WO2016167176A1 - Electrically insulating oil base oil for oil-filled electrical device, electrically insulating oil containing same, and oil-filled electrical device - Google Patents

Electrically insulating oil base oil for oil-filled electrical device, electrically insulating oil containing same, and oil-filled electrical device Download PDF

Info

Publication number
WO2016167176A1
WO2016167176A1 PCT/JP2016/061409 JP2016061409W WO2016167176A1 WO 2016167176 A1 WO2016167176 A1 WO 2016167176A1 JP 2016061409 W JP2016061409 W JP 2016061409W WO 2016167176 A1 WO2016167176 A1 WO 2016167176A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
phenyl
group
insulating oil
acid
Prior art date
Application number
PCT/JP2016/061409
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 貴志
智史 畠田
昭範 金谷
孝明 狩野
幸生 笹谷
慎太郎 小倉
侑也 佐野
Original Assignee
ライオン・スペシャリティ・ケミカルズ株式会社
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン・スペシャリティ・ケミカルズ株式会社, 日新電機株式会社 filed Critical ライオン・スペシャリティ・ケミカルズ株式会社
Priority to CN201680021478.XA priority Critical patent/CN107533878B/en
Priority to JP2017512281A priority patent/JP6655607B2/en
Publication of WO2016167176A1 publication Critical patent/WO2016167176A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/34Esters of monocarboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • H01B3/22Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils hydrocarbons

Definitions

  • the present invention relates to an electric insulating oil base oil for oil-filled electric equipment, an electric insulating oil containing the same, and an oil-filled electric equipment.
  • Patent Document 1 discloses an electrical insulating oil containing vegetable oil.
  • Patent Document 2 discloses that a higher fatty acid ester solvent containing a higher fatty acid ester compound is effective for applications such as electrical insulating oil.
  • Patent Document 2 cannot provide sufficient partial discharge characteristics.
  • the present invention has been made in view of the above circumstances, and an object thereof is an electrically insulating oil base oil for oil-filled electrical equipment having excellent partial discharge characteristics and excellent biodegradability.
  • An electric insulating oil base oil for oil-filled electrical equipment which contains a fatty acid ester (A) represented by the following general formula (I).
  • R 1 —COO—R 2 (I)
  • R 1 is a linear or branched hydrocarbon group having 5 to 17 carbon atoms
  • R 2 is an arylalkyl having 6 to 10 carbon atoms. It is a group.
  • the electrical insulating oil base oil for oil-filled electrical equipment of the present invention has excellent partial discharge characteristics and excellent biodegradability.
  • the electrical insulating oil base oil for oil-filled electrical equipment of the present invention contains a specific fatty acid ester (component (A)).
  • the biodegradability of the electrical insulating base oil is preferably 60% or more, more preferably 70% or more, further preferably 75% or more, particularly preferably 80% or more, and may be 100%.
  • the biodegradability is a measured value after 28 days measured in accordance with the Manometric Respirometry Test (Guideline 301F, 17th July 1992) defined in OECD Guideline for Testing of Chemicals. Kinematic viscosity at 40 ° C.
  • the electrically insulating base oil is preferably 0.1 ⁇ 8mm 2 / s, more preferably 0.5 ⁇ 4mm 2 / s.
  • the kinematic viscosity of the electrical insulating oil base oil is within the above preferred range, the cooling effect of the oil-filled electrical device can be easily obtained.
  • the kinematic viscosity can be measured according to JIS K2283: 2000 (crude oil and petroleum products—kinematic viscosity test method and viscosity index calculation method).
  • the pour point of the electric insulating base oil is preferably ⁇ 25 ° C. or less, more preferably less than ⁇ 35 ° C.
  • pour point of the electric insulating oil base oil is not more than the above upper limit value, it becomes easy to obtain an electric insulating oil excellent in versatility that is not restricted in use even in cold regions.
  • the pour point can be measured according to “3.
  • insulation means that the dielectric breakdown voltage is 40 kV or more when measured in accordance with “22. Dielectric breakdown voltage test” of JIS C 2101: 2010 (electrical insulation oil test method). Say.
  • the component (A) is a fatty acid ester represented by the following general formula (I).
  • the electrical insulating oil base oil of the present invention contains the component (A), whereby partial discharge characteristics are enhanced and biodegradability is enhanced.
  • R 1 is a linear or branched hydrocarbon group having 5 to 17 carbon atoms
  • R 2 is an arylalkyl having 6 to 10 carbon atoms. It is a group.
  • R 1 is a linear hydrocarbon group having 5 to 17 carbon atoms or a branched hydrocarbon group having 5 to 17 carbon atoms. 11 branched-chain hydrocarbon groups are preferable, and straight-chain hydrocarbon groups having 5 to 9 carbon atoms or branched-chain hydrocarbon groups having 5 to 9 carbon atoms are more preferable.
  • the carbon number of R 1 is in the above range, partial discharge characteristics are enhanced. Further, if the carbon number of R 1 is less than 5, the plasticity of the resin member becomes strong and the resin member may be deformed. When the carbon number of R 1 is more than 17, the kinematic viscosity becomes high, and there is a possibility that the cooling effect for the oil-filled electrical device cannot be sufficiently obtained.
  • R 1 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 1 include a linear or branched alkyl group having 5 to 17 carbon atoms, an alkenyl group, and an alkynyl group.
  • R 1 include pentyl, hexyl, heptyl, isoheptyl, octyl, isooctyl, nonyl, isononyl, decyl, undecyl, dodecyl, tridecyl, tridecenyl, tetradecyl, pentadecyl Group, pentadecenyl group, hexadecyl group, heptadecyl group, heptadecenyl group, heptadecadienyl group, heptadecatrienyl group, heptadecatetraenyl group and the like.
  • R 1 is preferably a branched hydrocarbon group.
  • the branched hydrocarbon group in the present invention includes those in which the carbon atom bonded to the carbon atom of the carbonyl group in the formula (I) such as 1-ethylpentyl group is a secondary carbon atom. It is.
  • R 2 is an arylalkyl group having 6 to 10 carbon atoms.
  • R 2 include benzyl group, 2-phenylethyl group, 1-phenylethyl group, 2-phenyl-1-propyl group, 3-phenyl-1-propyl group, 1-phenyl-1-butyl group and the like. Can be mentioned. Among these, benzyl group, 2-phenylethyl group, and 1-phenylethyl group are preferable as R 2 from the viewpoint that good partial discharge characteristics are easily obtained.
  • Component (A) includes benzyl caproate, 2-phenylethyl caproate, 1-phenylethyl caproate, 2-phenyl-1-propyl caproate, caproic acid 3 because the partial discharge extinction voltage is further improved.
  • benzyl caproate, 2-phenylethyl caproate, 1-phenylethyl caproate, 2-phenyl caproate, and the like are improved in partial discharge extinction voltage and good low-temperature fluidity.
  • Examples of the method for producing the component (A) include: (i) a method by transesterification between an oil and fat and an alcohol having an arylalkyl group having 6 to 10 carbon atoms; and (ii) an aliphatic alkyl group having 6 to 10 carbon atoms. And (iii) a method by transesterification between a fatty acid ester and an alcohol having an arylalkyl group having 6 to 10 carbon atoms.
  • Examples of the fats and oils in the method (i) include olive oil, cacao oil, perilla oil, camellia oil, peanut oil, soybean oil, rapeseed oil, mustard oil, dehydrated castor oil, tung oil, safflower oil, linseed oil, corn oil, sunflower oil Corn oil, cottonseed oil, sesame oil, rice bran oil, cannabis oil, evening primrose oil, palm oil, palm kernel oil, coconut oil and the like.
  • the fats and oils made edible etc. may be reused as the said fats and oils.
  • palm oil, palm kernel oil, and coconut oil are preferable from the viewpoint of excellent oxidation stability.
  • Palm kernel oil and palm oil are more preferable from the point which the partial discharge characteristic of a component is easy to be improved.
  • the method (i) can be performed by a conventionally known method.
  • caproic acid As the fatty acid in the method (ii), caproic acid, enanthic acid, caprylic acid, isooctylic acid, isononanoic acid, capric acid, isodecanoic acid, undecyl acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, myristoleic acid , Palmitic acid, palmitoleic acid, heptadecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, vaccenic acid, stearidonic acid and the like.
  • fatty acid a fatty acid made edible or the like may be reused.
  • the fatty acid include caproic acid, enanthic acid, caprylic acid, isooctylic acid, isononanoic acid, capric acid, isodecanoic acid, myristoleic acid, palmitoleic acid, olein because the partial discharge characteristics of the component (A) are more easily improved.
  • Acid, linoleic acid, linolenic acid, elaidic acid, vaccenic acid and stearidonic acid are preferred.
  • caproic acid enanthic acid, caprylic acid, isooctylic acid, isononanoic acid, capric acid are preferred because the partial discharge characteristics of component (A) are easily enhanced and good low-temperature fluidity is easily obtained. More preferred.
  • the method (ii) can be carried out by a known method. For example, while gradually raising the temperature from room temperature to 200 ° C., the pressure is gradually reduced from normal pressure to 0.7 KPa, and water produced as a by-product is removed. This can be done by removing.
  • the catalyst used in the method (ii) is not particularly limited, and examples thereof include acid catalysts such as sulfuric acid, p-toluenesulfonic acid (p-TS), benzenesulfonic acid (BS), and methanesulfonic acid; ZrO 2 , TiO 2 , SiO 2 , PO 4 , Al 2 O 3 , ZnO, and other inorganic oxide catalysts; lithium, cesium, sodium, potassium, magnesium, barium, calcium, and other hydroxides, bicarbonates, carbonates, sodium Basic catalysts such as methoxide, potassium methoxide; organotitanium compound catalysts such as tetraisopropyl titanate, tetra n-butyl titanate, tetraethanolamine titanate, tetrastearyl titanate; normal propyl zirconate, normal butyl zirconate, zirconium tetraacetyl Acetonate
  • the organic zirconium compound catalysts such
  • Examples of the fatty acid ester in the method (iii) include fatty acid ester compounds in the method (ii).
  • the ester compound comprised from the same fatty acid as a preferable fatty acid in the method of (ii) is preferable.
  • the method (iii) can be carried out by a known method.
  • alcohols produced as a by-product by gradually reducing the pressure from normal pressure to 0.7 KPa while gradually raising the temperature from room temperature to 200 ° C. This can be done by removing.
  • the catalyst used in the method (iii) is not particularly limited, and examples thereof include hydroxides such as lithium, cesium, sodium, potassium, magnesium, barium, and calcium; hydrogen carbonate, carbonate, sodium methoxide, Basic catalysts such as potassium methoxide; organotitanium compound catalysts such as tetraisopropyl titanate, tetra n-butyl titanate, tetraethanolamine titanate, tetrastearyl titanate; normal propyl zirconate, normal butyl zirconate, zirconium tetraacetylacetonate, Examples include organic zirconium compound catalysts such as zirconium monoacetylacetonate.
  • purification such as alcohol removal, glycerol separation, inorganic component removal, neutralization, water washing, distillation, adsorption treatment, deaeration treatment, etc. Is preferably performed. Among these, it is preferable that an adsorption process and / or a deaeration process are performed.
  • the adsorption treatment is performed, the acid value of the electrically insulating oil base oil is reduced, and the electrical characteristics are easily improved.
  • the deaeration process is performed, the moisture content of the electric insulating oil base oil is reduced and the electric characteristics are easily improved.
  • the adsorption treatment is performed by adding an adsorbent such as activated clay or activated alumina to the reaction solution after completion of the reaction, adsorbing a free fatty acid, an acid catalyst or the like, and then removing the adsorbent by filtration.
  • an adsorbent such as activated clay or activated alumina
  • Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 inorganic synthetic adsorbent mainly composed of Mg, Al, Si, etc.
  • Kyodo Mug series such as Kyowa Chemical Industry Co., Ltd., Kyowa Mug series such as Kyowa Chemical Industry Co., Ltd., and Tomita AD100, 500, 600 and 700 (Tomita Pharmaceutical Co., Ltd.) , Product name) and the like.
  • the adsorbent is preferably added in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of the ester compound obtained by the reaction. Further, the adsorption treatment is preferably performed at a temperature of 20 to 160 ° C.
  • the acid value of the component (A) can be preferably reduced to 0.0001 to 0.01 mg KOH / g, more preferably 0.0001 to 0.005 mg KOH / g, and the electrical characteristics can be further enhanced.
  • the acid value can be measured by the method of “16. Acid value test” of JIS C 2101: 2010 (electrical insulation oil test method).
  • the inside of the reactor is purged with nitrogen, depressurized at 20 to 160 ° C. and a vacuum degree of 0.1 kPa to 80 kPa for 10 minutes to 5 hours, and water and air are distilled off from the reaction solution after the reaction. Done.
  • a compound azeotropically with water such as toluene, isopropyl alcohol, ethanol, pyridine or the like may be added in an amount of 0.1 to 3 mol with respect to the water in the reaction solution to carry out azeotropy.
  • the water content in the component (A) can be reduced to preferably 0.1 to 100 ppm, more preferably 0.1 to 50 ppm.
  • the amount of moisture can be measured by the method of “20. Moisture test” of JIS C 2101: 2010 (electrical insulation oil test method).
  • the component (A) is preferably stored under a nitrogen atmosphere or dry air so as not to absorb moisture again.
  • the component (A) is stored by adding 0.1 to 30 parts by mass of a dehydrating agent such as Molecular Sieves 4A (trade name, manufactured by Junsei Chemical Co., Ltd.) to 100 parts by mass of the component (A). Also good. Thereby, a moisture content can be maintained in said preferable range for a long period of time.
  • the content of the component (A) is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 40% by mass or more, and 100% by mass, ie, electric, based on the total mass of the electric insulating oil base oil.
  • An insulating oil base oil may be comprised only from (A) component.
  • the content of the component (A) is preferably 10 to 100% by mass, more preferably 20 to 90% by mass, and still more preferably 40 to 80% by mass with respect to the total mass of the electric insulating oil base oil.
  • the component (B) is at least one compound selected from the group consisting of alkylbenzene, alkylnaphthalene, diarylalkane, triarylalkane and mineral oil.
  • Alkylbenzene is an aromatic hydrocarbon having an alkyl group bonded to one benzene ring.
  • the alkyl group may be linear or branched.
  • One alkyl group or a plurality of alkyl groups may be bonded to the benzene ring.
  • Examples of the alkyl benzene include monoalkyl benzene, dialkyl benzene, trialkyl benzene, and tetraalkyl benzene.
  • the alkyl group of the alkylbenzene preferably has 1 to 30 carbon atoms, more preferably 3 to 30 carbon atoms, still more preferably 4 to 24 carbon atoms, and particularly preferably 10 to 20 carbon atoms.
  • alkylbenzene those having 1 to 4 alkyl groups bonded to the benzene ring are preferable.
  • the alkylbenzene is preferably one having a total carbon number of 3 to 30 alkyl groups bonded to the benzene ring, more preferably a total carbon number of 4 to 24 alkyl groups, and a total carbon number of alkyl groups of 10 to 10. More preferred are those of ⁇ 20.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, heptadecyl group.
  • These alkyl groups may be linear or branched.
  • alkylbenzene those in which the total number of carbon atoms of the alkyl group bonded to the benzene ring is 10 to 20 are preferable from the viewpoint that the partial discharge extinction voltage is easily increased.
  • the alkyl group is preferably a linear or branched decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, heptadecyl group, octadecyl group, nonadecyl group or icosyl group. Any one of alkylbenzenes may be used alone, or two or more thereof may be used in combination.
  • alkylbenzene examples include decylbenzene, undecylbenzene, dodecylbenzene, tridecylbenzene, tetradecylbenzene, heptadecylbenzene, octadecylbenzene, nonadecylbenzene, icosylbenzene and the like.
  • the method for producing alkylbenzene is not particularly limited, and includes known methods.
  • Examples of the production method include a method of alkylating a raw material such as benzene, toluene, xylene, ethylbenzene, methylethylbenzene, diethylbenzene and a mixture thereof with an alkylating agent.
  • Examples of the alkylating agent include linear or branched olefins obtained by polymerization of lower monoolefins such as ethylene, propylene, butene, and isobutylene, waxes, heavy oils, petroleum fractions, polyethylene, polypropylene, and the like.
  • Linear or branched olefins obtained by cracking, or linear olefins obtained by separating n-paraffins from petroleum fractions such as kerosene and light oil and olefinating them with a catalyst, as well as these A mixture etc. are mentioned.
  • Alkylnaphthalene is an aromatic hydrocarbon in which an alkyl group is bonded to one naphthalene ring.
  • the alkyl group include the same alkyl groups bonded to the above alkylbenzene.
  • One or more alkyl groups may be bonded to the naphthalene ring.
  • the alkyl group of the alkylnaphthalene preferably has 1 to 30 carbon atoms, more preferably 3 to 30 carbon atoms, still more preferably 10 to 25 carbon atoms, and particularly preferably 14 to 20 carbon atoms.
  • the alkylnaphthalene those having 1 to 4 alkyl groups bonded to the naphthalene ring are preferable.
  • the alkylnaphthalene is preferably one having a total carbon number of 3 to 30 alkyl groups bonded to the naphthalene ring from the viewpoint of easily increasing the partial discharge extinction voltage, and having a total carbon number of 6 to 24 alkyl groups. More preferred are those having an alkyl group with a total carbon number of 14-20.
  • One kind of alkylnaphthalene may be used alone, or two or more kinds thereof may be used in combination.
  • alkylnaphthalene examples include decylnaphthalene, undecylnaphthalene, dodecylnaphthalene, tridecylnaphthalene, tetradecylnaphthalene, heptadecylnaphthalene, octadecylnaphthalene, nonadecylnaphthalene, icosylnaphthalene and the like.
  • alkylnaphthalene is not particularly limited, and can be produced by various known methods.
  • hydrocarbons having 14 to 20 carbon atoms hydrocarbons having 14 to 20 carbon atoms, olefins having 14 to 20 carbon atoms, solid acids such as sulfuric acid, phosphoric acid, silicotungstic acid, hydrofluoric acid, etc., acidic clay, activated clay, etc.
  • acid catalyst such as a Friedel-Crafts catalyst which is an acidic substance or a metal halide such as aluminum chloride and zinc chloride.
  • diarylalkane examples include alkane compounds having two aromatic hydrocarbon groups in the molecule.
  • alkane compounds having two aromatic hydrocarbon groups in the molecule For example, diphenylmethane, benzyltoluene, benzylxylene, phenyl-sec-butylphenylmethane, di-sec-butyldiphenylmethane, diphenylethane , Phenylethylphenylethane, phenylcumylethane, diisopropylphenylethane, phenyltolylethane, di-sec-butylphenylethane, di-tert-butylphenylethane, phenylxylylethane, phenyl-sec-butylphenylethane, diphenylpropane , Diphenylbutane, ditolylethane, dixylyloctane, dixylyldecane and the like.
  • phenylethylphenylethane and phenylxylylethane are preferred.
  • phenylethylphenylethane include 1-phenyl-1- (2-ethylphenyl) ethane, 1-phenyl-1- (3-ethylphenyl) ethane, 1-phenyl-1- (4-ethylphenyl) ethane, -Phenyl-2- (2-ethylphenyl) ethane and the like.
  • phenylxylylethane examples include 1-phenyl-1- (2,3-dimethylphenyl) ethane, 1-phenyl-1- (2,4-dimethylphenyl) ethane, 1-phenyl-1- (2,5- Dimethylphenyl) ethane, 1-phenyl-1- (2,6-dimethylphenyl) ethane, 1-phenyl-1- (3,4-dimethylphenyl) ethane, 1-phenyl-1- (3,5-dimethylphenyl) ) Ethane, 1-phenyl-2- (2,3-dimethylphenyl) ethane and the like.
  • the total number of carbon atoms in the diarylalkane is preferably 13 to 30, and more preferably 13 to 20.
  • One kind of diarylalkane may be used alone, or two or more kinds thereof may be used in combination.
  • triarylalkane examples include alkane compounds having three aromatic hydrocarbon groups in the molecule.
  • dibenzylbenzene, dibenzyltoluene, dibenzylxylene, and alkyl group substitution products thereof can be used.
  • the total number of carbon atoms of the triarylalkane is preferably 19 to 30, and more preferably 19 to 26.
  • One triarylalkane may be used alone, or two or more triarylalkanes may be used in combination.
  • mineral oil what was distilled and refined from heavy oil is mentioned.
  • the mineral oil include, for example, solvent removal, solvent extraction, and hydrogenation of a lubricating oil fraction obtained by atmospheric distillation and vacuum distillation of paraffinic crude oil, intermediate crude oil, or naphthenic crude oil.
  • examples thereof include paraffinic mineral oil or naphthenic mineral oil that has been subjected to one or more purification methods such as decomposition, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment.
  • highly refined mineral oil is preferable because it is more excellent in thermal stability.
  • the mineral oil a distillate obtained by subjecting paraffin-based crude oil, intermediate-based crude oil or naphthenic-based crude oil to atmospheric distillation or vacuum distillation residual oil is purified according to a conventional method. Refined oil obtained by further deep dewaxing after purification, hydrotreated oil obtained by hydrotreatment, and the like.
  • the mineral oil preferably has a kinematic viscosity at 40 ° C. of 0.1 to 100 mm 2 / s, more preferably 0.1 to 50 mm 2 / s, and still more preferably 0.1 to 10 mm 2 / s. .
  • the kinematic viscosity may be adjusted with one kind of mineral oil, or may be adjusted by mixing two or more kinds of mineral oils having different kinematic viscosities.
  • alkylbenzene and alkylnaphthalene are preferable, and alkylbenzene is more preferable from the viewpoint of excellent balance between partial discharge characteristics and biodegradability when used in combination with the component (A).
  • alkylbenzenes monoalkylbenzene having a linear alkyl group having 10 to 20 carbon atoms is particularly preferable.
  • any one type may be used alone, or two or more types may be used in combination.
  • the content of the component (B) is preferably 0 to 80% by mass, more preferably 10 to 80% by mass, still more preferably 20 to 70% by mass, and more preferably 35 to 65% with respect to the total mass of the electric insulating oil base oil. Mass% is particularly preferred. When the content of the component (B) is equal to or higher than the lower limit, the partial discharge extinction voltage can be easily increased and the low temperature fluidity can be easily increased.
  • the mass ratio represented by component (A) / component (B) [mass ratio of component (A) to component (B)] is 90/10 to 20/80 is preferable, 80/20 to 30/70 is more preferable, and 65/35 to 35/65 is still more preferable.
  • the mass ratio represented by the component (A) / component (B) is within the above range, an electrically insulating oil base oil excellent in partial discharge characteristics and biodegradability is easily obtained.
  • the total content of the component (A) and the component (B) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, based on the total mass of the electrical insulating oil base oil. 100% by mass, that is, the electric insulating oil base oil may be composed only of the component (A) and the component (B).
  • the total content of the component (A) and the component (B) is in the preferred range, partial discharge characteristics and biodegradability are easily improved.
  • the electrical insulating oil base oil of the present invention comprises benzyl caproate, 2-phenylethyl caproate, 1-phenylethyl caproate, 2-phenyl-1-propyl caproate, 3-phenyl-1-propyl caproate, caproic acid.
  • benzyl enanthate 2-phenylethyl enanthate, 1-phenylethyl enanthate, 2-phenyl-1-propyl enanthate, 3-phenyl-1-propyl enanthate, 1-enanthate Phenyl-1-butyl, benzyl caprylate, 2-phenylethyl caprylate, 1-phenylethyl caprylate, 2-phenyl-1-propyl caprylate, 3-phenyl-1-propyl caprylate, 1-phenyl caprylate 1-butyl, benzyl isooctylate, 2-phenylethyl isooctylate, iso 1-phenylethyl octylate, 2-phenyl-1-propyl isooctylate, 3-phenyl-1-propyl isooctylate, 1-phenyl-1-butyl isooctylate, benzyl isooctylate,
  • the electrically insulating oil base oil of the present invention includes at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate, and alkylbenzene, alkylnaphthalene, It is preferable to include at least one compound (B) selected from the group consisting of dibenzyltoluene and phenylxylylethane.
  • A fatty acid ester
  • B selected from the group consisting of dibenzyltoluene and phenylxylylethane.
  • the electrically insulating oil base oil of the present invention includes at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate, and alkylbenzene, alkylnaphthalene, Including at least one compound (B) selected from the group consisting of dibenzyltoluene and phenylxylylethane;
  • the content of the component (A) is 20 to 100% by mass with respect to the total mass of the electric insulating base oil
  • the content of the component (B) is 0 to 80% by mass with respect to the total mass of the electric insulating base oil
  • the total amount of component (A) and component (B) is preferably not more than 100% by mass.
  • the electrically insulating oil base oil of the present invention is composed of at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate. preferable.
  • the electrically insulating oil base oil of the present invention includes at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate, and alkylbenzene, alkylnaphthalene, Including at least one compound (B) selected from the group consisting of dibenzyltoluene and phenylxylylethane;
  • the content of the component (A) is 20 to 90% by mass with respect to the total mass of the electric insulating base oil
  • the content of the component (B) is 10 to 80% by mass with respect to the total mass of the electric insulating base oil
  • the total amount of component (A) and component (B) is preferably not more than 100% by mass.
  • the electrical insulating oil for oil-filled electrical equipment of the present invention contains the above-described electrical insulating oil base oil.
  • the content of the electric insulating oil base oil is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and 100% by mass with respect to the total mass of the electric insulating oil. Good. When the content of the electric insulating oil base oil is equal to or higher than the lower limit value, the partial discharge characteristics and biodegradability of the electric insulating oil are easily improved.
  • the biodegradability of the electrical insulating oil is preferably 60% or more, more preferably 70% or more, further preferably 75% or more, particularly preferably 80% or more, and may be 100%.
  • the biodegradability is measured in the same manner as the method for measuring the biodegradability of an electrically insulating oil base oil.
  • Kinematic viscosity at 40 ° C. of the electrical insulating oil is preferably 0.1 ⁇ 8mm 2 / s, more preferably 0.5 ⁇ 4mm 2 / s. When the kinematic viscosity of the electrical insulating oil is within the above preferred range, a cooling effect on the oil-filled electrical device is easily obtained.
  • the pour point of the electrical insulating oil is preferably ⁇ 25 ° C. or less, more preferably less than ⁇ 35 ° C. When the pour point of the electrical insulating oil is not more than the above upper limit value, good usability can be obtained even in cold districts and the versatility of the electrical insulating oil is enhanced.
  • the electrical insulating oil may contain other components usually used for the electrical insulating oil in addition to the electrical insulating oil base oil.
  • other components include base oils other than the above components (A) and (B), and additives such as antioxidants, pour point depressants, metal deactivators, and decomposition inhibitors.
  • the content of the base oil other than the component (A) and the component (B) is 20% by mass or less with respect to the total mass of the electrical insulating oil, because better partial discharge characteristics and biodegradability can be obtained. Is preferably 10% by mass or less, more preferably 5% by mass or less, and may be 0% by mass.
  • antioxidants examples include phenolic antioxidants such as dibutylhydroxytoluene and butylhydroxyanisole; amine-based oxidations such as phenyl- ⁇ -naphthylamine and N, N-di (2-naphthyl) -p-phenylenediamine.
  • Vitamin E such as tocopherol, d-tocopherol, dl- ⁇ -tocopherol, acetic acid- ⁇ -tocopherol, dl- ⁇ -tocopherol, tocopherol acetate, ⁇ -tocopherol; ascorbic acid, ascorbates, stearic ascorbate Vitamin Cs such as acid esters; green tea extract; fresh coffee extract; sesamol; sesaminol and the like.
  • a phenol-based antioxidant is preferable from the viewpoint of excellent solubility in an electric insulating oil base oil. When antioxidant is mix
  • One type of antioxidant may be used alone, or two or more types may be used in combination.
  • the content of the antioxidant is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the electrical insulating oil base oil.
  • the pour point depressant examples include acrylic polymers such as sucrose fatty acid ester, polyalkyl methacrylate, and polyalkyl acrylate.
  • the acrylic polymer preferably has a weight average molecular weight of about 5,000 to 500,000.
  • examples of the acrylic polymer include polymers having a linear or branched alkyl group having 1 to 20 carbon atoms, such as polymethyl acrylate, polymethyl methacrylate, polypropyl acrylate, polypropyl methacrylate, polyheptyl.
  • a commercial item may be used as the acrylate polymer. As said commercial item, the point which is excellent in the fall effect of a pour point, and the handleability, from the Sanyo Kasei Kogyo Co., Ltd.
  • the electrical insulating oil of the present invention contains a pour point depressant
  • the content of the pour point depressant is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the electrical insulating oil base oil. 3 parts by mass is more preferred.
  • the content of the pour point depressant is equal to or more than the lower limit, the low temperature fluidity can be easily improved.
  • the content of the pour point depressant is equal to or lower than the upper limit, the increase in viscosity of the electrical insulating oil is easily suppressed.
  • the metal deactivator examples include 4-alkyl-benzotriazoles such as benzotriazole, 4-methyl-benzotriazole, 4-ethyl-benzotriazole; 5-methyl-benzotriazole, 5-ethyl-benzotriazole 5-alkyl-benzotriazoles such as 1-dioctylaminomethyl-2,3-benzotriazole and the like; 1-alkyl-benzotriazoles such as 1-dioctylaminomethyl-2,3-toltriazole and the like Benzotriazole derivatives such as toltriazoles; 2- (alkyldithio) -benzos such as benzimidazole, 2- (octyldithio) -benzimidazole, 2- (decyldithio) -benzimidazole, 2- (dodecyldithio) -benzimidazole Imidazole Benzoimidazole derivatives such as 2- (al
  • a benzotriazole derivative is preferable from the viewpoint of obtaining an action as a fluid antistatic agent.
  • a metal deactivator may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the metal deactivator is preferably 0.0001 to 0.5 parts by mass with respect to 100 parts by mass of the electrical insulating oil base oil. More preferred is 0.0005 to 0.1 parts by mass.
  • the decomposition inhibitor examples include carbodiimide compounds such as bis (alkylphenyl) carbodiimide such as diphenylcarbodiimide, ditolylcarbodiimide, bis (isopropylphenyl) carbodiimide, and bis (butylphenyl) carbodiimide; phenylglycidyl ether, phenylglycidyl ester, alkylglycidyl Ether, alkyl glycidyl ester, 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexane) carboxylate, vinylcyclohexylene epoxide, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy-6-methyl) Hexane) carboxylate, a phenol novolac epoxy compound which is a diglycidyl ether type epoxy compound of bisphenol A; Seo cresol novolak type epoxy compound such as epoxy compound,
  • the electrical insulating oil of the present invention is produced by a conventionally known production method.
  • Examples of the method for producing the electrical insulating oil of the present invention include a method of adding other components to the electrical insulating oil base oil and mixing them.
  • the electrical insulating oil of the present invention can be used as an insulating oil for oil-filled electrical equipment.
  • the oil-filled electrical device of the present invention includes the above-described electrical insulating oil.
  • Examples of the oil-filled electrical device include a transformer, a reactor, a tap changer, a cable, a bushing, a transformer, a capacitor, and a current transformer.
  • a capacitor element 1 wound in a configuration using a polypropylene film or the like as a dielectric and a metal foil or the like as an electrode; a lead piece 2 formed of a copper foil or the like derived from the capacitor element 1; a capacitor Metal case 3 having an opening for accommodating element 1; Insulating material 4 disposed between metal case and capacitor element 1; Filled inside of metal case to insulate metal case 3 and capacitor element 1 Insulating medium (electrical insulating oil) 5; metal lid 6 that seals the metal case 3; an external lead terminal 7 that is arranged on the top of the metal lid 6 and used for connection to an external power source; a metal lid 6 and an external lead terminal 7; A terminal plate 8 made of a thermosetting resin or the like for insulating the terminals; a terminal bar 9 disposed under the metal lid 6 and electrically connecting the lead piece 2 and the external lead terminal 7; and a metal lid Arranged under 6 5 insulated and insulated medium (electrical insulating oil) and a metal cover 6 and the terminal rod 9
  • the cable of FIG. 2 includes a conductor 16, a first semiconductive layer 17 disposed around the conductor 16, a layer impregnated with the electric insulating oil 12 disposed outside the first semiconductive layer, and the electric insulating oil 12.
  • a second semiconductive layer disposed outside the impregnated layer; a metal screen disposed outside the second semiconductive layer; and a protective sheath 15 disposed outside the metal screen.
  • the electrically insulating oil base oil of the present invention contains the component (A), it has excellent partial discharge characteristics and excellent biodegradability.
  • A-1 Benzyl caprylate, prepared as follows.
  • A-2 Benzyl caprate, prepared as follows.
  • A-3 Palm oil fatty acid benzyl, prepared as follows.
  • A-4 Benzyl isooctylate, prepared as follows.
  • B-1 Alkylbenzene (monoalkylbenzene having an alkyl group having 10 to 13 carbon atoms, trade name “Alken L” manufactured by JX Nippon Mining & Energy Corporation).
  • B-2 Alkylnaphthalene (monoalkylnaphthalene having an alkyl group having 16 to 18 carbon atoms, manufactured by Lion Corporation, trade name “Diffusion Pump Oil A”).
  • B-3 Dibenzyltoluene (trade name “NeoSK-OIL” manufactured by Soken Techniques Co., Ltd.).
  • B-4 Phenylxylylethane (JIS C2320, Type 5 No. 2 insulating oil).
  • A′-1 Methyl caprylate (product name “Pastel M-8” manufactured by Lion Corporation).
  • A′-2 methyl palm oil fatty acid (product name “Pastel M-182”, manufactured by Lion Corporation).
  • A′-3 2-ethylhexyl caprylate (manufactured by Lion Corporation, trade name “Pastel 2H-08”).
  • A'-4 Rape seed oil (manufactured by Kanden Engineering Co., Ltd., trade name "Sunohm ECO").
  • Examples 1 to 10, Comparative Examples 1 to 9 The above (A-1) was used as the electrical insulating oil base oil of Example 1. Further, according to the compositions shown in Tables 1 and 2, the components (A) and (B) were mixed to produce the electric insulating oil base oils of Examples 2 to 10. The above (B-4), (B-1), (B-3), (A′-1), (A′-2), and (A′-3) are electrically insulated from Comparative Examples 1 to 6, respectively. Oil base oil was used. Electrically insulating oil base oils of Comparative Examples 7 to 9 were produced in the same manner as in Example 2 except that the component (A ′) was used instead of the component (A). Tables 1 and 2 show the compositions (blending components, content (mass%)) of the obtained electrical insulating oil base oil of each example. In the table, when there is a blank blending component, the blending component is not blended.
  • the partial discharge characteristics (partial discharge start voltage, partial discharge extinction voltage) and biodegradability were evaluated as follows. The evaluation results are shown in Tables 1 and 2. Moreover, the pour point and kinematic viscosity of the electrical insulating oil base oil of each example were measured as follows. The measurement results are shown in Tables 1 and 2.
  • the partial discharge starting voltage of the electrical insulating oil base oil of each example was measured according to JEC-0401-1990. Specifically, when a partial discharge measuring device (E.R.A. Discharge Detector Model 5 Type 700, manufactured by Robinson Instruments) is used and the applied voltage is gradually increased under a predetermined voltage, a predetermined magnitude is obtained. The voltage (partial discharge start voltage) at which partial discharge exceeding (the magnitude of discharge pulse, occurrence frequency) was measured was measured. Using the measured value of the partial discharge starting voltage of the electric insulating oil base oil of Comparative Example 1 (phenylxylylethane: JIS C2320, Type 2 No.
  • the partial discharge extinction voltage of the electrical insulating oil base oil of each example was measured according to JEC-0401-1990. Specifically, when a partial discharge measuring device (E.R.A. Discharge Detector Model 5 Type 700, manufactured by Robinson Instruments) is used and the applied voltage is gradually lowered under a predetermined voltage, a predetermined magnitude ( The voltage (partial discharge extinction voltage) at which the partial discharge exceeding the discharge pulse magnitude (occurrence frequency) disappears was measured.
  • a partial discharge measuring device E.R.A. Discharge Detector Model 5 Type 700, manufactured by Robinson Instruments
  • the relative value of the measured value of the partial discharge extinction voltage of the electric insulating oil base oil of each example with respect to the measured value is obtained. It was. The relative values were classified into the following evaluation criteria, and the partial discharge extinction voltage of the electric insulating oil base oil in each example was evaluated. AAA, AA, and A were accepted. In addition, B is evaluated by the following evaluation criteria that partial discharge is not extinguished and cannot be used practically. [Evaluation criteria] AAA: More than 50%. AA: 45-50%. A: 40% or more and less than 45%. B: Less than 40%.
  • test of the electric insulating oil base oil of each example was performed in accordance with the Manometric Respirometry Test (Guideline 301F, 17th July 1992) defined in the OECD Guidelines for Testing of Chemicals.
  • the test conditions were as follows. Test conditions: test substance concentration 100 mg / L, activated sludge concentration 30 mg / L (as suspension substance concentration), test solution volume 300 mL, test solution culture temperature 25 ⁇ 1 ° C., test solution culture period 28 days (under light shielding).
  • the measurement for calculating the degree of degradation was carried out by biochemical oxygen demand (BOD) using a closed oxygen consumption measuring device. Those with a biodegradability of 60% or more were regarded as acceptable.
  • the kinematic viscosity at 40 ° C. of the electric insulating oil base oil of each example was determined using a Canon Fenceke type kinematic viscosity tube in accordance with JIS K2283: 2000 (crude oil and petroleum products-kinematic viscosity test method and viscosity index calculation method). It was measured.
  • the kinematic viscosity of the electric insulating base oil of each example was classified into the following evaluation criteria, and kinematic viscosity was evaluated. If it is AA and A, it will be evaluated that a favorable cooling effect is easily acquired with respect to an oil-filled electrical apparatus. [Evaluation criteria] AA: 4 mm 2 / s or less. A: More than 4 mm 2 / s and not more than 8 mm 2 / s. B: Over 8 mm 2 / s.
  • the electric insulating oil base oils of Examples 1 to 10 to which the present invention is applied are excellent in partial discharge characteristics (partial discharge start voltage, partial discharge extinction voltage) and biodegradable. It was confirmed that it was excellent. Furthermore, the electrically insulating oil base oils of Examples 1 to 10 have low pour points and kinematic viscosities, and are evaluated to be excellent in usability in cold districts and the like and in cooling effects on oil-filled electrical equipment. On the other hand, the electrical insulating base oil composed of (B-4) (Comparative Example 1) and the electrical insulating base oil composed of (B-3) (Comparative Example 3) were not sufficiently biodegradable.
  • An electrically insulating oil base oil composed of (B-1) (Comparative Example 2) and an electrically insulating oil base oil (Comparative Example 8 and Comparative Example 9) in which the component (A ′) and (B-1) are used in combination are sufficient. Partial discharge characteristics (partial discharge start voltage, partial discharge extinction voltage) were not obtained.
  • the electrical insulating base oil composed of the component (A ′) (Comparative Examples 4 to 6) did not have sufficient partial discharge characteristics (partial discharge extinction voltage).
  • the electric insulating oil base oil (Comparative Example 7) in which the component (A ′) and (B-4) were used in combination did not provide sufficient partial discharge characteristics (partial discharge extinction voltage) and biodegradability. From the above results, it was confirmed that the electrically insulating oil base oil to which the present invention was applied was excellent in partial discharge characteristics and biodegradability.
  • An object of the present invention is to provide an electrical insulating oil base oil for oil-filled electrical equipment that has excellent partial discharge characteristics and excellent biodegradability.
  • Capacitor element 1 Capacitor element 2 Lead piece 3 Metal case 4 Insulating material 5 Insulating medium (electrical insulating oil) 6 Metal lid 7 External lead terminal 8 Terminal plate 9 Terminal bar 10 Packing rubber 11 Insulating plate 12 Electrical insulating oil 13 Second semiconductive layer 14 Metal screen 15 Protective sheath 16 Conductor 17 First semiconductive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Organic Insulating Materials (AREA)

Abstract

An electrically insulating oil base oil for an oil-filled electrical device, containing a fatty acid ester (A) represented by the following general formula (I). R1-COO-R2…(I) In formula (I), R1 represents a C5-17 straight-chained or a C5-17 branched hydrocarbon group, and R2 is a C6-10 aryl alkyl group. In formula (I), R1 is preferably a C5-17 branched hydrocarbon group.

Description

油入電気機器用の電気絶縁油基油、これを含有する電気絶縁油及び油入電気機器Electrical insulating oil base oil for oil-filled electrical equipment, electrical insulating oil containing the same, and oil-filled electrical equipment
 本発明は、油入電気機器用の電気絶縁油基油、これを含有する電気絶縁油及び油入電気機器に関する。
 本願は、2015年4月13日に、日本に出願された特願2015-081805号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electric insulating oil base oil for oil-filled electric equipment, an electric insulating oil containing the same, and an oil-filled electric equipment.
This application claims priority based on Japanese Patent Application No. 2015-081805 filed in Japan on April 13, 2015, the contents of which are incorporated herein by reference.
 従来、変圧器、ケーブル、遮断器、コンデンサ等の油入電気機器においては、絶縁や冷却を目的として電気絶縁油が用いられている。油入電気機器は、高い電界下で使用されるためその内部で部分放電が発生する可能性がある。そのため、油入電気機器に用いられる絶縁油には、優れた部分放電特性、即ち、高い電界下において部分放電が発生し難いこと(部分放電開始電圧が高いこと)、部分放電が発生しても速やかに消滅されること(部分放電消滅電圧が高いこと)が求められる。
 電気絶縁油の基油として、鉱物油、シリコーン油、PCB(ポリ塩化ビフェニル)、ジベンジルトルエン等が使用されてきた。しかしながら、これらの基油は、一般に生分解性が悪く環境中に漏洩した際の負荷が問題視されている。さらに、鉱物油は、限りある資源であることから今後その使用が制限される可能性がある。シリコーン油は、一般に粘度が高く熱伝導性も低い。そのため、油入電気機器の冷却効果に劣り、油入電気機器をコンパクトに構成することが難しくなる。
 近年、生分解性に優れる植物油、脂肪酸エステルを電気絶縁油の基油として用いることが検討されている。例えば、特許文献1には、植物油を含有する電気絶縁油が開示されている。特許文献2には、高級脂肪酸エステル化合物を含有する高級脂肪酸エステル系溶剤が、電気絶縁油等の用途に有効であることが開示されている。
 しかしながら、特許文献1、特許文献2の技術では、充分な部分放電特性が得られない。
Conventionally, in oil-filled electrical devices such as transformers, cables, circuit breakers, capacitors, etc., electrical insulating oil has been used for the purpose of insulation and cooling. Since oil-filled electrical equipment is used under a high electric field, there is a possibility that partial discharge occurs inside. Therefore, the insulating oil used for oil-filled electrical equipment has excellent partial discharge characteristics, that is, partial discharge is difficult to occur under a high electric field (partial discharge starting voltage is high), and even if partial discharge occurs. It must be extinguished quickly (high partial discharge extinction voltage).
Mineral oil, silicone oil, PCB (polychlorinated biphenyl), dibenzyltoluene, and the like have been used as base oils for electrical insulating oils. However, these base oils are generally poor in biodegradability, and the load when leaking into the environment is regarded as a problem. Furthermore, since mineral oil is a limited resource, its use may be limited in the future. Silicone oils generally have high viscosity and low thermal conductivity. Therefore, the cooling effect of the oil-filled electrical device is inferior, and it is difficult to make the oil-filled electrical device compact.
In recent years, the use of vegetable oils and fatty acid esters having excellent biodegradability as base oils for electrical insulating oils has been studied. For example, Patent Document 1 discloses an electrical insulating oil containing vegetable oil. Patent Document 2 discloses that a higher fatty acid ester solvent containing a higher fatty acid ester compound is effective for applications such as electrical insulating oil.
However, the techniques of Patent Document 1 and Patent Document 2 cannot provide sufficient partial discharge characteristics.
特開2010-287788号公報JP 2010-287788 A 特開2004-149705号公報JP 2004-149705 A
 本発明は上記事情に鑑みてなされたものであり、部分放電特性に優れ、かつ、生分解性に優れる油入電気機器用の電気絶縁油基油を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is an electrically insulating oil base oil for oil-filled electrical equipment having excellent partial discharge characteristics and excellent biodegradability.
 本発明者らは、鋭意検討した結果、以下の油入電気機器用の電気絶縁油基油が、上記課題を解決できることを見出した。
 すなわち本発明は、以下の構成を有する。
 [1]下記一般式(I)で表される脂肪酸エステル(A)を含有する、油入電気機器用の電気絶縁油基油。
 R-COO-R・・・(I)
 ただし、式(I)中、Rは、炭素数5~17の直鎖状又は炭素数5~17の分岐鎖状の炭化水素基であり、Rは、炭素数6~10のアリールアルキル基である。
 [2]前記式(I)中、Rは、炭素数5~17の分岐鎖状の炭化水素基である、[1]に記載の油入電気機器用の電気絶縁油基油。
 [3]アルキルベンゼン、アルキルナフタレン、ジアリールアルカン、トリアリールアルカン及び鉱油からなる群から選ばれる少なくとも1種の化合物(B)を含有する、[1]又は[2]に記載の油入電気機器用の電気絶縁油基油。
 [4](A)成分/(B)成分で表される質量比が90/10~20/80である、[3]に記載の油入電気機器用の電気絶縁油基油。
 [5][1]~[4]のいずれかに記載の油入電気機器用の電気絶縁油基油を含有する、電気絶縁油。
 [6][5]に記載の電気絶縁油を備える、油入電気機器。
As a result of intensive studies, the present inventors have found that the following electric insulating oil base oil for oil-filled electrical equipment can solve the above problems.
That is, the present invention has the following configuration.
[1] An electric insulating oil base oil for oil-filled electrical equipment, which contains a fatty acid ester (A) represented by the following general formula (I).
R 1 —COO—R 2 (I)
In the formula (I), R 1 is a linear or branched hydrocarbon group having 5 to 17 carbon atoms, and R 2 is an arylalkyl having 6 to 10 carbon atoms. It is a group.
[2] The electrical insulating oil base oil for oil-filled electrical equipment according to [1], wherein in the formula (I), R 1 is a branched hydrocarbon group having 5 to 17 carbon atoms.
[3] For oil-filled electrical equipment according to [1] or [2], comprising at least one compound (B) selected from the group consisting of alkylbenzene, alkylnaphthalene, diarylalkane, triarylalkane and mineral oil Electrical insulating oil base oil.
[4] The electrical insulating oil base oil for oil-filled electrical equipment according to [3], wherein the mass ratio represented by (A) component / (B) component is 90/10 to 20/80.
[5] An electrical insulating oil containing the electrical insulating oil base oil for oil-filled electrical equipment according to any one of [1] to [4].
[6] An oil-filled electrical device comprising the electrical insulating oil according to [5].
 本発明の油入電気機器用の電気絶縁油基油は、部分放電特性に優れ、かつ、生分解性に優れる。 The electrical insulating oil base oil for oil-filled electrical equipment of the present invention has excellent partial discharge characteristics and excellent biodegradability.
コンデンサの一例を示した断面図である。It is sectional drawing which showed an example of the capacitor | condenser. ケーブルの一例を示す概略図である。It is the schematic which shows an example of a cable.
 (油入電気機器用の電気絶縁油基油)
 本発明の油入電気機器用の電気絶縁油基油(以下、単に「電気絶縁油基油」ともいう)は、特定の脂肪酸エステル((A)成分)を含有する。
 電気絶縁油基油の生分解性は、60%以上が好ましく、70%以上がより好ましく、75%以上がさらに好ましく、80%以上が特に好ましく、100%であってもよい。前記生分解性は、OECD Guideline for Testing of chemicalsに定めるManometric Respirometry Test(Guideline 301F、17th July 1992)に準拠して測定される28日後の測定値である。
 電気絶縁油基油の40℃における動粘度は、0.1~8mm/sが好ましく、0.5~4mm/sがより好ましい。電気絶縁油基油の動粘度が前記の好ましい範囲であると、油入電気機器の冷却効果が得られやすくなる。
 本明細書において、動粘度は、JIS K2283:2000(原油及び石油製品-動粘度試験方法及び粘度指数算出方法)に準拠して測定できる。
 電気絶縁油基油の流動点は、-25℃以下が好ましく、-35℃未満がより好ましい。
 電気絶縁油基油の流動点が前記上限値以下であると、寒冷地等においても使用が制限されない汎用性に優れる電気絶縁油が得られやすくなる。
 本明細書において、流動点は、JIS K 2269:1987(原油及び石油製品の流動点並びに石油製品曇り点試験方法)の「3.流動点試験方法」に準拠して測定できる。
(Electrically insulating oil base oil for oil-filled electrical equipment)
The electrical insulating oil base oil for oil-filled electrical equipment of the present invention (hereinafter also simply referred to as “electrical insulating oil base oil”) contains a specific fatty acid ester (component (A)).
The biodegradability of the electrical insulating base oil is preferably 60% or more, more preferably 70% or more, further preferably 75% or more, particularly preferably 80% or more, and may be 100%. The biodegradability is a measured value after 28 days measured in accordance with the Manometric Respirometry Test (Guideline 301F, 17th July 1992) defined in OECD Guideline for Testing of Chemicals.
Kinematic viscosity at 40 ° C. of the electrically insulating base oil is preferably 0.1 ~ 8mm 2 / s, more preferably 0.5 ~ 4mm 2 / s. When the kinematic viscosity of the electrical insulating oil base oil is within the above preferred range, the cooling effect of the oil-filled electrical device can be easily obtained.
In the present specification, the kinematic viscosity can be measured according to JIS K2283: 2000 (crude oil and petroleum products—kinematic viscosity test method and viscosity index calculation method).
The pour point of the electric insulating base oil is preferably −25 ° C. or less, more preferably less than −35 ° C.
When the pour point of the electric insulating oil base oil is not more than the above upper limit value, it becomes easy to obtain an electric insulating oil excellent in versatility that is not restricted in use even in cold regions.
In this specification, the pour point can be measured according to “3. Pour point test method” of JIS K 2269: 1987 (pour point of crude oil and petroleum product and cloud point test method of petroleum product).
 本明細書における、「絶縁性」とは、JIS C 2101:2010(電気絶縁油試験方法)の「22.絶縁破壊電圧試験」に準拠して測定したときの絶縁破壊電圧が40kV以上であるものをいう。 In this specification, “insulation” means that the dielectric breakdown voltage is 40 kV or more when measured in accordance with “22. Dielectric breakdown voltage test” of JIS C 2101: 2010 (electrical insulation oil test method). Say.
 <(A)成分> 
 (A)成分は、下記一般式(I)で表される脂肪酸エステルである。本発明の電気絶縁油基油は、(A)成分を含有することで部分放電特性が高められ、かつ、生分解性が高められる。
 R-COO-R・・・(I)
 ただし、式(I)中、Rは、炭素数5~17の直鎖状又は炭素数5~17の分岐鎖状の炭化水素基であり、Rは、炭素数6~10のアリールアルキル基である。
<(A) component>
The component (A) is a fatty acid ester represented by the following general formula (I). The electrical insulating oil base oil of the present invention contains the component (A), whereby partial discharge characteristics are enhanced and biodegradability is enhanced.
R 1 —COO—R 2 (I)
In the formula (I), R 1 is a linear or branched hydrocarbon group having 5 to 17 carbon atoms, and R 2 is an arylalkyl having 6 to 10 carbon atoms. It is a group.
 式(I)中、Rは、炭素数5~17の直鎖状又は炭素数5~17の分岐鎖状の炭化水素基であり、炭素数5~11の直鎖状又は炭素数5~11の分岐鎖状の炭化水素基が好ましく、炭素数5~9の直鎖状又は炭素数5~9の分岐鎖状の炭化水素基がより好ましい。Rの炭素数が前記範囲であると部分放電特性が高められる。また、Rの炭素数が5未満であると、樹脂部材に対する可塑性が強くなり樹脂部材が変形等するおそれがある。Rの炭素数が17超であると、動粘度が高くなり油入電気機器に対する冷却効果が充分に得られないおそれがある。 In the formula (I), R 1 is a linear hydrocarbon group having 5 to 17 carbon atoms or a branched hydrocarbon group having 5 to 17 carbon atoms. 11 branched-chain hydrocarbon groups are preferable, and straight-chain hydrocarbon groups having 5 to 9 carbon atoms or branched-chain hydrocarbon groups having 5 to 9 carbon atoms are more preferable. When the carbon number of R 1 is in the above range, partial discharge characteristics are enhanced. Further, if the carbon number of R 1 is less than 5, the plasticity of the resin member becomes strong and the resin member may be deformed. When the carbon number of R 1 is more than 17, the kinematic viscosity becomes high, and there is a possibility that the cooling effect for the oil-filled electrical device cannot be sufficiently obtained.
 Rは、飽和炭化水素基でもよいし不飽和炭化水素基でもよい。
 Rとしては、炭素数5~17の直鎖状又は分岐鎖状のアルキル基、アルケニル基、アルキニル基等が挙げられる。Rとしては、例えば、ペンチル基、ヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、トリデセニル基、テトラデシル基、ペンタデシル基、ペンタデセニル基、ヘキサデシル基、ヘプタデシル基、ヘプタデセニル基、ヘプタデカジエニル基、ヘプタデカトリエニル基、ヘプタデカテトラエニル基等が挙げられる。
 Rとしては、分岐鎖状の炭化水素基が好ましい。Rが、分岐鎖状の炭化水素基であると、低温流動性がより高められやすくなる。なお、本発明における分岐鎖状の炭化水素基には、例えば1-エチルペンチル基等の式(I)中のカルボニル基の炭素原子に結合する炭素原子が第2級炭素原子であるものも含まれる。
R 1 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
Examples of R 1 include a linear or branched alkyl group having 5 to 17 carbon atoms, an alkenyl group, and an alkynyl group. Examples of R 1 include pentyl, hexyl, heptyl, isoheptyl, octyl, isooctyl, nonyl, isononyl, decyl, undecyl, dodecyl, tridecyl, tridecenyl, tetradecyl, pentadecyl Group, pentadecenyl group, hexadecyl group, heptadecyl group, heptadecenyl group, heptadecadienyl group, heptadecatrienyl group, heptadecatetraenyl group and the like.
R 1 is preferably a branched hydrocarbon group. When R 1 is a branched hydrocarbon group, the low temperature fluidity is more likely to be improved. The branched hydrocarbon group in the present invention includes those in which the carbon atom bonded to the carbon atom of the carbonyl group in the formula (I) such as 1-ethylpentyl group is a secondary carbon atom. It is.
 式(I)中、Rは、炭素数6~10のアリールアルキル基である。Rとしては、例えば、ベンジル基、2-フェニルエチル基、1-フェニルエチル基、2-フェニル-1-プロピル基、3-フェニル-1-プロピル基、1-フェニル-1-ブチル基等が挙げられる。これらのなかでも、良好な部分放電特性が得られやすい点から、Rとしては、ベンジル基、2-フェニルエチル基、1-フェニルエチル基が好ましい。 In the formula (I), R 2 is an arylalkyl group having 6 to 10 carbon atoms. Examples of R 2 include benzyl group, 2-phenylethyl group, 1-phenylethyl group, 2-phenyl-1-propyl group, 3-phenyl-1-propyl group, 1-phenyl-1-butyl group and the like. Can be mentioned. Among these, benzyl group, 2-phenylethyl group, and 1-phenylethyl group are preferable as R 2 from the viewpoint that good partial discharge characteristics are easily obtained.
 (A)成分としては、部分放電消滅電圧がより向上される点から、カプロン酸ベンジル、カプロン酸2-フェニルエチル、カプロン酸1-フェニルエチル、カプロン酸2-フェニル-1-プロピル、カプロン酸3-フェニル-1-プロピル、カプロン酸1-フェニル-1-ブチル、エナント酸ベンジル、エナント酸2-フェニルエチル、エナント酸1-フェニルエチル、エナント酸2-フェニル-1-プロピル、エナント酸3-フェニル-1-プロピル、エナント酸1-フェニル-1-ブチル、カプリル酸ベンジル、カプリル酸2-フェニルエチル、カプリル酸1-フェニルエチル、カプリル酸2-フェニル-1-プロピル、カプリル酸3-フェニル-1-プロピル、カプリル酸1-フェニル-1-ブチル、イソオクチル酸ベンジル、イソオクチル酸2-フェニルエチル、イソオクチル酸1-フェニルエチル、イソオクチル酸2-フェニル-1-プロピル、イソオクチル酸3-フェニル-1-プロピル、イソオクチル酸1-フェニル-1-ブチル、イソノナン酸ベンジル、イソノナン酸2-フェニルエチル、イソノナン酸1-フェニルエチル、イソノナン酸2-フェニル-1-プロピル、イソノナン酸3-フェニル-1-プロピル、イソノナン酸1-フェニル-1-ブチル、カプリン酸ベンジル、カプリン酸2-フェニルエチル、カプリン酸1-フェニルエチル、カプリン酸2-フェニル-1-プロピル、カプリン酸3-フェニル-1-プロピル、カプリン酸1-フェニル-1-ブチル、イソデカン酸ベンジル、イソデカン酸2-フェニルエチル、イソデカン酸1-フェニルエチル、イソデカン酸2-フェニル-1-プロピル、イソデカン酸3-フェニル-1-プロピル、イソデカン酸1-フェニル-1-ブチル、ミリストレイン酸ベンジル、ミリストレイン酸2-フェニルエチル、ミリストレイン酸1-フェニルエチル、ミリストレイン酸2-フェニル-1-プロピル、ミリストレイン酸3-フェニル-1-プロピル、ミリストレイン酸1-フェニル-1-ブチル、パルミトレイン酸ベンジル、パルミトレイン酸2-フェニルエチル、パルミトレイン酸1-フェニルエチル、パルミトレイン酸2-フェニル-1-プロピル、パルミトレイン酸3-フェニル-1-プロピル、パルミトレイン酸1-フェニル-1-ブチル、オレイン酸ベンジル、オレイン酸2-フェニルエチル、オレイン酸1-フェニルエチル、オレイン酸2-フェニル-1-プロピル、オレイン酸3-フェニル-1-プロピル、オレイン酸1-フェニル-1-ブチル、リノール酸ベンジル、リノール酸2-フェニルエチル、リノール酸1-フェニルエチル、リノール酸2-フェニル-1-プロピル、リノール酸3-フェニル-1-プロピル、リノール酸1-フェニル-1-ブチル、リノレン酸ベンジル、リノレン酸2-フェニルエチル、リノレン酸1-フェニルエチル、リノレン酸2-フェニル-1-プロピル、リノレン酸3-フェニル-1-プロピル、リノレン酸1-フェニル-1-ブチル、エライジン酸ベンジル、エライジン酸2-フェニルエチル、エライジン酸1-フェニルエチル、エライジン酸2-フェニル-1-プロピル、エライジン酸3-フェニル-1-プロピル、エライジン酸1-フェニル-1-ブチル、バクセン酸ベンジル、バクセン酸2-フェニルエチル、バクセン酸1-フェニルエチル、バクセン酸2-フェニル-1-プロピル、バクセン酸3-フェニル-1-プロピル、バクセン酸1-フェニル-1-ブチル、ステアリドン酸ベンジル、ステアリドン酸2-フェニルエチル、ステアリドン酸1-フェニルエチル、ステアリドン酸2-フェニル-1-プロピル、ステアリドン酸3-フェニル-1-プロピル、ステアリドン酸1-フェニル-1-ブチルが好ましい。 Component (A) includes benzyl caproate, 2-phenylethyl caproate, 1-phenylethyl caproate, 2-phenyl-1-propyl caproate, caproic acid 3 because the partial discharge extinction voltage is further improved. -Phenyl-1-propyl, 1-phenyl-1-butyl caproate, benzyl enanthate, 2-phenylethyl enanthate, 1-phenylethyl enanthate, 2-phenyl-1-propyl enanthate, 3-phenyl enanthate -1-propyl, 1-phenyl-1-butyl enanthate, benzyl caprylate, 2-phenylethyl caprylate, 1-phenylethyl caprylate, 2-phenyl-1-propyl caprylate, 3-phenyl-1 caprylate -Propyl, 1-phenyl-1-butyl caprylate, benzyl isooctylate, iso 2-phenylethyl octylate, 1-phenylethyl isooctylate, 2-phenyl-1-propyl isooctylate, 3-phenyl-1-propyl isooctylate, 1-phenyl-1-butyl isooctylate, benzyl isononanoate, isononanoic acid 2-phenylethyl, 1-phenylethyl isononanoate, 2-phenyl-1-propyl isononanoate, 3-phenyl-1-propyl isononanoate, 1-phenyl-1-butyl isononanoate, benzyl caprate, 2-caprate Phenylethyl, 1-phenylethyl caprate, 2-phenyl-1-propyl caprate, 3-phenyl-1-propyl caprate, 1-phenyl-1-butyl caprate, benzyl isodecanoate, 2-phenylethyl isodecanoate 1-phenylethyl isodecanoate 2-phenyl-1-propyl isodecanoate, 3-phenyl-1-propyl isodecanoate, 1-phenyl-1-butyl isodecanoate, benzyl myristate, 2-phenylethyl myristoleate, 1-phenyl myristoleate Ethyl, 2-phenyl-1-propyl myristoleate, 3-phenyl-1-propyl myristoleate, 1-phenyl-1-butyl myristoleate, benzyl palmitoleate, 2-phenylethyl palmitate, 1-palmitoleate Phenylethyl, 2-phenyl-1-propyl palmitate, 3-phenyl-1-propyl palmitolate, 1-phenyl-1-butyl palmitate, benzyl oleate, 2-phenylethyl oleate, 1-phenylethyl oleate ,oleic acid 2-phenyl-1-propyl, 3-phenyl-1-propyl oleate, 1-phenyl-1-butyl oleate, benzyl linoleate, 2-phenylethyl linoleate, 1-phenylethyl linoleate, 2-linoleate Phenyl-1-propyl, 3-phenyl-1-propyl linoleate, 1-phenyl-1-butyl linoleate, benzyl linolenate, 2-phenylethyl linolenate, 1-phenylethyl linolenate, 2-phenyl linolenic acid 1-propyl, 3-phenyl-1-propyl linolenate, 1-phenyl-1-butyl linolenate, benzyl elaidate, 2-phenylethyl elaidate, 1-phenylethyl elaidate, 2-phenyl-1-elaidate Propyl, 3-phenyl-1-propyl elaidate, elaidic acid 1 Phenyl-1-butyl, benzyl vaccenate, 2-phenylethyl vaccenate, 1-phenylethyl vaccenate, 2-phenyl-1-propyl vacsenate, 3-phenyl-1-propyl vaccenate, 1-phenyl-vaccenate 1-butyl, benzyl stearidate, 2-phenylethyl stearidate, 1-phenylethyl stearidate, 2-phenyl-1-propyl stearidate, 3-phenyl-1-propyl stearidate, 1-phenyl-1-stearidonate Butyl is preferred.
 これらのなかでも、部分放電消滅電圧が向上され、かつ、良好な低温流動性が得られる点から、カプロン酸ベンジル、カプロン酸2-フェニルエチル、カプロン酸1-フェニルエチル、カプロン酸2-フェニル-1-プロピル、カプロン酸3-フェニル-1-プロピル、カプロン酸1-フェニル-1-ブチル、エナント酸ベンジル、エナント酸2-フェニルエチル、エナント酸1-フェニルエチル、エナント酸2-フェニル-1-プロピル、エナント酸3-フェニル-1-プロピル、エナント酸1-フェニル-1-ブチル、カプリル酸ベンジル、カプリル酸2-フェニルエチル、カプリル酸1-フェニルエチル、カプリル酸2-フェニル-1-プロピル、カプリル酸3-フェニル-1-プロピル、カプリル酸1-フェニル-1-ブチル、イソオクチル酸ベンジル、イソオクチル酸2-フェニルエチル、イソオクチル酸1-フェニルエチル、イソオクチル酸2-フェニル-1-プロピル、イソオクチル酸3-フェニル-1-プロピル、イソオクチル酸1-フェニル-1-ブチル、イソノナン酸ベンジル、イソノナン酸2-フェニルエチル、イソノナン酸1-フェニルエチル、イソノナン酸2-フェニル-1-プロピル、イソノナン酸3-フェニル-1-プロピル、イソノナン酸1-フェニル-1-ブチル、カプリン酸ベンジル、カプリン酸2-フェニルエチル、カプリン酸1-フェニルエチル、カプリン酸2-フェニル-1-プロピル、カプリン酸3-フェニル-1-プロピル、カプリン酸1-フェニル-1-ブチルがより好ましい。
 (A)成分は、いずれか1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
Of these, benzyl caproate, 2-phenylethyl caproate, 1-phenylethyl caproate, 2-phenyl caproate, and the like, are improved in partial discharge extinction voltage and good low-temperature fluidity. 1-propyl, 3-phenyl-1-propyl caproate, 1-phenyl-1-butyl caproate, benzyl enanthate, 2-phenylethyl enanthate, 1-phenylethyl enanthate, 2-phenyl-1-enanthate Propyl, 3-phenyl-1-propyl enanthate, 1-phenyl-1-butyl enanthate, benzyl caprylate, 2-phenylethyl caprylate, 1-phenylethyl caprylate, 2-phenyl-1-propyl caprylate, 3-phenyl-1-propyl caprylate, 1-phenyl-1-butyl caprylate, iso Benzyl octylate, 2-phenylethyl isooctylate, 1-phenylethyl isooctylate, 2-phenyl-1-propyl isooctylate, 3-phenyl-1-propyl isooctylate, 1-phenyl-1-butyl isooctylate, isononanoic acid Benzyl, 2-phenylethyl isononanoate, 1-phenylethyl isononanoate, 2-phenyl-1-propyl isononanoate, 3-phenyl-1-propyl isononanoate, 1-phenyl-1-butyl isononanoate, benzyl caprate, More preferred are 2-phenylethyl caprate, 1-phenylethyl caprate, 2-phenyl-1-propyl caprate, 3-phenyl-1-propyl caprate, and 1-phenyl-1-butyl caprate.
As the component (A), any one type may be used alone, or two or more types may be used in combination.
 [(A)成分の製造方法]
 (A)成分の製造方法としては、例えば、(i)油脂と炭素数6~10のアリールアルキル基を有するアルコールとのエステル交換による方法、(ii)脂肪酸を炭素数6~10のアリールアルキル基を有するアルコールでエステル化する方法、(iii)脂肪酸エステルと炭素数6~10のアリールアルキル基を有するアルコールとのエステル交換による方法等が挙げられる。
[Production method of component (A)]
Examples of the method for producing the component (A) include: (i) a method by transesterification between an oil and fat and an alcohol having an arylalkyl group having 6 to 10 carbon atoms; and (ii) an aliphatic alkyl group having 6 to 10 carbon atoms. And (iii) a method by transesterification between a fatty acid ester and an alcohol having an arylalkyl group having 6 to 10 carbon atoms.
 前記(i)の方法における油脂としては、オリーブ油、カカオ油、シソ油、ツバキ油、落花生油、大豆油、菜種油、からし油、脱水ひまし油、桐油、紅花油、亜麻仁油、トウモロコシ油、ひまわり油、コーン油、綿実油、ごま油、米糠油、大麻油、月見草油、パーム油、パーム核油、ヤシ油等が挙げられる。また、前記油脂として、食用等とされた油脂が再利用されてもよい。これらのなかでも、酸化安定性に優れる点から、パーム油、パーム核油、ヤシ油が好ましい。(A)成分の部分放電特性がより高められやすい点から、パーム核油、ヤシ油がより好ましい。
 前記(i)の方法は、従来公知の方法で行うことができる。
Examples of the fats and oils in the method (i) include olive oil, cacao oil, perilla oil, camellia oil, peanut oil, soybean oil, rapeseed oil, mustard oil, dehydrated castor oil, tung oil, safflower oil, linseed oil, corn oil, sunflower oil Corn oil, cottonseed oil, sesame oil, rice bran oil, cannabis oil, evening primrose oil, palm oil, palm kernel oil, coconut oil and the like. Moreover, the fats and oils made edible etc. may be reused as the said fats and oils. Among these, palm oil, palm kernel oil, and coconut oil are preferable from the viewpoint of excellent oxidation stability. (A) Palm kernel oil and palm oil are more preferable from the point which the partial discharge characteristic of a component is easy to be improved.
The method (i) can be performed by a conventionally known method.
 前記(ii)の方法における脂肪酸としては、カプロン酸、エナント酸、カプリル酸、イソオクチル酸、イソノナン酸、カプリン酸、イソデカン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、ミリストレイン酸、パルミチン酸、パルミトレイン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、バクセン酸、ステアリドン酸等が挙げられる。また、前記脂肪酸として、食用等とされた脂肪酸が再利用されてもよい。
 前記脂肪酸としては、(A)成分の部分放電特性がより高められやすい点から、カプロン酸、エナント酸、カプリル酸、イソオクチル酸、イソノナン酸、カプリン酸、イソデカン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、バクセン酸、ステアリドン酸が好ましい。これらのなかでも、(A)成分の部分放電特性が高められやすく、かつ、良好な低温流動性が得られやすい点から、カプロン酸、エナント酸、カプリル酸、イソオクチル酸、イソノナン酸、カプリン酸がより好ましい。
As the fatty acid in the method (ii), caproic acid, enanthic acid, caprylic acid, isooctylic acid, isononanoic acid, capric acid, isodecanoic acid, undecyl acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, myristoleic acid , Palmitic acid, palmitoleic acid, heptadecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, vaccenic acid, stearidonic acid and the like. Moreover, as the fatty acid, a fatty acid made edible or the like may be reused.
Examples of the fatty acid include caproic acid, enanthic acid, caprylic acid, isooctylic acid, isononanoic acid, capric acid, isodecanoic acid, myristoleic acid, palmitoleic acid, olein because the partial discharge characteristics of the component (A) are more easily improved. Acid, linoleic acid, linolenic acid, elaidic acid, vaccenic acid and stearidonic acid are preferred. Among these, caproic acid, enanthic acid, caprylic acid, isooctylic acid, isononanoic acid, capric acid are preferred because the partial discharge characteristics of component (A) are easily enhanced and good low-temperature fluidity is easily obtained. More preferred.
 前記(ii)の方法は、公知の方法で行うことができ、例えば、常温~200℃まで段階的に昇温しながら、常圧~0.7KPaまで段階的に減圧し、副生する水を除去することにより行うことができる。
 前記(ii)の方法において用いられる触媒としては、特に限定されないが、例えば、硫酸、p-トルエンスルホン酸(p-TS)、ベンゼンスルホン酸(BS)、メタンスルホン酸等の酸触媒;ZrO、TiO、SiO、PO、Al、ZnO等の無機酸化物触媒;リチウム、セシウム、ナトリウム、カリウム、マグネシウム、バリウム、カルシウム等の水酸化物、炭酸水素塩、炭酸塩、ナトリウムメトキシド、カリウムメトキシド等の塩基性触媒;テトライソプロピルチタネート、テトラn-ブチルチタネート、テトラエタノールアミンチタネート、テトラステアリルチタネート等の有機チタン化合物触媒;ノルマルプロピルジルコネート、ノルマルブチルジルコネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート等の有機ジルコニウム化合物触媒等が挙げられる。
The method (ii) can be carried out by a known method. For example, while gradually raising the temperature from room temperature to 200 ° C., the pressure is gradually reduced from normal pressure to 0.7 KPa, and water produced as a by-product is removed. This can be done by removing.
The catalyst used in the method (ii) is not particularly limited, and examples thereof include acid catalysts such as sulfuric acid, p-toluenesulfonic acid (p-TS), benzenesulfonic acid (BS), and methanesulfonic acid; ZrO 2 , TiO 2 , SiO 2 , PO 4 , Al 2 O 3 , ZnO, and other inorganic oxide catalysts; lithium, cesium, sodium, potassium, magnesium, barium, calcium, and other hydroxides, bicarbonates, carbonates, sodium Basic catalysts such as methoxide, potassium methoxide; organotitanium compound catalysts such as tetraisopropyl titanate, tetra n-butyl titanate, tetraethanolamine titanate, tetrastearyl titanate; normal propyl zirconate, normal butyl zirconate, zirconium tetraacetyl Acetonate The organic zirconium compound catalysts such as zirconium mono acetylacetonate.
 前記(iii)の方法における脂肪酸エステルとしては、(ii)の方法における脂肪酸のエステル化合物が挙げられる。前記エステル化合物としては、(ii)の方法において好ましい脂肪酸と同じ脂肪酸から構成されるエステル化合物が好ましい。 Examples of the fatty acid ester in the method (iii) include fatty acid ester compounds in the method (ii). As said ester compound, the ester compound comprised from the same fatty acid as a preferable fatty acid in the method of (ii) is preferable.
 前記(iii)の方法は、公知の方法で行うことができ、例えば、常温~200℃に段階的に昇温しながら、常圧~0.7KPaまで段階的に減圧し、副生するアルコール類を除去することで行うことができる。
 前記(iii)の方法において用いられる触媒としては、特に限定されないが、例えば、リチウム、セシウム、ナトリウム、カリウム、マグネシウム、バリウム、カルシウム等の水酸化物;炭酸水素塩、炭酸塩、ナトリウムメトキシド、カリウムメトキシド等の塩基性触媒;テトライソプロピルチタネート、テトラn-ブチルチタネート、テトラエタノールアミンチタネート、テトラステアリルチタネート等の有機チタン化合物触媒;ノルマルプロピルジルコネート、ノルマルブチルジルコネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート等の有機ジルコニウム化合物触媒等が挙げられる。
The method (iii) can be carried out by a known method. For example, alcohols produced as a by-product by gradually reducing the pressure from normal pressure to 0.7 KPa while gradually raising the temperature from room temperature to 200 ° C. This can be done by removing.
The catalyst used in the method (iii) is not particularly limited, and examples thereof include hydroxides such as lithium, cesium, sodium, potassium, magnesium, barium, and calcium; hydrogen carbonate, carbonate, sodium methoxide, Basic catalysts such as potassium methoxide; organotitanium compound catalysts such as tetraisopropyl titanate, tetra n-butyl titanate, tetraethanolamine titanate, tetrastearyl titanate; normal propyl zirconate, normal butyl zirconate, zirconium tetraacetylacetonate, Examples include organic zirconium compound catalysts such as zirconium monoacetylacetonate.
 (A)成分の製造方法としては、部分放電特性等の電気特性が改善される点から、アルコール除去、グリセリン分離、無機成分除去、中和、水洗、蒸留、吸着処理、脱気処理等の精製が行われることが好ましい。これらのなかでも、吸着処理及び/又は脱気処理が行われることが好ましい。吸着処理が行われると電気絶縁油基油の酸価が低減され電気特性が高められやすくなる。脱気処理が行われると電気絶縁油基油の水分量が低減され電気特性が高められやすくなる。 (A) As a manufacturing method of component, from the point which electrical characteristics, such as a partial discharge characteristic, are improved, refinement | purification, such as alcohol removal, glycerol separation, inorganic component removal, neutralization, water washing, distillation, adsorption treatment, deaeration treatment, etc. Is preferably performed. Among these, it is preferable that an adsorption process and / or a deaeration process are performed. When the adsorption treatment is performed, the acid value of the electrically insulating oil base oil is reduced, and the electrical characteristics are easily improved. When the deaeration process is performed, the moisture content of the electric insulating oil base oil is reduced and the electric characteristics are easily improved.
 吸着処理は、反応終了後の反応液に、活性白土又は活性アルミナ等の吸着剤を添加し、遊離脂肪酸や酸触媒等を吸着させた後、濾過により前記吸着剤を除去することにより行われる。
 前記吸着剤としては、Mg、Al、Si等を主成分とする無機合成吸着剤である協和化学工業株式会社製のキョーワード100、200、300、400、500、600、700、1000、2000(以上、商品名)等のキョーワードシリーズ、協和化学工業株式会社製のキョーワマグ30、150(以上、商品名)等のキョーワマグシリーズ、富田製薬株式会社製のトミターAD100、500、600、700(以上、商品名)等のトミターADシリーズ等が挙げられる。
 吸着剤は、反応により得られたエステル化合物100質量部に対して0.01~5質量部添加されるのが好ましい。また、吸着処理は、被処理液の温度を20~160℃とし、大気下、窒素やアルゴン等の不活性ガス雰囲気下又は減圧条件下で、10分間から5時間行われるのが好ましい。
 かかる吸着処理により、(A)成分の酸価を好ましくは0.0001~0.01mgKOH/g、より好ましくは0.0001~0.005mgKOH/gに低減でき、電気特性がより高められる。
 なお、酸価は、JIS C 2101:2010(電気絶縁油試験方法)の「16.酸価試験」の方法で測定できる。
The adsorption treatment is performed by adding an adsorbent such as activated clay or activated alumina to the reaction solution after completion of the reaction, adsorbing a free fatty acid, an acid catalyst or the like, and then removing the adsorbent by filtration.
As the adsorbent, Kyowa Chemical Industry Co., Ltd. Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 (inorganic synthetic adsorbent mainly composed of Mg, Al, Si, etc.) Kyodo Mug series such as Kyowa Chemical Industry Co., Ltd., Kyowa Mug series such as Kyowa Chemical Industry Co., Ltd., and Tomita AD100, 500, 600 and 700 (Tomita Pharmaceutical Co., Ltd.) , Product name) and the like.
The adsorbent is preferably added in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of the ester compound obtained by the reaction. Further, the adsorption treatment is preferably performed at a temperature of 20 to 160 ° C. for 10 minutes to 5 hours in the air, in an inert gas atmosphere such as nitrogen or argon, or under reduced pressure conditions.
By such adsorption treatment, the acid value of the component (A) can be preferably reduced to 0.0001 to 0.01 mg KOH / g, more preferably 0.0001 to 0.005 mg KOH / g, and the electrical characteristics can be further enhanced.
The acid value can be measured by the method of “16. Acid value test” of JIS C 2101: 2010 (electrical insulation oil test method).
 脱気処理は、反応器内を窒素置換し、20~160℃、真空度0.1kPa~80kPaで、10分間~5時間減圧し、反応後の反応液から水分、空気を留去することにより行われる。この際、トルエン、イソプロピルアルコール、エタノール、ピリジン等の水と共沸する化合物を、前記反応液中の水分に対して0.1~3モル添加して共沸を行ってもよい。
 かかる脱気処理により、(A)成分中の水分量を好ましくは0.1~100ppm、より好ましくは0.1~50ppmに低減できる。
 水分量は、JIS C 2101:2010(電気絶縁油試験方法)の「20.水分試験」の方法で測定できる。
 脱気処理が行われた後、(A)成分は、再び水分を吸収しないように窒素雰囲気下又は乾燥空気下で保存されることが好ましい。また、(A)成分は、モレキュラーシーブス4A(商品名、純正化学株式会社製)等の脱水剤が、(A)成分100質量部に対して0.1~30質量部添加されて保存されてもよい。これにより、長期間、水分量を上記の好ましい範囲に維持できる。
In the deaeration treatment, the inside of the reactor is purged with nitrogen, depressurized at 20 to 160 ° C. and a vacuum degree of 0.1 kPa to 80 kPa for 10 minutes to 5 hours, and water and air are distilled off from the reaction solution after the reaction. Done. At this time, a compound azeotropically with water such as toluene, isopropyl alcohol, ethanol, pyridine or the like may be added in an amount of 0.1 to 3 mol with respect to the water in the reaction solution to carry out azeotropy.
By such degassing treatment, the water content in the component (A) can be reduced to preferably 0.1 to 100 ppm, more preferably 0.1 to 50 ppm.
The amount of moisture can be measured by the method of “20. Moisture test” of JIS C 2101: 2010 (electrical insulation oil test method).
After the deaeration treatment is performed, the component (A) is preferably stored under a nitrogen atmosphere or dry air so as not to absorb moisture again. The component (A) is stored by adding 0.1 to 30 parts by mass of a dehydrating agent such as Molecular Sieves 4A (trade name, manufactured by Junsei Chemical Co., Ltd.) to 100 parts by mass of the component (A). Also good. Thereby, a moisture content can be maintained in said preferable range for a long period of time.
 (A)成分の含有量は、電気絶縁油基油の総質量に対して、10質量%以上が好ましく、20質量%以上がより好ましく、40質量%以上がさらに好ましく、100質量%、即ち電気絶縁油基油が(A)成分のみから構成されてもよい。(A)成分の含有量が、上記下限値以上であると、部分放電特性及び生分解性が高められやすくなる。
 (A)成分の含有量は、電気絶縁油基油の総質量に対して、10~100質量%が好ましく、20~90質量%がより好ましく、40~80質量%がさらに好ましい。
The content of the component (A) is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 40% by mass or more, and 100% by mass, ie, electric, based on the total mass of the electric insulating oil base oil. An insulating oil base oil may be comprised only from (A) component. When the content of the component (A) is equal to or higher than the lower limit, partial discharge characteristics and biodegradability are easily improved.
The content of the component (A) is preferably 10 to 100% by mass, more preferably 20 to 90% by mass, and still more preferably 40 to 80% by mass with respect to the total mass of the electric insulating oil base oil.
 <(B)成分>
 (B)成分は、アルキルベンゼン、アルキルナフタレン、ジアリールアルカン、トリアリールアルカン及び鉱油からなる群から選ばれる少なくとも1種の化合物である。
 (B)成分が用いられることで、部分放電消滅電圧が高められやすくなる。さらに、低温流動性が高められやすくなる。
<(B) component>
The component (B) is at least one compound selected from the group consisting of alkylbenzene, alkylnaphthalene, diarylalkane, triarylalkane and mineral oil.
By using the component (B), the partial discharge extinction voltage can be easily increased. Furthermore, the low temperature fluidity is easily increased.
 アルキルベンゼンは、1つのベンゼン環にアルキル基が結合した芳香族炭化水素である。前記アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよい。また、アルキル基は、ベンゼン環に1つ結合してもよいし、複数結合してもよい。アルキルベンゼンとしては、モノアルキルベンゼン、ジアルキルベンゼン、トリアルキルベンゼン、テトラアルキルベンゼン等が挙げられる。
 アルキルベンゼンの有するアルキル基は、炭素数1~30が好ましく、炭素数3~30がより好ましく、炭素数4~24がさらに好ましく、炭素数10~20が特に好ましい。
 アルキルベンゼンとしては、アルキル基がベンゼン環に1~4個結合したものが好ましい。また、アルキルベンゼンとしては、ベンゼン環に結合したアルキル基の合計炭素数が3~30のものが好ましく、アルキル基の合計炭素数が4~24のものがより好ましく、アルキル基の合計炭素数が10~20のものがさらに好ましい。電気絶縁油基油にアルキルベンゼンが配合されると、低温流動性が高められやすくなる。
 前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアンコチル基等が挙げられる。これらのアルキル基は、直鎖状であってもよいし分岐鎖状であってもよい。
Alkylbenzene is an aromatic hydrocarbon having an alkyl group bonded to one benzene ring. The alkyl group may be linear or branched. One alkyl group or a plurality of alkyl groups may be bonded to the benzene ring. Examples of the alkyl benzene include monoalkyl benzene, dialkyl benzene, trialkyl benzene, and tetraalkyl benzene.
The alkyl group of the alkylbenzene preferably has 1 to 30 carbon atoms, more preferably 3 to 30 carbon atoms, still more preferably 4 to 24 carbon atoms, and particularly preferably 10 to 20 carbon atoms.
As the alkylbenzene, those having 1 to 4 alkyl groups bonded to the benzene ring are preferable. The alkylbenzene is preferably one having a total carbon number of 3 to 30 alkyl groups bonded to the benzene ring, more preferably a total carbon number of 4 to 24 alkyl groups, and a total carbon number of alkyl groups of 10 to 10. More preferred are those of ˜20. When alkylbenzene is blended with the electric insulating oil base oil, the low-temperature fluidity is easily improved.
Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, heptadecyl group. , Octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triancotyl group and the like. These alkyl groups may be linear or branched.
 アルキルベンゼンとしては、部分放電消滅電圧が高められやすくなる点から、ベンゼン環に結合したアルキル基の合計炭素数が10~20であるものが好ましい。また前記アルキル基が、直鎖状又は分岐鎖状のデシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基であるものが好ましい。
 アルキルベンゼンは、いずれか1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
As the alkylbenzene, those in which the total number of carbon atoms of the alkyl group bonded to the benzene ring is 10 to 20 are preferable from the viewpoint that the partial discharge extinction voltage is easily increased. The alkyl group is preferably a linear or branched decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, heptadecyl group, octadecyl group, nonadecyl group or icosyl group.
Any one of alkylbenzenes may be used alone, or two or more thereof may be used in combination.
 アルキルベンゼンの具体例としては、デシルベンゼン、ウンデシルベンゼン、ドデシルベンゼン、トリデシルベンゼン、テトラデシルベンゼン、ヘプタデシルベンゼン、オクタデシルベンゼン、ノナデシルベンゼン、イコシルベンゼン等が挙げられる。 Specific examples of alkylbenzene include decylbenzene, undecylbenzene, dodecylbenzene, tridecylbenzene, tetradecylbenzene, heptadecylbenzene, octadecylbenzene, nonadecylbenzene, icosylbenzene and the like.
 アルキルベンゼンの製造方法としては、特に制限されず、公知の方法が挙げられる。前記製造方法としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、メチルエチルベンゼン、ジエチルベンゼン及びこれらの混合物等の原料にアルキル化剤によりアルキル化する方法が挙げられる。前記アルキル化剤としては、エチレン、プロピレン、ブテン、イソブチレン等の低級モノオレフィンの重合によって得られる直鎖状又は分枝状のオレフィン、ワックス、重質油、石油留分、ポリエチレン、ポリプロピレン等の熱分解によって得られる直鎖状又は分枝状のオレフィン、又は、灯油、軽油等の石油留分からn-パラフィンを分離し、これを触媒によりオレフィン化することによって得られる直鎖状オレフィン、並びにこれらの混合物等が挙げられる。 The method for producing alkylbenzene is not particularly limited, and includes known methods. Examples of the production method include a method of alkylating a raw material such as benzene, toluene, xylene, ethylbenzene, methylethylbenzene, diethylbenzene and a mixture thereof with an alkylating agent. Examples of the alkylating agent include linear or branched olefins obtained by polymerization of lower monoolefins such as ethylene, propylene, butene, and isobutylene, waxes, heavy oils, petroleum fractions, polyethylene, polypropylene, and the like. Linear or branched olefins obtained by cracking, or linear olefins obtained by separating n-paraffins from petroleum fractions such as kerosene and light oil and olefinating them with a catalyst, as well as these A mixture etc. are mentioned.
 アルキルナフタレンは、1つのナフタレン環にアルキル基が結合した芳香族炭化水素である。
前記アルキル基としては、上記のアルキルベンゼンに結合したアルキル基と同様のものが挙げられる。アルキル基は、ナフタレン環に1つ結合してもよいし、複数結合してもよい。
 アルキルナフタレンの有するアルキル基は、炭素数1~30が好ましく、炭素数3~30がより好ましく、炭素数10~25がさらに好ましく、炭素数14~20が特に好ましい。アルキルナフタレンとしては、アルキル基がナフタレン環に1~4個結合したものが好ましい。また、アルキルナフタレンとしては、部分放電消滅電圧が高められやすくなる点から、ナフタレン環に結合したアルキル基の合計炭素数が3~30のものが好ましく、アルキル基の合計炭素数が6~24のものがより好ましく、アルキル基の合計炭素数が14~20のものがさらに好ましい。
 アルキルナフタレンは、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
Alkylnaphthalene is an aromatic hydrocarbon in which an alkyl group is bonded to one naphthalene ring.
Examples of the alkyl group include the same alkyl groups bonded to the above alkylbenzene. One or more alkyl groups may be bonded to the naphthalene ring.
The alkyl group of the alkylnaphthalene preferably has 1 to 30 carbon atoms, more preferably 3 to 30 carbon atoms, still more preferably 10 to 25 carbon atoms, and particularly preferably 14 to 20 carbon atoms. As the alkylnaphthalene, those having 1 to 4 alkyl groups bonded to the naphthalene ring are preferable. The alkylnaphthalene is preferably one having a total carbon number of 3 to 30 alkyl groups bonded to the naphthalene ring from the viewpoint of easily increasing the partial discharge extinction voltage, and having a total carbon number of 6 to 24 alkyl groups. More preferred are those having an alkyl group with a total carbon number of 14-20.
One kind of alkylnaphthalene may be used alone, or two or more kinds thereof may be used in combination.
 アルキルナフタレンの具体例としては、デシルナフタレン、ウンデシルナフタレン、ドデシルナフタレン、トリデシルナフタレン、テトラデシルナフタレン、ヘプタデシルナフタレン、オクタデシルナフタレン、ノナデシルナフタレン、イコシルナフタレン等が挙げられる。 Specific examples of the alkylnaphthalene include decylnaphthalene, undecylnaphthalene, dodecylnaphthalene, tridecylnaphthalene, tetradecylnaphthalene, heptadecylnaphthalene, octadecylnaphthalene, nonadecylnaphthalene, icosylnaphthalene and the like.
 アルキルナフタレンの製造方法は特に制限されず、種々の公知の方法で製造できる。例えば、炭素数14~20の炭化水素のハロゲン化物、炭素数14~20のオレフィン類を、硫酸、リン酸、ケイタングステン酸、フッ化水素酸等の鉱酸、酸性白土、活性白土等の固体酸性物質又は塩化アルミニウム、塩化亜鉛等のハロゲン化金属であるフリーデルクラフツ触媒等の酸触媒の存在下で、ナフタレンに付加する方法等が挙げられる。 The production method of alkylnaphthalene is not particularly limited, and can be produced by various known methods. For example, hydrocarbons having 14 to 20 carbon atoms, olefins having 14 to 20 carbon atoms, solid acids such as sulfuric acid, phosphoric acid, silicotungstic acid, hydrofluoric acid, etc., acidic clay, activated clay, etc. Examples thereof include a method of adding to naphthalene in the presence of an acid catalyst such as a Friedel-Crafts catalyst which is an acidic substance or a metal halide such as aluminum chloride and zinc chloride.
 ジアリールアルカンとしては、分子内に芳香族炭化水素基を2つ有するアルカン化合物が挙げられ、例えば、ジフェニルメタン、ベンジルトルエン、ベンジルキシレン、フェニル-sec-ブチルフェニルメタン、ジ-sec-ブチルジフェニルメタン、ジフェニルエタン、フェニルエチルフェニルエタン、フェニルクミルエタン、ジイソプロピルフェニルエタン、フェニルトリルエタン、ジ-sec-ブチルフェニルエタン、ジ-tert-ブチルフェニルエタン、フェニルキシリルエタン、フェニル-sec-ブチルフェニルエタン、ジフェニルプロパン、ジフェニルブタン、ジトリルエタン、ジキシリルオクタン、ジキシリルデカン等が挙げられる。
 これらのなかでも、フェニルエチルフェニルエタン、フェニルキシリルエタンが好ましい。
 フェニルエチルフェニルエタンとしては、1-フェニル-1-(2-エチルフェニル)エタン、1-フェニル-1-(3-エチルフェニル)エタン、1-フェニル-1-(4-エチルフェニル)エタン、1-フェニル-2-(2-エチルフェニル)エタン等が挙げられる。フェニルキシリルエタンとしては、1-フェニル-1-(2,3-ジメチルフェニル)エタン、1-フェニル-1-(2,4-ジメチルフェニル)エタン、1-フェニル-1-(2,5-ジメチルフェニル)エタン、1-フェニル-1-(2,6-ジメチルフェニル)エタン、1-フェニル-1-(3,4-ジメチルフェニル)エタン、1-フェニル-1-(3,5-ジメチルフェニル)エタン、1-フェニル-2-(2,3-ジメチルフェニル)エタン等が挙げられる。
 ジアリールアルカンの総炭素数は、13~30が好ましく、13~20がより好ましい。
 ジアリールアルカンは、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
Examples of the diarylalkane include alkane compounds having two aromatic hydrocarbon groups in the molecule. For example, diphenylmethane, benzyltoluene, benzylxylene, phenyl-sec-butylphenylmethane, di-sec-butyldiphenylmethane, diphenylethane , Phenylethylphenylethane, phenylcumylethane, diisopropylphenylethane, phenyltolylethane, di-sec-butylphenylethane, di-tert-butylphenylethane, phenylxylylethane, phenyl-sec-butylphenylethane, diphenylpropane , Diphenylbutane, ditolylethane, dixylyloctane, dixylyldecane and the like.
Of these, phenylethylphenylethane and phenylxylylethane are preferred.
Examples of phenylethylphenylethane include 1-phenyl-1- (2-ethylphenyl) ethane, 1-phenyl-1- (3-ethylphenyl) ethane, 1-phenyl-1- (4-ethylphenyl) ethane, -Phenyl-2- (2-ethylphenyl) ethane and the like. Examples of phenylxylylethane include 1-phenyl-1- (2,3-dimethylphenyl) ethane, 1-phenyl-1- (2,4-dimethylphenyl) ethane, 1-phenyl-1- (2,5- Dimethylphenyl) ethane, 1-phenyl-1- (2,6-dimethylphenyl) ethane, 1-phenyl-1- (3,4-dimethylphenyl) ethane, 1-phenyl-1- (3,5-dimethylphenyl) ) Ethane, 1-phenyl-2- (2,3-dimethylphenyl) ethane and the like.
The total number of carbon atoms in the diarylalkane is preferably 13 to 30, and more preferably 13 to 20.
One kind of diarylalkane may be used alone, or two or more kinds thereof may be used in combination.
 トリアリールアルカンとしては、分子内に芳香族炭化水素基を3つ有するアルカン化合物が挙げられる。例えば、ジベンジルベンゼン、ジベンジルトルエン、ジベンジルキシレン及びこれらのアルキル基置換体等が挙げられる。
 トリアリールアルカンの総炭素数は、19~30が好ましく、19~26がより好ましい。
 トリアリールアルカンは、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
Examples of the triarylalkane include alkane compounds having three aromatic hydrocarbon groups in the molecule. For example, dibenzylbenzene, dibenzyltoluene, dibenzylxylene, and alkyl group substitution products thereof can be used.
The total number of carbon atoms of the triarylalkane is preferably 19 to 30, and more preferably 19 to 26.
One triarylalkane may be used alone, or two or more triarylalkanes may be used in combination.
 鉱油としては、重質油から蒸留精製されたものが挙げられる。前記鉱油としては、例えば、パラフィン基系原油、中間基系原油又はナフテン基系原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分に対して、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理の1種もしくは2種以上の精製手段が施されたパラフィン系鉱油又はナフテン系鉱油が挙げられる。これらのなかでも、熱安定性により優れる点から、高度に精製された鉱油が好ましい。前記の鉱油としては、パラフィン基系原油、中間基系原油又はナフテン基系原油を常圧蒸留するか又は常圧蒸留の残渣油を減圧蒸留して得られる留出油を、常法に従い精製して得られる精製油、精製後さらに深脱ロウ処理が施されて得られる深脱ろう油、水素化処理が施されて得られる水添処理油等が挙げられる。
 鉱油としては、40℃における動粘度が0.1~100mm/sのものが好ましく、0.1~50mm/sのものがより好ましく、0.1~10mm/sのものがさらに好ましい。前記動粘度は、1種の鉱油で調整されてもよいし、2種以上の異なる動粘度を有する鉱油が混合されて調整されてもよい。
As mineral oil, what was distilled and refined from heavy oil is mentioned. Examples of the mineral oil include, for example, solvent removal, solvent extraction, and hydrogenation of a lubricating oil fraction obtained by atmospheric distillation and vacuum distillation of paraffinic crude oil, intermediate crude oil, or naphthenic crude oil. Examples thereof include paraffinic mineral oil or naphthenic mineral oil that has been subjected to one or more purification methods such as decomposition, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment. Among these, highly refined mineral oil is preferable because it is more excellent in thermal stability. As the mineral oil, a distillate obtained by subjecting paraffin-based crude oil, intermediate-based crude oil or naphthenic-based crude oil to atmospheric distillation or vacuum distillation residual oil is purified according to a conventional method. Refined oil obtained by further deep dewaxing after purification, hydrotreated oil obtained by hydrotreatment, and the like.
The mineral oil preferably has a kinematic viscosity at 40 ° C. of 0.1 to 100 mm 2 / s, more preferably 0.1 to 50 mm 2 / s, and still more preferably 0.1 to 10 mm 2 / s. . The kinematic viscosity may be adjusted with one kind of mineral oil, or may be adjusted by mixing two or more kinds of mineral oils having different kinematic viscosities.
 (B)成分としては、(A)成分と併用された際の部分放電特性と生分解性のバランスに優れる点から、アルキルベンゼン、アルキルナフタレンが好ましく、アルキルベンゼンがより好ましい。アルキルベンゼンのなかでも、炭素数10~20の直鎖状のアルキル基を有するモノアルキルベンゼンが特に好ましい。
 (B)成分は、いずれか1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 (B)成分の含有量は、電気絶縁油基油の総質量に対して、0~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%がさらに好ましく、35~65質量%が特に好ましい。
 (B)成分の含有量が、上記下限値以上であると、部分放電消滅電圧をより高めやすく、低温流動性をより高めやすい。
As the component (B), alkylbenzene and alkylnaphthalene are preferable, and alkylbenzene is more preferable from the viewpoint of excellent balance between partial discharge characteristics and biodegradability when used in combination with the component (A). Among the alkylbenzenes, monoalkylbenzene having a linear alkyl group having 10 to 20 carbon atoms is particularly preferable.
As the component (B), any one type may be used alone, or two or more types may be used in combination.
The content of the component (B) is preferably 0 to 80% by mass, more preferably 10 to 80% by mass, still more preferably 20 to 70% by mass, and more preferably 35 to 65% with respect to the total mass of the electric insulating oil base oil. Mass% is particularly preferred.
When the content of the component (B) is equal to or higher than the lower limit, the partial discharge extinction voltage can be easily increased and the low temperature fluidity can be easily increased.
 電気絶縁油基油に(B)成分が含まれる場合、(A)成分/(B)成分で表される質量比[(B)成分に対する(A)成分の質量割合]は、90/10~20/80が好ましく、80/20~30/70がより好ましく、65/35~35/65がさらに好ましい。
(A)成分/(B)成分で表される質量比が前記範囲であると、部分放電特性及び生分解性に優れる電気絶縁油基油が得られやすくなる。
When component (B) is included in the electrical insulating oil base oil, the mass ratio represented by component (A) / component (B) [mass ratio of component (A) to component (B)] is 90/10 to 20/80 is preferable, 80/20 to 30/70 is more preferable, and 65/35 to 35/65 is still more preferable.
When the mass ratio represented by the component (A) / component (B) is within the above range, an electrically insulating oil base oil excellent in partial discharge characteristics and biodegradability is easily obtained.
 (A)成分及び(B)成分の合計含有量は、電気絶縁油基油の総質量に対して、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%、即ち電気絶縁油基油が(A)成分及び(B)成分のみから構成されてもよい。(A)成分及び(B)成分の合計含有量が、前記の好ましい範囲であると、部分放電特性及び生分解性が高められやすくなる。 The total content of the component (A) and the component (B) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, based on the total mass of the electrical insulating oil base oil. 100% by mass, that is, the electric insulating oil base oil may be composed only of the component (A) and the component (B). When the total content of the component (A) and the component (B) is in the preferred range, partial discharge characteristics and biodegradability are easily improved.
 本発明の電気絶縁油基油は、カプロン酸ベンジル、カプロン酸2-フェニルエチル、カプロン酸1-フェニルエチル、カプロン酸2-フェニル-1-プロピル、カプロン酸3-フェニル-1-プロピル、カプロン酸1-フェニル-1-ブチル、エナント酸ベンジル、エナント酸2-フェニルエチル、エナント酸1-フェニルエチル、エナント酸2-フェニル-1-プロピル、エナント酸3-フェニル-1-プロピル、エナント酸1-フェニル-1-ブチル、カプリル酸ベンジル、カプリル酸2-フェニルエチル、カプリル酸1-フェニルエチル、カプリル酸2-フェニル-1-プロピル、カプリル酸3-フェニル-1-プロピル、カプリル酸1-フェニル-1-ブチル、イソオクチル酸ベンジル、イソオクチル酸2-フェニルエチル、イソオクチル酸1-フェニルエチル、イソオクチル酸2-フェニル-1-プロピル、イソオクチル酸3-フェニル-1-プロピル、イソオクチル酸1-フェニル-1-ブチル、イソノナン酸ベンジル、イソノナン酸2-フェニルエチル、イソノナン酸1-フェニルエチル、イソノナン酸2-フェニル-1-プロピル、イソノナン酸3-フェニル-1-プロピル、イソノナン酸1-フェニル-1-ブチル、カプリン酸ベンジル、カプリン酸2-フェニルエチル、カプリン酸1-フェニルエチル、カプリン酸2-フェニル-1-プロピル、カプリン酸3-フェニル-1-プロピル、及びカプリン酸1-フェニル-1-ブチルからなる群から選択される少なくとも1種の脂肪酸エステル(A)、及びアルキルベンゼン、アルキルナフタレン、ジアリールアルカン、トリアリールアルカン及び鉱油からなる群から選ばれる少なくとも1種の化合物(B)を含むことが好ましい。 The electrical insulating oil base oil of the present invention comprises benzyl caproate, 2-phenylethyl caproate, 1-phenylethyl caproate, 2-phenyl-1-propyl caproate, 3-phenyl-1-propyl caproate, caproic acid. 1-phenyl-1-butyl, benzyl enanthate, 2-phenylethyl enanthate, 1-phenylethyl enanthate, 2-phenyl-1-propyl enanthate, 3-phenyl-1-propyl enanthate, 1-enanthate Phenyl-1-butyl, benzyl caprylate, 2-phenylethyl caprylate, 1-phenylethyl caprylate, 2-phenyl-1-propyl caprylate, 3-phenyl-1-propyl caprylate, 1-phenyl caprylate 1-butyl, benzyl isooctylate, 2-phenylethyl isooctylate, iso 1-phenylethyl octylate, 2-phenyl-1-propyl isooctylate, 3-phenyl-1-propyl isooctylate, 1-phenyl-1-butyl isooctylate, benzyl isononanoate, 2-phenylethyl isononanoate, isononanoic acid 1-phenylethyl, 2-phenyl-1-propyl isononanoate, 3-phenyl-1-propyl isononanoate, 1-phenyl-1-butyl isononanoate, benzyl caprate, 2-phenylethyl caprate, 1-caprate At least one fatty acid ester (A) selected from the group consisting of phenylethyl, 2-phenyl-1-propyl caprate, 3-phenyl-1-propyl caprate, and 1-phenyl-1-butyl caprate, And alkylbenzene, alkylnaphthalene, diaryl Glucan preferably contains at least one compound selected from the group consisting of triaryl alkanes and mineral oil (B).
 本発明の電気絶縁油基油は、カプリル酸ベンジル、カプリン酸ベンジル、パーム油脂肪酸ベンジル、及びイソオクチル酸ベンジルからなる群から選択される少なくとも1種の脂肪酸エステル(A)、及びアルキルベンゼン、アルキルナフタレン、ジベンジルトルエン、及びフェニルキシリルエタンからなる群から選択される少なくとも1種の化合物(B)を含むことが好ましい。 The electrically insulating oil base oil of the present invention includes at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate, and alkylbenzene, alkylnaphthalene, It is preferable to include at least one compound (B) selected from the group consisting of dibenzyltoluene and phenylxylylethane.
 本発明の電気絶縁油基油は、カプリル酸ベンジル、カプリン酸ベンジル、パーム油脂肪酸ベンジル、及びイソオクチル酸ベンジルからなる群から選択される少なくとも1種の脂肪酸エステル(A)、及びアルキルベンゼン、アルキルナフタレン、ジベンジルトルエン、及びフェニルキシリルエタンからなる群から選択される少なくとも1種の化合物(B)を含み、
 成分(A)の含有量が、電気絶縁油基油の総質量に対し、20~100質量%であり、
 成分(B)の含有量が、電気絶縁油基油の総質量に対し、0~80質量%であり、
 成分(A)と成分(B)の合計量は100質量%を超えないものであることが好ましい。
The electrically insulating oil base oil of the present invention includes at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate, and alkylbenzene, alkylnaphthalene, Including at least one compound (B) selected from the group consisting of dibenzyltoluene and phenylxylylethane;
The content of the component (A) is 20 to 100% by mass with respect to the total mass of the electric insulating base oil,
The content of the component (B) is 0 to 80% by mass with respect to the total mass of the electric insulating base oil,
The total amount of component (A) and component (B) is preferably not more than 100% by mass.
 本発明の電気絶縁油基油は、カプリル酸ベンジル、カプリン酸ベンジル、パーム油脂肪酸ベンジル、及びイソオクチル酸ベンジルからなる群から選択される少なくとも1種の脂肪酸エステル(A)からなるものであることが好ましい。 The electrically insulating oil base oil of the present invention is composed of at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate. preferable.
 本発明の電気絶縁油基油は、カプリル酸ベンジル、カプリン酸ベンジル、パーム油脂肪酸ベンジル、及びイソオクチル酸ベンジルからなる群から選択される少なくとも1種の脂肪酸エステル(A)、及びアルキルベンゼン、アルキルナフタレン、ジベンジルトルエン、及びフェニルキシリルエタンからなる群から選択される少なくとも1種の化合物(B)を含み、
 成分(A)の含有量が、電気絶縁油基油の総質量に対し、20~90質量%であり、
 成分(B)の含有量が、電気絶縁油基油の総質量に対し、10~80質量%であり、
 成分(A)と成分(B)の合計量は100質量%を超えないものであることが好ましい。
The electrically insulating oil base oil of the present invention includes at least one fatty acid ester (A) selected from the group consisting of benzyl caprylate, benzyl caprate, benzyl palm oil fatty acid, and benzyl isooctylate, and alkylbenzene, alkylnaphthalene, Including at least one compound (B) selected from the group consisting of dibenzyltoluene and phenylxylylethane;
The content of the component (A) is 20 to 90% by mass with respect to the total mass of the electric insulating base oil,
The content of the component (B) is 10 to 80% by mass with respect to the total mass of the electric insulating base oil,
The total amount of component (A) and component (B) is preferably not more than 100% by mass.
 (油入電気機器用の電気絶縁油)
 本発明の油入電気機器用の電気絶縁油(以下、単に「電気絶縁油」ともいう)は、上述の電気絶縁油基油を含有する。
 電気絶縁油基油の含有量は、電気絶縁油の総質量に対して、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%であってもよい。電気絶縁油基油の含有量が前記下限値以上であると、電気絶縁油の部分放電特性及び生分解性が高められやすくなる。
 電気絶縁油の生分解性は、60%以上が好ましく、70%以上がより好ましく、75%以上がさらに好ましく、80%以上が特に好ましく、100%であってもよい。前記生分解性は、電気絶縁油基油の生分解性の測定方法と同様にして測定される。
 電気絶縁油の40℃における動粘度は、0.1~8mm/sが好ましく、0.5~4mm/sがより好ましい。電気絶縁油の動粘度が前記の好ましい範囲であると、油入電気機器に対する冷却効果が得られやすくなる。
 電気絶縁油の流動点は、-25℃以下が好ましく、-35℃未満がより好ましい。電気絶縁油の流動点が前記上限値以下であると、寒冷地等においても良好な使用性が得られ電気絶縁油の汎用性が高められる。
(Electric insulating oil for oil-filled electrical equipment)
The electrical insulating oil for oil-filled electrical equipment of the present invention (hereinafter also simply referred to as “electrical insulating oil”) contains the above-described electrical insulating oil base oil.
The content of the electric insulating oil base oil is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and 100% by mass with respect to the total mass of the electric insulating oil. Good. When the content of the electric insulating oil base oil is equal to or higher than the lower limit value, the partial discharge characteristics and biodegradability of the electric insulating oil are easily improved.
The biodegradability of the electrical insulating oil is preferably 60% or more, more preferably 70% or more, further preferably 75% or more, particularly preferably 80% or more, and may be 100%. The biodegradability is measured in the same manner as the method for measuring the biodegradability of an electrically insulating oil base oil.
Kinematic viscosity at 40 ° C. of the electrical insulating oil is preferably 0.1 ~ 8mm 2 / s, more preferably 0.5 ~ 4mm 2 / s. When the kinematic viscosity of the electrical insulating oil is within the above preferred range, a cooling effect on the oil-filled electrical device is easily obtained.
The pour point of the electrical insulating oil is preferably −25 ° C. or less, more preferably less than −35 ° C. When the pour point of the electrical insulating oil is not more than the above upper limit value, good usability can be obtained even in cold districts and the versatility of the electrical insulating oil is enhanced.
 電気絶縁油は、上記電気絶縁油基油以外に、電気絶縁油に通常用いられるその他の成分を含有してもよい。その他の成分としては、例えば、上記(A)成分及び(B)成分以外の基油や、酸化防止剤、流動点降下剤、金属不活性化剤、分解抑制剤等の添加剤が挙げられる。ただし、より良好な部分放電特性及び生分解性が得られる点から、(A)成分及び(B)成分以外の基油の含有量は、電気絶縁油の総質量に対して、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましく、0質量%であってもよい。 The electrical insulating oil may contain other components usually used for the electrical insulating oil in addition to the electrical insulating oil base oil. Examples of other components include base oils other than the above components (A) and (B), and additives such as antioxidants, pour point depressants, metal deactivators, and decomposition inhibitors. However, the content of the base oil other than the component (A) and the component (B) is 20% by mass or less with respect to the total mass of the electrical insulating oil, because better partial discharge characteristics and biodegradability can be obtained. Is preferably 10% by mass or less, more preferably 5% by mass or less, and may be 0% by mass.
 前記酸化防止剤としては、例えば、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール等のフェノール系酸化防止剤;フェニル-α-ナフチルアミン、N,N-ジ(2-ナフチル)-p-フェニレンジアミン等のアミン系酸化防止剤;トコフェロール、d-トコフェロール、dl-α-トコフェロール、酢酸-α-トコフェロール、酢酸dl-α-トコフェロール、酢酸トコフェロール、α-トコフェロール等のビタミンE類;アスコルビン酸、アスコルビン酸塩類、アスコルビン酸ステアリン酸エステル等のビタミンC類;緑茶抽出物;生コーヒー抽出物;セサモール;セサミノール等が挙げられる。これらのうちでも、電気絶縁油基油に対する溶解性に優れる点から、フェノール系酸化防止剤が好ましい。電気絶縁油に酸化防止剤が配合されると、保存時及び長期間使用された場合の酸化安定性が高められやすくなる。
 酸化防止剤は、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 本発明の電気絶縁油が酸化防止剤を含有する場合、酸化防止剤の含有量は、電気絶縁油基油100質量部に対して0.01~5質量部が好ましい。
Examples of the antioxidant include phenolic antioxidants such as dibutylhydroxytoluene and butylhydroxyanisole; amine-based oxidations such as phenyl-α-naphthylamine and N, N-di (2-naphthyl) -p-phenylenediamine. Inhibitors; Vitamin E such as tocopherol, d-tocopherol, dl-α-tocopherol, acetic acid-α-tocopherol, dl-α-tocopherol, tocopherol acetate, α-tocopherol; ascorbic acid, ascorbates, stearic ascorbate Vitamin Cs such as acid esters; green tea extract; fresh coffee extract; sesamol; sesaminol and the like. Among these, a phenol-based antioxidant is preferable from the viewpoint of excellent solubility in an electric insulating oil base oil. When antioxidant is mix | blended with electrical insulation oil, the oxidation stability at the time of a preservation | save and a long-term use will become easy to be improved.
One type of antioxidant may be used alone, or two or more types may be used in combination.
When the electrical insulating oil of the present invention contains an antioxidant, the content of the antioxidant is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the electrical insulating oil base oil.
 前記流動点降下剤としては、例えば、ショ糖脂肪酸エステル、ポリアルキルメタクリレート又はポリアルキルアクリレート等のアクリル系ポリマー等が挙げられる。前記アクリル系ポリマーとしては、約5千~50万の重量平均分子量を有するものが好ましい。前記アクリル系ポリマーとしては、炭素数1~20の直鎖状又は分岐鎖状のアルキル基を有するポリマーが挙げられ、例えば、ポリメチルアクリレート、ポリメチルメタクリレート、ポリプロピルアクリレート、ポリプロピルメタクリレート、ポリヘプチルアクリレート、ポリヘプチルメタクリレート、ポリノニルアクリレート、ポリノニルメタクリレート、ポリウンデシルアクリレート、ポリウンデシルメタクリレート、ポリトリデシルアクリレート、ポリトリデシルメタクリレート、ポリペンタデシルアクリレート、ポリペンタデシルメタクリレート、ポリヘプタデシルアクリレート、ポリヘプタデシルメタクリレート等が挙げられる。前記アクリレートポリマーとして、市販品が用いられてもよい。前記市販品としては、流動点の低下効果及びハンドリング性に優れる点から、三洋化成工業株式会社製のアクルーブ100シリーズ(アクルーブ132、133、136、137、138、146、160、以上商品名)が好ましい。
 本発明の電気絶縁油が流動点降下剤を含有する場合、流動点降下剤の含有量は、電気絶縁油基油100質量部に対して0.01~5質量部が好ましく、0.01~3質量部がより好ましい。流動点降下剤の含有量が、前記下限値以上であると低温流動性が高められやすくなる。流動点降下剤の含有量が、前記上限値以下であると電気絶縁油の高粘度化が抑制されやすくなる。
Examples of the pour point depressant include acrylic polymers such as sucrose fatty acid ester, polyalkyl methacrylate, and polyalkyl acrylate. The acrylic polymer preferably has a weight average molecular weight of about 5,000 to 500,000. Examples of the acrylic polymer include polymers having a linear or branched alkyl group having 1 to 20 carbon atoms, such as polymethyl acrylate, polymethyl methacrylate, polypropyl acrylate, polypropyl methacrylate, polyheptyl. Acrylate, polyheptyl methacrylate, polynonyl acrylate, polynonyl methacrylate, polyundecyl acrylate, polyundecyl methacrylate, polytridecyl acrylate, polytridecyl methacrylate, polypentadecyl acrylate, polypentadecyl methacrylate, polyheptadecyl acrylate, poly Examples include heptadecyl methacrylate. A commercial item may be used as the acrylate polymer. As said commercial item, the point which is excellent in the fall effect of a pour point, and the handleability, from the Sanyo Kasei Kogyo Co., Ltd. 100 series of accruals (accomputing 132, 133, 136, 137, 138, 146, 160, the above-mentioned brand name). preferable.
When the electrical insulating oil of the present invention contains a pour point depressant, the content of the pour point depressant is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the electrical insulating oil base oil. 3 parts by mass is more preferred. When the content of the pour point depressant is equal to or more than the lower limit, the low temperature fluidity can be easily improved. When the content of the pour point depressant is equal to or lower than the upper limit, the increase in viscosity of the electrical insulating oil is easily suppressed.
 前記金属不活性化剤としては、例えば、ベンゾトリアゾール、4-メチル-ベンゾトリアゾール、4-エチル-ベンゾトリアゾール等の4-アルキル-ベンゾトリアゾール類;5-メチル-ベンゾトリアゾール、5-エチル-ベンゾトリアゾール等の5-アルキル-ベンゾトリアゾール類;1-ジオクチルアミノメチル-2,3-ベンゾトリアゾール等の1-アルキル-ベンゾトリアゾール類;1-ジオクチルアミノメチル-2,3-トルトリアゾール等の1-アルキル-トルトリアゾール類等のベンゾトリアゾール誘導体;ベンゾイミダゾール、2-(オクチルジチオ)-ベンゾイミダゾール、2-(デシルジチオ)-ベンゾイミダゾール、2-(ドデシルジチオ)-ベンゾイミダゾール等の2-(アルキルジチオ)-ベンゾイミダゾール類;2-(オクチルジチオ)-トルイミダゾール、2-(デシルジチオ)-トルイミダゾール、2-(ドデシルジチオ)-トルイミダゾール等の2-(アルキルジチオ)-トルイミダゾール類等のベンゾイミダゾール誘導体;チアゾール、ベンゾチアゾール、2-メルカプトベンゾチアゾール誘導体、2-(ヘキシルジチオ)ベンゾチアゾール、2-(オクチルジチオ)ベンゾチアゾール等の2-(アルキルジチオ)ベンゾチアゾール類;2-(ヘキシルジチオ)トルチアゾール、2-(オクチルジチオ)トルチアゾール等の2-(アルキルジチオ)トルチアゾール類;2-(N,N-ジエチルジチオカルバミル)ベンゾチアゾール、2-(N,N-ジブチルジチオカルバミル)-ベンゾチアゾール、2-(N,N-ジヘキシルジチオカルバミル)-ベンゾチアゾール等の2-(N,N-ジアルキルジチオカルバミル)ベンゾチアゾール類;2-(N,N-ジエチルジチオカルバミル)トルチアゾール、2-(N,N-ジブチルジチオカルバミル)トルチアゾール、2-(N,N-ジヘキシルジチオカルバミル)トルチアゾール等の2-(N,N-ジアルキルジチオカルバミル)-トルゾチアゾール類等のベンゾチアゾール誘導体等が挙げられる。これらのなかでも、流動帯電防止剤としての作用も得られる点から、ベンゾトリアゾール誘導体が好ましい。
 金属不活性化剤は、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 本発明の電気絶縁油が金属不活性化剤を含有する場合、金属不活性化剤の含有量は、電気絶縁油基油100質量部に対して0.0001~0.5質量部が好ましく、0.0005~0.1質量部がさらに好ましい。
Examples of the metal deactivator include 4-alkyl-benzotriazoles such as benzotriazole, 4-methyl-benzotriazole, 4-ethyl-benzotriazole; 5-methyl-benzotriazole, 5-ethyl-benzotriazole 5-alkyl-benzotriazoles such as 1-dioctylaminomethyl-2,3-benzotriazole and the like; 1-alkyl-benzotriazoles such as 1-dioctylaminomethyl-2,3-toltriazole and the like Benzotriazole derivatives such as toltriazoles; 2- (alkyldithio) -benzos such as benzimidazole, 2- (octyldithio) -benzimidazole, 2- (decyldithio) -benzimidazole, 2- (dodecyldithio) -benzimidazole Imidazole Benzoimidazole derivatives such as 2- (alkyldithio) -toluimidazoles such as 2- (octyldithio) -toluimidazole, 2- (decyldithio) -toluimidazole, 2- (dodecyldithio) -toluimidazole; 2- (alkyldithio) benzothiazoles such as thiazole, 2-mercaptobenzothiazole derivatives, 2- (hexyldithio) benzothiazole, 2- (octyldithio) benzothiazole; 2- (hexyldithio) tolthiazole, 2- ( 2- (alkyldithio) torthiazoles such as octyldithio) tolthiazole; 2- (N, N-diethyldithiocarbamyl) benzothiazole, 2- (N, N-dibutyldithiocarbamyl) -benzothiazole, 2- (N, N-dihexyl dithiocarba 2-) (N, N-dialkyldithiocarbamyl) benzothiazoles such as 2-benzothiazole; 2- (N, N-diethyldithiocarbamyl) tolthiazole, 2- (N, N-dibutyldithiocarbamyl) And benzothiazole derivatives such as 2- (N, N-dialkyldithiocarbamyl) -torzothiazoles such as tolthiazole and 2- (N, N-dihexyldithiocarbamyl) tolthiazole. Among these, a benzotriazole derivative is preferable from the viewpoint of obtaining an action as a fluid antistatic agent.
A metal deactivator may be used individually by 1 type and may be used in combination of 2 or more type.
When the electrical insulating oil of the present invention contains a metal deactivator, the content of the metal deactivator is preferably 0.0001 to 0.5 parts by mass with respect to 100 parts by mass of the electrical insulating oil base oil. More preferred is 0.0005 to 0.1 parts by mass.
 前記分解抑制剤としては、ジフェニルカルボジイミド、ジトリルカルボジイミド、ビス(イソプロピルフェニル)カルボジイミド、ビス(ブチルフェニル)カルボジイミド等のビス(アルキルフェニル)カルボジイミド等のカルボジイミド化合物;フェニルグリシジルエーテル、フェニルグリシジルエステル、アルキルグリシジルエーテル、アルキルグリシジルエステル、3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、ビニルシクロヘキセンジエポキサイド、3,4-エポキシ-6-メチルシクロヘキシルメチル(3,4-エポキシ-6-メチルヘキサン)カルボキシレート、ビスフェノールAのジグリシジルエーテル型エポキシ化合物であるフェノールノボラック型エポキシ化合物;オルソクレゾールノボラック型エポキシ化合物等のエポキシ化合物等が挙げられる。本発明の電気絶縁油が分解抑制剤を含有すると、熱、酸素等による劣化が抑制されやすくなる。 Examples of the decomposition inhibitor include carbodiimide compounds such as bis (alkylphenyl) carbodiimide such as diphenylcarbodiimide, ditolylcarbodiimide, bis (isopropylphenyl) carbodiimide, and bis (butylphenyl) carbodiimide; phenylglycidyl ether, phenylglycidyl ester, alkylglycidyl Ether, alkyl glycidyl ester, 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexane) carboxylate, vinylcyclohexylene epoxide, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy-6-methyl) Hexane) carboxylate, a phenol novolac epoxy compound which is a diglycidyl ether type epoxy compound of bisphenol A; Seo cresol novolak type epoxy compound such as epoxy compound, and the like. When the electrical insulating oil of the present invention contains a decomposition inhibitor, deterioration due to heat, oxygen and the like is easily suppressed.
 本発明の電気絶縁油は、従来公知の製造方法により製造される。本発明の電気絶縁油の製造方法としては、例えば、電気絶縁油基油にその他の成分を添加し、これを混合する方法が挙げられる。
 本発明の電気絶縁油は、油入電気機器の絶縁油として使用することができる。
The electrical insulating oil of the present invention is produced by a conventionally known production method. Examples of the method for producing the electrical insulating oil of the present invention include a method of adding other components to the electrical insulating oil base oil and mixing them.
The electrical insulating oil of the present invention can be used as an insulating oil for oil-filled electrical equipment.
 (油入電気機器)
 本発明の油入電気機器は、上述の電気絶縁油を備える。油入電気機器としては、例えば、変圧器、リアクトル、タップチェンジャー、ケーブル、ブッシング、変成器、コンデンサ、変流器等が挙げられる。
 図1のコンデンサは、ポリプロピレンフィルム等を誘電体とし、金属箔等を電極とした構成で巻回したコンデンサ素子1;コンデンサ素子1より導出される銅箔等にて形成されたリード片2;コンデンサ素子1を収納する開口部を有する金属ケース3;金属ケースとコンデンサ素子1との間に配置された絶縁材4;金属ケース3とコンデンサ素子1とを絶縁するために金属ケースの内部を充満した絶縁媒体(電気絶縁油)5;金属ケース3を密閉する金属蓋6;金属蓋6の上部に配置され、外部電源との接続に使用する外部引出端子7;金属蓋6と外部引出端子7とを絶縁するための、熱硬化性樹脂等により形成される端子板8;金属蓋6の下に配置され、リード片2と外部引出端子7とを電気的に接続する端子棒9;及び金属蓋6の下に配置され金属蓋6と端子棒9とを絶縁し且つ絶縁媒体(電気絶縁油)5を金属ケースより漏出させないためのパッキンゴム10を有する。
 図2のケーブルは、コンダクター16、コンダクター16の周囲に配置される第1半導電層17、第1半導電層の外側に配置される電気絶縁油12が含浸された層、電気絶縁油12が含浸された層の外側に配置される第2半導電層、第2半導電層の外側に配置される金属スクリーン14、及び金属スクリーン14の外側に配置される保護鞘15を備える。
(Oil-filled electrical equipment)
The oil-filled electrical device of the present invention includes the above-described electrical insulating oil. Examples of the oil-filled electrical device include a transformer, a reactor, a tap changer, a cable, a bushing, a transformer, a capacitor, and a current transformer.
1 is a capacitor element 1 wound in a configuration using a polypropylene film or the like as a dielectric and a metal foil or the like as an electrode; a lead piece 2 formed of a copper foil or the like derived from the capacitor element 1; a capacitor Metal case 3 having an opening for accommodating element 1; Insulating material 4 disposed between metal case and capacitor element 1; Filled inside of metal case to insulate metal case 3 and capacitor element 1 Insulating medium (electrical insulating oil) 5; metal lid 6 that seals the metal case 3; an external lead terminal 7 that is arranged on the top of the metal lid 6 and used for connection to an external power source; a metal lid 6 and an external lead terminal 7; A terminal plate 8 made of a thermosetting resin or the like for insulating the terminals; a terminal bar 9 disposed under the metal lid 6 and electrically connecting the lead piece 2 and the external lead terminal 7; and a metal lid Arranged under 6 5 insulated and insulated medium (electrical insulating oil) and a metal cover 6 and the terminal rod 9 is having a packing rubber 10 for preventing the leakage from the metal case.
The cable of FIG. 2 includes a conductor 16, a first semiconductive layer 17 disposed around the conductor 16, a layer impregnated with the electric insulating oil 12 disposed outside the first semiconductive layer, and the electric insulating oil 12. A second semiconductive layer disposed outside the impregnated layer; a metal screen disposed outside the second semiconductive layer; and a protective sheath 15 disposed outside the metal screen.
 以上、説明したとおり、本発明の電気絶縁油基油は、(A)成分を含有するため、部分放電特性に優れ、かつ、生分解性に優れる。 As described above, since the electrically insulating oil base oil of the present invention contains the component (A), it has excellent partial discharge characteristics and excellent biodegradability.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。本実施例において「%」は特に断りがない限り「質量%」を示す。
 本実施例において使用した原料は下記の通りである。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples. In this example, “%” indicates “% by mass” unless otherwise specified.
The raw materials used in this example are as follows.
 <(A)成分>
 A-1:カプリル酸ベンジル、以下のように調製したもの。
 A-2:カプリン酸ベンジル、以下のように調製したもの。
 A-3:パーム油脂肪酸ベンジル、以下のように調製したもの。
 A-4:イソオクチル酸ベンジル、以下のように調製したもの。
<(A) component>
A-1: Benzyl caprylate, prepared as follows.
A-2: Benzyl caprate, prepared as follows.
A-3: Palm oil fatty acid benzyl, prepared as follows.
A-4: Benzyl isooctylate, prepared as follows.
 <(B)成分>
 B-1:アルキルベンゼン(炭素数10~13のアルキル基を有するモノアルキルベンゼン、JX日鉱日石エネルギー株式会社製、商品名「アルケンL」)。
 B-2:アルキルナフタレン(炭素数16~18のアルキル基を有するモノアルキルナフタレン、ライオン株式会社製、商品名「拡散ポンプ油A」)。
 B-3:ジベンジルトルエン(綜研テクニックス株式会社製、商品名「NeoSK-OIL」)。
 B-4:フェニルキシリルエタン(JIS C2320、5種2号絶縁油)。
<(B) component>
B-1: Alkylbenzene (monoalkylbenzene having an alkyl group having 10 to 13 carbon atoms, trade name “Alken L” manufactured by JX Nippon Mining & Energy Corporation).
B-2: Alkylnaphthalene (monoalkylnaphthalene having an alkyl group having 16 to 18 carbon atoms, manufactured by Lion Corporation, trade name “Diffusion Pump Oil A”).
B-3: Dibenzyltoluene (trade name “NeoSK-OIL” manufactured by Soken Techniques Co., Ltd.).
B-4: Phenylxylylethane (JIS C2320, Type 5 No. 2 insulating oil).
 <(A’)成分:(A)成分の比較成分>
 A’-1:カプリル酸メチル(ライオン株式会社製、商品名「パステルM-8」)。
 A’-2:パーム油脂肪酸メチル(ライオン株式会社製、商品名「パステルM-182」)。
 A’-3:カプリル酸2-エチルヘキシル(ライオン株式会社製、商品名「パステル2H-08」)。
 A’-4:菜種油(株式会社かんでんエンジニアリング製、商品名「サンオームECO」)。
<(A ′) Component: Comparative Component of (A) Component>
A′-1: Methyl caprylate (product name “Pastel M-8” manufactured by Lion Corporation).
A′-2: methyl palm oil fatty acid (product name “Pastel M-182”, manufactured by Lion Corporation).
A′-3: 2-ethylhexyl caprylate (manufactured by Lion Corporation, trade name “Pastel 2H-08”).
A'-4: Rape seed oil (manufactured by Kanden Engineering Co., Ltd., trade name "Sunohm ECO").
 [カプリル酸ベンジルの調製例]
 撹拌機、温度計、分縮管及び全縮管を取り付けた5Lの四つ口フラスコに、カプリル酸2100g(関東化学株式会社製)と、ベンジルアルコール(関東化学株式会社製)1653g(モル比1:1.05)と、p-トルエンスルホン酸・一水和物(東京化成工業株式会社製)0.5gとを仕込み、窒素置換を行った。その後、窒素を1mL/分の流量で流通させながら、液温が140℃になるまで昇温してエステル化反応を行い、反応により生成した水を蒸留により除去した。水を除去した後、さらに0.6kPaまで徐々に減圧しながら200℃になるまで昇温し、未反応のカプリル酸とベンジルアルコールを1質量%以下とした粗製物を得た。次いで、前記粗製物3310gに対し、ろ過助剤としてハイフロスーパーセル(純正化学株式会社製)を33.1g添加し、10分間攪拌して均一に分散させた後、80℃で加圧ろ過を行い、カプリル酸ベンジルを得た。
[Preparation example of benzyl caprylate]
In a 5 L four-necked flask equipped with a stirrer, thermometer, partial tube and total tube, 2100 g of caprylic acid (manufactured by Kanto Chemical Co., Ltd.) and 1653 g of benzyl alcohol (manufactured by Kanto Chemical Co., Ltd.) (molar ratio 1) : 1.05) and 0.5 g of p-toluenesulfonic acid monohydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added to perform nitrogen substitution. Then, while flowing nitrogen at a flow rate of 1 mL / min, the liquid temperature was raised to 140 ° C. to carry out an esterification reaction, and water produced by the reaction was removed by distillation. After removing water, the temperature was raised to 200 ° C. while gradually reducing the pressure to 0.6 kPa, thereby obtaining a crude product containing unreacted caprylic acid and benzyl alcohol in an amount of 1% by mass or less. Next, 33.1 g of Hyflo Supercell (manufactured by Junsei Chemical Co., Ltd.) was added as a filter aid to 3310 g of the crude product, and the mixture was stirred and dispersed uniformly for 10 minutes, followed by pressure filtration at 80 ° C. To obtain benzyl caprylate.
 [カプリン酸ベンジルの調製例]
 カプリル酸の代わりにカプリン酸(関東化学株式会社製)を用い、カプリン酸とベンジルアルコールとのモル比が、カプリン酸:ベンジルアルコール=1:1.2となるように仕込んだこと以外は、上記カプリル酸ベンジルの調製例と同様にして、カプリン酸ベンジルを得た。
[Preparation example of benzyl caprate]
The above except that capric acid (manufactured by Kanto Chemical Co., Inc.) was used instead of caprylic acid and the molar ratio of capric acid to benzyl alcohol was charged so that capric acid: benzyl alcohol = 1: 1.2. In the same manner as in the preparation example of benzyl caprylate, benzyl caprate was obtained.
 [パーム油脂肪酸ベンジルの調製例]
 カプリル酸の代わりにパーム油脂肪酸メチル(商品名「パステルM-182」、ライオン株式会社製)を用い、パーム油脂肪酸メチルとベンジルアルコールとのモル比が、パーム油脂肪酸メチル:ベンジルアルコール=1:1.2となるように仕込んだこと以外は、上記カプリル酸ベンジルの調製例と同様にして、パーム油脂肪酸ベンジルを得た。
[Preparation example of benzyl palm oil fatty acid]
Palm oil fatty acid methyl (trade name “Pastel M-182”, manufactured by Lion Corporation) was used instead of caprylic acid, and the molar ratio of palm oil fatty acid methyl to benzyl alcohol was palm oil fatty acid methyl: benzyl alcohol = 1: A palm oil fatty acid benzyl was obtained in the same manner as in the preparation example of benzyl caprylate except that the amount was adjusted to 1.2.
 [イソオクチル酸ベンジルの調製例]
 カプリル酸の代わりにイソオクチル酸(KHネオケム株式会社製)を用い、イソオクチル酸とベンジルアルコールとのモル比が、イソオクチル酸:ベンジルアルコール=1:1.2となるように仕込んだこと以外は、上記カプリル酸ベンジルの調製例と同様にして、イソオクチル酸ベンジルを得た。
[Preparation example of benzyl isooctylate]
The above, except that isooctylic acid (manufactured by KH Neochem) was used instead of caprylic acid and the molar ratio of isooctylic acid to benzyl alcohol was such that isooctylic acid: benzyl alcohol = 1: 1.2. In the same manner as in the preparation of benzyl caprylate, benzyl isooctylate was obtained.
 (実施例1~10、比較例1~9)
 上記(A-1)を実施例1の電気絶縁油基油とした。また、表1~2に示す組成に従い、上記(A)成分と(B)成分を混合して実施例2~10の電気絶縁油基油を製造した。
 上記(B-4)、(B-1)、(B-3)、(A’-1)、(A’-2)、(A’-3)を、それぞれ比較例1~6の電気絶縁油基油とした。(A)成分に代えて(A’)成分を用いたこと以外は、実施例2と同様にして比較例7~9の電気絶縁油基油を製造した。
 表1~2に、得られた各例の電気絶縁油基油の組成(配合成分、含有量(質量%))を示す。
 表中、空欄の配合成分がある場合、その配合成分は配合されていない。
(Examples 1 to 10, Comparative Examples 1 to 9)
The above (A-1) was used as the electrical insulating oil base oil of Example 1. Further, according to the compositions shown in Tables 1 and 2, the components (A) and (B) were mixed to produce the electric insulating oil base oils of Examples 2 to 10.
The above (B-4), (B-1), (B-3), (A′-1), (A′-2), and (A′-3) are electrically insulated from Comparative Examples 1 to 6, respectively. Oil base oil was used. Electrically insulating oil base oils of Comparative Examples 7 to 9 were produced in the same manner as in Example 2 except that the component (A ′) was used instead of the component (A).
Tables 1 and 2 show the compositions (blending components, content (mass%)) of the obtained electrical insulating oil base oil of each example.
In the table, when there is a blank blending component, the blending component is not blended.
 各例の電気絶縁油基油について、部分放電特性(部分放電開始電圧、部分放電消滅電圧)、生分解性を以下のように評価した。評価結果を表1~2に示す。
 また、各例の電気絶縁油基油の流動点、動粘度を以下のように測定した。測定結果を表1~2に示す。
For the electrical insulating oil base oil of each example, the partial discharge characteristics (partial discharge start voltage, partial discharge extinction voltage) and biodegradability were evaluated as follows. The evaluation results are shown in Tables 1 and 2.
Moreover, the pour point and kinematic viscosity of the electrical insulating oil base oil of each example were measured as follows. The measurement results are shown in Tables 1 and 2.
 (部分放電特性の評価)
 <部分放電開始電圧の評価>
 各例の電気絶縁油基油の部分放電開始電圧をJEC-0401-1990に準拠して測定した。具体的には、部分放電測定器(E.R.A.Discharge Detector Model5 Type700、Robinson Instruments社製)を用い、所定の電圧の下で印加電圧を徐々に上昇させた際に、所定の大きさ(放電パルスの大きさ、発生頻度)を超える部分放電が開始した電圧(部分放電開始電圧)を測定した。比較例1の電気絶縁油基油(フェニルキシリルエタン:JIS C2320、5種2号絶縁油)の部分放電開始電圧の測定値を基準(100%)とし、前記測定値に対する各例の部分放電開始電圧の測定値の相対値を求めた。前記相対値を下記評価基準に分類し、各例の電気絶縁油基油の部分放電開始電圧を評価した。AA、Aを合格とした。
 [評価基準]
 AA:100%超。
 A:95~100%。
 B:95%未満。
(Evaluation of partial discharge characteristics)
<Evaluation of partial discharge start voltage>
The partial discharge starting voltage of the electrical insulating oil base oil of each example was measured according to JEC-0401-1990. Specifically, when a partial discharge measuring device (E.R.A. Discharge Detector Model 5 Type 700, manufactured by Robinson Instruments) is used and the applied voltage is gradually increased under a predetermined voltage, a predetermined magnitude is obtained. The voltage (partial discharge start voltage) at which partial discharge exceeding (the magnitude of discharge pulse, occurrence frequency) was measured was measured. Using the measured value of the partial discharge starting voltage of the electric insulating oil base oil of Comparative Example 1 (phenylxylylethane: JIS C2320, Type 2 No. 2 insulating oil) as a reference (100%), the partial discharge of each example with respect to the measured value The relative value of the measured value of the starting voltage was determined. The relative values were classified into the following evaluation criteria, and the partial discharge start voltage of the electric insulating oil base oil of each example was evaluated. AA and A were regarded as acceptable.
[Evaluation criteria]
AA: More than 100%.
A: 95 to 100%.
B: Less than 95%.
 <部分放電消滅電圧の評価>
 各例の電気絶縁油基油の部分放電消滅電圧をJEC-0401-1990に準拠して測定した。具体的には、部分放電測定器(E.R.A.Discharge Detector Model5 Type700、Robinson Instruments社製)を用い、所定の電圧の下で印加電圧を徐々に下降した際に、所定の大きさ(放電パルスの大きさ、発生頻度)を超える部分放電が消滅する電圧(部分放電消滅電圧)を測定した。
 比較例1の電気絶縁油基油の部分放電開始電圧の測定値を基準(100%)とし、前記測定値に対する各例の電気絶縁油基油の部分放電消滅電圧の測定値の相対値を求めた。前記相対値を下記評価基準に分類し、各例の電気絶縁油基油の部分放電消滅電圧を評価した。AAA、AA、Aを合格とした。なお、下記評価基準でBは、部分放電が消滅されず実用できないと評価される。
 [評価基準]
 AAA:50%超。
 AA:45~50%。
 A:40%以上45%未満。
 B:40%未満。
<Evaluation of partial discharge extinction voltage>
The partial discharge extinction voltage of the electrical insulating oil base oil of each example was measured according to JEC-0401-1990. Specifically, when a partial discharge measuring device (E.R.A. Discharge Detector Model 5 Type 700, manufactured by Robinson Instruments) is used and the applied voltage is gradually lowered under a predetermined voltage, a predetermined magnitude ( The voltage (partial discharge extinction voltage) at which the partial discharge exceeding the discharge pulse magnitude (occurrence frequency) disappears was measured.
Using the measured value of the partial discharge start voltage of the electric insulating oil base oil of Comparative Example 1 as a reference (100%), the relative value of the measured value of the partial discharge extinction voltage of the electric insulating oil base oil of each example with respect to the measured value is obtained. It was. The relative values were classified into the following evaluation criteria, and the partial discharge extinction voltage of the electric insulating oil base oil in each example was evaluated. AAA, AA, and A were accepted. In addition, B is evaluated by the following evaluation criteria that partial discharge is not extinguished and cannot be used practically.
[Evaluation criteria]
AAA: More than 50%.
AA: 45-50%.
A: 40% or more and less than 45%.
B: Less than 40%.
 (生分解性の評価)
 各例の電気絶縁油基油の生分解性試験を、OECD Guideline for Testing of chemicalsに定めるManometric Respirometry Test(Guideline 301F、17th July 1992)に準拠して実施した。試験条件は下記のとおりとした。
 試験条件:被験物質濃度100mg/L、活性汚泥濃度30mg/L(懸濁物質濃度として)、試験液量300mL、試験液培養温度25±1℃、試験液培養期間28日間(遮光下)。
 分解度算出のための測定は、閉鎖系酸素消費量測定装置による生物化学的酸素要求量(BOD)により行った。60%以上の生分解性が得られたものを合格とした。
(Evaluation of biodegradability)
The biodegradability test of the electric insulating oil base oil of each example was performed in accordance with the Manometric Respirometry Test (Guideline 301F, 17th July 1992) defined in the OECD Guidelines for Testing of Chemicals. The test conditions were as follows.
Test conditions: test substance concentration 100 mg / L, activated sludge concentration 30 mg / L (as suspension substance concentration), test solution volume 300 mL, test solution culture temperature 25 ± 1 ° C., test solution culture period 28 days (under light shielding).
The measurement for calculating the degree of degradation was carried out by biochemical oxygen demand (BOD) using a closed oxygen consumption measuring device. Those with a biodegradability of 60% or more were regarded as acceptable.
 (流動点の測定)
 各例の電気絶縁油基油の流動点を、JIS K 2269:1987(原油及び石油製品の流動点並びに石油製品曇り点試験方法)の「3.流動点試験方法」に準拠して測定した。
 各例の電気絶縁油基油の流動点を下記評価基準に分類し、流動点を評価した。AA、Aであれば寒冷地等においても良好に使用でき汎用性に優れると評価される。
 [評価基準]
 AA:流動点が-35℃未満。
 A:流動点が-35~-25℃。
 B:流動点が-25℃超。
(Measure pour point)
The pour point of the electric insulating base oil of each example was measured according to “3. Pour point test method” of JIS K 2269: 1987 (pour point of crude oil and petroleum products and cloud point test method of petroleum products).
The pour points of the electrical insulating base oils in each example were classified into the following evaluation criteria, and the pour points were evaluated. If it is AA and A, it is evaluated that it can be used satisfactorily in cold districts and has excellent versatility.
[Evaluation criteria]
AA: Pour point is less than -35 ° C.
A: Pour point is -35 to -25 ° C.
B: Pour point is over -25 ° C.
 (動粘度の測定)
 各例の電気絶縁油基油の40℃における動粘度を、JIS K2283:2000(原油及び石油製品-動粘度試験方法及び粘度指数算出方法)に準拠しキャノンフェンスケ型動粘度管を使用して測定した。
 各例の電気絶縁油基油の動粘度を下記評価基準に分類し、動粘度を評価した。AA、Aであれば油入電気機器に対して良好な冷却効果が得られやすいと評価される。
 [評価基準]
 AA:4mm/s以下。
 A:4mm/s超8mm/s以下。
 B:8mm/s超。
(Measurement of kinematic viscosity)
The kinematic viscosity at 40 ° C. of the electric insulating oil base oil of each example was determined using a Canon Fenceke type kinematic viscosity tube in accordance with JIS K2283: 2000 (crude oil and petroleum products-kinematic viscosity test method and viscosity index calculation method). It was measured.
The kinematic viscosity of the electric insulating base oil of each example was classified into the following evaluation criteria, and kinematic viscosity was evaluated. If it is AA and A, it will be evaluated that a favorable cooling effect is easily acquired with respect to an oil-filled electrical apparatus.
[Evaluation criteria]
AA: 4 mm 2 / s or less.
A: More than 4 mm 2 / s and not more than 8 mm 2 / s.
B: Over 8 mm 2 / s.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1~2に示す結果から、本発明を適用した実施例1~10の電気絶縁油基油は、部分放電特性(部分放電開始電圧、部分放電消滅電圧)に優れ、かつ、生分解性に優れることが確認できた。さらに、実施例1~10の電気絶縁油基油は、流動点及び動粘度が低く、寒冷地等での使用性及び油入電気機器に対する冷却効果に優れると評価される。
 一方、(B-4)からなる電気絶縁油基油(比較例1)、(B-3)からなる電気絶縁油基油(比較例3)は、充分な生分解性が得られなかった。
 (B-1)からなる電気絶縁油基油(比較例2)、(A’)成分と(B-1)が併用された電気絶縁油基油(比較例8、比較例9)は、充分な部分放電特性(部分放電開始電圧、部分放電消滅電圧)が得られなかった。
 (A’)成分からなる電気絶縁油基油(比較例4~6)は、充分な部分放電特性(部分放電消滅電圧)が得られなかった。
 (A’)成分と(B-4)が併用された電気絶縁油基油(比較例7)は、充分な部分放電特性(部分放電消滅電圧)及び生分解性が得られなかった。
 以上の結果から、本発明を適用した電気絶縁油基油は、部分放電特性に優れ、かつ、生分解性に優れることが確認できた。
From the results shown in Tables 1 and 2, the electric insulating oil base oils of Examples 1 to 10 to which the present invention is applied are excellent in partial discharge characteristics (partial discharge start voltage, partial discharge extinction voltage) and biodegradable. It was confirmed that it was excellent. Furthermore, the electrically insulating oil base oils of Examples 1 to 10 have low pour points and kinematic viscosities, and are evaluated to be excellent in usability in cold districts and the like and in cooling effects on oil-filled electrical equipment.
On the other hand, the electrical insulating base oil composed of (B-4) (Comparative Example 1) and the electrical insulating base oil composed of (B-3) (Comparative Example 3) were not sufficiently biodegradable.
An electrically insulating oil base oil composed of (B-1) (Comparative Example 2) and an electrically insulating oil base oil (Comparative Example 8 and Comparative Example 9) in which the component (A ′) and (B-1) are used in combination are sufficient. Partial discharge characteristics (partial discharge start voltage, partial discharge extinction voltage) were not obtained.
The electrical insulating base oil composed of the component (A ′) (Comparative Examples 4 to 6) did not have sufficient partial discharge characteristics (partial discharge extinction voltage).
The electric insulating oil base oil (Comparative Example 7) in which the component (A ′) and (B-4) were used in combination did not provide sufficient partial discharge characteristics (partial discharge extinction voltage) and biodegradability.
From the above results, it was confirmed that the electrically insulating oil base oil to which the present invention was applied was excellent in partial discharge characteristics and biodegradability.
本願発明は、部分放電特性に優れ、かつ、生分解性に優れる油入電気機器用の電気絶縁油基油を提供することを目的とする。 An object of the present invention is to provide an electrical insulating oil base oil for oil-filled electrical equipment that has excellent partial discharge characteristics and excellent biodegradability.
 1  コンデンサ素子
 2  リード片
 3  金属ケース
 4  絶縁材
 5  絶縁媒体(電気絶縁油)
 6  金属蓋
 7 外部引出端子
 8  端子板
 9  端子棒
 10 パッキンゴム
 11 絶縁板
 12 電気絶縁油
 13 第2半導電層
 14 金属スクリーン
 15 保護鞘
 16 コンダクター
 17 第1半導電層
1 Capacitor element 2 Lead piece 3 Metal case 4 Insulating material 5 Insulating medium (electrical insulating oil)
6 Metal lid 7 External lead terminal 8 Terminal plate 9 Terminal bar 10 Packing rubber 11 Insulating plate 12 Electrical insulating oil 13 Second semiconductive layer 14 Metal screen 15 Protective sheath 16 Conductor 17 First semiconductive layer

Claims (6)

  1.  下記一般式(I)で表される脂肪酸エステル(A)を含有する、油入電気機器用の電気絶縁油基油。
     R-COO-R・・・(I)
     ただし、式(I)中、Rは、炭素数5~17の直鎖状又は炭素数5~17の分岐鎖状の炭化水素基であり、Rは、炭素数6~10のアリールアルキル基である。
    An electrically insulating oil base oil for oil-filled electrical equipment, comprising a fatty acid ester (A) represented by the following general formula (I).
    R 1 —COO—R 2 (I)
    In the formula (I), R 1 is a linear or branched hydrocarbon group having 5 to 17 carbon atoms, and R 2 is an arylalkyl having 6 to 10 carbon atoms. It is a group.
  2.  前記式(I)中、Rは、炭素数5~17の分岐鎖状の炭化水素基である、請求項1に記載の油入電気機器用の電気絶縁油基油。 The electrically insulating oil base oil for oil-filled electrical equipment according to claim 1, wherein R 1 in the formula (I) is a branched hydrocarbon group having 5 to 17 carbon atoms.
  3.  アルキルベンゼン、アルキルナフタレン、ジアリールアルカン、トリアリールアルカン及び鉱油からなる群から選ばれる少なくとも1種の化合物(B)を含有する、請求項1又は2に記載の油入電気機器用の電気絶縁油基油。 The electrically insulating oil base oil for oil-filled electrical equipment according to claim 1 or 2, comprising at least one compound (B) selected from the group consisting of alkylbenzene, alkylnaphthalene, diarylalkane, triarylalkane and mineral oil. .
  4.  (A)成分/(B)成分で表される質量比が90/10~20/80である、請求項3に記載の油入電気機器用の電気絶縁油基油。 The electrically insulating oil base oil for oil-filled electrical equipment according to claim 3, wherein the mass ratio represented by (A) component / (B) component is 90/10 to 20/80.
  5.  請求項1~4のいずれか一項に記載の油入電気機器用の電気絶縁油基油を含有する、油入電気機器用の電気絶縁油。 An electrical insulating oil for oil-filled electrical equipment, comprising the electrical insulating oil base oil for oil-filled electrical equipment according to any one of claims 1 to 4.
  6.  請求項5に記載の油入電気機器用の電気絶縁油を備える、油入電気機器。 Oil-filled electrical equipment comprising the electrical insulating oil for oil-filled electrical equipment according to claim 5.
PCT/JP2016/061409 2015-04-13 2016-04-07 Electrically insulating oil base oil for oil-filled electrical device, electrically insulating oil containing same, and oil-filled electrical device WO2016167176A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680021478.XA CN107533878B (en) 2015-04-13 2016-04-07 Electric insulating oil base oil for oil-filled electrical equipment, electric insulating oil containing same, and oil-filled electrical equipment
JP2017512281A JP6655607B2 (en) 2015-04-13 2016-04-07 Electric insulating base oil for oil-filled electrical equipment, electrical insulating oil containing the same, and oil-filled electrical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081805 2015-04-13
JP2015-081805 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016167176A1 true WO2016167176A1 (en) 2016-10-20

Family

ID=57125810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061409 WO2016167176A1 (en) 2015-04-13 2016-04-07 Electrically insulating oil base oil for oil-filled electrical device, electrically insulating oil containing same, and oil-filled electrical device

Country Status (3)

Country Link
JP (1) JP6655607B2 (en)
CN (1) CN107533878B (en)
WO (1) WO2016167176A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171001A1 (en) 2018-03-08 2019-09-12 Arkema France Use of a mixture as a dielectric fluid
JP2019184569A (en) * 2018-03-30 2019-10-24 住友化学株式会社 Method of evaluating degradability of chemical substance, and test container and oxygen consumption amount measurement device used for the same
WO2020182718A1 (en) 2019-03-13 2020-09-17 Total Marketing Services Use of an ester in a cooling composition
JP2021002547A (en) * 2019-06-20 2021-01-07 株式会社日立製作所 Electrical device
WO2022019333A1 (en) * 2020-07-22 2022-01-27 出光興産株式会社 Lubricating oil composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149796B (en) * 2019-12-31 2021-10-22 苏州丰倍生物科技有限公司 Pesticide solvent and preparation method and application thereof
CN111944227B (en) * 2020-08-17 2022-07-15 东莞市赛美塑胶制品有限公司 Plastic defoaming master batch and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772203A (en) * 1980-10-24 1982-05-06 Nippon Petrochemicals Co Ltd Method of degassing electrically insulating oil
JPS6199211A (en) * 1984-10-22 1986-05-17 日石三菱株式会社 Electric insulation oil
WO2007029724A1 (en) * 2005-09-09 2007-03-15 Lion Corporation Base agent for electrical insulating oil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108789A (en) * 1975-08-28 1978-08-22 Rhone-Poulenc Industries Dielectric compositions containing benzyl esters
FR2322435A1 (en) * 1975-08-28 1977-03-25 Rhone Poulenc Ind NEW DIELECTRIC LIQUIDS
JPH088016B2 (en) * 1987-03-03 1996-01-29 東燃料株式会社 Electrical insulating oil
JP2000090740A (en) * 1998-09-14 2000-03-31 Kansai Tech Corp Ester insulating oil and manufacture thereof and electrical equipment
US20090036337A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Electrical Insulating Oil Compositions and Preparation Thereof
EP2764520A2 (en) * 2011-10-07 2014-08-13 E. I. Du Pont de Nemours and Company Liquid compositions used as insulating and heat transfer means, electrical devices containing said compositions and preparation methods for such compositions
CN102682869B (en) * 2012-04-11 2015-01-07 中国电力科学研究院 Preparation method of vegetable insulating oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772203A (en) * 1980-10-24 1982-05-06 Nippon Petrochemicals Co Ltd Method of degassing electrically insulating oil
JPS6199211A (en) * 1984-10-22 1986-05-17 日石三菱株式会社 Electric insulation oil
WO2007029724A1 (en) * 2005-09-09 2007-03-15 Lion Corporation Base agent for electrical insulating oil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171001A1 (en) 2018-03-08 2019-09-12 Arkema France Use of a mixture as a dielectric fluid
CN112088200A (en) * 2018-03-08 2020-12-15 阿科玛法国公司 Use of mixtures as dielectric fluids
JP2019184569A (en) * 2018-03-30 2019-10-24 住友化学株式会社 Method of evaluating degradability of chemical substance, and test container and oxygen consumption amount measurement device used for the same
JP7360240B2 (en) 2018-03-30 2023-10-12 住友化学株式会社 Method for evaluating the degradability of chemical substances, and test containers and oxygen consumption measurement devices used in the method
WO2020182718A1 (en) 2019-03-13 2020-09-17 Total Marketing Services Use of an ester in a cooling composition
JP2021002547A (en) * 2019-06-20 2021-01-07 株式会社日立製作所 Electrical device
JP7171514B2 (en) 2019-06-20 2022-11-15 株式会社日立製作所 electrical equipment
WO2022019333A1 (en) * 2020-07-22 2022-01-27 出光興産株式会社 Lubricating oil composition

Also Published As

Publication number Publication date
JPWO2016167176A1 (en) 2017-12-07
CN107533878B (en) 2020-03-10
JP6655607B2 (en) 2020-02-26
CN107533878A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6655607B2 (en) Electric insulating base oil for oil-filled electrical equipment, electrical insulating oil containing the same, and oil-filled electrical equipment
JP5158347B2 (en) Electric insulating oil base
JP6166354B2 (en) Esters as cooling and insulating fluids for transformers
JP2011503808A5 (en)
KR101451289B1 (en) Enviromentally affinitive vegetable insulating oil composition
US20140131642A1 (en) Blended oil compositions useful as dielectric fluid compsotions and methods of preparing same
US20130163203A1 (en) Thermally-stable dielectric fluid
EP2920287A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
ES2734349T3 (en) Dielectric fluid of plant origin for electrical transformers
JP2020080312A (en) Saturated dimer acid diester dielectric fluids
US20140131637A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131634A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131639A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
JPH11306864A (en) Insulating oil and its preparation
US20140131635A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
EP2402957A1 (en) Fatty acid and fatty acid alkyl ester oil additives
US20140131641A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140135522A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131640A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131638A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
US20140131636A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
EP2920794A1 (en) Blended oil compositions useful as dielectric fluid compositions and methods of preparing same
WO2012001041A9 (en) Dielectric triglyceride fluids
SG177875A1 (en) An electrical insulating fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779967

Country of ref document: EP

Kind code of ref document: A1