WO2016169493A1 - 一种水增氧装置 - Google Patents

一种水增氧装置 Download PDF

Info

Publication number
WO2016169493A1
WO2016169493A1 PCT/CN2016/079868 CN2016079868W WO2016169493A1 WO 2016169493 A1 WO2016169493 A1 WO 2016169493A1 CN 2016079868 W CN2016079868 W CN 2016079868W WO 2016169493 A1 WO2016169493 A1 WO 2016169493A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mixing cylinder
ring
oxygen
mixing
Prior art date
Application number
PCT/CN2016/079868
Other languages
English (en)
French (fr)
Inventor
关广联
Original Assignee
关广联
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520246222.1U external-priority patent/CN204588836U/zh
Priority claimed from CN201510465136.4A external-priority patent/CN105028302A/zh
Application filed by 关广联 filed Critical 关广联
Publication of WO2016169493A1 publication Critical patent/WO2016169493A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a water body aeration device which can be used for fish ponds, fish ponds, aquariums and sewage treatment projects.
  • the aeration technology of water or water mainly achieves the purpose of aeration by agitating the water surface by a mixer, but the aeration technique can only achieve a certain oxygenation effect on the surface water.
  • Another oxygen-enhancing technique is to insert an air tube into the water to achieve oxygenation, but the oxygenation effect is limited due to poor water-oxygen solubility.
  • the object of the present invention is to provide a novel water aeration device which uses a high concentration of oxygen and increases the partial pressure of oxygen, thereby increasing the water-oxygen mixing rate and the oxygen concentration in the water, and also achieving the effect of saving oxygen.
  • the present invention provides a water aeration device comprising an oxygen source, an aeration cylinder, a water-gas mixing draft tube and a water pump, wherein the water pump is connected to the top of the mixing tank through a water conduit One end of the water-gas mixing draft tube is connected to the bottom of the mixing cylinder, and the other end is extended into the water.
  • the water pump pressurizes the water into the mixing cylinder, and at the same time, the oxygen enters the mixing cylinder, such a structure facilitates mixing of water and oxygen and increases the mixing ratio of water and oxygen.
  • any filler which can increase the gas-liquid contact surface or which diverts water is provided or filled. This makes it easier to mix water and oxygen. Thereby, the water oxygen mixing rate and the concentration of oxygen in the water are more effectively improved.
  • the filler means an inert solid material contained in the mixing cylinder.
  • the filler of the present invention may be in the shape of a conventional Pall ring, Raschig ring, step ring, arc saddle, saddle saddle, ring saddle, spherical shape, etc.; it may also be a structured packing such as a grid packing, a corrugated packing, a pulse.
  • the grid filler may be a Grich grid filler, a mesh grid filler, a honeycomb grid filler, etc.
  • the corrugated filler may be a mesh corrugated filler and a plate corrugated filler.
  • the material of the filler can be an inert material such as metal, plastic or ceramic.
  • the primary purpose of the fillers of the present invention is to increase the gas-liquid contact surfaces to intimately mix with one another.
  • microorganisms will accumulate on the surface of the filler to increase contact with the surface of the water and degrade the pollutants in the water.
  • the water aerator of the present invention may further comprise a support net disposed in the lower portion of the mixing cylinder for supporting the filler, wherein the outlet end of the oxygen source is located between the support net and the bottom plate of the mixing tube. Inside, the filler is disposed in the mixing cylinder on the net portion of the support frame.
  • the function of the above support net is to separate the filler from the water at the bottom of the mixing cylinder, which is more advantageous for the spherical biocarrier fluidized filler to expand the surface area of the water and ensure the surface area of the water in contact with the oxygen.
  • the mixing cylinder at the lower portion of the support frame is immersed in the water.
  • the mixing cylinder is located above the water surface, and the water-gas mixing guiding tube is composed of a straight pipe portion, a horizontal pipe portion and a lower opening frame-shaped pipe portion, wherein the straight pipe The portion is connected to the bottom plate of the mixing tube, and the straight tube at the other end of the lower open frame tube portion projects into the water; the bottom surface of the horizontal tube portion inner cavity is flush with the lower surface of the support frame net, or the bottom surface of the horizontal tube portion inner cavity is located at the support frame Above the lower surface of the net.
  • the water aerator of the present invention further comprises a water jet head disposed at the top of the mixing cylinder and connected to the water conduit.
  • the water aeration device of the present invention further comprises an upper open tubular air guiding sleeve, the water oxygen mixing hole on the bottom plate of the cylindrical air guiding sleeve has a nozzle sleeve, and the center of the bottom plate has an oxygen absorption hole, water and oxygen
  • the mixing hole surrounds the oxygen absorption hole; the lower end of the water jet head is inserted into the cylindrical air guiding sleeve and fixedly connected together, and the lower end surface of the water jet head is provided with oxygen guiding between the bottom surface of the water guiding head and the bottom surface of the cylindrical air guiding sleeve
  • the nozzle of the water jet head is provided with a nozzle, and a gap is provided between the nozzle and the nozzle sleeve.
  • the water aerator of the present invention further comprises a venturi, the venturi is disposed in the upper portion of the water jet head, and the mixing tank is connected between the oxygen source and the top of the water jet head and the mixing cylinder. .
  • the purpose of setting the venturi is also to increase the gas-liquid mixing.
  • the above-described water aeration device of the present invention may further comprise an aeration disk that communicates with an outlet end of the oxygen source.
  • a magnetizer may be disposed on the water conduit.
  • a spherical biocarrier fluidized filler may be disposed or filled in the mixing cylinder of the water aerator of the present invention, and the spherical biocarrier fluidized filler includes a top ring, a bottom ring, an inner ring band, and an outer ring band.
  • arcuate vanes a plurality of arcuate vanes; the arcuate vanes between the top ring and the inner and outer annulus are connected to the top ring and the inner and outer annulus; the arcuate vanes and the bottom ring between the bottom ring and the inner and outer annulus
  • the inner and outer annular belts are connected; the arcuate blades at the upper part of the inner and outer annulus and the lower arcuate blades are opposite to each other in the direction of rotation of the inner and outer annulus.
  • the arcuate vanes have baffles along the axis of the top ring and the bottom ring on both sides; the deflecting plates are staggered on the opposite faces of the adjacent two arcuate vanes.
  • the spherical biocarrier fluidized filler further comprises a weight plate and a plurality of inner baffles,
  • the weight plate is located in the center hole of the inner ring belt; the inner deflector is divided into the upper inner deflector and the lower inner deflector; the lower part of the upper inner deflector is fixedly connected with the upper part of the weight plate, and the other side
  • the upper end of the lower inner baffle is fixedly connected with the lower part of the weight plate, and the other side is fixedly connected with the arcuate blade located at the lower part of the inner and outer ring bands; Lower inner baffle spacing.
  • the upper and lower deflectors are radially oriented.
  • the water pump pressurizes and injects water into the gas mixing cylinder, and at the same time, the oxygen enters the gas mixing cylinder, and the filler acts as a shunting action on the water, increasing the gas-liquid contact surface, and facilitating the mixing of water and oxygen. Therefore, the water aeration device of the present invention has the characteristics of high water-oxygen mixing rate and high oxygen concentration in water.
  • Figure 1 is a schematic view showing a first embodiment of the water aerator of the present invention
  • Figure 2 is a schematic view of a water jet head used in the water aerator of the present invention
  • Figure 3 is a schematic view showing a second embodiment of the water aerator according to the present invention.
  • Figure 4 is a schematic view showing a third embodiment of the water aerator according to the present invention.
  • Figure 5 is a schematic view showing a fourth embodiment of the water aerator according to the present invention.
  • Figure 6 is a perspective view of a spherical biocarrier fluidized filler used in the present invention.
  • Figure 7 is a perspective cross-sectional view of the spherical biocarrier fluidized packing of Figure 6;
  • Figure 8 is a top plan view of the spherical biocarrier fluidized packing of Figure 6.
  • FIG. 1 shows a specific embodiment of a water aeration device according to the present invention, which comprises an oxygen source 1, and further comprises an air mixing cylinder 2, a packing 3, a water-gas mixing guiding tube 4 and a water pump 5, wherein the water pump 5 passes through a water conduit and The top of the mixing cylinder 2 is connected, and the oxygen source 1 is connected to the upper portion of the mixing cylinder 2, and is filled.
  • the material 3 is disposed in the mixing cylinder 2; one end of the water-gas mixing draft tube 4 is connected to the bottom of the mixing cylinder 2, and the other end is extended into the water.
  • the water aeration device further includes a water jet head 6 disposed at the top of the air mixing cylinder 2 and connected to the water conduit.
  • Fig. 2 shows a water jet head 6 of the present invention, in which a nozzle 61 is provided in a water spray hole of the water jet head.
  • the water jet head of the present invention further comprises an upper open tubular air guiding sleeve 7, wherein the water oxygen mixing hole on the bottom plate of the cylindrical air guiding sleeve 7 has a nozzle sleeve 71, and the bottom of the bottom plate has an oxygen collecting hole 72.
  • the water oxygen mixing hole surrounds the oxygen absorption hole 72;
  • the lower end of the water jet head 6 is inserted into the cylindrical air guiding sleeve 7 and fixedly connected together; there is an oxygen guiding gap between the lower end surface of the water jet head 6 and the bottom plate of the cylindrical air guiding sleeve 7, and the nozzle 61 and the nozzle sleeve 71 There is a gap between them.
  • Figure 3 shows another embodiment of the water aeration device of the present invention, further comprising a venturi 8 disposed on the pipeline above the water jet head 6, the oxygen source 1 and the water jet head 6
  • the mixing cylinder 2 is connected to the top plate of the mixing cylinder 2 to be connected.
  • FIG. 4 is a still further embodiment of the water aeration device of the present invention, comprising an oxygen source 1, an air mixing cylinder 2, a packing 3, a water-gas mixing draft tube 4, and a water pump 5, and the water pump 5 passes through the water conduit and the air mixing cylinder 2
  • the top connection is connected, and one end of the water-gas mixing draft tube 4 is connected to the bottom of the mixing cylinder 2, and the other end is extended into the water.
  • the specific embodiment further includes a support net 2, the support net 2A is disposed in the lower portion of the air mix cylinder 2, and the air outlet end of the oxygen source 1 is located in a space between the support net 2A and the bottom plate of the air mix cylinder 1; the packing 3 is disposed on the support In the mixing cylinder above the net 2A, the support net 2A supports the packing 3.
  • the mixing cylinder 2 at the lower portion of the support net 2A is immersed in water; the water-gas mixing draft tube 4 is located in the water.
  • the specific embodiment further includes an aeration disk 9 which is opposite to the support frame net 2A, the oxygen bubbles rise and the water flow decreases; since the relative movement slows down the oxygen bubble rising speed, the oxygen bubbles stay longer in the water, and the time is increased. Dissolved oxygen efficiency.
  • the water conduit of each of the above water aerators may be provided with a magnetizer 10 that magnetizes water.
  • the mixing cylinder 2 is located above the water surface;
  • the water-gas mixing draft tube 4 is composed of a straight pipe portion 41, a horizontal pipe portion 42, and a lower opening frame tube.
  • the portion 43 is configured such that one end of the straight tube portion 41 communicates with one end of the horizontal tube portion 42, and the other end of the horizontal tube portion 42 communicates with a riser 431 of the lower open frame-shaped tube portion 43; the other riser tube 432 extends into the water;
  • the straight pipe portion 41 is connected to the bottom plate of the air mix cylinder 2, and the straight pipe 432 of the other end of the lower open frame pipe portion 43 is inserted into the water; the bottom surface of the inner cavity of the horizontal pipe portion 42 is flush with the lower surface of the support frame net 2A, or The bottom surface of the inner cavity of the horizontal pipe portion 42 is located above the lower surface of the support frame net 2A, that is, the bottom surface of the inner cavity of the horizontal pipe portion 42 has a height difference from the lower surface of the support frame net 2A.
  • the filler 3 acts to enlarge the surface area of the water body in contact with oxygen; wherein the support net 2A functions to separate the filler 3 from the water at the bottom of the mixing cylinder 3, which is more advantageous for the filler 3 to expand the surface area of the water and ensure the water. Surface area in contact with oxygen.
  • the filler 3 used in the present invention may be a spherical biocarrier fluidized filler produced according to the technical scheme of Chinese Patent No. 201220004252.8.
  • FIG. 6 to 8 show a spherical biocarrier fluidized filler used in the present invention, which comprises a top ring 11, a bottom ring 12, an inner ring band 13, an outer ring band 14, and a plurality of arcuate blades 15, located at the top ring 11
  • the arcuate vanes 15 between the inner and outer annulus 13, 14 are joined to the top ring 11 and the inner and outer annulus 13, 14; the arcuate vanes between the bottom ring 12 and the inner and outer annulus 13, 14 15 is connected to the bottom ring 11 and the inner and outer endless belts 13, 14; the arcuate blades 15 and the lower arcuate blades 15 at the upper portions of the inner and outer annulus 13, 14 are opposite to the inner and outer annulus 13, 14 .
  • the arcuate blades 15 at the upper portions of the inner and outer annulus 13, 14 are right-handed; the arcuate blades 15 at the lower portions of the inner and outer annulus 13, 14 are left-handed.
  • both sides of the arcuate blade 15 have baffles 16 along the axial direction of the top ring 11 and the bottom ring 12; as shown in Fig. 8, the baffles 16 are interlaced on opposite sides of the adjacent two arcuate blades 15.
  • the spherical biocarrier fluidized filler further comprises:
  • the weight plate 17 is located in the central hole of the inner ring belt 13;
  • the inner baffle is divided into an upper inner baffle 181 and a lower inner baffle 182;
  • the lower portion of the upper inner baffle 181 is fixedly connected to the upper portion of the weight plate 17, and the other side is fixedly connected to the arcuate blades 15 at the upper portions of the inner and outer annular bands 13, 14.
  • the upper portion of the lower inner baffle 182 is fixedly connected to the lower portion of the weight plate 17, and the other side is fixedly connected to the arcuate blades at the lower portions of the inner and outer annular bands 13, 14; the upper and lower inner baffles 181, 182 are spaced apart. .
  • the upper and lower deflectors 191, 182 are in the radial direction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)

Abstract

一种水增氧装置,其包括氧气源(1)、混气筒(2)、水气混合导流管(4)和水泵(5),其中,水泵(5)通过导水管与混气筒(2)的顶部连接接通,水气混合导流管(4)一端与混气筒(2)的底部连接接通、另一端伸入水中。混气筒(2)内可以设置增大气-液接触面的填料(3)。水增氧装置可进一步包括支撑架网(2A),支撑架网(2A)设置在混气筒(2)的下部内,氧气源(1)的出气端位于支撑架网(2A)和混气筒(2)底板之间的空间内;填料(3)设置在支撑架网(2A)上部的混气筒(2)内,支撑架网(2A)支撑填料(3)。水泵(5)向混气筒(2)加压注水,与此同时,氧气进入混气筒(2),填料(3)对水起到分流作用,便于水和氧混合。

Description

一种水增氧装置 技术领域
本发明涉及一种可以鱼塘、鱼池、水族箱及污水处理工程的水体增氧装置。
背景技术
现有技术中,水或水体的增氧技术主要是通过搅拌机搅动水面而达到增氧的目的,但这种增氧技术只能对表面的水达到一定的增氧的作用。另一种增氧技术是将空气管插入水中,以达到增氧的目的,但由于水氧溶合差,增氧效果也较为有限。
发明内容
本发明的目的是是提供一种新型的水增氧装置,其采用高浓度氧气、提高氧分压,从而提高水氧混合率以及水中的氧浓度,也可达到节约氧气的效果。
为实现上述本发明的目的,本发明提供了一种水增氧装置,其包括氧气源、混气筒、水气混合导流管和水泵,其中,水泵通过导水管与混气筒的顶部连接接通,水气混合导流管一端与混气筒的底部连接接通、另一端伸入水中。
在本发明的水增氧装置中,水泵向混气筒加压注水,与此同时,氧气进入混气筒,这样的结构便于水和氧混合和提高水氧混合率。
优选地,在本发明的水增氧装置的混气筒内,设置或装填任何能增大气-液的接触面、或者对水起到分流作用的填料。这样更便于水和氧混合, 从而更有效地提高水氧混合率和水中氧的浓度。
本发明中,填料(或称填充物)是指装于混气筒内的惰性固体物料。例如,本发明的填料可以是常规的鲍尔环、拉西环、阶梯环、弧鞍、矩鞍、环矩鞍、球形等形状;也可以是规整填料,例如格栅填料、波纹填料、脉冲填料等,格栅填料可以是格里奇格栅填料、网孔格栅填料、蜂窝格栅填料等,波纹填料可以是网波纹填料和板波纹填料。填料的材质可以金属、塑料、陶瓷等惰性材料。
本发明使用填料的主要目的是增大气-液的接触面,使其相互强烈混合。另外,在处理水、特别是污水时,微生物会在填料的表面进行累积,以增大与水的表面接触,对水中的污染物进行降解处理。
进一步地,本发明的水增氧装置还可以包括设置在混气筒下部内的、用于支撑填料的支撑架网,其中,氧气源的出气端位于该支撑架网和混气筒底板之间的空间内,填料则设置在该支撑架网上部的混气筒内。
上述支撑架网的作用是使填料与混气筒底部的水分离,这样更有利于使球形生物载体流化填料展开水的表面积,保证水与氧气接触的表面积。
根据本发明水增氧装置的一具体实施方式,支撑架网下部的混气筒浸入水中。
根据本发明水增氧装置的另一具体实施方式,混气筒位于水面之上,而水气混合导流管则由直管部、水平管部和下开口框形管部构成,其中,直管部与混气筒的底板连接,下开口框形管部的另一端的直管伸入水中;水平管部内腔的底面与支撑架网的下表面平齐,或水平管部内腔的底面位于支撑架网的下表面的上方。
优选地,本发明的水增氧装置进一步包括一喷水头,该喷水头设置在混气筒内的顶部并与导水管连接接通。
进一步地,本发明的水增氧装置还包括上开口的筒形导气套,该筒形导气套的底板上的水氧混合孔上有喷嘴套,底板的中心有吸氧孔,水氧混合孔环绕吸氧孔;上述的喷水头的下端插入该筒形导气套内,并固定连接在一起,喷水头的下端面则与筒形导气套的底板之间设有导氧间隙,喷水头的喷水孔上则设置有喷嘴,喷嘴与喷嘴套之间设有间隙。
优选地,本发明的水增氧装置还包括一文丘里管,该文丘里管设置在喷水头上部的管路,而氧气源与喷水头和混气筒的顶板之间混气筒连接接通。设置文丘里管的目的也是增加气-液混合。
优选地,上述本发明的水增氧装置还可以包括一曝气盘,该曝气盘与氧气源的出气端连通。
进一步地,在本发明的水增氧装置中,其导水管上可以设置有磁化器。
作为一种具体实施方式,在本发明水增氧装置的混气筒内可以设置或装填球形生物载体流化填料,该球形生物载体流化填料包括顶环、底环、内环带、外环带和若干个弓形叶片;位于顶环与内、外环带上之间的弓形叶片与顶环和内、外环带连接;位于底环与内、外环带上之间的弓形叶片与底环和内、外环带连接;位于内、外环带上部的弓形叶片和下部的弓形叶片相对于内、外环带的旋转方向相反。
在上述的球形生物载体流化填料中,其弓形叶片的两侧有沿顶环和底环轴线方向的导流板;相邻二个弓形叶片相对面上有导流板交错。
优选地,球形生物载体流化填料还包括一个配重盘和若干个内导流板, 配重盘位于内环带的中心孔内;内导流板分为上内导流板和下内导流板;上内导流板一侧的下部与配重盘上部固定连接、另一侧与位于内、外环带上部的弓形叶片固定连接;下内导流板一侧的上部与配重盘下部固定连接、另一侧与位于内、外环带下部的弓形叶片固定连接;上、下内导流板间隔。
进一步地,上述的上、下导流板沿径向。
采用本发明的水增氧装置,水泵向混气筒加压注水,与此同时,氧气进入混气筒,填料对水起到分流作用,增大气-液接触面,便于水和氧混合。故本发明的水增氧装置具有提高水氧混合率高,水中氧浓度高的特点。
附图说明
图1是本发明水增氧装置的第一具体实施方式的示意图;
图2是本发明水增氧装置中所使用喷水头的示意图;
图3是本发明水增氧装置的第二具体实施方式的示意图;
图4是本发明水增氧装置的第三具体实施方式的示意图;
图5是本发明水增氧装置的第四具体实施方式的示意图;
图6是本发明所采用球形生物载体流化填料的立体图;
图7是图6之球形生物载体流化填料的立体剖视图;
图8是图6之球形生物载体流化填料的俯视图。
具体实施方式
下面结合附图对本发明作进一步描述。
图1所示为本发明水增氧装置一具体实施方式,其包括氧气源1,还包括混气筒2、填料3、水气混合导流管4和水泵5,其中,水泵5通过导水管与混气筒2的顶部连接接通,氧气源1与混气筒2的上部连接接通,填 料3设置在混气筒2内;水气混合导流管4一端与混气筒2的底部连接接通、另一端伸入水中。
优选地,上述的水增氧装置还包括一喷水头6,喷水头6设置在混气筒2内的顶部并与导水管连接接通。
图2所示为本发明的喷水头6,其中该喷水头的喷水孔上设置有喷嘴61。
优选地,本发明的喷水头还包括上开口的筒形导气套7,筒形导气套7的底板上的水氧混合孔上有喷嘴套71,底板的中心有吸氧孔72,水氧混合孔环绕吸氧孔72;
喷水头6的下端插入筒形导气套7内,并固定连接在一起;喷水头6的下端面与筒形导气套7的底板之间有导氧间隙,喷嘴61与喷嘴套71之间有间隙。
图3所示为本发明水增氧装置另一具体实施方式,其进一步包括一文丘里管8,该文丘里管8设置在喷水头6上部的管路上,氧气源1与喷水头6和混气筒2的顶板之间混气筒2连接接通。
图4所示为本发明水增氧装置又一具体实施方式,其包括氧气源1、混气筒2、填料3、水气混合导流管4和水泵5,水泵5通过导水管与混气筒2的顶部连接接通,水气混合导流管4一端与混气筒2的底部连接接通、另一端伸入水中。
该具体实施方式进一步包括支撑架网,支撑架网2A设置在混气筒2的下部内,氧气源1的出气端位于支撑架网2A和混气筒1底板之间的空间内;填料3设置在支撑架网2A上部的混气筒内,支撑架网2A支撑填料3。
优选地,支撑架网2A下部的混气筒2浸入水中;水气混合导流管4位于水中。
优选地,该具体实施方式进一步包括曝气盘9,其与支撑架网2A相对,氧气泡上升,水流下降;由于相对运动减缓了氧气泡上升速度,使氧气泡在水中滞留时间更长,提高溶氧效率。
作为本发明的进一步改进,上述各水增氧装置的导水管上可以设置有磁化器10,磁化器10将水磁化。
图5所示为本发明水增氧装置再一具体实施方式,其中,混气筒2位于水面之上;水气混合导流管4由直管部41、水平管部42和下开口框形管部43构成,直管部41一端与水平管部42的一端连通,水平管部42的另一端与下开口框形管部43的一立管431连通;另一立管432伸入水中;
直管部41与混气筒2的底板连接,下开口框形管部43的另一端的直管伸432入水中;水平管部42内腔的底面与支撑架网2A的下表面平齐,或水平管部42内腔的底面位于支撑架网2A的下表面的上方,也就是说:水平管部42内腔的底面与支撑架网2A的下表面有高度差。
本发明中,填料3作用是扩大水体接触氧气的表面积;其中,支撑架网2A的作用是使填料3与混气筒3底部的水分离,这样更有利于使填料3展开水的表面积,保证水与氧气接触的表面积。
例如,本发明所使用的填料3可以是按中国专利201220004252.8技术方案所生产的球形生物载体流化填料。
图6-图8所示为本发明中所采用的球形生物载体流化填料,其包括顶环11、底环12、内环带13、外环带14和若干个弓形叶片15,位于顶环11 与内、外环带13、14上之间的弓形叶片15与顶环11和内、外环带13、14连接;位于底环12与内、外环带13、14上之间的弓形叶片15与底环11和内、外环带13、14连接;位于内、外环带13、14上部的弓形叶片15和下部的弓形叶片15相对于内、外环带13、14的旋转方向相反。
如图8所示,位于内、外环带13、14上部的弓形叶片15右旋;位于内、外环带13、14下部的弓形叶片15左旋。
作为进一步改进:弓形叶片15的两侧有沿顶环11和底环12轴线方向的导流板16;如图8所示,相邻二个弓形叶片15相对面上有导流板16交错。
作为更进一步改进,球形生物载体流化填料还包括:
一个配重盘18和若干个内导流板,配重盘17位于内环带13的中心孔内;
内导流板分为上内导流板181和下内导流板182;
上内导流板181一侧的下部与配重盘17上部固定连接、另一侧与位于内、外环带13、14上部的弓形叶片15固定连接;
下内导流板182一侧的上部与配重盘17下部固定连接、另一侧与位于内、外环带13、14下部的弓形叶片固定连接;上、下内导流板181、182间隔。
优选地,上、下导流板191、182沿径向。
以上所述的仅是本发明的优先实施方式。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明原理的情况下,还可以作出若干改进和变型,这也视为本发明的保护范围。

Claims (16)

  1. 一种水增氧装置,其包括氧气源、混气筒、水气混合导流管和水泵,其中,所述水泵通过导水管与混气筒的顶部连接接通,所述水气混合导流管一端与混气筒的底部连接接通、另一端伸入水中。
  2. 如权利要求1所述的水增氧装置,其中,该水增氧装置还包括设置在混气筒内的以增大气-液的接触面的填料。
  3. 如权利要求2所述的水增氧装置,其中,该水增氧装置还包括设置在混气筒下部内的、用于支撑所述填料的支撑架网,所述氧气源的出气端位于该支撑架网和混气筒底板之间的空间内,所述填料设置在该支撑架网上部的混气筒内。
  4. 如权利要求3所述的水增氧装置,其中,所述支撑架网下部的混气筒浸入水中。
  5. 如权利要求3所述的水增氧装置,其中,所述混气筒位于水面之上;所述水气混合导流管由直管部、水平管部和下开口框形管部构成,直管部与混气筒的底板连接,下开口框形管部的另一端的直管伸入水中;所述水平管部内腔的底面与支撑架网的下表面平齐,或水平管部内腔的底面位于支撑架网的下表面的上方。
  6. 如权利要求1-5之一所述的水增氧装置,其中,该水增氧装置还包括一喷水头,所述喷水头设置在混气筒内的顶部并与导水管连接接通。
  7. 如权利要求6所述的水增氧装置,其中,该水增氧装置还包括上开口的筒形导气套,所述筒形导气套的底板上的水氧混合孔上有喷嘴套,底板的中心有吸氧孔,水氧混合孔环绕吸氧孔;所述喷水头的下端插入筒形导气套内,并固定连接在一起;所述喷水头的下端面与筒形导气套的底板之间有导氧间隙,所述喷水头的喷水孔上设置有喷嘴,喷嘴与喷嘴套之间有间隙。
  8. 如权利要求1-5之一所述的水增氧装置,其中,该水增氧装置还包括一文丘里管,所述文丘里管设置在所述喷水头上部的管路,所述氧气源与喷水头和混气筒的顶板之间混气筒连接接通。
  9. 如权利要求3所述的水增氧装置,其中,该水增氧装置还包括一曝气盘,所述曝气盘与所述氧气源的出气端连通。
  10. 如权利要求1-5之一所述的水增氧装置,其中,所述导水管上设置有磁化器。
  11. 如权利要求2所述的水增氧装置,其中,所述填料的形状为鲍尔环、拉西环、阶梯环、弧鞍、矩鞍、环矩鞍、或球形。
  12. 如权利要求2所述的水增氧装置,其中,所述填料为格栅填料、波纹填料、或脉冲填料。
  13. 如权利要求2所述的水增氧装置,其中,所述填料为球形生物载体流化填料,其包括顶环、底环、内环带、外环带和若干个弓形叶片;位于顶环与内、外环带上之间的弓形叶片与顶环和内、外环带连接;位于底环与内、外环带上之间的弓形叶片与底环和内、外环带连接;位于内、外 环带上部的弓形叶片和下部的弓形叶片相对于内、外环带的旋转方向相反。
  14. 如权利要求13所述的水增氧装置,其中,所述弓形叶片的两侧有沿顶环和底环轴线方向的导流板;相邻二个弓形叶片相对面上有导流板交错。
  15. 如权利要求13或14所述的水增氧装置,其中,所述的球形生物载体流化填料还包括一个配重盘和若干个内导流板,所述配重盘位于内环带的中心孔内;所述内导流板分为上内导流板和下内导流板;上内导流板一侧的下部与配重盘上部固定连接、另一侧与位于内、外环带上部的弓形叶片固定连接;下内导流板一侧的上部与配重盘下部固定连接、另一侧与位于内、外环带下部的弓形叶片固定连接;上、下内导流板间隔。
  16. 如权利要求15所述的水增氧装置,其中,所述上、下导流板沿径向。
PCT/CN2016/079868 2015-04-22 2016-04-21 一种水增氧装置 WO2016169493A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520246222.1 2015-04-22
CN201520246222.1U CN204588836U (zh) 2015-04-22 2015-04-22 一种水增氧装置
CN201510465136.4 2015-07-30
CN201510465136.4A CN105028302A (zh) 2015-07-30 2015-07-30 一种水增氧装置

Publications (1)

Publication Number Publication Date
WO2016169493A1 true WO2016169493A1 (zh) 2016-10-27

Family

ID=57142825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079868 WO2016169493A1 (zh) 2015-04-22 2016-04-21 一种水增氧装置

Country Status (1)

Country Link
WO (1) WO2016169493A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109430149A (zh) * 2018-05-07 2019-03-08 济南康龙设计咨询有限公司 一种脉动式鱼便收集器及其使用方法
US10933388B1 (en) 2017-07-07 2021-03-02 Jmf Watercraft Design Llc H20-oxygenation method and oxygenated live well
CN112544557A (zh) * 2020-12-21 2021-03-26 李强 一种水产养殖用水体加氧设备
CN112841120A (zh) * 2021-03-11 2021-05-28 福建云麒智能科技有限公司 一种潜水式底部推流增氧机
CN116081827A (zh) * 2023-04-10 2023-05-09 北京博汇特环保科技股份有限公司 污水处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749493A (en) * 1986-10-07 1988-06-07 Hicks Charles E Method and apparatus for oxygenating water
CN1060453A (zh) * 1990-08-27 1992-04-22 纽卡斯尔大学研究公司 液体的曝气
CN202449910U (zh) * 2012-01-06 2012-09-26 关广联 一种球形生物载体流化填料
CN204588836U (zh) * 2015-04-22 2015-08-26 关广联 一种水增氧装置
CN105028302A (zh) * 2015-07-30 2015-11-11 关广联 一种水增氧装置
CN204811550U (zh) * 2015-07-30 2015-12-02 关广联 一种水增氧装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749493A (en) * 1986-10-07 1988-06-07 Hicks Charles E Method and apparatus for oxygenating water
CN1060453A (zh) * 1990-08-27 1992-04-22 纽卡斯尔大学研究公司 液体的曝气
CN202449910U (zh) * 2012-01-06 2012-09-26 关广联 一种球形生物载体流化填料
CN204588836U (zh) * 2015-04-22 2015-08-26 关广联 一种水增氧装置
CN105028302A (zh) * 2015-07-30 2015-11-11 关广联 一种水增氧装置
CN204811550U (zh) * 2015-07-30 2015-12-02 关广联 一种水增氧装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933388B1 (en) 2017-07-07 2021-03-02 Jmf Watercraft Design Llc H20-oxygenation method and oxygenated live well
CN109430149A (zh) * 2018-05-07 2019-03-08 济南康龙设计咨询有限公司 一种脉动式鱼便收集器及其使用方法
CN112544557A (zh) * 2020-12-21 2021-03-26 李强 一种水产养殖用水体加氧设备
CN112841120A (zh) * 2021-03-11 2021-05-28 福建云麒智能科技有限公司 一种潜水式底部推流增氧机
CN116081827A (zh) * 2023-04-10 2023-05-09 北京博汇特环保科技股份有限公司 污水处理系统

Similar Documents

Publication Publication Date Title
WO2016169493A1 (zh) 一种水增氧装置
WO1979000895A1 (en) Water treating device
CN103086526A (zh) 水下臭氧增氧机
JP5944491B2 (ja) 汚水槽の中へガスを注入するための機器
JP6345546B2 (ja) 省動力型曝気撹拌装置
US20070040288A1 (en) Method and apparatus for mixing of two fluids.
KR20200118678A (ko) 미세기포 발생장치 및 방법
US4230570A (en) Aerator
US7240897B2 (en) Mixing apparatus
US8387957B2 (en) Downflow mixers with gas injection devices and/or baffles
WO2016035079A1 (en) Airlift oxygenating system
TWI641562B (zh) Improved submersible pool heating aeration device
CN202880986U (zh) 一种辐流曝气头
CN107902749A (zh) 一种潜水曝气机
RU2576056C2 (ru) Массообменный аппарат
KR101221116B1 (ko) 분수가 구비된 방사형 폭기 장치
US20090206497A1 (en) Liquid waste aeration system and method
JP2000308897A (ja) 水質浄化装置及び水流造成装置
JP3232400B2 (ja) 曝気装置
GB2074883A (en) Gasification of liquids and liquid treatment plants
AU2003239421A1 (en) Mixing apparatus
SU827418A1 (ru) Устройство дл аэрировани
KR200354917Y1 (ko) 기액 혼합촉진 수중폭기장치
WO2024011310A1 (en) Oxygenation assembly for aquaculture
RU81493U1 (ru) Аэратор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782640

Country of ref document: EP

Kind code of ref document: A1