WO2016167251A1 - Device for stabilizing failure in electrical power system and method for use in same - Google Patents
Device for stabilizing failure in electrical power system and method for use in same Download PDFInfo
- Publication number
- WO2016167251A1 WO2016167251A1 PCT/JP2016/061812 JP2016061812W WO2016167251A1 WO 2016167251 A1 WO2016167251 A1 WO 2016167251A1 JP 2016061812 W JP2016061812 W JP 2016061812W WO 2016167251 A1 WO2016167251 A1 WO 2016167251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- accident
- braking resistor
- power transmission
- transmission system
- external power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/04—Control effected upon non-electric prime mover and dependent upon electric output value of the generator
Definitions
- Embodiment of this invention is related with the accident stabilization technique in the electric power system for responding to the grid fault which generate
- a general power system is composed of a power plant and an external power transmission system that receives power from this power plant.
- a large scale system is established by disconnecting the generator to be stepped out and increasing the output of the generator when a system fault such as a short circuit accident or grounding accident occurs. It is controlled stably so that it does not develop into an unstable system.
- the degree of intervention for stable control by output adjustment is limited when a system fault occurs.
- the transmittable capacity decreases as the distance from the center of the power transmission network decreases, there is less margin for output adjustment capability, and the stability of the power system decreases.
- the generator may step out.
- a power transmission system stabilization device has been introduced for the purpose of preventing step-out of a generator connected to an end of a power transmission network and performing stable control of the power transmission network in the event of a system failure.
- a technique in which a gate circuit having a semiconductor switching element is turned on / off in accordance with the magnitude of a current to be transmitted, and the current flows to the braking resistor circuit.
- This technology suppresses the acceleration of the generator by passing a current through the braking resistor circuit and consuming electric power, thereby preventing the generator from stepping out and improving the transient stability of the transmission system.
- the electric motor for driving the pump is driven by feeding the electric power generated by the generator through the on-site power source. For this reason, when a system fault such as a short-circuit accident or a grounding accident occurs and a current flows into the point of the accident, a short-time instantaneous voltage drop occurs in the power plant, and the drive capability of the motor decreases. As a result, the steam flow used for power generation cannot be maintained, and the power generation output of the plant may be reduced.
- the induction motor generates torque is proportional to the square of the voltage. Therefore, when the voltage becomes half of the rated voltage due to instantaneous voltage drop, the induction motor generates torque at the rated output. To one-fourth of Since the output of the induction motor depends on the torque x number of rotations, the output of the induction motor decreases due to the pump load at the rated output, and the operation with a lower number of rotations is performed from the balance point between the load torque and the output during rated operation. Move to a point. For this reason, the rotational speed of the pump decreases.
- Conventional accident stabilization technology improves the stability of the power system by dumping abnormal currents in the power grid.
- the load on the site such as the motor It does not take into account the influence on the driving of the power plant, and does not suppress a decrease in the power generation output of the plant.
- the present invention has been made in view of such circumstances, and the accident stabilization technique in the power system that can maintain the power generation output even when a long-term instantaneous voltage drop is assumed in the power plant due to a system fault.
- the purpose is to provide.
- the input state is installed between the power plant and an external power transmission system that receives power supply from the power plant, and electrically connects between them.
- a bypass circuit breaker that can be switched to an open state that cuts off the electrical connection, a braking resistor that is connected in parallel to the bypass circuit breaker and has a predetermined resistance value, and an operation of the external power transmission system
- a system information receiving unit that receives system information related to a state, and a first determination that determines whether the received system information satisfies a disturbance occurrence condition set for detecting occurrence of a disturbance event in the external power transmission system
- a control signal output unit that outputs an open signal that switches the bypass circuit breaker in the on state to the open state when the disturbance generation condition is satisfied. It is characterized in.
- the input state that is installed between the power plant and an external power transmission system that receives power supply from the power plant, and electrically connects between them The external power transmission using a bypass circuit breaker that can be switched to an open state that interrupts electrical connection to the external circuit, and a braking resistor that is connected in parallel to the bypass circuit breaker and has a predetermined resistance value
- the embodiment of the present invention provides an accident stabilization technique in an electric power system that can maintain a power generation output even when a long-term instantaneous voltage drop is assumed in a power plant due to a system fault.
- the block diagram which shows the structure of the accident stabilization apparatus which concerns on 1st Embodiment installed between the power station and the external power transmission system.
- the flowchart which shows the control action of the accident stabilization apparatus which concerns on 1st Embodiment.
- A A graph comparing the output voltage of the generator terminal and the external power transmission system in this embodiment and the comparative example when a three-phase short-circuit accident occurs at the closest end of the power plant
- B Comparison with this embodiment A graph comparing the internal phase difference angle of the main generator with an example.
- the block diagram which shows the structure of the accident stabilization apparatus which concerns on 2nd Embodiment installed between the power station and the external power transmission system.
- the flowchart which shows the control action of the accident stabilization apparatus which concerns on 2nd Embodiment.
- the block diagram which shows the structure of the accident stabilization apparatus which concerns on 3rd Embodiment installed between the power station and the external power transmission system.
- the block diagram which shows the modification of the accident stabilization apparatus which concerns on 3rd Embodiment installed between the power station and the external power transmission system.
- the figure which shows the structure of a general power plant and an external power transmission system (comparative example).
- FIG. 1 shows a configuration of an accident stabilization device 10 (hereinafter, abbreviated as accident stabilization device 10) in the power system according to the first embodiment, installed between a power plant 11 and an external power transmission system 12. ing.
- accident stabilization device 10 hereinafter, abbreviated as accident stabilization device 10.
- the accident stabilization apparatus 10 in the power system is installed between a power plant 11 and an external power transmission system 12 that receives power supply from the power plant 11, and electrically connects them.
- a bypass circuit breaker 13 that can be switched between an on-state and an open state that interrupts electrical connection, a braking resistor 14 that is connected in parallel to the bypass circuit breaker 13 and has a predetermined resistance value, and external power transmission
- the system information receiving unit 51 that receives the system information s regarding the operating state of the system 12 and whether or not the received system information s satisfies the disturbance occurrence condition set for detecting the occurrence of the disturbance event in the external power transmission system 12.
- a control signal output unit 53 that outputs an open signal t that opens the bypass circuit breaker 13 that is turned on when a disturbance generation condition is satisfied. Equipped with a.
- the power plant 11 is a steam power plant such as a thermal power plant or a nuclear power plant that generates steam with the generated thermal energy and rotates the turbine using the steam to generate power with the main generator 15. .
- the external power transmission system 12 means the entire power transmission network outside the power plant 11, including an external load that receives power generated by the power plant 11 through the power transmission line 28.
- the main generator 15 is connected to the main circuit phase separation bus 18 via the generator circuit breaker 17 and supplies the generated power to the main circuit phase separation bus 18.
- the automatic voltage regulator 16 performs field voltage control and keeps the terminal voltage of the main generator 15 constant.
- the electric power supplied to the main circuit phase separation bus 18 branches to the in-house load side in the power plant 11 and the external power transmission system 12 side outside the power plant 11.
- the electric power sent to the in-house load side is stepped down in voltage by the in-house transformer 19 and branches in two directions.
- the branched power is supplied to the two local buses 21 (21 1 , 21 2 ) via the circuit breakers 20 (20 1 , 20 2 ).
- Various in-house loads are connected to the in-house bus 21 for power supply.
- Plant bus 21 feed water pump motor 22 (22 1a, 22 1b) for driving a pump for water supply, condensate pump motor 23 1 for driving a pump for recovery of water, the generator auxiliary motor 24 1, and the electric low bus load 26 1, such as a valve or control panel is connected, and supplies power to the respective load.
- electric power is supplied to the feed water pump motor 22 1a via the motor variable speed drive inverter 25 1 .
- a condensate pump motor 23 2 is supplied with power via the electric motor variable speed drive inverter 25 2.
- the in-house bus 21 serves as an in-house power source for supplying electric power to the in-house load, and the output of the power plant 11 can be maintained by maintaining the voltage of the in-house bus 21 at a certain level or higher. Is operated stably.
- the configuration of the load connected to the in-house bus 21 (21 1 , 21 2 ) is an example, and is not limited to this configuration.
- the electric power transmitted to the external power transmission system 12 side is boosted in voltage by the main transformer 27 and externally transmitted via the accident stabilization device 10 installed between the power plant 11 and the external power transmission system 12. It is sent to the system 12.
- the accident stabilization device 10 includes a bypass circuit breaker 13, a braking resistor 14, and a control device 50.
- the bypass circuit breaker 13 is a circuit breaker installed between the power plant 11 and the external power transmission system 12, and switches between an on state in which these are electrically connected and an open state in which the electrical connection is interrupted. Is possible.
- the bypass circuit breaker 13 is normally turned on and is switched to an open state when a disturbance event occurs. Switching on / off in the bypass circuit breaker 13 is performed using an open signal t output from the control device 50.
- the disturbance event means a system fault such as a short circuit accident or a ground fault, which occurs in the external power transmission system 12, or an unbalanced state of the voltage or current flowing through the external power transmission system 12.
- the disturbance event causes a voltage drop in the in-house bus 21 that affects the operation (drive) of the in-house load or a voltage drop in the external power transmission system 12 that may cause a step-out of the main generator 15.
- the highly economical accident stabilization apparatus 10 can be comprised.
- the braking resistor 14 is electrically connected in parallel to the bypass circuit breaker 13 and has a predetermined resistance value. Note that the resistance value of the braking resistor 14 needs to be set appropriately, and a method for setting the resistance value will be described later.
- the brake resistor 14 may be a general-purpose product widely used in an ultra-high voltage power transmission system, but a high-resistance conductor (for example, iron) is installed in oil in a casing similar to an oil-filled transformer.
- a resistor of structure is preferred. The resistor having this structure can spread the heat load and saves space as compared with a case where a high-resistance conductor is directly installed in the atmosphere.
- the braking resistor 14 is designed to have a sufficient heat capacity against the heat energy generated while acting as a resistance. In addition, when a plurality of continuous inputs are assumed, it is designed to have a sufficient heat capacity according to the total heat energy at the time of continuous inputs.
- the braking resistor 14 Since the braking resistor 14 is not frequently turned on for a short time, it hardly diffuses during the operation, and only the temperature rise of the conductor needs to be considered. For this reason, only cooling by natural circulation is sufficient for the cooling method of the braking resistor 14.
- bypass circuit breaker 13 Since the bypass circuit breaker 13 is turned on, only a small amount of current flows through the braking resistor 14 having a high resistance value, and most of the current flows through the bypass circuit breaker 13. On the other hand, when a disturbance event occurs, since the bypass circuit breaker 13 is opened, a current flows through the braking resistor 14.
- the control device 50 includes a system information receiving unit 51, a first determination unit 52, and a control signal output unit 53.
- the function of each unit constituting the control device 50 may be realized by executing a predetermined program code in an electronic circuit such as a processor, and is not limited to such software processing. It may be realized by hardware processing using an electronic circuit, or may be realized by combining software processing and hardware processing.
- the system information receiving unit 51 receives system information s output from an operation device (not shown) provided in the external power transmission system 12 via a transmission network that connects the external power transmission system 12 and the control device 50. .
- the system information s is information related to the operating state of the external power transmission system 12, an accident detection signal output from the operation device when a system fault such as a short circuit accident or a ground fault occurs, and any arbitrary information in the external power transmission system 12. It includes voltage and current signals measured at the connection point.
- the accident detection signal includes information on the type of accident that occurred and the position where the accident occurred.
- the first determination unit 52 determines whether or not a disturbance event has occurred in the external power transmission system 12 based on the system information s received by the system information reception unit 51.
- the first determination unit 52 presets a disturbance generation condition for detecting the presence or absence of a disturbance event using the system information s.
- (1) As a typical disturbance generation condition, (1). Whether a short-circuit accident occurred in the immediate vicinity of the power plant 11, (2). Whether or not the voltage drops so as to hinder the maintenance of the voltage of the in-house bus 21 (3). Whether the main generator 15 has a voltage drop that may cause an acceleration step-out; (4). There are four conditions: whether there is a voltage or current imbalance that affects the operation of the on-site load.
- the first determination unit 52 determines that the condition (1) satisfies the disturbance generation condition when the accident detection signal indicates a short-circuit accident at the closest end of the power plant 11 when the accident detection signal is received. .
- condition (2) the voltage value of the measured voltage signal is compared with the rated voltage value, and the disturbance generation condition is determined when a voltage drop that causes a problem in maintaining the voltage of the in-house bus 21 has occurred. It is determined that it satisfies.
- a reference value for detecting a voltage drop that would hinder the maintenance of the voltage of the in-house bus 21 is set in advance, and it is determined that the disturbance generation condition is satisfied when the measured voltage value falls below this reference value. May be.
- condition determination may be performed using the current value of the measured current signal, and the current increase is such that the voltage maintenance of the in-house bus 21 is disturbed by comparing the measured current value with the rated current. If it occurs, it may be determined that the disturbance generation condition is satisfied.
- condition (3) the voltage value of the measured voltage signal is compared with the rated voltage value, and the disturbance generating condition is determined when a voltage drop that may cause the main generator 15 to accelerate out of step occurs. It is determined that it satisfies.
- condition (4) the average value or deviation of the voltage value (or current value) of the measured voltage signal is measured to detect the degree of voltage value balance. Then, when the degree of balance exceeds a certain reference range, it is determined that a disturbance generation condition is satisfied, assuming that an unbalance has occurred.
- the first determination unit 52 determines that the disturbance generation condition is satisfied when any one of the above-described conditions (1) to (4) is satisfied. On the other hand, when neither condition is satisfied, it is determined that the disturbance generation condition is not satisfied.
- the disturbance occurrence conditions are not limited to the conditions (1) to (4).
- the conditions may be set more finely based on the type of accident and position information included in the accident signal.
- a disturbance event can be detected more accurately.
- the degree of voltage drop, the reference value, and the degree of balance required to determine the disturbance event under the conditions (2), (3), and (4) are the internal voltage of the main generator 15, the internal impedance, Since it changes depending on the parameters of the power plant 11 and the external power transmission system 12 such as the load configuration and the load of the external power transmission system 12, the analysis is performed in advance and the result is set based on the result.
- control signal output unit 53 When the first determination unit 52 determines that the disturbance generation condition is satisfied, the control signal output unit 53 outputs an open signal t for switching the bypass circuit breaker 13 in the open state to the open state.
- the resistance value of the braking resistor 14 needs to be set to an appropriate resistance value so as to achieve the function of maintaining the voltage of the in-house bus 21 and preventing the acceleration step-out of the main generator 15 when a disturbance event occurs. .
- the resistance value is examined from the viewpoint of achieving the function of maintaining the voltage of the in-house bus 21.
- the in-house bus 21 is connected to the main circuit phase separation bus 18 via the in-house transformer 19. Under normal conditions, the voltage of the main circuit phase separation bus 18 is maintained at a rating by controlling the main generator 15 by the automatic voltage regulator 16. And the voltage of the in-house bus 21 is kept at the rating by setting the operating voltage and adjusting the tap ratio of the in-house transformer 19.
- the difference between the internal voltage of the main generator 15 and the voltage of the external power transmission system 12 is determined as the internal impedance of the main generator 15.
- the voltage of the external power transmission system 12 is added to the divided voltage of the impedance of the main transformer 27 and the impedance of the braking resistor 14.
- the minimum resistance value X min of the braking resistor 14 is I want.
- the range 101 where the minimum resistance value X min or more is an appropriate resistance value range.
- the range 101 varies depending on the conditions of the main generator 15 and the external power transmission system 12.
- the resistance value is examined from the viewpoint of preventing the acceleration failure of the main generator 15.
- condition for preventing step-out is that the sum of the energy consumed by the braking resistor 14 and the power transmitted to the external power transmission system 12 is larger than the energy that must be consumed to prevent step-out.
- the current has an upper limit depending on the capacity of the main generator 15 and the impedance of the electric circuit, and the integral value is also a constant. From this relationship, the lower limit value Y min of the resistance value selection range is determined.
- the terminal voltage has an upper limit because the voltage of the main generator 15 is controlled by the automatic voltage regulator 16, and the integrated value is also a constant. From this relationship, the maximum value Y max of the resistance value selection range is obtained.
- Y min ⁇ R ⁇ Y max (range 102) is an appropriate resistance value range.
- the range 102 varies depending on the voltage of the in-house bus 21 and the condition of the main transformer 27.
- the resistance value range 103 determined based on the resistance value range 101 for maintaining the voltage of the in-house bus 21 and the resistance value range 102 for preventing the generator step-out is the voltage maintenance and main voltage of the in-house bus 21.
- An appropriate resistance value range that achieves the function of preventing the generator 15 from accelerating step-out is obtained.
- the resistance value of the braking resistor 14 is set within this range 103.
- FIGS. 3A to 3C the configuration of the in-house load connected to the in-house bus 21 is shown in a simplified manner.
- FIG. 3A shows a configuration of the accident stabilization apparatus 10 in a normal state, and the electric power generated by the main generator 15 is supplied to the main circuit phase separation bus 18. Then, the power branched by the main circuit phase separation bus 18 is transmitted to the external power transmission system 12 through the main transformer 27, the bypass circuit breaker 13, and the power transmission line 28. Since the bypass circuit breaker 13 is in the on state at normal times, most of the current flows through the bypass circuit breaker 13.
- the other power branched by the main circuit phase separation bus 18 is supplied to the in-house bus 21 via the in-house transformer 19. Power is supplied from the in-house bus 21 to the in-house load.
- FIG. 3B shows the configuration of the accident stabilization apparatus 10 when a short-circuit accident occurs at the closest end of the power plant 11.
- control device 50 When the control device 50 always receives the system information s and receives an accident signal related to a short-circuit accident at the closest end of the power plant 11, the control device 50 determines that the disturbance generation condition is satisfied, and opens the bypass circuit breaker 13. t is output. Thereby, bypass circuit breaker 13 will be in an open state.
- the short-circuit current that has flowed to the point of failure through the bypass circuit breaker 13 flows through the braking resistor 14.
- Joule loss occurs in the braking resistor 14 depending on the magnitude of the flowing current and the resistance value of the braking resistor 14, and the braking resistor 14 functions as a load of the main generator 15.
- the resistance value of the braking resistor 14 is set in advance assuming the output of the main generator 15 immediately before the occurrence of the short-circuit accident, the load of the braking resistor 14 and the mechanical input of the main generator 15 are set. And the acceleration of the main generator 15 is suppressed.
- the current passing through the braking resistor 14 causes a potential difference across the resistor. Since a potential difference is generated between both ends of the braking resistor 14, the electric power generated by the main generator 15 can be supplied to the external power transmission system 12 side and the in-house load side, so that the voltage of the in-house bus 21 is maintained. As a result, the in-house load that receives power from the in-house bus 21 can be driven without being affected by a short circuit accident.
- FIG. 3C shows the configuration of the accident stabilization apparatus 10 after the short-circuit accident has converged.
- the control device 50 stops outputting the release signal t because the disturbance generation condition is not satisfied. Thereby, the bypass circuit breaker 13 is switched from the open state to the closed state.
- bypass circuit breaker 13 When the bypass circuit breaker 13 is turned on and returns to the normal state, most of the power transmitted to the external power transmission system 12 is transmitted again through the bypass circuit breaker 13.
- FIG. 4A shows an application example of the accident stabilization apparatus 10 in the case where the electric power generated at the power plant 11 is transmitted by three-phase alternating current.
- FIG. 4B shows an external view of the accident stabilization apparatus 10 installed between the power plant 11 and the external power transmission system 12.
- description is abbreviate
- the electric power generated at the power plant 11 is transmitted to the external power transmission system 12 by three-phase alternating current via three transmission lines 28 (28 1 , 28 2 , 28 3 ).
- the bypass circuit breaker 13 and the braking resistor 14 are installed for each of the three phases between the power plant 11 and the external power transmission system 12.
- One control device 50 is provided for each of the three bypass circuit breakers 13, and controls the on / off operation of the bypass circuit breaker 13 in accordance with a disturbance event that occurs in the external power transmission system 12.
- the system information receiving unit 51 receives the system information s regarding the operating state of the external power transmission system 12 for each phase.
- the first determination unit 52 determines for each phase whether or not the received system information s satisfies the disturbance occurrence condition. For example, when a three-phase short circuit accident occurs at the closest end of the power plant 11, it is determined that the above condition (1) is satisfied in all three phases.
- the control signal output unit 53 outputs an open signal t to the bypass circuit breaker 13 corresponding to the phase that satisfies the disturbance generation condition. For example, the line between the short-circuit failure occurs, if a disturbance occurs condition is satisfied by the power phase of the transmission lines 28 1 and 28 3, and outputs an opening signal t to the bypass breaker 13 1 and 13 3.
- FIG. 5 shows a flowchart showing the control operation of the accident stabilization apparatus 10 according to the first embodiment (see FIG. 1 as appropriate).
- the system information receiving unit 51 receives system information s (accident signal, voltage signal, and current signal) from the external power transmission system 12 (S10).
- system information s identity signal, voltage signal, and current signal
- strain information reception part 51 always performs reception of the system
- the 1st determination part 52 determines whether the received system
- the control signal output unit 53 outputs the release signal t when the disturbance generation condition is satisfied (S11: YES, S12).
- the control signal output unit 53 continues to output the release signal t until the first determination unit 52 determines that the disturbance generation condition is not satisfied, in other words, until the disturbance event converges (S13: NO).
- FIG. 6 is a comparison of the results of power system analysis in the case of simulating a three-phase short-circuit accident at the closest end of the power plant 11 between the present embodiment (FIG. 1) and the comparative example (FIG. 11). is there.
- a configuration of the comparative example as shown in FIG. 11, a general configuration in which a power plant 11 and an external power transmission system 12 are connected is used.
- a power system analysis is performed by simulating a state in which a three-phase short-circuit accident that occurred one second later lasts 250 ms. Further, in the case of applying this embodiment, it is assumed that the bypass circuit breaker 13 is opened 50 ms after the occurrence of the short-circuit accident and is turned on again immediately after the accident has converged.
- FIG. 6 (A) is a graph showing the output of the generator terminal voltage and the external power transmission system voltage in each of the present embodiment and the comparative example.
- the generator terminal voltage (reference numeral 301) is greatly reduced immediately after a short circuit accident (the residual voltage is mainly due to the impedance of the main transformer 27).
- the voltage rises instantaneously to 80% or more, and it can be seen that a voltage sufficient for the operation of the in-house load connected to the in-house bus 21 is maintained.
- the voltage is temporarily increased above the rated voltage by voltage compensation by the braking resistor 14, but then returns to the rated voltage or less, and the voltage stabilizes. .
- the voltage (reference numeral 302) of the external power transmission system 12 is also stabilized after the accident has converged.
- FIG. 6B is a graph showing the behavior of the internal phase difference angle of the main generator 15 in each of the present embodiment and the comparative example.
- the internal phase difference angle (symbol 305) of the main generator 15 is suppressed to 100 ° or less after the short-circuit accident, and the operation of the main generator 15 can be continued.
- the configuration of the comparative example shows an aspect of accelerated step-out exceeding 180 °.
- the bypass circuit breaker 13 is opened and the braking resistor 14 is inserted to compensate the voltage.
- the voltage of the in-house bus 21 is maintained, and the driving load of the in-house load is prevented.
- the time during which a significant voltage drop occurs in the in-house bus 21 is a short time until the bypass circuit breaker 13 operates regardless of the actual accident duration.
- the main generator 15 By preventing the driving load of the on-site load from being reduced, the steam flow used for power generation is maintained, and operation is possible at the plant output before the instantaneous voltage drop. At the same time, since the unbalance between the mechanical input and the electrical output of the main generator 15 is eliminated and the step-out is prevented, the main generator 15 is also maintained in the operating state.
- FIG. 7 is a configuration diagram illustrating the accident stabilization apparatus 10 according to the second embodiment.
- symbol is attached
- the accident stabilization device 10 of the second embodiment is different from the first embodiment in that a resistance information detector 29 detects the temperature and failure of the braking resistor 14 and outputs the temperature signal and the failure signal as resistance information u. And a resistance information receiving unit 54 that receives the output resistance information u, and a second determination unit 55 that determines whether or not the braking resistor 14 can be turned on based on the resistance information u.
- the output unit 53 is to output an open signal t when it is determined that the disturbance generation condition is satisfied and the braking resistor 14 can be turned on.
- the resistance information detector 29 is installed in the vicinity of the braking resistor 14 or so as to accommodate the braking resistor 14 therein, and detects the temperature and failure of the braking resistor 14.
- the temperature of the braking resistor 14 is detected using a temperature detector such as a thermistor or a thermocouple.
- the failure of the braking resistor 14 is detected from abnormal heat generated using a temperature detector, abnormal gas generated at the time of failure, or a voltage value when a failure detection current is passed.
- the resistance information detector 29 converts the detected temperature and failure into an electrical signal, and outputs the temperature signal and the failure signal to the resistance information receiving unit 54 as resistance information u.
- the failure signal is output only when a failure occurs.
- the second determination unit 55 determines whether the braking resistor 14 can be turned on (energized) based on the resistance information u received by the resistance information receiving unit 54. Since the resistance value of the braking resistor 14 varies depending on the temperature, if the resistance value is not appropriate depending on the temperature state (see FIG. 2), it is determined that the braking resistor 14 cannot be turned on. Also, when a failure signal is received, it is determined that the input is impossible.
- the control signal output unit 53 outputs the release signal t when it is determined that the disturbance generation condition is satisfied and the braking resistor 14 can be turned on. Therefore, the bypass circuit breaker 13 is opened and the braking resistor 14 is turned on only when the braking resistor 14 is in a state of normally functioning.
- FIG. 8 shows a flowchart showing the control operation of the accident stabilization apparatus 10 according to the first embodiment (see FIG. 7 as appropriate).
- the system information receiving unit 51 receives system information s (accident signal, voltage signal, and current signal) from the external power transmission system 12 (S20). Note that the system information receiving unit 51 always receives the system information s.
- the 1st determination part 52 determines whether the received system
- the resistance information receiving unit 54 receives the resistance information u output from the resistance information detector 29 (S22).
- the second determination unit 55 determines whether or not the braking resistor 14 can be turned on (energized) based on the resistance information u received by the resistance information receiving unit 54 (S23). If the braking resistor 14 cannot be turned on, the process ends (S23: NO).
- the control signal output unit 53 outputs the release signal t when the braking resistor 14 can be turned on (S23: YES, S24).
- the control signal output unit 53 continues to output the release signal t until the first determination unit 52 determines that the disturbance generation condition is not satisfied (S25: NO).
- the first determination unit 52 determines that the disturbance generation condition is not satisfied, that is, when the disturbance has converged, the output of the release signal t is stopped and the process ends (S25: YES, S26).
- FIG. 9 is a configuration diagram illustrating an accident stabilization apparatus 10 according to the third embodiment.
- symbol is attached
- the accident stabilizing device 10 of the third embodiment is different from the first embodiment in that an auxiliary resistor 30 (30 1 , 30 2 ,... 30 n ) connected in parallel to the braking resistor 14 and an auxiliary resistor 30 and the switch 31 (31 1 , 31 2 ,... 31 n ) for turning on / off the electrical connection between the brake resistor 14 and the brake resistor 14, and the switch 31 to switch between the brake resistor 14 and the auxiliary resistor 30.
- a resistance value adjustment unit 56 that adjusts the resistance value of the combined resistance.
- a plurality of auxiliary resistors 30 are connected in parallel to the braking resistor 14. By providing the auxiliary resistor 30, when the bypass circuit breaker 13 is opened, the current flows through the combined resistance of the braking resistor 14 and the auxiliary resistor 30.
- the plurality of auxiliary resistors 30 may have the same resistance value, or may have different resistance values. It is desirable that the combined resistance of the braking resistor 14 and the auxiliary resistor 30 can take a wide range of resistance values.
- the changeover switch 31 is a switch for turning on / off the electrical connection between the auxiliary resistor 30 and the braking resistor 14. By switching this switch, the number of parallel stages of the auxiliary resistor 30 connected to the braking resistor 14 can be changed, and the resistance value of the combined resistor can be adjusted.
- the changeover switch 31 uses a switch that can cut off the normal load current (the current in the state where the bypass circuit breaker 13 is turned on).
- the resistance value adjusting unit 56 changes the number of parallel stages of the braking resistor 14 connected to the braking resistor 14 by switching the changeover switch 31 so that the set resistance value is obtained, and adjusts the resistance value of the combined resistance. .
- the resistance value is set by the user within an appropriate resistance value range (see FIG. 2) for achieving the function of maintaining the voltage of the in-house bus 21 and preventing the acceleration step-out of the main generator 15. Further, in the case of load following operation or the like, the resistance value of the combined resistance may be automatically set according to the output of the main generator 15.
- the resistance value can be adjusted so that the maximum effect can be achieved in maintaining the plant output, and the operating conditions can be flexibly handled.
- FIG. 10 is a configuration diagram showing a modified example of the accident stabilization apparatus 10 according to the third embodiment.
- symbol is attached
- the resistance information detector 29 for detecting the temperature and failure of the braking resistor 14 and the resistance information receiving unit 54 for receiving the temperature signal of the braking resistor 14 shown in the second embodiment are used. To do.
- the resistance value adjusting unit 56 inputs the temperature signal of the braking resistor 14 received by the resistance value receiving unit. Then, the resistance value of the combined resistance of the braking resistor 14 and the auxiliary resistor 30 is adjusted according to this temperature. The adjustment of the resistance value is performed within a range of an appropriate resistance value that achieves the function of maintaining the voltage of the in-house bus 21 and preventing the acceleration of the main generator 15 from being stepped out.
- the conductor temperature rises greatly and the resistance value changes greatly by one-time insertion.
- the bypass circuit breaker 13 is switched in a short time and the braking resistor 14 is turned on a plurality of times, the temperature may not be lowered sufficiently and the turning on of the braking resistor 14 may be restricted due to an increase in the resistance value.
- a circuit breaker capable of switching between an on state and a cut-off state, and connected in parallel to this breaker Even when a disturbance event occurs, it is possible to switch the circuit breaker from the on state to the interrupted state when a disturbance event occurs.
- the power generation output can be maintained.
- Motor variable speed drive inverter 26 (26 1 , 26 2 ) ... Low-voltage bus load (electric valve, control panel, etc.), 27 ... Main transformer, 28 ... Power transmission line, 29 ... Resistance information detector, 30 (30 1 , 30 2 , ..., 30 n ) ... auxiliary resistor, 31 (31 1, 31 2, ... , 31 n) ... changeover switch, 50 ... controller, 51 ... system information receiving unit, 52 ... first determination unit, 53 ... control signal output section, 54 ... resistance information receiving unit, 55 ... second determination unit, 56 ... Resistance value adjustment unit, s ... system information, t ... open signal, u ... resistance information.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Provided is a feature for stabilizing failure in an electrical power system with which the power generation output can be maintained even when an instantaneous voltage drop over a long period due to a system failure is expected. The failure stabilization device is provided with: a bypass breaker installed between a power station and an external power transmission system fed with electrical power from the power station, the bypass breaker being capable of switching between supply, in which the power station and the external power transmission system are electrically connected, and open, in which the electrical connection is disestablished; a braking resistor connected in parallel to the bypass breaker, the braking resistor having a predetermined resistance value; a system information reception unit for receiving system information relating to the operational state of the external power transmission system; a first determining unit for determining whether or not the received system information satisfies a disturbance occurrence condition for detecting the incidence of a disturbance in the external power transmission system; and a control signal output unit for outputting, when the disturbance incidence condition is satisfied, an opening signal for opening the supplied bypass breaker.
Description
本発明の実施形態は、外部送電系統で発生した系統事故に対応するための電力システムにおける事故安定化技術に関する。
Embodiment of this invention is related with the accident stabilization technique in the electric power system for responding to the grid fault which generate | occur | produced in the external power transmission system.
一般的な電力システムは、発電所とこの発電所から電力の供給を受ける外部送電系統とから構成される。発電所の出力調整能力に余裕のある電力システムでは、短絡事故や接地事故などの系統事故が発生した際に、脱調する発電機の解列および発電機の増出力を行うことで、大規模な系統動揺に発展しないように安定制御される。
A general power system is composed of a power plant and an external power transmission system that receives power from this power plant. In a power system with ample output adjustment capability at a power plant, a large scale system is established by disconnecting the generator to be stepped out and increasing the output of the generator when a system fault such as a short circuit accident or grounding accident occurs. It is controlled stably so that it does not develop into an unstable system.
一方、出力調整能力に余裕が少ない電力システムでは、系統事故が発生した際に、出力調整による安定制御の介入度が限られている。特に、送電網の中心から離れるほど送電可能容量が減少するため、出力調整能力に余裕が少なくなり、電力システムの安定度は低下する。安定度の低い電力システムでは、発電所の至近端で系統事故が発生した場合、発電機が脱調するおそれがある。
On the other hand, in a power system with little margin for output adjustment capability, the degree of intervention for stable control by output adjustment is limited when a system fault occurs. In particular, since the transmittable capacity decreases as the distance from the center of the power transmission network decreases, there is less margin for output adjustment capability, and the stability of the power system decreases. In a power system with low stability, if a system fault occurs at the very end of the power plant, the generator may step out.
そして、発電機の脱調により発電所出力が大きく増減した場合、需給バランスを維持することができなくなり、電力システム全体の電圧崩壊や大規模な停電を引き起こす。
And, if the power plant output greatly increases or decreases due to the generator step-out, it becomes impossible to maintain the supply and demand balance, causing voltage collapse of the entire power system and large-scale power outage.
従来から、送電網の端部に接続される発電機の脱調を防止し、系統事故時の送電網の安定制御を行うことを目的とした送電系統の安定化装置が導入されてきた。
Conventionally, a power transmission system stabilization device has been introduced for the purpose of preventing step-out of a generator connected to an end of a power transmission network and performing stable control of the power transmission network in the event of a system failure.
例えば、半導体スイッチング素子を有するゲート回路を、伝送する電流の大きさに応じてOn/Offをして電流を制動抵抗器回路へ流すという技術が開示されている。この技術は、制動抵抗器回路に電流を流し、電力を消費することで発電機の加速を抑えるもので、発電機の脱調を防止するとともに送電系統の過渡安定度を改善している。
For example, a technique is disclosed in which a gate circuit having a semiconductor switching element is turned on / off in accordance with the magnitude of a current to be transmitted, and the current flows to the braking resistor circuit. This technology suppresses the acceleration of the generator by passing a current through the braking resistor circuit and consuming electric power, thereby preventing the generator from stepping out and improving the transient stability of the transmission system.
ところで、電力システムの中には様々な発電所が存在しており、原子力・火力などのプラント(汽力発電所)は大容量の同期発電機を用いて発電が行われている。この同期発電機は、外部送電系統との同期を維持しようとする同期化力が強く、慣性も大きい。このため、汽力発電所は、電力システムの過渡安定度を高め、系統事故により発生する系統動揺への耐性を高める上で重要な存在となる。
By the way, there are various power plants in the power system, and plants such as nuclear power plants and thermal power plants (steam power plants) generate power using a large-capacity synchronous generator. This synchronous generator has a strong synchronization force for maintaining synchronization with an external power transmission system, and has a large inertia. For this reason, the steam power plant is important in increasing the transient stability of the electric power system and increasing the resistance to system fluctuations caused by a system fault.
この汽力発電所では、熱源で水を加熱することにより発生させた蒸気により、蒸気タービンを回転させ、蒸気タービンに接続された同期発電機を回転させることにより発電を行っている。このため、汽力発電所には、発電に用いる水や蒸気を循環させるための大型ポンプが設置されており、この大型ポンプは誘導電動機や可変速インバータ駆動などの電動機を用いて駆動されている。
In this steam power plant, power is generated by rotating a steam turbine and rotating a synchronous generator connected to the steam turbine by steam generated by heating water with a heat source. For this reason, a large-scale pump for circulating water and steam used for power generation is installed in the steam power plant, and this large-scale pump is driven using an electric motor such as an induction motor or a variable speed inverter drive.
ポンプを駆動するための電動機は、発電機で発電された電力を、所内電源を介して給電され駆動している。このため、短絡事故や接地事故などの系統事故が発生し、事故点に電流が流れこむことにより、発電所内で長時間の瞬時電圧低下が発生した場合、電動機の駆動能力が低下する。これにより、発電に用いる蒸気流量が維持できず、プラントの発電出力が低下するおそれがあった。
The electric motor for driving the pump is driven by feeding the electric power generated by the generator through the on-site power source. For this reason, when a system fault such as a short-circuit accident or a grounding accident occurs and a current flows into the point of the accident, a short-time instantaneous voltage drop occurs in the power plant, and the drive capability of the motor decreases. As a result, the steam flow used for power generation cannot be maintained, and the power generation output of the plant may be reduced.
誘導電動機の例を挙げて具体的に説明すると、誘導電動機の発生トルクは、電圧の2乗に比例するため、瞬時電圧低下により電圧が定格電圧の半分になると誘導電動機の発生トルクは定格出力時の4分の1に減少する。誘導電動機の出力は、トルク×回転数に因るため、定格出力時のポンプ負荷により誘導電動機の出力が減少し、負荷トルクと出力との定格運転時の釣り合い点から、より回転数の低い運転点へと移動する。このため、ポンプの回転速度は低下する。
Specifically, the induction motor generates torque is proportional to the square of the voltage. Therefore, when the voltage becomes half of the rated voltage due to instantaneous voltage drop, the induction motor generates torque at the rated output. To one-fourth of Since the output of the induction motor depends on the torque x number of rotations, the output of the induction motor decreases due to the pump load at the rated output, and the operation with a lower number of rotations is performed from the balance point between the load torque and the output during rated operation. Move to a point. For this reason, the rotational speed of the pump decreases.
ポンプが速度低下すると、発電に用いる水や蒸気を十分に循環できず発電出力低下する。特に、複数のポンプを直列に接続する構成となっている場合、上流のポンプの回転数が低下すると、下流のポンプの吸い込み圧力が低下し、プラント運転の続行が不可能となるおそれもある。
When the speed of the pump is reduced, water and steam used for power generation cannot be circulated sufficiently, resulting in a decrease in power generation output. In particular, when a plurality of pumps are connected in series, when the rotational speed of the upstream pump decreases, the suction pressure of the downstream pump decreases, and the plant operation may not be continued.
また、大型ポンプを駆動する電動機のほかに電動弁や制御盤などのプラント運転に必要な機器についても所内電源から給電を受けている。このため、これらの所内負荷についても、発電所内で瞬時電圧低下が発生した場合、正常に駆動できずプラント運転に影響を及ぼすおそれがあった。
In addition to the electric motor that drives the large pump, equipment necessary for plant operation such as a motorized valve and control panel is also supplied with power from the on-site power supply. For this reason, even when these on-site loads occur, if an instantaneous voltage drop occurs in the power plant, there is a possibility that the in-house load cannot be driven normally and the plant operation is affected.
従来の事故安定化技術は、送電網における異常電流のダンピングによって電力システムの安定度を改善するものであり、系統事故を起因として発電所内で瞬時電圧低下が発生した場合に、電動機などの所内負荷の駆動に与える影響については考慮されておらず、プラントの発電出力の低下を抑制するものではない。
Conventional accident stabilization technology improves the stability of the power system by dumping abnormal currents in the power grid. When an instantaneous voltage drop occurs in the power plant due to a grid fault, the load on the site such as the motor It does not take into account the influence on the driving of the power plant, and does not suppress a decrease in the power generation output of the plant.
本発明はこのような事情を考慮してなされたもので、系統事故により発電所内で長時間の瞬時電圧低下が想定される場合であっても、発電出力を維持できる電力システムにおける事故安定化技術を提供することを目的とする。
The present invention has been made in view of such circumstances, and the accident stabilization technique in the power system that can maintain the power generation output even when a long-term instantaneous voltage drop is assumed in the power plant due to a system fault. The purpose is to provide.
本発明の実施形態に係る電力システムにおける事故安定化装置において、発電所とこの発電所から電力の供給を受ける外部送電系統との間に設置されて、これらの間を電気的に接続する投入状態と電気的な接続を遮断する開放状態とに切り替え可能なバイパス遮断器と、前記バイパス遮断器に対して並列に接続されて、所定の抵抗値を有する制動抵抗器と、前記外部送電系統の運転状態に関する系統情報を受け付ける系統情報受付部と、受け付けた前記系統情報が、前記外部送電系統における外乱事象の発生を検出するために設定された外乱発生条件を満たすか否かを判定する第1判定部と、前記外乱発生条件を満たすときに、前記投入状態の前記バイパス遮断器を前記開放状態に切り替える開放信号を出力する制御信号出力部と、を備えることを特徴とする。
In the accident stabilization apparatus in the electric power system according to the embodiment of the present invention, the input state is installed between the power plant and an external power transmission system that receives power supply from the power plant, and electrically connects between them. A bypass circuit breaker that can be switched to an open state that cuts off the electrical connection, a braking resistor that is connected in parallel to the bypass circuit breaker and has a predetermined resistance value, and an operation of the external power transmission system A system information receiving unit that receives system information related to a state, and a first determination that determines whether the received system information satisfies a disturbance occurrence condition set for detecting occurrence of a disturbance event in the external power transmission system And a control signal output unit that outputs an open signal that switches the bypass circuit breaker in the on state to the open state when the disturbance generation condition is satisfied. It is characterized in.
本発明の実施形態に係る電力システムにおける事故安定化方法において、発電所とこの発電所から電力の供給を受ける外部送電系統との間に設置されて、これらの間を電気的に接続する投入状態と電気的な接続を遮断する開放状態とに切り替え可能なバイパス遮断器と、前記バイパス遮断器に対して並列に接続されて、所定の抵抗値を有する制動抵抗器とを用いて、前記外部送電系統の運転状態に関する系統情報を受け付けるステップと、受け付けた前記系統情報が、前記外部送電系統における外乱事象の発生を検出するために設定された外乱発生条件を満たすか否かを判定するステップと、前記外乱発生条件を満たすときに、前記投入状態の前記バイパス遮断器を前記開放状態に切り替える開放信号を出力するステップと、を含むことを特徴とする。
In the accident stabilization method in the electric power system according to the embodiment of the present invention, the input state that is installed between the power plant and an external power transmission system that receives power supply from the power plant, and electrically connects between them The external power transmission using a bypass circuit breaker that can be switched to an open state that interrupts electrical connection to the external circuit, and a braking resistor that is connected in parallel to the bypass circuit breaker and has a predetermined resistance value A step of receiving system information regarding the operating state of the system, and a step of determining whether or not the received system information satisfies a disturbance occurrence condition set for detecting occurrence of a disturbance event in the external power transmission system; Outputting an open signal for switching the bypass circuit breaker in the on state to the open state when the disturbance generating condition is satisfied, And butterflies.
本発明の実施形態により、系統事故により発電所内で長時間の瞬時電圧低下が想定される場合であっても、発電出力を維持できる電力システムにおける事故安定化技術が提供される。
The embodiment of the present invention provides an accident stabilization technique in an electric power system that can maintain a power generation output even when a long-term instantaneous voltage drop is assumed in a power plant due to a system fault.
(第1実施形態)
以下、本実施形態を添付図面に基づいて説明する。
図1は、発電所11と外部送電系統12との間に設置された、第1実施形態に係る電力システムにおける事故安定化装置10(以下、事故安定化装置10と省略する)の構成を示している。 (First embodiment)
Hereinafter, this embodiment is described based on an accompanying drawing.
FIG. 1 shows a configuration of an accident stabilization device 10 (hereinafter, abbreviated as accident stabilization device 10) in the power system according to the first embodiment, installed between apower plant 11 and an external power transmission system 12. ing.
以下、本実施形態を添付図面に基づいて説明する。
図1は、発電所11と外部送電系統12との間に設置された、第1実施形態に係る電力システムにおける事故安定化装置10(以下、事故安定化装置10と省略する)の構成を示している。 (First embodiment)
Hereinafter, this embodiment is described based on an accompanying drawing.
FIG. 1 shows a configuration of an accident stabilization device 10 (hereinafter, abbreviated as accident stabilization device 10) in the power system according to the first embodiment, installed between a
本実施形態に係る電力システムにおける事故安定化装置10は、発電所11とこの発電所11から電力の供給を受ける外部送電系統12との間に設置されて、これらの間を電気的に接続する投入状態と電気的な接続を遮断する開放状態とに切り替え可能なバイパス遮断器13と、バイパス遮断器13に対して並列に接続されて、所定の抵抗値を有する制動抵抗器14と、外部送電系統12の運転状態に関する系統情報sを受け付ける系統情報受付部51と、受け付けた系統情報sが、外部送電系統12における外乱事象の発生を検出するために設定された外乱発生条件を満たすか否かを判定する第1判定部52と、外乱発生条件を満たすときに、投入されているバイパス遮断器13を開放させる開放信号tを出力する制御信号出力部53と、を備える。
The accident stabilization apparatus 10 in the power system according to the present embodiment is installed between a power plant 11 and an external power transmission system 12 that receives power supply from the power plant 11, and electrically connects them. A bypass circuit breaker 13 that can be switched between an on-state and an open state that interrupts electrical connection, a braking resistor 14 that is connected in parallel to the bypass circuit breaker 13 and has a predetermined resistance value, and external power transmission The system information receiving unit 51 that receives the system information s regarding the operating state of the system 12 and whether or not the received system information s satisfies the disturbance occurrence condition set for detecting the occurrence of the disturbance event in the external power transmission system 12. And a control signal output unit 53 that outputs an open signal t that opens the bypass circuit breaker 13 that is turned on when a disturbance generation condition is satisfied. Equipped with a.
なお、発電所11は、発生させた熱エネルギーにより水蒸気を発生させ、この水蒸気を用いてタービンを回転させて主発電機15で発電を行う火力発電所や原子力発電所などの汽力発電所である。外部送電系統12とは、送電線28を介して発電所11で発電された電力を受電する外部負荷を含む、発電所11外部の送電網全般を意味する。
The power plant 11 is a steam power plant such as a thermal power plant or a nuclear power plant that generates steam with the generated thermal energy and rotates the turbine using the steam to generate power with the main generator 15. . The external power transmission system 12 means the entire power transmission network outside the power plant 11, including an external load that receives power generated by the power plant 11 through the power transmission line 28.
まず、発電所11内の構成について説明する。
主発電機15は、発電機回路遮断器17を介して主回路相分離母線18に接続されており、発電した電力を主回路相分離母線18に供給する。自動電圧調整器16は、界磁電圧制御を行い主発電機15の端子電圧を一定に維持している。 First, the configuration within thepower plant 11 will be described.
Themain generator 15 is connected to the main circuit phase separation bus 18 via the generator circuit breaker 17 and supplies the generated power to the main circuit phase separation bus 18. The automatic voltage regulator 16 performs field voltage control and keeps the terminal voltage of the main generator 15 constant.
主発電機15は、発電機回路遮断器17を介して主回路相分離母線18に接続されており、発電した電力を主回路相分離母線18に供給する。自動電圧調整器16は、界磁電圧制御を行い主発電機15の端子電圧を一定に維持している。 First, the configuration within the
The
主回路相分離母線18に供給された電力は、発電所11内の所内負荷側と発電所11外の外部送電系統12側とに分岐する。
The electric power supplied to the main circuit phase separation bus 18 branches to the in-house load side in the power plant 11 and the external power transmission system 12 side outside the power plant 11.
所内負荷側に送られる電力は、所内変圧器19により電圧が降圧されて、2方向に分岐する。分岐された電力は、遮断器20(201,202)を介して2つの所内母線21(211,212)に供給される。所内母線21には各種の所内負荷が接続され給電される。
The electric power sent to the in-house load side is stepped down in voltage by the in-house transformer 19 and branches in two directions. The branched power is supplied to the two local buses 21 (21 1 , 21 2 ) via the circuit breakers 20 (20 1 , 20 2 ). Various in-house loads are connected to the in-house bus 21 for power supply.
所内母線211は、給水用のポンプを駆動する給水ポンプ電動機22(221a,221b)、復水用のポンプを駆動する復水ポンプ電動機231、発電機補機電動機241、及び電動弁や制御盤などの低圧母線負荷261が接続されており、それぞれの負荷に電力を供給している。なお、給水ポンプ電動機221aは、電動機可変速駆動インバータ251を介して電力が供給される。
Plant bus 21 1, feed water pump motor 22 (22 1a, 22 1b) for driving a pump for water supply, condensate pump motor 23 1 for driving a pump for recovery of water, the generator auxiliary motor 24 1, and the electric low bus load 26 1, such as a valve or control panel is connected, and supplies power to the respective load. In addition, electric power is supplied to the feed water pump motor 22 1a via the motor variable speed drive inverter 25 1 .
所内母線212は、給水ポンプ電動機22(222a,222b)、復水ポンプ電動機232、発電機補機電動機242、及び低圧母線負荷262が接続されており、それぞれの負荷に電力を供給している。なお、復水ポンプ電動機232は、電動機可変速駆動インバータ252を介して電力が供給される。
House bus 21 2, feed water pump motor 22 (22 2a, 22 2b) , a condensate pump motor 23 2, the generator auxiliary motor 24 2, and low pressure bus load 26 2 are connected, the power to each of the load Supply. Incidentally, a condensate pump motor 23 2 is supplied with power via the electric motor variable speed drive inverter 25 2.
所内母線21は、所内負荷に電力を供給する所内電源の役割を有しており、所内母線21の電圧が一定以上に維持されることにより、発電所11の出力を維持することが可能となりプラントが安定的に運転される。なお、所内母線21(211,212)に接続される負荷の構成は一例を示したものであり、本構成に限定されるものでは無い。
The in-house bus 21 serves as an in-house power source for supplying electric power to the in-house load, and the output of the power plant 11 can be maintained by maintaining the voltage of the in-house bus 21 at a certain level or higher. Is operated stably. The configuration of the load connected to the in-house bus 21 (21 1 , 21 2 ) is an example, and is not limited to this configuration.
一方、外部送電系統12側に送電される電力は、主変圧器27により電圧が昇圧されて、発電所11と外部送電系統12との間に設置された事故安定化装置10を介して外部送電系統12に送られる。
On the other hand, the electric power transmitted to the external power transmission system 12 side is boosted in voltage by the main transformer 27 and externally transmitted via the accident stabilization device 10 installed between the power plant 11 and the external power transmission system 12. It is sent to the system 12.
事故安定化装置10は、バイパス遮断器13と、制動抵抗器14と、制御装置50と、を備えている。
The accident stabilization device 10 includes a bypass circuit breaker 13, a braking resistor 14, and a control device 50.
バイパス遮断器13は、発電所11と外部送電系統12との間に設置される遮断器であり、これらの間を電気的に接続する投入状態と電気的な接続を遮断する開放状態とに切り替え可能である。
The bypass circuit breaker 13 is a circuit breaker installed between the power plant 11 and the external power transmission system 12, and switches between an on state in which these are electrically connected and an open state in which the electrical connection is interrupted. Is possible.
バイパス遮断器13は、通常時は投入状態であり、外乱事象が発生したときに開放状態に切り替えられる。バイパス遮断器13における投入/開放の切り替えは、制御装置50から出力される開放信号tを用いて行われる。
The bypass circuit breaker 13 is normally turned on and is switched to an open state when a disturbance event occurs. Switching on / off in the bypass circuit breaker 13 is performed using an open signal t output from the control device 50.
ここで、外乱事象とは、外部送電系統12で発生する、短絡事故、地絡事故などの系統事故や外部送電系統12を流れる電圧または電流の不平衡状態を意味する。外乱事象は、所内負荷の運転(駆動)に影響を与える所内母線21の電圧低下または主発電機15の脱調が発生するおそれがある外部送電系統12の電圧低下を引き起こす。
Here, the disturbance event means a system fault such as a short circuit accident or a ground fault, which occurs in the external power transmission system 12, or an unbalanced state of the voltage or current flowing through the external power transmission system 12. The disturbance event causes a voltage drop in the in-house bus 21 that affects the operation (drive) of the in-house load or a voltage drop in the external power transmission system 12 that may cause a step-out of the main generator 15.
なお、バイパス遮断器13の絶縁方式については、気中絶縁方式、ガス絶縁方式などの既存の絶縁方式を適用して、広く超高圧送電系統で使用されている汎用品を用いる。これにより、経済性の高い事故安定化装置10を構成することができる。
In addition, about the insulation system of the bypass circuit breaker 13, the general-purpose goods currently used widely in an ultra high voltage power transmission system are applied, applying the existing insulation systems, such as an air insulation system and a gas insulation system. Thereby, the highly economical accident stabilization apparatus 10 can be comprised.
制動抵抗器14は、バイパス遮断器13に対して並列かつ電気的に接続されており、所定の抵抗値を有する。なお、制動抵抗器14の抵抗値は適切に設定される必要があり、抵抗値の設定方法については後述する。
The braking resistor 14 is electrically connected in parallel to the bypass circuit breaker 13 and has a predetermined resistance value. Note that the resistance value of the braking resistor 14 needs to be set appropriately, and a method for setting the resistance value will be described later.
制動抵抗器14は、広く超高圧送電系統で使用されている汎用品を用いても良いが、油入り変圧器に類似した筐体に高抵抗の導体(例えば、鉄)を油中に設置する構造の抵抗器が好適である。この構造の抵抗器は、熱負荷の拡散を図ることができ、大気中に高抵抗の導体をそのまま設置する場合と比べて省スペースとなる。
The brake resistor 14 may be a general-purpose product widely used in an ultra-high voltage power transmission system, but a high-resistance conductor (for example, iron) is installed in oil in a casing similar to an oil-filled transformer. A resistor of structure is preferred. The resistor having this structure can spread the heat load and saves space as compared with a case where a high-resistance conductor is directly installed in the atmosphere.
制動抵抗器14は、抵抗として作用している間に発生する熱エネルギーに対し、十分な熱容量を持つように設計される。また、複数回の連続投入を想定する場合は、連続投入時の合計した熱エネルギーに応じて十分な熱容量を持つように設計される。
The braking resistor 14 is designed to have a sufficient heat capacity against the heat energy generated while acting as a resistance. In addition, when a plurality of continuous inputs are assumed, it is designed to have a sufficient heat capacity according to the total heat energy at the time of continuous inputs.
制動抵抗器14は、作用時間が短時間で頻繁に投入されるものではないため、作用中はほとんど熱拡散せず、導体の温度上昇のみを考慮すればよい。このため、制動抵抗器14の冷却方式については、自然循環による冷却のみで十分となる。
Since the braking resistor 14 is not frequently turned on for a short time, it hardly diffuses during the operation, and only the temperature rise of the conductor needs to be considered. For this reason, only cooling by natural circulation is sufficient for the cooling method of the braking resistor 14.
通常時には、バイパス遮断器13は投入されているため、抵抗値が高い制動抵抗器14側には僅かしか電流が流れず、大半の電流はバイパス遮断器13を介して流れる。一方で、外乱事象の発生時には、バイパス遮断器13が開放されるため、制動抵抗器14を介して電流が流れる。
Normally, since the bypass circuit breaker 13 is turned on, only a small amount of current flows through the braking resistor 14 having a high resistance value, and most of the current flows through the bypass circuit breaker 13. On the other hand, when a disturbance event occurs, since the bypass circuit breaker 13 is opened, a current flows through the braking resistor 14.
制御装置50は、系統情報受付部51と、第1判定部52と、制御信号出力部53と、を備えている。なお、制御装置50を構成する各ユニットの機能は、所定のプログラムコードを、プロセッサなどの電子回路において実行することによって実現しても良く、このようなソフトウェア処理に限らず、例えば、ASIC等の電子回路を用いたハードウェア処理で実現しても良いし、ソフトウェア処理とハードウェア処理とを組み合わせて実現しても良い。
The control device 50 includes a system information receiving unit 51, a first determination unit 52, and a control signal output unit 53. The function of each unit constituting the control device 50 may be realized by executing a predetermined program code in an electronic circuit such as a processor, and is not limited to such software processing. It may be realized by hardware processing using an electronic circuit, or may be realized by combining software processing and hardware processing.
系統情報受付部51は、外部送電系統12に設けられている運用装置(図示省略)から出力された系統情報sを、外部送電系統12と制御装置50の間を接続する伝送ネットワークを介して受け付ける。
The system information receiving unit 51 receives system information s output from an operation device (not shown) provided in the external power transmission system 12 via a transmission network that connects the external power transmission system 12 and the control device 50. .
系統情報sは、外部送電系統12の運転状態に関する情報であり、短絡事故や地絡事故などの系統事故が発生した際に運用装置から出力される事故検出信号、外部送電系統12内の任意の接続点で測定された電圧信号、電流信号を含むものである。また、事故検出信号には、発生した事故の種類、事故の発生位置の情報が含まれている。
The system information s is information related to the operating state of the external power transmission system 12, an accident detection signal output from the operation device when a system fault such as a short circuit accident or a ground fault occurs, and any arbitrary information in the external power transmission system 12. It includes voltage and current signals measured at the connection point. The accident detection signal includes information on the type of accident that occurred and the position where the accident occurred.
第1判定部52は、系統情報受付部51で受け付けた系統情報sに基づいて、外部送電系統12において外乱事象が発生しているか否かを判定する。第1判定部52は、系統情報sを用いて外乱事象発生の有無を検出するための外乱発生条件を予め設定している。
The first determination unit 52 determines whether or not a disturbance event has occurred in the external power transmission system 12 based on the system information s received by the system information reception unit 51. The first determination unit 52 presets a disturbance generation condition for detecting the presence or absence of a disturbance event using the system information s.
外乱発生条件の代表的なものとして、(1).短絡事故が発電所11の至近端で起きたかどうか、(2).所内母線21の電圧維持に支障が出るほどの電圧低下かどうか、(3).主発電機15が加速脱調する恐れがある電圧低下かどうか、(4).所内負荷の運転に影響を与えるほどの電圧または電流の不平衡が発生しているかどうか、の4つの条件がある。
(1) As a typical disturbance generation condition, (1). Whether a short-circuit accident occurred in the immediate vicinity of the power plant 11, (2). Whether or not the voltage drops so as to hinder the maintenance of the voltage of the in-house bus 21 (3). Whether the main generator 15 has a voltage drop that may cause an acceleration step-out; (4). There are four conditions: whether there is a voltage or current imbalance that affects the operation of the on-site load.
第1判定部52は、条件(1)については、事故検出信号を受け付けた際に、事故検出信号が発電所11の至近端での短絡事故を示す場合に外乱発生条件を満たすと判定する。
The first determination unit 52 determines that the condition (1) satisfies the disturbance generation condition when the accident detection signal indicates a short-circuit accident at the closest end of the power plant 11 when the accident detection signal is received. .
条件(2)については、測定された電圧信号の電圧値と定格電圧値とを比較して、所内母線21の電圧維持に支障が出るほどの電圧低下が発生している場合に外乱発生条件を満たすと判定する。あるいは、所内母線21の電圧維持に支障が出るほどの電圧低下を検出するための基準値を予め設けておいて、測定電圧値がこの基準値を下回った場合に外乱発生条件を満たすと判定しても良い。
For condition (2), the voltage value of the measured voltage signal is compared with the rated voltage value, and the disturbance generation condition is determined when a voltage drop that causes a problem in maintaining the voltage of the in-house bus 21 has occurred. It is determined that it satisfies. Alternatively, a reference value for detecting a voltage drop that would hinder the maintenance of the voltage of the in-house bus 21 is set in advance, and it is determined that the disturbance generation condition is satisfied when the measured voltage value falls below this reference value. May be.
また、測定された電流信号の電流値を用いて条件判定を行っても良く、測定された電流値と定格電流とを比較して、所内母線21の電圧維持に支障が出るほどの電流上昇が発生している場合に外乱発生条件を満たすと判定しても良い。
In addition, the condition determination may be performed using the current value of the measured current signal, and the current increase is such that the voltage maintenance of the in-house bus 21 is disturbed by comparing the measured current value with the rated current. If it occurs, it may be determined that the disturbance generation condition is satisfied.
条件(3)については、測定された電圧信号の電圧値と定格電圧値とを比較して、主発電機15が加速脱調する恐れがある電圧低下が発生している場合に外乱発生条件を満たすと判定する。
For condition (3), the voltage value of the measured voltage signal is compared with the rated voltage value, and the disturbance generating condition is determined when a voltage drop that may cause the main generator 15 to accelerate out of step occurs. It is determined that it satisfies.
条件(4)については、測定された電圧信号の電圧値(または電流値)の平均値や偏差を計測して電圧値の平衡度合いを検出する。そして、この平衡度合いが、一定の基準範囲を超えた場合に不平衡が発生しているとして外乱発生条件を満たすと判定する。
For condition (4), the average value or deviation of the voltage value (or current value) of the measured voltage signal is measured to detect the degree of voltage value balance. Then, when the degree of balance exceeds a certain reference range, it is determined that a disturbance generation condition is satisfied, assuming that an unbalance has occurred.
第1判定部52は、上述した条件(1)~(4)のいずれか1つの条件を満たした場合に外乱発生条件を満たすと判定する。一方、いずれの条件も満たさない場合は、外乱発生条件を満たさないと判定する。
The first determination unit 52 determines that the disturbance generation condition is satisfied when any one of the above-described conditions (1) to (4) is satisfied. On the other hand, when neither condition is satisfied, it is determined that the disturbance generation condition is not satisfied.
なお、外乱発生条件は、条件(1)~(4)に限定されるものではなく、例えば事故信号に含まれる事故の種類、位置情報に基づいてさらに細かく条件を設定しても良い。外乱発生条件を複数の設定し、複数の系統情報s(事故信号、電圧信号、及び電流信号)に基づいて判定することにより外乱事象をより正確に検出することが可能となる。
The disturbance occurrence conditions are not limited to the conditions (1) to (4). For example, the conditions may be set more finely based on the type of accident and position information included in the accident signal. By setting a plurality of disturbance generation conditions and making a determination based on a plurality of system information s (accident signal, voltage signal, and current signal), a disturbance event can be detected more accurately.
なお、条件(2)、(3)、及び(4)で、外乱事象を判定するために必要な電圧低下の度合い、基準値、平衡度合いは、主発電機15の内部電圧、内部インピーダンス、所内負荷の構成、外部送電系統12の負荷など発電所11や外部送電系統12が有するパラメータによって変化するため、事前に解析を行って、その結果に基づいて設定される。
It should be noted that the degree of voltage drop, the reference value, and the degree of balance required to determine the disturbance event under the conditions (2), (3), and (4) are the internal voltage of the main generator 15, the internal impedance, Since it changes depending on the parameters of the power plant 11 and the external power transmission system 12 such as the load configuration and the load of the external power transmission system 12, the analysis is performed in advance and the result is set based on the result.
制御信号出力部53は、第1判定部52で外乱発生条件を満たすと判定されたときに、投入状態のバイパス遮断器13を開放状態に切り替える開放信号tを出力する。
When the first determination unit 52 determines that the disturbance generation condition is satisfied, the control signal output unit 53 outputs an open signal t for switching the bypass circuit breaker 13 in the open state to the open state.
その後、外乱事象が収束し、つまり外乱発生条件を満たさなくなった場合には、開放信号tの出力を停止する。これにより、開放状態であったバイパス遮断器13は再び投入状態に切り替えられる。
After that, when the disturbance event converges, that is, when the disturbance generation condition is not satisfied, the output of the release signal t is stopped. Thereby, the bypass circuit breaker 13 which has been in the open state is switched to the on state again.
次に、図2を用いて、制動抵抗器14の抵抗値の設定方法を説明する。
制動抵抗器14の抵抗値は、外乱事象が発生した際に所内母線21の電圧維持及び主発電機15の加速脱調防止の機能を達成するように適切な抵抗値に設定される必要がある。 Next, a method for setting the resistance value of thebraking resistor 14 will be described with reference to FIG.
The resistance value of thebraking resistor 14 needs to be set to an appropriate resistance value so as to achieve the function of maintaining the voltage of the in-house bus 21 and preventing the acceleration step-out of the main generator 15 when a disturbance event occurs. .
制動抵抗器14の抵抗値は、外乱事象が発生した際に所内母線21の電圧維持及び主発電機15の加速脱調防止の機能を達成するように適切な抵抗値に設定される必要がある。 Next, a method for setting the resistance value of the
The resistance value of the
まず、所内母線21の電圧維持の機能を達成する観点で抵抗値を検討する。
所内母線21は、所内変圧器19を介して主回路相分離母線18に接続している。通常時、主回路相分離母線18の電圧は、自動電圧調整器16により主発電機15を制御することで定格に保たれている。そして、運用電圧の設定や所内変圧器19のタップ比の調整により、所内母線21の電圧も定格に保たれている。 First, the resistance value is examined from the viewpoint of achieving the function of maintaining the voltage of the in-house bus 21.
The in-house bus 21 is connected to the main circuit phase separation bus 18 via the in-house transformer 19. Under normal conditions, the voltage of the main circuit phase separation bus 18 is maintained at a rating by controlling the main generator 15 by the automatic voltage regulator 16. And the voltage of the in-house bus 21 is kept at the rating by setting the operating voltage and adjusting the tap ratio of the in-house transformer 19.
所内母線21は、所内変圧器19を介して主回路相分離母線18に接続している。通常時、主回路相分離母線18の電圧は、自動電圧調整器16により主発電機15を制御することで定格に保たれている。そして、運用電圧の設定や所内変圧器19のタップ比の調整により、所内母線21の電圧も定格に保たれている。 First, the resistance value is examined from the viewpoint of achieving the function of maintaining the voltage of the in-
The in-
系統事故(例えば、短絡事故)により主回路相分離母線18の電圧が低下すると、所内母線21の電圧も低下する。
When the voltage of the main circuit phase separation bus 18 decreases due to a system fault (for example, a short-circuit fault), the voltage of the in-house bus 21 also decreases.
このとき、制動抵抗器14を投入した場合の所内母線21の電圧について単位法で検討すると、主発電機15の内部電圧と外部送電系統12の電圧との差分を、主発電機15の内部インピーダンスと主変圧器27のインピーダンス及び制動抵抗器14のインピーダンスの分圧したものに外部送電系統12の電圧を加えた値となる。
At this time, when the voltage of the in-house bus 21 when the braking resistor 14 is turned on is examined by the unit method, the difference between the internal voltage of the main generator 15 and the voltage of the external power transmission system 12 is determined as the internal impedance of the main generator 15. The voltage of the external power transmission system 12 is added to the divided voltage of the impedance of the main transformer 27 and the impedance of the braking resistor 14.
この関係から、想定される外部送電系統12における電圧低下の割合と、所内母線21の電圧の目標値(例えば、定格電圧の80%)を決めると、制動抵抗器14の最低抵抗値Xminが求まる。
From this relationship, when the expected rate of voltage drop in the external power transmission system 12 and the target value of the voltage of the in-house bus 21 (for example, 80% of the rated voltage) are determined, the minimum resistance value X min of the braking resistor 14 is I want.
一方、最大抵抗値については、主発電機15の電圧が自動電圧調整器16によりコントロールされている限り、抵抗値を大きくしても電圧はほぼ一定に保たれる。したがって、所内母線21の電圧維持の観点からは、最低抵抗値Xmin以上となる範囲101が適切な抵抗値の範囲となる。なお、範囲101は、主発電機15や外部送電系統12の条件で変動する。
On the other hand, as for the maximum resistance value, as long as the voltage of the main generator 15 is controlled by the automatic voltage regulator 16, the voltage is kept substantially constant even when the resistance value is increased. Therefore, from the viewpoint of maintaining the voltage of the in-house bus 21, the range 101 where the minimum resistance value X min or more is an appropriate resistance value range. The range 101 varies depending on the conditions of the main generator 15 and the external power transmission system 12.
続いて、主発電機15の加速脱調防止の観点で抵抗値を検討する。
主発電機15の加速脱調を防止するため、制動抵抗器14で十分にエネルギーを消費する必要がある。 Subsequently, the resistance value is examined from the viewpoint of preventing the acceleration failure of themain generator 15.
In order to prevent the accelerating step-out of themain generator 15, it is necessary to sufficiently consume energy by the braking resistor 14.
主発電機15の加速脱調を防止するため、制動抵抗器14で十分にエネルギーを消費する必要がある。 Subsequently, the resistance value is examined from the viewpoint of preventing the acceleration failure of the
In order to prevent the accelerating step-out of the
つまり、制動抵抗器14で消費されるエネルギーと外部送電系統12へ送電した電力の合計が、脱調を防止するために消費しなければならないエネルギーより大きいことが脱調防止の条件となる。
That is, the condition for preventing step-out is that the sum of the energy consumed by the braking resistor 14 and the power transmitted to the external power transmission system 12 is larger than the energy that must be consumed to prevent step-out.
ここで、制動抵抗器14で消費されるエネルギー:P1、送電系統へ送電した電力:P2、脱調防止に必要なエネルギー:P3と定義すると、脱調防止をするためには以下の式(1)が条件となる。
P1+P2≧P3 ・・・式(1) Here, when the energy consumed by thebraking resistor 14 is defined as P 1 , the power transmitted to the transmission system: P 2 , and the energy necessary for preventing step-out: P 3 , in order to prevent step-out, the following Formula (1) becomes a condition.
P 1 + P 2 ≧ P 3 Formula (1)
P1+P2≧P3 ・・・式(1) Here, when the energy consumed by the
P 1 + P 2 ≧ P 3 Formula (1)
制動抵抗器14の抵抗値をR、制動抵抗器14に流れる電流をIとした場合、抵抗器で単位時間当たり消費されるエネルギーはRI2となる。これを制動抵抗器が投入されている期間で積分したものがP1となるため、式(1)に代入して変形すると、次式(2)となる。
R≧(P3―P2)/(I2の積分値) ・・・式(2) The resistance value of the braking resistor 14 R, if the current flowing through thebraking resistor 14 was I, the energy consumed per unit time in the resistor becomes RI 2. Since this what braking resistor is integrated in the period being turned is P 1, it is transformed into Equation (1), the following equation (2).
R ≧ (P 3 −P 2 ) / (integral value of I 2 ) (2)
R≧(P3―P2)/(I2の積分値) ・・・式(2) The resistance value of the braking resistor 14 R, if the current flowing through the
R ≧ (P 3 −P 2 ) / (integral value of I 2 ) (2)
電流は、主発電機15の能力及び電路のインピーダンスによって上限が存在し、積分値も定数となる。この関係から抵抗値の選択範囲の下限値Yminが決まる。
The current has an upper limit depending on the capacity of the main generator 15 and the impedance of the electric circuit, and the integral value is also a constant. From this relationship, the lower limit value Y min of the resistance value selection range is determined.
一方、制動抵抗器14の端子間電圧をVとした場合、抵抗器で単位時間当たり消費されるエネルギーはV2/Rで、これを制動抵抗器が投入されている期間で積分したものがP1となるため、(1)に代入して変形すると、次式(3)となる。
R≦(V2の積分値)/(P3―P2) ・・・式(3) On the other hand, when the voltage between the terminals of thebraking resistor 14 is V, the energy consumed per unit time by the resistor is V 2 / R, and this is obtained by integrating this during the period when the braking resistor is turned on. 1, and therefore, when the deformed substituted into (1), the following equation (3).
R ≦ (integral value of V 2 ) / (P 3 −P 2 ) (3)
R≦(V2の積分値)/(P3―P2) ・・・式(3) On the other hand, when the voltage between the terminals of the
R ≦ (integral value of V 2 ) / (P 3 −P 2 ) (3)
端子間電圧は、主発電機15の電圧が自動電圧調整器16によりコントロールされているため上限が存在し、積分値も定数となる。この関係から、抵抗値の選択範囲の最大値Ymaxが求まる。
The terminal voltage has an upper limit because the voltage of the main generator 15 is controlled by the automatic voltage regulator 16, and the integrated value is also a constant. From this relationship, the maximum value Y max of the resistance value selection range is obtained.
したがって、主発電機15の加速脱調防止の観点からは、Ymin≦R≦Ymax(範囲102)が適切な抵抗値の範囲となる。なお、範囲102は、所内母線21の電圧や主変圧器27の条件で変動する。
Therefore, from the viewpoint of preventing the acceleration step-out of the main generator 15, Y min ≦ R ≦ Y max (range 102) is an appropriate resistance value range. The range 102 varies depending on the voltage of the in-house bus 21 and the condition of the main transformer 27.
所内母線21の電圧維持を目的とする抵抗値の範囲101と発電機脱調防止を目的とする抵抗値の範囲102とに基づいて定まる抵抗値の範囲103が、所内母線21の電圧維持かつ主発電機15の加速脱調防止の機能を達成する適切な抵抗値の範囲となる。制動抵抗器14の抵抗値は、この範囲103内で設定される。
The resistance value range 103 determined based on the resistance value range 101 for maintaining the voltage of the in-house bus 21 and the resistance value range 102 for preventing the generator step-out is the voltage maintenance and main voltage of the in-house bus 21. An appropriate resistance value range that achieves the function of preventing the generator 15 from accelerating step-out is obtained. The resistance value of the braking resistor 14 is set within this range 103.
図3(A)~(C)を用いて、本実施形態の作用を具体的に説明する。なお、図3(A)~(C)では、所内母線21に接続される所内負荷の構成を簡略化して示している。
The operation of the present embodiment will be specifically described with reference to FIGS. In FIGS. 3A to 3C, the configuration of the in-house load connected to the in-house bus 21 is shown in a simplified manner.
図3(A)は、通常時の事故安定化装置10の構成を示しており、主発電機15で発電された電力は、主回路相分離母線18に供給される。そして、主回路相分離母線18で分岐された電力は、主変圧器27、バイパス遮断器13、及び送電線28を経て外部送電系統12へ送電される。通常時には、バイパス遮断器13は投入状態であるため、大半の電流はバイパス遮断器13を流れる。
FIG. 3A shows a configuration of the accident stabilization apparatus 10 in a normal state, and the electric power generated by the main generator 15 is supplied to the main circuit phase separation bus 18. Then, the power branched by the main circuit phase separation bus 18 is transmitted to the external power transmission system 12 through the main transformer 27, the bypass circuit breaker 13, and the power transmission line 28. Since the bypass circuit breaker 13 is in the on state at normal times, most of the current flows through the bypass circuit breaker 13.
主回路相分離母線18で分岐された他方の電力は、所内変圧器19を介して所内母線21に供給される。そして、所内母線21から所内負荷に給電されている。
The other power branched by the main circuit phase separation bus 18 is supplied to the in-house bus 21 via the in-house transformer 19. Power is supplied from the in-house bus 21 to the in-house load.
この状況で、発電所11の至近端で短絡事故が発生した場合、発電所11から外部送電系統12へ電力を送電できなくなる。このため、主発電機15の負荷は急激に減少して、主発電機15への機械入力とのアンバランスが生じる。同時に、主発電機15から事故点へ短絡電流が流れる。
In this situation, when a short circuit accident occurs at the closest end of the power plant 11, power cannot be transmitted from the power plant 11 to the external power transmission system 12. For this reason, the load of the main generator 15 decreases rapidly, and an imbalance with the machine input to the main generator 15 occurs. At the same time, a short-circuit current flows from the main generator 15 to the accident point.
図3(B)は、発電所11の至近端で短絡事故が発生した際の事故安定化装置10の構成を示している。
FIG. 3B shows the configuration of the accident stabilization apparatus 10 when a short-circuit accident occurs at the closest end of the power plant 11.
制御装置50は、系統情報sを常時受け付けており、発電所11の至近端における短絡事故に係る事故信号を受け付けた場合、外乱発生条件を満たすと判定して、バイパス遮断器13の開放信号tを出力する。これにより、バイパス遮断器13は開放状態となる。
When the control device 50 always receives the system information s and receives an accident signal related to a short-circuit accident at the closest end of the power plant 11, the control device 50 determines that the disturbance generation condition is satisfied, and opens the bypass circuit breaker 13. t is output. Thereby, bypass circuit breaker 13 will be in an open state.
バイパス遮断器13が開放されると、主変圧器27と外部送電系統12との間に制動抵抗器14が電気的に挿入された状態となる。
When the bypass circuit breaker 13 is opened, the braking resistor 14 is electrically inserted between the main transformer 27 and the external power transmission system 12.
これにより、バイパス遮断器13を通して事故点へと流れ込んでいた短絡電流は、制動抵抗器14を通して流れるようになる。流れる電流の大きさと制動抵抗器14の抵抗値によって制動抵抗器14にてジュール損が発生し、制動抵抗器14は主発電機15の負荷として機能する。
Thus, the short-circuit current that has flowed to the point of failure through the bypass circuit breaker 13 flows through the braking resistor 14. Joule loss occurs in the braking resistor 14 depending on the magnitude of the flowing current and the resistance value of the braking resistor 14, and the braking resistor 14 functions as a load of the main generator 15.
制動抵抗器14の抵抗値は、短絡事故が発生する直前の主発電機15の出力を想定して、予め設定されたものであるため、制動抵抗器14の負荷と主発電機15の機械入力がバランスし、主発電機15の加速が抑止される。
Since the resistance value of the braking resistor 14 is set in advance assuming the output of the main generator 15 immediately before the occurrence of the short-circuit accident, the load of the braking resistor 14 and the mechanical input of the main generator 15 are set. And the acceleration of the main generator 15 is suppressed.
同時に、制動抵抗器14を通過する電流によって抵抗器の両端に電位差が生じる。制動抵抗器14の両端に電位差が生じることで、主発電機15で発電された電力は外部送電系統12側と所内負荷側に供給可能となるため、所内母線21の電圧は維持される。これにより、所内母線21から給電を受ける所内負荷は、短絡事故の影響を受けること無く駆動できる。
At the same time, the current passing through the braking resistor 14 causes a potential difference across the resistor. Since a potential difference is generated between both ends of the braking resistor 14, the electric power generated by the main generator 15 can be supplied to the external power transmission system 12 side and the in-house load side, so that the voltage of the in-house bus 21 is maintained. As a result, the in-house load that receives power from the in-house bus 21 can be driven without being affected by a short circuit accident.
図3(C)は、短絡事故が収束した後の事故安定化装置10の構成を示している。
制御装置50は、短絡事故が収束すると、外乱発生条件を満たさなくなるため、開放信号tの出力を停止する。これにより、バイパス遮断器13は、開放状態から投入状態に切り替えられる。 FIG. 3C shows the configuration of theaccident stabilization apparatus 10 after the short-circuit accident has converged.
When the short-circuit accident converges, thecontrol device 50 stops outputting the release signal t because the disturbance generation condition is not satisfied. Thereby, the bypass circuit breaker 13 is switched from the open state to the closed state.
制御装置50は、短絡事故が収束すると、外乱発生条件を満たさなくなるため、開放信号tの出力を停止する。これにより、バイパス遮断器13は、開放状態から投入状態に切り替えられる。 FIG. 3C shows the configuration of the
When the short-circuit accident converges, the
バイパス遮断器13が投入され通常時の状態に復帰すると、再び外部送電系統12へ送電される電力の大半はバイパス遮断器13を通して送電される。
When the bypass circuit breaker 13 is turned on and returns to the normal state, most of the power transmitted to the external power transmission system 12 is transmitted again through the bypass circuit breaker 13.
図4(A)は、発電所11で発電された電力を3相交流で送電する場合における事故安定化装置10の適用例を示している。図4(B)は、発電所11と外部送電系統12との間に設置された事故安定化装置10の外観図を示している。なお、制御装置50の各機能の構成は図1と同一となるため説明を省略している。
FIG. 4A shows an application example of the accident stabilization apparatus 10 in the case where the electric power generated at the power plant 11 is transmitted by three-phase alternating current. FIG. 4B shows an external view of the accident stabilization apparatus 10 installed between the power plant 11 and the external power transmission system 12. In addition, since the structure of each function of the control apparatus 50 becomes the same as FIG. 1, description is abbreviate | omitted.
発電所11で発電された電力は、3本の送電線28(281,282,283)を介して外部送電系統12に3相交流で送電されている。バイパス遮断器13及び制動抵抗器14は、発電所11と外部送電系統12との間で、3相のそれぞれに対して設置される。
The electric power generated at the power plant 11 is transmitted to the external power transmission system 12 by three-phase alternating current via three transmission lines 28 (28 1 , 28 2 , 28 3 ). The bypass circuit breaker 13 and the braking resistor 14 are installed for each of the three phases between the power plant 11 and the external power transmission system 12.
制御装置50は、3つのバイパス遮断器13に対して1つ設けられており、外部送電系統12で発生する外乱事象に応じてバイパス遮断器13の投入/開放を制御する。
One control device 50 is provided for each of the three bypass circuit breakers 13, and controls the on / off operation of the bypass circuit breaker 13 in accordance with a disturbance event that occurs in the external power transmission system 12.
具体的には、まず、系統情報受付部51(図1)は、外部送電系統12の運転状態に関する系統情報sを各相それぞれについて受け付ける。
Specifically, first, the system information receiving unit 51 (FIG. 1) receives the system information s regarding the operating state of the external power transmission system 12 for each phase.
第1判定部52は、受け付けた系統情報sが外乱発生条件を満たすか否かを各相ごとに判定する。例えば、3相短絡事故が発電所11の至近端で発生した場合、3相のすべてにおいて上述の条件(1)を満たすと判定される。
The first determination unit 52 determines for each phase whether or not the received system information s satisfies the disturbance occurrence condition. For example, when a three-phase short circuit accident occurs at the closest end of the power plant 11, it is determined that the above condition (1) is satisfied in all three phases.
3相短絡以外の事故、例えば一相地絡、二相地絡、線間短絡などが発生した場合、事故相の電圧が低下するとともに、負荷の状態によっては不平衡電流が流れる。このとき、条件(2)~(4)を満たす相について、外乱発生条件を満たすと判定する。
When an accident other than a three-phase short circuit occurs, such as a one-phase ground fault, a two-phase ground fault, or a line short circuit, the voltage of the accident phase decreases and an unbalanced current flows depending on the load state. At this time, the phase satisfying the conditions (2) to (4) is determined to satisfy the disturbance generation condition.
制御信号出力部53は、外乱発生条件を満たす相に対応するバイパス遮断器13に開放信号tを出力する。例えば、線間短絡事故が発生して、送電線281と283に係る電力相で外乱発生条件を満たす場合、バイパス遮断器131と133に開放信号tを出力する。
The control signal output unit 53 outputs an open signal t to the bypass circuit breaker 13 corresponding to the phase that satisfies the disturbance generation condition. For example, the line between the short-circuit failure occurs, if a disturbance occurs condition is satisfied by the power phase of the transmission lines 28 1 and 28 3, and outputs an opening signal t to the bypass breaker 13 1 and 13 3.
図5は、第1実施形態に係る事故安定化装置10の制御動作を示すフローチャートを示している(適宜、図1参照)。
FIG. 5 shows a flowchart showing the control operation of the accident stabilization apparatus 10 according to the first embodiment (see FIG. 1 as appropriate).
系統情報受付部51は、外部送電系統12から系統情報s(事故信号、電圧信号、及び電流信号)を受け付ける(S10)。なお、系統情報受付部51は、系統情報sの受け付けを常時実行している。
The system information receiving unit 51 receives system information s (accident signal, voltage signal, and current signal) from the external power transmission system 12 (S10). In addition, the system | strain information reception part 51 always performs reception of the system | strain information s.
そして、第1判定部52は、受け付けた系統情報sが外乱事象を検出するために予め設定されている外乱発生条件を満たすか否かを判定する(S11)。外乱発生条件を満たさない場合は、終了する(S11:NO)。
And the 1st determination part 52 determines whether the received system | strain information s satisfy | fills the disturbance generation conditions preset in order to detect a disturbance event (S11). If the disturbance generation condition is not satisfied, the process ends (S11: NO).
制御信号出力部53は、外乱発生条件を満たす場合には、開放信号tを出力する(S11:YES、S12)。
The control signal output unit 53 outputs the release signal t when the disturbance generation condition is satisfied (S11: YES, S12).
制御信号出力部53は、第1判定部52において外乱発生条件を満たさないと判定されるまで、換言すると外乱事象が収束するまで開放信号tの出力を継続する(S13:NO)。
The control signal output unit 53 continues to output the release signal t until the first determination unit 52 determines that the disturbance generation condition is not satisfied, in other words, until the disturbance event converges (S13: NO).
一方、第1判定部52において外乱発生条件を満たさないと判定された場合、つまり外乱が収束した場合には、開放信号tの出力を停止して終了する(S13:NO、S14)。
On the other hand, when the first determination unit 52 determines that the disturbance generation condition is not satisfied, that is, when the disturbance has converged, the output of the release signal t is stopped and the process ends (S13: NO, S14).
図6は、本実施形態(図1)と比較例(図11)との間で、発電所11の至近端で3相短絡事故を模擬した場合における電力系統解析の結果を比較したものである。比較例の構成として、図11に示すように、発電所11と外部送電系統12とを接続した一般的な構成を用いている。
FIG. 6 is a comparison of the results of power system analysis in the case of simulating a three-phase short-circuit accident at the closest end of the power plant 11 between the present embodiment (FIG. 1) and the comparative example (FIG. 11). is there. As a configuration of the comparative example, as shown in FIG. 11, a general configuration in which a power plant 11 and an external power transmission system 12 are connected is used.
ここでは、1秒後に発生した3相短絡事故が、250ms継続した状態を模擬して電力系統解析を行っている。また、本実施形態を適用した場合では、短絡事故が発生した50ms後にバイパス遮断器13が開放され、事故が収束した直後に再び投入されるものと仮定する。
Here, a power system analysis is performed by simulating a state in which a three-phase short-circuit accident that occurred one second later lasts 250 ms. Further, in the case of applying this embodiment, it is assumed that the bypass circuit breaker 13 is opened 50 ms after the occurrence of the short-circuit accident and is turned on again immediately after the accident has converged.
図6(A)は、本実施形態と比較例のそれぞれにおける、発電機端子電圧と外部送電系統電圧の出力を示すグラフである。
FIG. 6 (A) is a graph showing the output of the generator terminal voltage and the external power transmission system voltage in each of the present embodiment and the comparative example.
本実施形態を適用した場合、発電機端子電圧(符号301)は、短絡事故直後に大幅に低下(残留電圧は主に主変圧器27のインピーダンスによるもの)する。しかし、バイパス遮断器13を開放すると同時に、電圧が80%以上迄瞬時に上昇し、所内母線21に接続する所内負荷の運転に十分な電圧が維持されることが分かる。
When this embodiment is applied, the generator terminal voltage (reference numeral 301) is greatly reduced immediately after a short circuit accident (the residual voltage is mainly due to the impedance of the main transformer 27). However, as soon as the bypass circuit breaker 13 is opened, the voltage rises instantaneously to 80% or more, and it can be seen that a voltage sufficient for the operation of the in-house load connected to the in-house bus 21 is maintained.
そして、事故が収束してバイパス遮断器13が投入されると、制動抵抗器14による電圧補償により一時的に定格電圧より上昇するが、その後に定格電圧以下まで戻り、電圧が安定することが分かる。外部送電系統12の電圧(符号302)も事故収束後に安定する。
Then, when the accident converges and the bypass circuit breaker 13 is turned on, the voltage is temporarily increased above the rated voltage by voltage compensation by the braking resistor 14, but then returns to the rated voltage or less, and the voltage stabilizes. . The voltage (reference numeral 302) of the external power transmission system 12 is also stabilized after the accident has converged.
一方、比較例の構成では、発電機端子電圧(符号303)に示すように、短絡事故中は主に主変圧器27のインピーダンスによる残留電圧しか残らず(30%以下)、所内負荷の運転継続が危ぶまれる。外部送電系統12の電圧(符号304)は、所内電源の電圧に引きずられて低下し、事故が復帰しても定格電圧を維持できなくなる。
On the other hand, in the configuration of the comparative example, as indicated by the generator terminal voltage (reference numeral 303), during the short-circuit accident, only the residual voltage due to the impedance of the main transformer 27 remains (30% or less), and the on-site load operation continues. Is in danger. The voltage (reference numeral 304) of the external power transmission system 12 is lowered by being dragged by the voltage of the in-house power supply, and the rated voltage cannot be maintained even if the accident is recovered.
図6(B)は、本実施形態と比較例のそれぞれにおける、主発電機15の内部相差角の挙動を示すグラフである。
FIG. 6B is a graph showing the behavior of the internal phase difference angle of the main generator 15 in each of the present embodiment and the comparative example.
本実施形態では、短絡事故後、主発電機15の内部相差角(符号305)は100°以下に抑制され、主発電機15の運転継続が可能となっていることが示されている。
In the present embodiment, it is shown that the internal phase difference angle (symbol 305) of the main generator 15 is suppressed to 100 ° or less after the short-circuit accident, and the operation of the main generator 15 can be continued.
一方、主発電機15の内部相差角(符号306)については、比較例の構成では180°を超えて加速脱調の様相を示している。
On the other hand, as for the internal phase difference angle (reference numeral 306) of the main generator 15, the configuration of the comparative example shows an aspect of accelerated step-out exceeding 180 °.
このように、発電所11において長時間の大幅な瞬時電圧低下を引き起こす外乱事象が発生した場合であっても、バイパス遮断器13を開放し、制動抵抗器14を挿入して電圧を補償することで、所内母線21の電圧が維持され所内負荷の駆動低下が防止される。所内母線21の電圧で、大幅な電圧低下が起こっている時間は、実際の事故継続時間にかかわらず、バイパス遮断器13が動作するまでの僅かな時間となる。
In this way, even when a disturbance event that causes a long-time significant voltage drop occurs in the power plant 11, the bypass circuit breaker 13 is opened and the braking resistor 14 is inserted to compensate the voltage. Thus, the voltage of the in-house bus 21 is maintained, and the driving load of the in-house load is prevented. The time during which a significant voltage drop occurs in the in-house bus 21 is a short time until the bypass circuit breaker 13 operates regardless of the actual accident duration.
所内負荷の駆動低下が防止されることで発電に用いる蒸気流量は維持され、瞬時電圧低下以前のプラント出力で運転できる。同時に、主発電機15の機械入力と電気出力のアンバランスを解消し、脱調を阻止されているため、主発電機15も運転状態が維持される。
By preventing the driving load of the on-site load from being reduced, the steam flow used for power generation is maintained, and operation is possible at the plant output before the instantaneous voltage drop. At the same time, since the unbalance between the mechanical input and the electrical output of the main generator 15 is eliminated and the step-out is prevented, the main generator 15 is also maintained in the operating state.
このため、発電所11全体で瞬時電圧低下による影響を乗り越え、発電所11を電力系統から解列せずに、定常運転を続けることができる。
For this reason, it is possible to overcome the influence of the instantaneous voltage drop in the entire power plant 11 and continue the steady operation without disconnecting the power plant 11 from the power system.
(第2実施形態)
図7は、第2実施形態に係る事故安定化装置10を示す構成図である。なお、第1実施形態(図1)と対応する構成および部分については同一の符号を付し、重複する説明を省略する。 (Second Embodiment)
FIG. 7 is a configuration diagram illustrating theaccident stabilization apparatus 10 according to the second embodiment. In addition, about the structure and part corresponding to 1st Embodiment (FIG. 1), the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
図7は、第2実施形態に係る事故安定化装置10を示す構成図である。なお、第1実施形態(図1)と対応する構成および部分については同一の符号を付し、重複する説明を省略する。 (Second Embodiment)
FIG. 7 is a configuration diagram illustrating the
第2実施形態の事故安定化装置10が第1実施形態と異なる点は、制動抵抗器14の温度及び故障を検出して、温度信号及び故障信号を抵抗情報uとして出力する抵抗情報検出器29と、出力された抵抗情報uを受け付ける抵抗情報受付部54と、抵抗情報uに基づいて制動抵抗器14を投入できるか否かを判定する第2判定部55と、をさらに備えて、制御信号出力部53は、外乱発生条件を満たし、かつ制動抵抗器14が投入できると判定された場合に開放信号tを出力する点にある。
The accident stabilization device 10 of the second embodiment is different from the first embodiment in that a resistance information detector 29 detects the temperature and failure of the braking resistor 14 and outputs the temperature signal and the failure signal as resistance information u. And a resistance information receiving unit 54 that receives the output resistance information u, and a second determination unit 55 that determines whether or not the braking resistor 14 can be turned on based on the resistance information u. The output unit 53 is to output an open signal t when it is determined that the disturbance generation condition is satisfied and the braking resistor 14 can be turned on.
抵抗情報検出器29は、制動抵抗器14の近傍あるいは制動抵抗器14を内部に収容するように設置されており、制動抵抗器14の温度及び故障を検出する。制動抵抗器14の温度は、サーミスタや熱電対などの温度検出器を用いて検出する。制動抵抗器14の故障は、温度検出器を用いて検出する異常発熱、故障時に生じる異常ガス、あるいは故障検出電流を流した際の電圧値などから検出する。
The resistance information detector 29 is installed in the vicinity of the braking resistor 14 or so as to accommodate the braking resistor 14 therein, and detects the temperature and failure of the braking resistor 14. The temperature of the braking resistor 14 is detected using a temperature detector such as a thermistor or a thermocouple. The failure of the braking resistor 14 is detected from abnormal heat generated using a temperature detector, abnormal gas generated at the time of failure, or a voltage value when a failure detection current is passed.
そして、抵抗情報検出器29は、検出した温度及び故障を電気信号に変換して、温度信号及び故障信号を抵抗情報uとして抵抗情報受付部54に出力する。なお、故障信号は故障発生時のみ出力される。
The resistance information detector 29 converts the detected temperature and failure into an electrical signal, and outputs the temperature signal and the failure signal to the resistance information receiving unit 54 as resistance information u. The failure signal is output only when a failure occurs.
第2判定部55は、抵抗情報受付部54で受け付けた抵抗情報uに基づいて制動抵抗器14を投入(通電)できるか否かを判定する。制動抵抗器14は、温度により抵抗値が変動するため、温度状態により適切な抵抗値(図2参照)でない場合は、投入不可と判定する。また、故障信号を受け付けた場合も、投入不可と判定する。
The second determination unit 55 determines whether the braking resistor 14 can be turned on (energized) based on the resistance information u received by the resistance information receiving unit 54. Since the resistance value of the braking resistor 14 varies depending on the temperature, if the resistance value is not appropriate depending on the temperature state (see FIG. 2), it is determined that the braking resistor 14 cannot be turned on. Also, when a failure signal is received, it is determined that the input is impossible.
そして、制御信号出力部53は、外乱発生条件を満たし、かつ制動抵抗器14が投入できると判定された場合に開放信号tを出力する。したがって、制動抵抗器14が正常に機能を果たす状態である場合のみ、バイパス遮断器13が開放されて制動抵抗器14は投入される。
The control signal output unit 53 outputs the release signal t when it is determined that the disturbance generation condition is satisfied and the braking resistor 14 can be turned on. Therefore, the bypass circuit breaker 13 is opened and the braking resistor 14 is turned on only when the braking resistor 14 is in a state of normally functioning.
図8は、第1実施形態に係る事故安定化装置10の制御動作を示すフローチャートを示している(適宜、図7参照)。
FIG. 8 shows a flowchart showing the control operation of the accident stabilization apparatus 10 according to the first embodiment (see FIG. 7 as appropriate).
系統情報受付部51は、外部送電系統12から系統情報s(事故信号、電圧信号、及び電流信号)を受け付ける(S20)。なお、系統情報受付部51は、系統情報sの受け付けは常時実行される。
The system information receiving unit 51 receives system information s (accident signal, voltage signal, and current signal) from the external power transmission system 12 (S20). Note that the system information receiving unit 51 always receives the system information s.
そして、第1判定部52は、受け付けた系統情報sが外乱事象を検出するために予め設定されている外乱発生条件を満たすか否かを判定する(S21)。外乱発生条件を満たさない場合は、終了する(S21:NO)。
And the 1st determination part 52 determines whether the received system | strain information s satisfy | fills the disturbance generation conditions preset in order to detect a disturbance event (S21). If the disturbance generation condition is not satisfied, the process ends (S21: NO).
外乱発生条件を満たす場合に、抵抗情報受付部54は、抵抗情報検出器29から出力される抵抗情報uを受け付ける(S22)。
When the disturbance occurrence condition is satisfied, the resistance information receiving unit 54 receives the resistance information u output from the resistance information detector 29 (S22).
第2判定部55は、抵抗情報受付部54で受け付けた抵抗情報uに基づいて制動抵抗器14を投入(通電)できるか否かを判定する(S23)。制動抵抗器14が投入不可である場合は、終了する(S23:NO)。
The second determination unit 55 determines whether or not the braking resistor 14 can be turned on (energized) based on the resistance information u received by the resistance information receiving unit 54 (S23). If the braking resistor 14 cannot be turned on, the process ends (S23: NO).
制御信号出力部53は、制動抵抗器14が投入可能な場合は、開放信号tを出力する(S23:YES、S24)。
The control signal output unit 53 outputs the release signal t when the braking resistor 14 can be turned on (S23: YES, S24).
制御信号出力部53は、第1判定部52において外乱発生条件を満たさないと判定されるまで開放信号tの出力を継続する(S25:NO)。
The control signal output unit 53 continues to output the release signal t until the first determination unit 52 determines that the disturbance generation condition is not satisfied (S25: NO).
一方、第1判定部52において外乱発生条件を満たさないと判定された場合、つまり外乱が収束した場合には、開放信号tの出力を停止して終了する(S25:YES、S26)。
On the other hand, when the first determination unit 52 determines that the disturbance generation condition is not satisfied, that is, when the disturbance has converged, the output of the release signal t is stopped and the process ends (S25: YES, S26).
このように、動作直後で温度が高く、開放しても十分な効果を得られない場合または抵抗器が故障している場合に、制動抵抗器14の投入は不可と判定しバイパス遮断器13の開放を実行しない。これにより、制動抵抗器14の保護が実現できる。なお、第2判定部55による判定動作が機能しなかった場合の補助として、バイパス遮断器13の開放時間をタイマーで制限する構成としても良い。
As described above, when the temperature is high immediately after the operation and a sufficient effect cannot be obtained even when the resistor is opened, or when the resistor is broken, it is determined that the braking resistor 14 cannot be turned on and the bypass circuit breaker 13 is turned off. Do not perform release. Thereby, protection of the braking resistor 14 is realizable. In addition, it is good also as a structure which restrict | limits the open time of the bypass circuit breaker 13 with a timer as assistance when the determination operation by the 2nd determination part 55 does not function.
(第3実施形態)
図9は、第3実施形態に係る事故安定化装置10を示す構成図である。なお、第1実施形態(図1)と対応する構成および部分については同一の符号を付し、重複する説明を省略する。 (Third embodiment)
FIG. 9 is a configuration diagram illustrating anaccident stabilization apparatus 10 according to the third embodiment. In addition, about the structure and part corresponding to 1st Embodiment (FIG. 1), the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
図9は、第3実施形態に係る事故安定化装置10を示す構成図である。なお、第1実施形態(図1)と対応する構成および部分については同一の符号を付し、重複する説明を省略する。 (Third embodiment)
FIG. 9 is a configuration diagram illustrating an
第3実施形態の事故安定化装置10が第1実施形態と異なる点は、制動抵抗器14に並列に接続された補助抵抗器30(301、302、…30n)と、補助抵抗器30と制動抵抗器14との電気な接続をOn/Offする切替スイッチ31(311、312、…31n)と、切替スイッチ31を切り替えて、制動抵抗器14と補助抵抗器30との合成抵抗の抵抗値を調整する抵抗値調整部56と、を備える点である。
The accident stabilizing device 10 of the third embodiment is different from the first embodiment in that an auxiliary resistor 30 (30 1 , 30 2 ,... 30 n ) connected in parallel to the braking resistor 14 and an auxiliary resistor 30 and the switch 31 (31 1 , 31 2 ,... 31 n ) for turning on / off the electrical connection between the brake resistor 14 and the brake resistor 14, and the switch 31 to switch between the brake resistor 14 and the auxiliary resistor 30. And a resistance value adjustment unit 56 that adjusts the resistance value of the combined resistance.
補助抵抗器30は、制動抵抗器14に対して並列に複数接続される。補助抵抗器30を設けることで、バイパス遮断器13が開放された際に、電流は制動抵抗器14と補助抵抗器30との合成抵抗を流れる。
A plurality of auxiliary resistors 30 are connected in parallel to the braking resistor 14. By providing the auxiliary resistor 30, when the bypass circuit breaker 13 is opened, the current flows through the combined resistance of the braking resistor 14 and the auxiliary resistor 30.
複数の補助抵抗器30は、それぞれ同じ抵抗値を有するものでも良いし、異なる抵抗値を有するものでも良い。制動抵抗器14と補助抵抗器30との合成抵抗が、広い抵抗値の範囲を取り得ることが望ましい。
The plurality of auxiliary resistors 30 may have the same resistance value, or may have different resistance values. It is desirable that the combined resistance of the braking resistor 14 and the auxiliary resistor 30 can take a wide range of resistance values.
切替スイッチ31は、補助抵抗器30と制動抵抗器14との電気的な接続をOn/Offするスイッチである。このスイッチを切り替えることで、制動抵抗器14に接続される補助抵抗器30の並列段数が変更でき、合成抵抗の抵抗値が調整できる。
The changeover switch 31 is a switch for turning on / off the electrical connection between the auxiliary resistor 30 and the braking resistor 14. By switching this switch, the number of parallel stages of the auxiliary resistor 30 connected to the braking resistor 14 can be changed, and the resistance value of the combined resistor can be adjusted.
なお、制動抵抗器14は、常に通電状態となっているため、わずかながら電流が流れた状態でスイッチのOn/Offを行うことになる。このため、切替スイッチ31は、通常時の負荷電流(バイパス遮断器13は投入された状態における電流)を切ることができるものを使用する。
Since the braking resistor 14 is always energized, the switch is turned on / off with a slight current flowing. For this reason, the changeover switch 31 uses a switch that can cut off the normal load current (the current in the state where the bypass circuit breaker 13 is turned on).
抵抗値調整部56は、設定された抵抗値となるように、切替スイッチ31を切り替えて制動抵抗器14に接続される制動抵抗器14の並列段数が変更し、合成抵抗の抵抗値が調整する。なお、抵抗値の設定は、所内母線21の電圧維持かつ主発電機15の加速脱調防止の機能を達成する適切な抵抗値の範囲内(図2参照)で、ユーザにより設定される。また、負荷追従運転などの場合は、主発電機15の出力に応じて合成抵抗の抵抗値を自動で設定しても良い。
The resistance value adjusting unit 56 changes the number of parallel stages of the braking resistor 14 connected to the braking resistor 14 by switching the changeover switch 31 so that the set resistance value is obtained, and adjusts the resistance value of the combined resistance. . The resistance value is set by the user within an appropriate resistance value range (see FIG. 2) for achieving the function of maintaining the voltage of the in-house bus 21 and preventing the acceleration step-out of the main generator 15. Further, in the case of load following operation or the like, the resistance value of the combined resistance may be automatically set according to the output of the main generator 15.
負荷追従運転など主発電機15の出力が大幅に変化する運転条件のプラントでは、固定された抵抗値では対応不可能な運転領域が存在するおそれがある。
In plants with operating conditions in which the output of the main generator 15 changes significantly, such as load following operation, there may be an operating region that cannot be handled with a fixed resistance value.
このように、外乱事象発生時に投入される抵抗を可変にすることで、プラント出力維持に最大の効果が発揮するように抵抗値を調整でき、運転条件に柔軟に対応することができる。
In this way, by making the resistance input when a disturbance event occurs variable, the resistance value can be adjusted so that the maximum effect can be achieved in maintaining the plant output, and the operating conditions can be flexibly handled.
図10は、第3実施形態に係る事故安定化装置10の変形例を示す構成図である。なお、第3実施形態(図9)と対応する構成および部分については同一の符号を付し、重複する説明を省略する。
FIG. 10 is a configuration diagram showing a modified example of the accident stabilization apparatus 10 according to the third embodiment. In addition, about the structure and part corresponding to 3rd Embodiment (FIG. 9), the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
本変形例では、第2実施形態(図7)で示した制動抵抗器14の温度及び故障を検出する抵抗情報検出器29と、制動抵抗器14の温度信号を受け付ける抵抗情報受付部54を利用する。
In this modification, the resistance information detector 29 for detecting the temperature and failure of the braking resistor 14 and the resistance information receiving unit 54 for receiving the temperature signal of the braking resistor 14 shown in the second embodiment (FIG. 7) are used. To do.
抵抗値調整部56は、抵抗値受付部で受け付けた制動抵抗器14の温度信号を入力する。そして、この温度に応じて制動抵抗器14と補助抵抗器30との合成抵抗の抵抗値を調整する。抵抗値の調整は、所内母線21の電圧維持かつ主発電機15の加速脱調防止の機能を達成する適切な抵抗値の範囲内で行う。
The resistance value adjusting unit 56 inputs the temperature signal of the braking resistor 14 received by the resistance value receiving unit. Then, the resistance value of the combined resistance of the braking resistor 14 and the auxiliary resistor 30 is adjusted according to this temperature. The adjustment of the resistance value is performed within a range of an appropriate resistance value that achieves the function of maintaining the voltage of the in-house bus 21 and preventing the acceleration of the main generator 15 from being stepped out.
制動抵抗器14が、短時間投入を前提としている場合、1回の投入で導体の温度が大きく上昇し、抵抗値も大きく変化することになる。短時間でバイパス遮断器13を切り替えて制動抵抗器14を複数回投入する場合、温度が十分に下がりきらず抵抗値の上昇により、制動抵抗器14の投入が制限される場合がある。
When the braking resistor 14 is premised on short-time insertion, the conductor temperature rises greatly and the resistance value changes greatly by one-time insertion. When the bypass circuit breaker 13 is switched in a short time and the braking resistor 14 is turned on a plurality of times, the temperature may not be lowered sufficiently and the turning on of the braking resistor 14 may be restricted due to an increase in the resistance value.
本変形例により、制動抵抗器14の温度が大きく上昇し、抵抗値が変化した場合でも常に適切な抵抗値に調整できる。このため、制動抵抗器14を投入する条件の制限が大幅に緩和される。
</ RTI> According to this modification, even when the temperature of the braking resistor 14 rises greatly and the resistance value changes, it can always be adjusted to an appropriate resistance value. For this reason, the restriction | limiting of the conditions which throw in the braking resistor 14 is eased significantly.
以上述べた各実施形態の電力系統における事故安定化装置によれば、発電所と外部送電系統との間に、投入状態と遮断状態とを切り替え可能な遮断器と、この遮断器に並列に接続された抵抗器とを用いて、外乱事象が発生した際に遮断器を投入状態から遮断状態に切り替えることで、外乱事象により発電所内で長時間の瞬時電圧低下が想定される場合であっても、発電出力を維持することができる。
According to the accident stabilization device in the power system of each embodiment described above, between the power plant and the external power transmission system, a circuit breaker capable of switching between an on state and a cut-off state, and connected in parallel to this breaker Even when a disturbance event occurs, it is possible to switch the circuit breaker from the on state to the interrupted state when a disturbance event occurs. The power generation output can be maintained.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
10…事故安定化装置、11…発電所、12…外部送電系統、13…制動抵抗器、14…バイパス遮断器、15…主発電機、16…発電機回路遮断器、17…自動電圧調整器、18…主回路相分離母線、19…所内変圧器、20…遮断器、21(211,212)…所内母線、22(221a,221b,222a,222b)…給水ポンプ電動機、23(231,232)…復水ポンプ電動機、24(241,242)…発電機補機電動機、25(251,252)…電動機可変速駆動インバータ、26(261,262)…低圧母線負荷(電動弁や制御盤など)、27…主変圧器、28…送電線、29…抵抗情報検出器、30(301,302,・・・,30n)…補助抵抗器、31(311,312,・・・,31n)…切替スイッチ、50…制御装置、51…系統情報受付部、52…第1判定部、53…制御信号出力部、54…抵抗情報受付部、55…第2判定部、56…抵抗値調整部、s…系統情報、t…開放信号、u…抵抗情報。
DESCRIPTION OF SYMBOLS 10 ... Accident stabilization apparatus, 11 ... Power station, 12 ... External power transmission system, 13 ... Braking resistor, 14 ... Bypass circuit breaker, 15 ... Main generator, 16 ... Generator circuit breaker, 17 ... Automatic voltage regulator , 18 ... main circuit phase separation bus, 19 ... in-house transformer, 20 ... breaker, 21 (21 1 , 21 2 ) ... in-house bus, 22 (22 1a , 22 1b , 22 2a , 22 2b ) ... feed water pump motor , 23 (23 1 , 23 2 ) ... Condensate pump motor, 24 (24 1 , 24 2 ) ... Generator auxiliary motor, 25 (25 1 , 25 2 ) ... Motor variable speed drive inverter, 26 (26 1 , 26 2 ) ... Low-voltage bus load (electric valve, control panel, etc.), 27 ... Main transformer, 28 ... Power transmission line, 29 ... Resistance information detector, 30 (30 1 , 30 2 , ..., 30 n ) ... auxiliary resistor, 31 (31 1, 31 2, ... , 31 n) ... changeover switch, 50 ... controller, 51 ... system information receiving unit, 52 ... first determination unit, 53 ... control signal output section, 54 ... resistance information receiving unit, 55 ... second determination unit, 56 ... Resistance value adjustment unit, s ... system information, t ... open signal, u ... resistance information.
Claims (8)
- 発電所とこの発電所から電力の供給を受ける外部送電系統との間に設置されて、これらの間を電気的に接続する投入状態と電気的な接続を遮断する開放状態とに切り替え可能なバイパス遮断器と、
前記バイパス遮断器に対して並列に接続されて、所定の抵抗値を有する制動抵抗器と、
前記外部送電系統の運転状態に関する系統情報を受け付ける系統情報受付部と、
受け付けた前記系統情報が、前記外部送電系統における外乱事象の発生を検出するために設定された外乱発生条件を満たすか否かを判定する第1判定部と、
前記外乱発生条件を満たすときに、前記投入状態の前記バイパス遮断器を前記開放状態に切り替える開放信号を出力する制御信号出力部と、を備えることを特徴とする電力システムにおける事故安定化装置。 A bypass installed between the power plant and an external power transmission system that receives power from this power plant, and can be switched between an on state in which the power is electrically connected and an open state in which the electrical connection is interrupted A circuit breaker,
A braking resistor connected in parallel to the bypass circuit breaker and having a predetermined resistance value;
A grid information receiving unit that receives grid information related to the operating state of the external power transmission system;
A first determination unit that determines whether or not the received grid information satisfies a disturbance occurrence condition set for detecting occurrence of a disturbance event in the external power transmission system;
An accident stabilization device in an electric power system, comprising: a control signal output unit that outputs an open signal that switches the bypass circuit breaker in the input state to the open state when the disturbance generation condition is satisfied. - 前記系統情報は、前記外部送電系統から事故発生時に送信される事故情報、前記外部送電系統内の任意の接続点で測定された電圧信号、及び前記外部送電系統内の任意の接続点で測定される電流信号の少なくとも1つであることを特徴とする請求項1に記載の電力システムにおける事故安定化装置。 The grid information is measured at an accident information transmitted from the external power transmission system when an accident occurs, a voltage signal measured at an arbitrary connection point in the external power transmission system, and an arbitrary connection point in the external power transmission system. The accident stabilization device for a power system according to claim 1, wherein the fault stabilization device is at least one of current signals.
- 前記制動抵抗器の抵抗値は、前記発電所内の負荷に前記電力を供給する所内母線の電圧維持に必要な電位差を生じさせる抵抗値の範囲と前記発電所の発電機における加速脱調を防止に必要な消費エネルギーを生じさせる抵抗値の範囲に基づいて設定されることを特徴とする請求項1に記載の電力システムにおける事故安定化装置。 The resistance value of the braking resistor is a range of resistance values that cause a potential difference necessary for maintaining the voltage of the in-house bus that supplies the power to the load in the power plant, and prevents accelerated step-out in the generator of the power plant. 2. The accident stabilization device for an electric power system according to claim 1, wherein the accident stabilization device is set based on a range of a resistance value that causes necessary energy consumption.
- 前記バイパス遮断器及び前記制動抵抗器は、多相交流によって電力を送電する場合において、各相のそれぞれに対して設置されて、
前記系統情報受付部は、前記外部送電系統の運転状態に関する前記系統情報を各相それぞれについて受け付けて、
第1判定部は、受け付けた前記系統情報が前記外乱発生条件を満たすか否かを各相ごとに判定して、
前記制御信号出力部は、前記外乱発生条件を満たす相に対応する前記バイパス遮断器に前記開放信号を出力することを特徴とする請求項1に記載の電力システムにおける事故安定化装置。 The bypass circuit breaker and the braking resistor are installed for each of the phases in the case of transmitting power by multiphase alternating current,
The system information receiving unit receives the system information related to the operating state of the external power transmission system for each phase,
The first determination unit determines, for each phase, whether the received system information satisfies the disturbance generation condition,
The accident stabilization apparatus for an electric power system according to claim 1, wherein the control signal output unit outputs the open signal to the bypass circuit breaker corresponding to a phase that satisfies the disturbance generation condition. - 前記制動抵抗器の温度及び故障を検出して、温度信号及び故障信号を抵抗情報として出力する抵抗情報検出器と、
出力された前記抵抗情報を受け付ける抵抗情報受付部と、
前記抵抗情報に基づいて前記制動抵抗器を投入できるか否かを判定する第2判定部と、をさらに備えて、
前記制御信号出力部は、前記外乱発生条件を満たし、かつ前記制動抵抗器が投入できると判定された場合に前記開放信号を出力することを特徴とする請求項1に記載の電力システムにおける事故安定化装置。 A resistance information detector for detecting the temperature and failure of the braking resistor and outputting the temperature signal and the failure signal as resistance information;
A resistance information receiving unit for receiving the output resistance information;
A second determination unit that determines whether or not the braking resistor can be turned on based on the resistance information;
2. The accident stability in the electric power system according to claim 1, wherein the control signal output unit outputs the release signal when it is determined that the disturbance generation condition is satisfied and the braking resistor can be turned on. Device. - 前記制動抵抗器に並列に接続された補助抵抗器と、
前記補助抵抗器と前記制動抵抗器との電気な接続をOn/Offする切替スイッチと、
前記切替スイッチを切り替えて、前記制動抵抗器と前記補助抵抗器との合成抵抗の抵抗値を調整する抵抗値調整部と、をさらに備えることを特徴とする請求項1に記載の電力システムにおける事故安定化装置。 An auxiliary resistor connected in parallel to the braking resistor;
A changeover switch for turning on / off the electrical connection between the auxiliary resistor and the braking resistor;
The accident in the electric power system according to claim 1, further comprising a resistance value adjusting unit that switches the changeover switch to adjust a resistance value of a combined resistance of the braking resistor and the auxiliary resistor. Stabilizer. - 前記抵抗値調整部は、前記制動抵抗器の温度に応じて前記制動抵抗器と前記補助抵抗器との合成抵抗の抵抗値を調整することを特徴とする請求項6に記載の電力システムにおける事故安定化装置。 The accident in the electric power system according to claim 6, wherein the resistance value adjusting unit adjusts a resistance value of a combined resistance of the braking resistor and the auxiliary resistor according to a temperature of the braking resistor. Stabilizer.
- 発電所とこの発電所から電力の供給を受ける外部送電系統との間に設置されて、これらの間を電気的に接続する投入状態と電気的な接続を遮断する開放状態とに切り替え可能なバイパス遮断器と、前記バイパス遮断器に対して並列に接続されて、所定の抵抗値を有する制動抵抗器とを用いて、
前記外部送電系統の運転状態に関する系統情報を受け付けるステップと、
受け付けた前記系統情報が、前記外部送電系統における外乱事象の発生を検出するために設定された外乱発生条件を満たすか否かを判定するステップと、
前記外乱発生条件を満たすときに、前記投入状態の前記バイパス遮断器を前記開放状態に切り替える開放信号を出力するステップと、を含むことを特徴とする電力システムにおける事故安定化方法。 A bypass installed between the power plant and an external power transmission system that receives power from this power plant, and can be switched between an on state in which the power is electrically connected and an open state in which the electrical connection is interrupted Using a circuit breaker and a braking resistor connected in parallel to the bypass circuit breaker and having a predetermined resistance value,
Receiving system information relating to the operating state of the external power transmission system;
Determining whether the received grid information satisfies a disturbance occurrence condition set in order to detect the occurrence of a disturbance event in the external power transmission system;
Outputting an open signal for switching the bypass circuit breaker in the on state to the open state when the disturbance generation condition is satisfied, and a method for stabilizing an accident in an electric power system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-084431 | 2015-04-16 | ||
JP2015084431A JP2016208586A (en) | 2015-04-16 | 2015-04-16 | Accident stabilization device and method of the same in electric power system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167251A1 true WO2016167251A1 (en) | 2016-10-20 |
Family
ID=57126037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/061812 WO2016167251A1 (en) | 2015-04-16 | 2016-04-12 | Device for stabilizing failure in electrical power system and method for use in same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016208586A (en) |
WO (1) | WO2016167251A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6338131B1 (en) * | 2017-09-04 | 2018-06-06 | 日新電機株式会社 | Power system |
JP7017116B2 (en) * | 2018-04-11 | 2022-02-08 | 日新電機株式会社 | Power system |
DE102019216236A1 (en) * | 2019-10-22 | 2021-04-22 | Siemens Aktiengesellschaft | Excitation unit and a method for operating an excitation unit in a power plant |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5159354A (en) * | 1974-11-21 | 1976-05-24 | Tokyo Electric Power Co | Seidoteikono seigyosochi |
JPS6333390U (en) * | 1986-08-14 | 1988-03-03 | ||
JPH06233452A (en) * | 1993-02-05 | 1994-08-19 | Hitachi Ltd | Current limiting device and current limiting control method |
JPH0753186A (en) * | 1993-08-18 | 1995-02-28 | Hitachi Ltd | Inverter hoist and inverter crane device |
JP2001067875A (en) * | 1999-08-27 | 2001-03-16 | Hitachi Ltd | Output circuit |
JP2002017041A (en) * | 2000-06-29 | 2002-01-18 | Mitsubishi Electric Corp | Power system transient stabilization apparatus |
JP2013027114A (en) * | 2011-07-20 | 2013-02-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Ship driving device and method of protecting braking resistor for ship driving device |
-
2015
- 2015-04-16 JP JP2015084431A patent/JP2016208586A/en active Pending
-
2016
- 2016-04-12 WO PCT/JP2016/061812 patent/WO2016167251A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5159354A (en) * | 1974-11-21 | 1976-05-24 | Tokyo Electric Power Co | Seidoteikono seigyosochi |
JPS6333390U (en) * | 1986-08-14 | 1988-03-03 | ||
JPH06233452A (en) * | 1993-02-05 | 1994-08-19 | Hitachi Ltd | Current limiting device and current limiting control method |
JPH0753186A (en) * | 1993-08-18 | 1995-02-28 | Hitachi Ltd | Inverter hoist and inverter crane device |
JP2001067875A (en) * | 1999-08-27 | 2001-03-16 | Hitachi Ltd | Output circuit |
JP2002017041A (en) * | 2000-06-29 | 2002-01-18 | Mitsubishi Electric Corp | Power system transient stabilization apparatus |
JP2013027114A (en) * | 2011-07-20 | 2013-02-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Ship driving device and method of protecting braking resistor for ship driving device |
Also Published As
Publication number | Publication date |
---|---|
JP2016208586A (en) | 2016-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3371882B1 (en) | Balancing reactive current between a dfig stator and a grid-side inverter | |
WO2016167251A1 (en) | Device for stabilizing failure in electrical power system and method for use in same | |
US20160248246A1 (en) | Detecting faults in electricity grids | |
JP2001268804A (en) | System connection protection device of generation facility | |
GB2370702A (en) | Line linkage protection device for electrical generating equipment | |
US7990112B2 (en) | Adaptive field control of a variable frequency synchronous generator | |
JP2014147210A (en) | Stationary frequency conversion power supply device | |
JP4530365B2 (en) | Distributed power supply | |
JP3302898B2 (en) | Power grid connection protection device | |
JP4870539B2 (en) | Control system for double-fed synchronous machine | |
JP4341028B2 (en) | Grid connection protection device for regular power generator | |
JP3944057B2 (en) | System interconnection protection device for power generation facilities | |
KR102655598B1 (en) | Device providing lagging reactive power and method for controlling temperature correction thereof | |
JP3751829B2 (en) | System interconnection protection device for power generation facilities | |
US20230374973A1 (en) | Wind turbine auxiliary power system | |
JP2002101562A (en) | System interconnection protection device of power generating installation | |
JP3990324B2 (en) | Grid connection protection device | |
JP2821722B2 (en) | Method and apparatus for stabilizing power system | |
JP2000217260A (en) | Protector for system linkage of power generation facility | |
Madinah et al. | Analysis of Protection System on Three-phase Induction Motor PT South Pacific Viscose | |
JP4202954B2 (en) | Grid connection protection device for regular power generator | |
JP2023074142A (en) | Transformer control device | |
JP4387620B2 (en) | System interconnection protection device for power generation facilities | |
AU2021369170A9 (en) | Wind turbine auxiliary power system | |
JPS5939809Y2 (en) | Power system stabilizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16780042 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16780042 Country of ref document: EP Kind code of ref document: A1 |