates P 0 onto the housing surface. , z 1 ) and the surface current vector I (f) are output by the number of measurement points. That is, surface current vector distribution data 110 is output.
図6は、本実施形態における故障診断システム100の故障診断処理を説明するフローチャートである。
FIG. 6 is a flowchart for explaining failure diagnosis processing of the failure diagnosis system 100 according to the present embodiment.
本実施形態では、診断対象装置の筐体表面、または診断対象装置内の制御基板表面などに沿って、前記表面電流測定プローブ200を人手により、または機械手段によって走査して、例えば、プローブ位置情報210が所定の走査距離だけ変化するごとに、表面電流を測定して、表面電流ベクトル算出部102が表面電流ベクトルを算出して出力する。
In the present embodiment, the surface current measurement probe 200 is scanned manually or by mechanical means along the surface of the casing of the diagnosis target device or the surface of the control board in the diagnosis target device, for example, probe position information. Each time 210 changes by a predetermined scanning distance, the surface current is measured, and the surface current vector calculation unit 102 calculates and outputs the surface current vector.
ステップS201において、故障診断システム100は、搭載する表面電流ベクトル測定システム101により第1のタイミングで、診断対象装置の筐体表面、または診断対象装置内の制御基板表面を走査して表面電流を測定し、ステップS202において、測定した表面電流ベクトルの分布データ110をメモリ103に格納する。
In step S201, the failure diagnosis system 100 measures the surface current by scanning the surface of the casing of the diagnosis target device or the surface of the control board in the diagnosis target device at the first timing by the surface current vector measurement system 101 to be mounted. In step S 202, the measured surface current vector distribution data 110 is stored in the memory 103.
表面電流ベクトル測定システム101が表面電流の分布を測定する「第1のタイミング」は、故障診断処理に先立って、診断対象装置が正常に稼働していることを確認した時点で測定したタイミングである。ここで測定された表面電流ベクトルの分布データ110はメモリ103に格納されて、以後の故障診断処理の際には、メモリ103の格納データが常時読み出されて使用される。診断対象装置の仕様が変更されるなど、正常稼働時の表面電流ベクトルに変化が無いと判断されるならば、メモリの格納データは更新されない。通常は、S202の表面電流ベクトルの分布データをメモリに格納するまでの処理は、正常稼働時の表面電流ベクトルの分布データ登録処理のプログラムとして実装され、以後の故障診断処理は別プログラムとして実装されると考えられるが、図6のフローチャートでは、両プログラムのステップを続けて記載している。
The “first timing” at which the surface current vector measurement system 101 measures the distribution of the surface current is a timing measured when it is confirmed that the diagnosis target device is operating normally prior to the failure diagnosis process. . The distribution data 110 of the surface current vector measured here is stored in the memory 103, and the stored data in the memory 103 is always read and used in subsequent failure diagnosis processing. If it is determined that there is no change in the surface current vector during normal operation, such as when the specification of the diagnosis target device is changed, the data stored in the memory is not updated. Normally, the processing up to storing the surface current vector distribution data in the memory in S202 is implemented as a program for registering surface current vector distribution data during normal operation, and the subsequent failure diagnosis processing is implemented as a separate program. However, in the flowchart of FIG. 6, the steps of both programs are described in succession.
図6のフローチャートに戻り、次に、ステップS203において、表面電流ベクトル測定システム101で第2のタイミングで、診断対象装置の筐体表面、または診断対象装置内の制御基板表面を走査して表面電流を測定する。ステップS204において、メモリ103に格納している表面電流ベクトルの分布データ110と、第2のタイミングで測定した表面電流ベクトルの分布データ110とを比較する。
「第2のタイミング」とは、診断対象装置の故障診断処理が開始されて、故障診断システム100が備える所定の診断サイクルタイムとなった際、または故障診断システム100に診断開始の指示が入力された時点などである。 Returning to the flowchart of FIG. 6, next, in step S <b> 203, the surface currentvector measurement system 101 scans the surface of the casing of the diagnostic target device or the surface of the control board in the diagnostic target device at the second timing to scan the surface current. Measure. In step S204, the surface current vector distribution data 110 stored in the memory 103 is compared with the surface current vector distribution data 110 measured at the second timing.
The “second timing” means that when a failure diagnosis process of the diagnosis target device is started and a predetermined diagnosis cycle time provided in thefailure diagnosis system 100 is reached, or an instruction to start diagnosis is input to the failure diagnosis system 100 It is the time.
「第2のタイミング」とは、診断対象装置の故障診断処理が開始されて、故障診断システム100が備える所定の診断サイクルタイムとなった際、または故障診断システム100に診断開始の指示が入力された時点などである。 Returning to the flowchart of FIG. 6, next, in step S <b> 203, the surface current
The “second timing” means that when a failure diagnosis process of the diagnosis target device is started and a predetermined diagnosis cycle time provided in the
ステップS204の表面電流ベクトルの分布データの比較処理は、故障診断装置120の波高値比較部104、周波数特性比較部105、および表面電流ベクトル角度比較部106で実行される。
The comparison process of the distribution data of the surface current vector in step S204 is executed by the peak value comparison unit 104, the frequency characteristic comparison unit 105, and the surface current vector angle comparison unit 106 of the failure diagnosis apparatus 120.
表面電流ベクトルの分布データ110は、プローブの走査の仕方、データを取り込む位置の違いによって、精度良く同じ位置の表面電流ベクトルが比較できるとは限らない。しかし、第1、第2のタイミングにおける表面電流の測定では、可能な限り、プローブの走査の仕方、データを取り込む位置を近づけるように操作する。そして、表面電流ベクトルの分布データ110の比較処理では、プローブ位置P(x1,y1,z1)が許容誤差範囲内の表面電流ベクトルI(f)同士を比較する。
The surface current vector distribution data 110 cannot always accurately compare surface current vectors at the same position depending on the scanning method of the probe and the difference in the position where the data is captured. However, in the measurement of the surface current at the first and second timings, the probe scanning method and the data capturing position are operated as close as possible. In the comparison process of the distribution data 110 of the surface current vectors, the surface current vectors I (f) whose probe positions P (x 1 , y 1 , z 1 ) are within the allowable error range are compared.
波高値比較部104では、同じ周波数fにおける表面電流ベクトルI(f)の電流強度の差分を抽出する。比較する1つ以上の周波数fは、予め設定しておく。
The peak value comparison unit 104 extracts the difference in current intensity of the surface current vector I (f) at the same frequency f. One or more frequencies f to be compared are set in advance.
周波数特性比較部105では、例えば、比較対象の両表面電流ベクトルI(f)の周波数スペクトルの中のある特定の周波数fにおける電流強度の差分が許容誤差以上の場合に、その周波数fにおいて一致しないと判定する。表面電流ベクトルI(f)の周波数スペクトルの中の主だった周波数f (予め周波数を指定しておく)において、一致、不一致を同様に判定する。以上の周波数特性を比較する処理を周波数特性比較部105で実行する。そして、不一致の個数が例えば1か所以上で起これば、比較対象の両表面電流ベクトルI(f)の周波数スペクトルは不一致と判定される。
In the frequency characteristic comparison unit 105, for example, when the difference in current intensity at a specific frequency f in the frequency spectrum of both surface current vectors I (f) to be compared is equal to or greater than an allowable error, the frequency characteristics do not match. Is determined. In the main frequency f (a frequency is designated in advance) in the frequency spectrum of the surface current vector I (f), a match / mismatch is similarly determined. The frequency characteristic comparison unit 105 executes the processing for comparing the above frequency characteristics. If the number of mismatches occurs at one or more locations, for example, the frequency spectra of both surface current vectors I (f) to be compared are determined to be mismatched.
表面電流ベクトル角度比較部106では、比較対象の両表面電流ベクトルI(f)の角度の差分を抽出する。
The surface current vector angle comparison unit 106 extracts a difference between angles of both surface current vectors I (f) to be compared.
ステップS205において、表面電流の差分が所定のしきい値内か否かを判定する。すなわち、比較対象の表面電流ベクトルの分布データ110において、プローブ位置P(x1,y1,z1)が許容誤差範囲内の全ての表面電流ベクトルI(f)の組み合わせに対して、ステップS204で、比較処理がなされた結果を入力して、正常か否かを判定する。
In step S205, it is determined whether or not the difference in surface current is within a predetermined threshold. That is, in the surface current vector distribution data 110 to be compared, step S204 is performed for all combinations of surface current vectors I (f) whose probe positions P (x 1 , y 1 , z 1 ) are within an allowable error range. Then, the result of the comparison process is input to determine whether it is normal.
故障診断部107において、波高値比較部104、周波数特性比較部105、および表面電流ベクトル角度比較部106でのそれぞれの表面電流の差分の出力を、予め設定しておいたしきい値と比較する。例えば、設定された周波数fにおける表面電流ベクトルI(f)の電流強度の差分を第1のしきい値(周波数fごとに複数のしきい値を設定することもある)と、周波数特性の差分を第2のしきい値と、および表面電流ベクトルI(f)の角度の差分を第3のしきい値と比較して、しきい値以内であれば正常な表面電流ベクトルI(f)と判定する。これらの各比較部の出力としきい値との比較は、必要に応じていずれか一つの比較部の出力のみで判定しても良いし、またはいずれの組合せ、または全ての比較部の出力をしきい値と比較して判定することでも良い。そして、いずれか1つ、または予め設定されたしきい値の組合せにおいてしきい値を超えると判定されたなら、その表面電流ベクトルI(f)は異常と判定する。これらの判定を、全ての表面電流ベクトルI(f)の組み合わせに対して行う。そして、例えば、1つ以上の表面電流ベクトルI(f)に異常が判定されたならば、ステップS206へ移行し、全ての表面電流ベクトルI(f)が正常と判定されたならば、ステップS208へ移行する。
In the fault diagnosis unit 107, the output of the difference between the surface currents in the peak value comparison unit 104, the frequency characteristic comparison unit 105, and the surface current vector angle comparison unit 106 is compared with a preset threshold value. For example, the difference in current intensity of the surface current vector I (f) at the set frequency f is set to the first threshold value (a plurality of threshold values may be set for each frequency f) and the difference in frequency characteristics. Is compared with the second threshold value and the angle difference between the surface current vector I (f) and the third threshold value. judge. The comparison between the output of each of these comparison units and the threshold value may be determined by only the output of one of the comparison units, if necessary, or any combination or output of all the comparison units. It may be determined by comparing with a threshold value. If it is determined that any one or a combination of preset threshold values exceeds the threshold value, the surface current vector I (f) is determined to be abnormal. These determinations are made for all combinations of surface current vectors I (f). For example, if abnormality is determined in one or more surface current vectors I (f), the process proceeds to step S206. If all surface current vectors I (f) are determined to be normal, step S208 is performed. Migrate to
ステップS206において、異常と判定された表面電流ベクトルI(f)のプローブ位置P(x1,y1,z1)を、例えば、波高値比較である同じ周波数fにおける表面電流ベクトルI(f)の電流強度の差分が大きい順番に並べる。比較する差分の値は、周波数特性の差分でも、両表面電流ベクトルI(f)の角度の差分を使用してもよい。
In step S206, the probe position P (x 1 , y 1 , z 1 ) of the surface current vector I (f) determined to be abnormal is used as the surface current vector I (f) at the same frequency f that is, for example, a crest value comparison. Are arranged in descending order of current intensity difference. The difference value to be compared may be a difference in frequency characteristics or an angle difference between both surface current vectors I (f).
ステップS207において、ステップS206で比較した最大の表面電流の差分を持つ表面電流ベクトルI(f)のプローブ位置P(x1,y1,z1)を故障個所と判定して、その位置、およびその位置に最も近くにある内部モジュールなどをモニタ108に特定して表示する。
ステップS208において、第2のタイミングで、診断対象装置の筐体表面、または診断対象装置内の制御基板表面を走査して測定した表面電流には異常は見つからずに、正常と判定した結果をモニタ108に表示して、故障診断処理を終了する。 In step S207, the probe position P (x 1 , y 1 , z 1 ) of the surface current vector I (f) having the maximum surface current difference compared in step S206 is determined as the failure location, An internal module or the like closest to the position is specified and displayed on themonitor 108.
In step S208, at the second timing, no abnormality is found in the surface current measured by scanning the surface of the casing of the diagnosis target device or the surface of the control board in the diagnosis target device, and the result determined to be normal is monitored. The failure diagnosis process is terminated.
ステップS208において、第2のタイミングで、診断対象装置の筐体表面、または診断対象装置内の制御基板表面を走査して測定した表面電流には異常は見つからずに、正常と判定した結果をモニタ108に表示して、故障診断処理を終了する。 In step S207, the probe position P (x 1 , y 1 , z 1 ) of the surface current vector I (f) having the maximum surface current difference compared in step S206 is determined as the failure location, An internal module or the like closest to the position is specified and displayed on the
In step S208, at the second timing, no abnormality is found in the surface current measured by scanning the surface of the casing of the diagnosis target device or the surface of the control board in the diagnosis target device, and the result determined to be normal is monitored. The failure diagnosis process is terminated.
図5(A),(B)は、本実施例の表面電流ベクトル測定システム101によって、診断対象装置の円筒形状の筐体表面を走査して、表面電流ベクトルI(f)の分布データ110を測定して、故障診断システム100により、測定結果の表面電流ベクトルI(f)の分布データ110をモニタ108に表示した一例を示す。ここでは、第2のタイミングでの測定結果であるが、例えば、3列に走査した結果、各走査経路上のプローブ位置P(x1,y1,z1)ごとに表面電流ベクトルI(f)を表示している。図5(A)は、円筒形状の筐体表面502を3次元表示した例であり、図5(B)は、2次元展開図表示をした筐体表面503の例である。
故障診断システム100における故障診断処理の結果、異常な表面電流ベクトルと判定された表面電流ベクトルI(f)501を太く、または色を変えるなどして表示している。更に、図5(B)において、異常表面電流ベクトル501の上流に異常電流の原因となっている故障箇所504を特定して表示する。また、筐体内部の構造物の内部モジュール505-1~505-4を展開図503に合わせて表示すると、故障モジュールが特定できる。 5A and 5B, the surface currentvector measurement system 101 of the present embodiment scans the surface of the cylindrical casing of the diagnostic target device, and the distribution data 110 of the surface current vector I (f) is obtained. An example is shown in which the distribution data 110 of the surface current vector I (f) as a measurement result is displayed on the monitor 108 by the fault diagnosis system 100 after measurement. Here, a measurement result at the second timing, for example, 3 result of scanning lines, the probe position P on the scanning path (x 1, y 1, z 1) by the surface current vector I (f ) Is displayed. 5A is an example in which a cylindrical housing surface 502 is displayed in a three-dimensional manner, and FIG. 5B is an example of a housing surface 503 in a two-dimensional development view.
The surface current vector I (f) 501 determined to be an abnormal surface current vector as a result of the failure diagnosis process in thefailure diagnosis system 100 is displayed thickly or by changing its color. Further, in FIG. 5B, the fault location 504 causing the abnormal current is identified and displayed upstream of the abnormal surface current vector 501. Further, when the internal modules 505-1 to 505-4 of the structure inside the housing are displayed in accordance with the development view 503, the failed module can be specified.
故障診断システム100における故障診断処理の結果、異常な表面電流ベクトルと判定された表面電流ベクトルI(f)501を太く、または色を変えるなどして表示している。更に、図5(B)において、異常表面電流ベクトル501の上流に異常電流の原因となっている故障箇所504を特定して表示する。また、筐体内部の構造物の内部モジュール505-1~505-4を展開図503に合わせて表示すると、故障モジュールが特定できる。 5A and 5B, the surface current
The surface current vector I (f) 501 determined to be an abnormal surface current vector as a result of the failure diagnosis process in the
このように表面電流ベクトル測定システムで取得した表面電流ベクトルI(f)の経時変化を評価することで、診断対象装置や制御基板の故障を診断することができる。
本実施形態によれば、故障診断機能を持たない制御基板でも、制御基板を変更することなく装置や制御基板の故障診断が可能となるので低コストで実現でき、かつ、装置を停止させることなく設置できるのでランニングコストへの影響も小さい。 Thus, by evaluating the temporal change of the surface current vector I (f) acquired by the surface current vector measurement system, it is possible to diagnose a failure of the diagnosis target device or the control board.
According to the present embodiment, even with a control board that does not have a fault diagnosis function, it is possible to perform fault diagnosis of the device or the control board without changing the control board, so that it can be realized at low cost and without stopping the apparatus. Since it can be installed, the impact on running costs is small.
本実施形態によれば、故障診断機能を持たない制御基板でも、制御基板を変更することなく装置や制御基板の故障診断が可能となるので低コストで実現でき、かつ、装置を停止させることなく設置できるのでランニングコストへの影響も小さい。 Thus, by evaluating the temporal change of the surface current vector I (f) acquired by the surface current vector measurement system, it is possible to diagnose a failure of the diagnosis target device or the control board.
According to the present embodiment, even with a control board that does not have a fault diagnosis function, it is possible to perform fault diagnosis of the device or the control board without changing the control board, so that it can be realized at low cost and without stopping the apparatus. Since it can be installed, the impact on running costs is small.
図9は、本故障診断システムを走査型電子ビーム式半導体検査・計測装置に適用した場合の形態を示す。走査型電子ビーム式半導体検査・計測装置は、電子ビームを放出する電子銃901と、電子ビームを加速する加速電極912と、電子ビーム径を絞るための絞り電極902-1、902-2と、電子ビームの照射位置を調整する偏向電極903-1、903-2と、サンプル905を設置するステージ904と、サンプル905から放出された2次電子を検出する検出器906と、検出信号を増幅し、ディジタル信号に変換して信号処理を行う信号検出基板907と、信号処理したデータを画像表示するモニタ908と、各電極に制御電圧あるいは制御電流を印加するための制御基板911-1、911-2、911-3、911-4で構成される電子顕微鏡である。この電子顕微鏡には、表面電流測定プローブ200と故障診断装置120で構成される故障診断システムを、制御基板から電極に流れる電流、および制御基板から電子顕微鏡の筐体を伝ってグランドへ流れる表面電流を検出可能なように、制御基板、および筐体の表面に沿って走査させて、表面電流を測定して、走査型電子ビーム式半導体検査・計測装置の故障診断を実行するように設置されている。
FIG. 9 shows an embodiment in which this fault diagnosis system is applied to a scanning electron beam type semiconductor inspection / measurement apparatus. The scanning electron beam type semiconductor inspection / measurement apparatus includes an electron gun 901 that emits an electron beam, an acceleration electrode 912 that accelerates the electron beam, aperture electrodes 902-1 and 902-2 for reducing the electron beam diameter, Deflection electrodes 903-1 and 903-2 for adjusting the irradiation position of the electron beam, a stage 904 on which the sample 905 is set, a detector 906 for detecting secondary electrons emitted from the sample 905, and a detection signal are amplified. , A signal detection board 907 that performs signal processing by converting it into a digital signal, a monitor 908 that displays an image of the signal processed data, and control boards 911-1 and 911- for applying a control voltage or control current to each electrode. This is an electron microscope composed of 2,911-3 and 911-4. In this electron microscope, a fault diagnosis system composed of a surface current measuring probe 200 and a fault diagnosis device 120 includes a current that flows from the control board to the electrode, and a surface current that flows from the control board to the ground through the housing of the electron microscope. It is installed to scan the control board and the surface of the housing, measure the surface current, and perform fault diagnosis of the scanning electron beam semiconductor inspection / measurement device Yes.
図10は、本実施形態の故障診断システムを自動車に適用した形態を示す図である。自動車内には、エンジンやブレーキシステム、ナビゲーションシステムなどを制御する複数の制御ユニット1004、1005が搭載されると共に、モータ1001を制御するインバータ1002、電源ユニット1003などが搭載されている。
表面電流測定プローブ200と故障診断装置120で構成される故障診断システムを、制御ユニット1004、1005やインバータ1002から車体表面へ流れる表面電流を検出可能なように、車体表面に沿って走査することにより、回路の故障を検知することが可能となり、安全性を向上することが可能となる。 FIG. 10 is a diagram showing a form in which the failure diagnosis system of the present embodiment is applied to an automobile. A plurality of control units 1004 and 1005 for controlling an engine, a brake system, a navigation system, and the like are mounted in the automobile, and an inverter 1002 and a power supply unit 1003 for controlling the motor 1001 are mounted.
By scanning the fault diagnosis system including the surfacecurrent measurement probe 200 and the fault diagnosis device 120 along the vehicle body surface so that the surface current flowing from the control units 1004 and 1005 and the inverter 1002 to the vehicle body surface can be detected. It becomes possible to detect a failure of the circuit and improve safety.
表面電流測定プローブ200と故障診断装置120で構成される故障診断システムを、制御ユニット1004、1005やインバータ1002から車体表面へ流れる表面電流を検出可能なように、車体表面に沿って走査することにより、回路の故障を検知することが可能となり、安全性を向上することが可能となる。 FIG. 10 is a diagram showing a form in which the failure diagnosis system of the present embodiment is applied to an automobile. A plurality of
By scanning the fault diagnosis system including the surface
図7は、本発明の第2の実施形態による表面電流ベクトル測定システム101に使用される、位置・姿勢検出機能を備えた表面電流測定プローブ700の構成の一例を示す。本プローブは、電流プローブ内コイル701と、同コイルの出力信号を増幅するアナログアンプ711と、プローブ位置、姿勢情報710を出力する位置・姿勢センサ706を備える。コイル701は測定の最小の周波数に応じて例えば、フラックスゲートセンサ、ループコイル、ホール素子他、磁界を検出できるセンサを備える。またアンプ711の出力信号をディジタル信号に変換するA/D変換器、ディジタル信号処理手段708を有する。
表面電流測定プローブ700は、A/D変換器、ディジタル信号処理手段708によりディジタル信号に変換された磁界計測データ709と、プローブ位置、姿勢情報710を出力する。 FIG. 7 shows an example of the configuration of a surfacecurrent measurement probe 700 having a position / attitude detection function used in the surface current vector measurement system 101 according to the second embodiment of the present invention. This probe includes a current-in-probe coil 701, an analog amplifier 711 that amplifies the output signal of the coil, and a position / posture sensor 706 that outputs probe position / posture information 710. The coil 701 includes, for example, a flux gate sensor, a loop coil, a Hall element, and other sensors that can detect a magnetic field according to the minimum frequency of measurement. Further, an A / D converter for converting the output signal of the amplifier 711 into a digital signal and a digital signal processing means 708 are provided.
The surfacecurrent measurement probe 700 outputs magnetic field measurement data 709 converted into a digital signal by an A / D converter and digital signal processing means 708, and probe position / posture information 710.
表面電流測定プローブ700は、A/D変換器、ディジタル信号処理手段708によりディジタル信号に変換された磁界計測データ709と、プローブ位置、姿勢情報710を出力する。 FIG. 7 shows an example of the configuration of a surface
The surface
表面電流ベクトル算出部102は、表面電流測定プローブ700の出力を受けて、また、別途用意する診断対象装置の筐体表面702の位置情報(CADデータなど)を用いて、筐体表面鉛直ベクトル703及び筐体表面702と表面電流測定プローブ700間の距離704を算出して、更に、電流プローブ内の磁界の計測コイル701の断面のベクトル705を用いて、電流プローブ内の磁界の計測コイル断面のベクトル705と筐体表面鉛直ベクトル703との成す角θ707を算出する。更に、筐体表面の曲率θ’712を用いて、表面電流測定プローブ700の出力である磁界計測データ709の校正計算を行う。
The surface current vector calculation unit 102 receives the output of the surface current measurement probe 700, and uses the position information (CAD data or the like) of the housing surface 702 of the diagnosis target device that is separately prepared, and uses the housing surface vertical vector 703. And a distance 704 between the housing surface 702 and the surface current measurement probe 700 is calculated, and further, a cross-sectional vector 705 of the magnetic field measurement coil 701 in the current probe is used to calculate the magnetic field measurement coil cross section in the current probe. An angle θ707 formed by the vector 705 and the casing surface vertical vector 703 is calculated. Further, the magnetic field measurement data 709 which is the output of the surface current measurement probe 700 is calibrated and calculated using the curvature θ ′ 712 of the housing surface.
図8に、表面電流ベクトル測定システム101の表面電流ベクトル算出部102の処理を説明する。
FIG. 8 illustrates the processing of the surface current vector calculation unit 102 of the surface current vector measurement system 101.
ステップS301において、ステップS101と同様に、位置・姿勢センサ706から出力されたプローブ位置座標P0(プローブの位置を表す代表点PRを決めておく。)の筐体表面鉛直ベクトル703を算出する。
In step S301, similarly to step S101, and calculates the casing surface vertical vector 703 of the probe position output from the position and orientation sensor 706 coordinate P 0 (previously determined representative points P R representing the position of the probe.) .
ステップS302において、ステップS102と同様に、電流プローブ内の磁界の計測コイル断面のベクトル705と筐体表面鉛直ベクトル703の成す角θ707を算出する。
In step S302, as in step S102, the angle θ707 formed by the measurement coil cross-section vector 705 of the magnetic field in the current probe and the casing surface vertical vector 703 is calculated.
ステップS303において、ステップS103と同様に、表面電流測定プローブ700において測定した磁界計測データ709の補正計算を行う。
In step S303, similarly to step S103, correction calculation of the magnetic field measurement data 709 measured by the surface current measurement probe 700 is performed.
ステップS304において、S303で算出した磁束密度B(f)から表面電流を計算する。
表面電流ベクトルI(f)は、ビオ・サバールの法則により以下の式で与えられる。
(数7) I(f)=B(f)*2πa/μ0
ここで、aは表面電流とプローブの距離、μ0はクーロンの磁気定数を現しており、筐体表面とプローブ間の距離t及びプローブの個別のばらつき係数Kp、及び筐体表面の曲率θ’により、
(数9) a=Kp*t*cosθ’ で計算する。 In step S304, the surface current is calculated from the magnetic flux density B (f) calculated in S303.
The surface current vector I (f) is given by the following equation according to Bio-Savart's law.
(Expression 7) I (f) = B (f) * 2πa / μ 0
Here, a represents the distance between the surface current and the probe, μ 0 represents the magnetic constant of Coulomb, the distance t between the housing surface and the probe, the individual variation coefficient Kp of the probe, and the curvature θ ′ of the housing surface. By
(Equation 9) a = Kp * t * cos θ ′
表面電流ベクトルI(f)は、ビオ・サバールの法則により以下の式で与えられる。
(数7) I(f)=B(f)*2πa/μ0
ここで、aは表面電流とプローブの距離、μ0はクーロンの磁気定数を現しており、筐体表面とプローブ間の距離t及びプローブの個別のばらつき係数Kp、及び筐体表面の曲率θ’により、
(数9) a=Kp*t*cosθ’ で計算する。 In step S304, the surface current is calculated from the magnetic flux density B (f) calculated in S303.
The surface current vector I (f) is given by the following equation according to Bio-Savart's law.
(Expression 7) I (f) = B (f) * 2πa / μ 0
Here, a represents the distance between the surface current and the probe, μ 0 represents the magnetic constant of Coulomb, the distance t between the housing surface and the probe, the individual variation coefficient Kp of the probe, and the curvature θ ′ of the housing surface. By
(Equation 9) a = Kp * t * cos θ ′
本フローチャートに基づいて表面電流ベクトルを測定することで、凹凸のある筐体表面の表面電流ベクトルを高感度に測定することが可能となる。
Measurement of the surface current vector based on this flowchart makes it possible to measure the surface current vector on the surface of the housing with unevenness with high sensitivity.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
100 故障診断システム
101 表面電流ベクトル測定システム
102 表面電流ベクトル算出部
103 メモリ
104 波高値比較部
105 周波数特性比較部
106 表面電流ベクトル角度比較部
107 故障診断部
108 モニタ
109 外部インタフェース
110 表面電流ベクトルの分布データ
111 ケーブル
120 故障診断装置
200 表面電流測定プローブ
201 電流プローブ内コイル(例:FGセンサ、ホール素子)
202 筐体表面(部分的に表示)
203 筐体表面鉛直ベクトル
204 筐体表面とプローブ間の距離
205 電流プローブ内の磁界の計測コイル断面のベクトル
206 位置・姿勢センサ
207 電流プローブ内の磁界の計測コイル断面のベクトルと筐体表面鉛直ベクトルの成す角θ
208 A/D変換、ディジタル信号処理手段
209 磁界計測データ
210 プローブ位置、姿勢情報
211 アンプ
401 プローブ位置P(x1,y1,z1)
402 筐体表面(部分的に表示)
403 筐体表面鉛直ベクトルX
404 Pに近い表面上の点Q
405 Pに近い表面上の点R
406 ベクトルPR
407 ベクトルPQ
501 異常な表面電流ベクトル
502 筐体表面(円筒形状の例)
503 筐体表面(展開図の例)
504 故障位置の表示
505-1~505-4 内部モジュール
700 第2の実施形態による表面電流測定プローブ
701 電流プローブ内コイル(例:FGセンサ、ホール素子)
702 筐体表面(部分的に表示)
703 筐体表面鉛直ベクトル
704 筐体表面とプローブ間の距離
705 電流プローブ内の磁界の計測コイル断面のベクトル
706 位置・姿勢センサ
707 電流プローブ内の磁界の計測コイル断面のベクトルと筐体表面鉛直ベクトルの成す角θ
708 A/D変換、ディジタル信号処理手段
709 磁界計測データ
710 プローブ位置、姿勢情報
711 アンプ
712 筐体表面の曲率θ’
901…電子銃
902-1,902-2…絞り電極
903-1,903-2…偏向電極
904…ステージ
905…サンプル
906…検出器
907…信号検出基板
908…モニタ
911-1,911-2,911-3,911-4…制御基板
1001 モータ
1002 インバータ
1003 電源ユニット
1004,1005 制御ユニット DESCRIPTION OFSYMBOLS 100 Fault diagnosis system 101 Surface current vector measurement system 102 Surface current vector calculation part 103 Memory 104 Peak value comparison part 105 Frequency characteristic comparison part 106 Surface current vector angle comparison part 107 Fault diagnosis part 108 Monitor 109 External interface 110 Surface current vector distribution Data 111 Cable 120 Failure diagnosis device 200 Surface current measurement probe 201 Coil in current probe (example: FG sensor, Hall element)
202 Case surface (partially displayed)
203 Casevertical vector 204 Distance between case surface and probe 205 Magnetic field measurement coil cross section vector 206 in current probe Position / attitude sensor 207 Magnetic field measurement coil cross section vector in current probe and case surface vertical vector The angle θ
208 A / D conversion, digital signal processing means 209 Magneticfield measurement data 210 Probe position / posture information 211 Amplifier 401 Probe position P (x 1 , y 1 , z 1 )
402 Case surface (partially displayed)
403 Case surface vertical vector X
Point Q on the surface near 404 P
Point R on the surface near 405 P
406 Vector PR
407 Vector PQ
501 Abnormal surfacecurrent vector 502 Case surface (example of cylindrical shape)
503 Case surface (example of development)
504 Fault location display 505-1 to 505-4Internal module 700 Surface current measurement probe 701 according to the second embodiment Coil in current probe (example: FG sensor, Hall element)
702 Housing surface (partially displayed)
703 Case surfacevertical vector 704 Distance between case surface and probe 705 Magnetic coil measurement coil cross section vector 706 Position / attitude sensor 707 Current probe magnetic field measurement coil cross section vector and housing surface vertical vector The angle θ
708 A / D conversion, digital signal processing means 709 Magneticfield measurement data 710 Probe position and orientation information 711 Amplifier 712 Curvature θ ′ of housing surface
901 ... Electron guns 902-1, 902-2 ... Diaphragm electrodes 903-1, 903-2 ...Deflection electrodes 904 ... Stage 905 ... Sample 906 ... Detector 907 ... Signal detection board 908 ... Monitors 911-1, 911-2 911-3, 911-4 ... Control board 1001 Motor 1002 Inverter 1003 Power supply unit 1004, 1005 Control unit
101 表面電流ベクトル測定システム
102 表面電流ベクトル算出部
103 メモリ
104 波高値比較部
105 周波数特性比較部
106 表面電流ベクトル角度比較部
107 故障診断部
108 モニタ
109 外部インタフェース
110 表面電流ベクトルの分布データ
111 ケーブル
120 故障診断装置
200 表面電流測定プローブ
201 電流プローブ内コイル(例:FGセンサ、ホール素子)
202 筐体表面(部分的に表示)
203 筐体表面鉛直ベクトル
204 筐体表面とプローブ間の距離
205 電流プローブ内の磁界の計測コイル断面のベクトル
206 位置・姿勢センサ
207 電流プローブ内の磁界の計測コイル断面のベクトルと筐体表面鉛直ベクトルの成す角θ
208 A/D変換、ディジタル信号処理手段
209 磁界計測データ
210 プローブ位置、姿勢情報
211 アンプ
401 プローブ位置P(x1,y1,z1)
402 筐体表面(部分的に表示)
403 筐体表面鉛直ベクトルX
404 Pに近い表面上の点Q
405 Pに近い表面上の点R
406 ベクトルPR
407 ベクトルPQ
501 異常な表面電流ベクトル
502 筐体表面(円筒形状の例)
503 筐体表面(展開図の例)
504 故障位置の表示
505-1~505-4 内部モジュール
700 第2の実施形態による表面電流測定プローブ
701 電流プローブ内コイル(例:FGセンサ、ホール素子)
702 筐体表面(部分的に表示)
703 筐体表面鉛直ベクトル
704 筐体表面とプローブ間の距離
705 電流プローブ内の磁界の計測コイル断面のベクトル
706 位置・姿勢センサ
707 電流プローブ内の磁界の計測コイル断面のベクトルと筐体表面鉛直ベクトルの成す角θ
708 A/D変換、ディジタル信号処理手段
709 磁界計測データ
710 プローブ位置、姿勢情報
711 アンプ
712 筐体表面の曲率θ’
901…電子銃
902-1,902-2…絞り電極
903-1,903-2…偏向電極
904…ステージ
905…サンプル
906…検出器
907…信号検出基板
908…モニタ
911-1,911-2,911-3,911-4…制御基板
1001 モータ
1002 インバータ
1003 電源ユニット
1004,1005 制御ユニット DESCRIPTION OF
202 Case surface (partially displayed)
203 Case
208 A / D conversion, digital signal processing means 209 Magnetic
402 Case surface (partially displayed)
403 Case surface vertical vector X
Point Q on the surface near 404 P
Point R on the surface near 405 P
406 Vector PR
407 Vector PQ
501 Abnormal surface
503 Case surface (example of development)
504 Fault location display 505-1 to 505-4
702 Housing surface (partially displayed)
703 Case surface
708 A / D conversion, digital signal processing means 709 Magnetic
901 ... Electron guns 902-1, 902-2 ... Diaphragm electrodes 903-1, 903-2 ...
Claims (11)
- 測定対象を流れる表面電流に基いて発生する磁界を測定するシステムであって、
磁界の磁束密度を計測するコイルと、プローブの位置、姿勢を検出する位置・姿勢センサと、前記コイルの出力信号を増幅するアンプとを備えた表面電流測定プローブと、
前記プローブの位置、姿勢情報より、計測コイル断面のベクトルと測定対象の筐体表面鉛直ベクトルとの成す角度θを算出し、前記角度θにより前記磁束密度を補正し、補正した磁束密度から表面電流ベクトルを算出する表面電流ベクトル算出部とを備えたことを特徴とする表面電流ベクトル測定システム。 A system for measuring a magnetic field generated based on a surface current flowing through a measurement object,
A surface current measuring probe comprising a coil for measuring the magnetic flux density of the magnetic field, a position / posture sensor for detecting the position and posture of the probe, and an amplifier for amplifying the output signal of the coil;
From the probe position and orientation information, the angle θ formed by the measurement coil cross-section vector and the measurement target housing surface vertical vector is calculated, the magnetic flux density is corrected by the angle θ, and the surface current is calculated from the corrected magnetic flux density. A surface current vector measuring system comprising a surface current vector calculating unit for calculating a vector. - 前記表面電流ベクトル算出部は、前記プローブの位置情報と、前記測定対象の筐体表面情報より筐体表面鉛直ベクトルを算出し、前記プローブの姿勢情報より計測コイル断面のベクトルと測定対象の筐体表面鉛直ベクトルとの成す角度θを算出し、プローブにより計測した磁界計測データを前記角度θにより補正して磁束密度を算出し、補正した磁束密度から表面電流ベクトルを算出することを特徴とする請求項1に記載の表面電流ベクトル測定システム。 The surface current vector calculation unit calculates a case surface vertical vector from the position information of the probe and the case surface information of the measurement target, and calculates a measurement coil cross-section vector and a measurement target case from the posture information of the probe. An angle θ formed with a surface vertical vector is calculated, magnetic field measurement data measured by a probe is corrected by the angle θ to calculate a magnetic flux density, and a surface current vector is calculated from the corrected magnetic flux density. Item 4. The surface current vector measurement system according to Item 1.
- 前記表面電流ベクトル算出部は、前記補正した磁束密度を、前記測定対象の筐体表面とプローブの間隔、及び筐体表面の曲率により補正して、表面電流ベクトルを算出することを特徴とする請求項2に記載の表面電流ベクトル測定システム。 The surface current vector calculation unit calculates the surface current vector by correcting the corrected magnetic flux density by a distance between the measurement target casing surface and the probe and a curvature of the casing surface. Item 3. The surface current vector measurement system according to Item 2.
- 前記表面電流測定プローブの磁界の磁束密度を計測するコイルは、測定の最小の周波数に応じて、フラックスゲートセンサ、ループコイル、又はホール素子が適宜選択されて採用されることを特徴とする請求項1に記載の表面電流ベクトル測定システム。 The coil for measuring the magnetic flux density of the magnetic field of the surface current measurement probe is appropriately selected from a fluxgate sensor, a loop coil, or a Hall element according to the minimum frequency of measurement. 2. The surface current vector measurement system according to 1.
- 診断対象装置の制御基板より流れる電流で発生する磁界強度を測定する表面電流ベクトル測定システムと、
前記表面電流ベクトル測定システムで取得した前記診断対象装置の正常動作時の表面電流ベクトルの分布データを記憶するメモリと、
前記メモリの保存データと前記表面電流ベクトル測定システムで取得した表面電流ベクトルの分布データとを比較する比較部と、
前記比較部で比較した表面電流ベクトル単位の差分データが所定のしきい値を超過した場合に前記診断対象装置の故障と判定する故障診断部とを備えた
ことを特徴とする故障診断システム。 A surface current vector measurement system for measuring the magnetic field intensity generated by the current flowing from the control board of the diagnostic target device;
A memory that stores distribution data of a surface current vector during normal operation of the diagnostic target device acquired by the surface current vector measurement system;
A comparison unit that compares the storage data of the memory and the distribution data of the surface current vector acquired by the surface current vector measurement system;
A failure diagnosis system comprising: a failure diagnosis unit that determines that the diagnosis target device has failed when difference data in units of surface current vectors compared by the comparison unit exceeds a predetermined threshold value. - 前記メモリには、前記表面電流ベクトル測定システムの表面電流測定プローブを、正常稼働時の前記診断対象装置の筐体、または制御基板に沿って走査させた走査経路上で測定した表面電流ベクトルの分布データを記録しておくことを特徴とする請求項5に記載の故障診断システム。 In the memory, a distribution of surface current vectors measured on a scanning path obtained by scanning the surface current measuring probe of the surface current vector measuring system along the housing of the diagnostic target device or the control board during normal operation. 6. The failure diagnosis system according to claim 5, wherein data is recorded.
- 前記比較部は、同じ周波数fにおける表面電流ベクトルI(f)の電流強度の差分を抽出する第1の比較部と、
比較対象の両表面電流ベクトルI(f)の周波数スペクトルの中のある特定の周波数fにおける電流強度の差分の一致、不一致を判定する第2の比較部と、
比較対象の両表面電流ベクトルI(f)の角度の差分を抽出する第3の比較部とを備えることを特徴とする請求項5に記載の故障診断システム。 The comparison unit extracts a difference in current intensity of the surface current vector I (f) at the same frequency f;
A second comparison unit for determining whether the current intensity difference at a specific frequency f in the frequency spectrum of both surface current vectors I (f) to be compared matches or does not match;
The failure diagnosis system according to claim 5, further comprising a third comparison unit that extracts a difference between angles of both surface current vectors I (f) to be compared. - 前記故障診断部は、前記第1乃至第3の各比較部の出力に対してそれぞれ対応する第1乃至第3の各しきい値を備え、必要に応じて、各比較部のうちいずれか1つ、またはいずれかの組合せの比較部の出力を、それぞれ対応するしきい値と比較して、全てがしきい値以内であれば正常な表面電流ベクトルI(f)と判定することを特徴とする請求項7に記載の故障診断システム。 The failure diagnosis unit includes first to third threshold values corresponding to the outputs of the first to third comparison units, and any one of the comparison units as necessary. One or any combination of the outputs of the comparators is compared with the corresponding threshold value, and if all are within the threshold value, the normal surface current vector I (f) is determined. The failure diagnosis system according to claim 7.
- 更に、外部インタフェースを介してモニタが接続され、
前記故障診断部は、診断時に前記表面電流ベクトル測定システムが測定した表面電流ベクトルの分布データを、3次元表示した診断対象装置の筐体表面上に、及び2次元展開図表示した診断対象装置の筐体表面上に、それぞれ走査経路上のプローブ位置Pに表面電流ベクトルI(f)を、モニタ上に表示することを特徴とする請求項5に記載の故障診断システム。 In addition, a monitor is connected via an external interface,
The fault diagnosis unit includes a surface current vector distribution data measured by the surface current vector measurement system at the time of diagnosis on the surface of the case of the diagnosis target device displayed in a three-dimensional manner, and in the diagnosis target device displayed in a two-dimensional development view. 6. The fault diagnosis system according to claim 5, wherein a surface current vector I (f) is displayed on a monitor at a probe position P on the scanning path. - 前記故障診断部は、モニタ上に、3次元表示、及び2次元展開図表示した診断対象装置の筐体表面上に、それぞれ走査経路上のプローブ位置Pに表面電流ベクトルI(f)を表示して、各表面電流ベクトルの診断結果に基いて、異常な表面電流ベクトルと判定されたベクトルを正常なベクトルとは識別可能に表示し、及び異常電流の原因となっていると判定される故障箇所を特定して表示することを特徴とする請求項9に記載の故障診断システム。 The fault diagnosis unit displays the surface current vector I (f) at the probe position P on the scanning path on the surface of the casing of the diagnosis target device displayed in a three-dimensional display and a two-dimensional development view on the monitor. Based on the diagnosis result of each surface current vector, the vector determined to be an abnormal surface current vector is displayed so that it can be distinguished from the normal vector, and the fault location determined to be the cause of the abnormal current The fault diagnosis system according to claim 9, wherein the fault diagnosis system is specified and displayed.
- 電子ビームを放出する電子銃と、
電子ビームを加速する加速電極と、
電子ビーム径を絞るための絞り電極と、
電子ビームの照射位置を調整する偏向電極と、
サンプルを設置するステージと、
サンプルから放出された2次電子を検出する検出器と、
検出信号を増幅し、ディジタル信号に変換して信号処理を行う信号検出基板と、
各電極に制御電圧あるいは制御電流を印加するための制御基板と、
前記制御基板、または前記制御基板から流れる電流経路の近傍を走査される表面電流測定プローブと、
前記表面電流測定プローブが検出した磁界強度信号と、プローブの位置、姿勢情報より表面電流ベクトルの分布を算出する表面電流ベクトル測定システムと、
前記表面電流ベクトルの分布データより、前記制御基板の故障を判定する故障診断システムとを備えた走査型電子顕微鏡。 An electron gun that emits an electron beam;
An accelerating electrode that accelerates the electron beam;
A diaphragm electrode for narrowing the electron beam diameter;
A deflection electrode for adjusting the irradiation position of the electron beam;
A stage to place the sample,
A detector for detecting secondary electrons emitted from the sample;
A signal detection board that amplifies the detection signal, converts it into a digital signal, and performs signal processing;
A control board for applying a control voltage or a control current to each electrode;
A surface current measurement probe that is scanned in the vicinity of the control board or a current path flowing from the control board;
A surface current vector measurement system that calculates the distribution of the surface current vector from the magnetic field strength signal detected by the surface current measurement probe and the position and orientation information of the probe;
A scanning electron microscope comprising: a failure diagnosis system that determines a failure of the control board from the distribution data of the surface current vector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/062028 WO2016170589A1 (en) | 2015-04-21 | 2015-04-21 | Surface current vector measurement system and failure diagnosis system using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/062028 WO2016170589A1 (en) | 2015-04-21 | 2015-04-21 | Surface current vector measurement system and failure diagnosis system using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016170589A1 true WO2016170589A1 (en) | 2016-10-27 |
Family
ID=57142971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062028 WO2016170589A1 (en) | 2015-04-21 | 2015-04-21 | Surface current vector measurement system and failure diagnosis system using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016170589A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114000178A (en) * | 2021-11-26 | 2022-02-01 | 中南大学 | Fault detection method and device for electrolytic cell polar plate, terminal and readable storage medium |
US11372048B2 (en) * | 2019-11-29 | 2022-06-28 | Hitachi, Ltd. | Diagnostic device and diagnostic method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1038984A (en) * | 1996-07-19 | 1998-02-13 | Toshiba Corp | Method and apparatus for detecting failure site |
JPH11223647A (en) * | 1998-02-06 | 1999-08-17 | Ricoh Co Ltd | Electromagnetic noise measuring device by near magnetic field probe |
JP2000002731A (en) * | 1998-06-17 | 2000-01-07 | Canon Inc | Data measuring device and method |
JP2000230954A (en) * | 1999-02-12 | 2000-08-22 | Canon Inc | Apparatus for measuring electromagnetic field and method for measuring electromagnetic-field distribution |
JP2003066079A (en) * | 2001-08-30 | 2003-03-05 | Ricoh Co Ltd | Measuring device of electromagnetic disturbance wave |
JP2003167012A (en) * | 2001-11-30 | 2003-06-13 | Canon Inc | Current distribution measuring device |
JP2003337151A (en) * | 2002-05-17 | 2003-11-28 | Ricoh Co Ltd | Electromagnetic interference measuring apparatus |
JP2008045899A (en) * | 2006-08-11 | 2008-02-28 | Utsunomiya Univ | Magnetic field distribution measuring apparatus |
JP2011226804A (en) * | 2010-04-15 | 2011-11-10 | Panasonic Corp | Current detection probe, current measuring apparatus and current detection device |
-
2015
- 2015-04-21 WO PCT/JP2015/062028 patent/WO2016170589A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1038984A (en) * | 1996-07-19 | 1998-02-13 | Toshiba Corp | Method and apparatus for detecting failure site |
JPH11223647A (en) * | 1998-02-06 | 1999-08-17 | Ricoh Co Ltd | Electromagnetic noise measuring device by near magnetic field probe |
JP2000002731A (en) * | 1998-06-17 | 2000-01-07 | Canon Inc | Data measuring device and method |
JP2000230954A (en) * | 1999-02-12 | 2000-08-22 | Canon Inc | Apparatus for measuring electromagnetic field and method for measuring electromagnetic-field distribution |
JP2003066079A (en) * | 2001-08-30 | 2003-03-05 | Ricoh Co Ltd | Measuring device of electromagnetic disturbance wave |
JP2003167012A (en) * | 2001-11-30 | 2003-06-13 | Canon Inc | Current distribution measuring device |
JP2003337151A (en) * | 2002-05-17 | 2003-11-28 | Ricoh Co Ltd | Electromagnetic interference measuring apparatus |
JP2008045899A (en) * | 2006-08-11 | 2008-02-28 | Utsunomiya Univ | Magnetic field distribution measuring apparatus |
JP2011226804A (en) * | 2010-04-15 | 2011-11-10 | Panasonic Corp | Current detection probe, current measuring apparatus and current detection device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11372048B2 (en) * | 2019-11-29 | 2022-06-28 | Hitachi, Ltd. | Diagnostic device and diagnostic method |
CN114000178A (en) * | 2021-11-26 | 2022-02-01 | 中南大学 | Fault detection method and device for electrolytic cell polar plate, terminal and readable storage medium |
CN114000178B (en) * | 2021-11-26 | 2022-11-22 | 中南大学 | Fault detection method and device for electrolytic cell polar plate, terminal and readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11828811B2 (en) | Storage battery inspection device and storage battery inspection method | |
US7710131B1 (en) | Non-contact circuit analyzer | |
CN109655090B (en) | Redundant sensor fault detection | |
CN110196073B (en) | Apparatus and method for redundant sensor error reduction | |
JP2011516842A (en) | Diagnosable hall sensor | |
CN109946637B (en) | Method, system, device and apparatus for redundant combined readout | |
CN104698251B (en) | Include the compensation method of the electric device and current transformer of current transformer | |
EP2530483B1 (en) | System and method for compensating for magnetic noise | |
JP2018112452A (en) | Device and method for partial discharge monitoring | |
CN105445525A (en) | Overcurrent detection in a current sensor with a Hall sensor | |
WO2016170589A1 (en) | Surface current vector measurement system and failure diagnosis system using same | |
WO2016170588A1 (en) | Magnetic field measurement system and failure diagnosis system using same | |
US10677612B2 (en) | Large surface magnetic field sensor array | |
US9851394B2 (en) | Partial-discharge measurement method and high-voltage device inspected using same | |
CN111521857B (en) | Multi-conductor current measuring system based on TMR tunnel magnetic resistance | |
JP2011252778A (en) | Method for detecting partial discharge of electrical device using magnetic field probe | |
US11293993B2 (en) | Detection of an electric arc hazard related to a wafer | |
WO2013145928A1 (en) | Current detection apparatus and current detection method | |
JP6465348B2 (en) | Method and apparatus for detecting bonding wire current magnetic field distribution of power semiconductor device | |
JP5478426B2 (en) | Measurement or inspection apparatus and measurement or inspection method using the same | |
JP6128921B2 (en) | Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method | |
JP2011252780A (en) | Detection method of partial discharge of electrical device using magnetic field probe | |
JP6465349B2 (en) | Diagnostic method and apparatus for bonding wire current magnetic field distribution inspection of power semiconductor device | |
CN110907875B (en) | Hall current sensor calibration device and method | |
US11276545B1 (en) | Compensating for an electromagnetic interference induced deviation of an electron beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15889829 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15889829 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |