JP2013027114A - Ship driving device and method of protecting braking resistor for ship driving device - Google Patents

Ship driving device and method of protecting braking resistor for ship driving device Download PDF

Info

Publication number
JP2013027114A
JP2013027114A JP2011158636A JP2011158636A JP2013027114A JP 2013027114 A JP2013027114 A JP 2013027114A JP 2011158636 A JP2011158636 A JP 2011158636A JP 2011158636 A JP2011158636 A JP 2011158636A JP 2013027114 A JP2013027114 A JP 2013027114A
Authority
JP
Japan
Prior art keywords
braking resistor
current
temperature
converter
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011158636A
Other languages
Japanese (ja)
Other versions
JP5876681B2 (en
Inventor
Masao Morita
将生 森田
Yoshihiro Miyazaki
義弘 宮崎
Yuichi Komatsu
優一 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2011158636A priority Critical patent/JP5876681B2/en
Publication of JP2013027114A publication Critical patent/JP2013027114A/en
Application granted granted Critical
Publication of JP5876681B2 publication Critical patent/JP5876681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ship driving device which can accurately protect a braking resistor with a relatively simple circuit configuration, and a method of protecting the braking resistor for the device.SOLUTION: A ship driving device comprises: a converter 2 that converts AC voltage fed from a generator into DC; a DC capacitor 3 that smooths output voltage of the converter 2; an inverter 4 that converts the converter output into AC voltage and drives an AC motor 5; a series circuit of a braking resistor 7 and a semiconductor switch 6, which is connected in parallel to the output of the converter 2 so as to absorb regenerative power at the time of braking of the AC motor 5; a temperature detector 8 that detects temperature of the braking resistor 7; and a current detector 9 that detects current flowing through the braking resistor 7. The device obtains an overheat protection output for protecting the braking resistor 7 when the magnitude of current that is detected by the current detector 9 for a predetermined first monitoring time exceeds a predetermined first threshold value or the temperature that is detected by the temperature detector 8 exceeds a predetermined threshold value.

Description

この発明は、制動用抵抗器を備えた船舶用ドライブ装置及び当該装置用制動抵抗器の保護方法に関する。   The present invention relates to a marine drive device including a braking resistor and a method for protecting the braking resistor for the device.

電気推進を行う船舶用ドライブ装置においては、減速時には電動機に制動トルクを与える必要がある。制動トルクを与えるためには、プロペラから電動機に伝えられる慣性エネルギーをインバータによって電気エネルギーに変換し、電源系統に回生する手法が考えられる。しかしながら電動機容量が船舶用発電機の電源容量に対して比較的大きい場合には、回生される電力によって大きな電源変動が生じるという問題がある。このため、電動機から与えられる回生電力をインバータの入力側に設けられた制動抵抗器で消費させるようにするのが一般的である。   In a marine drive device that performs electric propulsion, it is necessary to apply a braking torque to the motor during deceleration. In order to apply the braking torque, a method of converting the inertial energy transmitted from the propeller to the electric motor into electric energy by an inverter and regenerating it to the power supply system can be considered. However, when the motor capacity is relatively large with respect to the power capacity of the marine generator, there is a problem that large power fluctuations occur due to the regenerated power. For this reason, the regenerative electric power given from the electric motor is generally consumed by a braking resistor provided on the input side of the inverter.

このように回生電力吸収専用に設けられた制動抵抗器の容量は、ドライブ装置の容量に比べると小さくても良いが、制動回路の故障等によって過大な電流が流れた場合過熱保護を行う必要がある。   Thus, the capacity of the braking resistor provided exclusively for regenerative power absorption may be smaller than the capacity of the drive device, but it is necessary to perform overheat protection if an excessive current flows due to a failure of the braking circuit, etc. is there.

制動用抵抗器の過熱保護は測温抵抗体による検出温度で行うことが考えられるが、制動用抵抗器と測温抵抗体とを絶縁する必要があるため特に高圧のドライブ装置の場合、絶縁のための空間距離が大きくなり、応答時間の遅れが問題となる。このため、直接温度検出は行わずに、減速時の回生電力から制動抵抗器の温度を推定演算する提案が為されている(例えば特許文献1参照。)。   Although it is conceivable that overheating protection of the braking resistor is performed at the temperature detected by the resistance temperature detector, it is necessary to insulate the braking resistor from the resistance temperature detector. Therefore, the spatial distance becomes large, and a delay in response time becomes a problem. For this reason, a proposal has been made to estimate and calculate the temperature of the braking resistor from the regenerative power during deceleration without directly detecting the temperature (see, for example, Patent Document 1).

特開平10−225158号公報(第3−4頁、図1)Japanese Patent Laid-Open No. 10-225158 (page 3-4, FIG. 1)

特許文献1に示された手法は原理的には可能であるが、温度推定演算が複雑になるという問題があった。本発明は上記に鑑み為されたもので、比較的簡単な回路構成で制動抵抗器を精度よく保護することが可能な船舶用ドライブ装置及び当該装置用制動抵抗器の保護方法を提供することを目的とする。   Although the method disclosed in Patent Document 1 is possible in principle, there is a problem that the temperature estimation calculation becomes complicated. The present invention has been made in view of the above, and provides a marine drive device capable of accurately protecting a braking resistor with a relatively simple circuit configuration and a method for protecting the braking resistor for the device. Objective.

上記目的を達成するために、本発明の船舶用ドライブ装置及び当該装置用制動抵抗器の保護方法は、発電機から給電される交流電圧を直流に変換するコンバータと、このコンバータの出力電圧を平滑する直流コンデンサと、このコンバータの出力を交流電圧に変換して交流電動機を駆動するインバータと、前記交流電動機の制動時の回生電力を吸収するために前記コンバータの出力に並列に接続された制動抵抗器と半導体スイッチの直列回路と、
前記制動抵抗器の温度を検出する温度検出器と、前記制動抵抗器に流れる電流を検出する電流検出器とを具備する船舶用ドライブ装置において、所定の第1の監視時間における前記電流検出器の検出電流の大きさが所定の第1の閾値を超えたか、または前記温度検出器の検出温度が所定の閾値を超えたとき、前記制動抵抗器を保護するための過熱保護出力を得るようにしたことを特徴としている。
In order to achieve the above object, a marine drive device and a braking resistor protection method according to the present invention include a converter that converts an AC voltage supplied from a generator into a DC voltage, and a smooth output voltage of the converter. A DC capacitor, an inverter for driving the AC motor by converting the output of the converter into an AC voltage, and a braking resistor connected in parallel to the output of the converter to absorb regenerative power during braking of the AC motor A series circuit of a device and a semiconductor switch,
In a marine drive device comprising a temperature detector for detecting a temperature of the braking resistor and a current detector for detecting a current flowing through the braking resistor, the current detector at a predetermined first monitoring time is provided. An overheat protection output for protecting the braking resistor is obtained when the magnitude of the detected current exceeds a predetermined first threshold value or the detected temperature of the temperature detector exceeds a predetermined threshold value. It is characterized by that.

この発明によれば、比較的簡単な回路構成で制動抵抗器を精度よく保護することが可能な船舶用ドライブ装置及び当該装置用制動抵抗器の保護方法を提供することが可能となる。   According to the present invention, it is possible to provide a marine drive device capable of accurately protecting a braking resistor with a relatively simple circuit configuration and a method for protecting the braking resistor for the device.

本発明の実施例1に係る船舶用ドライブ装置の回路構成図。The circuit block diagram of the ship drive device which concerns on Example 1 of this invention. 本発明の実施例1に係る船舶用ドライブ装置の制動抵抗器保護動作の説明図。Explanatory drawing of the braking resistor protection operation | movement of the ship drive device which concerns on Example 1 of this invention. 本発明の実施例2に係る船舶用ドライブ装置の制動抵抗器保護回路のブロック構成図。The block block diagram of the braking resistor protection circuit of the ship drive device which concerns on Example 2 of this invention.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る船舶用ドライブ装置を図1及び図2を参照して説明する。   Hereinafter, a marine drive device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本発明の実施例1に係る船舶用ドライブ装置の回路構成図であり、図1(a)に全体の回路構成図、図1(b)に制動抵抗器保護回路のブロック構成図を示す。図1(a)に示すように、船舶用発電機の交流電源から入力変圧器1を介して得られた位相の異なる2つの3相交流電圧は、正側コンバータ2Pと負側コンバータ2Nに各々供給される。正側コンバータの直流出力は平滑用の直流コンデンサ3Pに、負側コンバータの直流出力は平滑用の直流コンデンサ3Nに夫々与えられ、直流コンデンサ3Pの負側端子と直流コンデンサ3Nの正側端子は互いに接続されている。このようにして正電位P、負電位N及び中性点電位Cの3レベルの直流電圧が得られ、この3レベルの直流電圧は3レベルインバータ4に与えられる。3レベルインバータ4は3レベルの直流電圧を3レベルの交流電圧に変換して交流電動機5を駆動する。   FIG. 1 is a circuit configuration diagram of a marine drive device according to a first embodiment of the present invention. FIG. 1A is an overall circuit configuration diagram, and FIG. 1B is a block configuration diagram of a braking resistor protection circuit. Indicates. As shown in FIG. 1A, two three-phase AC voltages having different phases obtained from an AC power source of a marine generator through an input transformer 1 are respectively supplied to a positive side converter 2P and a negative side converter 2N. Supplied. The DC output of the positive converter is applied to the smoothing DC capacitor 3P, and the DC output of the negative converter is applied to the smoothing DC capacitor 3N. The negative terminal of the DC capacitor 3P and the positive terminal of the DC capacitor 3N are mutually connected. It is connected. In this way, a three-level DC voltage of a positive potential P, a negative potential N, and a neutral point potential C is obtained, and this three-level DC voltage is applied to the three-level inverter 4. The three-level inverter 4 converts the three-level DC voltage into a three-level AC voltage and drives the AC motor 5.

ここで3レベルインバータ4は、1相あたり4個のスイッチング素子を直列接続して直列接続体を構成し、その中点から交流出力を得る。これらの直列接続体の両端は正、負の直流電位に接続され、正側及び負側の端部のスイッチング素子と中間のスイッチング素子の中間点は夫々ダイオードを介して中性点電位にクランプされている。3レベルインバータ4のスイッチング素子は、図示しない制御回路からの指令によりオンオフ制御されている。通常、制御回路には速度基準が与えられ、フィードバック速度との偏差がゼロとなるように電流基準を出力し、この電流基準とフィードバック電流との偏差がゼロとなるような電圧基準に基づいて上記オンオフ制御が行われる。   Here, the three-level inverter 4 configures a series connection body by connecting four switching elements per phase in series, and obtains an AC output from the midpoint thereof. Both ends of these series connection bodies are connected to positive and negative DC potentials, and the intermediate points of the switching elements on the positive side and the negative side and intermediate switching elements are clamped to neutral point potentials via diodes, respectively. ing. The switching element of the three-level inverter 4 is on / off controlled by a command from a control circuit (not shown). Usually, the control circuit is given a speed reference, outputs a current reference so that the deviation from the feedback speed becomes zero, and based on the voltage reference such that the deviation between the current reference and the feedback current becomes zero. On / off control is performed.

正電位Pと中性点電位Cの間には半導体スイッチ6Pと制動抵抗器7Pの直列回路が接続されている。同様に中性点電位Cと負電位Nの間には半導体スイッチ6Nと制動抵抗器7Nの直列回路が接続されている。制動抵抗器7P、7Nの表面温度は夫々温度検出素子8P、8Nで検出され、制動抵抗器保護回路20に与えられる。また、制動抵抗器7P、7Nに流れる電流は夫々電流検出器9P、9Nで検出され、制動抵抗器保護回路20に与えられる。制動抵抗器7P、7Nと並列にフライホイールダイオード10P、10Nが夫々接続されている。制動抵抗器7P、7Nは、交流電動機5を減速制動したとき回生電力を消費する。一般的に船舶の制動動作による回生電力は数分オーダーの短時間だけ発生するので、制動抵抗器7P、7Nは短時間定格のものを選定する。半導体スイッチ6P、6Nのオンオフ制御によって制動電流は制御される。図示しない制動制御回路が半導体スイッチ6P、6Nにゲート制御パルスを与えるが、回生電力によって増大する直流電圧が所定値を超えないようにPWMの変調率を制御するのが普通である。   Between the positive potential P and the neutral point potential C, a series circuit of a semiconductor switch 6P and a braking resistor 7P is connected. Similarly, a series circuit of a semiconductor switch 6N and a braking resistor 7N is connected between the neutral point potential C and the negative potential N. The surface temperatures of the braking resistors 7P and 7N are detected by the temperature detecting elements 8P and 8N, respectively, and are given to the braking resistor protection circuit 20. Further, currents flowing through the braking resistors 7P and 7N are detected by the current detectors 9P and 9N, respectively, and are supplied to the braking resistor protection circuit 20. Flywheel diodes 10P and 10N are connected in parallel with the braking resistors 7P and 7N, respectively. The braking resistors 7P and 7N consume regenerative power when the AC motor 5 is decelerated and braked. In general, regenerative electric power generated by the braking operation of the ship is generated for a short time on the order of several minutes, so that the braking resistors 7P and 7N are selected for a short-time rating. The braking current is controlled by ON / OFF control of the semiconductor switches 6P and 6N. A braking control circuit (not shown) gives a gate control pulse to the semiconductor switches 6P and 6N, but it is normal to control the PWM modulation rate so that the DC voltage increased by the regenerative power does not exceed a predetermined value.

制動抵抗器保護回路20の内部構成について図1(b)を参照して以下に説明する。電流検出器9P、9Nで検出された制動電流は夫々RMS演算器21P、21Nに与えられる。RMS演算器21P、21Nにおいては、所定の監視時間T1の間の制動電流の実効値(RMS値)を演算しその演算結果を夫々比較回路23P、23Nに与える。比較回路23P、23Nにおいては、設定電流設定器22で予め設定された設定電流値(閾値)と上記RMS値を夫々比較し、上記RMS値が設定電流値を超えたとき、論理信号1を夫々出力し、OR回路24に与える。そしてOR回路24の出力はOR回路29の一方の入力となる。   The internal configuration of the braking resistor protection circuit 20 will be described below with reference to FIG. The braking currents detected by the current detectors 9P and 9N are given to the RMS calculators 21P and 21N, respectively. The RMS calculators 21P and 21N calculate the effective value (RMS value) of the braking current during the predetermined monitoring time T1, and give the calculation results to the comparison circuits 23P and 23N, respectively. In the comparison circuits 23P and 23N, the set current value (threshold value) preset by the set current setter 22 is compared with the RMS value, respectively, and when the RMS value exceeds the set current value, the logic signal 1 is respectively output. Output to the OR circuit 24. The output of the OR circuit 24 becomes one input of the OR circuit 29.

温度検出素子8P、8Nで検出された温度情報は夫々温度検出回路25P、25Nに与えられる。温度検出回路25P、25Nにおいては、定められた演算を行うことによって各々の検出温度を求め、その結果を夫々比較回路27P、27Nに与える。従って、温度検出素子8Pと温度検出回路25P、温度検出素子8Nと温度検出回路25Nの夫々の組合せで温度検出器を構成している。比較回路27P、27Nにおいては、設定温度設定器22で予め設定された設定温度(閾値)と上記検出温度を夫々比較し、上記検出温度が設定温度を超えたとき、論理信号1を夫々出力し、OR回路28に与える。そしてOR回路28の出力はOR回路29の他方の入力となり、OR回路29の出力が保護回路20の過熱保護信号となる。この過熱保護信号が出力されたとき、例えば3レベルインバータの動作を停止させる、あるいは半導体スイッチ6P、6Nをゲートブロックさせるようにする。   The temperature information detected by the temperature detection elements 8P and 8N is given to the temperature detection circuits 25P and 25N, respectively. In the temperature detection circuits 25P and 25N, each detection temperature is obtained by performing a predetermined calculation, and the result is given to the comparison circuits 27P and 27N, respectively. Accordingly, the temperature detector is configured by the combination of the temperature detection element 8P and the temperature detection circuit 25P, and the temperature detection element 8N and the temperature detection circuit 25N. In the comparison circuits 27P and 27N, the set temperature (threshold value) preset by the set temperature setter 22 is compared with the detected temperature, and when the detected temperature exceeds the set temperature, the logic signal 1 is output. To the OR circuit 28. The output of the OR circuit 28 becomes the other input of the OR circuit 29, and the output of the OR circuit 29 becomes the overheat protection signal of the protection circuit 20. When this overheat protection signal is output, for example, the operation of the three-level inverter is stopped, or the semiconductor switches 6P and 6N are gate-blocked.

以上のように構成された制動抵抗器保護回路20の動作について図2を参照して以下説明する。図2はシミュレーションを元に作成した制動抵抗器保護動作の説明図であり、縦軸は時間(s)、横軸には電流(%)が対数スケールで目盛ってある。実線で示した「抵抗の温度上限」は、ある電流を制動抵抗器に流したとき、保護すべき温度に到達する時間を示す。従ってこの温度上限に到達する時間以前に保護動作を行う必要がある。破線で示した「温度監視」は、ある電流を制動抵抗器に流したとき、温度検出素子による検出温度が上記温度上限に到達する時間を示している。この「温度監視」はA点で上記「抵抗の温度上限」とクロスしている。これはA点の電流以下の異常電流では温度検出器によって制動抵抗器を保護することが可能であるが、A点の電流以上の異常電流が流れたときには、温度検出器の検出遅れによって制動抵抗器の保護ができないことを示している。   The operation of the braking resistor protection circuit 20 configured as described above will be described below with reference to FIG. FIG. 2 is an explanatory diagram of the braking resistor protection operation created on the basis of simulation. The vertical axis shows time (s) and the horizontal axis shows current (%) on a logarithmic scale. The “resistance temperature upper limit” indicated by a solid line indicates the time to reach the temperature to be protected when a certain current is passed through the braking resistor. Therefore, it is necessary to perform the protection operation before the time for reaching the upper temperature limit. “Temperature monitoring” indicated by a broken line indicates a time during which a temperature detected by the temperature detecting element reaches the above temperature upper limit when a certain current is passed through the braking resistor. This “temperature monitoring” crosses the “resistance upper temperature limit” at point A. This is because it is possible to protect the braking resistor by the temperature detector at an abnormal current below the current at point A, but when an abnormal current above the current at point A flows, Indicates that the instrument cannot be protected.

これに対して、一点鎖線で示した「電流監視5分RMS」は、監視時間T1=5分間で電流の実効値を計測したとき、保護レベルに到達するまでの時間を示している。ここで保護レベルは100%以上の電流で、且つ所定の継続時間が経過したとき制動抵抗器の温度が「抵抗の温度上限」となる電流値に設定する。図2のB点がこの位置に相当する。図2から明らかなように、B点の電流を超える制動電流のとき、実線の「抵抗の温度上限」以下の継続時間で「電流監視5分RMS」が保護レベルに到達するので、制動抵抗器の保護は可能となる。逆にB点の電流以下の制動電流のときは制動抵抗器の保護はできない。   On the other hand, “current monitoring 5-minute RMS” indicated by a one-dot chain line indicates a time until the protection level is reached when the effective value of the current is measured with the monitoring time T1 = 5 minutes. Here, the protection level is set to a current value at which the temperature of the braking resistor becomes the “temperature upper limit of resistance” when the current is 100% or more and a predetermined duration has elapsed. The point B in FIG. 2 corresponds to this position. As is apparent from FIG. 2, when the braking current exceeds the current at point B, the “current monitoring 5 minutes RMS” reaches the protection level in the duration less than the solid line “resistance temperature upper limit”. Can be protected. Conversely, when the braking current is less than the current at point B, the braking resistor cannot be protected.

以上の説明により図の「温度監視」と「電流監視5分RMS」のOR条件で保護を行えば、「電流監視5分RMS」の保護レベルが温度検出素子の検出遅れによって制動抵抗器の保護ができない領域を補完するので、確実な保護を行うことが可能となる。実際の制動電流は一定ではないが、実効値計算の時間範囲内の変動分はRMS電流に含まれるので、制動抵抗器の熱時定数に応じて監視時間を選定すればRMS電流は図示した程度に概ね制動抵抗器の温度を模擬可能となる。保護レベルは下げるほど安全サイドではあるが、船舶の運用側から考えるとなるべく多くの制動動作が可能な方が好ましい。このためには、「抵抗の温度上昇」の曲線になるべく近い保護レベルとする必要がある。   As described above, if protection is performed under the OR condition of “temperature monitoring” and “current monitoring 5 minutes RMS” in the figure, the protection level of “current monitoring 5 minutes RMS” protects the braking resistor due to the detection delay of the temperature detection element. Since the area that cannot be used is complemented, reliable protection can be performed. Although the actual braking current is not constant, the fluctuation within the time range for calculating the effective value is included in the RMS current. Therefore, if the monitoring time is selected according to the thermal time constant of the braking resistor, the RMS current is as shown in the figure. In general, the temperature of the braking resistor can be simulated. The lower the protection level is, the safer it is, but it is preferable that as many braking operations as possible are possible from the operational side of the ship. For this purpose, the protection level needs to be as close as possible to the curve of “temperature rise of resistance”.

図2に二点鎖線で示すように監視時間T2=20分として「電流監視20分RMS」を適用すれば、高電流領域の保護レベルを上げることが可能となる。しかしこの場合は高電流領域の保護時間が「抵抗の温度上限」を超えてしまう。従って、図2の例では、「抵抗の温度上昇」の曲線になるべく近い保護レベルとするには「電流監視5分RMS」と「電流監視20分RMS」の中間の値を選定すべきことが分かる。   As shown by a two-dot chain line in FIG. 2, when “current monitoring 20 minutes RMS” is applied with the monitoring time T2 = 20 minutes, the protection level in the high current region can be increased. However, in this case, the protection time in the high current region exceeds the “resistance temperature upper limit”. Therefore, in the example of FIG. 2, an intermediate value between “current monitoring 5 minutes RMS” and “current monitoring 20 minutes RMS” should be selected in order to obtain a protection level as close as possible to the curve of “temperature rise of resistance”. I understand.

図3は本発明の実施例2に係る船舶用ドライブ装置の制動抵抗器保護回路のブロック構成図である。この実施例2の各部について、図1(b)の本発明の実施例1に係る制動抵抗器保護回路のブロック構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、RMS演算器21P、21Nとは異なる監視時間を有するRMS演算器31P、31Nを設け、2つの監視時間による保護を温度保護に加える構成とした点である。   FIG. 3 is a block diagram of the braking resistor protection circuit of the marine drive device according to the second embodiment of the present invention. In the second embodiment, the same components as those in the block configuration diagram of the braking resistor protection circuit according to the first embodiment of the present invention shown in FIG. The second embodiment is different from the first embodiment in that the RMS calculators 31P and 31N having monitoring times different from those of the RMS calculators 21P and 21N are provided, and protection by two monitoring times is added to the temperature protection. It is.

電流検出器9P、9Nで検出された制動電流は夫々RMS演算器21P、21Nに与えられると共にRMS演算器31P、31Nにも並列に与えられる。RMS演算器31P、31Nにおいては、所定の監視時間T2の間の制動電流の実効値(RMS値)を演算しその演算結果を夫々比較回路33P、33Nに与える。比較回路33P、33Nにおいては、設定電流設定器22で予め設定された設定電流値と上記RMS値を夫々比較し、上記RMS値が設定電流値を超えたとき、論理信号1を夫々出力し、OR回路34に与える。そしてOR回路34の出力はOR回路29Aの第3の入力となる。   The braking currents detected by the current detectors 9P and 9N are supplied to the RMS calculators 21P and 21N, and are also supplied to the RMS calculators 31P and 31N in parallel. In the RMS calculators 31P and 31N, the effective value (RMS value) of the braking current during the predetermined monitoring time T2 is calculated and the calculation results are given to the comparison circuits 33P and 33N, respectively. In the comparison circuits 33P and 33N, the set current value preset by the set current setting unit 22 is compared with the RMS value, respectively, and when the RMS value exceeds the set current value, the logic signal 1 is output. This is given to the OR circuit 34. The output of the OR circuit 34 becomes the third input of the OR circuit 29A.

図2に示したように監視時間を変えてRMS電流による保護を行うと、異なる特性の保護レベルが得られる。従って、実施例2のように異なる監視時間のRMS電流による保護を組み合わせて使用すると、低電流領域から高電流領域に渡ってより木目の細かい保護を行うことか可能となる場合がある。   As shown in FIG. 2, when protection is performed with the RMS current while changing the monitoring time, protection levels having different characteristics can be obtained. Therefore, when protection using RMS currents with different monitoring times as in the second embodiment is used in combination, it may be possible to perform finer protection from the low current region to the high current region.

以上本発明のいくつかの実施例を説明したが、これらの実施例は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、実施例1では3レベルインバータ4を用いる例で説明したが、インバータは2レベルであっても良い。この場合はコンバータ、直流コンデンサ、半導体スイッチ、制動抵抗器等は全て1種類となり、制動抵抗器保護回路のRMS演算器も1種類で良い。   For example, in the first embodiment, the example using the three-level inverter 4 has been described. However, the inverter may be two-level. In this case, there are only one type of converter, DC capacitor, semiconductor switch, braking resistor, etc., and only one type of RMS computing unit for the braking resistor protection circuit.

また、実施例においては電流のRMS演算を行う例で説明したが、必ずしもRMS演算を行う必要ななく、監視時間における電流の大きさを求めるようにしても良い。ここで電流の大きさとは、絶対値の平均値、2乗の平均値などを意味する。   In the embodiment, the example of performing the RMS calculation of the current has been described. However, it is not always necessary to perform the RMS calculation, and the magnitude of the current during the monitoring time may be obtained. Here, the magnitude of the current means an average value of absolute values, an average value of squares, and the like.

また、実施例2において、RMS演算器31P、31Nの比較対象保護レベルである設定電流値は設定電流設定器22で設定された値としたが、設定電流設定器を別に設け、異なった設定電流値としても良い。   In the second embodiment, the set current value that is the comparison target protection level of the RMS calculators 31P and 31N is set to the value set by the set current setter 22. However, the set current setter is provided separately, and a different set current is set. It is good as a value.

また、制動抵抗器保護回路の過熱保護出力を2段階に構成し、最初の段階で警報を、次の段階で3レベルインバータまたは半導体スイッチのゲートブロックを行うようにしても良い。この場合には温度あるいは電流の閾値を2段階としても良いし、あるいは実施例2の構成において、何れかの監視時間の設定電流だけを2段階としても良い。   Further, the overheat protection output of the braking resistor protection circuit may be configured in two stages so that an alarm is given in the first stage and a gate block of a three-level inverter or semiconductor switch is given in the next stage. In this case, the temperature or current threshold may be set in two stages, or in the configuration of the second embodiment, only the set current for any monitoring time may be set in two stages.

更に、実施例2では2種類の監視時間のRMS電流による保護を組み合わせて使用する例を説明したが、3種類以上を組み合わせても良い。   Furthermore, in the second embodiment, an example in which protection by RMS current of two types of monitoring times is used in combination has been described, but three or more types may be combined.

1 入力変圧器
2P 正側コンバータ
2N 負側コンバータ
3P、3N 直流コンデンサ
4 3レベルインバータ
5 交流電動機
6P、6N 半導体スイッチ
7P、7N 制動抵抗器
8P、8N 温度検出素子
9P、9N 電流検出器
10P、10N フライホイールダイオード
20 制動抵抗器保護回路
21P、21N RMS演算器
22 電流設定器
23P、23N 比較器
24、25、25A OR回路
25P、25N 温度検出回路
26 温度設定器
27P、27N 比較器
28 OR回路
29、29A OR回路
31P、31N RMS演算器2
33P、33N 比較器
34 OR回路
DESCRIPTION OF SYMBOLS 1 Input transformer 2P Positive side converter 2N Negative side converter 3P, 3N DC capacitor 4 3 level inverter 5 AC motor 6P, 6N Semiconductor switch 7P, 7N Braking resistor 8P, 8N Temperature detection element 9P, 9N Current detector 10P, 10N Flywheel diode 20 Braking resistor protection circuit 21P, 21N RMS calculator 22 Current setting device 23P, 23N Comparator 24, 25, 25A OR circuit 25P, 25N Temperature detection circuit 26 Temperature setting device 27P, 27N Comparator 28 OR circuit 29 29A OR circuit 31P, 31N RMS calculator 2
33P, 33N Comparator 34 OR circuit

Claims (5)

発電機から給電される交流電圧を直流に変換するコンバータと、
このコンバータの出力電圧を平滑する直流コンデンサと、
このコンバータの出力を交流電圧に変換して交流電動機を駆動するインバータと、
前記交流電動機の制動時の回生電力を吸収するために前記コンバータの出力に並列に接続された制動抵抗器と半導体スイッチの直列回路と、
前記制動抵抗器の温度を検出する温度検出器と、
前記制動抵抗器に流れる電流を検出する電流検出器と、
前記温度検出器の検出温度と前記電流検出器の検出電流を入力とし、前記制動抵抗器の過熱保護出力を出力する制動抵抗器保護回路と
を具備し、
前記制動抵抗器保護回路は、
所定の第1の監視時間における前記検出電流の大きさが所定の第1の閾値を超えたか、または前記検出温度が所定の閾値を超えたとき、前記過熱保護出力を得るようにしたことを特徴とする船舶用ドライブ装置。
A converter that converts AC voltage fed from the generator into DC,
A DC capacitor that smoothes the output voltage of this converter;
An inverter that drives the AC motor by converting the output of the converter into an AC voltage;
A series circuit of a braking resistor and a semiconductor switch connected in parallel to the output of the converter to absorb regenerative power during braking of the AC motor;
A temperature detector for detecting the temperature of the braking resistor;
A current detector for detecting a current flowing through the braking resistor;
A braking resistor protection circuit that receives the detected temperature of the temperature detector and the detected current of the current detector as input and outputs an overheat protection output of the braking resistor;
The braking resistor protection circuit is
The overheat protection output is obtained when the magnitude of the detected current at a predetermined first monitoring time exceeds a predetermined first threshold or when the detected temperature exceeds a predetermined threshold. A marine drive device.
前記インバータは3レベルインバータであり、
前記コンバータ、前記直流コンデンサ、前記直列回路、前記制動抵抗器、前記温度検出器及び前記電流検出器の各々は正側及び負側の2つから成り、
前記制動抵抗器保護回路は、
所定の第1の監視時間における正側の前記電流検出器または負側の前記電流検出器の検出電流の大きさが所定の第1の閾値を超えたとき、前記過熱保護出力を得るようにしたことを特徴とする請求項1に記載の船舶のドライブ装置。
The inverter is a three-level inverter;
Each of the converter, the DC capacitor, the series circuit, the braking resistor, the temperature detector, and the current detector is composed of two on the positive side and the negative side,
The braking resistor protection circuit is
The overheat protection output is obtained when the magnitude of the detected current of the positive current detector or the negative current detector in a predetermined first monitoring time exceeds a predetermined first threshold. The ship drive device according to claim 1, wherein:
前記制動抵抗器保護回路は、
所定の第2の監視時間における前記検出電流の大きさが所定の第2の閾値を超えたとき、前記過熱保護出力を得るようにしたことを特徴とする請求項1に記載の船舶用ドライブ装置。
The braking resistor protection circuit is
2. The marine drive device according to claim 1, wherein the overheat protection output is obtained when the magnitude of the detection current in a predetermined second monitoring time exceeds a predetermined second threshold value. .
前記検出電流の大きさはRMS値(実効値)であることを特徴とする請求項1乃至請求項3に記載の船舶用ドライブ装置。   4. The marine drive device according to claim 1, wherein the magnitude of the detected current is an RMS value (effective value). 発電機から給電される交流電圧を直流に変換するコンバータと、
このコンバータの出力電圧を平滑する直流コンデンサと、
このコンバータの出力を交流電圧に変換して交流電動機を駆動するインバータと、
前記交流電動機の制動時の回生電力を吸収するために前記コンバータの出力に並列に接続された制動抵抗器と半導体スイッチの直列回路と、
前記制動抵抗器の温度を検出する温度検出器と、
前記制動抵抗器に流れる電流を検出する電流検出器と
を具備する船舶用ドライブ装置において、
所定の第1の監視時間における前記電流検出器の検出電流の大きさが所定の第1の閾値を超えたか、または前記温度検出器の検出温度が所定の閾値を超えたとき、前記制動抵抗器を保護するための過加熱保護出力を得るようにしたことを特徴とする船舶用ドライブ装置用制動抵抗器の保護方法。
A converter that converts AC voltage fed from the generator into DC,
A DC capacitor that smoothes the output voltage of this converter;
An inverter that drives the AC motor by converting the output of the converter into an AC voltage;
A series circuit of a braking resistor and a semiconductor switch connected in parallel to the output of the converter to absorb regenerative power during braking of the AC motor;
A temperature detector for detecting the temperature of the braking resistor;
In a marine drive device comprising a current detector for detecting a current flowing through the braking resistor,
The braking resistor when the magnitude of the detection current of the current detector in a predetermined first monitoring time exceeds a predetermined first threshold or when the detected temperature of the temperature detector exceeds a predetermined threshold A protection method for a braking resistor for a marine drive device, characterized in that an overheating protection output for protecting the vehicle is obtained.
JP2011158636A 2011-07-20 2011-07-20 Ship drive device and method for protecting braking resistor for the device Active JP5876681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158636A JP5876681B2 (en) 2011-07-20 2011-07-20 Ship drive device and method for protecting braking resistor for the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158636A JP5876681B2 (en) 2011-07-20 2011-07-20 Ship drive device and method for protecting braking resistor for the device

Publications (2)

Publication Number Publication Date
JP2013027114A true JP2013027114A (en) 2013-02-04
JP5876681B2 JP5876681B2 (en) 2016-03-02

Family

ID=47784906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158636A Active JP5876681B2 (en) 2011-07-20 2011-07-20 Ship drive device and method for protecting braking resistor for the device

Country Status (1)

Country Link
JP (1) JP5876681B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167251A1 (en) * 2015-04-16 2016-10-20 株式会社東芝 Device for stabilizing failure in electrical power system and method for use in same
JP2019217817A (en) * 2018-06-15 2019-12-26 東芝三菱電機産業システム株式会社 Power control device for vessel
CN112838753A (en) * 2020-11-13 2021-05-25 南京中船绿洲机器有限公司 Method for protecting frequency converter under high-current condition of separator
CN113114072A (en) * 2021-04-13 2021-07-13 配天机器人技术有限公司 Servo driver and regenerative braking control method and system thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180089681A (en) 2017-02-01 2018-08-09 엘에스산전 주식회사 Apparatus for controlling inverter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136675A (en) * 1996-10-29 1998-05-22 Toyo Electric Mfg Co Ltd Overheat protection equipment for regenerative breaking equipment
JP2001086764A (en) * 1999-09-14 2001-03-30 Meidensha Corp Inverter
JP2004229493A (en) * 2003-01-24 2004-08-12 Toshiba Internatl Corp Inverter drive system
JP2007125909A (en) * 2005-11-01 2007-05-24 Fuji Electric Systems Co Ltd Speed reducing operation method of electric propulsion device for vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136675A (en) * 1996-10-29 1998-05-22 Toyo Electric Mfg Co Ltd Overheat protection equipment for regenerative breaking equipment
JP2001086764A (en) * 1999-09-14 2001-03-30 Meidensha Corp Inverter
JP2004229493A (en) * 2003-01-24 2004-08-12 Toshiba Internatl Corp Inverter drive system
JP2007125909A (en) * 2005-11-01 2007-05-24 Fuji Electric Systems Co Ltd Speed reducing operation method of electric propulsion device for vessel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167251A1 (en) * 2015-04-16 2016-10-20 株式会社東芝 Device for stabilizing failure in electrical power system and method for use in same
JP2019217817A (en) * 2018-06-15 2019-12-26 東芝三菱電機産業システム株式会社 Power control device for vessel
CN112838753A (en) * 2020-11-13 2021-05-25 南京中船绿洲机器有限公司 Method for protecting frequency converter under high-current condition of separator
CN113114072A (en) * 2021-04-13 2021-07-13 配天机器人技术有限公司 Servo driver and regenerative braking control method and system thereof
CN113114072B (en) * 2021-04-13 2023-07-28 配天机器人技术有限公司 Servo driver and regenerative braking control method and system thereof

Also Published As

Publication number Publication date
JP5876681B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP4847597B2 (en) Motor drive device having power regeneration operation mode switching function
JP5876681B2 (en) Ship drive device and method for protecting braking resistor for the device
WO2011052623A1 (en) Inverter device
JP5026553B2 (en) Motor drive device having function of dynamically switching conversion operation mode of AC / DC converter
CN107112922B (en) Converter and method for operating a converter
JP2019097305A (en) Power semiconductor module and power conversion device
US9825578B2 (en) Control device
JP2018046647A (en) Inverter device and electrical compressor for vehicle equipped with the same
JPWO2018230142A1 (en) Power tool control device
KR100949763B1 (en) Protect circuit for igbt overcurrent of train
JP2012239247A (en) Motor control device
JP5455756B2 (en) Power converter
JP2010093996A (en) Power conversion device
JP5887854B2 (en) Anomaly detection device
CN105471358B (en) Control device of electric motor
JP5978820B2 (en) Inverter control device
JP7193248B2 (en) power converter
JP6266478B2 (en) Power converter
JP6093817B2 (en) Motor control device
JP6417268B2 (en) Power converter
JP6312112B2 (en) Power converter
JPWO2019163320A1 (en) Power tool control circuit
EP3242384A1 (en) Method and apparatus for thermal balancing of power semiconductor components in inverter
WO2020208980A1 (en) Motor drive device and servo dc power supply system
JP5933311B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5876681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250