WO2016169067A1 - 背光模组和液晶显示器 - Google Patents

背光模组和液晶显示器 Download PDF

Info

Publication number
WO2016169067A1
WO2016169067A1 PCT/CN2015/078334 CN2015078334W WO2016169067A1 WO 2016169067 A1 WO2016169067 A1 WO 2016169067A1 CN 2015078334 W CN2015078334 W CN 2015078334W WO 2016169067 A1 WO2016169067 A1 WO 2016169067A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident side
quantum tube
backlight module
guide plate
Prior art date
Application number
PCT/CN2015/078334
Other languages
English (en)
French (fr)
Inventor
阙成文
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/778,146 priority Critical patent/US9766388B2/en
Publication of WO2016169067A1 publication Critical patent/WO2016169067A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the invention belongs to the technical field of liquid crystal display, and particularly relates to a backlight module and a liquid crystal display using the same.
  • Quantum Dots technology is one of the high color gamut backlight technologies.
  • the principle is to set the quantum tube device in the backlight module.
  • the quantum encapsulated inside is excited.
  • the dots are used to generate red and green light, and the generated red and green light is mixed with the original partial blue light to form white light with high color saturation to enter the light guide plate, thereby providing light color with higher color saturation for the liquid crystal display. , greatly improving the display performance of the color.
  • the spectral distribution entering the light guide plate through the quantum tube mainly depends on the distribution ratio, particle size and shape of the quantum dots, it is desired to further further through spectral modulation. It is not easy to improve the saturation of the backlight module.
  • the conventional backlight module only a single-color light-emitting diode is generally used as a light source in the backlight module, and the light emitted by the quantum tube is excited by the quantum tube to enter the light guide plate with limited light saturation.
  • the present invention provides a novel backlight module and a liquid crystal display using the same.
  • a backlight module includes a light guide plate, a light bar unit, and a light bar unit including a light bar and a second light bar, and a quantum tube between the light guide plate and the light bar unit, the quantum tube includes a first light incident side opposite to the first light bar and a second light incident opposite the second light bar On the side, the first light incident side is located on a side of the quantum tube opposite to the light guide plate, and the second light incident side is adjacent to the first light incident side.
  • the outer wall of the quantum tube opposite to the second light incident side is provided with a reflective layer, and the light emitted by the first light strip enters the quantum tube through the first light incident side, and a part of the light emitted by the first light strip is used to excite the quantum tube.
  • a different color light is generated, another portion is mixed with the different color light and finally incident on the light guide plate, and the light emitted by the second light bar enters the quantum tube through the second light incident side and is reflected by the reflective layer to reach the light guide plate.
  • the first light bar and the second light bar are respectively disposed on the first light incident side and the second light incident side of the quantum tube in the backlight module, and the first light bar is used to excite quantum dots in the quantum tube to generate other color lights.
  • the generated other colored light is mixed with the light emitted by the first light bar to form white light directly incident into the light guide plate, and the light emitted by the second light bar enters the quantum tube through the second light incident side and is reflected by the reflective layer to reach the light guide plate. It is used as a compensation light source to compensate the required color light, so as to achieve the spectrum modulation to improve the brightness and saturation of the backlight module.
  • the invention can further adjust the reflection of the light to increase the luminous flux of the backlight module by designing the structure of the quantum tube, thereby further improving the brightness and saturation of the backlight module.
  • the cross-sectional shape of the quantum tube is circular, and the reflective layer is disposed on a circumferential wall of the quantum tube opposite to the second light incident side.
  • the arc-shaped reflective layer can reflect the light entering from the second light incident side into the light guide plate as much as possible, thereby increasing the light flux of the light guide plate, thereby improving the brightness and saturation of the backlight module.
  • the length of the reflective layer on the circumferential wall of the quantum tube is preferably set to be a quarter of the circumference of the circular quantum tube.
  • the cross-sectional shape of the quantum tube is a polygon
  • the reflective layer is disposed on an outer wall of the polygon corresponding to the side opposite to the side on which the second light incident side is located.
  • a quantum tube having a polygonal cross-sectional shape may have a quantum tube wall provided with a reflective layer having one or more reflective slopes, by setting an inclination angle of a reflection slope, or providing a plurality of reflection slopes to form a mutual fit, so that after fitting The plurality of slopes are more favorable for reflecting the light incident on the second light incident side into the light guide plate as much as possible, thereby fully utilizing the reflected light, thereby improving the application efficiency of the reflected light, so as to improve the brightness of the backlight module and saturation.
  • the outer wall of the quantum tube provided with the reflective layer is disposed obliquely toward the light guide.
  • the outer wall obliquely disposed toward the light guide plate sufficiently reflects the light entering the second light incident side into the light guide plate, and the inclination angle is preferably set to 30 to 45 degrees.
  • the light-passing areas of the first light-incident side and the second light-incident side are equal. With such an arrangement, light entering from the first light incident side and the second light incident side can be incident into the white light of the light guide plate through the quantum tube. The ratio of the light of the color is more suitable.
  • the light-passing area of the second light-incident side can be adjusted according to the color light to be compensated to adjust the luminous flux of the required compensation light color, thereby adjusting the white light entering the light guide plate. Brightness and saturation.
  • the reflective layer is a metal layer that is directly coated on the outer wall of the quantum tube. Direct coating of the metal layer is simple and easy, while reducing the production cost by eliminating the need to design additional reflective layers.
  • the metal layer is preferably aluminum or silver or the like.
  • the first light strip is a blue light emitting diode
  • the quantum tube includes at least quantum dots capable of being excited by blue light to generate light of two color wavelengths of red and green.
  • the second light strip is a red light emitting diode.
  • the red light emitting diode is used to compensate for red light, thereby further improving the saturation of light entering the light guide plate.
  • the second light bar can be selected according to the light color to be compensated, for example, if green light needs to be compensated, A green light emitting diode is used.
  • a plurality of the same or different light emitting diodes may be disposed as the second light bar.
  • the backlight module further includes an optical film set and a reflective sheet respectively disposed on two lower sides of the light guide plate.
  • a liquid crystal display according to the present invention includes the above backlight module.
  • the present invention has the following advantages:
  • the present invention compensates for the required color light by using the first light bar and the second light bar in combination with the second light bar as a compensation light source, so that the spectrum of the light incident on the light guide plate can be re-allocated, thereby improving Brightness and saturation of the backlight module.
  • the invention further adjusts the spectrum of the quantum tube to increase the luminous flux of the backlight module, thereby further improving the brightness and saturation of the backlight module.
  • the second light bar is provided, the total luminous flux entering the light guide plate is increased, and the brightness of the backlight module is improved, so when the same optical film and reflection sheet as in the prior art are used, The design requirements for optical diaphragms are greatly reduced.
  • FIG. 1 is a schematic structural view of a first embodiment of a backlight module according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a backlight module in accordance with the present invention.
  • the backlight module 100 includes a light guide plate 40 , a light bar unit including a first light bar 31 and a second light bar 32 , and a light guide plate 40 , a first light bar 31 , and a second light .
  • the quantum tube 50 between the strips 32 includes a first light incident side 51 opposite to the first light strip 31 and a second light incident side 52 opposite to the second light strip 32, the first light incident side 51 being located On the far side of the quantum tube 50 opposite to the light guide plate 40, the second light incident side 52 is adjacent to the first light incident side 51.
  • the outer wall of the quantum tube 50 opposite to the second light incident side 52 is provided with a reflective layer 53.
  • the light emitted by the first light strip 31 is used to excite the quantum tube 50 to generate different color lights, and the other part is mixed with different color lights.
  • the light emitted by the second light bar 32 enters the quantum tube 50 through the second light incident side 52 and is reflected by the reflective layer 53 to reach the light guide plate 40.
  • the first light bar 31 and the second light bar 32 are respectively disposed on the first light incident side 51 and the second light incident side 52 of the quantum tube 50 in the backlight module 100, and the first light bar 31 is used for exciting.
  • the quantum dots 54 in the quantum tube 50 generate other color lights, and the other colored lights generated are mixed with the light emitted by the first light bar 31 to form white light directly incident on the light guide plate 40, and the light emitted by the second light bar 32 passes through the second input.
  • the light side 52 enters the quantum tube 50 and is reflected by the reflective layer 53 to reach the light guide plate 40, which is used as a compensation light source to compensate for the desired color light, thereby realizing the spectrum modulation to improve the brightness and saturation of the backlight module 100. degree.
  • the present invention can further adjust the reflection of light to increase the luminous flux of the backlight module 100 by designing the structure of the quantum tube 50, thereby further improving the brightness and saturation of the backlight module 100.
  • the cross-sectional shape of the quantum tube 50 is circular, and the reflective layer 53 is disposed on the circumferential wall of the quantum tube 50 opposite to the second light-incident side 52.
  • the arc-shaped reflective layer 53 can reflect the light entering from the second light incident side 52 into the light guide plate 40 as much as possible, thereby increasing the light flux of the light guide plate 40, thereby improving the brightness and saturation of the backlight module 100. degree.
  • the length of the reflective layer 53 on the circumferential wall of the quantum tube 50 is preferably set to be a quarter of the circumference of the circular quantum tube 50.
  • the cross-sectional shape of the quantum tube 50' is a polygon
  • the reflective layer 53' is disposed on the outer wall of the polygon corresponding to the side opposite to the side on which the second light-incident side 32' is located.
  • the quantum tube 50' having a polygonal cross-sectional shape may have one or more reflective bevels on the wall of the quantum tube 50' provided with the reflective layer 53', by setting the inclination angle of a reflective slope, or by providing a plurality of reflective bevels.
  • the plurality of inclined surfaces are more favorable for reflecting the light incident on the second light incident side 52' into the light guide plate 40' as much as possible, thereby fully utilizing the reflected light and improving the application of the reflected light. Efficiency to improve the brightness and saturation of the backlight module 100'.
  • the outer wall of the quantum tube 50' provided with the reflective layer 53' is disposed obliquely toward the light guide plate 40'.
  • the outer wall obliquely disposed toward the light guide plate 40' sufficiently reflects the light entering the second light incident side 32' into the light guide plate 40', which is preferably set to 30 to 45 degrees, preferably 45 degrees.
  • the light-passing areas of the first light-incident side 51 and the second light-incident side 52, the first light-incident side 51', and the second light-incident side 52' are equal.
  • light entering from the first light incident side 51 and the second light incident side 52, the first light incident side 51', and the second light incident side 52' can be incident on the light guide plate through the quantum tubes 50, 50'.
  • the ratio of the light of each color in the white light of 40, 40' is more suitable.
  • the light-passing area of the second light-incident side 52, 52' can be adjusted according to the color light to be compensated to adjust the required compensation light.
  • the color luminous flux adjusts the brightness and saturation of the white light entering the light guide plates 40, 40'.
  • the reflective layers 53, 53' are respectively metal layers directly coated on the outer walls of the quantum tubes 50, 50'. Direct coating of the metal layer is simple and easy, while reducing the production cost by eliminating the need to design additional reflective layers.
  • the metal layer is preferably aluminum or silver or the like.
  • the first light bar 31 is a blue light emitting diode
  • the quantum tube 50 includes at least a quantum dot 54 capable of being excited by blue light to generate light of two color wavelengths of red and green.
  • the blue light emitted by the first light bar 31 excites the quantum dots 54 located in the quantum tube 50 to generate at least red light and green light, and the generated red light and green light are mixed with the original blue light to form white light and incident on the light guide plate.
  • the ratio of each color in the mixed white light is changed, thereby changing the saturation of the white light after mixing.
  • the second light bar 32 is a red light emitting diode.
  • the red light emitting diode is used to compensate for red light, thereby further improving the saturation of light entering the light guide plate 40.
  • the second light bar 32 can be selected according to the light color required to be compensated, for example, if compensation is required. For light, use a green light-emitting diode.
  • a plurality of the same or different light emitting diodes may be disposed as the second light bar 32. It can be understood that the same settings as described above can also be applied to the embodiment shown in FIG. 2, and details are not described herein again.
  • the backlight module 100 further includes an optical film group 60 and a reflection sheet 70 respectively disposed on the upper and lower sides of the light guide plate 40.
  • the backlight module 100' includes an optical film group 60' and a reflection sheet 70' which are respectively disposed on the upper and lower sides of the light guide plate 40'. Due to the provision of the second light strips 32 and 32', the total luminous flux entering the light guide plates 40 and 40', respectively, is increased, and the brightness of the backlight modules 100 and 100' is improved, so that it is used in the prior art. When the same optical film 60, 60' is used, the design requirements for the optical film 60, 60' are greatly reduced.
  • a liquid crystal display according to the present invention includes the above backlight module 100 or backlight module 100'.
  • the liquid crystal display of the invention has higher measurement and color saturation than the liquid crystal display in the prior art, and greatly improves its own ability to express colors.

Abstract

一种背光模组,包括导光板(40),灯条单元,灯条单元包括第一灯条(31)、第二灯条(32)和位于二者之间的量子管(50),量子管(50)包括第一入光侧(51)和第二入光侧(52),第一入光侧(51)位于量子管(50)上的相对导光板(40)较远的一侧,第二入光侧(52)与第一入光侧(51)相邻。其中,与第二入光侧(52)相对的量子管(50)的外壁上设置反射层(53)。通过第一灯条和第二灯条的配合共同实现了背光模组中的光谱调配,从而提高了背光模组的亮度和饱和度。

Description

背光模组和液晶显示器
相关申请的交叉引用
本申请要求享有于2015年4月24日提交的名称为“背光模组和液晶显示器”的中国专利申请CN201510201163.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明属于液晶显示技术领域,具体涉及一种背光模组和一种应用该背光模组的液晶显示器。
背景技术
量子点(Quantum Dots)技术作为高色域背光技术之一,其原理是通过在背光模组中设置量子管装置,当发光二极管(LED)发出的蓝光进入量子管后激发其内部所封装的量子点以产生红光和绿光,产生的红光和绿光与原有的部分蓝光混合,形成具备高色饱的白光进入到导光板中,从而为液晶显示器提供具有更高色彩饱和度的光线,大大提高了显示器对色彩的表现能力。
然而,对于现有的应用量子点技术的背光模组中,由于通过量子管进入导光板中的光谱分布主要取决于量子点的成分配比、颗粒大小以及形状,因此想要通过光谱调配来进一步提高背光模组的饱和度较为不易。另外,现有的背光模组中通常只应用一种单色发光二极管作为背光模组中的光源,其发出的光通过量子管激发进入导光板后的光饱和度有限。
针对上述技术存在的问题,在本领域中希望寻求一种具有更高色彩饱和度和亮度的背光模组,以解决现有技术中的不足之处。
发明内容
为了进一步提高背光模组的色彩饱和度,本发明提供了一种新型背光模组以及应用该背光模组的液晶显示器。
根据本发明提供的一种背光模组,包括导光板,灯条单元,灯条单元包括第 一灯条和第二灯条,以及位于导光板和灯条单元之间的量子管,量子管包括与第一灯条相对的第一入光侧和与第二灯条相对的第二入光侧,第一入光侧位于量子管上的相对导光板较远的一侧,第二入光侧与第一入光侧相邻。其中,与第二入光侧相对的量子管的外壁上设置有反射层,第一灯条发出的光经第一入光侧进入量子管,第一灯条发出的光一部分用于激发量子管产生不同的色光,另一部分与该不同的色光混合并最终入射到导光板,第二灯条发出的光线经第二入光侧进入量子管并由反射层反射到达导光板。
本发明通过在背光模组中量子管的第一入光侧和第二入光侧分别设置第一灯条和第二灯条,第一灯条用于激发量子管内的量子点以产生其他色光,产生的其他色光与第一灯条发出的光混合后形成白光直接入射到导光板内,第二灯条发出的光线经第二入光侧进入量子管内并由反射层反射到达导光板,其用于作为补偿光源对所需的色光进行补偿,从而实现对光谱的调配,以提高背光模组的亮度和饱和度。另外,本发明还可通过对量子管的结构进行设计来进一步调整光线的反射以增加背光模组的光通量,从而进一步提高了背光模组的亮度和饱和度。
在一些实施方案中,量子管的截面形状为圆形,反射层设置在与第二入光侧相对的量子管的圆周壁上。该圆弧状的反射层可使由第二入光侧进入的光线尽可能多地反射到导光板中,增加了导光板的光通量,从而提高了背光模组的亮度和饱和度。量子管圆周壁上的反射层的长度优选设置成圆形量子管的周长的四分之一。
在一些实施方案中,量子管的截面形状为多边形,反射层设置在多边形中与第二入光侧所在的边相对的边所对应的外壁上。截面形状为多边形的量子管可使设置有反射层的量子管管壁具有一个或多个反射斜面,通过对一个反射斜面的倾斜角度进行设置,或者设置多个反射斜面形成相互配合,使配合后的多个斜面更利于将第二入光侧射入的光尽可能多地反射到导光板中,从而充分利用反射后的光,提高了反射光的应用效率,以便提高背光模组的亮度和饱和度。
在一些实施方案中,量子管的设置有反射层的外壁以朝向导光板的方式倾斜设置。朝向导光板倾斜设置的外壁将第二入光侧进入的光充分反射到导光板中,该倾斜角度优选设置成30至45度。
在一些实施方案中,第一入光侧和第二入光侧的通光面积相等。通过此种设置可使由第一入光侧和第二入光侧进入的光经量子管入射到导光板的白光中各 个颜色的光的配比更适宜,该实施方案中可根据所需补偿的色光对第二入光侧的通光面积进行调整以便调整所需补偿光色的光通量,进而调整进入导光板的白光的亮度和饱和度。
在一些实施方案中,反射层为直接涂覆在量子管外壁的金属层。直接涂覆金属层简单易行,同时由于无需额外设计反射层从而降低了生产成本。金属层优选为铝或银等。
在一些实施方案中,第一灯条为蓝光发光二极管,量子管内至少包括能够被蓝光激发而产生红色和绿色两种颜色波长光线的量子点。通过这种设置使第一灯条发出的蓝光激发位于量子管内的量子点以至少产生红光和绿光,产生的红光和绿光与原有蓝光混合形成白光入射到导光板中,在该过程中,混合后的白光中各个颜色的配比发生改变,从而改变了混合后白光的饱和度。
在一些实施方案中,第二灯条为红光发光二极管。该红光发光二极管用于补偿红光,从而进一步提高进入导光板的光的饱和度,该实施方案中可根据所需补偿的光色对第二灯条进行选择,例如若需要补偿绿光,则使用绿光发光二极管。优选地,为进一步提高背光模组的亮度和饱和度,还可通过设置多个相同或不相同的发光二极管作为第二灯条。
在一些实施方案中,背光模组还包括分别设置在导光板上下两侧的光学膜片组和反射片。
根据本发明提供的一种液晶显示器,包括上述背光模组。
与现有技术相比,本发明具有以下优点:
1)本发明通过配合使用第一灯条和第二灯条,第二灯条作为补偿光源对所需的色光进行补偿,以便能够对入射到导光板的光的光谱进行重新调配,从而提高了背光模组的亮度和饱和度。
2)本发明还通过对量子管的结构进行设计来进一步调整光谱以增加背光模组的光通量,从而进一步提高了背光模组的亮度和饱和度。
3)本发明中由于设置第二灯条,使进入到导光板中的总光通量有所增加,提高了背光模组的亮度,因此在使用与现有技术中相同的光学膜片和反射片时,对光学膜片的设计要求大大降低。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1是根据本发明的背光模组的第一实施例的结构示意图;
图2是根据本发明的背光模组的第二实施例的结构示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明作进一步说明。
这里所介绍的细节是示例性的,并仅用来对本发明的实施例进行例证性讨论,它们的存在是为了提供被认为是对本发明的原理和概念方面的最有用和最易理解的描述。关于这一点,这里并没有试图对本发明的结构细节作超出于基本理解本发明所需的程度的介绍,本领域的技术人员通过说明书及其附图可以清楚地理解如何在实践中实施本发明的几种形式。
图1显示了根据本发明提供的背光模组的第一实施例的结构示意图。如图1所示,背光模组100包括导光板40,灯条单元,灯条单元包括第一灯条31和第二灯条32,以及位于导光板40、第一灯条31和第二灯条32之间的量子管50,量子管50包括与第一灯条31相对的第一入光侧51和与第二灯条32相对的第二入光侧52,第一入光侧51位于量子管50上的相对导光板40较远的一侧,第二入光侧52与第一入光侧51相邻。其中,与第二入光侧52相对的量子管50的外壁上设置有反射层53,第一灯条31发出的光一部分用于激发量子管50产生不同的色光,另一部分与不同的色光混合并最终入射到导光板40,第二灯条32发出的光线经第二入光侧52进入量子管50并由反射层53反射到达导光板40。
该实施例中通过在背光模组100中量子管50的第一入光侧51和第二入光侧52分别设置第一灯条31和第二灯条32,第一灯条31用于激发量子管50内的量子点54以产生其他色光,产生的其他色光与第一灯条31发出的光混合后形成白光直接入射到导光板40内,第二灯条32发出的光线经第二入光侧52进入量子管50内并由反射层53反射到达导光板40,其用于作为补偿光源对所需的色光进行补偿,从而实现对光谱的调配,以提高背光模组100的亮度和饱和度。另外,本发明还可通过对量子管50的结构进行设计来进一步调整光线的反射以增加背光模组100的光通量,从而进一步提高了背光模组100的亮度和饱和度。
如图1所示的实施例中,量子管50的截面形状为圆形,反射层53设置在与第二入光侧52相对的量子管50的圆周壁上。该圆弧状的反射层53可使由第二入光侧52进入的光线尽可能多地反射到导光板40中,增加了导光板40的光通量,从而提高了背光模组100的亮度和饱和度。量子管50圆周壁上的反射层53的长度优选设置成圆形量子管50的周长的四分之一。
如图2所示的实施例中,量子管50’的截面形状为多边形,反射层53’设置在多边形中与第二入光侧32’所在的边相对的边所对应的外壁上。截面形状为多边形的量子管50’可使设置有反射层53’的量子管50’管壁具有一个或多个反射斜面,通过对一个反射斜面的倾斜角度进行设置,或者设置多个反射斜面形成相互配合,使配合后的多个斜面更利于将第二入光侧52’射入的光尽可能多地反射到导光板40’中,从而充分利用反射后的光,提高了反射光的应用效率,以便提高背光模组100’的亮度和饱和度。
优选地,量子管50’的设置有反射层53’的外壁以朝向导光板40’的方式倾斜设置。朝向导光板40’倾斜设置的外壁将第二入光侧32’进入的光充分反射到导光板40’中,该倾斜角度优选设置成30至45度,优选设置成45度。
如图1和如图2分别所示的实施例中,第一入光侧51和第二入光侧52、第一入光侧51’和第二入光侧52’的通光面积相等。通过此种设置可使由第一入光侧51和第二入光侧52、第一入光侧51’和第二入光侧52’进入的光经量子管50、50’入射到导光板40、40’的白光中各个颜色的光的配比更适宜,该实施方案中可根据所需补偿的色光对第二入光侧52、52’的通光面积进行调整以便调整所需补偿光色的光通量,进而调整进入导光板40、40’的白光的亮度和饱和度。
优选地,反射层53、53’分别为直接涂覆在量子管50、50’外壁的金属层。直接涂覆金属层简单易行,同时由于无需额外设计反射层从而降低了生产成本。金属层优选为铝或银等。
根据本发明,如图1所示的实施例中,第一灯条31为蓝光发光二极管,量子管50内至少包括能够被蓝光激发而产生红色和绿色两种颜色波长光线的量子点54。通过这种设置使第一灯条31发出的蓝光激发位于量子管50内的量子点54以至少产生红光和绿光,产生的红光和绿光与原有蓝光混合形成白光入射到导光板40中,在该过程中,混合后的白光中各个颜色的配比发生改变,从而改变了混合后白光的饱和度。
另外,第二灯条32为红光发光二极管。该红光发光二极管用于补偿红光,从而进一步提高进入导光板40的光的饱和度,该实施方案中可根据所需补偿的光色对第二灯条32进行选择,例如若需要补偿绿光,则使用绿光发光二极管。优选地,为进一步提高背光模组100的亮度和饱和度,还可通过设置多个相同或不相同的发光二极管作为第二灯条32。可以理解的是,上述相同的设置也可应用在如图2所示的实施例中,这里不再赘述。
根据本发明,如图1和图2所示,背光模组100还包括分别设置在导光板40上下两侧的光学膜片组60和反射片70。背光模组100’包括分别设置在导光板40’上下两侧的光学膜片组60’和反射片70’。由于设置的第二灯条32和32’,使分别进入到导光板40和40’中的总光通量有所增加,提高了背光模组100和100’的亮度,因此在使用与现有技术中相同的光学膜片60、60’时,对光学膜片60、60’的设计要求大大降低。
根据本发明提供的一种液晶显示器,包括上述背光模组100或背光模组100’。本发明的液晶显示器较现有技术中的液晶显示器具有更高的量度和色彩饱和度,大大提高了其自身对色彩的表现能力。
应注意的是,前面所述的例子仅以解释为目的,而不能认为是限制了本发明。虽然已经根据示例性实施例对本发明进行了描述,然而应当理解,这里使用的是描述性和说明性的语言,而不是限制性的语言。在当前所述的和修改的所附权利要求的范围内,在不脱离本发明的范围和精神的范围中,可以对本发明进行改变。尽管这里已经根据特定的方式、材料和实施例对本发明进行了描述,但本发明并不仅限于这里公开的细节;相反,本发明可扩展到例如在所附权利要求的范围内的所有等同功能的结构、方法和应用。

Claims (18)

  1. 一种背光模组,包括:
    导光板,
    灯条单元,所述灯条单元包括第一灯条和第二灯条,以及
    位于所述导光板和所述灯条单元之间的量子管,所述量子管包括与所述第一灯条相对的第一入光侧和与所述第二灯条相对的第二入光侧,所述第一入光侧位于所述量子管上的相对所述导光板较远的一侧,所述第二入光侧与所述第一入光侧相邻,
    其中,与所述第二入光侧相对的所述量子管的外壁上设置有反射层,所述第一灯条发出的光经所述第一入光侧进入所述量子管,所述第一灯条发出的光一部分用于激发所述量子管产生不同的色光,另一部分与所述不同的色光混合并最终入射到所述导光板,所述第二灯条发出的光线经所述第二入光侧进入所述量子管并由所述反射层反射到达所述导光板。
  2. 根据权利要求1所述的背光模组,其中,所述量子管的截面形状为圆形,所述反射层设置在与所述第二入光侧相对的所述量子管的圆周壁上。
  3. 根据权利要求1所述的背光模组,其中,所述量子管的截面形状为多边形,所述反射层设置在所述多边形中与所述第二入光侧所在的边相对的边所对应的外壁上。
  4. 根据权利要求3所述的背光模组,其中,所述量子管的设置有所述反射层的外壁以朝向所述导光板的方式倾斜设置。
  5. 根据权利要求3所述的背光模组,其中,所述第一入光侧和所述第二入光侧的通光面积相等。
  6. 根据权利要求1所述的背光模组,其中,所述反射层为直接涂覆在所述量子管外壁的金属层。
  7. 根据权利要求1所述的背光模组,其中,所述第一灯条为蓝光发光二极管,所述量子管内至少包括能够被蓝光激发而产生红色和绿色两种颜色波长光线的量子点。
  8. 根据权利要求7所述的背光模组,其中,所述第二灯条为红光发光二极管。
  9. 根据权利要求1所述的背光模组,其中,所述背光模组还包括分别设置在 所述导光板上下两侧的光学膜片组和反射片。
  10. 一种液晶显示器,包括背光模组,所述背光模组包括:
    导光板,
    灯条单元,所述灯条单元包括第一灯条和第二灯条,以及
    位于所述导光板和所述灯条单元之间的量子管,所述量子管包括与所述第一灯条相对的第一入光侧和与所述第二灯条相对的第二入光侧,所述第一入光侧位于所述量子管上的相对所述导光板较远的一侧,所述第二入光侧与所述第一入光侧相邻,
    其中,与所述第二入光侧相对的所述量子管的外壁上设置有反射层,所述第一灯条发出的光经所述第一入光侧进入所述量子管,所述第一灯条发出的光一部分用于激发所述量子管产生不同的色光,另一部分与所述不同的色光混合并最终入射到所述导光板,所述第二灯条发出的光线经所述第二入光侧进入所述量子管并由所述反射层反射到达所述导光板。
  11. 根据权利要求10所述的液晶显示器,其中,所述量子管的截面形状为圆形,所述反射层设置在与所述第二入光侧相对的所述量子管的圆周壁上。
  12. 根据权利要求10所述的液晶显示器,其中,所述量子管的截面形状为多边形,所述反射层设置在所述多边形中与所述第二入光侧所在的边相对的边所对应的外壁上。
  13. 根据权利要求12所述的液晶显示器,其中,所述量子管的设置有所述反射层的外壁以朝向所述导光板的方式倾斜设置。
  14. 根据权利要求12所述的液晶显示器,其中,所述第一入光侧和所述第二入光侧的通光面积相等。
  15. 根据权利要求10所述的液晶显示器,其中,所述反射层为直接涂覆在所述量子管外壁的金属层。
  16. 根据权利要求10所述的液晶显示器,其中,所述第一灯条为蓝光发光二极管,所述量子管内至少包括能够被蓝光激发而产生红色和绿色两种颜色波长光线的量子点。
  17. 根据权利要求16所述的液晶显示器,其中,所述第二灯条为红光发光二极管。
  18. 根据权利要求10所述的液晶显示器,其中,所述背光模组还包括分别设置在所述导光板上下两侧的光学膜片组和反射片。
PCT/CN2015/078334 2015-04-24 2015-05-06 背光模组和液晶显示器 WO2016169067A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/778,146 US9766388B2 (en) 2015-04-24 2015-05-06 Backlight module and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510201163.0 2015-04-24
CN201510201163.0A CN104776362B (zh) 2015-04-24 2015-04-24 背光模组和液晶显示器

Publications (1)

Publication Number Publication Date
WO2016169067A1 true WO2016169067A1 (zh) 2016-10-27

Family

ID=53618000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078334 WO2016169067A1 (zh) 2015-04-24 2015-05-06 背光模组和液晶显示器

Country Status (3)

Country Link
US (1) US9766388B2 (zh)
CN (1) CN104776362B (zh)
WO (1) WO2016169067A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820311B (zh) * 2015-05-21 2018-02-27 武汉华星光电技术有限公司 背光模块和液晶显示器
CN105116607B (zh) * 2015-09-08 2019-03-26 武汉华星光电技术有限公司 量子管、背光模组、显示装置及终端
CN105259701B (zh) * 2015-10-30 2018-08-21 青岛海信电器股份有限公司 一种光源组件、背光模组和显示装置
CN105911750A (zh) * 2016-04-12 2016-08-31 东莞轩朗实业有限公司 侧入式背光模组和液晶显示装置
CN105785650B (zh) * 2016-05-17 2019-08-20 京东方科技集团股份有限公司 背光源及其组装方法、显示装置
CN107037633A (zh) * 2017-06-22 2017-08-11 深圳Tcl新技术有限公司 用于显示设备的背光模组和显示设备
CN107390427A (zh) * 2017-07-12 2017-11-24 青岛海信电器股份有限公司 一种背光模组和显示装置
CN108224234B (zh) * 2018-01-03 2020-11-06 京东方科技集团股份有限公司 一种量子点光源及其发光方法、背光模组、显示装置
CN111580212B (zh) * 2020-06-12 2022-03-04 京东方科技集团股份有限公司 侧入式背光模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477271A (zh) * 2008-01-04 2009-07-08 扬昕精密股份有限公司 侧光式背光模块
CN201599655U (zh) * 2009-12-05 2010-10-06 佛山市顺德区汉达精密电子科技有限公司 侧射式背光组件
KR20130055223A (ko) * 2011-11-18 2013-05-28 삼성전자주식회사 광원 모듈 및 백라이트 유닛
CN203940315U (zh) * 2014-06-20 2014-11-12 冠捷显示科技(厦门)有限公司 一种采用量子点的背光模组及其显示装置
CN104214608A (zh) * 2014-09-09 2014-12-17 深圳市华星光电技术有限公司 背光模组以及液晶显示器
CN104503137A (zh) * 2014-12-30 2015-04-08 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器
CN104503135A (zh) * 2014-12-19 2015-04-08 青岛海信电器股份有限公司 一种光源组件、显示模组及显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM296385U (en) * 2006-03-08 2006-08-21 K Bridge Electronics Co Ltd Light source device of back light module
US7461962B2 (en) * 2007-01-22 2008-12-09 Samsung Electronics Co., Ltd. Backlight assembly, display device provided with the same, and method thereof
KR20100122679A (ko) * 2009-05-13 2010-11-23 엘지이노텍 주식회사 백라이트 유닛 및 이를 이용한 액정표시장치
US8128266B2 (en) * 2009-12-08 2012-03-06 Getac Technology Corporation Edge-light backlight assembly
KR101788318B1 (ko) * 2010-12-28 2017-10-19 엘지디스플레이 주식회사 백라이트 유닛과 이를 이용한 액정모듈, 및 그 백라이트 유닛의 제조방법
KR101851148B1 (ko) * 2011-03-09 2018-04-25 삼성디스플레이 주식회사 광 공급 어셈블리 및 이를 포함하는 표시 장치
US8426877B2 (en) * 2011-04-14 2013-04-23 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module
CN103499054B (zh) * 2013-10-11 2017-02-15 深圳市华星光电技术有限公司 背光模组及液晶显示器
CN103823320B (zh) * 2014-03-14 2017-01-18 深圳市华星光电技术有限公司 背光模组
CN204227219U (zh) * 2014-12-08 2015-03-25 青岛海信电器股份有限公司 一种侧入式背光模组及显示装置
CN104633554A (zh) * 2015-03-11 2015-05-20 深圳市华星光电技术有限公司 一种背光模组及其灯条
KR20170026936A (ko) * 2015-08-31 2017-03-09 삼성디스플레이 주식회사 도광판 및 이를 포함하는 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477271A (zh) * 2008-01-04 2009-07-08 扬昕精密股份有限公司 侧光式背光模块
CN201599655U (zh) * 2009-12-05 2010-10-06 佛山市顺德区汉达精密电子科技有限公司 侧射式背光组件
KR20130055223A (ko) * 2011-11-18 2013-05-28 삼성전자주식회사 광원 모듈 및 백라이트 유닛
CN203940315U (zh) * 2014-06-20 2014-11-12 冠捷显示科技(厦门)有限公司 一种采用量子点的背光模组及其显示装置
CN104214608A (zh) * 2014-09-09 2014-12-17 深圳市华星光电技术有限公司 背光模组以及液晶显示器
CN104503135A (zh) * 2014-12-19 2015-04-08 青岛海信电器股份有限公司 一种光源组件、显示模组及显示装置
CN104503137A (zh) * 2014-12-30 2015-04-08 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器

Also Published As

Publication number Publication date
US9766388B2 (en) 2017-09-19
US20170102494A1 (en) 2017-04-13
CN104776362A (zh) 2015-07-15
CN104776362B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2016169067A1 (zh) 背光模组和液晶显示器
US10338433B2 (en) Light-emitting apparatus and display apparatus
TWI489180B (zh) A planar light source device, and a liquid crystal display device
US9658381B2 (en) Backlight module and liquid crystal display including same
US9903544B2 (en) Light-emitting apparatus
WO2016106896A1 (zh) 背光模块及具有该背光模块的液晶显示器
CN104456191B (zh) 背光模块及液晶显示装置
CN104155803A (zh) 背光模块及液晶显示装置
WO2016176870A1 (zh) 量子点膜片和液晶显示器
CN105527751A (zh) 面光源装置和液晶显示装置
KR20120127077A (ko) 색 변환 소자 및 그 제조 방법
US10281809B2 (en) Projection apparatus and illumination system
US9753213B2 (en) Planar light source device and liquid crystal display apparatus
CN105372871A (zh) 面光源装置和液晶显示装置
WO2019161596A1 (zh) 一种光学膜片、背光模组及显示装置
JP6066810B2 (ja) 面光源装置および液晶表示装置
US20160377788A1 (en) Backlight module and liquid crystal display device using the same
JP2014164834A (ja) 面光源装置および液晶表示装置
JP2012238462A (ja) 光混合ユニット、面光源装置および液晶表示装置
WO2020133816A1 (zh) 显示面板及其制备方法
US11543741B2 (en) Illumination system and projection device
US11099378B2 (en) Wavelength conversion module and projection device
CN101599520B (zh) 发光二极管的封装结构及使用该封装结构的背光模块
CN212009230U (zh) 一种液晶显示器
WO2019006981A1 (zh) 波长转换装置和激光荧光转换型光源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14778146

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889556

Country of ref document: EP

Kind code of ref document: A1