WO2016169339A1 - 可影像强化的眼镜结构 - Google Patents

可影像强化的眼镜结构 Download PDF

Info

Publication number
WO2016169339A1
WO2016169339A1 PCT/CN2016/075441 CN2016075441W WO2016169339A1 WO 2016169339 A1 WO2016169339 A1 WO 2016169339A1 CN 2016075441 W CN2016075441 W CN 2016075441W WO 2016169339 A1 WO2016169339 A1 WO 2016169339A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eyeglass structure
processor
module
angle
Prior art date
Application number
PCT/CN2016/075441
Other languages
English (en)
French (fr)
Inventor
陈台国
蔡宏斌
Original Assignee
陈台国
蔡宏斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈台国, 蔡宏斌 filed Critical 陈台国
Priority to JP2017555713A priority Critical patent/JP2018513656A/ja
Priority to EP16782487.9A priority patent/EP3299864A4/en
Priority to CN201680024332.0A priority patent/CN107533229A/zh
Priority to KR1020177032924A priority patent/KR20170140277A/ko
Publication of WO2016169339A1 publication Critical patent/WO2016169339A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the invention relates to an image-enhanced eyeglass structure, in particular to a lens structure, which can make the image actually seen by the user's eyeball through the lens overlap with the synchronized and clear image displayed on the lens to clear The image that the user's eyeball sees through the lens.
  • head mount display is regarded as one of the focuses of current display technology development.
  • the current head-mounted display is best known as Google Glass, a wearable computer with an optical head mounted display (OHMD) that aims to be manufactured.
  • Google Glass a wearable computer with an optical head mounted display (OHMD) that aims to be manufactured.
  • Google glasses display various information in a manner similar to that of a smart phone. Therefore, the wearer communicates with the Internet service through natural language voice commands.
  • Google glasses commonly used in the market are mainly provided with temples on both sides of the frame, and a battery electronic device is arranged on the side of the frame, and the electronic device extends to the front side of the frame and The end portion is provided with a photographic lens connected thereto, and the electronic device is provided with a switch connected to the end of the mirror foot, and the electronic device having the photographic lens extending to the front of the frame is adjacent to the screen;
  • Google glasses are to be installed on the original glasses, although this type of head-mounted display has a light weight trend, it still has a certain volume and weight, so if you want to wear the original glasses Installing Google glasses on the top will cause discomfort to the user;
  • This type of head-mounted display does not have any auxiliary light source. Therefore, when the light is insufficient during day or night, the photographic lens on the head-mounted display often cannot provide clear images to the screen. It is not even possible to capture any images, which will result in users not being able to use this type of head-mounted display in certain circumstances.
  • the object of the present invention is to provide an image-enhanced eyeglass structure, which has a simple structure and is convenient to use, so that the image actually seen by the user's eyeball through the lens overlaps with the synchronized image displayed on the lens. To clear the image of the user's eye through the lens.
  • an image-enhanced eyeglass structure which comprises:
  • a frame body wherein the frame body is internally connected with a processor, and the processor comprises:
  • a central processing module for controlling the overall processor operation
  • An image processing module is connected to the central processing module, and the image processing module is configured to perform image sharpening processing on an external captured image information to improve the resolution thereof;
  • An image output module is connected to the central processing module and the image processing module, and is configured to output the externally captured image information after the image is sharpened as a synchronous and clear image;
  • a remote connection module connected to the central processing module for remote connection by wireless connection technology
  • a power supply module coupled to the central processing module for connecting to an external device to store and provide power required for operation of the processor
  • the two lens bodies are combined with the frame body, and the lens body has a first surface and a second surface, wherein the distance between the second surface and a user's eyeball is smaller than the distance between the first surface and the eyeball of the user;
  • the at least two transparent displays are respectively coupled to the first surface, the second surface or the first surface and the second surface, and are electrically connected to the image output module of the processor for instantly displaying the synchronization sharpening image;
  • At least one or more image capture devices are coupled to the frame body and electrically connected to the image processing module of the processor for capturing an image extending forward from the frame body and imaging the image Converting to the external captured image information for transmission to the image processing module;
  • the image actually seen by the user's eyeball through the lens body overlaps with the synchronized clear image displayed by the two transparent displays to clear the view of the user's eyeball through the lens body.
  • the processor further includes a capture angle adjustment module electrically connected to the central processing module and the image capture device for adjusting an angle of the captured image to enable the eyeball perspective
  • the image of the view can be at the same angle of view as the image taken by the image picker to the front of the frame body, so that the image actually seen by the user's eye through the lens body and the two transparent displays The displayed sync sharpens the image overlap.
  • the capturing angle adjustment module can preset a fixed angle of view of the eyeball, and preset the angle of the captured image according to the fixed angle of view of the eyeball, so that the image viewed by the eyeball angle can be
  • the image captured by the image picker to the front of the frame body has the same angle of view.
  • the preset eyeball angle of view is a direct viewing angle.
  • the optical lens structure can be connected to the remote connection module of the processor by using a software installed in an electronic device, and the adjusted image can be transmitted through the central processing module.
  • the angle of the control command to the capture angle adjustment module is adjusted at the far end to capture the angle of the image.
  • the processor further includes an output image adjustment module electrically connected to the central processing module and the image output module for adjusting the synchronized clear image displayed on the transparent display. Display state.
  • the remote connection module of the processor can be connected to a cloud platform for transmitting a digital display data to the processor by the cloud platform, and then adjusting the mode by transmitting the output image.
  • the group can display the digital display data transmitted by the cloud platform in a synchronized and clear image on the transparent display.
  • the digital display data of different angles can be displayed on different transparent displays, and the digital display data of different angles can display image effects of depth of field or three-dimensionality on different transparent displays, and different
  • the digital display data of the angle can also be processed by the processor after the processed image of the cloud platform or the images of different angles captured by different image capturers.
  • the processor is further capable of transmitting the external captured image information to the cloud platform through the remote connection module.
  • the output image adjustment module can adjust the display state of the synchronized and sharpened image displayed on the transparent display to adjust the multi-display viewing angle, adjust the display position, adjust the display size, adjust the display contrast, or adjust the display brightness.
  • the output image adjustment module can replace the font of the synchronized clear image displayed on the transparent display with a clear font. Or replace it with a built-in object.
  • the output image adjustment module can perform light compensation on the synchronized and sharpened image displayed on the transparent display.
  • the optical lens structure can be connected to the remote connection module of the processor by using a software installed in an electronic device, and the synchronization is clearly transmitted through the central processing module.
  • the control command of the display state of the image is sent to the output image adjustment module, and the display state of the output image is adjusted at the far end.
  • the lens body is a planar lens.
  • the lens body is a curved lens.
  • the frame body can be further provided with at least one or more sensor devices electrically connected to the processor.
  • any of the sensor devices are sensors capable of detecting temperature, heart rate, blood pressure, sweat, or step counting functions.
  • the frame body can be further provided with at least one or more earloop devices electrically connected to the processor, and the earloop device has a built-in battery for supplying power to the power supply module.
  • the frame body can be further provided with at least one microphone device electrically connected to the processor, and the microphone device can transmit an audio signal to the processor to control the operation of the processor by voice control.
  • the frame body can be further provided with at least one speaker device electrically connected to the processor.
  • the at least two image capture devices are further configured to respectively capture images of different angles, and the processor combines images of different angles into a stereoscopic image message or a depth of field image message.
  • the output image adjustment module can also process images in an array or matrix manner so that images output to the transparent display have an image focusing effect.
  • the transparent display is a plurality of layers
  • two or more layers of the transparent display are processed through an array or matrix, The effect of multiple image focusing.
  • the lens body or the transparent display is capable of directing light through a collimation technique.
  • the collimation technique is a microlens or a light well to achieve the purpose of guiding the light.
  • the microlens can be subjected to a lead angle process to adjust the direction of the collimated light.
  • the lens body or the transparent display can be subjected to a lead angle treatment to adjust the direction of the collimated light so that more than two images can overlap.
  • the process of the transparent display can be processed using collimation techniques or microlens technology to enable the transparent display after delivery to have a positive light effect.
  • the present invention combines a transparent display on the lens of the glasses worn by the general user, and then the image captured by the processor in the frame of the glasses is image-cleared, and the image is sharpened. Increasing the resolution and outputting the synchronized clear image to the transparent display, so that the image actually seen by the user's eye through the lens overlaps with the synchronized clear image displayed by the transparent display to clear The user's eyeball sees the scene through the lens.
  • the present invention can be applied to the retina to assist a user with an eye disease, and the effect of improving vision can be achieved even without wearing glasses with curved lenses.
  • the image capturing device of the invention has the functions of zooming in and zooming out, like a camera, capable of zooming in on a distantly captured image (similar to a telescope) or directly zooming in on a nearby image ( Similar to a magnifying glass), so you can capture clear images whether you are farther or closer.
  • the present invention enables the user to see an image that can be seen by the limit of the eyeball so that the field of view can reach a farther distance, and even if the scene beyond the visible range of the eyeball can be clearly presented in front of the eyeball.
  • FIG. 1A is a schematic exploded view of an image-enhanced eyeglass structure of the present invention.
  • FIG. 1A is a schematic exploded view of an image-enhanced eyeglass structure of the present invention.
  • FIG. 1B is a schematic diagram showing the combined structure of the image-enhanced eyeglass structure of the present invention.
  • FIG. 2 is a schematic diagram of a processor architecture inside a frame body of the image-enhanced eyeglass structure of the present invention.
  • Figure 3 is a schematic diagram showing the remote control architecture of the image-enhanced eyeglass structure of the present invention.
  • Figure 4A Schematic diagram of conventional myopia eye focus.
  • FIG. 4B is a schematic view showing a first implementation application of the image-enhanced eyeglass structure of the present invention.
  • Figure 5A Schematic diagram of conventional farsighted eyeball focus.
  • Figure 5B is a schematic view showing a second embodiment of the image-enhanced spectacles structure of the present invention.
  • Fig. 6A is a schematic view showing the correction of a concave lens for myopia.
  • Figure 6B is a schematic view showing a third embodiment of the image-enhanced spectacles structure of the present invention.
  • Figure 7 is a schematic view showing another embodiment of the image-enhanced eyeglass structure of the present invention.
  • Figure 8 is a schematic view showing another embodiment of the image-enhanced eyeglass structure of the present invention.
  • FIG. 1A and FIG. 1B are schematic diagrams showing a disassembled structure and a combined structure of an image-enhanced eyeglass structure according to the present invention.
  • the image-enhanced eyeglass structure 1 includes a frame body 11 and two a lens body 12, at least two transparent displays 13 and two image pickers 112, which are coupled to the frame opening 111 of the frame body 11, wherein the lens body 12 has a first surface 121 and a second surface 122.
  • the distance between the second surface 122 and a user's eyeball is smaller than the distance between the first surface 121 and the user's eyeball, and the transparent display 13 is bonded, plated or coated to the second surface 122 of the lens body 12.
  • the transparent display 13 can be combined with the first surface 121 and the second surface 122.
  • the transparent display 13 is a display technology capable of active light display, and thus is not an image projection.
  • the lens body 12 is a flat lens or a curved lens (the curved lens is a concave lens, a convex lens, a meniscus lens or other lens having a curved surface).
  • the image capturing device 112 is configured to capture an image extending forwardly from the frame body 11 and convert the image into the external captured image information for transmission to the image processing module 1132, and the two images are captured.
  • the devices 112 can be respectively disposed directly above the two eyeballs of the corresponding user, but can also be disposed around the frame opening 111 of the frame body 11.
  • the inside of the frame body 11 has a processor 113.
  • the frame body 11 is a hollow frame so that the inside of the frame body 11 can be provided with circuits and wires.
  • the processor 113 includes a central portion.
  • the central processing module 1131 is configured to control the overall processor operation, and the external captured image information captured by the image capturing device 112 can be image-cleared by the image processing module 1132. To improve its resolution;
  • the remote connection module 1134 is configured to be remotely connected by a wireless connection technology
  • the power supply module 1135 is configured to be connected to an external device to store and provide the operation required by the processor.
  • Power supply a power supply socket (not shown) electrically connected to the power supply module 1135 can be added to the frame body 11 to enable charging of an external wire or a USB transmission line; and the power supply module 1135 (battery)
  • the frame body 11 can be designed as a detachable member. Therefore, the power module 1135 (battery) can be replaced after the detachable member can be detached.
  • the image output module 1133 can output the image of the externally captured image with the image sharpened as a synchronous and clear image to the transparent display 13, and the user wearing the image-enhanced eyeglass structure 1 After seeing the synchronized and clear image on the transparent display 13, the APP platform connected to the handheld device 6 can be connected to the cloud platform 7 as shown in FIG. 3 (but can also directly pass the APP of the handheld device 6).
  • the platform is directly connected to the remote connection module 1134 of the image-enhanced eyeglass structure 1
  • the cloud platform 7 is connected to the remote connection module 1134 of the image-enhanced eyeglass structure 1 After the line, the user can operate the APP platform to input an adjustment command for controlling the output image.
  • the adjustment command is transmitted through the cloud platform 7, the remote connection module 1134, and the central processing module 1131. Up to the output image adjustment module 1137, the display state of the synchronized clear image is adjusted according to the adjustment control command. Therefore, the user can further control the APP platform to perform fine adjustment while watching the adjusted situation, so as to adjust to the user that there is no problem;
  • the display state mentioned here can adjust the multi-display viewing angle (in addition to the direct-viewing angle of the eyeball, it can provide images of multiple viewing angles around the eyeball direct-viewing angle, and can allow the user to go up and down with their own eyes. , to the left, to the left, to the left, to the right, to the right, to the right and other perspectives, to fine-tune the accuracy of image alignment seen by different eyeball perspectives), adjust the display position (up, down, left, At least eight directions, such as top left, bottom left, right, top right, and bottom right, adjust the display size (zoom in or out), adjust the display contrast, adjust the display brightness (brighter or darker), or adjust the wide angle.
  • the adjustment control command can further input a command such as a font replacement, so that the output image adjustment module 1137 can clearly clear the font of the synchronized clear image displayed on the transparent display 13.
  • the font is replaced; in addition, when the scene being seen is under-light or daytime, the darker image is displayed on the synchronized image, so the user can also use APP platform compensation instruction input ray, so that the output image adjustment module 1137 able to compensate for the light displayed on the transparent display image sharpening synchronized, so also can achieve night vision.
  • the object can be replaced by the built-in object of the processor 113, and the built-in objects such as pictures, images, and faces are replaced. , text, construction, biometrics, etc.
  • the image processing module 1132 and the output image adjustment module 1137 are built in the frame body 11, but the remote connection module 1134 can directly upload the captured image to the cloud platform 7.
  • the image processing module 1132 and the output image adjustment module 1137 can be replaced by the image processing module 1132, and the image capturing module 1136 and the output image adjusting module 1137 can be replaced by the image processing module 1132.
  • the processed image is directly output to the transparent display 13.
  • the output image adjustment module 1137 can also process the image in an array and a matrix, so that the image output to the transparent display 13 has an image when viewed by the user's eye.
  • the effect of focusing When the multi-layer transparent display 13 is attached to the lens body 12, since the image of the transparent display 13 output to one or more of the layers is processed by array or matrix, multiple images can be obtained. The effect of focusing.
  • various collimation techniques can be used on the lens body 12 or on the transparent display 13 to guide the light, wherein the microlens technology transmits at least one lens.
  • the well technology uses a light well to make the light passing through the well straight forward;
  • the microlens can be subjected to a lead angle treatment to adjust the collimated light direction by the lead angle; in addition, the transparent display 13 can be processed by using collimation technology or microlens technology. The process is such that the transparent display 13 after shipment has a structure similar to a microlens or a light well, so that the transparent display 13 has the effect of guiding a light.
  • the lens body 12 or the transparent display 13 itself can undergo chamfering, and the lens body 12 or the corner of the transparent display 13 can adjust the direction of the collimated light to make more than two The images can overlap.
  • an image effect of a sense or a stereoscopic effect, and images of different angles can be captured by two or more image capturers 112 respectively (and the image capturer 112 can also set an angle to capture an image) ;
  • two or more image capturing devices 112 can be used to capture images of different angles, and the processor 113 combines images captured at different angles to obtain a depth of field or three-dimensional image.
  • Sensed image information (combined into one image having two or more different angles) and outputted to the transparent display 13 (two or more images of different angles can be respectively displayed on different transparent displays 13), and the above combination
  • the processing can also be performed in the cloud platform 7 and then sent to the image-enhanced eyeglass structure 1.
  • the 2D image (digital display data) stored in the cloud platform 7 can be captured or downloaded through the remote connection module 1134 of the frame body 11 on the cloud platform 7, and then The output image adjustment module 1137 processes the 2D image into images of different angles, so that images of different angles (digital display data) can be respectively displayed on different transparent displays 13 to present a depth of field effect or a stereoscopic image effect.
  • the cloud platform 7 can also store the processed digital display data of different angles or upload the 2D image captured by the image capture device 112 to the cloud platform 7 to process the 2D image by the cloud platform 7. After being imaged at different angles, and then returning to the remote connection module 1134 of the frame body 11, the images of different angles are directly output to the different transparent displays 13.
  • the quality of the image capture device 112 affects the resolution of the captured image
  • the quality of the transparent display 13 also affects the resolution of the synchronized clear video playback
  • the quality of the image capture device 112 and the transparent display 13 can be improved, and the resolution of the output image can be improved by hardware.
  • the capturing angle adjustment module 1136 is generally pre-predicted. Setting a fixed angle of view of the eyeball (for example, a direct viewing angle), and adjusting the angle of the image by the image capturing device 112 according to the fixed angle of the eyeball viewing angle, so that the image viewed by the eyeball viewing angle can be captured with the image.
  • the image captured by the frame body 11 is a view angle of the same angle;
  • the above situation is a preset when the manufacturer leaves the product at the factory. Therefore, when the user actually uses the image-enhanced eyeglass structure 1, if the image displayed on the transparent display 13 is found to be incapable of overlapping with the scene actually seen by the eyeball, The image capture device 112 has an error in capturing the image. Therefore, the user can also connect to the cloud platform 7 through the APP platform of the handheld device 6 (but can also directly access the APP of the handheld device 6).
  • the platform is directly connected to the remote connection module 1134 of the image-enhanced eyeglass structure 1
  • the cloud platform 7 is connected to the remote connection module 1134 of the image-enhanced eyeglass structure 1
  • the user can operate the APP platform to input an input control command to the capture angle adjustment module 1136 to indirectly adjust the angle of the image capture device 112 to capture the image, so when the adjustment is performed by the APP platform
  • the image capture device 112 also rotates the lens, and the image displayed on the transparent display 13 also moves until the user feels that the image actually seen by the eyeball through the lens body is transparent with the two
  • the synchronization clear image overlap displayed on the display completes the adjustment operation (in this state, the image viewed from the perspective of the eyeball can be drawn forward from the frame body of the image capture device 112. The image is at the same angle of view).
  • the image capturing device 112 can further set a function of wavelengths other than visible light, so that the image capturing device 112 can capture images having wavelengths other than visible light, so that a clear image can be clearly captured at night (
  • the night vision function is either ultraviolet light or the like, and the present invention can further design the ultraviolet warning software to cooperate with the captured image because the ultraviolet light can be extracted.
  • the image capturing device 112 has the functions of zooming in and zooming in. Like a camera, it can zoom in on a distant image (similar to a telescope) or directly zoom in on a nearby image (similar to In the magnifying glass), clear images can be captured whether it is farther or closer.
  • the output image adjustment module 1137 can also increase the eyeball tracking function to track the angle of view of the eyeball at any time to adjust the angle of the image capture device 112 according to the angle of view of the eyeball, so that the user does not need to The remote end is manually adjusted through the APP platform, but can be automatically adjusted.
  • FIG. 4B The first embodiment of the present invention is shown in FIG. 4B, wherein FIG. 4A is a schematic view of a general eye myopia, because the eyeball 2 is too long (ie, the distance of the lens from the omentum is too long), or due to the lens's ability to zoom toward the distant object. Recession, making it farther away, beyond the distant scene 3, the blurred scene 22 generated by the cornea 21 will fall in front of the retina, and on the retina is a blurred image, so it is not clear, However, as can be seen from FIG. 4B, if the image-enhanced eyeglass structure 1 is worn, the transparent display 13 is provided in front of the eyeball 2, and the eyeball 2 sees through the lens body 12 (planar lens).
  • the synchronized sharp image 131 Since the synchronized sharp image 131 is displayed close to the eyeball 2, the synchronized sharpened image 131 presents a clear image 23 on the retina of the eyeball 2, so that the processed image can be heavy on the retina Stack, in which the blurred scene 22 is in front of the clear scene 23, but the mechanism of the eyeball 2 is to capture a clear image, so the eyeball 2 will focus on the clear scene 23, and ignore the blurred scene 22, thus finally
  • the image seen is a clear scene 23 (the blurred scene 22 can be regarded as being replaced by overlapping), so that the present invention can enable myopia to achieve corrective effects even without wearing myopia glasses (like myopia)
  • the person looks far and blurry it will be very clear when looking at the near end. Therefore, the image capturing device 112 captures the far-view scene, and then the transparent display 13 plays the image of the user's eye 2 to enhance the image.
  • the structure of the glasses 1, will make the far-sighted scene very clear).
  • FIG. 5B The second embodiment of the present invention is shown in FIG. 5B, wherein FIG. 5A is a schematic view of a general eyeball far vision. Since the eyeball 4 is too short, or because the zooming power of the lens to the near object is degraded, the distance between the bright vision and the distance is very long. Therefore, the blurred scene 42 generated by the scene 3 coming in from the cornea 41 will fall behind the retina to cause unclearness, but it can be seen from FIG. 5B that if the image is reinforced, In the case of the eyeglass structure 1, the transparent display 13 is provided in front of the eyeball 2. Although the object 3 seen by the eyeball 4 through the lens body 12 (planar lens) is also a blurred image on the retina, the image is defective.
  • the image capture device 112 directly captures the image of the scene 3, and after the image sharpening process to improve the resolution thereof, the synchronous clear image 131 can be displayed on the transparent display 13;
  • the synchronization is clear.
  • the image 131 will display a clear scene 43 on the retina of the eyeball 4 so that the processed image can overlap on the retina.
  • the mechanism of the eyeball 4 is A clear image will be captured, so the blurred scene 42 will be ignored and focused on the clear scene 43, which will enable the far-sighted person to achieve the corrective effect even without wearing the distance glasses.
  • FIG. 6A is a schematic diagram of the correction of the general myopia with a concave lens.
  • FIG. 6A is a schematic diagram of the correction of the general myopia with a concave lens.
  • the eyeball 2 can be made as far as possible. Seeing a clearer picture 24, but the human eye has a limit after all. If it is too far away, the view will be blurred with distance, but as can be seen from Figure 6B, if it is worn
  • the image-enhanced eyeglass structure 1 has the transparent display 13 in front of the eyeball 2, and even if the scene 3 is very far away, the image capturing device 112 can capture a distant image and clear the image.
  • the synchronously sharpened image 131 is displayed on the transparent display 13, which is equivalent to directly capturing the distant image to the front of the eyeball 2 so that the processed image can overlap on the retina.
  • the clear scene 25 can be clearly presented on the retina of the eyeball 2.
  • the frame body 11 can be further provided with at least one or more sensor devices 114 electrically connected to the processor, and the sensor device 114 is capable of detecting temperature and heartbeat.
  • Blood A sensor for pressure, sweat or step counting function, and one or more sensor devices 114 of the same or different functions can be disposed on the frame body 11.
  • the frame body 11 can be further provided with at least one or more earloop devices 115 electrically connected to the processor 113, which are directly connected to the power supply socket (not shown).
  • the battery is connected to the earloop device 115 (not shown) for supplying power to the power supply module 1135 through the power socket.
  • the frame body 11 can be further provided with at least one microphone device 116 electrically connected to the processor 113 and the speaker device 117 .
  • the present invention combines a transparent display on the lens of the glasses worn by the general user, and then the image captured by the processor in the frame of the glasses is image-cleared, and the image is sharpened. Increasing the resolution and outputting the synchronized clear image to the transparent display, so that the image actually seen by the user's eye through the lens overlaps with the synchronized clear image displayed by the transparent display to clear The user's eyeball sees the scene through the lens.
  • the present invention can be applied to the retina to assist a user with an eye disease, and the effect of improving vision can be achieved even without wearing glasses with curved lenses.
  • the image capturing device of the invention has the functions of zooming in and zooming out, like a camera, capable of zooming in on a distantly captured image (similar to a telescope) or directly zooming in on a nearby image ( Similar to a magnifying glass), so you can capture clear images whether you are farther or closer.
  • the present invention enables the user to see an image that can be seen by the limit of the eyeball so that the field of view can reach a farther distance, and even if the scene beyond the visible range of the eyeball can be clearly presented in front of the eyeball.

Abstract

一种可影像强化的眼镜结构(1),包含一镜框本体(11)、两个与镜框本体(11)相结合的镜片本体(12)、至少两个透明显示器(13)以及一个或一个以上的影像撷取器(112)。镜框本体(11)内部连接有一处理器(113),其用以将影像撷取器(112)所撷取由镜框本体(11)向前延伸的影像,进行影像清晰化处理,以提高解析度,并将同步清晰化影像输出至透明显示器(13)上,以让使用者的眼球透过镜片本体(12)实际看到的影像会与两个透明显示器(13)所显示的同步清晰化影像重叠,以清晰化使用者的眼球透过镜片本体(12)看出去的景像。

Description

可影像强化的眼镜结构 技术领域
本发明关于一种可影像强化的眼镜结构,特别是指一种眼镜结构,能够让使用者的眼球透过该镜片实际看到的影像会与镜片上所显示的同步清晰化影像重叠,以清晰化该使用者的眼球透过该镜片看出去的影像。
背景技术
目前,各种显示装置随着科技进步而被发明出来,例如从精巧的手持型显示器到高画质的显示荧幕甚至于几乎可以假乱真的立体显示器,其栩栩如生的影像显示品质,使人类天马行空的想象力得以驰骋于其中。
其中,尤以头戴式显示器(head mount display,HMD)更是被视为目前显示科技发展的重点之一。一般而言,目前的头戴式显示器以google眼镜(Google Glass)为最为习知的,google眼镜是一款配有光学头戴式显示器(OHMD)的可穿戴式电脑,其目标是希望能制造出供给大众消费市场的普适计算装置,其中Google眼镜以免手持、与智慧型手机类似的方式显示各种资讯。因此穿戴者透过自然语言语音指令与网际网路服务联系沟通。
目前市面上常见的Google眼镜,其结构主要于镜架两侧设有镜脚,该镜架一侧的镜脚上设有一具电池的电子装置,该电子装置延伸至镜架前方一侧并于端部设有与其连接设有一摄影镜头,该电子装置位于镜脚尾端设有一与其连接的开关,至于延伸至镜架前方具摄影镜头的电子装置邻接设有一荧幕;
但这一类的头戴式显示器,以Google眼镜来讲,常有下列问题产生:
1.Google眼镜对于原有戴眼镜的使用者(对于有近视、远视或其他眼睛状况需要戴眼镜的使用者)来讲,是非常不方便使用的,若是要直接将Google眼镜配戴于头上,而不戴上原有配戴的眼镜,将会造成使用者无法清楚看到近距离或远距离的景像;
2.Google眼镜若是要装设于原有配戴的眼镜上,由于这一类头戴式显示器虽然有轻量化的趋势,但仍然是有一定体积与重量,故若要在原有配戴的眼镜上装设上Google眼镜,将会导致使用者的不适感;
3.这一类的头戴式显示器由于本身无任何辅助光源提供,故当于光线不足的白天或夜间时,该头戴式显示器上的摄影镜头往往无法提供清晰影像至荧幕上, 甚至无法拍摄到任何影像,如此将会造成使用者于特定环境下,将无法使用这一类的头戴式显示器。
故为了对上述情况进行改善,则能够使用与既有不同的技术,于一般使用者配戴的眼镜的镜片上结合一透明显示器,并再由眼镜的镜框内的处理器对所撷取由该镜框向前延伸的影像,进行影像清晰化处理,以提高其解析度,并将同步清晰化影像输出至该透明显示器上,以让使用者的眼球透过该镜片实际看到的影像会与该透明显示器所显示的同步清晰化影像重叠,以清晰化使用者的眼球透过该镜片看出去的景像,如此应为一最佳解决方案。
发明内容
本发明的目的在于,提供一种可影像强化的眼镜结构,其结构简单,使用便利,能够让使用者的眼球透过该镜片实际看到的影像会与镜片上所显示的同步清晰化影像重叠,以清晰化该使用者的眼球透过该镜片看出去的影像。
为实现上述目的,本发明公开了一种可影像强化的眼镜结构,其特征在于,包含:
一镜框本体,而该镜框本体内部连接有一处理器,而该处理器包含:
一中央处理模组,用以控管整体处理器运作;
一影像处理模组,与该中央处理模组相连接,而该影像处理模组用以将一外部撷取影像资讯进行影像清晰化处理,以提高其解析度;
一影像输出模组,与该中央处理模组及该影像处理模组相连接,用以将影像清晰化后的外部撷取影像资讯进行输出为一同步清晰化影像;
一远端连线模组,与该中央处理模组相连接,用以藉由无线连线技术进行远端连线;
一供电模组,与该中央处理模组相连接,用以与一外部设备连接,以储存与提供该处理器运作所需的电力;
两个镜片本体,与该镜框本体相结合,而该镜片本体具有第一表面及第二表面,其中该第二表面与一使用者的眼球距离小于该第一表面与该使用者的眼球距离;
至少两个透明显示器,分别结合于该第一表面、第二表面或第一表面及第二表面上,并与该处理器的影像输出模组进行电性连接,用以即时显示该同步清晰化影像;
至少一个或一个以上的影像撷取器,结合于该镜框本体上,并与该处理器的影像处理模组进行电性连接,用以撷取由该镜框本体向前延伸的影像,并将影像转换为该外部撷取影像资讯,以传送至该影像处理模组;以及
而该使用者的眼球透过该镜片本体实际看到的影像会与该两个透明显示器所显示的同步清晰化影像重叠,以清晰化该使用者的眼球透过该镜片本体看出去的景像。
更具体的说,所述处理器更包含有一撷取角度调整模组,与该中央处理模组及该影像撷取器电性连接,用以进行调整撷取影像的角度,以使眼球视角所视的影像能够与该影像撷取器所撷取该镜框本体向前延伸的影像为相同角度的视角,以达到使用者的眼球透过该镜片本体实际看到的影像会与该两个透明显示器所显示的同步清晰化影像重叠。
更具体的说,所述撷取角度调整模组能够预设一固定眼球视角角度,并依据该固定眼球视角角度进行预设调整撷取影像的角度,以使眼球视角所视的影像能够与该影像撷取器所撷取该镜框本体向前延伸的影像为相同角度的视角。
更具体的说,所述预设眼球视角角度为直视角度。
更具体的说,所述眼镜结构,更能够藉由一电子装置内安装的软体,与该处理器的远端连线模组进行连线,并透过该中央处理模组传送调整撷取影像的角度的控制指令至该撷取角度调整模组,以远端进行调整撷取影像的角度。
更具体的说,所述处理器更包含有一输出影像调整模组,与该中央处理模组及该影像输出模组电性连接,用以进行调整显示于该透明显示器上的同步清晰化影像的显示状态。
更具体的说,所述处理器的远端连线模组能够与一云端平台进行连线,以由该云端平台传输一数位显示资料至该处理器,并再由透过该输出影像调整模组能够将该云端平台所传输的数位显示资料合并显示于该透明显示器上的同步清晰化影像上。
更具体的说,所述能够于不同透明显示器上分别显示不同角度的数位显示资料,而不同角度的数位显示资料于不同透明显示器上显示将能够呈现景深感或立体感的影像效果,且不同角度的数位显示资料亦能够为该云端平台已处理后的影像或是由不同影像撷取器所撷取不同角度的影像后、再由处理器合并处理之。
更具体的说,所述处理器更能够透过该远端连线模组将该外部撷取影像资讯传送至该云端平台。
更具体的说,所述输出影像调整模组能够调整显示于该透明显示器上的同步清晰化影像的显示状态为调整多显示视角、调整显示位置、调整显示尺寸、调整显示对比或调整显示亮度。
更具体的说,所述同步清晰化影像上若具有任一字体或任何可取代的物件,该输出影像调整模组能够将显示于该透明显示器上的同步清晰化影像的字体以清晰字体进行取代或是以一内建物件进行取代。
更具体的说,所述同步清晰化影像上若为较暗影像,该输出影像调整模组能够对显示于该透明显示器上的同步清晰化影像进行光线补偿。
更具体的说,所述眼镜结构,更能够藉由一电子装置内安装的软体,与该处理器的远端连线模组进行连线,并透过该中央处理模组传送调整该同步清晰化影像的显示状态的控制指令至该输出影像调整模组,以远端进行调整输出影像的显示状态。
更具体的说,所述镜片本体为平面镜片。
更具体的说,所述镜片本体为曲面镜片。
更具体的说,所述镜框本体上更能够设置有至少一个或一个以上与该处理器电性连接的感测器装置。
更具体的说,所述任一个感测器装置为能够侦测温度、心跳、血压、汗水或是计步功能的感测器。
更具体的说,所述镜框本体上更能够设置有至少一个或一个以上与该处理器电性连接的耳挂装置,该耳挂装置内建有一电池,用以提供电源给该供电模组。
更具体的说,所述镜框本体上更能够设置有至少一个与该处理器电性连接的麦克风装置,而该麦克风装置能够传送声音讯号至该处理器,以声控控制该处理器的运作。
更具体的说,所述镜框本体上更能够设置有至少一个与该处理器电性连接的扬声器装置。
更具体的说,所述至少两个影像撷取器更能够用以分别撷取不同角度的影像,并藉由该处理器将不同角度的影像合并为一立体影像讯息或具有景深影像讯息。
更具体的说,所述输出影像调整模组亦能够将影像以阵列或矩阵的方式处理,以使输出至该透明显示器上的影像具有影像聚焦的效果。
更具体的说,所述透明显示器为多层时,若输出至该透明显示器的其中一层、其中任两层或任两层以上的影像是经过阵列或矩阵的方式处理后,因此则能够达到多次影像聚焦的效果。
更具体的说,所述镜片本体或是透明显示器能够透过准直技术来导正光线。
更具体的说,所述准直技术为微透镜或是光井来达成导正光线的目的。
更具体的说,所述微透镜能够再经过导角处理,以调整准直后的光线方向。
更具体的说,所述镜片本体或是该透明显示器能够经过导角处理,以调整准直后的光线方向,以使两个以上的影像能够重叠。
更具体的说,所述透明显示器的制程过程能够使用准直技术或是微透镜技术进行处理,以使出厂后的透明显示器具有导正光线的效果。
本发明所提供的可影像强化的眼镜结构,与其他习用技术相互比较时,其优点如下:
1.本发明于一般使用者配戴的眼镜的镜片上结合一透明显示器,并再由眼镜的镜框内的处理器对所撷取由该镜框向前延伸的影像,进行影像清晰化处理,以提高其解析度,并将同步清晰化影像输出至该透明显示器上,以让使用者的眼球透过该镜片实际看到的影像会与该透明显示器所显示的同步清晰化影像重叠,以清晰化使用者的眼球透过该镜片看出去的景像。
2.本发明能够呈像于视网膜以协助有眼睛疾病的使用者,即使不需配戴具有曲面镜片的眼镜,亦能够达到提升视力的效果。
3.本发明的影像撷取器更具有拉远与拉近的功能,如同摄影机一般,能够将远处要撷取的影像拉近放大(类似于望远镜)或是直接就将近处的影像放大(类似于放大镜),因此不论是更远或是更近的距离,皆能撷取清晰的影像。
4.本发明能够让使用者看到自身眼球极限能够看到的影像,以使其视野能够达到更加的远,即使超出眼球可视范围的景像,亦能够清楚的呈现于眼球的前方。
附图说明
图1A:本发明可影像强化的眼镜结构的分解架构示意图。
图1B:本发明可影像强化的眼镜结构的结合架构示意图。
图2:本发明可影像强化的眼镜结构的镜框本体内部的处理器架构示意图。
图3:本发明可影像强化的眼镜结构的远端控制架构示意图。
图4A:习知近视眼球聚焦示意图。
图4B:本发明可影像强化的眼镜结构的第一实施应用示意图。
图5A:习知远视眼球聚焦示意图。
图5B:本发明可影像强化的眼镜结构的第二实施应用示意图。
图6A:习知用于近视的凹透镜校正聚焦示意图。
图6B:本发明可影像强化的眼镜结构的第三实施应用示意图。
图7:本发明可影像强化的眼镜结构的另一实施架构示意图。
图8:本发明可影像强化的眼镜结构的另一实施架构示意图。
具体实施方式
有关于本发明其他技术内容、特点与功效,在以下配合参考图式的较佳实施例的详细说明中,将可清楚的呈现。
请参阅图1A及图1B,为本发明可影像强化的眼镜结构的分解架构示意图及结合架构示意图,由图中可知,该可影像强化的眼镜结构1包含了一镜框本体11、两 个结合于该镜框本体11的框口111处的镜片本体12、至少两个透明显示器13及两个影像撷取器112,其中该镜片本体12具有第一表面121及第二表面122,其中该第二表面122与一使用者的眼球距离小于该第一表面121与该使用者的眼球距离,且该透明显示器13以贴合、镀或涂的方式结合于该镜片本体12的第二表面122(亦能够结合于第一表面121上、或是第一表面121及第二表面122上皆有结合透明显示器13,该透明显示器13为一种能够主动发光显示的显示技术,因此并非是影像投影技术)上,另外该镜片本体12为平面镜片或曲面镜片(曲面镜片为凹透镜、凸透镜、凹凸透镜或其他具有曲面的镜片)。
而该影像撷取器112用以撷取由该镜框本体11向前延伸的影像,并将影像转换为该外部撷取影像资讯,以传送至该影像处理模组1132,而两个影像撷取器112能够分别设置于对应使用者的两个眼球分别的正上方,但亦能够设置于该镜框本体11的框口111周围设置。
而该镜框本体11内部具有一处理器113,该镜框本体11为一中空状的镜框,以使该镜框本体11内部能够布设电路与电线,由图2中可知,该处理器113包含了一中央处理模组1131、一影像处理模组1132、一影像输出模组1133、一远端连线模组1134、一供电模组1135、一撷取角度调整模组1136及一输出影像调整模组1137,其中该中央处理模组1131用以控管整体处理器运作,而该影像撷取器112所撷取取得的外部撷取影像资讯,能够藉由该影像处理模组1132进行影像清晰化处理,以提高其解析度;
其中该远端连线模组1134用以藉由无线连线技术进行远端连线,而该供电模组1135则是用以与一外部设备连接,以储存与提供该处理器运作所需的电力,该镜框本体11上能够增加一与该供电模组1135电性连接的供电插口(图中未示),以使能够外接电线或是USB传输线进行充电;另外该供电模组1135(电池)更能够设计为于该镜框本体11上做为一可拆卸式构件,因此能够将该可拆卸式构件拆卸后,则能够更换该供电模组1135(电池)。
而该影像输出模组1133则能够将影像清晰化后的外部撷取影像资讯进行输出为一同步清晰化影像至该透明显示器13上,并于配戴该可影像强化的眼镜结构1的使用者于该透明显示器13上看到同步清晰化影像后,则能够如图3所示,透过一手持装置6的APP平台连上一云端平台7后(但亦能够直接透过手持装置6的APP平台与该可影像强化的眼镜结构1的远端连线模组1134直接进行连线),而该云端平台7则会与该可影像强化的眼镜结构1的远端连线模组1134进行连线后,使用者则能够操作该APP平台输入要控制输出影像的调整指令,当一边调整时,由于调整指令会透过该云端平台7、远端连线模组1134及中央处理模组1131传送至该输出影像调整模组1137中,以依据调整控制指令进行调整显示于该同步清晰化影像的显示状态, 因此使用者能一边观看调整后状况进一步进行继续控制该APP平台进行微调,以调整至使用者觉得没问题即可;
而此处所提的显示状态能够为调整多显示视角(能够除了眼球直视视角之外,更提供眼球直视视角周围的多个视角的影像,并能够让使用者以自己眼球向上、向下、向左、向左上、向左下、向右、向右上、向右下等多个视角,进行微调不同眼球视角看到的影像对准的准确性)、调整显示位置(上、下、左、左上、左下、右、右上、右下等至少八个方向微调)、调整显示尺寸(放大或缩小)、调整显示对比、调整显示亮度(更亮或是更暗)或调整广角,除此之外,若同步清晰化影像上若具有任一字体,调整控制指令更能够输入字体更换等指令,以使该输出影像调整模组1137将显示于该透明显示器13上的同步清晰化影像的字体以清晰字体进行取代;另外,当所看到的景像为光线不足的白天或夜间时,该同步清晰化影像上则会显示较暗影像,因此,使用者亦能够使用该APP平台输入光线补偿等指令,以使该输出影像调整模组1137能够对显示于该透明显示器上的同步清晰化影像进行光线补偿,如此亦能够达到夜视功能。
而除了取代字体之外,若同步清晰化影像上上具有任何可取代的物件时,则能够藉由该处理器113内建的物件进行取代,而内建的物件例如图片、图像、人脸影像、文字、建物、生物特征等等。
而上述影像处理模组1132及该输出影像调整模组1137是内建于该镜框本体11内部,但该远端连线模组1134亦能够直接将所撷取的影像上传至该云端平台7上,由于该云端平台7能够达到该影像处理模组1132及该输出影像调整模组1137的功能,因此能够取代影像处理模组1132、该撷取角度调整模组1136及该输出影像调整模组1137,将影像进行处理后,回传至该镜框本体11的远端连线模组1134后,则直接将处理后的影像输出至该透明显示器13上。
另外,该输出影像调整模组1137亦能够将影像以array(阵列)与或matrix(矩阵)的方式处理,以使输出至该透明显示器13上的影像让使用者眼球所视时则会具有影像聚焦的效果。且当于镜片本体12上附加多层透明显示器13时,由于输出至其中一层或其中任两层以上的透明显示器13的影像是经过array或matrix的方式处理后,因此则能够达到多次影像聚焦的效果。
另外,亦能够在镜片本体12上或是透明显示器13上使用各种准直技术(例如微透镜技术(microlens array)或是光井技术)来导正光线,其中微透镜技术是透过至少一个透镜来使光线改变,而该光井技术则是透过一光井,使通过该光井的光线能够笔直前进;
而该微透镜能够再经过导角处理,以藉由导角来调整准直后的光线方向;除此之外,该透明显示器13的制程过程中亦能够使用准直技术或是微透镜技术进行 处理,以使出厂后的透明显示器13本身具有类似微透镜或光井的结构,以使该透明显示器13具有导正光线的效果。
另外,该镜片本体12或是透明显示器13本身能够经过导角处理(chamfering),而该镜片本体12或是透明显示器13的导角处将能够调整准直后的光线方向,以使两个以上的影像能够重叠。
另外,当分别于左右两个不同透明显示器13上显示的影像是不同角度时,当使用者以左眼及右眼观看到左右两个不同透明显示器13时,将能够让使用者感受到景深感或立体感的影像效果,而不同角度的影像则能够由两个以上的影像撷取器112分别撷取取得(而该影像撷取器112亦能够设定要以什么角度来撷取影像);
另外,能够使用两个以上的影像撷取器112分别撷取不同角度的影像,并再藉由该处理器113将所撷取不同角度的影像进行合并处理,以得到一具有景深感或立体感的影像讯息(合并为一具有两种以上不同角度的影像),并输出至该透明显示器13上(两种以上不同角度的影像能够分别显示于不同的透明显示器13上),而上述的合并处理,亦能够于该云端平台7中进行运算后再送出至该可影像强化的眼镜结构1。
除此之外,亦能够于该云端平台7上,透过该镜框本体11的远端连线模组1134将云端平台7内存的2D影像(数位显示资料)抓取或下载下来后,再透过输出影像调整模组1137将2D影像处理为不同角度的影像,以使不同透明显示器13上能够分别显示不同角度的影像(数位显示资料),以呈现景深感或立体感的影像效果,另外,该云端平台7亦能够储存已处理好的不同角度的数位显示资料或是直接将该影像撷取器112撷取的2D影像上传至该云端平台7,以由该云端平台7将2D影像处理为不同角度的影像后,再回传至该镜框本体11的远端连线模组1134后,则直接将不同角度的影像输出至不同透明显示器13上。
另外,由于该影像撷取器112的品质会影响撷取影像的解析度,且该透明显示器13的品质亦会影响同步清晰化影像播出的解析度,故若希望提高影像的解析度,亦能够改善该影像撷取器112及透明显示器13的品质,以硬体来改善输出影像的解析度。
另外,由于该影像撷取器112所撷取的角度不一定会与使用者的眼球看出去的视角完全一样,若能够将影像撷取器112所撷取的角度与使用者的眼球看出去的视角完全一样,将让使用者的眼球透过该镜片本体12实际看到的影像会与该两个透明显示器13所显示的同步清晰化影像重叠,因此一般该撷取角度调整模组1136会预设一固定眼球视角角度(例如直视角度),并依据该固定眼球视角角度进行预设调整该影像撷取器112撷取影像的角度,以使眼球视角所视的影像能够与该影像撷取器所撷取该镜框本体11向前延伸的影像为相同角度的视角;
但上述情况是厂商将产品出厂时的预设,因此使用者实际使用该可影像强化的眼镜结构1时,若是发现该透明显示器13上显示的影像并无法与眼球实际看到的景像重叠时,就表示该影像撷取器112撷取影像的角度有错误,因此使用者亦能够透过该手持装置6的APP平台连上一云端平台7后(但亦能够直接透过手持装置6的APP平台与该可影像强化的眼镜结构1的远端连线模组1134直接进行连线),而该云端平台7则会与该可影像强化的眼镜结构1的远端连线模组1134进行连线后,使用者则能够操作该APP平台对该撷取角度调整模组1136进行输入控制指令,以间接调整该影像撷取器112要撷取影像的角度,因此当由该APP平台进行调整时,该影像撷取器112也会转动镜头,随之该透明显示器13上显示的影像也会移动,直到使用者觉得眼球透过该镜片本体实际看到的影像会与该两个透明显示器所显示的同步清晰化影像重叠,则完成此一调校的动作(此一状态下,则代表眼球视角所视的影像能够与该影像撷取器112所撷取该镜框本体向前延伸的影像为相同角度的视角)。
另外,该影像撷取器112更能够设定可见光以外波长的功能,以使该影像撷取器112能够撷取到见到可见光以外波长的影像,如此则能够清楚于夜间撷取到清楚影像(夜视功能)或是撷取到紫外线等等,而本发明由于能够撷取到紫外线,故更能够进一步设计出紫外线警示软体与所撷取的影像配合。
另外,该影像撷取器112更具有拉远与拉近的功能,如同摄影机一般,能够将远处要撷取的影像拉近放大(类似于望远镜)或是直接就将近处的影像放大(类似于放大镜),因此不论是更远或是更近的距离,皆能撷取清晰的影像。
但该输出影像调整模组1137亦能够增加眼球追踪功能,以随时追踪眼球的视角,以依据眼球的视角来调整该影像撷取器112要撷取影像的角度,如此则不需让使用者以远端透过APP平台进行手动调整,而是能够自动调整。
而本发明的第一实施情况则如图4B所示,其中图4A是一般眼球近视示意图,由于眼球2太长(即晶状体离网膜的距离过长),或者由于晶状体对远物的变焦能力衰退,使其远点很近,超越远点的景物3,由该角膜21进来生成的模糊景像22则会落在视网膜的前面,在视网膜上则为一模糊的像,所以看不清楚,但是经由图4B中可知,若是有戴上该可影像强化的眼镜结构1时,于眼球2前方则具有该透明显示器13,虽然眼球2透过该镜片本体12(平面镜片)看到的景物3于视网膜上亦是为一模糊的像,但由于该影像撷取器112直接撷取该景物3的影像,并再经过影像清晰化处理以提高其解析度后,则能够于该透明显示器13上显示同步清晰化影像131;
由于离该眼球2很近之处显示同步清晰化影像131,而该同步清晰化影像131会于该眼球2的视网膜上呈现一清晰景像23,以使处理后的影像能够于视网膜上重 叠,其中虽然清晰景像23前方具有模糊景像22,但眼球2的机制是会抓取清晰影像,因此眼球2则会把焦点放在清晰景像23,并忽略模糊景像22,如此最终所看到的影像就是清晰景像23(模糊景像22可视为被进行重叠取代掉),如此本发明将能够使得近视者即使不需配戴近视眼镜也能够达到矫正的效果(如同近视的人虽然看远很模糊,但看近则会很清楚,因此藉由该影像撷取器112将很远的景像抓取后,再由该透明显示器13播放于使用者的眼球2可影像强化的眼镜结构1,将会使得看远的景像变得很清楚)。
而本发明的第二实施情况则如图5B所示,其中图5A是一般眼球远视示意图,由于眼球4眼球太短,或者由于晶状体对近物的变焦能力衰退,使其明视距离很远,故当其景物3由该角膜41进来所生成的模糊景像42则会落在视网膜的后面,以导致看不清楚的情况发生,但是经由图5B中可知,若是有戴上该可影像强化的眼镜结构1时,于眼球2前方则具有该透明显示器13,虽然眼球4透过该镜片本体12(平面镜片)看到的景物3于视网膜上亦是为一模糊的像,但由于该影像撷取器112直接撷取该景物3的影像,并再经过影像清晰化处理以提高其解析度后,则能够于该透明显示器13上显示同步清晰化影像131;
由于远视容易发生看近不清楚的情形,故导致远视的人也会习惯将东西比一般人远才能够看比较清楚,故当于该眼球4前方的处显示具有很清晰的影像时,该同步清晰化影像131则会于眼球4的视网膜上显示一清晰景像43出来,以使处理后的影像能够于视网膜上重叠,其中虽然清晰景像43后方有模糊景像42,但眼球4的机制是会抓取清晰影像,故会忽略模糊景像42而聚焦于清晰景像43上,如此将能够使得远视者即使不需配戴远视眼镜也能够达到矫正的效果。
而本发明的第三实施情况则如图6B所示,其中图6A是一般近视以凹透镜进行矫正示意图,由图中可知,当使用者戴上凹透镜5的镜片后,则能够使该眼球2尽量看到较为清楚的景像24,但是人的眼球毕竟是有极限的,若是太远的距离,所看的景像也会随距离而越模糊,但是由图6B中可知,若是有戴上该可影像强化的眼镜结构1时,于眼球2前方则具有该透明显示器13,即使该景物3是距离非常遥远,但若是该影像撷取器112能够撷取到远方的影像,并经影像清晰化处理以提高其解析度后,在于该透明显示器13上显示同步清晰化影像131,等同是将远处的影像直接抓取到眼球2的前方显示,以使处理后的影像能够于视网膜上重叠,如此即使超出眼球可视范围的景像,亦能够清楚的呈现清晰景像25于眼球2的视网膜上。
而除了以凹透镜进行矫正之外,即使其他眼睛问题,不论是否有戴曲面镜片进行矫正,皆能够与曲面镜片进行结合,以达到相同的效果。
另外,如图7所示,该镜框本体11上更能够设置有至少一个或一个以上与该处理器电性连接的感测器装置114,而该感测器装置114为能够侦测温度、心跳、血 压、汗水或是计步功能的感测器,且该镜框本体11上能够设置一个或多个相同或是不同功能的感测器装置114。
另外,如图8所示,该镜框本体11上更能够设置有至少一个或一个以上与该处理器113的电性连接的耳挂装置115,该是直接与该供电插口(图中未示)进行连接,且该耳挂装置115内建有一电池(图中未示),用以透过该供电插口提供电源给该供电模组1135。
另外,如图8所示,该镜框本体11上更能够设置有至少一个与该处理器113电性连接的麦克风装置116及该扬声器装置117。
本发明所提供的可影像强化的眼镜结构,与其他习用技术相互比较时,其优点如下:
1.本发明于一般使用者配戴的眼镜的镜片上结合一透明显示器,并再由眼镜的镜框内的处理器对所撷取由该镜框向前延伸的影像,进行影像清晰化处理,以提高其解析度,并将同步清晰化影像输出至该透明显示器上,以让使用者的眼球透过该镜片实际看到的影像会与该透明显示器所显示的同步清晰化影像重叠,以清晰化使用者的眼球透过该镜片看出去的景像。
2.本发明能够呈像于视网膜以协助有眼睛疾病的使用者,即使不需配戴具有曲面镜片的眼镜,亦能够达到提升视力的效果。
3.本发明的影像撷取器更具有拉远与拉近的功能,如同摄影机一般,能够将远处要撷取的影像拉近放大(类似于望远镜)或是直接就将近处的影像放大(类似于放大镜),因此不论是更远或是更近的距离,皆能撷取清晰的影像。
4.本发明能够让使用者看到自身眼球极限能够看到的影像,以使其视野能够达到更加的远,即使超出眼球可视范围的景像,亦能够清楚的呈现于眼球的前方。
本发明已透过上述的实施例揭露如上,然其并非用以限定本发明,任何熟悉此一技术领域具有通常知识者,在了解本发明前述的技术特征及实施例,并在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的专利保护范围须视本说明书所附的权利要求所界定者为准。

Claims (28)

  1. 一种可影像强化的眼镜结构,其特征在于,包含:
    一镜框本体,而该镜框本体内部连接有一处理器,而该处理器包含:
    一中央处理模组,用以控管整体处理器运作;
    一影像处理模组,与该中央处理模组相连接,而该影像处理模组用以将一外部撷取影像资讯进行影像清晰化处理,以提高其解析度;
    一影像输出模组,与该中央处理模组及该影像处理模组相连接,用以将影像清晰化后的外部撷取影像资讯进行输出为一同步清晰化影像;
    一远端连线模组,与该中央处理模组相连接,用以藉由无线连线技术进行远端连线;
    一供电模组,与该中央处理模组相连接,用以与一外部设备连接,以储存与提供该处理器运作所需的电力;
    两个镜片本体,与该镜框本体相结合,而该镜片本体具有第一表面及第二表面,其中该第二表面与一使用者的眼球距离小于该第一表面与该使用者的眼球距离;
    至少两个透明显示器,分别结合于该两个镜片本体的第一表面、第二表面或第一表面及第二表面上,并与该处理器的影像输出模组进行电性连接,用以即时显示该同步清晰化影像;
    至少一个或一个以上的影像撷取器,结合于该镜框本体上,并与该处理器的影像处理模组进行电性连接,用以撷取由该镜框本体向前延伸的影像,并将影像转换为该外部撷取影像资讯,以传送至该影像处理模组;以及
    而该使用者的眼球透过该镜片本体实际看到的影像会与该两个透明显示器所显示的同步清晰化影像重叠,以清晰化该使用者的眼球透过该镜片本体看出去的景像。
  2. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该处理器更包含有一撷取角度调整模组,与该中央处理模组及该影像撷取器电性连接,用以进行调整撷取影像的角度,以使眼球视角所视的影像能够与该影像撷取器所撷取该镜框本体向前延伸的影像为相同角度的视角,以达到使用者的眼球透过该镜片本体实际看到的影像会与该两个透明显示器所显示的同步清晰化影像重叠。
  3. 如权利要求2所述的可影像强化的眼镜结构,其特征在于,该撷取角度调整模组能够预设一固定眼球视角角度,并依据该固定眼球视角角度进行预设调整撷取影像的角度,以使眼球视角所视的影像能够与该影像撷取器所撷取该镜框本体向前延伸的影像为相同角度的视角。
  4. 如权利要求3所述的可影像强化的眼镜结构,其特征在于,该预设眼球视角角度为直视角度。
  5. 如权利要求2、3或4所述的可影像强化的眼镜结构,其特征在于,更能够藉由一电子装置内安装的软体,与该处理器的远端连线模组进行连线,并透过该中央处理模组传送调整撷取影像的角度的控制指令至该撷取角度调整模组,以远端进行调整撷取影像的角度。
  6. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该处理器更包含有一输出影像调整模组,与该中央处理模组及该影像输出模组电性连接,用以进行调整显示于该透明显示器上的同步清晰化影像的显示状态。
  7. 如权利要求6所述的可影像强化的眼镜结构,其特征在于,该处理器的远端连线模组能够与一云端平台进行连线,以由该云端平台传输一数位显示资料至该处理器,并再由透过该输出影像调整模组能够将该云端平台所传输的数位显示资料合并显示于该透明显示器上的同步清晰化影像上。
  8. 如权利要求7所述的可影像强化的眼镜结构,其特征在于,于不同透明显示器上能够分别显示不同角度的数位显示资料,以呈现景深感或立体感的影像效果。
  9. 如权利要求7所述的可影像强化的眼镜结构,其特征在于,该处理器更能够透过该远端连线模组将该外部撷取影像资讯传送至该云端平台。
  10. 如权利要求6所述的可影像强化的眼镜结构,其特征在于,该输出影像调整模组能够调整显示于该透明显示器上的同步清晰化影像的显示状态为调整多显示视角、调整显示位置、调整显示尺寸、调整广角、调整显示对比或调整显示亮度。
  11. 如权利要求6所述的可影像强化的眼镜结构,其特征在于,该同步清晰化影像上若具有任一字体或任何可取代的物件,该输出影像调整模组能够将显示于该透明显示器上的同步清晰化影像的字体以清晰字体进行取代或是以一内建物件进行取代。
  12. 如权利要求6所述的可影像强化的眼镜结构,其特征在于,该同步清晰化影像上若为较暗影像,该输出影像调整模组能够对显示于该透明显示器上的同步清晰化影像进行光线补偿。
  13. 如权利要求6、7、8或9所述的可影像强化的眼镜结构,其特征在于,更能够藉由一电子装置内安装的软体,与该处理器的远端连线模组进行连线,并透过该中央处理模组传送调整该同步清晰化影像的显示状态的控制指令至该输出影像调整模组,以远端进行调整输出影像的显示状态。
  14. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该镜片本体为平面镜片。
  15. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该镜片本体为曲面镜片。
  16. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该镜框本体上更能够设置有至少一个或一个以上与该处理器电性连接的感测器装置。
  17. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该任一个感测器装置为能够侦测温度、心跳、血压、汗水或是计步功能的感测器。
  18. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该镜框本体上更能够设置有至少一个或一个以上与该处理器电性连接的耳挂装置,该耳挂装置内建有一电池,用以提供电源给该供电模组。
  19. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该镜框本体上更能够设置有至少一个与该处理器电性连接的麦克风装置,而该麦克风装置能够传送声音讯号至该处理器,以声控控制该处理器的运作。
  20. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该镜框本体上更能够设置有至少一个与该处理器电性连接的扬声器装置。
  21. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,至少两个影像撷取器更能够用以分别撷取不同角度的影像,并藉由该处理器将不同角度的影像合并为一立体影像讯息或具有景深影像讯息。
  22. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该输出影像调整模组亦能够将影像以阵列或矩阵的方式处理,以使输出至该透明显示器上的影像具有影像聚焦的效果。
  23. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该透明显示器为多层时,若输出至该透明显示器的其中一层、其中任两层或任两层以上的影像是经过阵列或矩阵的方式处理后,因此则能够达到多次影像聚焦的效果。
  24. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该镜片本体或是透明显示器能够透过准直技术来导正光线。
  25. 如权利要求24所述的可影像强化的眼镜结构,其特征在于,该准直技术为微透镜或是光井来达成导正光线的目的。
  26. 如权利要求25所述的可影像强化的眼镜结构,其特征在于,该微透镜能够再经过导角处理,以调整准直后的光线方向。
  27. 如权利要求24所述的可影像强化的眼镜结构,其特征在于,该镜片本体或是该透明显示器能够经过导角处理,以调整准直后的光线方向,以使两个以上的影像能够重叠。
  28. 如权利要求1所述的可影像强化的眼镜结构,其特征在于,该透明显示器的制造过程中能够使用准直技术或是微透镜技术进行处理,以使出厂后的透明显示器具有导正光线的效果。
PCT/CN2016/075441 2015-04-20 2016-03-03 可影像强化的眼镜结构 WO2016169339A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017555713A JP2018513656A (ja) 2015-04-20 2016-03-03 画像強調可能な眼鏡構造
EP16782487.9A EP3299864A4 (en) 2015-04-20 2016-03-03 IMAGE-SPARKLING BROTHER STRUCTURE
CN201680024332.0A CN107533229A (zh) 2015-04-20 2016-03-03 可影像强化的眼镜结构
KR1020177032924A KR20170140277A (ko) 2015-04-20 2016-03-03 이미지 향상을 가능하게 하는 안경 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510186261.1A CN106154549A (zh) 2015-04-20 2015-04-20 可影像强化的眼镜结构
CN201510186261.1 2015-04-20

Publications (1)

Publication Number Publication Date
WO2016169339A1 true WO2016169339A1 (zh) 2016-10-27

Family

ID=57142855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075441 WO2016169339A1 (zh) 2015-04-20 2016-03-03 可影像强化的眼镜结构

Country Status (5)

Country Link
EP (1) EP3299864A4 (zh)
JP (1) JP2018513656A (zh)
KR (1) KR20170140277A (zh)
CN (2) CN106154549A (zh)
WO (1) WO2016169339A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111949416A (zh) * 2019-05-17 2020-11-17 蔡宏斌 便利备忘操作系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3353225B1 (en) 2015-09-25 2023-05-10 Huntsman Advanced Materials Licensing (Switzerland) GmbH Preparation of polyamidoimides
WO2018035842A1 (zh) * 2016-08-26 2018-03-01 陈台国 外加式近眼显示装置
KR20210069527A (ko) 2019-12-03 2021-06-11 이동하 멀티태스킹 안경
KR20220145640A (ko) * 2021-04-22 2022-10-31 삼성전자주식회사 스피커 모듈의 실장 구조 및 이를 포함하는 전자 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996093A (zh) * 2005-12-28 2007-07-11 大学光学科技股份有限公司 焦距可调整的头戴式显示系统及用于实现该系统的方法
CN101819334A (zh) * 2010-04-01 2010-09-01 夏翔 多功能电子眼镜
CN102866506A (zh) * 2012-09-21 2013-01-09 苏州云都网络技术有限公司 增强现实眼镜及其实现方法
US20130215147A1 (en) * 2012-02-17 2013-08-22 Esight Corp. Apparatus and Method for Enhancing Human Visual Performance in a Head Worn Video System
CN103676155A (zh) * 2013-12-31 2014-03-26 苏州卫生职业技术学院 一种低视力眼镜阵列透镜组目视系统
CN103999445A (zh) * 2011-12-19 2014-08-20 杜比实验室特许公司 头戴式显示器
CN104306102A (zh) * 2014-10-10 2015-01-28 上海交通大学 针对视觉障碍患者的头戴式视觉辅助系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163840A (ja) * 2002-11-09 2004-06-10 Fusao Terada マイクロレンズ式ディスプレー
JP2006165773A (ja) * 2004-12-03 2006-06-22 Konica Minolta Photo Imaging Inc 頭部装着式映像表示装置
JP5040061B2 (ja) * 2004-12-15 2012-10-03 コニカミノルタホールディングス株式会社 映像表示装置及び情報提供システム
US9229227B2 (en) * 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US9557565B2 (en) * 2012-07-02 2017-01-31 Nvidia Corporation Near-eye optical deconvolution displays
US20140152530A1 (en) * 2012-12-03 2014-06-05 Honeywell International Inc. Multimedia near to eye display system
JP5967597B2 (ja) * 2013-06-19 2016-08-10 パナソニックIpマネジメント株式会社 画像表示装置および画像表示方法
US9880325B2 (en) * 2013-08-14 2018-01-30 Nvidia Corporation Hybrid optics for near-eye displays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996093A (zh) * 2005-12-28 2007-07-11 大学光学科技股份有限公司 焦距可调整的头戴式显示系统及用于实现该系统的方法
CN101819334A (zh) * 2010-04-01 2010-09-01 夏翔 多功能电子眼镜
CN103999445A (zh) * 2011-12-19 2014-08-20 杜比实验室特许公司 头戴式显示器
US20130215147A1 (en) * 2012-02-17 2013-08-22 Esight Corp. Apparatus and Method for Enhancing Human Visual Performance in a Head Worn Video System
CN102866506A (zh) * 2012-09-21 2013-01-09 苏州云都网络技术有限公司 增强现实眼镜及其实现方法
CN103676155A (zh) * 2013-12-31 2014-03-26 苏州卫生职业技术学院 一种低视力眼镜阵列透镜组目视系统
CN104306102A (zh) * 2014-10-10 2015-01-28 上海交通大学 针对视觉障碍患者的头戴式视觉辅助系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299864A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111949416A (zh) * 2019-05-17 2020-11-17 蔡宏斌 便利备忘操作系统

Also Published As

Publication number Publication date
CN107533229A (zh) 2018-01-02
EP3299864A1 (en) 2018-03-28
CN106154549A (zh) 2016-11-23
EP3299864A4 (en) 2019-03-13
JP2018513656A (ja) 2018-05-24
KR20170140277A (ko) 2017-12-20

Similar Documents

Publication Publication Date Title
TWI564590B (zh) Image can strengthen the structure of the glasses
US11644671B2 (en) Large exit pupil wearable near-to-eye vision systems exploiting freeform eyepieces
WO2016169339A1 (zh) 可影像强化的眼镜结构
WO2015198477A1 (ja) 視線検知装置
US20150355481A1 (en) Apparatus and method for fitting head mounted vision augmentation systems
WO2021024526A1 (ja) 表示装置
WO2021106235A1 (ja) 表示装置
JP2014219621A (ja) 表示装置、表示制御プログラム
WO2019001575A1 (zh) 可穿戴显示器
JP6707823B2 (ja) 表示装置、表示装置の制御方法、及び、プログラム
US20150035726A1 (en) Eye-accommodation-aware head mounted visual assistant system and imaging method thereof
US20170195667A1 (en) Eyeglasses Structure Enabling Image Enhancement
TWI635316B (zh) External near-eye display device
WO2018035842A1 (zh) 外加式近眼显示装置
KR101650706B1 (ko) 웨어러블 디스플레이장치
WO2018045985A1 (zh) 一种增强现实显示系统
EP3200003A1 (en) Glasses-free 3d display device
TWI676048B (zh) 近眼顯示器結構
CN115032788B (zh) 头戴装置
JP6544901B2 (ja) 視覚補助システムおよび視覚補助装置
CN111435195B (zh) 近眼显示器结构
TWM506974U (zh) 無線充電頭戴式顯示裝置
TWI740083B (zh) 低光源環境顯示結構
KR20150039179A (ko) 헤드 마운트 디스플레이 장치
CN201107464Y (zh) 一种立体影像观看镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177032924

Country of ref document: KR

Kind code of ref document: A