WO2016167057A1 - Trouble information utilization assist device and trouble information utilization assist method - Google Patents
Trouble information utilization assist device and trouble information utilization assist method Download PDFInfo
- Publication number
- WO2016167057A1 WO2016167057A1 PCT/JP2016/057388 JP2016057388W WO2016167057A1 WO 2016167057 A1 WO2016167057 A1 WO 2016167057A1 JP 2016057388 W JP2016057388 W JP 2016057388W WO 2016167057 A1 WO2016167057 A1 WO 2016167057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- defect information
- causal model
- failure
- defect
- utilization support
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/268—Morphological analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
Definitions
- the present invention relates to a defect information utilization support device and a defect information utilization support method.
- FMEA FeilureailMode and Effects Analysis
- FMEA failure modes that can occur in parts are predicted at the time of device design, problems are identified by analyzing and evaluating possible causes and effects, and countermeasures are taken.
- the failure mode is a classification of a failure state of the device, such as disconnection, short circuit, breakage, wear, deterioration of characteristics, and the like.
- the failure parts, failure modes, causes, effects, countermeasures, and the like, which are the results of the study by FMEA, are summarized in a table format. This table is called FMEA table.
- the FMEA table shows failure modes and causes that may occur when the same parts are used for other equipment, not only for FMEA practitioners to organize the examination results but also for third parties to check the examination results. It is also used for confirmation.
- the failed part is a coil
- “coil” is entered in the failed part column of the FMEA table.
- the failure mode column “disconnection”, “short circuit”, “abnormal resistance value”, etc. are described, and then in the cause column, the cause of the failure mode is “high load”, “immersion”, “ Indicate “Wire failure”.
- the examination result is written in the influence column as the influence on the failure mode, and the examination result is written in the countermeasure column as a countermeasure against the failure mode.
- the failure mode becomes a reference point for work. Therefore, if a failure mode selection is missed, subsequent causes, effects, and countermeasures cannot be examined accurately. In other words, it is important to identify the failure mode without omission when creating the FMEA table.
- the causal model is, for example, a combination of a failed part, a failure mode, and stress.
- the stress is a load imposed on the component at the time of manufacture or use of the component, such as disconnection, short circuit, and abnormal resistance value, and is a cause of malfunction. If there is such a causal model, the failure mode can be identified without omission using the failed part as a search key.
- Patent Document 1 stores a “fault record” (FIG. 11 of Patent Document 1) which is an example of such a causal model. Then, the component item (failed part), the control attribute, and the stress attribute are received, all defect records related to the received information are acquired and displayed, and the causal chain relationship between the defect records is also displayed (Patent Document 1). Paragraph “B: 1” last part).
- a failure record is searched using a failed part as a search key, and the FMEA table can be filled with a failure mode (failure mode) included in the failure record.
- a causal model must be extracted from a large amount of defect information generated in the past and prepared in advance as a database. In order to avoid the database becoming obsolete, a causal model created from new defect information must be added to the database. That is, a great deal of labor is required to create and update the causal model (defect record).
- an object of the present invention is to efficiently extract a causal model from defect information.
- the defect information utilization support apparatus of the present invention includes a storage unit that stores defect information in which a defect of a device is described in a sentence for each item, a causal model having a plurality of words included in the defect information, and the word belongs Depending on the item and the part of speech of the word, the cause-side element candidate of the causal model and the result-side element candidate of the causal model are extracted from a plurality of words included in the defect information, and the extracted cause-side element Of the candidates, those having an expression tendency as a component and those having an expression tendency as a phenomenon are determined as a failure factor component and a stress, respectively, and among the extracted result side element candidates as a component And those having an expression tendency as a phenomenon are determined as a failure part and a failure mode, respectively, and the determined failure cause component and stress are determined respectively.
- a control unit for storing the failed component and causal model with a failure mode in the storage unit characterized in that it comprises a. Other means will be described in the embodiment for carrying out the invention.
- a causal model can be efficiently extracted from defect information.
- the two embodiments consist of the first embodiment as a basic type and the second embodiment as an application type. Although details will be described later, the difference between them is whether or not the defect information utilization support apparatus has an account management unit and a payment / billing management unit.
- a first embodiment that does not have an account management unit and a payment / billing management unit will be described, and then a second embodiment that has an account management unit and a payment / billing management unit will be referred to as the first embodiment. This will be explained by paying attention to the differences.
- the defect information utilization support system 1 includes a defect information utilization support device 2 and a terminal device 3. These can be connected via the network 4.
- the defect information utilization support device 2 is a general computer, and includes a central control device 11, an input device 12, an output device 13, a main storage device 14, and an auxiliary storage device 15. These are connected to each other by a bus.
- the auxiliary storage device 15 stores a defect information database 31 and a causal model database 32 (details will be described later). Hereinafter, these are abbreviated as a defect information DB (Data Base) 31 and a causal model DB 32.
- the auxiliary storage device 15 is an external storage device that is independent from the defect information utilization support device 2, and both can be connected via the network 4.
- the payment / billing management unit 28 is a program. Thereafter, when the subject is described as “XX section”, the central control device 11 reads out each program from the auxiliary storage device 15 and loads it into the main storage device 14, and then the function of each program (detailed later). Shall be realized.
- the causal model extraction unit 25 includes a causal model candidate extraction unit 25a and a part / phenomenon determination unit 25b.
- the terminal device 3 is also a general computer and includes a central control device, an input device, an output device, a main storage device, and an auxiliary storage device (not shown). These are connected to each other by a bus.
- FIG. 1 also shows the terminal device 3, the account management unit 27, and the payment / billing management unit 28 that exist only in the second embodiment (description of the maximum configuration).
- the defect information is a report that describes the malfunction of the device that has occurred in the past as a sentence for each item (see reference numeral 131 in FIG. 7). Specifically, the defect information includes items such as a defect name, a progress until the occurrence of the defect, a (defect) phenomenon, a (defect) cause, and a countermeasure (for the defect). Each item has a sentence (character string).
- the causal model is a combination of a failed part, a failure mode, and stress.
- the causal model of this embodiment is a combination of a failure factor part, stress, a failure part, and a failure mode (reference numeral 141 in FIG. 7). reference).
- the failure-causing component is a component that is directly stressed.
- a faulty part is a part that actually caused a fault, that is, a fault mode.
- failure-causing component itself is stressed, it does not always have a failure. Failure cause component, stress, failure component, and failure mode are called “elements” of the causal model.
- failure-causing components and stress are causal elements of causality.
- the failed part and the failure mode are elements on the result side of the causal relationship.
- Each element is, for example, a word such as “base” or a composite word composed of a plurality of consecutive words such as “electronic system”, and is suitable for being searched at high speed.
- defect information since the above-described defect information is originally a report, it is not in a model suitable for a high-speed search.
- the FMEA table is a table in which failure parts, failure modes, failure occurrence cause parts, stress, influence, and countermeasures are associated with each other (see reference numerals 151 to 155 in FIG. 8).
- the failure part, the failure mode, the failure factor part, and the stress are also elements of the causal model.
- the countermeasure 136 in FIG. 7 is a countermeasure against the failure mainly from the viewpoint of the field maintenance
- the countermeasure 155 in FIG. 8 is a countermeasure against the failure mode mainly from the part design aspect. .
- the defect information registration unit 23 displays a defect information input screen 51 (FIG. 6). Specifically, the defect information registration unit 23 displays a defect information input screen 51 on the output device 13.
- the defect information input screen 51 has a direct input field 101 and a file designation field 111.
- the direct input column 101 further includes a defect name column 102, a progress column 103 until a defect occurs, a phenomenon column 104, a cause column 105, and a countermeasure column 106.
- the user may have already created the defect information and stored the created defect information in an arbitrary storage device. On the other hand, the user may not have created the defect information yet.
- the user inputs information indicating the location of the created defect information in the external address input field 112 of the file specification field 111.
- the reference field 113 When the user presses the reference field 113, the created defect information can be viewed.
- the user inputs sentences (character strings) about the items in the respective fields 102 to 106 of the direct input field 101 via the input device 12.
- the user presses the cancel button 122 when interrupting the operation without inputting.
- the defect information registration unit 23 accepts these operations by the user.
- step S202 the defect information registration unit 23 determines whether or not the registration button 121 has been pressed. Specifically, the defect information registration unit 23 proceeds to step S204 when accepting that the user presses the registration button 121 (step S202 “Yes”), and accepts that the user presses the cancel button 122. If so (step S202 "No"), the process proceeds to step S203.
- step S203 the defect information registration unit 23 closes the defect information input screen 51. Thereafter, the defect information / causal model registration processing procedure is terminated.
- step S204 the defect information registration unit 23 registers defect information. Specifically, the defect information registration unit 23 registers the defect information received in step S201 in the defect information DB 31.
- step S205 the causal model candidate extraction unit 25a extracts the causal model element candidates.
- the causal model candidate extraction unit 25a causes the cause-side element candidate (stress candidate or failure-causing component candidate) and the result-side element candidate (failure). Mode candidates or faulty part candidates) are extracted.
- step S206 the part / phenomenon determination unit 25b determines a final element from the candidates. Although details of step S206 will be described later, as a result, the component / phenomenon determination unit 25b determines a final stress and a final failure-causing component from the cause-side element candidates. Furthermore, the final failure mode and the final failure component are determined from the candidate elements on the result side. “Final” means selected from the candidates.
- the causal model registration / editing unit 26 displays the causal model registration / editing screen 52 (FIG. 7). Specifically, first, the causal model registration / editing unit 26 displays the causal model registration / editing screen 52 on the output device 13, and displays the defect information registered in step S204 in the defect information column 131. To do.
- the configuration of the defect information column 131 is the same as that of the direct input column 101 in FIG. 6, but specific sentences are displayed in the respective columns 132 to 136 of the defect information column 131.
- the causal model registration / editing unit 26 displays the final elements determined in step S206 in the respective columns 142 to 145 of the causal model column 141.
- the user visually recognizes the defect information and the causal model at the same time, and confirms whether or not the causal model sufficiently expresses the characteristic of the defect information as an accident example.
- the causal model registration / editing unit 26 accepts that the user edits the elements displayed in the respective columns 142 to 145 of the causal model column 141 as necessary.
- the causal model registration / editing unit 26 accepts that the user presses either the registration button 146 or the discard button 147.
- step S208 the causal model registration / editing unit 26 determines whether or not the discard button 147 has been pressed. Specifically, when the causal model registration / editing unit 26 accepts that the user presses the discard button 147 (step S208 “Yes”), the process proceeds to step S209, and the user presses the registration button 146. If accepted (step S208 “No”), the process proceeds to step S210.
- step S209 the causal model registration / editing unit 26 discards the causal model. Specifically, the causal model registration / editing unit 26 discards the causal model displayed in the causal model column 141 of the causal model registration / editing screen 52, and then ends the defect information / causal model registration processing procedure.
- step S210 the causal model registration / editing unit 26 determines whether or not the causal model has been edited. Specifically, when the causal model registration / editing unit 26 accepts editing in “third” in step S207 (step S210 “Yes”), the causal model registration / editing unit 26 proceeds to step S211 and does not accept editing (step S210 “ No "), go to step S212.
- step S211 the causal model registration / editing unit 26 registers the edited causal model. Specifically, the causal model registration / editing unit 26 registers (stores) the causal model after the editing is accepted in “third” in step S207 in the causal model DB 32. Thereafter, the defect information / causal model registration processing procedure is terminated.
- step S212 the causal model registration / editing unit 26 registers a causal model that has not been edited. Specifically, the causal model registration / editing unit 26 registers (stores) the causal model displayed in “second” in step S207 in the causal model DB 32. Thereafter, the defect information / causal model registration processing procedure is terminated. There are multiple pieces of defect information. Therefore, the defect information / causal model registration process procedure is repeated for each defect information, and the causal model DB 32 stores a number of causal models equal to the number of defect information.
- step S221 the FMEA table creation unit 21 displays the FMEA table creation screen 53 (FIG. 8). Specifically, the FMEA table creation unit 21 displays an MEA table creation screen 53 on the output device 13.
- step S222 the FMEA table creation unit 21 determines whether or not the cancel button 163 is pressed. Specifically, when the FMEA table creation unit 21 accepts that the user presses the cancel button 163 (step S222 “Yes”), the process proceeds to step S223, and otherwise (step S222 “No”). Proceed to step S224.
- step S223 the FMEA table creation unit 21 closes the FMEA table creation screen 53 and ends the FMEA table creation processing procedure.
- step S224 the causal model search unit 22 receives a failed part. Specifically, the causal model search unit 22 accepts that the user inputs a faulty part (name) in the faulty part column 151 of the FMEA table creation screen 53 and then presses the causal model search button 161.
- the causal model search unit 22 searches for a causal model. Specifically, the causal model search unit 22 searches the causal model DB 32 using the faulty part received in step S224 as a search key, and acquires all corresponding causal models.
- the causal model search unit 22 receives “failed parts” and uses the “failed parts” as a search key.
- the causal model search unit 22 may receive elements other than “failed parts” among the elements of the causal model and use them as search keys.
- the causal model search unit 22 displays the causal model. Specifically, first, the causal model search unit 22 uses the failure mode column 152, the failure mode column 152 of the FMEA table creation screen 53 to indicate the failure mode, the failure factor component, and the stress of the causal model acquired in step S225, respectively. It is displayed (output) in the failure factor component field 153a and the stress field 153b. When a plurality (n) of causal models are acquired, n rows are displayed in association with the failed part that is the search key. The causal model search unit 22 leaves the influence column 154 and the countermeasure column 155 of each line blank.
- the causal model search unit 22 accepts that the user edits at least one of the failure mode, the failure-causing factor component, and the stress of each row displayed in “first” as necessary.
- the causal model search unit 22 allows the user to input the influence and the countermeasure in the influence column 154 and the countermeasure column 155 of each line displayed in “first”, and then press the registration button 162. Accept.
- the cause-and-effect model search unit 22 receives the influence and the countermeasure are merely examples. However, the present invention is not limited to this, and the causal model search unit 22 may accept that the user inputs general additional information for the causal model.
- step S227 the causal model search unit 22 registers the FMEA table. Specifically, the causal model search unit 22 associates the causal model edited as necessary in “second” in step S226 with the influence and countermeasure (more generally, input in “third”). Is registered (stored) in the auxiliary storage device 15. Thereafter, the FMEA table creation processing procedure is terminated.
- step S224 An example in which the user manually inputs a failed part in step S224 has been described.
- failure documents are often included in any document or data that the user has already created.
- existing design specifications, existing three-dimensional CAD (Computer Aided Design) data, and the like often include a failed part (name). Therefore, in step S224, the causal model search unit 22 accesses a document or data designated in advance without receiving a manual input from the user, and a faulty part (name) included in the document or data. May be obtained. In this case, it is desirable that the location where the failed part (name) is described in the document or data is specified by a tag or the like.
- the causal model search unit 22 may acquire an element other than the “failed part” among the elements of the causal model instead of the failed part (name).
- the causal model candidate extraction processing procedure is details of step S205 of the defect information / causal model registration processing procedure.
- the causal model candidate extraction unit 25a unifies the notation of defect information. Specifically, first, the causal model candidate extraction unit 25a acquires defect information from the defect information DB 31.
- the causal model candidate extraction unit 25a performs the following unified processing on the sentence of each item of defect name of the acquired defect information, progress until the occurrence of the defect, phenomenon, cause, and countermeasure.
- -Delete line breaks.
- ⁇ Delete spaces both full-width and half-width).
- ⁇ Convert katakana that is not full-width to full-width.
- ⁇ Convert English characters that are not full-width or capital letters to full-width or capital letters.
- the causal model candidate extraction unit 25a performs morphological analysis. Specifically, first, the causal model candidate extraction unit 25a breaks down sentences of each item of defect information subjected to the unification processing into words. Secondly, the causal model candidate extraction unit 25a acquires a part of speech for each decomposed word using a dictionary (not shown).
- FIG. 9 shows a result of disassembling the sentence “signal failure of electronic system due to whisker” into words, and obtaining a part of speech (column 172) for each word (column 171).
- the text often includes technical terminology such as “whiskers”. Since the word “whisker” does not exist in the dictionary, the causal model candidate extraction unit 25a acquires “unknown word” as the part of speech of “whisker”.
- the causal model candidate extraction unit 25a combines them into one word (synthetic word). For example, “electronic” 173a and “system” 173b are combined into an “electronic system”. Further, the “signal” 174a and the “failure” 174b are combined to form a “signal failure”.
- the causal model candidate extraction unit 25a repeats the “second” and “third” processes for each item of inconvenience information.
- the causal model candidate extraction unit 25a extracts failure mode candidates and failure component candidates from the defect information. Specifically, the causal model candidate extraction unit 25a acquires a word whose part of speech is a noun from the sentence of the defect information item “defect name” 102 and sets it as a failure mode candidate or a failure part candidate.
- the nouns here include unknown words, and the words include synthesized words.
- the word made into a candidate here comprises the candidate of the above-mentioned result side element.
- the process of step S243 is based on an empirical rule that the defect name sentence often includes a failure mode or a failure part so that the content of the defect can be immediately understood by looking at the sentence.
- the causal model candidate extraction unit 25a extracts a failure mode candidate and a failure part candidate from the progress and phenomenon until the failure occurs. Specifically, the causal model candidate extraction unit 25a acquires words (including synthesized words) that satisfy all of the following conditions, and sets them as failure mode candidates or failure part candidates.
- the item belongs to the item “Progress until failure” 103 of the failure information.
- Condition 2 It belongs to the item “phenomenon” 104 of defect information.
- the part of speech is a noun (including an unknown word).
- step S244 is based on an empirical rule that the passage of failure and the passage of phenomenon often include the same failure mode or the same failed part in common.
- the causal model candidate extraction unit 25a extracts stress candidates and failure occurrence factor component candidates from the causes and countermeasures. Specifically, the causal model candidate extraction unit 25a acquires a word (including a synthesized word) that satisfies all of the following conditions and sets it as a stress candidate or a failure cause component candidate. (Condition 11) It belongs to the item “Cause” 105 of the defect information. (Condition 12) It belongs to the item “Countermeasure” 106 of the defect information. (Condition 13) The part of speech is a noun (including an unknown word).
- the words that are candidates here constitute candidates for the cause-side elements described above.
- the countermeasure describes the countermeasure against the stress applied to the component described in the cause. Due to this, the processing in step S245 is based on an empirical rule that the cause sentence and the countermeasure sentence often include the same stress or the same failure cause component in common. Thereafter, the causal model candidate extraction processing procedure is terminated (proceeds to step S206).
- the part / phenomenon determination unit 25b calculates a value of “IEPH” and a value of “IEPA” for each word (including a synthesized word) extracted in the causal model candidate extraction processing procedure.
- the value of “IEPH” indicates the possibility that the word belongs to the following “expression tendency 1” (possibility that seems to be a phenomenon).
- the value of “IEPA” indicates the possibility that the word belongs to the following “expression tendency 2” (possibility that seems to be a part).
- pression tendency 1 An expression tendency determined to be a phenomenon when a word such as “occurs” or “occurs” immediately follows the word. For example, such words often follow immediately after phenomena such as “residual stress” and “high temperature degradation”.
- Expression tendency 2 An expression tendency determined to be a part by immediately following the word followed by a word such as “no failure” or “purchase of”. For example, such words often follow immediately after parts such as “impeller” and “capacitor”.
- the PHDF has at least one case in which the word appears with a word “occurs”, “occurs”, or “occurs” immediately after the defect information stored in the defect information DB 31. It is the number of defect information. TDF is the number of pieces of defect information having at least one case where the word appears among the pieces of defect information stored in the defect information DB 31. TF is the number of occurrences of the word in the cause and countermeasure items of the defect information. K is the total number of defect information stored in the defect information DB 31. DF is the number of pieces of defect information including the word among the defect information stored in the defect information DB 31. “Log (K / DF)” is the natural logarithm (or common logarithm) of “K / DF”.
- TF is a value obtained by multiplying the number of appearances of the word in the defect name item of the defect information by a predetermined weight, the number of appearances of the word in the item of progress until the defect occurs in the defect information, This is the total value of the number of appearances of the word in the defect information phenomenon item. Since the defect name often includes a word representing the characteristic of the defect, it is multiplied by a weight (weight> 1). TDF, K and DF are the same as described for “IEPH”.
- the part / phenomenon determination processing procedure is the details of step S206 of the defect information / causal model registration processing procedure.
- step S251 the part / phenomenon determination unit 25b calculates an IEPH value for each of the stress candidate and the failure cause component candidate.
- the part / phenomenon determination unit 25b determines the word having the maximum IEPH value as the final stress. That is, the most probable phenomenon is determined as a “phenomenon” from the causal element candidates, and the phenomenon is defined as “stress”. Note that the component / phenomenon determination unit 25b excludes words that are not clearly phenomena as exemplified below from determination targets. ⁇ The word string at the end is a part name such as “part”, “device”, “product”, “machine”, “container”, etc.
- Words indicating human actions such as “execution” and “driving” ⁇ Words indicating time and frequency such as “morning”, “hour”, “year”, “month”, “day” “local”, “base” ”,“ Nearby ”,“ Place ”, etc., a word representing a place,“ Customer ”,“ Customer ”,“ Manufacturer ”,“ User ”, etc.
- the calculation result of IEPH in step S252 will be described with reference to FIG.
- the part / phenomenon discriminating unit 25b calculates “2.5 ⁇ 10 ⁇ 3 ” as the IEPH value of the candidate “foundation” and “2.3” as the IEPH value of the candidate “whisker”. Therefore, the part / phenomenon determination unit 25b determines “whisker” as the final stress.
- step S253 the component / phenomenon determination unit 25b calculates an IEPA value for each of the stress candidate and the failure cause component candidate.
- step S254 the component / phenomenon determination unit 25b determines the word having the maximum IEPA value as the final failure factor component.
- the most likely part of the causal element candidates is determined as a “part”, and the part is designated as a “failure-causing part”.
- the part / phenomenon determination unit 25b excludes words that are clearly not parts from the determination target. Examples of words that are clearly not parts are: -Words extracted as the final stress-The word string at the end represents a phenomenon such as "failure”, “failure”, “failure”, "occurrence”, "stop”, "bad”
- the part / phenomenon discriminating unit 25b calculates “1.1 ⁇ 10 ⁇ 1 ” as the IEPA value of the candidate “base” and “0” as the IEPA value of the candidate “whisker”. Therefore, the part / phenomenon determination unit 25b determines “base” as the final failure factor part. “Whisker” has already been determined as the final stress, but even if this is not the case, the “base” will be determined as the final failure factor component.
- step S255 the part / phenomenon determination unit 25b calculates an IEPH value for each of the failure mode candidate and the failure part candidate.
- step S256 the part / phenomenon determination unit 25b determines the word having the maximum IEPH value as the final failure mode. That is, the most likely phenomenon among the candidate elements on the result side is determined as a “phenomenon”, and the phenomenon is designated as a “failure mode”.
- the part / phenomenon determination unit 25b excludes words that are clearly not phenomena from the determination target.
- step S256 The calculation result of IEPH in step S256 will be described with reference to FIG. Excluding “whiskers” already determined as the final stress, the IEPH value of “signal failure” is maximized. Therefore, the part / phenomenon determination unit 25b determines “signal failure” as the final failure mode.
- step S257 the part / phenomenon determination unit 25b calculates an IEPA value for each of the failure mode candidate and the failure part candidate.
- step S258 the part / phenomenon determination unit 25b determines the word having the maximum IEPA value as the final failed part. That is, among the candidate elements on the result side, the most likely part is determined as a “part”, and that part is set as the “failed part”. The part / phenomenon determination unit 25b excludes words that are clearly not parts from the determination target. Thereafter, the part / phenomenon determination processing procedure is terminated (proceeds to step S207).
- step S258 The calculation result of IEPA in step S258 will be described with reference to FIG.
- the part / phenomenon determination unit 25b determines “electronic system” as the final failed part.
- clue words are used when obtaining the above-described PHDF and PALDF.
- the prior art simply searches for a sentence using a clue word as a search key.
- IEPH and IEPA of the present embodiment are the results of statistical and quantitative arithmetic processing. Therefore, the IEPH and IEPA of the present embodiment can appropriately determine the probability of phenomenon and the likelihood of parts without being directly affected by fluctuations in the expression of individual sentences.
- the causal model registration / editing unit 26 When the causal model registration / editing unit 26 accepts that the user selects a certain causal model row on the FMEA table creation screen 53, for example, the causal model registration / editing unit 26 refers to the model / inconvenience relation list and identifies corresponding inconvenience information. Then, the specified inconvenience information is acquired from the auxiliary storage device 15 and displayed (output) on the output device 13.
- the user of the defect information utilization support apparatus 2 is a parts manufacturer and a device manufacturer.
- the service provider operates the defect information utilization support apparatus 2.
- the parts manufacturer operates the terminal device 3.
- the device manufacturer also operates the (other) terminal device 3.
- the parts manufacturer is a business partner (cooperator) of the service provider, and provides many examples of defect information to the service provider.
- the service provider pays the price to the parts manufacturer.
- the device manufacturer is a customer of the service provider.
- the service provider causes the device manufacturer to use the defect information utilization support apparatus 2 and receives the price from the device manufacturer.
- the component manufacturer accesses the defect information utilization support device 2 from the terminal device 3 via the network 4.
- the component manufacturer provides defect information (corresponding to steps S201 to S204).
- the service provider extracts the causal model from the defect information, and edits and registers the causal model (corresponding to steps S205 to S212).
- the part manufacturer may perform the processing.
- the device manufacturer creates an FMEA table (corresponding to steps S221 to S227).
- the account management unit 27 creates an account list for storing the access authority to each function of the defect information utilization support device 2 and the settlement account for each component manufacturer and device manufacturer, and stores them in the auxiliary storage device 15.
- the payment / billing management unit 28 creates and stores in the auxiliary storage device 15 a payment list that stores the number and unit price of the provided defect information and the number and unit price of the extracted causal models for each component manufacturer. Furthermore, the payment / billing management unit 28 creates a billing list for storing the number and unit price of the created FMEA table or the access time (usage time) and unit price to the defect information utilization support device 2 for each device manufacturer. And stored in the auxiliary storage device 15.
- the account management unit 27 When the account management unit 27 receives an access request from the component manufacturer or device manufacturer, the account management unit 27 refers to the account list and permits access to a predetermined process.
- the payment / billing management unit 28 constantly monitors the processing performed by the component manufacturer and the device manufacturer, and maintains the payment list and the billing list in the latest state according to the processing contents. At a predetermined cycle such as once a month, the payment / billing management unit 28 calculates a payment amount for each component manufacturer based on the payment list, and calculates a charging amount for each device manufacturer based on the charging list.
- the account management unit 27 deducts the payment amount from the service provider's payment account, and instructs the component manufacturer's payment account to be charged, and the charge amount is deducted from the device manufacturer's payment account, and stores it in the service provider's payment account. Send an instruction to deposit money to the financial institution server.
- the defect information utilization support device 2 of the present embodiment has the following effects. (1) The user can efficiently generate a causal model indicating what kind of failure occurs in which component as a result of the failure when what stress is applied to which component as the cause of the failure. Can be created. (2) The user can accurately search the causal model when creating the FMEA table. (3) The user can use the name of a faulty part included in an existing document or the like as a search key for searching for a causal model. (4) The user can use the disclosed defect information. (5) The user can purchase defect information from another person. (6) The user can cause another person to use the defect information utilization support apparatus for a fee. (7) The user can determine a part or phenomenon from the candidate elements with high accuracy.
- the user can edit the causal model created by the defect information utilization support apparatus.
- the user can know the defect information that is the basis of the causal model.
- the user can use the inconvenience report as inconvenience information as it is.
- the user can use the synthesized word as an element of the causal model.
- the user can determine the part of speech of the word included in the inconvenience information with high accuracy.
- this invention is not limited to an above-described Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
- the control lines and information lines are those that are considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
This trouble information utilization assist device is provided with a storage unit in which are stored trouble information written about trouble with an apparatus by a sentence for each item, and a causal model having a plurality of words included in the trouble information. This trouble information utilization assist device is also provided with a control unit in which: candidates for elements on the cause side of the causal model and candidates for elements on the effect side of the causal model are extracted, in accordance with the category to which a word belongs and the part of speech for the word, from the plurality of words included in the trouble information; candidates that have an expression trend as a component and candidates that have an expression trend as a phenomenon are determined as cause-of-fault occurrence components and stress, respectively, from among the extracted candidates for the elements on the cause side; candidates that have an expression trend as a component and candidates that have an expression trend as a phenomenon are determined as fault components and fault modes, respectively, from among the extracted candidates for the elements on the effect side; and a causal model having the determined cause-of-fault occurrence components, stress, fault components, and fault modes is stored in the storage unit.
Description
本発明は、不具合情報活用支援装置及び不具合情報活用支援方法に関する。
The present invention relates to a defect information utilization support device and a defect information utilization support method.
機器の不具合の発生を防止する手法として、FMEA(Failure Mode and Effects Analysis)がある。FMEAにおいては、機器の設計時に、部品に起こり得る故障モードを予測し、考えられる原因及び影響を解析・評価することによって問題点を摘出し、対策を行う。故障モードとは、機器の故障状態の分類であり、例えば、断線、短絡、折損、摩耗、特性の劣化等である。FMEAでの検討結果である、故障部品、故障モード、原因、影響、対策等は、表型式にまとめられる。当該表をFMEA表と呼ぶ。FMEA表は、FMEA実行者が検討結果を整理するためだけでなく、第三者が検討結果をチェックするためにも、他の機器に同じ部品が使用される場合発生し得る故障モード及び原因を確認するためにも活用される。
FMEA (FailureailMode and Effects Analysis) is a method for preventing device failures. In FMEA, failure modes that can occur in parts are predicted at the time of device design, problems are identified by analyzing and evaluating possible causes and effects, and countermeasures are taken. The failure mode is a classification of a failure state of the device, such as disconnection, short circuit, breakage, wear, deterioration of characteristics, and the like. The failure parts, failure modes, causes, effects, countermeasures, and the like, which are the results of the study by FMEA, are summarized in a table format. This table is called FMEA table. The FMEA table shows failure modes and causes that may occur when the same parts are used for other equipment, not only for FMEA practitioners to organize the examination results but also for third parties to check the examination results. It is also used for confirmation.
例えば、故障部品がコイルである場合、FMEA表の故障部品欄に“コイル”を記載する。そして、故障モード欄に、“断線”、“短絡”、“抵抗値異常”等を記載し、その次に、原因欄に、当該故障モードの原因として、“荷重大”、“浸水”、“線材不良”等を記載する。さらにその次に、当該故障モードに対する影響として、影響欄に検討結果を記載し、当該故障モードに対する対策として、対策欄に検討結果を記載する。このように、故障モードは作業の基準点となる。よって、故障モードの選定に抜けが生じてしまうと、以降の原因、影響及び対策を的確に検討することができなくなる。つまり、FMEA表の作成時、故障モードを漏れなく洗い出すことが重要である。
For example, if the failed part is a coil, “coil” is entered in the failed part column of the FMEA table. In the failure mode column, “disconnection”, “short circuit”, “abnormal resistance value”, etc. are described, and then in the cause column, the cause of the failure mode is “high load”, “immersion”, “ Indicate “Wire failure”. Next, the examination result is written in the influence column as the influence on the failure mode, and the examination result is written in the countermeasure column as a countermeasure against the failure mode. Thus, the failure mode becomes a reference point for work. Therefore, if a failure mode selection is missed, subsequent causes, effects, and countermeasures cannot be examined accurately. In other words, it is important to identify the failure mode without omission when creating the FMEA table.
故障モードを漏れなく洗い出すには多大な労力が必要である。すべての故障モードが把握されていない場合、過去に発生した不具合の実例(不具合情報)から、当該部品に該当するものを抽出しなければならない。この抽出を効率的に行うために、不具合情報を、因果モデルの型式で整理しておくことが有効である。因果モデルとは、例えば、故障部品、故障モード及びストレスの組み合わせである。このうちストレスとは、断線、短絡、抵抗値異常等、部品の製造時又は使用時に部品に対して課される負荷であり、不具合の原因である。このような因果モデルがあれば、故障部品を検索キーとして、故障モードを漏れなく洗い出すことができる。
多大 It takes a lot of effort to identify the failure mode without omission. When all failure modes are not grasped, it is necessary to extract a part corresponding to the part from an example of a problem that has occurred in the past (defect information). In order to efficiently perform this extraction, it is effective to organize defect information in the form of a causal model. The causal model is, for example, a combination of a failed part, a failure mode, and stress. Among them, the stress is a load imposed on the component at the time of manufacture or use of the component, such as disconnection, short circuit, and abnormal resistance value, and is a cause of malfunction. If there is such a causal model, the failure mode can be identified without omission using the failed part as a search key.
特許文献1に記載の設計支援装置は、このような因果モデルの一例である“不具合レコード”(特許文献1の図11)を記憶している。そして、構成品目(故障部品)、制御属性、ストレス属性を受け付け、受け付けた情報に関連するすべての不具合レコードを取得したうえで表示し、不具合レコード間の因果連鎖関係も表示する(特許文献1の段落“B:1”最終箇所)。
The design support apparatus described in Patent Document 1 stores a “fault record” (FIG. 11 of Patent Document 1) which is an example of such a causal model. Then, the component item (failed part), the control attribute, and the stress attribute are received, all defect records related to the received information are acquired and displayed, and the causal chain relationship between the defect records is also displayed (Patent Document 1). Paragraph “B: 1” last part).
特許文献1の設計支援装置を使用すれば、故障部品を検索キーとして不具合レコードを検索し、不具合レコードに含まれる不具合モード(故障モード)によって、FMEA表を埋めることはできる。ところが、実際には、過去に発生した大量かつ多分野の不具合情報から因果モデルを抽出し、データベースとして予め準備しておかなければならない。そして、データベースの陳腐化を避けるために、新たな不具合情報から作成された因果モデルをデータベースに追加して行かなければならない。つまり、因果モデル(不具合レコード)の作成・更新に多大な労力を要する。
If the design support apparatus of Patent Document 1 is used, a failure record is searched using a failed part as a search key, and the FMEA table can be filled with a failure mode (failure mode) included in the failure record. However, in practice, a causal model must be extracted from a large amount of defect information generated in the past and prepared in advance as a database. In order to avoid the database becoming obsolete, a causal model created from new defect information must be added to the database. That is, a great deal of labor is required to create and update the causal model (defect record).
しかしながら、特許文献1の設計支援装置は、十分な数の不具合レコードが既に存在することを前提としており、特に不具合レコードの作成・更新を狙ったものではない。したがって、特許文献1の設計支援装置を使用しつつ、このような労力を削減するには別途方策が必要である。
そこで、本発明は、不具合情報から因果モデルを効率的に抽出することを目的とする。 However, the design support apparatus ofPatent Document 1 is based on the assumption that a sufficient number of defect records already exist, and is not particularly aimed at creating / updating defect records. Therefore, a separate measure is required to reduce such labor while using the design support apparatus of Patent Document 1.
Therefore, an object of the present invention is to efficiently extract a causal model from defect information.
そこで、本発明は、不具合情報から因果モデルを効率的に抽出することを目的とする。 However, the design support apparatus of
Therefore, an object of the present invention is to efficiently extract a causal model from defect information.
本発明の不具合情報活用支援装置は、機器の不具合が項目ごとに文章で記述された不具合情報、及び、不具合情報に含まれる複数の単語を有する因果モデルが記憶される記憶部と、単語が属する項目、及び、単語の品詞に応じて、因果モデルの原因側の要素の候補及び因果モデルの結果側の要素の候補を不具合情報に含まれる複数の単語から抽出し、抽出した原因側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障発生要因部品及びストレスとして決定し、抽出した結果側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障部品及び故障モードとして決定し、決定した故障発生要因部品、ストレス、故障部品及び故障モードを有する因果モデルを記憶部に記憶する制御部と、を備えることを特徴とする。
その他の手段については、発明を実施するための形態のなかで説明する。 The defect information utilization support apparatus of the present invention includes a storage unit that stores defect information in which a defect of a device is described in a sentence for each item, a causal model having a plurality of words included in the defect information, and the word belongs Depending on the item and the part of speech of the word, the cause-side element candidate of the causal model and the result-side element candidate of the causal model are extracted from a plurality of words included in the defect information, and the extracted cause-side element Of the candidates, those having an expression tendency as a component and those having an expression tendency as a phenomenon are determined as a failure factor component and a stress, respectively, and among the extracted result side element candidates as a component And those having an expression tendency as a phenomenon are determined as a failure part and a failure mode, respectively, and the determined failure cause component and stress are determined respectively. A control unit for storing the failed component and causal model with a failure mode in the storage unit, characterized in that it comprises a.
Other means will be described in the embodiment for carrying out the invention.
その他の手段については、発明を実施するための形態のなかで説明する。 The defect information utilization support apparatus of the present invention includes a storage unit that stores defect information in which a defect of a device is described in a sentence for each item, a causal model having a plurality of words included in the defect information, and the word belongs Depending on the item and the part of speech of the word, the cause-side element candidate of the causal model and the result-side element candidate of the causal model are extracted from a plurality of words included in the defect information, and the extracted cause-side element Of the candidates, those having an expression tendency as a component and those having an expression tendency as a phenomenon are determined as a failure factor component and a stress, respectively, and among the extracted result side element candidates as a component And those having an expression tendency as a phenomenon are determined as a failure part and a failure mode, respectively, and the determined failure cause component and stress are determined respectively. A control unit for storing the failed component and causal model with a failure mode in the storage unit, characterized in that it comprises a.
Other means will be described in the embodiment for carrying out the invention.
本発明によれば、不具合情報から因果モデルを効率的に抽出することが可能になる。
According to the present invention, a causal model can be efficiently extracted from defect information.
以降、本発明を実施するための2つの実施形態を、図等を参照しながら詳細に説明する。2つの実施形態は、基本型としての第1の実施形態、及び、応用型としての第2の実施形態からなる。詳細は後記するが、これらの間の相違点は、不具合情報活用支援装置がアカウント管理部及び支払・課金管理部を有するか否かである。まず、アカウント管理部及び支払・課金管理部を有さない第1の実施形態を説明し、その後、アカウント管理部及び支払・課金管理部を有する第2の実施形態を、第1の実施形態との相違点に注目して説明する。
Hereinafter, two embodiments for carrying out the present invention will be described in detail with reference to the drawings and the like. The two embodiments consist of the first embodiment as a basic type and the second embodiment as an application type. Although details will be described later, the difference between them is whether or not the defect information utilization support apparatus has an account management unit and a payment / billing management unit. First, a first embodiment that does not have an account management unit and a payment / billing management unit will be described, and then a second embodiment that has an account management unit and a payment / billing management unit will be referred to as the first embodiment. This will be explained by paying attention to the differences.
(第1の実施形態)
(機器構成)
図1に沿って、不具合情報活用支援装置2の構成を説明する。不具合情報活用支援システム1は、不具合情報活用支援装置2及び端末装置3を有する。これらは、ネットワーク4を介して接続可能である。不具合情報活用支援装置2は、一般的なコンピュータであり、中央制御装置11、入力装置12、出力装置13、主記憶装置14及び補助記憶装置15を有する。これらはバスで相互に接続されている。補助記憶装置15は、不具合情報データベース31及び因果モデルデータベース32を格納している(詳細後記)。なお、以降、これらを不具合情報DB(Data Base)31及び因果モデルDB32と略して表記する。
なお、補助記憶装置15が不具合情報活用支援装置2から独立した外部記憶装置となっており、両者がネットワーク4を介して接続可能である構成も可能である。 (First embodiment)
(Equipment configuration)
The configuration of the defect informationutilization support apparatus 2 will be described with reference to FIG. The defect information utilization support system 1 includes a defect information utilization support device 2 and a terminal device 3. These can be connected via the network 4. The defect information utilization support device 2 is a general computer, and includes a central control device 11, an input device 12, an output device 13, a main storage device 14, and an auxiliary storage device 15. These are connected to each other by a bus. The auxiliary storage device 15 stores a defect information database 31 and a causal model database 32 (details will be described later). Hereinafter, these are abbreviated as a defect information DB (Data Base) 31 and a causal model DB 32.
Theauxiliary storage device 15 is an external storage device that is independent from the defect information utilization support device 2, and both can be connected via the network 4.
(機器構成)
図1に沿って、不具合情報活用支援装置2の構成を説明する。不具合情報活用支援システム1は、不具合情報活用支援装置2及び端末装置3を有する。これらは、ネットワーク4を介して接続可能である。不具合情報活用支援装置2は、一般的なコンピュータであり、中央制御装置11、入力装置12、出力装置13、主記憶装置14及び補助記憶装置15を有する。これらはバスで相互に接続されている。補助記憶装置15は、不具合情報データベース31及び因果モデルデータベース32を格納している(詳細後記)。なお、以降、これらを不具合情報DB(Data Base)31及び因果モデルDB32と略して表記する。
なお、補助記憶装置15が不具合情報活用支援装置2から独立した外部記憶装置となっており、両者がネットワーク4を介して接続可能である構成も可能である。 (First embodiment)
(Equipment configuration)
The configuration of the defect information
The
主記憶装置14における、FMEA表作成部21、因果モデル検索部22、不具合情報登録部23、公開不具合情報収集部24、因果モデル抽出部25、因果モデル登録・編集部26、アカウント管理部27及び支払・課金管理部28はプログラムである。以降、“○○部は”と主体を記した場合は、中央制御装置11が、補助記憶装置15から各プログラムを読み出し、主記憶装置14にロードしたうえで、各プログラムの機能(詳細後記)を実現するものとする。因果モデル抽出部25は、因果モデル候補抽出部25a及び部品・現象判別部25bから構成される。
FMEA table creation unit 21, causal model search unit 22, defect information registration unit 23, public defect information collection unit 24, causal model extraction unit 25, causal model registration / editing unit 26, account management unit 27, and the like in main storage device 14 The payment / billing management unit 28 is a program. Thereafter, when the subject is described as “XX section”, the central control device 11 reads out each program from the auxiliary storage device 15 and loads it into the main storage device 14, and then the function of each program (detailed later). Shall be realized. The causal model extraction unit 25 includes a causal model candidate extraction unit 25a and a part / phenomenon determination unit 25b.
端末装置3もまた、一般的なコンピュータであり、中央制御装置、入力装置、出力装置、主記憶装置及び補助記憶装置を有する(図示せず)。これらはバスで相互に接続されている。説明の便宜上、図1では、第2の実施形態のみに存在する、端末装置3、アカウント管理部27、及び、支払・課金管理部28も記載されている(最大構成の記載)。
The terminal device 3 is also a general computer and includes a central control device, an input device, an output device, a main storage device, and an auxiliary storage device (not shown). These are connected to each other by a bus. For convenience of explanation, FIG. 1 also shows the terminal device 3, the account management unit 27, and the payment / billing management unit 28 that exist only in the second embodiment (description of the maximum configuration).
(不具合情報)
不具合情報は、過去に生じた機器の不具合を文章として項目ごとに記述した報告書である(図7の符号131参照)。具体的には、不具合情報は、項目として、不具合名称、不具合発生迄の経過、(不具合の)現象、(不具合の)原因、(不具合に対する)対策等の項目を有する。そして各項目は、文章(文字列)を有する。 (Bug information)
The defect information is a report that describes the malfunction of the device that has occurred in the past as a sentence for each item (seereference numeral 131 in FIG. 7). Specifically, the defect information includes items such as a defect name, a progress until the occurrence of the defect, a (defect) phenomenon, a (defect) cause, and a countermeasure (for the defect). Each item has a sentence (character string).
不具合情報は、過去に生じた機器の不具合を文章として項目ごとに記述した報告書である(図7の符号131参照)。具体的には、不具合情報は、項目として、不具合名称、不具合発生迄の経過、(不具合の)現象、(不具合の)原因、(不具合に対する)対策等の項目を有する。そして各項目は、文章(文字列)を有する。 (Bug information)
The defect information is a report that describes the malfunction of the device that has occurred in the past as a sentence for each item (see
(因果モデル)
前記したように、因果モデルは、故障部品、故障モード及びストレスの組み合わせである。ただし、故障部品と故障発生要因部品とを区別する必要があるため、本実施形態の因果モデルは、故障発生要因部品、ストレス、故障部品及び故障モードの組み合わせとなっている(図7の符号141参照)。因みに、故障発生要因部品とは、ストレスを直接受けた部品である。故障部品とは、実際に故障を起こした、すなわち故障モードの状態に至った部品である。故障発生要因部品自体は、ストレスを受けてはいるものの、必ずしも故障しているとは限らない。故障発生要因部品、ストレス、故障部品及び故障モードを因果モデルの“要素”と呼ぶ。 (Causal model)
As described above, the causal model is a combination of a failed part, a failure mode, and stress. However, since it is necessary to distinguish between a failure part and a failure factor part, the causal model of this embodiment is a combination of a failure factor part, stress, a failure part, and a failure mode (reference numeral 141 in FIG. 7). reference). Incidentally, the failure-causing component is a component that is directly stressed. A faulty part is a part that actually caused a fault, that is, a fault mode. Although the failure-causing component itself is stressed, it does not always have a failure. Failure cause component, stress, failure component, and failure mode are called “elements” of the causal model.
前記したように、因果モデルは、故障部品、故障モード及びストレスの組み合わせである。ただし、故障部品と故障発生要因部品とを区別する必要があるため、本実施形態の因果モデルは、故障発生要因部品、ストレス、故障部品及び故障モードの組み合わせとなっている(図7の符号141参照)。因みに、故障発生要因部品とは、ストレスを直接受けた部品である。故障部品とは、実際に故障を起こした、すなわち故障モードの状態に至った部品である。故障発生要因部品自体は、ストレスを受けてはいるものの、必ずしも故障しているとは限らない。故障発生要因部品、ストレス、故障部品及び故障モードを因果モデルの“要素”と呼ぶ。 (Causal model)
As described above, the causal model is a combination of a failed part, a failure mode, and stress. However, since it is necessary to distinguish between a failure part and a failure factor part, the causal model of this embodiment is a combination of a failure factor part, stress, a failure part, and a failure mode (
4種類の要素のうち、故障発生要因部品及びストレスは、因果関係の原因側の要素である。要素のうち、故障部品及び故障モードは、因果関係の結果側の要素である。各要素は、例えば“基盤”のような単語、又は“電子システム”のような複数の連続する単語からなる合成語であり、高速度で検索されるのに適している。一方、前記した不具合情報は、もともと報告書であるので、特に高速度の検索に適した型式にはなっていない。
Of the four types of elements, failure-causing components and stress are causal elements of causality. Of the elements, the failed part and the failure mode are elements on the result side of the causal relationship. Each element is, for example, a word such as “base” or a composite word composed of a plurality of consecutive words such as “electronic system”, and is suitable for being searched at high speed. On the other hand, since the above-described defect information is originally a report, it is not in a model suitable for a high-speed search.
(FMEA表)
FMEA表は、故障部品、故障モード、故障発生要因部品、ストレス、影響、及び、対策を相互に関連付けた表である(図8の符号151~155参照)。このうち、故障部品、故障モード、故障発生要因部品及びストレスは、因果モデルの要素でもある。なお、前記したように、図7の対策136が、主として現場保守面からみた、不具合に対する対策であるのに対し、図8の対策155は、主として部品設計面からみた、故障モードに対する対策である。 (FMEA table)
The FMEA table is a table in which failure parts, failure modes, failure occurrence cause parts, stress, influence, and countermeasures are associated with each other (seereference numerals 151 to 155 in FIG. 8). Among these, the failure part, the failure mode, the failure factor part, and the stress are also elements of the causal model. Note that, as described above, the countermeasure 136 in FIG. 7 is a countermeasure against the failure mainly from the viewpoint of the field maintenance, whereas the countermeasure 155 in FIG. 8 is a countermeasure against the failure mode mainly from the part design aspect. .
FMEA表は、故障部品、故障モード、故障発生要因部品、ストレス、影響、及び、対策を相互に関連付けた表である(図8の符号151~155参照)。このうち、故障部品、故障モード、故障発生要因部品及びストレスは、因果モデルの要素でもある。なお、前記したように、図7の対策136が、主として現場保守面からみた、不具合に対する対策であるのに対し、図8の対策155は、主として部品設計面からみた、故障モードに対する対策である。 (FMEA table)
The FMEA table is a table in which failure parts, failure modes, failure occurrence cause parts, stress, influence, and countermeasures are associated with each other (see
(処理手順)
以降、4つの処理手順を説明する。それらは、(1)不具合情報・因果モデル登録処理手順、(2)FMEA表作成処理手順、(3)因果モデル候補抽出処理手順、及び、(4)部品・現象判別処理手順である。(3)及び(4)は、(1)のサブルーチンである。(2)が開始されるためには、(1)が終了していることが前提になっている。 (Processing procedure)
Hereinafter, four processing procedures will be described. These are (1) defect information / causal model registration processing procedure, (2) FMEA table creation processing procedure, (3) causal model candidate extraction processing procedure, and (4) part / phenomenon discrimination processing procedure. (3) and (4) are the subroutine of (1). In order for (2) to start, it is assumed that (1) has ended.
以降、4つの処理手順を説明する。それらは、(1)不具合情報・因果モデル登録処理手順、(2)FMEA表作成処理手順、(3)因果モデル候補抽出処理手順、及び、(4)部品・現象判別処理手順である。(3)及び(4)は、(1)のサブルーチンである。(2)が開始されるためには、(1)が終了していることが前提になっている。 (Processing procedure)
Hereinafter, four processing procedures will be described. These are (1) defect information / causal model registration processing procedure, (2) FMEA table creation processing procedure, (3) causal model candidate extraction processing procedure, and (4) part / phenomenon discrimination processing procedure. (3) and (4) are the subroutine of (1). In order for (2) to start, it is assumed that (1) has ended.
(不具合情報・因果モデル登録処理手順)
図2に沿って、不具合情報・因果モデル登録処理手順を説明する。
ステップS201において、不具合情報登録部23は、不具合情報入力画面51(図6)を表示する。具体的には、不具合情報登録部23は、出力装置13に不具合情報入力画面51を表示する。不具合情報入力画面51は、直接入力欄101及びファイル指定欄111を有する。直接入力欄101は、さらに、不具合名称欄102、不具合発生迄の経過欄103、現象欄104、原因欄105及び対策欄106を有する。 (Problem information / causal model registration procedure)
The defect information / causal model registration processing procedure will be described with reference to FIG.
In step S201, the defectinformation registration unit 23 displays a defect information input screen 51 (FIG. 6). Specifically, the defect information registration unit 23 displays a defect information input screen 51 on the output device 13. The defect information input screen 51 has a direct input field 101 and a file designation field 111. The direct input column 101 further includes a defect name column 102, a progress column 103 until a defect occurs, a phenomenon column 104, a cause column 105, and a countermeasure column 106.
図2に沿って、不具合情報・因果モデル登録処理手順を説明する。
ステップS201において、不具合情報登録部23は、不具合情報入力画面51(図6)を表示する。具体的には、不具合情報登録部23は、出力装置13に不具合情報入力画面51を表示する。不具合情報入力画面51は、直接入力欄101及びファイル指定欄111を有する。直接入力欄101は、さらに、不具合名称欄102、不具合発生迄の経過欄103、現象欄104、原因欄105及び対策欄106を有する。 (Problem information / causal model registration procedure)
The defect information / causal model registration processing procedure will be described with reference to FIG.
In step S201, the defect
ユーザは不具合情報を既に作成し終えて、作成済の不具合情報を任意の記憶装置に格納している場合がある。一方、ユーザは不具合情報を未だ作成していない場合もある。前者の場合、ユーザは、ファイル指定欄111の外部アドレス入力欄112に、作成済の不具合情報の所在を示す情報を入力する。ユーザが参照欄113を押下すると、当該作成済の不具合情報を閲覧することができる。後者の場合、ユーザは、直接入力欄101の各欄102~106に、各欄の項目についての文章(文字列)を、入力装置12を介して入力する。ユーザは、入力をすることなく操作を中断する場合は、キャンセルボタン122を押下する。
The user may have already created the defect information and stored the created defect information in an arbitrary storage device. On the other hand, the user may not have created the defect information yet. In the former case, the user inputs information indicating the location of the created defect information in the external address input field 112 of the file specification field 111. When the user presses the reference field 113, the created defect information can be viewed. In the latter case, the user inputs sentences (character strings) about the items in the respective fields 102 to 106 of the direct input field 101 via the input device 12. The user presses the cancel button 122 when interrupting the operation without inputting.
ユーザは、入力したデータを登録したい場合は、登録ボタン121を押下する。ユーザは、入力したデータを登録したくない場合は、キャンセルボタン122を押下する。不具合情報登録部23は、ユーザによるこれらの操作を受け付ける。
The user presses the registration button 121 to register the input data. If the user does not want to register the input data, the user presses the cancel button 122. The defect information registration unit 23 accepts these operations by the user.
ステップS202において、不具合情報登録部23は、登録ボタン121が押下されたか否かを判断する。具体的には、不具合情報登録部23は、ユーザが登録ボタン121を押下するのを受け付けた場合(ステップS202“Yes”)、ステップS204に進み、ユーザがキャンセルボタン122を押下するのを受け付けた場合(ステップS202“No”)、ステップS203に進む。
In step S202, the defect information registration unit 23 determines whether or not the registration button 121 has been pressed. Specifically, the defect information registration unit 23 proceeds to step S204 when accepting that the user presses the registration button 121 (step S202 “Yes”), and accepts that the user presses the cancel button 122. If so (step S202 "No"), the process proceeds to step S203.
ステップS203において、不具合情報登録部23は、不具合情報入力画面51を閉じる。その後、不具合情報・因果モデル登録処理手順を終了する。
In step S203, the defect information registration unit 23 closes the defect information input screen 51. Thereafter, the defect information / causal model registration processing procedure is terminated.
ステップS204において、不具合情報登録部23は、不具合情報を登録する。具体的には、不具合情報登録部23は、ステップS201において受け付けた不具合情報を、不具合情報DB31に登録する。
In step S204, the defect information registration unit 23 registers defect information. Specifically, the defect information registration unit 23 registers the defect information received in step S201 in the defect information DB 31.
ステップS205において、因果モデル候補抽出部25aは、因果モデルの要素の候補を抽出する。ステップS205の詳細は後記するが、結果的に、因果モデル候補抽出部25aは、原因側の要素の候補(ストレスの候補又は故障発生要因部品の候補)、及び、結果側の要素の候補(故障モードの候補又は故障部品の候補)を抽出することになる。
In step S205, the causal model candidate extraction unit 25a extracts the causal model element candidates. Although details of step S205 will be described later, as a result, the causal model candidate extraction unit 25a causes the cause-side element candidate (stress candidate or failure-causing component candidate) and the result-side element candidate (failure). Mode candidates or faulty part candidates) are extracted.
ステップS206において、部品・現象判別部25bは、候補のうちから最終的な要素を決定する。ステップS206の詳細は後記するが、結果的に、部品・現象判別部25bは、原因側の要素の候補のうちから最終的なストレス及び最終的な故障発生要因部品を決定することになる。さらに、結果側の要素の候補のうちから最終的な故障モード及び最終的な故障部品を決定することになる。“最終的な”とは、候補のうちから選ばれたという意味である。
In step S206, the part / phenomenon determination unit 25b determines a final element from the candidates. Although details of step S206 will be described later, as a result, the component / phenomenon determination unit 25b determines a final stress and a final failure-causing component from the cause-side element candidates. Furthermore, the final failure mode and the final failure component are determined from the candidate elements on the result side. “Final” means selected from the candidates.
ステップS207において、因果モデル登録・編集部26は、因果モデル登録・編集画面52(図7)を表示する。具体的には、第1に、因果モデル登録・編集部26は、出力装置13に、因果モデル登録・編集画面52を表示し、不具合情報欄131に、ステップS204において登録された不具合情報を表示する。不具合情報欄131の構成は、図6の直接入力欄101の構成と同じであるが、不具合情報欄131の各欄132~136には、具体的な文章が表示されている。
In step S207, the causal model registration / editing unit 26 displays the causal model registration / editing screen 52 (FIG. 7). Specifically, first, the causal model registration / editing unit 26 displays the causal model registration / editing screen 52 on the output device 13, and displays the defect information registered in step S204 in the defect information column 131. To do. The configuration of the defect information column 131 is the same as that of the direct input column 101 in FIG. 6, but specific sentences are displayed in the respective columns 132 to 136 of the defect information column 131.
第2に、因果モデル登録・編集部26は、因果モデル欄141の各欄142~145に、ステップS206において決定された最終的な要素を表示する。ユーザは、不具合情報及び因果モデルを同時に視認し、当該因果モデルが当該不具合情報の事故例としての特徴を十分表現しているか否かを確認する。
第3に、因果モデル登録・編集部26は、ユーザが必要に応じ、因果モデル欄141の各欄142~145に表示されている要素を編集するのを受け付ける。
第4に、因果モデル登録・編集部26は、ユーザが登録ボタン146又は破棄ボタン147のいずれかを押下するのを受け付ける。 Secondly, the causal model registration /editing unit 26 displays the final elements determined in step S206 in the respective columns 142 to 145 of the causal model column 141. The user visually recognizes the defect information and the causal model at the same time, and confirms whether or not the causal model sufficiently expresses the characteristic of the defect information as an accident example.
Third, the causal model registration /editing unit 26 accepts that the user edits the elements displayed in the respective columns 142 to 145 of the causal model column 141 as necessary.
Fourth, the causal model registration /editing unit 26 accepts that the user presses either the registration button 146 or the discard button 147.
第3に、因果モデル登録・編集部26は、ユーザが必要に応じ、因果モデル欄141の各欄142~145に表示されている要素を編集するのを受け付ける。
第4に、因果モデル登録・編集部26は、ユーザが登録ボタン146又は破棄ボタン147のいずれかを押下するのを受け付ける。 Secondly, the causal model registration /
Third, the causal model registration /
Fourth, the causal model registration /
ステップS208において、因果モデル登録・編集部26は、破棄ボタン147が押下されたか否かを判断する。具体的には、因果モデル登録・編集部26は、ユーザが破棄ボタン147を押下するのを受け付けた場合(ステップS208“Yes”)、ステップS209に進み、ユーザが登録ボタン146を押下するのを受け付けた場合(ステップS208“No”)、ステップS210に進む。
In step S208, the causal model registration / editing unit 26 determines whether or not the discard button 147 has been pressed. Specifically, when the causal model registration / editing unit 26 accepts that the user presses the discard button 147 (step S208 “Yes”), the process proceeds to step S209, and the user presses the registration button 146. If accepted (step S208 “No”), the process proceeds to step S210.
ステップS209において、因果モデル登録・編集部26は、因果モデルを破棄する。具体的には、因果モデル登録・編集部26は、因果モデル登録・編集画面52の因果モデル欄141に表示された因果モデルを破棄し、その後、不具合情報・因果モデル登録処理手順を終了する。
In step S209, the causal model registration / editing unit 26 discards the causal model. Specifically, the causal model registration / editing unit 26 discards the causal model displayed in the causal model column 141 of the causal model registration / editing screen 52, and then ends the defect information / causal model registration processing procedure.
ステップS210において、因果モデル登録・編集部26は、因果モデルが編集されたか否かを判断する。具体的には、因果モデル登録・編集部26は、ステップS207の“第3”において編集を受け付けた場合(ステップS210“Yes”)、ステップS211に進み、編集を受け付けていない場合(ステップS210“No”)、ステップS212に進む。
In step S210, the causal model registration / editing unit 26 determines whether or not the causal model has been edited. Specifically, when the causal model registration / editing unit 26 accepts editing in “third” in step S207 (step S210 “Yes”), the causal model registration / editing unit 26 proceeds to step S211 and does not accept editing (step S210 “ No "), go to step S212.
ステップS211において、因果モデル登録・編集部26は、編集された因果モデルを登録する。具体的には、因果モデル登録・編集部26は、ステップS207の“第3”において編集を受け付けた後の因果モデルを因果モデルDB32に登録(記憶)する。その後、不具合情報・因果モデル登録処理手順を終了する。
In step S211, the causal model registration / editing unit 26 registers the edited causal model. Specifically, the causal model registration / editing unit 26 registers (stores) the causal model after the editing is accepted in “third” in step S207 in the causal model DB 32. Thereafter, the defect information / causal model registration processing procedure is terminated.
ステップS212において、因果モデル登録・編集部26は、編集されていない因果モデルを登録する。具体的には、因果モデル登録・編集部26は、ステップS207の“第2”において表示された因果モデルを因果モデルDB32に登録(記憶)する。その後、不具合情報・因果モデル登録処理手順を終了する。不具合情報は複数存在する。よって、不具合情報・因果モデル登録処理手順は、不具合情報ごとに繰り返され、因果モデルDB32には不具合情報の数に等しい数の因果モデルが記憶されることになる。
In step S212, the causal model registration / editing unit 26 registers a causal model that has not been edited. Specifically, the causal model registration / editing unit 26 registers (stores) the causal model displayed in “second” in step S207 in the causal model DB 32. Thereafter, the defect information / causal model registration processing procedure is terminated. There are multiple pieces of defect information. Therefore, the defect information / causal model registration process procedure is repeated for each defect information, and the causal model DB 32 stores a number of causal models equal to the number of defect information.
(FMEA表作成処理手順)
図3に沿って、FMEA表作成処理手順を説明する。
ステップS221において、FMEA表作成部21は、FMEA表作成画面53(図8)を表示する。具体的には、FMEA表作成部21は、出力装置13に、MEA表作成画面53を表示する。 (FMEA table creation processing procedure)
The FMEA table creation processing procedure will be described with reference to FIG.
In step S221, the FMEAtable creation unit 21 displays the FMEA table creation screen 53 (FIG. 8). Specifically, the FMEA table creation unit 21 displays an MEA table creation screen 53 on the output device 13.
図3に沿って、FMEA表作成処理手順を説明する。
ステップS221において、FMEA表作成部21は、FMEA表作成画面53(図8)を表示する。具体的には、FMEA表作成部21は、出力装置13に、MEA表作成画面53を表示する。 (FMEA table creation processing procedure)
The FMEA table creation processing procedure will be described with reference to FIG.
In step S221, the FMEA
ステップS222において、FMEA表作成部21は、キャンセルボタン163が押下されたか否かを判断する。具体的には、FMEA表作成部21は、ユーザがキャンセルボタン163を押下するのを受け付けた場合(ステップS222“Yes”)、ステップS223に進み、それ以外の場合(ステップS222“No”)、ステップS224に進む。
In step S222, the FMEA table creation unit 21 determines whether or not the cancel button 163 is pressed. Specifically, when the FMEA table creation unit 21 accepts that the user presses the cancel button 163 (step S222 “Yes”), the process proceeds to step S223, and otherwise (step S222 “No”). Proceed to step S224.
ステップS223において、FMEA表作成部21は、FMEA表作成画面53を閉じ、FMEA表作成処理手順を終了する。
In step S223, the FMEA table creation unit 21 closes the FMEA table creation screen 53 and ends the FMEA table creation processing procedure.
ステップS224において、因果モデル検索部22は、故障部品を受け付ける。具体的には、因果モデル検索部22は、ユーザが、FMEA表作成画面53の故障部品欄151に故障部品(の名称)を入力し、その後、因果モデル検索ボタン161を押下するのを受け付ける。
In step S224, the causal model search unit 22 receives a failed part. Specifically, the causal model search unit 22 accepts that the user inputs a faulty part (name) in the faulty part column 151 of the FMEA table creation screen 53 and then presses the causal model search button 161.
ステップS225において、因果モデル検索部22は、因果モデルを検索する。具体的には、因果モデル検索部22は、ステップS224において受け付けた故障部品を検索キーとして、因果モデルDB32を検索し、該当するすべての因果モデルを取得する。
ここでは、因果モデル検索部22は、“故障部品”を受け付け、その“故障部品”を検索キーとする例を説明した。しかしながら、因果モデル検索部22は、因果モデルの要素のうち“故障部品”以外の要素を受け付け、検索キーとしてもよい。 In step S225, the causalmodel search unit 22 searches for a causal model. Specifically, the causal model search unit 22 searches the causal model DB 32 using the faulty part received in step S224 as a search key, and acquires all corresponding causal models.
Here, an example has been described in which the causalmodel search unit 22 receives “failed parts” and uses the “failed parts” as a search key. However, the causal model search unit 22 may receive elements other than “failed parts” among the elements of the causal model and use them as search keys.
ここでは、因果モデル検索部22は、“故障部品”を受け付け、その“故障部品”を検索キーとする例を説明した。しかしながら、因果モデル検索部22は、因果モデルの要素のうち“故障部品”以外の要素を受け付け、検索キーとしてもよい。 In step S225, the causal
Here, an example has been described in which the causal
ステップS226において、因果モデル検索部22は、因果モデルを表示する。具体的には、第1に、因果モデル検索部22は、ステップS225において取得した因果モデルの故障モード、故障発生要因部品、及び、ストレスを、FMEA表作成画面53の、それぞれ故障モード欄152、故障発生要因部品欄153a、及び、ストレス欄153bに表示(出力)する。複数(n個)の因果モデルが取得された場合は、検索キーとなった故障部品に関連付けてn個の行が表示されることになる。因果モデル検索部22は、各行の影響欄154及び対策欄155を空白のままにしておく。
In step S226, the causal model search unit 22 displays the causal model. Specifically, first, the causal model search unit 22 uses the failure mode column 152, the failure mode column 152 of the FMEA table creation screen 53 to indicate the failure mode, the failure factor component, and the stress of the causal model acquired in step S225, respectively. It is displayed (output) in the failure factor component field 153a and the stress field 153b. When a plurality (n) of causal models are acquired, n rows are displayed in association with the failed part that is the search key. The causal model search unit 22 leaves the influence column 154 and the countermeasure column 155 of each line blank.
第2に、因果モデル検索部22は、ユーザが必要に応じ、“第1”において表示された各行の故障モード、故障発生要因部品及びストレスのうちの少なくとも1つを編集するのを受け付ける。
第3に、因果モデル検索部22は、ユーザが、“第1”において表示された各行の影響欄154及び対策欄155に、それぞれ影響及び対策を入力し、その後、登録ボタン162を押下するのを受け付ける。なお、ここで、因果モデル検索部22が影響及び対策を受け付けるのは、あくまでも一例である。これに限定されず、因果モデル検索部22は、因果モデルに対する一般的な追加情報をユーザが入力するのを受け付けてもよい。 Secondly, the causalmodel search unit 22 accepts that the user edits at least one of the failure mode, the failure-causing factor component, and the stress of each row displayed in “first” as necessary.
Third, the causalmodel search unit 22 allows the user to input the influence and the countermeasure in the influence column 154 and the countermeasure column 155 of each line displayed in “first”, and then press the registration button 162. Accept. Here, the cause-and-effect model search unit 22 receives the influence and the countermeasure are merely examples. However, the present invention is not limited to this, and the causal model search unit 22 may accept that the user inputs general additional information for the causal model.
第3に、因果モデル検索部22は、ユーザが、“第1”において表示された各行の影響欄154及び対策欄155に、それぞれ影響及び対策を入力し、その後、登録ボタン162を押下するのを受け付ける。なお、ここで、因果モデル検索部22が影響及び対策を受け付けるのは、あくまでも一例である。これに限定されず、因果モデル検索部22は、因果モデルに対する一般的な追加情報をユーザが入力するのを受け付けてもよい。 Secondly, the causal
Third, the causal
ステップS227において、因果モデル検索部22は、FMEA表を登録する。具体的には、因果モデル検索部22は、ステップS226の“第2”において必要に応じて編集された因果モデルに関連付けて、“第3”において入力された影響及び対策(より一般的には追加情報を)を、補助記憶装置15に登録(記憶)する。
その後、FMEA表作成処理手順を終了する。 In step S227, the causalmodel search unit 22 registers the FMEA table. Specifically, the causal model search unit 22 associates the causal model edited as necessary in “second” in step S226 with the influence and countermeasure (more generally, input in “third”). Is registered (stored) in the auxiliary storage device 15.
Thereafter, the FMEA table creation processing procedure is terminated.
その後、FMEA表作成処理手順を終了する。 In step S227, the causal
Thereafter, the FMEA table creation processing procedure is terminated.
(FMEA表作成処理手順の変形例)
ステップS224において、ユーザが故障部品を手入力する例を説明した。しかしながら、ユーザが既に作成し終えている任意の書類又はデータのなかに、故障部品が含まれていることも多い。例えば、既存の設計仕様書、既存の3次元CAD(Computer Aided Design)データ等が、故障部品(の名称)を含むことも多い。そこで、ステップS224において、因果モデル検索部22は、ユーザの手入力を受け付けるまでもなく、予め指定されている書類又はデータに対してアクセスし、当該書類又はデータに含まれる故障部品(の名称)を取得してもよい。この場合、当該書類又はデータ内において故障部品(の名称)が記載されている箇所がタグ等によって特定されていることが望ましい。なお、因果モデル検索部22は、故障部品(の名称)に替えて、因果モデルの要素のうち“故障部品”以外の要素を取得してもよい。 (Modification of FMEA table creation processing procedure)
An example in which the user manually inputs a failed part in step S224 has been described. However, failure documents are often included in any document or data that the user has already created. For example, existing design specifications, existing three-dimensional CAD (Computer Aided Design) data, and the like often include a failed part (name). Therefore, in step S224, the causalmodel search unit 22 accesses a document or data designated in advance without receiving a manual input from the user, and a faulty part (name) included in the document or data. May be obtained. In this case, it is desirable that the location where the failed part (name) is described in the document or data is specified by a tag or the like. The causal model search unit 22 may acquire an element other than the “failed part” among the elements of the causal model instead of the failed part (name).
ステップS224において、ユーザが故障部品を手入力する例を説明した。しかしながら、ユーザが既に作成し終えている任意の書類又はデータのなかに、故障部品が含まれていることも多い。例えば、既存の設計仕様書、既存の3次元CAD(Computer Aided Design)データ等が、故障部品(の名称)を含むことも多い。そこで、ステップS224において、因果モデル検索部22は、ユーザの手入力を受け付けるまでもなく、予め指定されている書類又はデータに対してアクセスし、当該書類又はデータに含まれる故障部品(の名称)を取得してもよい。この場合、当該書類又はデータ内において故障部品(の名称)が記載されている箇所がタグ等によって特定されていることが望ましい。なお、因果モデル検索部22は、故障部品(の名称)に替えて、因果モデルの要素のうち“故障部品”以外の要素を取得してもよい。 (Modification of FMEA table creation processing procedure)
An example in which the user manually inputs a failed part in step S224 has been described. However, failure documents are often included in any document or data that the user has already created. For example, existing design specifications, existing three-dimensional CAD (Computer Aided Design) data, and the like often include a failed part (name). Therefore, in step S224, the causal
(因果モデル候補抽出処理手順)
図4に沿って、因果モデル候補抽出処理手順を説明する。因果モデル候補抽出処理手順は、不具合情報・因果モデル登録処理手順のステップS205の詳細である。
ステップS241において、因果モデル候補抽出部25aは、不具合情報の表記を統一する。具体的には、第1に、因果モデル候補抽出部25aは、不具合情報DB31から不具合情報を取得する。 (Causal model candidate extraction processing procedure)
The causal model candidate extraction processing procedure will be described with reference to FIG. The causal model candidate extraction processing procedure is details of step S205 of the defect information / causal model registration processing procedure.
In step S241, the causal modelcandidate extraction unit 25a unifies the notation of defect information. Specifically, first, the causal model candidate extraction unit 25a acquires defect information from the defect information DB 31.
図4に沿って、因果モデル候補抽出処理手順を説明する。因果モデル候補抽出処理手順は、不具合情報・因果モデル登録処理手順のステップS205の詳細である。
ステップS241において、因果モデル候補抽出部25aは、不具合情報の表記を統一する。具体的には、第1に、因果モデル候補抽出部25aは、不具合情報DB31から不具合情報を取得する。 (Causal model candidate extraction processing procedure)
The causal model candidate extraction processing procedure will be described with reference to FIG. The causal model candidate extraction processing procedure is details of step S205 of the defect information / causal model registration processing procedure.
In step S241, the causal model
第2に、因果モデル候補抽出部25aは、取得した不具合情報の不具合名称、不具合発生迄の経過、現象、原因、及び、対策の各項目の文章に対して以下の統一処理を行う。
・改行を削除する。
・スペース(全角、半角とも)を削除する。
・全角ではないカタカナを全角に変換する。
・全角・大文字ではない英文字を全角・大文字に変換する。 Secondly, the causal modelcandidate extraction unit 25a performs the following unified processing on the sentence of each item of defect name of the acquired defect information, progress until the occurrence of the defect, phenomenon, cause, and countermeasure.
-Delete line breaks.
・ Delete spaces (both full-width and half-width).
・ Convert katakana that is not full-width to full-width.
・ Convert English characters that are not full-width or capital letters to full-width or capital letters.
・改行を削除する。
・スペース(全角、半角とも)を削除する。
・全角ではないカタカナを全角に変換する。
・全角・大文字ではない英文字を全角・大文字に変換する。 Secondly, the causal model
-Delete line breaks.
・ Delete spaces (both full-width and half-width).
・ Convert katakana that is not full-width to full-width.
・ Convert English characters that are not full-width or capital letters to full-width or capital letters.
ステップS242において、因果モデル候補抽出部25aは、形態素解析を行う。具体的には、第1に、因果モデル候補抽出部25aは、統一処理された不具合情報の各項目の文章を単語に分解する。
第2に、因果モデル候補抽出部25aは、辞書(図示せず)を使用して、分解された単語ごとに品詞を取得する。図9は、文章“ウィスカによる、電子システムの信号不良”を単語に分解し、単語(欄171)ごとに品詞(欄172)を取得した結果である。文章中には“ウィスカ”のような技術専門用語が含まれていることが多い。辞書中に“ウィスカ”なる語は存在しないので、因果モデル候補抽出部25aは、“ウィスカ”の品詞として“未知語”を取得している。 In step S242, the causal modelcandidate extraction unit 25a performs morphological analysis. Specifically, first, the causal model candidate extraction unit 25a breaks down sentences of each item of defect information subjected to the unification processing into words.
Secondly, the causal modelcandidate extraction unit 25a acquires a part of speech for each decomposed word using a dictionary (not shown). FIG. 9 shows a result of disassembling the sentence “signal failure of electronic system due to whisker” into words, and obtaining a part of speech (column 172) for each word (column 171). The text often includes technical terminology such as “whiskers”. Since the word “whisker” does not exist in the dictionary, the causal model candidate extraction unit 25a acquires “unknown word” as the part of speech of “whisker”.
第2に、因果モデル候補抽出部25aは、辞書(図示せず)を使用して、分解された単語ごとに品詞を取得する。図9は、文章“ウィスカによる、電子システムの信号不良”を単語に分解し、単語(欄171)ごとに品詞(欄172)を取得した結果である。文章中には“ウィスカ”のような技術専門用語が含まれていることが多い。辞書中に“ウィスカ”なる語は存在しないので、因果モデル候補抽出部25aは、“ウィスカ”の品詞として“未知語”を取得している。 In step S242, the causal model
Secondly, the causal model
第3に、因果モデル候補抽出部25aは、もとの文章において、名詞(未知語を含む)が連続している場合、それらを合成して1つの単語(合成語)にする。例えば、“電子”173a及び“システム”173bを合成し“電子システム”とする。また、“信号”174a、“不良”174bを合成し“信号不良”とする。
因果モデル候補抽出部25aは、“第2”及び“第3”の処理を不都合情報の項目ごとに繰り返す。 Thirdly, when the nouns (including unknown words) are continuous in the original sentence, the causal modelcandidate extraction unit 25a combines them into one word (synthetic word). For example, “electronic” 173a and “system” 173b are combined into an “electronic system”. Further, the “signal” 174a and the “failure” 174b are combined to form a “signal failure”.
The causal modelcandidate extraction unit 25a repeats the “second” and “third” processes for each item of inconvenience information.
因果モデル候補抽出部25aは、“第2”及び“第3”の処理を不都合情報の項目ごとに繰り返す。 Thirdly, when the nouns (including unknown words) are continuous in the original sentence, the causal model
The causal model
ステップS243において、因果モデル候補抽出部25aは、不具合情報から故障モードの候補及び故障部品の候補を抽出する。具体的には、因果モデル候補抽出部25aは、不具合情報の項目“不具合名称”102の文章から、品詞が名詞である単語を取得し、故障モードの候補又は故障部品の候補とする。ここでの名詞は、未知語を含み、単語は合成語を含む。そして、ここで候補とされた単語は、前記した結果側の要素の候補を構成することになる。ステップS243の処理は、不具合名称の文章が、それを見て直ちに不具合の内容がわかるように故障モード又は故障部品を含んでいることが多いという経験則に基づく。
In step S243, the causal model candidate extraction unit 25a extracts failure mode candidates and failure component candidates from the defect information. Specifically, the causal model candidate extraction unit 25a acquires a word whose part of speech is a noun from the sentence of the defect information item “defect name” 102 and sets it as a failure mode candidate or a failure part candidate. The nouns here include unknown words, and the words include synthesized words. And the word made into a candidate here comprises the candidate of the above-mentioned result side element. The process of step S243 is based on an empirical rule that the defect name sentence often includes a failure mode or a failure part so that the content of the defect can be immediately understood by looking at the sentence.
ステップS244において、因果モデル候補抽出部25aは、不具合発生迄の経過及び現象から故障モードの候補及び故障部品の候補を抽出する。具体的には、因果モデル候補抽出部25aは、以下の条件をすべて満たす単語(合成語を含む)を取得し、故障モードの候補又は故障部品の候補とする。
(条件1)不具合情報の項目“不具合発生迄の経過”103に属する。
(条件2)不具合情報の項目“現象”104に属する。
(条件3)品詞が名詞(未知語を含む)である。 In step S244, the causal modelcandidate extraction unit 25a extracts a failure mode candidate and a failure part candidate from the progress and phenomenon until the failure occurs. Specifically, the causal model candidate extraction unit 25a acquires words (including synthesized words) that satisfy all of the following conditions, and sets them as failure mode candidates or failure part candidates.
(Condition 1) The item belongs to the item “Progress until failure” 103 of the failure information.
(Condition 2) It belongs to the item “phenomenon” 104 of defect information.
(Condition 3) The part of speech is a noun (including an unknown word).
(条件1)不具合情報の項目“不具合発生迄の経過”103に属する。
(条件2)不具合情報の項目“現象”104に属する。
(条件3)品詞が名詞(未知語を含む)である。 In step S244, the causal model
(Condition 1) The item belongs to the item “Progress until failure” 103 of the failure information.
(Condition 2) It belongs to the item “phenomenon” 104 of defect information.
(Condition 3) The part of speech is a noun (including an unknown word).
ここで候補とされた単語もまた、前記した結果側の要素の候補を構成することになる。不具合発生迄の経過には、現象が発生する迄の経過が記載されている。ステップS244の処理は、このことに起因して、不具合発生迄の経過の文章及び現象の文章が同じ故障モード又は同じ故障部品を共通して含んでいることが多いという経験則に基づく。
The words that are candidates here also constitute candidates for the result-side elements described above. The progress until the occurrence of a problem describes the progress until the phenomenon occurs. Due to this, the processing in step S244 is based on an empirical rule that the passage of failure and the passage of phenomenon often include the same failure mode or the same failed part in common.
ステップS245において、因果モデル候補抽出部25aは、原因及び対策からストレスの候補及び故障発生要因部品の候補を抽出する。具体的には、因果モデル候補抽出部25aは、以下の条件をすべて満たす単語(合成語を含む)を取得し、ストレスの候補又は故障発生要因部品の候補とする。
(条件11)不具合情報の項目“原因”105に属する。
(条件12)不具合情報の項目“対策”106に属する。
(条件13)品詞が名詞(未知語を含む)である。 In step S245, the causal modelcandidate extraction unit 25a extracts stress candidates and failure occurrence factor component candidates from the causes and countermeasures. Specifically, the causal model candidate extraction unit 25a acquires a word (including a synthesized word) that satisfies all of the following conditions and sets it as a stress candidate or a failure cause component candidate.
(Condition 11) It belongs to the item “Cause” 105 of the defect information.
(Condition 12) It belongs to the item “Countermeasure” 106 of the defect information.
(Condition 13) The part of speech is a noun (including an unknown word).
(条件11)不具合情報の項目“原因”105に属する。
(条件12)不具合情報の項目“対策”106に属する。
(条件13)品詞が名詞(未知語を含む)である。 In step S245, the causal model
(Condition 11) It belongs to the item “Cause” 105 of the defect information.
(Condition 12) It belongs to the item “Countermeasure” 106 of the defect information.
(Condition 13) The part of speech is a noun (including an unknown word).
ここで候補とされた単語は、前記した原因側の要素の候補を構成することになる。対策には、原因に記載された部品へ及ぼされるストレスへの対策が記載されている。ステップS245の処理は、このことに起因して、原因の文章及び対策の文章が同じストレス又は同じ故障発生要因部品を共通して含んでいることが多いという経験則に基づく。
その後、因果モデル候補抽出処理手順を終了する(ステップS206に進む)。 The words that are candidates here constitute candidates for the cause-side elements described above. The countermeasure describes the countermeasure against the stress applied to the component described in the cause. Due to this, the processing in step S245 is based on an empirical rule that the cause sentence and the countermeasure sentence often include the same stress or the same failure cause component in common.
Thereafter, the causal model candidate extraction processing procedure is terminated (proceeds to step S206).
その後、因果モデル候補抽出処理手順を終了する(ステップS206に進む)。 The words that are candidates here constitute candidates for the cause-side elements described above. The countermeasure describes the countermeasure against the stress applied to the component described in the cause. Due to this, the processing in step S245 is based on an empirical rule that the cause sentence and the countermeasure sentence often include the same stress or the same failure cause component in common.
Thereafter, the causal model candidate extraction processing procedure is terminated (proceeds to step S206).
(部品・現象判別処理手順)
部品・現象判別処理手順の詳細を説明する前に、当該手順の考え方を説明する。部品・現象判別部25bは、因果モデル候補抽出処理手順において抽出された単語(合成語を含む)ごとに、“IEPH”の値及び“IEPA”の値を算出する。“IEPH”の値は、当該単語が以下の“表現傾向1”に属する可能性(現象らしい可能性)を示す。“IEPA”の値は、当該単語が以下の“表現傾向2”に属する可能性(部品らしい可能性)を示す。 (Part / phenomenon discrimination processing procedure)
Before explaining the details of the part / phenomenon discrimination processing procedure, the concept of the procedure will be described. The part /phenomenon determination unit 25b calculates a value of “IEPH” and a value of “IEPA” for each word (including a synthesized word) extracted in the causal model candidate extraction processing procedure. The value of “IEPH” indicates the possibility that the word belongs to the following “expression tendency 1” (possibility that seems to be a phenomenon). The value of “IEPA” indicates the possibility that the word belongs to the following “expression tendency 2” (possibility that seems to be a part).
部品・現象判別処理手順の詳細を説明する前に、当該手順の考え方を説明する。部品・現象判別部25bは、因果モデル候補抽出処理手順において抽出された単語(合成語を含む)ごとに、“IEPH”の値及び“IEPA”の値を算出する。“IEPH”の値は、当該単語が以下の“表現傾向1”に属する可能性(現象らしい可能性)を示す。“IEPA”の値は、当該単語が以下の“表現傾向2”に属する可能性(部品らしい可能性)を示す。 (Part / phenomenon discrimination processing procedure)
Before explaining the details of the part / phenomenon discrimination processing procedure, the concept of the procedure will be described. The part /
(表現傾向1)当該単語の直後に“が発生”又は“が生じた”のような語が続くことにより、現象であると判断される表現傾向。例えば、“残留応力”、“高温劣化”等の現象の直後には、このような語が続く場合が多い。
(表現傾向2)当該単語の直後に“の故障”又は“の購入”のような語が続くことにより、部品であると判断される表現傾向。例えば、“羽車”、“コンデンサ”等の部品の直後には、このような語が続く場合が多い。 (Expression tendency 1) An expression tendency determined to be a phenomenon when a word such as “occurs” or “occurs” immediately follows the word. For example, such words often follow immediately after phenomena such as “residual stress” and “high temperature degradation”.
(Expression tendency 2) An expression tendency determined to be a part by immediately following the word followed by a word such as “no failure” or “purchase of”. For example, such words often follow immediately after parts such as “impeller” and “capacitor”.
(表現傾向2)当該単語の直後に“の故障”又は“の購入”のような語が続くことにより、部品であると判断される表現傾向。例えば、“羽車”、“コンデンサ”等の部品の直後には、このような語が続く場合が多い。 (Expression tendency 1) An expression tendency determined to be a phenomenon when a word such as “occurs” or “occurs” immediately follows the word. For example, such words often follow immediately after phenomena such as “residual stress” and “high temperature degradation”.
(Expression tendency 2) An expression tendency determined to be a part by immediately following the word followed by a word such as “no failure” or “purchase of”. For example, such words often follow immediately after parts such as “impeller” and “capacitor”.
原因側の要素の候補のうち、“IEPH”の値が大きいものほど、ストレスである可能性が高い。原因側の要素の候補のうち、“IEPA”の値が大きいものほど、故障発生要因部品である可能性が高い。結果側の要素の候補のうち、“IEPH”の値が大きいものほど、故障モードである可能性が高い。結果側の要素の候補のうち、“IEPA”の値が大きいものほど、故障部品である可能性が高い。以降、“IEPH”及び“IEPA”の算出式を説明する。
Among the causal element candidates, the larger the “IEPH” value, the higher the possibility of stress. Among the cause-side candidate elements, the larger the value of “IEPA”, the higher the possibility that it is a failure-causing component. Of the candidate elements on the result side, the higher the value of “IEPH” is, the higher the possibility of the failure mode is. Of the candidate elements on the result side, the larger the value of “IEPA”, the higher the possibility of a failed part. Hereinafter, calculation formulas of “IEPH” and “IEPA” will be described.
(IEPH)
・IEPH=PHL×TF×IDF
・PHL=PHDF/TDF
・IDF=log(K/DF)
・PHDFは、不具合情報DB31に格納されている不具合情報のうち、当該単語がその直後に“が発生”、“の発生”又は“が生じた”の語を伴い出現する場合を少なくとも1回有する不具合情報の数である。
・TDFは、不具合情報DB31に格納されている不具合情報のうち、当該単語が出現する場合を少なくとも1回有する不具合情報の数である。
・TFは、当該不具合情報の原因及び対策の項目における当該単語の出現回数である。
・Kは、不具合情報DB31に格納されている不具合情報の総数である。
・DFは、不具合情報DB31に格納されている不具合情報のうち、当該単語を含む不具合情報の数である。
なお、“log(K/DF)”は、“K/DF”の自然対数(又は常用対数)である。 (IEPH)
・ IEPH = PHL × TF × IDF
・ PHL = PHDF / TDF
・ IDF = log (K / DF)
The PHDF has at least one case in which the word appears with a word “occurs”, “occurs”, or “occurs” immediately after the defect information stored in thedefect information DB 31. It is the number of defect information.
TDF is the number of pieces of defect information having at least one case where the word appears among the pieces of defect information stored in thedefect information DB 31.
TF is the number of occurrences of the word in the cause and countermeasure items of the defect information.
K is the total number of defect information stored in thedefect information DB 31.
DF is the number of pieces of defect information including the word among the defect information stored in thedefect information DB 31.
“Log (K / DF)” is the natural logarithm (or common logarithm) of “K / DF”.
・IEPH=PHL×TF×IDF
・PHL=PHDF/TDF
・IDF=log(K/DF)
・PHDFは、不具合情報DB31に格納されている不具合情報のうち、当該単語がその直後に“が発生”、“の発生”又は“が生じた”の語を伴い出現する場合を少なくとも1回有する不具合情報の数である。
・TDFは、不具合情報DB31に格納されている不具合情報のうち、当該単語が出現する場合を少なくとも1回有する不具合情報の数である。
・TFは、当該不具合情報の原因及び対策の項目における当該単語の出現回数である。
・Kは、不具合情報DB31に格納されている不具合情報の総数である。
・DFは、不具合情報DB31に格納されている不具合情報のうち、当該単語を含む不具合情報の数である。
なお、“log(K/DF)”は、“K/DF”の自然対数(又は常用対数)である。 (IEPH)
・ IEPH = PHL × TF × IDF
・ PHL = PHDF / TDF
・ IDF = log (K / DF)
The PHDF has at least one case in which the word appears with a word “occurs”, “occurs”, or “occurs” immediately after the defect information stored in the
TDF is the number of pieces of defect information having at least one case where the word appears among the pieces of defect information stored in the
TF is the number of occurrences of the word in the cause and countermeasure items of the defect information.
K is the total number of defect information stored in the
DF is the number of pieces of defect information including the word among the defect information stored in the
“Log (K / DF)” is the natural logarithm (or common logarithm) of “K / DF”.
(IEPA)
・IEPA=PAL×TF×IDF
・PAL=PALDF/TDF
・IDF=log(K/DF)
・PALDFは、不具合情報DB31に格納されている不具合情報のうち、当該単語がその直後に “の故障”、“の購入”、“の受け入れ”、“を開発”又は“の開発”の語を伴い出現する場合を少なくとも1回有する不具合情報の数である。
・TFは、当該不具合情報の不具合名称の項目における当該単語の出現回数に対して所定の重みを乗算した値と、当該不具合情報の不具合発生迄の経過の項目における当該単語の出現回数と、当該不具合情報の現象の項目における当該単語の出現回数との合計値である。不具合名称には不具合の特徴を表す単語が記載される場合が多いので、重み(重み>1)を乗算する。
・TDF、K及びDFは、“IEPH”についての説明と同じである。 (IEPA)
・ IEPA = PAL × TF × IDF
・ PAL = PALDF / TDF
・ IDF = log (K / DF)
-PALDF uses the defect information stored in thedefect information DB 31 immediately after the word “defect”, “purchase”, “acceptance”, “development” or “development”. It is the number of pieces of defect information having at least one occurrence of accompanying information.
TF is a value obtained by multiplying the number of appearances of the word in the defect name item of the defect information by a predetermined weight, the number of appearances of the word in the item of progress until the defect occurs in the defect information, This is the total value of the number of appearances of the word in the defect information phenomenon item. Since the defect name often includes a word representing the characteristic of the defect, it is multiplied by a weight (weight> 1).
TDF, K and DF are the same as described for “IEPH”.
・IEPA=PAL×TF×IDF
・PAL=PALDF/TDF
・IDF=log(K/DF)
・PALDFは、不具合情報DB31に格納されている不具合情報のうち、当該単語がその直後に “の故障”、“の購入”、“の受け入れ”、“を開発”又は“の開発”の語を伴い出現する場合を少なくとも1回有する不具合情報の数である。
・TFは、当該不具合情報の不具合名称の項目における当該単語の出現回数に対して所定の重みを乗算した値と、当該不具合情報の不具合発生迄の経過の項目における当該単語の出現回数と、当該不具合情報の現象の項目における当該単語の出現回数との合計値である。不具合名称には不具合の特徴を表す単語が記載される場合が多いので、重み(重み>1)を乗算する。
・TDF、K及びDFは、“IEPH”についての説明と同じである。 (IEPA)
・ IEPA = PAL × TF × IDF
・ PAL = PALDF / TDF
・ IDF = log (K / DF)
-PALDF uses the defect information stored in the
TF is a value obtained by multiplying the number of appearances of the word in the defect name item of the defect information by a predetermined weight, the number of appearances of the word in the item of progress until the defect occurs in the defect information, This is the total value of the number of appearances of the word in the defect information phenomenon item. Since the defect name often includes a word representing the characteristic of the defect, it is multiplied by a weight (weight> 1).
TDF, K and DF are the same as described for “IEPH”.
(部品・現象判別処理手順)
図5に沿って、部品・現象判別処理手順を説明する。部品・現象判別処理手順は、不具合情報・因果モデル登録処理手順のステップS206の詳細である。
ステップS251において、部品・現象判別部25bは、ストレスの候補及び故障発生要因部品の候補のそれぞれについて、IEPHの値を算出する。 (Part / phenomenon discrimination processing procedure)
The part / phenomenon determination processing procedure will be described with reference to FIG. The part / phenomenon determination processing procedure is the details of step S206 of the defect information / causal model registration processing procedure.
In step S251, the part /phenomenon determination unit 25b calculates an IEPH value for each of the stress candidate and the failure cause component candidate.
図5に沿って、部品・現象判別処理手順を説明する。部品・現象判別処理手順は、不具合情報・因果モデル登録処理手順のステップS206の詳細である。
ステップS251において、部品・現象判別部25bは、ストレスの候補及び故障発生要因部品の候補のそれぞれについて、IEPHの値を算出する。 (Part / phenomenon discrimination processing procedure)
The part / phenomenon determination processing procedure will be described with reference to FIG. The part / phenomenon determination processing procedure is the details of step S206 of the defect information / causal model registration processing procedure.
In step S251, the part /
ステップS252において、部品・現象判別部25bは、IEPHの値が最大である単語を最終的なストレスとして決定する。つまり、原因側の要素の候補のうちから、最も現象らしいものを“現象”として決定し、その現象を“ストレス”とする。なお、部品・現象判別部25bは、以下に例示する明らかに現象ではない単語を決定対象から除外する。
・末尾の文字列が、“部”、“装置”、“品”、“機”、“器”等の部品名称を表す単語
・“変更”、“生産”、“使用”、“組立”、“実施”、“運転”等の人の動作を表す単語
・“朝”、“時”、“年”、“月”、“日”等の時間・頻度を表す単語
・“現地”、“拠点”、“付近”、“ところ”等の場所を表す単語
・“お客様”、“顧客”、“メーカ”、“ユーザ”等の人を表す単語 In step S252, the part /phenomenon determination unit 25b determines the word having the maximum IEPH value as the final stress. That is, the most probable phenomenon is determined as a “phenomenon” from the causal element candidates, and the phenomenon is defined as “stress”. Note that the component / phenomenon determination unit 25b excludes words that are not clearly phenomena as exemplified below from determination targets.
・ The word string at the end is a part name such as “part”, “device”, “product”, “machine”, “container”, etc. “change”, “production”, “use”, “assembly”, Words indicating human actions such as “execution” and “driving” ・ Words indicating time and frequency such as “morning”, “hour”, “year”, “month”, “day” “local”, “base” ”,“ Nearby ”,“ Place ”, etc., a word representing a place,“ Customer ”,“ Customer ”,“ Manufacturer ”,“ User ”, etc.
・末尾の文字列が、“部”、“装置”、“品”、“機”、“器”等の部品名称を表す単語
・“変更”、“生産”、“使用”、“組立”、“実施”、“運転”等の人の動作を表す単語
・“朝”、“時”、“年”、“月”、“日”等の時間・頻度を表す単語
・“現地”、“拠点”、“付近”、“ところ”等の場所を表す単語
・“お客様”、“顧客”、“メーカ”、“ユーザ”等の人を表す単語 In step S252, the part /
・ The word string at the end is a part name such as “part”, “device”, “product”, “machine”, “container”, etc. “change”, “production”, “use”, “assembly”, Words indicating human actions such as “execution” and “driving” ・ Words indicating time and frequency such as “morning”, “hour”, “year”, “month”, “day” “local”, “base” ”,“ Nearby ”,“ Place ”, etc., a word representing a place,“ Customer ”,“ Customer ”,“ Manufacturer ”,“ User ”, etc.
図10(a)に沿って、ステップS252におけるIEPHの算出結果を説明する。部品・現象判別部25bは、候補“基盤”のIEPHの値として“2.5×10-3”を算出し、候補“ウィスカ” のIEPHの値として“2.3”を算出している。よって、部品・現象判別部25bは、“ウィスカ”を最終的なストレスとして決定する。
The calculation result of IEPH in step S252 will be described with reference to FIG. The part / phenomenon discriminating unit 25b calculates “2.5 × 10 −3 ” as the IEPH value of the candidate “foundation” and “2.3” as the IEPH value of the candidate “whisker”. Therefore, the part / phenomenon determination unit 25b determines “whisker” as the final stress.
ステップS253において、部品・現象判別部25bは、ストレスの候補及び故障発生要因部品の候補のそれぞれについて、IEPAの値を算出する。
In step S253, the component / phenomenon determination unit 25b calculates an IEPA value for each of the stress candidate and the failure cause component candidate.
ステップS254において、部品・現象判別部25bは、IEPAの値が最大である単語を最終的な故障発生要因部品として決定する。つまり、原因側の要素の候補のうちから、最も部品らしいものを“部品”として決定し、その部品を“故障発生要因部品”とする。なお、部品・現象判別部25bは、明らかに部品ではない単語を決定対象から除外する。明らかに部品ではない単語の例は以下の通りである。
・最終的なストレスとして抽出された単語
・末尾の文字列が、“障害”、“故障”、“不具合”、“発生”、“停止”、“不良”等の現象を表す単語 In step S254, the component /phenomenon determination unit 25b determines the word having the maximum IEPA value as the final failure factor component. In other words, the most likely part of the causal element candidates is determined as a “part”, and the part is designated as a “failure-causing part”. The part / phenomenon determination unit 25b excludes words that are clearly not parts from the determination target. Examples of words that are clearly not parts are:
-Words extracted as the final stress-The word string at the end represents a phenomenon such as "failure", "failure", "failure", "occurrence", "stop", "bad"
・最終的なストレスとして抽出された単語
・末尾の文字列が、“障害”、“故障”、“不具合”、“発生”、“停止”、“不良”等の現象を表す単語 In step S254, the component /
-Words extracted as the final stress-The word string at the end represents a phenomenon such as "failure", "failure", "failure", "occurrence", "stop", "bad"
図10(b)に沿って、ステップS254におけるIEPAの算出結果を説明する。部品・現象判別部25bは、候補“基盤”のIEPAの値として“1.1×10-1”を算出し、候補“ウィスカ” のIEPAの値として“0”を算出している。よって、部品・現象判別部25bは、“基盤”を最終的な故障発生要因部品として決定する。“ウィスカ”は最終的なストレスとして既に決定されてはいるが、仮にそうでなくとも、“基盤”が最終的な故障発生要因部品として決定されることになる。
The calculation result of IEPA in step S254 will be described with reference to FIG. The part / phenomenon discriminating unit 25b calculates “1.1 × 10 −1 ” as the IEPA value of the candidate “base” and “0” as the IEPA value of the candidate “whisker”. Therefore, the part / phenomenon determination unit 25b determines “base” as the final failure factor part. “Whisker” has already been determined as the final stress, but even if this is not the case, the “base” will be determined as the final failure factor component.
ステップS255において、部品・現象判別部25bは、故障モードの候補及び故障部品の候補のそれぞれについて、IEPHの値を算出する。
In step S255, the part / phenomenon determination unit 25b calculates an IEPH value for each of the failure mode candidate and the failure part candidate.
ステップS256において、部品・現象判別部25bは、IEPHの値が最大である単語を最終的な故障モードとして決定する。つまり、結果側の要素の候補のうちから、最も現象らしいものを“現象”として決定し、その現象を“故障モード”とする。なお、部品・現象判別部25bは、明らかに現象ではない単語を決定対象から除外する。
In step S256, the part / phenomenon determination unit 25b determines the word having the maximum IEPH value as the final failure mode. That is, the most likely phenomenon among the candidate elements on the result side is determined as a “phenomenon”, and the phenomenon is designated as a “failure mode”. The part / phenomenon determination unit 25b excludes words that are clearly not phenomena from the determination target.
図10(c)に沿って、ステップS256におけるIEPHの算出結果を説明する。最終的なストレスとして既に決定されている“ウィスカ”を除外すると、“信号不良”のIEPHの値が最大となっている。よって、部品・現象判別部25bは、“信号不良”を最終的な故障モードとして決定する。
The calculation result of IEPH in step S256 will be described with reference to FIG. Excluding “whiskers” already determined as the final stress, the IEPH value of “signal failure” is maximized. Therefore, the part / phenomenon determination unit 25b determines “signal failure” as the final failure mode.
ステップS257において、部品・現象判別部25bは、故障モードの候補及び故障部品の候補のそれぞれについて、IEPAの値を算出する。
In step S257, the part / phenomenon determination unit 25b calculates an IEPA value for each of the failure mode candidate and the failure part candidate.
ステップS258において、部品・現象判別部25bは、IEPAの値が最大である単語を最終的な故障部品として決定する。つまり、結果側の要素の候補のうちから、最も部品らしいものを“部品”として決定し、その部品を“故障部品”とする。なお、部品・現象判別部25bは、明らかに部品ではない単語を決定対象から除外する。
その後、部品・現象判別処理手順を終了する(ステップS207に進む)。 In step S258, the part /phenomenon determination unit 25b determines the word having the maximum IEPA value as the final failed part. That is, among the candidate elements on the result side, the most likely part is determined as a “part”, and that part is set as the “failed part”. The part / phenomenon determination unit 25b excludes words that are clearly not parts from the determination target.
Thereafter, the part / phenomenon determination processing procedure is terminated (proceeds to step S207).
その後、部品・現象判別処理手順を終了する(ステップS207に進む)。 In step S258, the part /
Thereafter, the part / phenomenon determination processing procedure is terminated (proceeds to step S207).
図10(d)に沿って、ステップS258におけるIEPAの算出結果を説明する。末尾に“不良”を含む “信号不良”を除外すると、“電子システム”のIEPAの値が最大となっている。よって、部品・現象判別部25bは、“電子システム”を最終的な故障部品として決定する。
The calculation result of IEPA in step S258 will be described with reference to FIG. When “signal failure” including “failure” at the end is excluded, the IEPA value of “electronic system” is maximized. Therefore, the part / phenomenon determination unit 25b determines “electronic system” as the final failed part.
(従来技術との比較)
文章中から特定の単語を抽出する従来技術として、“手掛かり語”を使用する方法が知られている。例えば、“歯車において繰り返し応力のために亀裂に至った”という文章があるとする。この場合、“において”の直前に記述されている“歯車”を故障部品として抽出し、“のため”の直前に記述されている“繰り返し応力”をストレスとして抽出し、“に至った”の直前に記述されている“亀裂”を故障モードとして抽出することができる。ここでの“において”、“のため”及び“に至った”が、それぞれ、故障部品、ストレス及び故障モードについての手掛かり語となる。 (Comparison with conventional technology)
As a conventional technique for extracting a specific word from a sentence, a method using a “clue word” is known. For example, suppose there is a sentence that “there is a crack due to repeated stress in a gear”. In this case, “gear” described immediately before “in” is extracted as a faulty part, “repetitive stress” described immediately before “for” is extracted as stress, The “crack” described immediately before can be extracted as a failure mode. Here, “in”, “because”, and “reached” are clues about the failed part, stress, and failure mode, respectively.
文章中から特定の単語を抽出する従来技術として、“手掛かり語”を使用する方法が知られている。例えば、“歯車において繰り返し応力のために亀裂に至った”という文章があるとする。この場合、“において”の直前に記述されている“歯車”を故障部品として抽出し、“のため”の直前に記述されている“繰り返し応力”をストレスとして抽出し、“に至った”の直前に記述されている“亀裂”を故障モードとして抽出することができる。ここでの“において”、“のため”及び“に至った”が、それぞれ、故障部品、ストレス及び故障モードについての手掛かり語となる。 (Comparison with conventional technology)
As a conventional technique for extracting a specific word from a sentence, a method using a “clue word” is known. For example, suppose there is a sentence that “there is a crack due to repeated stress in a gear”. In this case, “gear” described immediately before “in” is extracted as a faulty part, “repetitive stress” described immediately before “for” is extracted as stress, The “crack” described immediately before can be extracted as a failure mode. Here, “in”, “because”, and “reached” are clues about the failed part, stress, and failure mode, respectively.
しかしながら、この従来技術は、表現の揺れに影響されやすい。例えば、同じ意味を有する “歯車に亀裂が発生し、原因は、繰り返し応力であると考えられる。”という文章があったとする。当該文章は、“において”、“のため”及び“に至った”という手掛かり語を有さず、その結果、故障部品等の単語が抽出できなくなる。
However, this conventional technique is easily affected by fluctuations in expression. For example, it is assumed that there is a sentence having the same meaning, “a crack occurs in a gear and the cause is considered to be repeated stress”. The sentence does not have clue words such as “in”, “for”, and “reached”, and as a result, a word such as a faulty part cannot be extracted.
本実施形態においても、前記したPHDF及びPALDFを求める際に、手掛かり語を使用してはいる。しかしながら、従来技術は、単に手掛かり語を検索キーとして文章を検索するだけである。これに対して、本実施形態のIEPH及びIEPAは、統計的かつ数量的な演算処理の結果である。よって、本実施形態のIEPH及びIEPAは、個々の文章の表現の揺れには直接影響されることなく、適切に現象らしさ、及び、部品らしさを判断できる。
Also in this embodiment, clue words are used when obtaining the above-described PHDF and PALDF. However, the prior art simply searches for a sentence using a clue word as a search key. On the other hand, IEPH and IEPA of the present embodiment are the results of statistical and quantitative arithmetic processing. Therefore, the IEPH and IEPA of the present embodiment can appropriately determine the probability of phenomenon and the likelihood of parts without being directly affected by fluctuations in the expression of individual sentences.
(第1の実施形態の変形例1)
前記では、不具合情報登録部23がユーザから不具合情報の入力を受け付ける例を説明した。しかしながら、ユーザの入力を待つまでもなく、ネットワーク上で公開されている不具合情報を収集することができればより便利である。そこで、公開不具合情報収集部24は、ネットワーク4経由で任意の企業等のサーバに対してアクセスし、不具合情報を取得する。そして、取得した不具合情報を、不具合情報DB31に記憶する。 (Modification 1 of the first embodiment)
In the above description, the example in which the defectinformation registration unit 23 receives input of defect information from the user has been described. However, it is more convenient if failure information published on the network can be collected without waiting for user input. Therefore, the public defect information collection unit 24 accesses a server of an arbitrary company or the like via the network 4 and acquires defect information. And the acquired defect information is memorize | stored in defect information DB31.
前記では、不具合情報登録部23がユーザから不具合情報の入力を受け付ける例を説明した。しかしながら、ユーザの入力を待つまでもなく、ネットワーク上で公開されている不具合情報を収集することができればより便利である。そこで、公開不具合情報収集部24は、ネットワーク4経由で任意の企業等のサーバに対してアクセスし、不具合情報を取得する。そして、取得した不具合情報を、不具合情報DB31に記憶する。 (
In the above description, the example in which the defect
(第1の実施形態の変形例2)
ユーザがFMEA表作成画面53(図8)において検索結果である因果モデルを視認しているとき、その因果モデルの抽出元となった不都合情報も同時に視認できればより便利である。そこで、ステップS211又はS212の直後において、因果モデル登録・編集部26は、因果モデルとその抽出元となった不都合情報とを関連付けて記憶したモデル・不都合関係リストを作成し、補助記憶装置15に格納する。因果モデル登録・編集部26は、ユーザが、例えばFMEA表作成画面53のある因果モデルの行を選択するのを受け付けると、モデル・不都合関係リストを参照して対応する不都合情報を特定する。そして、特定した不都合情報を補助記憶装置15から取得し、出力装置13に表示(出力)する。 (Modification 2 of the first embodiment)
When the user is viewing the causal model as a search result on the FMEA table creation screen 53 (FIG. 8), it is more convenient if the inconvenience information from which the causal model is extracted can also be viewed at the same time. Therefore, immediately after step S211 or S212, the causal model registration /editing unit 26 creates a model / inconvenience relationship list in which the causal model and the inconvenience information from which the causal model is extracted are stored in association with each other, and stores them in the auxiliary storage device 15. Store. When the causal model registration / editing unit 26 accepts that the user selects a certain causal model row on the FMEA table creation screen 53, for example, the causal model registration / editing unit 26 refers to the model / inconvenience relation list and identifies corresponding inconvenience information. Then, the specified inconvenience information is acquired from the auxiliary storage device 15 and displayed (output) on the output device 13.
ユーザがFMEA表作成画面53(図8)において検索結果である因果モデルを視認しているとき、その因果モデルの抽出元となった不都合情報も同時に視認できればより便利である。そこで、ステップS211又はS212の直後において、因果モデル登録・編集部26は、因果モデルとその抽出元となった不都合情報とを関連付けて記憶したモデル・不都合関係リストを作成し、補助記憶装置15に格納する。因果モデル登録・編集部26は、ユーザが、例えばFMEA表作成画面53のある因果モデルの行を選択するのを受け付けると、モデル・不都合関係リストを参照して対応する不都合情報を特定する。そして、特定した不都合情報を補助記憶装置15から取得し、出力装置13に表示(出力)する。 (
When the user is viewing the causal model as a search result on the FMEA table creation screen 53 (FIG. 8), it is more convenient if the inconvenience information from which the causal model is extracted can also be viewed at the same time. Therefore, immediately after step S211 or S212, the causal model registration /
(第2の実施形態)
第1の実施形態においては、不具合情報活用支援装置2のユーザが、部品メーカでありかつ機器メーカでもあるという前提があった。第2の実施形態においては、部品メーカ、機器メーカ、及び、サービス提供者が別々に存在することが前提となっている。図1において、サービス提供者は、不具合情報活用支援装置2を運営する。部品メーカは、端末装置3を操作する。機器メーカもまた(別の)端末装置3を操作する。 (Second Embodiment)
In the first embodiment, there is a premise that the user of the defect informationutilization support apparatus 2 is a parts manufacturer and a device manufacturer. In the second embodiment, it is assumed that there are separate parts manufacturers, equipment manufacturers, and service providers. In FIG. 1, the service provider operates the defect information utilization support apparatus 2. The parts manufacturer operates the terminal device 3. The device manufacturer also operates the (other) terminal device 3.
第1の実施形態においては、不具合情報活用支援装置2のユーザが、部品メーカでありかつ機器メーカでもあるという前提があった。第2の実施形態においては、部品メーカ、機器メーカ、及び、サービス提供者が別々に存在することが前提となっている。図1において、サービス提供者は、不具合情報活用支援装置2を運営する。部品メーカは、端末装置3を操作する。機器メーカもまた(別の)端末装置3を操作する。 (Second Embodiment)
In the first embodiment, there is a premise that the user of the defect information
(役割分担)
部品メーカは、サービス提供者の事業パートナ(協力者)であり、サービス提供者に対して、多くの不具合情報の実例を提供する。サービス提供者は、部品メーカに対してその対価を支払う。機器メーカは、サービス提供者の顧客である。サービス提供者は、機器メーカに不具合情報活用支援装置2を使用させ、その対価を機器メーカから受け取る。 (Division of roles)
The parts manufacturer is a business partner (cooperator) of the service provider, and provides many examples of defect information to the service provider. The service provider pays the price to the parts manufacturer. The device manufacturer is a customer of the service provider. The service provider causes the device manufacturer to use the defect informationutilization support apparatus 2 and receives the price from the device manufacturer.
部品メーカは、サービス提供者の事業パートナ(協力者)であり、サービス提供者に対して、多くの不具合情報の実例を提供する。サービス提供者は、部品メーカに対してその対価を支払う。機器メーカは、サービス提供者の顧客である。サービス提供者は、機器メーカに不具合情報活用支援装置2を使用させ、その対価を機器メーカから受け取る。 (Division of roles)
The parts manufacturer is a business partner (cooperator) of the service provider, and provides many examples of defect information to the service provider. The service provider pays the price to the parts manufacturer. The device manufacturer is a customer of the service provider. The service provider causes the device manufacturer to use the defect information
より具体的には、部品メーカは、端末装置3からネットワーク4を介して不具合情報活用支援装置2にアクセスする。部品メーカは、不具合情報を提供する(ステップS201~S204に相当)。サービス提供者は、不具合情報から因果モデルを抽出し、因果モデルを編集し登録する(ステップS205~S212に相当)。もちろん、当該処理を部品メーカが行ってもよい。機器メーカは、FMEA表を作成する(ステップS221~S227に相当)。
More specifically, the component manufacturer accesses the defect information utilization support device 2 from the terminal device 3 via the network 4. The component manufacturer provides defect information (corresponding to steps S201 to S204). The service provider extracts the causal model from the defect information, and edits and registers the causal model (corresponding to steps S205 to S212). Of course, the part manufacturer may perform the processing. The device manufacturer creates an FMEA table (corresponding to steps S221 to S227).
アカウント管理部27は、部品メーカ及び機器メーカごとに、不具合情報活用支援装置2が有する各機能へのアクセス権限、及び、決済口座を記憶するアカウントリストを作成し補助記憶装置15に格納する。支払・課金管理部28は、部品メーカごとに、提供された不具合情報の数及び単価、並びに、抽出された因果モデルの数及び単価を記憶する支払リストを作成し補助記憶装置15に格納する。さらに、支払・課金管理部28は、機器メーカごとに、作成されたFMEA表の数及び単価、又は、不具合情報活用支援装置2へのアクセス時間(使用時間)及び単価を記憶する課金リストを作成し補助記憶装置15に格納する。
The account management unit 27 creates an account list for storing the access authority to each function of the defect information utilization support device 2 and the settlement account for each component manufacturer and device manufacturer, and stores them in the auxiliary storage device 15. The payment / billing management unit 28 creates and stores in the auxiliary storage device 15 a payment list that stores the number and unit price of the provided defect information and the number and unit price of the extracted causal models for each component manufacturer. Furthermore, the payment / billing management unit 28 creates a billing list for storing the number and unit price of the created FMEA table or the access time (usage time) and unit price to the defect information utilization support device 2 for each device manufacturer. And stored in the auxiliary storage device 15.
アカウント管理部27は、部品メーカ及び機器メーカからアクセス要求を受け付けると、アカウントリストを参照し、所定の処理に対するアクセスを許可する。支払・課金管理部28は、部品メーカ及び機器メーカが行う処理を常時監視しており、その処理内容に応じて、支払リスト及び課金リストを最新の状態に維持する。
1月に1回等の所定の周期で、支払・課金管理部28は、支払リストに基づき部品メーカごとの支払額を算出し、課金リストに基づき機器メーカごとの課金額を算出する。アカウント管理部27は、支払額をサービス提供者の決済口座から引き落とし、部品メーカの決済口座に入金する旨の指示、及び、課金額を機器メーカの決済口座から引き落とし、サービス提供者の決済口座に入金する旨の指示を金融機関のサーバに送信する。 When theaccount management unit 27 receives an access request from the component manufacturer or device manufacturer, the account management unit 27 refers to the account list and permits access to a predetermined process. The payment / billing management unit 28 constantly monitors the processing performed by the component manufacturer and the device manufacturer, and maintains the payment list and the billing list in the latest state according to the processing contents.
At a predetermined cycle such as once a month, the payment /billing management unit 28 calculates a payment amount for each component manufacturer based on the payment list, and calculates a charging amount for each device manufacturer based on the charging list. The account management unit 27 deducts the payment amount from the service provider's payment account, and instructs the component manufacturer's payment account to be charged, and the charge amount is deducted from the device manufacturer's payment account, and stores it in the service provider's payment account. Send an instruction to deposit money to the financial institution server.
1月に1回等の所定の周期で、支払・課金管理部28は、支払リストに基づき部品メーカごとの支払額を算出し、課金リストに基づき機器メーカごとの課金額を算出する。アカウント管理部27は、支払額をサービス提供者の決済口座から引き落とし、部品メーカの決済口座に入金する旨の指示、及び、課金額を機器メーカの決済口座から引き落とし、サービス提供者の決済口座に入金する旨の指示を金融機関のサーバに送信する。 When the
At a predetermined cycle such as once a month, the payment /
(実施形態の効果)
本実施形態の不具合情報活用支援装置2は、以下の効果を奏する。
(1)ユーザは、不具合の原因として、どの部品にどのようなストレスがかかると、不具合の結果として、どの部品にどのような故障が発生するかを示す因果モデルを、不具合情報から効率的に作成できる。
(2)ユーザは、FMEA表を作成する際、因果モデルを的確に検索することができる。
(3)ユーザは、因果モデルを検索する検索キーとして、既存の書類等に含まれる故障部品の名称等を使用できる。
(4)ユーザは、公開されている不具合情報を使用することができる。
(5)ユーザは、他の者から不具合情報を購入することができる。
(6)ユーザは、他の者に不具合情報活用支援装置を有料で使用させることができる。
(7)ユーザは、要素の候補から、部品又は現象を高い精度で決定できる。 (Effect of embodiment)
The defect informationutilization support device 2 of the present embodiment has the following effects.
(1) The user can efficiently generate a causal model indicating what kind of failure occurs in which component as a result of the failure when what stress is applied to which component as the cause of the failure. Can be created.
(2) The user can accurately search the causal model when creating the FMEA table.
(3) The user can use the name of a faulty part included in an existing document or the like as a search key for searching for a causal model.
(4) The user can use the disclosed defect information.
(5) The user can purchase defect information from another person.
(6) The user can cause another person to use the defect information utilization support apparatus for a fee.
(7) The user can determine a part or phenomenon from the candidate elements with high accuracy.
本実施形態の不具合情報活用支援装置2は、以下の効果を奏する。
(1)ユーザは、不具合の原因として、どの部品にどのようなストレスがかかると、不具合の結果として、どの部品にどのような故障が発生するかを示す因果モデルを、不具合情報から効率的に作成できる。
(2)ユーザは、FMEA表を作成する際、因果モデルを的確に検索することができる。
(3)ユーザは、因果モデルを検索する検索キーとして、既存の書類等に含まれる故障部品の名称等を使用できる。
(4)ユーザは、公開されている不具合情報を使用することができる。
(5)ユーザは、他の者から不具合情報を購入することができる。
(6)ユーザは、他の者に不具合情報活用支援装置を有料で使用させることができる。
(7)ユーザは、要素の候補から、部品又は現象を高い精度で決定できる。 (Effect of embodiment)
The defect information
(1) The user can efficiently generate a causal model indicating what kind of failure occurs in which component as a result of the failure when what stress is applied to which component as the cause of the failure. Can be created.
(2) The user can accurately search the causal model when creating the FMEA table.
(3) The user can use the name of a faulty part included in an existing document or the like as a search key for searching for a causal model.
(4) The user can use the disclosed defect information.
(5) The user can purchase defect information from another person.
(6) The user can cause another person to use the defect information utilization support apparatus for a fee.
(7) The user can determine a part or phenomenon from the candidate elements with high accuracy.
(8)ユーザは、不具合情報活用支援装置が作成した因果モデルを編集することができる。
(9)ユーザは、因果モデルのもととなった不具合情報を知ることができる。
(10)ユーザは、不都合の報告書をそのまま不都合情報として使用することができる。
(11)ユーザは、因果モデルの要素として、合成語を使用することができる。
(12)ユーザは、不都合情報が含む単語の品詞を高い精度で決定できる。 (8) The user can edit the causal model created by the defect information utilization support apparatus.
(9) The user can know the defect information that is the basis of the causal model.
(10) The user can use the inconvenience report as inconvenience information as it is.
(11) The user can use the synthesized word as an element of the causal model.
(12) The user can determine the part of speech of the word included in the inconvenience information with high accuracy.
(9)ユーザは、因果モデルのもととなった不具合情報を知ることができる。
(10)ユーザは、不都合の報告書をそのまま不都合情報として使用することができる。
(11)ユーザは、因果モデルの要素として、合成語を使用することができる。
(12)ユーザは、不都合情報が含む単語の品詞を高い精度で決定できる。 (8) The user can edit the causal model created by the defect information utilization support apparatus.
(9) The user can know the defect information that is the basis of the causal model.
(10) The user can use the inconvenience report as inconvenience information as it is.
(11) The user can use the synthesized word as an element of the causal model.
(12) The user can determine the part of speech of the word included in the inconvenience information with high accuracy.
なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
また、前記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウエアで実現してもよい。また、前記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウエアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。 Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
In addition, the control lines and information lines are those that are considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other.
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。 Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
In addition, the control lines and information lines are those that are considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other.
1 不具合情報活用支援システム
2 不具合情報活用支援装置
3 端末装置
11 中央制御装置(制御部)
12 入力装置
13 出力装置
14 主記憶装置(記憶部)
15 補助記憶装置(記憶部)
21 FMEA表作成部
22 因果モデル検索部
23 不具合情報登録部
24 公開不具合情報収集部
25 因果モデル抽出部
25a 因果モデル候補抽出部
25b 部品・現象判別部
26 因果モデル登録・編集部
27 アカウント管理部
28 支払・課金管理部
31 不具合情報データベース
32 因果モデルデータベース DESCRIPTION OFSYMBOLS 1 Defect information utilization support system 2 Defect information utilization support apparatus 3 Terminal apparatus 11 Central control apparatus (control part)
12Input device 13 Output device 14 Main storage device (storage unit)
15 Auxiliary storage device (storage unit)
DESCRIPTION OFSYMBOLS 21 FMEA table preparation part 22 Causal model search part 23 Defect information registration part 24 Public defect information collection part 25 Causal model extraction part 25a Causal model candidate extraction part 25b Parts / phenomenon discrimination part 26 Causal model registration / edit part 27 Account management part 28 Payment / Billing Management Department 31 Defect Information Database 32 Causal Model Database
2 不具合情報活用支援装置
3 端末装置
11 中央制御装置(制御部)
12 入力装置
13 出力装置
14 主記憶装置(記憶部)
15 補助記憶装置(記憶部)
21 FMEA表作成部
22 因果モデル検索部
23 不具合情報登録部
24 公開不具合情報収集部
25 因果モデル抽出部
25a 因果モデル候補抽出部
25b 部品・現象判別部
26 因果モデル登録・編集部
27 アカウント管理部
28 支払・課金管理部
31 不具合情報データベース
32 因果モデルデータベース DESCRIPTION OF
12
15 Auxiliary storage device (storage unit)
DESCRIPTION OF
Claims (14)
- 機器の不具合が項目ごとに文章で記述された不具合情報、及び、前記不具合情報に含まれる複数の単語を有する因果モデルが記憶される記憶部と、
前記単語が属する前記項目、及び、前記単語の品詞に応じて、前記因果モデルの原因側の要素の候補及び前記因果モデルの結果側の要素の候補を前記不具合情報に含まれる複数の単語から抽出し、
前記抽出した原因側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障発生要因部品及びストレスとして決定し、
前記抽出した結果側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障部品及び故障モードとして決定し、
前記決定した故障発生要因部品、ストレス、故障部品及び故障モードを有する前記因果モデルを前記記憶部に記憶する制御部と、
を備えることを特徴とする不具合情報活用支援装置。 A storage unit that stores the defect information in which the defect of the device is described in sentences for each item, and a causal model having a plurality of words included in the defect information;
In accordance with the item to which the word belongs and the part of speech of the word, the cause-side element candidate of the causal model and the result-side element candidate of the causal model are extracted from the plurality of words included in the defect information. And
Among the extracted cause-side element candidates, those having an expression tendency as a part and those having an expression tendency as a phenomenon are determined as a failure factor part and a stress, respectively.
Among the extracted result side element candidates, those having an expression tendency as a part and those having an expression tendency as a phenomenon are determined as a failure part and a failure mode, respectively.
A controller that stores the causal model having the determined failure factor component, stress, failure component, and failure mode in the storage unit;
A defect information utilization support device characterized by comprising: - 前記制御部は、
前記要素の入力を受け付け、
前記受け付けた要素を含む因果モデルを前記記憶部から取得し、
前記取得した因果モデルを出力し、
前記出力した因果モデルに対する追加情報の入力を受け付け、
前記出力した因果モデルに関連付けて、前記受け付けた追加情報を前記記憶部に記憶すること、
を特徴とする請求項1に記載の不具合情報活用支援装置。 The controller is
Accept input of the element,
Obtaining a causal model including the received element from the storage unit;
Outputting the acquired causal model,
Accepting input of additional information for the output causal model,
Storing the received additional information in the storage unit in association with the output causal model;
The defect information utilization support apparatus according to claim 1, wherein: - 前記制御部は、
前記要素の入力を受け付けるに際し、
予め指定されている書類又はデータに対してアクセスし、当該書類又はデータに含まれる前記要素を取得すること、
を特徴とする請求項2に記載の不具合情報活用支援装置。 The controller is
When receiving input of the element,
Accessing a pre-designated document or data and obtaining the elements contained in the document or data;
The defect information utilization support apparatus according to claim 2, wherein: - 前記制御部は、
公開されている前記不具合情報をネットワーク経由で取得すること、
を特徴とする請求項3に記載の不具合情報活用支援装置。 The controller is
Obtaining the disclosed defect information via a network;
The defect information utilization support apparatus according to claim 3, wherein: - 前記制御部は、
前記不具合情報をネットワーク経由で取得する場合は、前記不具合情報を提供する者に対して支払う金額を、前記取得した不具合情報の数に応じて算出すること、
を特徴とする請求項4に記載の不具合情報活用支援装置。 The controller is
When acquiring the defect information via a network, calculating an amount to be paid to a person providing the defect information according to the number of the acquired defect information;
The defect information utilization support apparatus according to claim 4, wherein: - 前記制御部は、
前記不具合情報活用支援装置をネットワーク経由で任意の者に使用させる場合は、前記任意の者に対し課する金額を、使用時間に応じて算出すること、
を特徴とする請求項5に記載の不具合情報活用支援装置。 The controller is
When allowing any person to use the defect information utilization support apparatus via a network, calculating the amount to be charged to the arbitrary person according to the usage time;
The defect information utilization support apparatus according to claim 5, wherein: - 前記制御部は、
前記表現傾向として、前記要素の候補が所定の語を直後に伴って出現する回数を算出すること、
を特徴とする請求項6に記載の不具合情報活用支援装置。 The controller is
Calculating the number of times that the candidate for the element appears immediately after a predetermined word as the expression tendency;
The defect information utilization support apparatus according to claim 6. - 前記制御部は、
前記記憶した因果モデルを画面表示し、
前記画面表示した因果モデルに対する編集を受け付けること、
を特徴とする請求項7に記載の不具合情報活用支援装置。 The controller is
The memorized causal model is displayed on the screen,
Accepting edits to the causal model displayed on the screen;
The defect information utilization support apparatus according to claim 7, wherein: - 前記制御部は、
前記不具合情報に関連付けて、前記不具合情報から作成された因果モデルを前記記憶部に記憶し、
前記出力した因果モデルのうち任意のものが選択されるのを受け付け、
前記選択された因果モデルに対応する前記不具合情報を取得し、
取得した前記不具合情報を出力すること、
を特徴とする請求項8に記載の不具合情報活用支援装置。 The controller is
In association with the defect information, the causal model created from the defect information is stored in the storage unit,
Accept that any one of the output causal models is selected,
Obtaining the defect information corresponding to the selected causal model;
Outputting the acquired defect information;
The defect information utilization support apparatus according to claim 8, wherein: - 前記項目は、
不具合の名称、不具合発生迄の経過、不具合の現象、不具合の原因、及び、不具合に対する対策を含むこと、
を特徴とする請求項9に記載の不具合情報活用支援装置。 Said item is
Including the name of the defect, the process up to the occurrence of the defect, the phenomenon of the defect, the cause of the defect, and the countermeasures for the defect,
The defect information utilization support apparatus according to claim 9. - 前記品詞は、
名詞であり、
前記単語は、
複数の連続する単語からなる合成語を含むこと、
を特徴とする請求項10に記載の不具合情報活用支援装置。 The part of speech is
A noun,
The word is
Contain a compound word consisting of multiple consecutive words,
The defect information utilization support apparatus of Claim 10 characterized by these. - 前記制御部は、
形態素解析を行うことによって前記品詞を決定すること、
を特徴とする請求項11に記載の不具合情報活用支援装置。 The controller is
Determining the part of speech by performing a morphological analysis;
The defect information utilization support apparatus according to claim 11, wherein: - 機器の不具合が項目ごとに文章で記述された不具合情報、及び、前記不具合情報に含まれる複数の単語を有する因果モデルが記憶される外部記憶装置と接続可能にされている不具合情報活用支援装置であって、
前記単語が属する前記項目、及び、前記単語の品詞に応じて、前記因果モデルの原因側の要素の候補及び前記因果モデルの結果側の要素の候補を前記不具合情報に含まれる複数の単語から抽出し、
前記抽出した原因側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障発生要因部品及びストレスとして決定し、
前記抽出した結果側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障部品及び故障モードとして決定し、
前記決定した故障発生要因部品、ストレス、故障部品及び故障モードを有する前記因果モデルを前記外部記憶装置に記憶する制御部を備えること、
を特徴とする不具合情報活用支援装置。 A defect information utilization support device that is connectable to an external storage device that stores defect information in which device defects are described in sentences for each item, and a causal model having a plurality of words included in the defect information. There,
In accordance with the item to which the word belongs and the part of speech of the word, the cause-side element candidate of the causal model and the result-side element candidate of the causal model are extracted from the plurality of words included in the defect information. And
Among the extracted cause-side element candidates, those having an expression tendency as a part and those having an expression tendency as a phenomenon are determined as a failure factor part and a stress, respectively.
Among the extracted result side element candidates, those having an expression tendency as a part and those having an expression tendency as a phenomenon are determined as a failure part and a failure mode, respectively.
A controller that stores the causal model having the determined failure factor component, stress, failure component, and failure mode in the external storage device;
Defect information utilization support device characterized by. - 不具合情報活用支援装置の記憶部は、
機器の不具合が項目ごとに文章で記述された不具合情報、及び、前記不具合情報に含まれる複数の単語を有する因果モデルを記憶しており、
前記不具合情報活用支援装置の制御部は、
前記単語が属する前記項目、及び、前記単語の品詞に応じて、前記因果モデルの原因側の要素の候補及び前記因果モデルの結果側の要素の候補を前記不具合情報に含まれる複数の単語から抽出し、
前記抽出した原因側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障発生要因部品及びストレスとして決定し、
前記抽出した結果側の要素の候補のうち、部品としての表現傾向を有するもの、及び、現象としての表現傾向を有するものを、それぞれ、故障部品及び故障モードとして決定し、
前記決定した故障発生要因部品、ストレス、故障部品及び故障モードを有する前記因果モデルを前記記憶部に記憶すること、
を特徴とする不具合情報活用支援装置の不具合情報活用支援方法。 The storage unit of the defect information utilization support device
The defect information in which the defect of the device is described in a sentence for each item, and the causal model having a plurality of words included in the defect information are stored,
The control unit of the defect information utilization support device,
In accordance with the item to which the word belongs and the part of speech of the word, the cause-side element candidate of the causal model and the result-side element candidate of the causal model are extracted from the plurality of words included in the defect information. And
Among the extracted cause-side element candidates, those having an expression tendency as a part and those having an expression tendency as a phenomenon are determined as a failure factor part and a stress, respectively.
Among the extracted result side element candidates, those having an expression tendency as a part and those having an expression tendency as a phenomenon are determined as a failure part and a failure mode, respectively.
Storing the causal model having the determined failure factor component, stress, failure component, and failure mode in the storage unit;
The defect information utilization support method of the defect information utilization support apparatus characterized by this.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015083930 | 2015-04-16 | ||
JP2015-083930 | 2015-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167057A1 true WO2016167057A1 (en) | 2016-10-20 |
Family
ID=57127245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/057388 WO2016167057A1 (en) | 2015-04-16 | 2016-03-09 | Trouble information utilization assist device and trouble information utilization assist method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016167057A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007072522A (en) * | 2005-09-02 | 2007-03-22 | Mazda Motor Corp | Quality improvement support system, and control method and control program therefor |
JP2010108478A (en) * | 2008-09-30 | 2010-05-13 | Nippon Steel Corp | Operation support method, operation support system, and computer program |
WO2012081080A1 (en) * | 2010-12-13 | 2012-06-21 | 株式会社日立製作所 | Design support system |
-
2016
- 2016-03-09 WO PCT/JP2016/057388 patent/WO2016167057A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007072522A (en) * | 2005-09-02 | 2007-03-22 | Mazda Motor Corp | Quality improvement support system, and control method and control program therefor |
JP2010108478A (en) * | 2008-09-30 | 2010-05-13 | Nippon Steel Corp | Operation support method, operation support system, and computer program |
WO2012081080A1 (en) * | 2010-12-13 | 2012-06-21 | 株式会社日立製作所 | Design support system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11341194B1 (en) | Models for classifying documents | |
US9922383B2 (en) | Patent claims analysis system and method | |
US11977571B2 (en) | Interactive patent visualization systems and methods | |
US20080172379A1 (en) | Recording medium storing a design support program, design support method, and design support apparatus | |
KR20180042710A (en) | Method and apparatus for managing a synonymous item based on analysis of similarity | |
JP2017041171A (en) | Test scenario generation support device and test scenario generation support method | |
JP4832952B2 (en) | Database analysis system, database analysis method and program | |
JP2007011604A (en) | Fault diagnostic system and program | |
US20230010680A1 (en) | Business Lines | |
JP6540384B2 (en) | Evaluation program, procedure manual evaluation method, and evaluation device | |
JP4954674B2 (en) | Software development support method, software development support device, software development support program, and computer system | |
JP2014164385A (en) | Requirement detection device and requirement detection program | |
JP5831625B2 (en) | Information analysis support device, information analysis support method, and information analysis support program | |
WO2016167057A1 (en) | Trouble information utilization assist device and trouble information utilization assist method | |
US20230143297A1 (en) | Production knowledge management system, production knowledge management method, and production knowledge management program | |
JP7491745B2 (en) | Fault countermeasure proposal device, fault countermeasure proposal method, and fault countermeasure proposal program | |
KR20230003184A (en) | information retrieval system | |
JP6861176B2 (en) | Project estimation support method and project estimation support device | |
US20070214166A1 (en) | Program analysis method and apparatus | |
JP2011086156A (en) | System and program for tracking of leaked information | |
JP4663526B2 (en) | Form creation support device, form creation support method, and form creation support program | |
KR102449580B1 (en) | The unstructured data analysis method using component network based analysis system | |
JP4908237B2 (en) | Development program component determination system, client device, development program component determination device, development program component determination method, and development program component determination program | |
JPWO2019030884A1 (en) | Reviewer management system and method | |
US20230090897A1 (en) | Data analysis requirement definition aid apparatus and data analysis requirement definition aid method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16779849 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16779849 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |