WO2016167070A1 - Rotational-speed-controlling variable piston pump - Google Patents

Rotational-speed-controlling variable piston pump Download PDF

Info

Publication number
WO2016167070A1
WO2016167070A1 PCT/JP2016/058125 JP2016058125W WO2016167070A1 WO 2016167070 A1 WO2016167070 A1 WO 2016167070A1 JP 2016058125 W JP2016058125 W JP 2016058125W WO 2016167070 A1 WO2016167070 A1 WO 2016167070A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
bore
discharge
bore chamber
cylinder block
Prior art date
Application number
PCT/JP2016/058125
Other languages
French (fr)
Japanese (ja)
Inventor
博一 平出
祐也 塚田
Original Assignee
油研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 油研工業株式会社 filed Critical 油研工業株式会社
Priority to CN201680017051.2A priority Critical patent/CN107407263B/en
Publication of WO2016167070A1 publication Critical patent/WO2016167070A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures

Definitions

  • the present invention relates to, for example, a two-capacity variable piston pump for controlling the rotational speed, and more particularly to means for avoiding abnormal pressure in the bore chamber of the cylinder block.
  • hydraulic piston pumps for example, there are those that are driven to rotate by an AC servo motor, and the amount of discharge can be varied by controlling the number of rotations. Therefore, the quantified one is used.
  • the electromagnetic switching valve 118 has a large capacity with a large swash plate angle and a small capacity with a small inclination angle.
  • the swash plate type piston pump 100 includes a plurality of bores 104 in parallel with the rotating shaft 102 inside a cylinder block 103 that rotates integrally with the rotating shaft 102 driven by a motor. , And a swash plate 107 having an inclined surface with which each end shoe 106 of the piston 105 accommodated in each bore 104 is slidably contacted is supported on the rotating shaft 102 so as to be inclined.
  • each piston 105 reciprocates in the bore 104 with a stroke corresponding to the inclination angle of the swash plate 107, so that hydraulic oil is passed through the bore chamber 109 formed by the bore 104 and the piston 105. Suction and discharge.
  • variable displacement piston pump 100 when the swash plate 107 is in a state where the operation of the pump discharge pressure is cut off while the electromagnetic switching valve 118 is turned on as shown in FIG.
  • the electromagnetic switching valve 118 When the electromagnetic switching valve 118 is turned OFF, a part of the pump discharge pressure acts on the operation piston 117 as shown in FIG. 4B. Then, the operating piston 117 presses the swash plate 107 to a small inclination angle position at which the discharge amount is minimum against the urging force of the spring mechanism 116.
  • this two-capacity type one pump can have the function of two pumps, and a wider range of use can be achieved with the same motor capacity.
  • the piston pump 100 has a port plate 108 in which a suction port 113 and a discharge port 114 for distributing hydraulic oil to each bore chamber 109 are formed in an arc shape as shown in FIG. It is fixed to the cover 120.
  • the discharge port 114 and the suction port 113 communicate with the discharge oil passage 121 and the suction oil passage of the casing, respectively.
  • a kidney port 112 serving as a discharge port / suction port for the hydraulic oil in each bore chamber 109 is opened and slides with respect to the port plate 108, and each kidney port 112 discharges. The hydraulic oil is discharged / sucked over the port 114 or the suction port 113.
  • the kidney port 112 is normally shut off from the suction port 113 before completely shifting from the suction port 113 to the discharge port 114, and the piston 105 in the corresponding bore 104 is closed after the shut-off. It is designed to reach the bottom dead center shown in FIG. Therefore, in the bore chamber 109, the pressure decreases until the bottom dead center is reached after the kidney port 112 and the suction port 113 are shut off, and cavitation causing high frequency is likely to occur.
  • the piston 105 starts moving from the bottom dead center in the direction of compressing the volume of the bore chamber 109, and the pressure in the bore chamber 109 rises rapidly, causing an oil hammer. There is a risk of generating.
  • the cylinder block itself may be made of a material having high mechanical strength, but the cost is unavoidable.
  • the minimum control pressure that maintains the small inclination angle of the swash plate is deteriorated. I will.
  • an instantaneous surge pressure is generated due to the responsiveness of the pressure reducing valve.
  • the object of the present invention is to prevent abnormal pressure generation in the bore chamber of the cylinder block that is enclosed between the discharge port and the suction port of the port plate when the swash plate is switched from a large inclination angle to a small inclination angle.
  • An object of the present invention is to provide a variable piston pump for controlling the rotational speed that can be satisfactorily avoided while having a simple structure without incurring a reduction in pump efficiency and high cost.
  • a variable piston pump for controlling the rotational speed includes a rotating shaft that is rotationally driven by a motor, a cylinder block that rotates integrally with the rotating shaft, and the cylinder
  • the block has a plurality of bores formed in parallel with the rotary shaft, pistons accommodated in the bores, and inclined surfaces on which end shoes of the pistons are slidably contacted, and are inclined to the rotary shaft.
  • the swash plate that is supported is assembled as a single unit structure in the pump chamber formed of the inner space of the same casing, and the stroke according to the inclination angle of the swash plate as the rotary shaft and the cylinder block rotate.
  • each piston reciprocates in the bore, so that the cylinder is formed from the suction oil passage formed in the casing in the bore chamber formed by the bore and the piston.
  • a variable piston pump for controlling the number of revolutions that sucks hydraulic oil through a suction port of a port plate in sliding contact with the block and discharges the hydraulic oil to a discharge oil passage formed inside the casing through a discharge port of the port plate.
  • variable piston pump for controlling the rotational speed according to the first aspect, wherein the abnormal pressure avoiding mechanism is provided between the suction port and the discharge port. It has a safety valve which discharges hydraulic oil in the located bore chamber into the pump chamber.
  • variable piston pump for controlling the rotational speed according to the first aspect, wherein the abnormal pressure avoiding mechanism is provided between the suction port and the discharge port.
  • a relief oil passage that communicates the bore chamber and the discharge oil passage through a check valve is provided.
  • variable piston pump for speed control when the pressure in the bore chamber located between the suction port and the discharge port of the port plate exceeds a predetermined pressure by the abnormal pressure avoidance hydraulic circuit. Since the working oil in the bore chamber can be released to the outside of the bore chamber, the swash plate has a large capacity and a large inclination angle when the bore chamber is sealed at the bottom dead center between the suction port and the discharge port. Even if the piston is switched from a small tilt angle to a small tilt angle and the piston suddenly compresses the bore chamber, the hydraulic oil in the bore chamber is released and abnormal pressure is prevented from occurring, resulting in high cost. There is an effect that the risk of damaging the cylinder block can be avoided while maintaining the pump performance without depending on the increase.
  • the abnormal pressure avoiding hydraulic circuit is provided integrally in the same casing, and can function with a simple configuration of being incorporated in the same unit structure of the piston pump.
  • FIG. 2 is an overall longitudinal sectional view showing a schematic configuration of a variable piston pump for controlling the rotational speed according to a second embodiment of the present invention.
  • FIG. 2 is a hydraulic circuit diagram of a 2-capacity variable piston pump for controlling the rotational speed.
  • FIG. 1 It is a whole longitudinal cross-sectional view which shows schematic structure of the conventional variable piston pump for rotation speed control, (a) is a state with a large inclination angle (large discharge capacity) of a swash plate, (b) is a small inclination angle (small) of a swash plate. (Discharge capacity) state. It is a schematic plan view which shows a port plate in the state which overlapped with the cylinder block, (a) shows the whole port plate, (b) is an enlarged view of the part enclosed with the square of (a). It is the elements on larger scale which show the case where the escape groove of the discharge port of a port plate is extended.
  • variable speed piston pump for controlling the rotational speed of the present invention
  • a single unit structure is provided in the pump chamber formed of the inner space of the same casing, and the rotation shaft, the cylinder block that rotates integrally with the rotation shaft, and the cylinder block
  • a bore formed by the bore and the piston is assembled by assembling the supported swash plate and reciprocating the pistons in the bore with a stroke corresponding to the inclination angle of the swash plate as the cylinder block rotates.
  • the hydraulic oil is sucked into the chamber from a suction oil passage formed inside the casing through a suction port of a port plate that is in sliding contact with the cylinder block.
  • Hydraulic fluid is discharged to a discharge oil passage formed inside the casing through a discharge port of the front plate, and the pressure in the bore chamber located between the suction port and the discharge port of the port plate is determined in advance.
  • An abnormal pressure avoiding hydraulic circuit for allowing the hydraulic oil in the bore chamber to escape to the outside of the bore chamber when the pressure is exceeded is provided in the unit structure in the same casing.
  • the swash plate is switched from a large tilt angle with a large capacity to a small tilt angle with a small capacity. Even if the bore chamber is rapidly compressed, the hydraulic fluid for avoiding abnormal pressure is released by the abnormal pressure avoiding hydraulic circuit to prevent the occurrence of abnormal pressure. The risk of damaging the cylinder block can be avoided while maintaining the performance.
  • the hydraulic circuit for avoiding abnormal pressure according to the present invention is provided integrally in the same casing and functions in a simple configuration of being incorporated in the same unit structure of the piston pump.
  • a safety valve that is, a relief valve is arranged immediately downstream of the bore chamber.
  • the safety valve allows the hydraulic oil in the bore chamber to be discharged to the discharge passage when a predetermined pressure before the abnormal pressure is exceeded. When the pressure drops, the safety valve closes and the discharge passage is immediately shut off. .
  • the original piston pump unit portion may remain the conventional structure, and an abnormal pressure avoidance hydraulic circuit can be configured simply by incorporating the safety valve and the discharge passage into the same casing.
  • a casing is integrally provided with a casing-like casing body and a casing cover so as to close the casing, the pump chamber is closed, and a discharge oil passage and a suction oil passage are formed inside the casing cover.
  • the port plate is fixed to the inner surface of the casing cover so that the end surface of the cylinder block is in sliding contact. Accordingly, it is most convenient to form the safety valve and the discharge passage inside the casing cover. At this time, the end side of the discharge passage passes through the port plate and communicates with the corresponding bore chamber.
  • a check valve can be raised as a simple hydraulic circuit for avoiding abnormal pressure. Specifically, if a relief oil passage that connects the bore chamber located between the suction port and the discharge port and the discharge oil passage is formed, and a check valve is disposed immediately downstream of the bore chamber. When the predetermined pressure before the abnormal pressure is exceeded, the hydraulic oil in the bore chamber can be released from the check valve to the discharge oil passage through the oil passage, and if the pressure drops, the check valve releases the hydraulic oil. The oil passage is immediately closed. Also in this case, if the basic configuration is the same as that of the conventional piston pump unit, the check valve and the relief oil passage are formed inside the casing cover, and the end portion side of the relief oil passage penetrates the port plate. It is most convenient to have a configuration communicating with the bore chamber.
  • the cylinder block is damaged without affecting the substantial pump performance, such as the deterioration of volumetric efficiency, although it is a simple configuration incorporated in the casing. Generation of abnormal pressure can be avoided.
  • FIG. 1 shows a two-volume variable piston pump for controlling the number of revolutions equipped with an abnormal pressure avoidance hydraulic circuit using a safety valve.
  • FIG. 1A is an overall longitudinal sectional view
  • FIG. 1B is a partial sectional view showing an abnormal pressure avoiding hydraulic circuit.
  • the basic structure of the piston pump unit other than the abnormal pressure avoiding hydraulic circuit is the same as the example shown in FIGS. 3 and 4 in the two-capacity variable piston pump 1 for controlling the rotational speed according to the present embodiment.
  • a rotary shaft 2 that is driven to rotate by a motor
  • a cylinder block 3 that rotates integrally with the rotary shaft 2.
  • the swash plate 7 having a surface and supported on the rotary shaft 2 so as to be tiltable is assembled as a single unit structure. Further, the swash plate 7 is directed toward the maximum tilt angle at which the maximum discharge capacity is obtained by the spring mechanism 16.
  • the operating piston 17 is installed so as to be movable in a direction in which the swash plate 7 is pressed against the urging by the spring mechanism 16.
  • the operating piston 17 is set to be able to receive a part of the pump self-discharge pressure through an electromagnetic switching valve.
  • an electromagnetic switching valve When the electromagnetic switching valve is ON, a part of the action of the pump self-discharge pressure on the operation piston 17 is cut off, the swash plate 7 is biased to the maximum inclination angle by the spring mechanism 16, and the electromagnetic switching valve is turned OFF. Is switched, the part of the pump self-discharge pressure is applied to the operation piston 17, the operation piston 17 is moved, the swash plate 7 is pressed, and it is tilted to the minimum inclination angle that is the minimum discharge amount.
  • Each piston 5 of the cylinder block 3 reciprocates in the bore 4 with a stroke corresponding to the inclination angle of the swash plate 7 as the rotary shaft 2 and the cylinder block 3 rotate, and enters the bore chamber 9 into the casing.
  • the working oil is sucked from the formed suction oil passage through the suction port of the port plate in sliding contact with the cylinder block, and the working oil is supplied to the discharge oil passage formed inside the casing through the discharge port of the port plate. Discharge.
  • a discharge passage 31 that communicates the bore chamber 9 located between the suction port and the discharge port of the port plate 8 to the pump chamber 11 is formed inside the casing cover 20.
  • a safety valve 32 is formed at a position immediately downstream of the bore chamber 9 in the discharge passage 31.
  • the discharge passage 31 includes a through hole 31 ⁇ / b> X that passes through the port plate 8 on the end side and communicates with the corresponding kidney port 12 of the bore chamber 9.
  • the two-volume variable piston pump 1 for controlling the rotational speed having the above-described configuration is configured such that the electromagnetic switching valve is turned off when the swash plate 7 with the electromagnetic switching valve turned on is driven in a large discharge capacity state at a large inclination angle.
  • the swash plate 7 moves to a small inclination angle position where the discharge capacity becomes a small discharge capacity.
  • the safety valve 32 opens when the pressure exceeds the predetermined pressure, and the hydraulic oil in the bore chamber 9 is discharged into the discharge passage 31. .
  • the operation of the safety valve 32 as described above avoids the danger that the bore chamber 9 may generate an abnormal pressure that may cause the cylinder block 3 to be damaged.
  • the safety valve 32 is immediately closed, and the pump driving with a small discharge capacity is continued without any trouble by the swash plate 7 having a small inclination angle.
  • FIG. 2 shows a two-volume variable piston pump for controlling the rotational speed equipped with an abnormal pressure avoiding hydraulic circuit using a check valve.
  • the basic structure of the piston pump unit other than the abnormal pressure avoiding hydraulic circuit is the same as that of the first embodiment shown in FIG.
  • the abnormal pressure avoiding hydraulic circuit 40 in this embodiment includes a relief oil passage 41 that communicates the bore chamber 9 located between the suction port and the discharge port of the port plate 8 with the discharge oil passage 21 inside the casing cover 20.
  • a check valve 42 is formed at a position immediately downstream of the bore chamber 9 of the relief oil passage 41 formed.
  • the escape oil passage 41 includes a through hole 41 ⁇ / b> X that passes through the port plate 8 on the end side and communicates with the corresponding kidney port 12 of the bore chamber 9.
  • the two-volume variable piston pump 1 for controlling the rotational speed having the above-described configuration is configured such that the electromagnetic switching valve is turned off when the swash plate 7 with the electromagnetic switching valve turned on is driven in a large discharge capacity state at a large inclination angle.
  • the swash plate 7 moves to a small inclination angle position at which a small discharge capacity is obtained.
  • the check valve 42 opens when the pressure exceeds a predetermined pressure, and the hydraulic oil in the bore chamber 9 passes through the relief oil passage 41. And discharged to the discharge oil passage 21.
  • the check valve 42 By such an operation of the check valve 42, the danger that the bore chamber 9 may generate an abnormal pressure that may cause damage to the cylinder block 3 is avoided.
  • the check valve 42 When the pressure in the bore chamber 9 falls below a predetermined value, the check valve 42 is immediately closed, and the pump driving with a small discharge capacity is continued without any trouble by the swash plate 7 having a small inclination angle.

Abstract

Provided is a rotational-speed-controlling variable piston pump with which it is possible to satisfactorily avoid abnormal pressures in the bore chamber of a cylinder block with a simple configuration, without causing loss of pump efficiency or increases in cost. The present invention provides a rotational-speed-controlling variable piston pump in which pistons move back and forth within a bore at a stroke suited to the angle of inclination of a swash plate along with the rotation of a cylinder block, whereby hydraulic oil is drawn into a bore chamber from an intake oil passage formed in a casing, via an intake port of a port plate against which the cylinder block slides, and the hydraulic oil is discharged to a discharge oil passage formed in the casing, via a discharge port of the port plate; wherein an abnormal-pressure-avoiding oil pressure circuit, which releases the hydraulic oil in the bore chamber out of the bore chamber when the pressure in the bore chamber positioned between the intake port and the discharge port of the port plate exceeds a predetermined pressure, is provided as being incorporated in the same unit structure within the same casing.

Description

回転数制御用可変ピストンポンプVariable piston pump for speed control
 本発明は例えば、回転数制御用の2容量可変ピストンポンプに関し、詳しくは、シリンダブロックのボア室の異常圧力を回避するための手段に関するものである。 The present invention relates to, for example, a two-capacity variable piston pump for controlling the rotational speed, and more particularly to means for avoiding abnormal pressure in the bore chamber of the cylinder block.
 様々な種類のある油圧ピストンポンプの中には、例えば、ACサーボモータによって回転駆動され、その回転数を制御することで吐出量を可変とするものがあり、斜板式ピストンポンプを回転数制御のために定量化したものが用いられている。 Among various types of hydraulic piston pumps, for example, there are those that are driven to rotate by an AC servo motor, and the amount of discharge can be varied by controlling the number of rotations. Therefore, the quantified one is used.
 また、このような回転数制御用ピストンポンプには、図3の回路図に示すように、電磁切換弁118によって、斜板角度を大傾斜角度とした大容量と小傾斜角度とした小容量とに切り換えることのできる2容量可変ピストンポンプ100がある。 In addition, as shown in the circuit diagram of FIG. 3, in such a piston pump for controlling the rotational speed, the electromagnetic switching valve 118 has a large capacity with a large swash plate angle and a small capacity with a small inclination angle. There are two displacement variable piston pumps 100 that can be switched to.
 この斜板式のピストンポンプ100は、図4の断面図に示すように、モータにより駆動される回転軸102と一体的に回転するシリンダブロック103の内部に回転軸102と平行に複数個のボア104が形成され、各ボア104内に収容されているピストン105の各端部シュー106が摺接する傾斜面を備えた斜板107が回転軸102に傾斜可能に支持されており、回転軸102およびシリンダブロック103の回転に伴って、斜板107の傾斜角度に応じたストロークで各ピストン105がボア104内を往復動することによって作動油をボア104とピストン105によって形成されるボア室109を介して吸込、吐出するものである。 As shown in the cross-sectional view of FIG. 4, the swash plate type piston pump 100 includes a plurality of bores 104 in parallel with the rotating shaft 102 inside a cylinder block 103 that rotates integrally with the rotating shaft 102 driven by a motor. , And a swash plate 107 having an inclined surface with which each end shoe 106 of the piston 105 accommodated in each bore 104 is slidably contacted is supported on the rotating shaft 102 so as to be inclined. As the block 103 rotates, each piston 105 reciprocates in the bore 104 with a stroke corresponding to the inclination angle of the swash plate 107, so that hydraulic oil is passed through the bore chamber 109 formed by the bore 104 and the piston 105. Suction and discharge.
 そして2容量可変ピストンポンプ100では、前記斜板107が、図4(a)に示すように電磁切換弁118のON状態でポンプ吐出圧力の作用が遮断された状態では、バネ機構116によって最大吐出量となる大傾斜角度位置へ向けて傾転付勢され、また前記電磁切換弁118がOFFに切り換えられることによって図4(b)に示すようにポンプ吐出圧力の一部が操作ピストン117に作用すると、該操作ピストン117によって前記バネ機構116の付勢力に抗して斜板107が最小吐出量となる小傾斜角度位置へ押圧されるものである。この2容量型では、1つのポンプに2台分のポンプの機能を持たせ、同一の電動機容量でより広い使用範囲とすることができる。 In the variable displacement piston pump 100, when the swash plate 107 is in a state where the operation of the pump discharge pressure is cut off while the electromagnetic switching valve 118 is turned on as shown in FIG. When the electromagnetic switching valve 118 is turned OFF, a part of the pump discharge pressure acts on the operation piston 117 as shown in FIG. 4B. Then, the operating piston 117 presses the swash plate 107 to a small inclination angle position at which the discharge amount is minimum against the urging force of the spring mechanism 116. In this two-capacity type, one pump can have the function of two pumps, and a wider range of use can be achieved with the same motor capacity.
 また、上記のピストンポンプ100には、例えば図5に示すような、各ボア室109に対して作動油を分配する吸込ポート113と吐出ポート114とが円弧状に形成されたポートプレート108がケーシングカバー120に固定されている。吐出ポート114及び吸込ポート113はそれぞれケーシングの吐出油路121及び吸込油路に連通している。一方シリンダブロック103の端面には、各ボア室109内の作動油の吐出口・吸込口となるキドニーポート112が開口しており、ポートプレート108に対して摺動し、各キドニーポート112が吐出ポート114又は吸込ポート113に重なって作動油の吐出・吸込がなされる。 Further, the piston pump 100 has a port plate 108 in which a suction port 113 and a discharge port 114 for distributing hydraulic oil to each bore chamber 109 are formed in an arc shape as shown in FIG. It is fixed to the cover 120. The discharge port 114 and the suction port 113 communicate with the discharge oil passage 121 and the suction oil passage of the casing, respectively. On the other hand, on the end face of the cylinder block 103, a kidney port 112 serving as a discharge port / suction port for the hydraulic oil in each bore chamber 109 is opened and slides with respect to the port plate 108, and each kidney port 112 discharges. The hydraulic oil is discharged / sucked over the port 114 or the suction port 113.
 なお、キドニーポート112は、通常、吸込ポート113から吐出ポート114へ完全に移行する前に、吸込ポート113に対して遮断され、その対応するボア104内のピストン105は該遮断の後にボア室109の容積が最大となる図4(b)に示した下死点に達するよう設計されている。従って、ボア室109内ではキドニーポート112と吸込ポート113との遮断後に下死点に達するまで圧力が低下して高周波の原因となるキャビテーションが発生しやすくなる。そして当該キドニーポート112が吐出ポート114へ移行する時点では、下死点からボア室109の容積を圧縮する方向にピストン105は移動を開始し、ボア室109内の圧力は急激に上昇し油撃を発生する危険がある。このような圧力の急変は騒音発生の原因となることから、これを防止するために、図5(b)に示すように、ポートプレート108の少なくとも吐出ポート114の端には、吸込ポート113に向かって延びる髭状の逃げ溝115を設けることが行われている(例えば、特許文献1参照。)。 The kidney port 112 is normally shut off from the suction port 113 before completely shifting from the suction port 113 to the discharge port 114, and the piston 105 in the corresponding bore 104 is closed after the shut-off. It is designed to reach the bottom dead center shown in FIG. Therefore, in the bore chamber 109, the pressure decreases until the bottom dead center is reached after the kidney port 112 and the suction port 113 are shut off, and cavitation causing high frequency is likely to occur. At the time when the kidney port 112 shifts to the discharge port 114, the piston 105 starts moving from the bottom dead center in the direction of compressing the volume of the bore chamber 109, and the pressure in the bore chamber 109 rises rapidly, causing an oil hammer. There is a risk of generating. Such a sudden change in pressure causes noise generation. To prevent this, as shown in FIG. 5B, at least the end of the discharge port 114 of the port plate 108 is connected to the suction port 113. Providing a bowl-shaped escape groove 115 extending toward the front is performed (for example, see Patent Document 1).
特開2002-31039号公報JP 2002-31039 A
 しかしながら、斜板式の2容量可変ピストンポンプにおいては、あるボアのピストンが下死点でそのキドニーポートがポートプレートの吸込ポートと吐出ポートとの間に位置する際に、電磁切換弁の切換によって斜板が図4(a)の大傾斜角度から図4(b)の小傾斜角度へ移行すると、当該ボア室はポートプレートで封じ込められた状態のままピストンが圧縮方向へ押し込められ、ボア室内の圧力が急上昇して異常圧力が発生し、シリンダブロックの損傷を招く恐れがあった。 However, in a swash plate type two-capacity variable piston pump, when a piston of a certain bore is at bottom dead center and its kidney port is located between the suction port and the discharge port of the port plate, the switching is performed by switching the electromagnetic switching valve. When the plate shifts from the large inclination angle of FIG. 4 (a) to the small inclination angle of FIG. 4 (b), the piston is pushed in the compression direction while the bore chamber is sealed by the port plate, and the pressure in the bore chamber is increased. Suddenly increased and abnormal pressure was generated, which could cause damage to the cylinder block.
 従って、このようなボア室内の異常圧力の発生を回避するための手段を講じる必要があった。例えば、図6に示すように、ポートプレートの吐出ポート114の髭状の逃げ溝115を延長して吸込ポート113と吐出ポート114との間に位置するキドニーポート112にまで掛かるようにすることによってボア室が完全に封じ込められるのを防いで異常圧力を抑制する方法が考えられた。しかし、この場合、容積効率を悪化させ、ポンプとしての省エネ性が犠牲になってしまっていた。 Therefore, it was necessary to take measures to avoid the occurrence of such abnormal pressure in the bore chamber. For example, as shown in FIG. 6, by extending the bowl-shaped escape groove 115 of the discharge port 114 of the port plate so as to reach the kidney port 112 located between the suction port 113 and the discharge port 114. A method to suppress the abnormal pressure by preventing the bore chamber from being completely contained was considered. However, in this case, the volumetric efficiency is deteriorated, and the energy saving performance as a pump is sacrificed.
 その他の方法としては、シリンダブロック自体を機械的強度の高い材質とすることも考えられるが、コスト高は避けられない。また、電磁切換弁を介してポンプ吐出圧力の一部の作用を受ける操作ピストンの径を小さくして受圧面積を減少させる方法では、斜板の小傾斜角度を保持する最低制御圧力の悪化を招いてしまう。さらに、減圧弁を用いて操作ピストン室の圧力を抑制することも考えられるが、コスト高となるのに加え、減圧弁の応答性によって瞬間的なサージ圧力が発生するという問題もある。このように、ポンプ効率の低下やコスト高を招くこと無くボア室内の異常圧力を回避する有効な手段はこれまで無かった。 As another method, the cylinder block itself may be made of a material having high mechanical strength, but the cost is unavoidable. In addition, in the method of reducing the pressure receiving area by reducing the diameter of the operating piston that receives a part of the pump discharge pressure through the electromagnetic switching valve, the minimum control pressure that maintains the small inclination angle of the swash plate is deteriorated. I will. Further, it is conceivable to suppress the pressure in the operation piston chamber by using a pressure reducing valve. However, in addition to an increase in cost, there is a problem that an instantaneous surge pressure is generated due to the responsiveness of the pressure reducing valve. Thus, there has been no effective means for avoiding abnormal pressure in the bore chamber without lowering pump efficiency and increasing costs.
 本発明の目的は、上記問題点に鑑み、斜板の大傾斜角度から小傾斜角度の切換時にポートプレートの吐出ポートと吸込ポートとの間に封じ込められるシリンダブロックのボア室内での異常圧力発生を、ポンプ効率の低下やコスト高を招くことなく簡便な構成でありながらも良好に回避することができる回転数制御用可変ピストンポンプを提供することにある。 In view of the above problems, the object of the present invention is to prevent abnormal pressure generation in the bore chamber of the cylinder block that is enclosed between the discharge port and the suction port of the port plate when the swash plate is switched from a large inclination angle to a small inclination angle. An object of the present invention is to provide a variable piston pump for controlling the rotational speed that can be satisfactorily avoided while having a simple structure without incurring a reduction in pump efficiency and high cost.
 上記目的を達成するため、請求項1に記載の発明に係る回転数制御用可変ピストンポンプは、モータによって回転駆動される回転軸と、該回転軸と一体的に回転するシリンダブロックと、該シリンダブロックの内部に前記回転軸と平行に形成された複数個のボアと、各ボア内に収容されているピストンと、各ピストンの各端部シューが摺接する傾斜面を有し、回転軸に傾斜可能に支持されている斜板とが、同一ケーシングの内側空間からなるポンプ室内に単一ユニット構造として組み立てられ、前記回転軸およびシリンダブロックの回転に伴って前記斜板の傾斜角度に応じたストロークで各ピストンがボア内を往復運動することによって、ボアとピストンとで形成されるボア室内に前記ケーシングの内部に形成された吸込油路から前記シリンダブロックが摺接するポートプレートの吸込ポートを介して作動油を吸込且つ前記ポートプレートの吐出ポートを介して前記ケーシングの内部に形成された吐出油路へ作動油を吐出する回転数制御用可変ピストンポンプにおいて、
 前記ポートプレートの吸込ポートと吐出ポートとの間に位置するボア室内の圧力が予め定められた圧力を越えたときに、該ボア室内の作動油をボア室外へ逃がす異常圧力回避用油圧回路が、同一ケーシング内で前記ユニット構造に組み込まれて設けられているものである。
In order to achieve the above object, a variable piston pump for controlling the rotational speed according to the first aspect of the present invention includes a rotating shaft that is rotationally driven by a motor, a cylinder block that rotates integrally with the rotating shaft, and the cylinder The block has a plurality of bores formed in parallel with the rotary shaft, pistons accommodated in the bores, and inclined surfaces on which end shoes of the pistons are slidably contacted, and are inclined to the rotary shaft. The swash plate that is supported is assembled as a single unit structure in the pump chamber formed of the inner space of the same casing, and the stroke according to the inclination angle of the swash plate as the rotary shaft and the cylinder block rotate. Thus, each piston reciprocates in the bore, so that the cylinder is formed from the suction oil passage formed in the casing in the bore chamber formed by the bore and the piston. A variable piston pump for controlling the number of revolutions that sucks hydraulic oil through a suction port of a port plate in sliding contact with the block and discharges the hydraulic oil to a discharge oil passage formed inside the casing through a discharge port of the port plate. In
When the pressure in the bore chamber located between the suction port and the discharge port of the port plate exceeds a predetermined pressure, an abnormal pressure avoiding hydraulic circuit that releases the hydraulic oil in the bore chamber to the outside of the bore chamber, It is provided by being incorporated in the unit structure in the same casing.
 請求項2に記載の発明に係る回転数制御用可変ピストンポンプは、請求項1に記載の回転数制御用可変ピストンポンプにおいて、前記異常圧力回避機構は、前記吸込ポートと吐出ポートとの間に位置するボア室内の作動油を前記ポンプ室内へ排出する安全弁を有しているものである。 According to a second aspect of the present invention, there is provided the variable piston pump for controlling the rotational speed according to the first aspect, wherein the abnormal pressure avoiding mechanism is provided between the suction port and the discharge port. It has a safety valve which discharges hydraulic oil in the located bore chamber into the pump chamber.
 請求項3に記載の発明に係る回転数制御用可変ピストンポンプは、請求項1に記載の回転数制御用可変ピストンポンプにおいて、前記異常圧力回避機構は、前記吸込ポートと吐出ポートとの間に位置するボア室と前記吐出油路とを逆止弁を介して連通する逃し油路を有しているものである。 According to a third aspect of the present invention, there is provided the variable piston pump for controlling the rotational speed according to the first aspect, wherein the abnormal pressure avoiding mechanism is provided between the suction port and the discharge port. A relief oil passage that communicates the bore chamber and the discharge oil passage through a check valve is provided.
 本発明による回転数制御用可変ピストンポンプにおいては、異常圧力回避用油圧回路によって、ポートプレートの吸込ポートと吐出ポートとの間に位置するボア室内の圧力が予め定められた圧力を越えたときに、該ボア室内の作動油をボア室外へ逃がすことができるため、前記ボア室が吸込ポートと吐出ポートとの間で下死点で封じ込められている状態の時に斜板が大容量の大傾斜角度から小容量の小傾斜角度へと切り換えられてピストンが該ボア室を急激に圧縮しても、ボア室内の作動油が逃がされて異常圧力の発生が防止されるので、コスト高となる強度増強に依ることなくポンプ性能を維持したままシリンダブロックの損傷の危険を回避することができるという効果がある。また、この異常圧力回避用油圧回路は、同一ケーシング内に一体的に設けられたものであり、ピストンポンプの同一ユニット構造内に組み込まれた状態という簡便な構成で機能することができる。 In the variable piston pump for speed control according to the present invention, when the pressure in the bore chamber located between the suction port and the discharge port of the port plate exceeds a predetermined pressure by the abnormal pressure avoidance hydraulic circuit. Since the working oil in the bore chamber can be released to the outside of the bore chamber, the swash plate has a large capacity and a large inclination angle when the bore chamber is sealed at the bottom dead center between the suction port and the discharge port. Even if the piston is switched from a small tilt angle to a small tilt angle and the piston suddenly compresses the bore chamber, the hydraulic oil in the bore chamber is released and abnormal pressure is prevented from occurring, resulting in high cost. There is an effect that the risk of damaging the cylinder block can be avoided while maintaining the pump performance without depending on the increase. The abnormal pressure avoiding hydraulic circuit is provided integrally in the same casing, and can function with a simple configuration of being incorporated in the same unit structure of the piston pump.
本発明の第1実施例による回転数制御用可変ピストンポンプの概略構成図であり、(a)は全体縦断面図、(b)は部分縦断面図である。It is a schematic block diagram of the variable piston pump for rotation speed control by 1st Example of this invention, (a) is a whole longitudinal cross-sectional view, (b) is a partial longitudinal cross-sectional view. 本発明の第2実施例による回転数制御用可変ピストンポンプの概略構成を示すは全体縦断面図である。FIG. 2 is an overall longitudinal sectional view showing a schematic configuration of a variable piston pump for controlling the rotational speed according to a second embodiment of the present invention. 回転数制御用2容量可変ピストンポンプの油圧回路図である。FIG. 2 is a hydraulic circuit diagram of a 2-capacity variable piston pump for controlling the rotational speed. 従来の回転数制御用可変ピストンポンプの概略構成を示す全体縦断面図であり、(a)は斜板の大傾斜角度(大吐き出し容量)状態、(b)は斜板の小傾斜角度(小吐出容量)状態である。It is a whole longitudinal cross-sectional view which shows schematic structure of the conventional variable piston pump for rotation speed control, (a) is a state with a large inclination angle (large discharge capacity) of a swash plate, (b) is a small inclination angle (small) of a swash plate. (Discharge capacity) state. ポートプレートをシリンダブロックに重なった状態で示す概略平面図であり、(a)はポートプレート全面を示し、(b)は(a)の四角で囲った部分の拡大図である。It is a schematic plan view which shows a port plate in the state which overlapped with the cylinder block, (a) shows the whole port plate, (b) is an enlarged view of the part enclosed with the square of (a). ポートプレートの吐出ポートの逃げ溝を延長した場合を示す部分拡大図である。It is the elements on larger scale which show the case where the escape groove of the discharge port of a port plate is extended.
 本発明の回転数制御用可変ピストンポンプにおいては、同一ケーシングの内側空間からなるポンプ室内に単一ユニット構造として、回転軸と、該回転軸と一体的に回転するシリンダブロックと、該シリンダブロックの内部に前記回転軸と平行に形成された複数個のボアと、各ボア内に収容されているピストンと、各ピストンの各端部シューが摺接する傾斜面を有し、回転軸に傾斜可能に支持されている斜板とが組み立てられ、シリンダブロックの回転に伴って前記斜板の傾斜角度に応じたストロークで各ピストンがボア内を往復運動することによって、ボアとピストンとで形成されるボア室内に前記ケーシングの内部に形成された吸込油路から前記シリンダブロックが摺接するポートプレートの吸込ポートを介して作動油を吸込且つ前記ポートプレートの吐出ポートを介して前記ケーシングの内部に形成された吐出油路へ作動油を吐出するものであり、ポートプレートの吸込ポートと吐出ポートとの間に位置するボア室内の圧力が予め定められた圧力を越えたときに、該ボア室内の作動油をボア室外へ逃がす異常圧力回避用油圧回路が、同一ケーシング内で前記ユニット構造に組み込まれて設けられている。 In the variable speed piston pump for controlling the rotational speed of the present invention, a single unit structure is provided in the pump chamber formed of the inner space of the same casing, and the rotation shaft, the cylinder block that rotates integrally with the rotation shaft, and the cylinder block A plurality of bores formed in parallel with the rotation shaft, pistons accommodated in the bores, and inclined surfaces on which end shoes of the pistons are slidably contacted, can be inclined to the rotation shaft. A bore formed by the bore and the piston is assembled by assembling the supported swash plate and reciprocating the pistons in the bore with a stroke corresponding to the inclination angle of the swash plate as the cylinder block rotates. The hydraulic oil is sucked into the chamber from a suction oil passage formed inside the casing through a suction port of a port plate that is in sliding contact with the cylinder block. Hydraulic fluid is discharged to a discharge oil passage formed inside the casing through a discharge port of the front plate, and the pressure in the bore chamber located between the suction port and the discharge port of the port plate is determined in advance. An abnormal pressure avoiding hydraulic circuit for allowing the hydraulic oil in the bore chamber to escape to the outside of the bore chamber when the pressure is exceeded is provided in the unit structure in the same casing.
 従って、吸込ポートと吐出ポートとの間に位置するボア室が下死点で封じ込められている状態の時に斜板が大容量の大傾斜角度から小容量の小傾斜角度へと切り換えられてピストンが該ボア室を急激に圧縮しても、異常圧力回避用油圧回路によってボア室内の作動油が逃がされて異常圧力の発生が防止されるので、コスト高となる強度増強に依存することなくポンプ性能を維持したままシリンダブロックの損傷の危険を回避することができる。しかも本発明の異常圧力回避用油圧回路は、同一ケーシング内に一体的に設けられたものであり、ピストンポンプの同一ユニット構造内に組み込まれた状態という簡便な構成で機能するものである。 Therefore, when the bore chamber located between the suction port and the discharge port is confined at the bottom dead center, the swash plate is switched from a large tilt angle with a large capacity to a small tilt angle with a small capacity. Even if the bore chamber is rapidly compressed, the hydraulic fluid for avoiding abnormal pressure is released by the abnormal pressure avoiding hydraulic circuit to prevent the occurrence of abnormal pressure. The risk of damaging the cylinder block can be avoided while maintaining the performance. Moreover, the hydraulic circuit for avoiding abnormal pressure according to the present invention is provided integrally in the same casing and functions in a simple configuration of being incorporated in the same unit structure of the piston pump.
 異常圧力回避用油圧回路としては、まず、安全弁を利用したものが簡便である。具体的には、吸込ポートと吐出ポートとの間に位置するボア室内をポンプ室へと連通させる排出通路を設け、当該ボア室の直ぐ下流に安全弁、即ちリリーフ弁を配置する構成とすれば、該安全弁によって、異常圧力となる前の所定の圧力を越えた時点でボア室内の作動油を該排出通路へ排出することができ、圧力が下がれば安全弁が閉じて該排出通路は直ちに遮断される。 異常 First, as a hydraulic circuit for avoiding abnormal pressure, one using a safety valve is simple. Specifically, if a discharge passage that communicates the bore chamber located between the suction port and the discharge port to the pump chamber is provided, and a safety valve, that is, a relief valve is arranged immediately downstream of the bore chamber, The safety valve allows the hydraulic oil in the bore chamber to be discharged to the discharge passage when a predetermined pressure before the abnormal pressure is exceeded. When the pressure drops, the safety valve closes and the discharge passage is immediately shut off. .
 なお、本来のピストンポンプユニット部分は従来の構造のままで済み、安全弁と前記排出通路とを同一ケーシング内に組み込むだけで異常圧力回避用油圧回路を構成できる。通常ケーシングは、容器状のケーシング本体とこれを塞ぐようにケーシングカバーが一体に設けられてポンプ室が閉じられ、該ケーシングカバー内部に吐出油路及び吸込油路が形成されている。そしてポートプレートはシリンダブロックの端面が摺接するようにケーシングカバーの内面に固定されている。従って、該ケーシングカバー内部に前記安全弁と排出通路とを形成する構成とするのが最も簡便である。このとき、該排出通路の端部側はポートプレートを貫通して対応するボア室に連通するものとする。 It should be noted that the original piston pump unit portion may remain the conventional structure, and an abnormal pressure avoidance hydraulic circuit can be configured simply by incorporating the safety valve and the discharge passage into the same casing. Usually, a casing is integrally provided with a casing-like casing body and a casing cover so as to close the casing, the pump chamber is closed, and a discharge oil passage and a suction oil passage are formed inside the casing cover. The port plate is fixed to the inner surface of the casing cover so that the end surface of the cylinder block is in sliding contact. Accordingly, it is most convenient to form the safety valve and the discharge passage inside the casing cover. At this time, the end side of the discharge passage passes through the port plate and communicates with the corresponding bore chamber.
 また、簡便な異常圧力回避用油圧回路として、逆止弁を利用したものが上げられる。具体的には、吸込ポートと吐出ポートとの間に位置するボア室と前記吐出油路とを連通する逃し油路を形成し、ボア室の直ぐ下流に逆止弁を配置する構成とすれば、異常圧力となる前の所定の圧力を越えた時点でボア室内の作動油を逆止弁から逃し油路を介して吐出油路へ逃がすことができ、圧力が下がれば該逆止弁により逃し油路は直ちに閉じられる。この場合も、基本構成が従来のピストンポンプユニットと共通であれば、ケーシングカバー内部に前記逆止弁と逃し油路とを形成し、逃し油路の端部側がポートプレートを貫通して対応するボア室に連通する構成とするのが最も簡便である。 Also, as a simple hydraulic circuit for avoiding abnormal pressure, one using a check valve can be raised. Specifically, if a relief oil passage that connects the bore chamber located between the suction port and the discharge port and the discharge oil passage is formed, and a check valve is disposed immediately downstream of the bore chamber. When the predetermined pressure before the abnormal pressure is exceeded, the hydraulic oil in the bore chamber can be released from the check valve to the discharge oil passage through the oil passage, and if the pressure drops, the check valve releases the hydraulic oil. The oil passage is immediately closed. Also in this case, if the basic configuration is the same as that of the conventional piston pump unit, the check valve and the relief oil passage are formed inside the casing cover, and the end portion side of the relief oil passage penetrates the port plate. It is most convenient to have a configuration communicating with the bore chamber.
 以上のように、上記いずれの異常圧力回避用油圧回路でも、ケーシング内に組み込まれた簡便な構成でありながら、容積効率の悪化等、実質的なポンプ性能に影響なく、シリンダブロック破損の原因となり得る異常圧力の発生を回避できる。 As described above, in any of the above abnormal pressure avoidance hydraulic circuits, the cylinder block is damaged without affecting the substantial pump performance, such as the deterioration of volumetric efficiency, although it is a simple configuration incorporated in the casing. Generation of abnormal pressure can be avoided.
 本発明の第1の実施例として、安全弁を利用した異常圧力回避用油圧回路を備えた回転数制御用2容量可変ピストンポンプを図1に示す。図1(a)は全体縦断面図、(b)は異常圧力回避用油圧回路を示す部分断面図である。 As a first embodiment of the present invention, FIG. 1 shows a two-volume variable piston pump for controlling the number of revolutions equipped with an abnormal pressure avoidance hydraulic circuit using a safety valve. FIG. 1A is an overall longitudinal sectional view, and FIG. 1B is a partial sectional view showing an abnormal pressure avoiding hydraulic circuit.
 本実施例による回転数制御用2容量可変ピストンポンプ1は、異常圧力回避用油圧回路以外のピストンポンプユニットの基本構成は、図3および図4に示した例と共通するものである。 The basic structure of the piston pump unit other than the abnormal pressure avoiding hydraulic circuit is the same as the example shown in FIGS. 3 and 4 in the two-capacity variable piston pump 1 for controlling the rotational speed according to the present embodiment.
 即ち、容器状のケーシング本体10がケーシングカバー20で閉じられて形成されるポンプ室11内に、モータによって回転駆動される回転軸2と、該回転軸2と一体的に回転するシリンダブロック3と、該シリンダブロック3の内部に回転軸2と平行に形成された複数個のボア4と、各ボア4内に収容されているピストン5と、各ピストン5の各端部シュー6が摺接する傾斜面を有して回転軸2に傾斜可能に支持されている斜板7とが単一ユニット構造として組み立てられ、さらに、斜板7は、バネ機構16によって最大吐出容量となる最大傾斜角度に向けて付勢されていると共に、該バネ機構16による付勢に抗して斜板7を押圧する方向に移動可能に操作ピストン17が設置されている。 That is, in a pump chamber 11 formed by closing a container-like casing body 10 with a casing cover 20, a rotary shaft 2 that is driven to rotate by a motor, and a cylinder block 3 that rotates integrally with the rotary shaft 2. A plurality of bores 4 formed in the cylinder block 3 in parallel with the rotary shaft 2, pistons 5 accommodated in the bores 4, and inclinations at which the end shoes 6 of the pistons 5 are in sliding contact with each other. The swash plate 7 having a surface and supported on the rotary shaft 2 so as to be tiltable is assembled as a single unit structure. Further, the swash plate 7 is directed toward the maximum tilt angle at which the maximum discharge capacity is obtained by the spring mechanism 16. The operating piston 17 is installed so as to be movable in a direction in which the swash plate 7 is pressed against the urging by the spring mechanism 16.
 該操作ピストン17は、電磁切換弁を介してポンプ自己吐出圧の一部の作用を受けることができる設定となっている。電磁切換弁がONの状態では、操作ピストン17に対する前記ポンプ自己吐出圧の一部の作用が遮断されており、斜板7はバネ機構16により最大傾斜角度に付勢され、電磁切換弁がOFFに切り換えられると、前記ポンプ自己吐出圧の一部を操作ピストン17に作用させ、該操作ピストン17を移動させて斜板7が押圧され、最小吐出量となる最小傾斜角度へ傾転される。 The operating piston 17 is set to be able to receive a part of the pump self-discharge pressure through an electromagnetic switching valve. When the electromagnetic switching valve is ON, a part of the action of the pump self-discharge pressure on the operation piston 17 is cut off, the swash plate 7 is biased to the maximum inclination angle by the spring mechanism 16, and the electromagnetic switching valve is turned OFF. Is switched, the part of the pump self-discharge pressure is applied to the operation piston 17, the operation piston 17 is moved, the swash plate 7 is pressed, and it is tilted to the minimum inclination angle that is the minimum discharge amount.
 シリンダブロック3の各ピストン5は、回転軸2およびシリンダブロック3の回転に伴って斜板7の傾斜角度に応じたストロークでボア4内を往復運動し、ボア室9内に前記ケーシングの内部に形成された吸込油路から前記シリンダブロックが摺接するポートプレートの吸込ポートを介して作動油を吸込且つ前記ポートプレートの吐出ポートを介して前記ケーシングの内部に形成された吐出油路へ作動油を吐出する。 Each piston 5 of the cylinder block 3 reciprocates in the bore 4 with a stroke corresponding to the inclination angle of the swash plate 7 as the rotary shaft 2 and the cylinder block 3 rotate, and enters the bore chamber 9 into the casing. The working oil is sucked from the formed suction oil passage through the suction port of the port plate in sliding contact with the cylinder block, and the working oil is supplied to the discharge oil passage formed inside the casing through the discharge port of the port plate. Discharge.
 本実施例においては、異常圧力回避用油圧回路30として、ポートプレート8の吸込ポートと吐出ポートとの間に位置するボア室9をポンプ室11へ連通する排出通路31をケーシングカバー20の内部に形成し、該排出通路31のボア室9の直ぐ下流位置に安全弁32が配置されている。この排出通路31は、端部側にポートプレート8を貫通して対応するボア室9のキドニーポート12に連通する貫通孔31Xを含むものである。 In the present embodiment, as the abnormal pressure avoiding hydraulic circuit 30, a discharge passage 31 that communicates the bore chamber 9 located between the suction port and the discharge port of the port plate 8 to the pump chamber 11 is formed inside the casing cover 20. A safety valve 32 is formed at a position immediately downstream of the bore chamber 9 in the discharge passage 31. The discharge passage 31 includes a through hole 31 </ b> X that passes through the port plate 8 on the end side and communicates with the corresponding kidney port 12 of the bore chamber 9.
 以上の構成を備えた回転数制御用2容量可変ピストンポンプ1は、電磁切換弁がONとなっている斜板7の大傾斜角度における大吐出容量状態での駆動において、電磁切換弁がOFFに切り換えられた際に、ポートプレート8の吸込ポートと吐出ポートとの間にそのキドニーポート12が位置する下死点にあるボア室9において、斜板7が小吐出容量となる小傾斜角度位置へ傾転することによってピストン5が上昇し急激な圧縮が生じて高圧となっても、所定圧力を越えた時点で安全弁32が開き、ボア室9内の作動油が排出通路31内へ排出される。 The two-volume variable piston pump 1 for controlling the rotational speed having the above-described configuration is configured such that the electromagnetic switching valve is turned off when the swash plate 7 with the electromagnetic switching valve turned on is driven in a large discharge capacity state at a large inclination angle. When switched, in the bore chamber 9 at the bottom dead center where the kidney port 12 is located between the suction port and the discharge port of the port plate 8, the swash plate 7 moves to a small inclination angle position where the discharge capacity becomes a small discharge capacity. Even if the piston 5 rises and sudden compression occurs due to the tilting, the safety valve 32 opens when the pressure exceeds the predetermined pressure, and the hydraulic oil in the bore chamber 9 is discharged into the discharge passage 31. .
 このような安全弁32の作動によって、ボア室9は、シリンダブロック3に破損を生じ得るような異常圧力が発生する危険が回避される。そしてボア室9内の圧力が所定以下に下がれば、直ちに安全弁32は閉じられ、小傾斜角度となった斜板7により小吐出容量でのポンプ駆動が何ら支障なく継続される。 The operation of the safety valve 32 as described above avoids the danger that the bore chamber 9 may generate an abnormal pressure that may cause the cylinder block 3 to be damaged. When the pressure in the bore chamber 9 falls below a predetermined value, the safety valve 32 is immediately closed, and the pump driving with a small discharge capacity is continued without any trouble by the swash plate 7 having a small inclination angle.
 本発明の第2の実施例として、逆止弁を利用した異常圧力回避用油圧回路を備えた回転数制御用2容量可変ピストンポンプを図2の縦断面図に示す。 As a second embodiment of the present invention, a vertical displacement cross-sectional view of FIG. 2 shows a two-volume variable piston pump for controlling the rotational speed equipped with an abnormal pressure avoiding hydraulic circuit using a check valve.
 本実施例による回転数制御用2容量可変ピストンポンプ1は、異常圧力回避用油圧回路以外のピストンポンプユニットの基本構成は、図1に示した上記実施例1のものと共通する。 The basic structure of the piston pump unit other than the abnormal pressure avoiding hydraulic circuit is the same as that of the first embodiment shown in FIG.
 本実施例における異常圧力回避用油圧回路40は、ポートプレート8の吸込ポートと吐出ポートとの間に位置するボア室9を吐出油路21に連通する逃し油路41をケーシングカバー20の内部に形成し、該逃し油路41のボア室9の直ぐ下流位置に逆止弁42が配置されている。この逃し油路41は、端部側にポートプレート8を貫通して対応するボア室9のキドニーポート12に連通する貫通孔41Xを含むものである。 The abnormal pressure avoiding hydraulic circuit 40 in this embodiment includes a relief oil passage 41 that communicates the bore chamber 9 located between the suction port and the discharge port of the port plate 8 with the discharge oil passage 21 inside the casing cover 20. A check valve 42 is formed at a position immediately downstream of the bore chamber 9 of the relief oil passage 41 formed. The escape oil passage 41 includes a through hole 41 </ b> X that passes through the port plate 8 on the end side and communicates with the corresponding kidney port 12 of the bore chamber 9.
 以上の構成を備えた回転数制御用2容量可変ピストンポンプ1は、電磁切換弁がONとなっている斜板7の大傾斜角度における大吐出容量状態での駆動において、電磁切換弁がOFFに切り換えられた際に、ポートプレート8の吸込ポートと吐出ポートとの間にそのキドニーポート12が位置する下死点にあるボア室9において、斜板7が小吐き出し容量となる小傾斜角度位置へ傾転することによってピストン5が上昇し急激な圧縮が生じて高圧となっても、所定圧力を越えた時点で逆止弁42が開き、ボア室9内の作動油が逃し油路41を介して吐出油路21へ排出される。 The two-volume variable piston pump 1 for controlling the rotational speed having the above-described configuration is configured such that the electromagnetic switching valve is turned off when the swash plate 7 with the electromagnetic switching valve turned on is driven in a large discharge capacity state at a large inclination angle. When switched, in the bore chamber 9 at the bottom dead center where the kidney port 12 is located between the suction port and the discharge port of the port plate 8, the swash plate 7 moves to a small inclination angle position at which a small discharge capacity is obtained. Even if the piston 5 rises and sudden compression occurs due to tilting, the check valve 42 opens when the pressure exceeds a predetermined pressure, and the hydraulic oil in the bore chamber 9 passes through the relief oil passage 41. And discharged to the discharge oil passage 21.
 このような逆止弁42の作動によって、ボア室9は、シリンダブロック3に破損を生じ得るような異常圧力が発生する危険が回避される。そしてボア室9内の圧力が所定以下に下がれば、直ちに逆止弁42は閉じられ、小傾斜角度となった斜板7により小吐出容量でのポンプ駆動が何ら支障なく継続される。 By such an operation of the check valve 42, the danger that the bore chamber 9 may generate an abnormal pressure that may cause damage to the cylinder block 3 is avoided. When the pressure in the bore chamber 9 falls below a predetermined value, the check valve 42 is immediately closed, and the pump driving with a small discharge capacity is continued without any trouble by the swash plate 7 having a small inclination angle.
1,100:回転数制御用2容量可変ピストンポンプ
2,102:回転軸
3,103:シリンダブロック
4,104:ボア
5,105:ピストン
6,106:ピストン端部シュー
7,107:斜板
8,108:ポートプレート
9,109:ボア室
10,110:ケーシング本体
11,111:ポンプ室
12,112:キドニーポート
113:吸込ポート
114:吐出ポート
115:逃げ溝
16,116:バネ機構
17,117:操作ピストン
118:電磁切換弁
20,120:ケーシングカバー
21,121:吐出油路
30:異常圧力回避用油圧回路
31:排出通路
31X:ポートプレート貫通孔
32:安全弁
40:異常圧力回避用油圧回路
41:逃し油路
41X:ポートプレート貫通孔
42:逆止弁
DESCRIPTION OF SYMBOLS 1,100: Two capacity | capacitance variable piston pump 2 for rotational speed control, 102: Rotating shaft 3, 103: Cylinder block 4, 104: Bore 5, 105: Piston 6, 106: Piston end shoe 7, 107: Swash plate 8 108: Port plate 9, 109: Bore chamber 10, 110: Casing body 11, 111: Pump chamber 12, 112: Kidney port 113: Suction port 114: Discharge port 115: Escape groove 16, 116: Spring mechanism 17, 117 : Operating piston 118: Electromagnetic switching valve 20, 120: Casing cover 21, 121: Discharge oil passage 30: Abnormal pressure avoidance hydraulic circuit 31: Discharge passage 31X: Port plate through hole 32: Safety valve 40: Abnormal pressure avoidance hydraulic circuit 41: Relief oil passage 41X: Port plate through hole 42: Check valve

Claims (3)

  1.  モータによって回転駆動される回転軸と、該回転軸と一体的に回転するシリンダブロックと、該シリンダブロックの内部に前記回転軸と平行に形成された複数個のボアと、各ボア内に収容されているピストンと、各ピストンの各端部シューが摺接する傾斜面を有し、回転軸に傾斜可能に支持されている斜板とが、同一ケーシングの内側空間からなるポンプ室内に単一ユニット構造として組み立てられ、前記回転軸およびシリンダブロックの回転に伴って前記斜板の傾斜角度に応じたストロークで各ピストンがボア内を往復運動することによって、ボアとピストンとで形成されるボア室内に前記ケーシングの内部に形成された吸込油路から前記シリンダブロックが摺接するポートプレートの吸込ポートを介して作動油を吸込且つ前記ポートプレートの吐出ポートを介して前記ケーシングの内部に形成された吐出油路へ作動油を吐出する回転数制御用可変ピストンポンプにおいて、
     前記ポートプレートの吸込ポートと吐出ポートとの間に位置するボア室内の圧力が予め定められた圧力を越えたときに、該ボア室内の作動油をボア室外へ逃がす異常圧力回避用油圧回路が、同一ケーシング内で前記ユニット構造に組み込まれて設けられていることを特徴とする回転数制御用可変ピストンポンプ。
    A rotating shaft that is driven to rotate by a motor, a cylinder block that rotates integrally with the rotating shaft, a plurality of bores formed in the cylinder block in parallel with the rotating shaft, and accommodated in each bore A single unit structure in a pump chamber comprising an inner space of the same casing. As each of the pistons reciprocates within the bore with a stroke corresponding to the inclination angle of the swash plate as the rotating shaft and the cylinder block rotate, the bore is formed in the bore chamber formed by the bore and the piston. The working oil is sucked from the suction oil passage formed inside the casing through the suction port of the port plate in which the cylinder block is slidably contacted, and the port pre- In through the city of discharge port speed control variable piston pump that discharges hydraulic oil to formed within the discharge passage of the casing,
    When the pressure in the bore chamber located between the suction port and the discharge port of the port plate exceeds a predetermined pressure, an abnormal pressure avoiding hydraulic circuit that releases the hydraulic oil in the bore chamber to the outside of the bore chamber, A variable piston pump for controlling the rotational speed, wherein the variable piston pump is incorporated in the unit structure in the same casing.
  2.  前記異常圧力回避用油圧回路は、前記吸込ポートと吐出ポートとの間に位置するボア室内の作動油を前記ポンプ室内へ排出する安全弁を備えていることを特徴とする請求項1に記載の回転数制御用可変ピストンポンプ。 2. The rotation according to claim 1, wherein the abnormal pressure avoiding hydraulic circuit includes a safety valve that discharges hydraulic oil in a bore chamber located between the suction port and the discharge port into the pump chamber. Variable piston pump for number control.
  3.  前記異常圧力回避用油圧回路は、前記吸込ポートと吐出ポートとの間に位置するボア室と前記吐出油路とを逆止弁を介して連通する逃し油路を備えていることを特徴とする請求項1に記載の回転数制御用可変ピストンポンプ。 The abnormal pressure avoiding hydraulic circuit includes a relief oil passage that communicates a bore chamber located between the suction port and the discharge port and the discharge oil passage through a check valve. The variable piston pump for rotational speed control according to claim 1.
PCT/JP2016/058125 2015-04-14 2016-03-15 Rotational-speed-controlling variable piston pump WO2016167070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680017051.2A CN107407263B (en) 2015-04-14 2016-03-15 Variable plunger pump is used in revolving speed control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015082392A JP6280517B2 (en) 2015-04-14 2015-04-14 Variable piston pump for speed control
JP2015-082392 2015-04-14

Publications (1)

Publication Number Publication Date
WO2016167070A1 true WO2016167070A1 (en) 2016-10-20

Family

ID=57126127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058125 WO2016167070A1 (en) 2015-04-14 2016-03-15 Rotational-speed-controlling variable piston pump

Country Status (3)

Country Link
JP (1) JP6280517B2 (en)
CN (1) CN107407263B (en)
WO (1) WO2016167070A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050029A (en) * 2017-12-05 2018-05-18 宁波市奉化溪口威尔特制泵厂 A kind of energy-efficient inclined disc type high-pressure plunger pump
CN115013275A (en) * 2022-05-31 2022-09-06 江苏大学流体机械温岭研究院 Load-sensitive digital axial plunger pump for active valve flow distribution and working method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887974A (en) * 2019-12-24 2020-03-17 中国商用飞机有限责任公司 Method and device for measuring rotating speed of plunger pump
CN115711210B (en) * 2022-12-02 2023-10-13 青岛力克川液压机械有限公司 Variable mechanism and plunger pump and plunger motor using variable mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152369U (en) * 1979-04-19 1980-11-04
JPS5642441Y2 (en) * 1975-09-04 1981-10-05
JPH08210242A (en) * 1995-02-01 1996-08-20 Hitachi Constr Mach Co Ltd Axial piston pump motor
JPH08312524A (en) * 1995-05-19 1996-11-26 Hitachi Constr Mach Co Ltd Hydraulic piston pump
JPH10252642A (en) * 1997-03-11 1998-09-22 Hitachi Constr Mach Co Ltd Axial piston type hydraulic pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200996367Y (en) * 2007-01-22 2007-12-26 油研工业株式会社 Capacity-variable pump
JP5342949B2 (en) * 2009-07-10 2013-11-13 株式会社 神崎高級工機製作所 Pump for closed circuit configuration
JP6281931B2 (en) * 2013-09-09 2018-02-21 株式会社 神崎高級工機製作所 Axial piston device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642441Y2 (en) * 1975-09-04 1981-10-05
JPS55152369U (en) * 1979-04-19 1980-11-04
JPH08210242A (en) * 1995-02-01 1996-08-20 Hitachi Constr Mach Co Ltd Axial piston pump motor
JPH08312524A (en) * 1995-05-19 1996-11-26 Hitachi Constr Mach Co Ltd Hydraulic piston pump
JPH10252642A (en) * 1997-03-11 1998-09-22 Hitachi Constr Mach Co Ltd Axial piston type hydraulic pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050029A (en) * 2017-12-05 2018-05-18 宁波市奉化溪口威尔特制泵厂 A kind of energy-efficient inclined disc type high-pressure plunger pump
CN115013275A (en) * 2022-05-31 2022-09-06 江苏大学流体机械温岭研究院 Load-sensitive digital axial plunger pump for active valve flow distribution and working method thereof
CN115013275B (en) * 2022-05-31 2024-03-08 江苏大学流体机械温岭研究院 Load-sensitive digital axial plunger pump with active valve flow distribution and working method thereof

Also Published As

Publication number Publication date
JP2016200115A (en) 2016-12-01
CN107407263A (en) 2017-11-28
JP6280517B2 (en) 2018-02-14
CN107407263B (en) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2016167070A1 (en) Rotational-speed-controlling variable piston pump
US8251683B2 (en) Variable capacity rotary compressor
KR100986943B1 (en) Discharge valve for reciprocating compressor
EP2177759B1 (en) Tandem piston pump
JP5188444B2 (en) Hydraulic drive device for work equipment
US20140328700A1 (en) Swash plate type piston pump
KR101935805B1 (en) Intake checking valve
KR20090025328A (en) A variable capacity pump with dual springs
KR102328899B1 (en) Variable capacity hydraulic device
KR102228576B1 (en) Diaphragm pump with dual spring overfill limiter
KR100661360B1 (en) Variable capacity swash plate type compressor
WO2014050007A1 (en) Rotary compressor
KR101886727B1 (en) Swash plate type compressor
JP6714781B2 (en) Swash plate type compressor
EP2035707B1 (en) Hydraulic pump
JP3809393B2 (en) Control device for variable displacement piston pump
JP5628134B2 (en) Hydraulic closed circuit system
JP3082480B2 (en) Refrigerant gas suction structure in piston type compressor
CN110873029B (en) Hydraulic device
JP5777411B2 (en) Bi-directional rotary type axial piston pump
JP6756685B2 (en) Tilt actuator of variable capacitance type swash plate type hydraulic rotary machine
KR20110098215A (en) Check valve of variable displacement compressor
JP2018003817A (en) Swash plate type piston pump
JP2023060926A (en) Swash plate type variable displacement piston pump
KR102006341B1 (en) Variable displacement swash plate type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779862

Country of ref document: EP

Kind code of ref document: A1