WO2016169464A1 - 一种基于湿蒸发的冷浓缩系统 - Google Patents

一种基于湿蒸发的冷浓缩系统 Download PDF

Info

Publication number
WO2016169464A1
WO2016169464A1 PCT/CN2016/079645 CN2016079645W WO2016169464A1 WO 2016169464 A1 WO2016169464 A1 WO 2016169464A1 CN 2016079645 W CN2016079645 W CN 2016079645W WO 2016169464 A1 WO2016169464 A1 WO 2016169464A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
pump
wet
tank
pipe
Prior art date
Application number
PCT/CN2016/079645
Other languages
English (en)
French (fr)
Inventor
黄国和
成剑林
李若凰
黄田飞
李忠伟
Original Assignee
黄国和
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄国和 filed Critical 黄国和
Publication of WO2016169464A1 publication Critical patent/WO2016169464A1/zh
Priority to US15/658,443 priority Critical patent/US10300400B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/02Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour using fluid jet, e.g. of steam
    • F25B19/04Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour using fluid jet, e.g. of steam using liquid jet, e.g. of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0095Devices for preventing damage by freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the invention relates to the technical field of energy conservation and energy utilization, in particular to a concentration system applied in an air-conditioning system of an open heat source tower heat pump of an air conditioner industry.
  • the heat source tower heat pump air conditioning system can be used in both winter and summer seasons. It is used for cooling in the summer and heating in the winter. The two devices are used for two purposes, which greatly improves the equipment utilization rate and reduces the idle time of the equipment. Without any pollutant discharge, the impact on the environment is minimal, the system is installed and flexible, and the construction requirements are extremely low. Due to the above advantages, the heat source tower heat pump air conditioning system has been widely used. However, during the use process, some problems in the open heat source tower heat pump air conditioning system gradually appear, such as the unstable concentration of antifreeze in winter, the easy entry of rain and snow in the heat source tower, the loss of antifreeze, and the wind speed of the fan is easy to cause the antifreeze to drift.
  • the instability of the antifreeze concentration causes the energy efficiency of the equipment to be unstable.
  • the heat pump main unit cannot work normally or even burns. Therefore, the antifreeze concentration of the open heat source tower heat pump air conditioning system must be monitored and adjusted in time.
  • a heat source tower cooling and heating energy-saving system adopts a distillation still, a preheater, a condenser and a water tank, and needs to be added in actual use.
  • the heat pump system heats up the system to perform high-temperature distillation of the antifreeze solution, and the concentration efficiency is low.
  • the initial investment is increased, and on the other hand, the operating cost is increased.
  • the antifreeze after distillation needs to be discharged from the system, and the antifreeze is inevitably carried in the discharge liquid, thereby causing economic loss and environmental pollution.
  • a cold evaporation system based on wet evaporation including a wet evaporator, a storage tank, a concentration tank, a concentration circulation pump, a storage pump, a replenishing pump, a heat source tower and a heat pump;
  • the wet evaporator has a liquid retaining plate, and the liquid retaining plate divides the wet evaporator into two left and right areas: a wet evaporation zone and a power zone; the upper part of the wet evaporation zone is provided with a spray pipe, and the spray pipe is provided There is a nozzle, and the inlet of the spray pipe is connected to the outlet of the concentration circulation pump through a pipe; the lower part of the wet evaporation zone is provided with a water storage tank, and the lower part of the water storage tank is connected with the concentration pool through a pipeline; the inlet of the concentrated circulation pump passes through Pipeline and concentration tank Connected to the power zone; a fan
  • a solenoid valve is installed on the connecting pipe of the concentration tank and the cooling water return water main pipe, and a solenoid valve is installed on the connecting pipe of the storage pump and the concentration pool, and the connecting pipe of the storage pool and the supplementary pump is installed.
  • a solenoid valve is installed, and a solenoid valve is mounted on the connecting pipe of the cooling water return water main pipe and the heat pump.
  • a concentration detector is installed on the cooling water return water main pipe.
  • a concentration detector is installed in the concentration tank.
  • the fan is a cross flow fan or an axial flow fan.
  • the invention discloses a cold concentration system based on wet evaporation, which has the following advantages compared with the prior art:
  • the invention only relies on the heat exchange between the low temperature air and the antifreeze liquid, and the concentration of the antifreeze liquid is improved by the low temperature wet evaporation of the antifreeze liquid in the low temperature air, and no other equipment is needed for auxiliary heating or dehumidification, and the presently existing Compared with the invention patent, the equipment has less initial investment, convenient operation and convenient answer, and can be directly used in any open heat source tower heat pump air conditioning system;
  • the operating cost of the invention is low, only one concentrated circulation pump and a ventilator are needed during the operation, and the opening time of other equipment such as the storage pump and the supplementary pump is short;
  • the present invention saves a large amount of antifreeze and reduces the pollution and waste caused by the antifreeze in the discharge process.
  • the operation mode of the invention is flexible, and can be used during the startup operation of the heat source tower heat pump air conditioning system and during the shutdown period, regardless of the outside air temperature conditions and meteorological conditions, the rain and snow weather will not have any impact on the normal operation of the system. .
  • Figure 1 is a schematic structural view of the present invention
  • wet evaporator 1 spray pipe 2, air inlet 3, air outlet 4, fan 5, liquid barrier 6, reservoir 7, storage tank 8, concentration tank 9, heat source tower 10, heat pump 11, concentration cycle
  • the pump 12 the storage pump 13, the replenishing pump 14, and the cooling water return water main pipe 15.
  • the invention discloses a cold evaporation system based on wet evaporation, comprising a wet evaporator 1, a storage tank 8, a concentration tank 9, a concentration circulation pump 12, a storage pump 13, a replenishing pump 14, a heat source tower 10 and a heat pump.
  • the wet evaporator 1 has a liquid barrier 6 therein, and the liquid barrier 6 divides the wet evaporator 1 into two left and right areas: a wet evaporation zone 1-1 and a power zone 1-2;
  • the upper part of the zone 1-1 is provided with a spray pipe 2, and the spray pipe 2 is provided with a nozzle, and the inlet of the spray pipe 2 is connected to the outlet of the concentration circulation pump 12 through a pipe;
  • the lower part of the wet evaporation zone 1-1 is provided
  • the pipeline is connected to the cooling water return water main pipe 15 of
  • a solenoid valve A is mounted on the connecting pipe of the concentrating tank 9 and the cooling water return water main pipe 15, and a solenoid valve B is installed on the connecting pipe of the storage pump 13 and the concentrating tank 9, and a connecting pipe of the storage tank 8 and the replenishing pump 14 is installed.
  • a solenoid valve C is mounted on the connecting pipe of the cooling water return water main pipe 15 and the heat pump 11, and a concentration detector is installed on the cooling water return water main pipe 15, and the concentration tank 9 is installed. There is a concentration detector, and the fan 5 is a cross flow fan or an axial flow fan.
  • the antifreeze liquid in the cooling water return water main pipe 15 flows into the concentration pool 9;
  • the concentration detector installed on the cooling water return water main pipe 15 detects the concentration of the antifreeze in the tube, when the concentration is lower than the required concentration, the concentration circulation pump 12 is turned on, and the fan 5 is turned on;
  • the low temperature antifreeze is sprayed from the nozzle on the spray pipe 2 into the wet evaporation zone 1-1, and the external low temperature air enters the wet evaporation zone 1-1 from the air inlet 3 under the action of the blower 5, and falls.
  • Antifreeze for hot and wet exchange because the partial pressure of water vapor in the antifreeze is higher than the external
  • the water vapor partial pressure of the humid air evaporates into the air into the water vapor, and the low temperature air after the humidity increases flows through the water deflecting plate 6 and is discharged by the air outlet 4;
  • the antifreeze liquid evaporates and the concentration of the antifreeze liquid rises, and the antifreeze liquid with the increased concentration falls into the storage tank 7, and flows into the concentration pool 9 through the pipeline to complete the cycle;
  • the concentration detector installed in the concentration tank 9 detects the concentration of the antifreeze in the concentration tank, and keeps the concentration circulation pump 12 and the fan 5 running when the concentration is lower than the required concentration, when the antifreeze concentration rises to the required concentration. Stoping the operation of the concentrated circulation pump 12 and the fan 5;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种基于湿蒸发的冷浓缩系统,将低温低浓度的防冻液在湿蒸发机(1)内与低温空气接触传热传质,防冻液内的水分低温蒸发至空气内,得到高浓度防冻液,通过使用浓缩池(9)和储存池(8),将低浓度防冻液与高浓度防冻液分隔开来,通过各个电磁阀与浓缩循环泵(12)、储存泵(13)、补充泵(14)的开启与关闭,在热源塔热泵空调系统运行与停机时对防冻液进行浓缩。

Description

一种基于湿蒸发的冷浓缩系统 技术领域
本发明涉及节能及能源利用技术领域,特别是一种应用于空调行业开式热源塔热泵空调系统内的浓缩系统。
背景技术
热源塔热泵空调系统冬夏两季皆可使用,在夏季进行供冷、冬季进行供热,一套设备两种用途,大大地提高了设备利用率、降低了设备闲置时间,同时其在运行过程中无任何污染物排放,对环境影响极小,系统安装、使用灵活,对建筑要求极低。由于以上优点,热源塔热泵空调系统得到了极为广泛的利用。但是在使用过程中,开式热源塔热泵空调系统中某些问题逐渐显现,如冬季防冻液浓度不稳定、热源塔中易进入雨雪造成防冻液丢失、风机风速较大时易造成防冻液飘散等,而在其中,防冻液浓度不稳定造成设备能效不稳定的现象时有发生,尤其是当防冻液浓度减小到一定程度则会出现热泵主机无法正常工作甚至是烧毁的情况。因而必须对开式热源塔热泵空调系统的防冻液浓度进行监控和及时调整。
目前在开式热源塔热泵空调系统的实际使用过程中,对防冻液浓度的监控与调整尚未有统一标准,在目前我国有关热源塔热泵系统的唯一标准---中国工程建设协会标准---《热源塔热泵系统应用技术规程》中,仅对热源塔防冻液浓缩装置的接口、排放标准、防腐措施、 排放量等进行了基本定义,并未给出具体数据及依据。对浓缩装置采用的技术也仅规定采用反渗透和负压蒸发浓缩的方式,在该规程中推荐参照的产品标准也仅为《反渗透水处理设备》及《多效蒸馏海水淡化装置通用技术要求》此两项,故而可知在我国现有的热源塔热泵缺乏热源塔热泵防冻液浓缩过程及设备的标准。国内目前各热源塔热泵空调系统内防冻液的浓缩处于无法可依的状况中,而热源塔热泵空调系统的使用者为了省事,仅在防冻液浓度较小时向防冻液内添加防冻剂以此来提高浓度,在添加防冻剂的过程中不可避免地要向环境排放一部分低浓度防冻液,在降低了系统经济性的同时造成一定的环境污染。为了解决防冻液浓缩的问题,申请号为2010202822668的实用新型专利“一种热源塔制冷供热节能系统”中采用了蒸馏釜、预热器、冷凝器及水箱,在实际使用中需要添置一套热泵系统供暖系统中吸收热量从而对防冻液进行高温蒸馏,浓缩效率较低。一方面增加了初投资,另一方面增加了运行成本。同时经过蒸馏后的防冻液需要排出系统,排出液中不可避免地带有防冻剂,从而造成经济损失和环境污染。在申请号为2013103224279的实用新型专利“基于空气实现再生热量高效利用的热源塔热泵装置”中提出利用过热制冷剂冷却的方式来进行防冻剂的浓缩,此种方式控制复杂,所需要的系统部件过多,在长时间运行中过热制冷剂的热量被大量消耗,系统能获得的热量减少,降低了供热效率,导致系统供热不足。在申请号为2013103595546的实用新型专利“基于真空沸腾实现溶液再生及其热量再利用的热源塔热泵”中提出利用真空沸腾实现溶液浓缩,该 系统利用的热量仍来自过热制冷剂,供热效率降低。浓缩过程中需要使用真空泵进行抽取真空,需要另外建造空气循环回路等。在该系统中,系统占据建筑空间大、系统操作及维护较为困难。在申请号为201310645186.1的发明专利“基于节流闪蒸并实现再生能量自平衡的溶液再生装置”中提出一种带有溶液回路、水蒸气冷凝回路、低压维持回路的装置,此装置需要设置压缩机及溶液泵等动力装置,系统复杂、需要控制的设备繁多。
如何高效率、无污染地对热源塔热泵空调系统内的防冻液进行浓缩,保证热源塔热泵系统能够正常安全运行、系统整体性能保持稳定,设计一种新型高效、运行费用低的防冻液浓缩装置势在必行。
发明内容
本发明的目的在于提供一种在热源塔热泵空调系统中使用的基于湿蒸发的冷浓缩系统,达到简单、高效率地对防冻液进行浓缩,同时不对环境造成影响。
本发明的目的是通过如下技术方案来实现的:一种基于湿蒸发的冷浓缩系统,包括湿蒸发机、储存池、浓缩池、浓缩循环泵、储存泵、补充泵、热源塔与热泵;所述的湿蒸发机内有挡液板,挡液板将湿蒸发机划分为左右两个区:湿蒸发区和动力区;所述的湿蒸发区上部装有喷淋管道,喷淋管道上设有喷嘴,喷淋管道的入口通过管道与浓缩循环泵的出口相连接;所述的湿蒸发区下部设有存水池,存水池下部通过管道与浓缩池相连接;所述浓缩循环泵的入口通过管道与浓缩池 相连接;所述动力区内装有风机;所述的湿蒸发区一侧开有进风口,所述动力区一侧开有出风口;所述的浓缩池通过管道与热源塔热泵空调系统的冷却水回水总管相连接;所述的储存池通过管路与储存泵的出口相连接,储存泵的入口与浓缩池通过管路相连接;所述的储存池通过管路与补充泵的入口相连接,补充泵的出口通过管路与热源塔热泵空调系统的冷却水回水总管相连接。
作为本方案的进一步优化,所述的浓缩池与冷却水回水总管的连接管上安装有电磁阀,储存泵与浓缩池的连接管上安装有电磁阀,储存池与补充泵的连接管上安装有电磁阀,冷却水回水总管与热泵的连接管上安装有电磁阀。
作为本方案的进一步优化,所述的冷却水回水总管上安装有浓度检测仪。
作为本方案的进一步优化,所述的浓缩池内安装有浓度检测仪。
作为本方案的进一步优化,所述的风机为贯流风机或轴流风机。
本发明一种基于湿蒸发的冷浓缩系统,与现有技术比较,具有如下优点:
1.本发明仅依靠低温空气与防冻液的热质交换,通过防冻液在低温空气中的低温湿蒸发来提高防冻液的浓度,不需要其他的设备来进行辅助加热或除湿,与目前现有的设备和发明专利相比,初投资少,操作简答方便,可直接在任何开式热源塔热泵空调系统中利用;
2.本发明运行费用低,在运行过程中仅需要一台浓缩循环泵和通风机即可,其他设备如储存泵和补充泵的开启时间很短;
3.本发明与现行的添加防冻剂来提高防冻液浓度的措施相比,大量节省防冻剂并减少了防冻液在排放过程中造成的污染和浪费。
4.本发明的运行方式灵活,在热源塔热泵空调系统开机运行期间及停机期间都可使用,无论外界气温条件及气象条件如何都可使用,雨雪天气对本系统的正常工作不会造成任何影响。
附图说明
下面结合附图对本发明作进一步详细说明:
图1为本发明结构示意图;
图中,湿蒸发机1,喷淋管道2,进风口3,出风口4,风机5,挡液板6,存水池7,储存池8,浓缩池9,热源塔10,热泵11,浓缩循环泵12,储存泵13,补充泵14,冷却水回水总管15。
具体实施方式
如图1所示,本发明一种基于湿蒸发的冷浓缩系统,包括湿蒸发机1、储存池8、浓缩池9、浓缩循环泵12、储存泵13、补充泵14、热源塔10与热泵11;所述的湿蒸发机1内有挡液板6,挡液板6将湿蒸发机1划分为左右两个区:湿蒸发区1-1和动力区1-2;所述的湿蒸发区1-1上部装有喷淋管道2,喷淋管道2上设有喷嘴,喷淋管道2的入口通过管道与浓缩循环泵12的出口相连接;所述的湿蒸发区1-1下部设有存水池7,存水池7下部通过管道与浓缩池9相连接;所述浓缩循环泵12的入口通过管道与浓缩池9相连接;所 述动力区1-2内装有风机5;所述的湿蒸发区1-1一侧开有进风口3,所述动力区1-2一侧开有出风口4;所述的浓缩池9通过管道与热源塔热泵空调系统的冷却水回水总管15相连接;所述的储存池8通过管路与储存泵13的出口相连接,储存泵13的入口与浓缩池9通过管路相连接;所述的储存池8通过管路与补充泵14的入口相连接,补充泵14的出口通过管路与热源塔热泵空调系统的冷却水回水总管15相连接。
所述的浓缩池9与冷却水回水总管15的连接管上安装有电磁阀A,储存泵13与浓缩池9的连接管上安装有电磁阀B,储存池8与补充泵14的连接管上安装有电磁阀C,冷却水回水总管15与热泵11的连接管上安装有电磁阀D,所述的冷却水回水总管15上安装有浓度检测仪,所述的浓缩池9内安装有浓度检测仪,所述的风机5为贯流风机或轴流风机。
本发明一种基于湿蒸发的冷浓缩系统工作流程如下:
1.热源塔热泵空调系统运行期间,打开电磁阀A,打开电磁阀D,关闭电磁阀B,关闭电磁阀C;
2.冷却水回水总管15中的防冻液流入浓缩池9中;
3.冷却水回水总管15上装有的浓度检测仪检测管内防冻液的浓度,当浓度低于要求浓度时,打开浓缩循环泵12、打开风机5;
4.低温防冻液由喷淋管道2上的喷嘴喷出到湿蒸发区1-1内,外部低温空气在风机5的作用下由进风口3处进入湿蒸发区1-1中,与下落的防冻液进行热湿交换,由于防冻液中水蒸气分压力高于外部 湿空气的水蒸气分压力,防冻液中的水分向空气中蒸发变为水蒸气,湿度增大后的低温空气流经挡水板6后由出风口4排出;
5.经过热湿交换后的防冻液水分蒸发、防冻液浓度上升,浓度升高后的防冻液下落到存水池7中,经管道流入浓缩池9中完成循环;
6.浓缩池9中装有的浓度检测仪检测浓缩池中的防冻液浓度,在浓度低于所要求浓度时保持浓缩循环泵12与风机5运行,当防冻液浓度上升到所要求的浓度时,停止浓缩循环泵12与风机5的运行;
7.浓缩循环泵12停止运行后,关闭电磁阀A,打开电磁阀B,开启储存泵13,将浓缩池9中的防冻液转移到储存池8中,然后关闭电磁阀B;
8.当冷却水回水总管15中的浓度检测仪检测出的防冻液浓度较低时,打开电磁阀C,打开补充泵14,将储存池8中的防冻液注入到冷却水回水总管15中;
9.热源塔热泵空调系统停止运行期间,打开电磁阀A,关闭电磁阀B,关闭电磁阀C,关闭电磁阀D;
10.打开浓缩循环泵12,打开风机5,浓缩池9中装有的浓度检测仪检测防冻液的浓度达到标准后关闭浓缩循环泵12、关闭风机5,关闭电磁阀A。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保 护范围为准。

Claims (4)

  1. 一种基于湿蒸发的冷浓缩系统,其特征在于:
    它包括湿蒸发机(1)、储存池(8)、浓缩池(9)、浓缩循环泵(12)、储存泵(13)、补充泵(14)、热源塔(10)与热泵(11);
    所述的湿蒸发机(1)内有挡液板(6),挡液板(6)将湿蒸发机(1)划分为左右两个区:湿蒸发区(1-1)和动力区(1-2);所述的湿蒸发区(1-1)上部装有喷淋管道(2),喷淋管道(2)上设有喷嘴,喷淋管道(2)的入口通过管道与浓缩循环泵(12)的出口相连接;所述的湿蒸发区(1-1)下部设有存水池(7),存水池(7)下部通过管道与浓缩池(9)相连接;所述浓缩循环泵(12)的入口通过管道与浓缩池(9)相连接;所述动力区(1-2)内装有风机(5);所述的湿蒸发区(1-1)一侧开有进风口(3),所述动力区(1-2)一侧开有出风口(4);
    所述的浓缩池(9)通过管道与热源塔热泵空调系统的冷却水回水总管(15)相连接;所述的储存池(8)通过管路与储存泵(13)的出口相连接,储存泵(13)的入口与浓缩池(9)通过管路相连接;所述的储存池(8)通过管路与补充泵(14)的入口相连接,补充泵(14)的出口通过管路与热源塔热泵空调系统的冷却水回水总管(15)相连接。
  2. 如权利要求1所述的一种基于湿蒸发的冷浓缩系统,其特征在于:所述的浓缩池(9)与冷却水回水总管(15)的连接管上安装有电磁阀(A),储存泵(13)与浓缩池(9)的连接管上安装有电磁阀(B),储存池(8)与补充泵(14)的连接管上安装有电磁阀(C), 冷却水回水总管(15)与热泵(11)的连接管上安装有电磁阀(D)。
  3. 如权利要求1所述的一种基于湿蒸发的冷浓缩系统,其特征在于:所述的冷却水回水总管(15)上安装有浓度检测仪,所述的浓缩池(9)内安装有浓度检测仪。
  4. 如权利要求1所述的一种基于湿蒸发的冷浓缩系统,其特征在于:所述的风机(5)为贯流风机或轴流风机。
PCT/CN2016/079645 2015-04-20 2016-04-19 一种基于湿蒸发的冷浓缩系统 WO2016169464A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/658,443 US10300400B2 (en) 2015-04-20 2017-07-25 Wet evaporation-based cold concentration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510186456.6A CN104771918B (zh) 2015-04-20 2015-04-20 一种基于湿蒸发的冷浓缩系统
CN201510186456.6 2015-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/658,443 Continuation US10300400B2 (en) 2015-04-20 2017-07-25 Wet evaporation-based cold concentration system

Publications (1)

Publication Number Publication Date
WO2016169464A1 true WO2016169464A1 (zh) 2016-10-27

Family

ID=53613879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079645 WO2016169464A1 (zh) 2015-04-20 2016-04-19 一种基于湿蒸发的冷浓缩系统

Country Status (3)

Country Link
US (1) US10300400B2 (zh)
CN (1) CN104771918B (zh)
WO (1) WO2016169464A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108721924A (zh) * 2018-08-01 2018-11-02 湖南东尤水汽能热泵制造有限公司 一种水汽能潜热回馈溶液浓缩系统
CN109621464A (zh) * 2019-01-27 2019-04-16 湖南创化低碳环保科技有限公司 一种用于对接开式或闭式热源塔的防冻液浓缩装置
CN114812056A (zh) * 2022-05-12 2022-07-29 广州特域机电有限公司 一种激光冷水机防冻液雾化系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104771918B (zh) * 2015-04-20 2016-03-23 黄国和 一种基于湿蒸发的冷浓缩系统
CN109269151A (zh) * 2018-09-07 2019-01-25 湖南创化低碳环保科技有限公司 空气能热泵溶液的浓缩装置
CN109322856B (zh) * 2018-09-25 2023-12-15 珠海格力电器股份有限公司 水泵部件、室外机及室外机的控制方法
CN109011665A (zh) * 2018-10-18 2018-12-18 江苏师范大学 一种自动循环冷浓缩系统
CN113856220B (zh) * 2021-10-21 2022-10-11 中石化宁波工程有限公司 一种盐溶液蒸发浓缩多回路控制系统及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU238522A1 (ru) * 1967-12-23 1976-07-05 Молдавский Научно-Исследовательский Институт Пищевой Промышленности Выпарной аппарат
CN101713579A (zh) * 2009-11-21 2010-05-26 青岛大学 一种开放式低温热源制冷系统
CN102258876A (zh) * 2011-05-10 2011-11-30 杭州华碧能源科技有限公司 一种空气聚能塔热泵系统抗冻液浓缩系统
CN102759156A (zh) * 2012-07-06 2012-10-31 清华大学 一种溶液再生处理装置
CN104019580A (zh) * 2014-05-12 2014-09-03 北京矿大节能科技有限公司 一种低风温工况矿井回风源热泵系统及其运行方式
CN104771918A (zh) * 2015-04-20 2015-07-15 黄国和 一种基于湿蒸发的冷浓缩系统
CN204522323U (zh) * 2015-04-20 2015-08-05 黄国和 基于湿蒸发的冷浓缩系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056249A1 (en) * 2001-12-27 2003-07-10 Drykor Ltd. High efficiency dehumidifiers and combined dehumidifying/air-conditioning systems
US7019412B2 (en) * 2002-04-16 2006-03-28 Research Sciences, L.L.C. Power generation methods and systems
CN201771246U (zh) 2010-08-05 2011-03-23 北京惠诚基业工程技术有限责任公司 活性粉末混凝土接触网支柱
CN103574967B (zh) * 2012-08-06 2016-06-01 广州市华德工业有限公司 一种带防冻溶液再生装置的空调热泵机组
CN103353189B (zh) 2013-07-30 2015-04-29 东南大学 基于空气实现再生热量高效利用的热源塔热泵装置
CN103411351B (zh) 2013-08-19 2015-06-17 东南大学 基于真空沸腾实现溶液再生及其热量再利用的热源塔热泵
CN103644677B (zh) 2013-12-05 2016-02-24 东南大学 基于节流闪蒸并实现再生能量自平衡的溶液再生装置
CN104061615B (zh) * 2014-07-07 2017-03-08 湖南科技大学 一种开式热源塔防冻液浓缩升温系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU238522A1 (ru) * 1967-12-23 1976-07-05 Молдавский Научно-Исследовательский Институт Пищевой Промышленности Выпарной аппарат
CN101713579A (zh) * 2009-11-21 2010-05-26 青岛大学 一种开放式低温热源制冷系统
CN102258876A (zh) * 2011-05-10 2011-11-30 杭州华碧能源科技有限公司 一种空气聚能塔热泵系统抗冻液浓缩系统
CN102759156A (zh) * 2012-07-06 2012-10-31 清华大学 一种溶液再生处理装置
CN104019580A (zh) * 2014-05-12 2014-09-03 北京矿大节能科技有限公司 一种低风温工况矿井回风源热泵系统及其运行方式
CN104771918A (zh) * 2015-04-20 2015-07-15 黄国和 一种基于湿蒸发的冷浓缩系统
CN204522323U (zh) * 2015-04-20 2015-08-05 黄国和 基于湿蒸发的冷浓缩系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108721924A (zh) * 2018-08-01 2018-11-02 湖南东尤水汽能热泵制造有限公司 一种水汽能潜热回馈溶液浓缩系统
CN108721924B (zh) * 2018-08-01 2024-02-27 湖南东尤水汽能热泵制造有限公司 一种水汽能潜热回馈溶液浓缩系统
CN109621464A (zh) * 2019-01-27 2019-04-16 湖南创化低碳环保科技有限公司 一种用于对接开式或闭式热源塔的防冻液浓缩装置
CN109621464B (zh) * 2019-01-27 2024-04-05 湖南华锐五季节能技术有限公司 一种用于对接开式或闭式热源塔的防冻液浓缩装置
CN114812056A (zh) * 2022-05-12 2022-07-29 广州特域机电有限公司 一种激光冷水机防冻液雾化系统
CN114812056B (zh) * 2022-05-12 2023-03-14 广州特域机电有限公司 一种激光冷水机防冻液雾化系统

Also Published As

Publication number Publication date
US20170319980A1 (en) 2017-11-09
CN104771918A (zh) 2015-07-15
US10300400B2 (en) 2019-05-28
CN104771918B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2016169464A1 (zh) 一种基于湿蒸发的冷浓缩系统
US10436482B2 (en) All-weather solar water source heat pump air conditioning system
CN201531959U (zh) 一种热回收恒温恒湿空调机组
WO2017004987A1 (zh) 一种全工况运行的预凝式热源塔装置
CN101240925A (zh) 太阳能吸收式液体除湿空调系统
CN102620477B (zh) 双冷源全新风热泵除湿机组
CN103591658B (zh) 热湿独立控制的太阳能建筑采暖空调系统的控制方法
CN105698352A (zh) 利用太阳能实现溶液再生的冬夏双高效热源塔及换热方法
CN108721924B (zh) 一种水汽能潜热回馈溶液浓缩系统
CN110887138A (zh) 一种基于能源塔的高效能源站及其控制方法
CN201016499Y (zh) 太阳能梯级利用式空调系统
CN202835916U (zh) 一种蒸发式热泵除湿调温机组
CN104864736A (zh) 一种太阳能辅助开式热源塔防冻液即时再生系统
CN102829519B (zh) 带载冷换热器的双冷源全新风热泵除湿机组
CN108518886B (zh) 消白烟高效烟气热水型溴化锂吸收式冷、热水机组
CN203068691U (zh) 利用余热制取冷水的冷水机组
CN104930610A (zh) 多功能高效节能全热回收机组
CN202853011U (zh) 全热回收型加热加湿新风机组
CN206257691U (zh) 一种采用凝结水换热的烟气mggh系统
CN204522323U (zh) 基于湿蒸发的冷浓缩系统
CN205037512U (zh) 冬季空调系统能量回收装置
CN204601653U (zh) 一种适用于大温差的闭式热泵精馏系统
CN204084539U (zh) 一种开式热源塔防冻液浓缩升温系统
CN209706382U (zh) 一种余热回收型蒸发模块及双效节能蒸发系统
CN203628874U (zh) 一种空调室外机智能辅助散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782611

Country of ref document: EP

Kind code of ref document: A1