WO2016167005A1 - Light detecting device - Google Patents

Light detecting device Download PDF

Info

Publication number
WO2016167005A1
WO2016167005A1 PCT/JP2016/052641 JP2016052641W WO2016167005A1 WO 2016167005 A1 WO2016167005 A1 WO 2016167005A1 JP 2016052641 W JP2016052641 W JP 2016052641W WO 2016167005 A1 WO2016167005 A1 WO 2016167005A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
semiconductor
semiconductor substrate
electrode
region
Prior art date
Application number
PCT/JP2016/052641
Other languages
French (fr)
Japanese (ja)
Inventor
輝昌 永野
正吾 鎌倉
進也 岩科
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2016167005A1 publication Critical patent/WO2016167005A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details

Definitions

  • the present invention relates to a photodetection device.
  • a photodetection device including a semiconductor photodetection element and a mounting substrate on which the semiconductor photodetection element is arranged is known (for example, see Patent Document 1).
  • the semiconductor photodetecting element has a semiconductor substrate on which a photodiode array having a plurality of pixels is formed.
  • the semiconductor photodetecting element and the mounting substrate are opposed to each other.
  • the semiconductor substrate has a pair of first sides facing each other and a pair of second sides facing each other in plan view.
  • a notch is formed in a corner of a semiconductor substrate, that is, a corner formed by a first side and a second side.
  • a wire connecting the first electrode disposed on the semiconductor substrate and the second electrode disposed on the mounting substrate is disposed at the position of the notch.
  • the cutout is formed at one corner of the semiconductor substrate so as to cut into the inside of the semiconductor substrate in plan view.
  • the outer edge of the semiconductor substrate has not only the pair of first and second sides described above but also a pair of third sides extending in a direction intersecting each other.
  • the pair of third sides are orthogonal to each other.
  • the mechanical strength of the semiconductor substrate tends to decrease. For this reason, there exists a possibility that a crack may arise toward the inside of a semiconductor substrate from the angle
  • An object of one embodiment of the present invention is to provide a photodetector in which electrical connection between a semiconductor substrate and a mounting substrate is realized by a wire while suppressing a decrease in mechanical strength of the semiconductor substrate.
  • a light detection device electrically includes a semiconductor light detection element having a semiconductor substrate, a mounting substrate on which the semiconductor light detection element is disposed, and the semiconductor light detection element and the mounting substrate.
  • the semiconductor substrate is formed with a photodiode array having a plurality of pixels, and includes a first main surface and a second main surface facing each other.
  • the mounting substrate includes a third main surface facing the second main surface of the semiconductor substrate and a fourth main surface facing the third main surface.
  • the semiconductor substrate includes a pair of first sides facing each other, a pair of second sides facing each other, and a first side of the first side when viewed from the direction in which the first main surface and the second main surface are facing each other.
  • the semiconductor photodetecting element has a first electrode arranged on the first main surface side of the semiconductor substrate.
  • the first electrode is electrically connected to the plurality of pixels.
  • the mounting board has a second electrode arranged on the third main surface side.
  • the first wire has one end connected to the first electrode and the other end connected to the second electrode.
  • the first wire is disposed so as to intersect with the third side when viewed from the direction in which the first main surface and the second main surface are opposed to each other.
  • the first wire connecting the first electrode and the second electrode has a third side as viewed from the direction in which the first main surface and the second main surface face each other. It is arranged to intersect.
  • the signal of the photodiode array is taken out from the first main surface side of the semiconductor substrate and sent to the third main surface side of the mounting substrate. That is, the electrical connection between the semiconductor substrate and the mounting substrate is realized by the first wire.
  • the third side is connected to one end of one first side and one end of one second side. That is, the third side extends in one direction intersecting one first side and one second side.
  • the notch formed in the semiconductor substrate in the photodetecting device described in Patent Document 1 is not formed in the semiconductor substrate, the mechanical strength of the semiconductor substrate is reduced. Is suppressed.
  • the corner formed by the first side and the third side and the corner formed by the second side and the third side in the semiconductor substrate are viewed from the direction in which the first main surface and the second main surface face each other.
  • a recess may be formed along each corner. In this case, it is possible to suppress the occurrence of chipping at each corner.
  • a metal film may be disposed at a corner portion formed by the first side and the third side and a corner portion formed by the second side and the third side in the semiconductor substrate. In this case, since the mechanical strength of each corner is improved, the occurrence of chipping at each corner can be suppressed.
  • the length of the third side may be shorter than the lengths of the first side and the second side. In this case, a decrease in the area of the region (effective region) where a plurality of pixels are located is suppressed.
  • the photodetecting device may include a second wire that electrically connects the semiconductor photodetecting element and the mounting substrate.
  • the semiconductor photodetecting element has a third electrode arranged on the first main surface side of the semiconductor substrate, and the mounting substrate has a fourth electrode arranged on the third main surface side. Yes.
  • the third electrode is electrically connected to the semiconductor substrate.
  • the second wire has one end connected to the third electrode and the other end connected to the fourth electrode.
  • the second wire may be arranged so as to intersect the third side when viewed from the direction in which the first main surface and the second main surface are opposed to each other.
  • a predetermined potential for example, a cathode potential
  • the electrical connection between the semiconductor substrate and the mounting substrate is realized by the second wire.
  • the semiconductor substrate has a fourth side connected to one end of the other first side and one end of the other second side when viewed from the direction in which the first main surface and the second main surface face each other. You may do it.
  • the second wire may be arranged so as to intersect the fourth side when viewed from the direction in which the first main surface and the second main surface are opposed to each other.
  • a predetermined potential for example, a cathode potential
  • the fourth side is connected to one end of one side and one end of the other second side. That is, the fourth side extends in one direction intersecting the other first side and the other second side. Therefore, in this embodiment, since the notch formed in the semiconductor substrate is not formed in the semiconductor substrate in the photodetector described in Patent Document 1, a decrease in the mechanical strength of the semiconductor substrate is suppressed. Yes.
  • the corner formed by the first side and the fourth side of the semiconductor substrate and the corner formed by the second side and the fourth side are viewed from the direction in which the first main surface and the second main surface are opposed to each other.
  • a recess may be formed along each corner. In this case, it is possible to suppress the occurrence of chipping at each corner.
  • a metal film may be disposed at a corner portion formed by the first side and the fourth side and a corner portion formed by the second side and the fourth side in the semiconductor substrate. In this case, since the mechanical strength of each corner is improved, the occurrence of chipping at each corner can be suppressed.
  • the length of the fourth side may be shorter than the lengths of the first side and the second side. In this case, a decrease in the area of the region (effective region) where a plurality of pixels are located is suppressed.
  • the light detection device may include a plurality of semiconductor light detection elements.
  • the plurality of semiconductor photodetecting elements are arranged on the mounting substrate so that the second main surface and the third main surface face each other, and for each semiconductor photodetecting element, the first electrode and the second electrode May be connected via the first wire.
  • the photodetecting device since the photodetecting device includes a plurality of semiconductor photodetecting elements, the area of the light receiving region of the photodetecting device can be increased.
  • the photodiode array operates in Geiger mode and is connected to a plurality of avalanche photodiodes formed in the semiconductor substrate in series with each avalanche photodiode and arranged on the first main surface side of the semiconductor substrate.
  • the quenching resistor and the signal line connected to the quenching resistor in parallel and disposed on the first main surface side of the semiconductor substrate may be connected to the first electrode.
  • the photodiode array when the avalanche photodiode constituting the pixel detects a photon and performs Geiger discharge, a pulse-like signal is obtained by the action of the quenching resistor connected to the avalanche photodiode.
  • Each avalanche photodiode counts photons. Therefore, even when a plurality of photons are incident at the same timing, the number of incident photons is determined according to the output charge amount or the signal intensity of the total output pulse.
  • a photodetecting device in which the electrical connection between the semiconductor substrate and the mounting substrate is realized by the wire while suppressing the decrease in the mechanical strength of the semiconductor substrate.
  • FIG. 1 is a schematic perspective view showing a photodetecting device according to the present embodiment.
  • FIG. 2 is a diagram for explaining the arrangement of the semiconductor photodetector elements.
  • FIG. 3 is a diagram for explaining a cross-sectional configuration of the photodetecting device according to the present embodiment.
  • FIG. 4 is a schematic plan view of the semiconductor photodetecting element.
  • FIG. 5 is a diagram showing the configuration of the semiconductor photodetecting element around the third side.
  • FIG. 6 is a circuit diagram of the photodetector.
  • the photodetecting device 1 includes a plurality of semiconductor photodetecting elements 10, a mounting substrate 20, and a plurality of scintillators 30.
  • the plurality of semiconductor photodetecting elements 10 are disposed on the mounting substrate 20 and face the mounting substrate 20.
  • the plurality of semiconductor photodetecting elements 10 are molded with resin (for example, epoxy resin) 11.
  • resin for example, epoxy resin
  • the number of semiconductor photodetector elements 10 is “16”
  • the number of scintillators 30 is “16”.
  • Each semiconductor light detecting element 10 has one photodiode array PDA.
  • the semiconductor photodetector 10 has a semiconductor substrate 1N.
  • the semiconductor substrate 1N has a rectangular shape in plan view.
  • the semiconductor substrate 1N includes a main surface 1Na and a main surface 1Nb facing each other.
  • the semiconductor substrate 1N is an N-type (first conductivity type) semiconductor substrate made of Si.
  • the semiconductor substrate 1N has a polygonal shape when viewed from the facing direction.
  • the semiconductor substrate 1N has a pentagonal shape when viewed from the facing direction. That is, the semiconductor substrate 1N has a pair of first sides 1N1, a pair of second sides 1N2, and a third side 1N3 as outer edges when viewed from the opposite direction, as shown in FIG. is doing.
  • the pair of first sides 1N1 face each other and are parallel to each other.
  • the pair of second sides 1N2 face each other and are parallel to each other.
  • the third side 1N3 is connected to one first side 1N1 and one second side 1N2.
  • the third side 1N3 extends in one direction intersecting one first side 1N1 and one second side 1N2. That is, the third side 1N3 is located between one first side 1N1 and one second side 1N2.
  • first side 1N1 and one end of the third side 1N3 are connected.
  • the angle formed by the first side 1N1 and the third side 1N3 is, for example, 135 °.
  • One end of one second side 1N2 and the other end of third side 1N3 are connected.
  • the angle formed by the second side 1N2 and the third side 1N3 is, for example, 135 °.
  • the other end of one first side 1N1 and one end of the other second side 1N2 are connected.
  • the other end of one second side 1N2 and one end of the other first side 1N1 are connected.
  • the other end of the other first side 1N1 and the other end of the other second side 1N2 are connected.
  • the first side 1N1 and the second side 1N2 are orthogonal to each other.
  • the length of the third side 1N3 is shorter than the lengths of the first side 1N1 and the second side 1N2.
  • the length of one first side 1N1 is shorter than the length of the other first side 1N1.
  • the length of one second side 1N2 is shorter than the length of the other second side 1N2.
  • the length of one first side 1N1 is equal to the length of one second side 1N2
  • the length of the other first side 1N1 is equal to the length of the other second side 1N2.
  • the photodiode array PDA includes a plurality of avalanche photodiodes APD.
  • the plurality of avalanche photodiodes APD are formed on the semiconductor substrate 1N.
  • One avalanche photodiode APD constitutes one pixel in the photodiode array PDA.
  • the plurality of avalanche photodiodes APD are arranged two-dimensionally when viewed from the direction in which the main surface 1Na and the main surface 1Nb face each other (hereinafter simply referred to as “opposing direction”).
  • the semiconductor substrate 1N has a first region RS1 and a second region RS2 as shown in FIG.
  • a plurality of avalanche photodiodes APD are arranged in the first region RS1.
  • the second region RS2 is located outside the first region RS1 and in the vicinity of the third side 1N3 when viewed from the facing direction.
  • the second region RS2 has, for example, a triangular shape in plan view. In FIG. 4, the facing direction coincides with the Z-axis direction.
  • a quenching resistor R1 is connected in series to each avalanche photodiode APD. All the avalanche photodiodes APD are all connected in parallel in such a manner that each avalanche photodiode APD is connected in series with the quenching resistor R1.
  • a reverse bias voltage is applied from each power source to each avalanche photodiode APD.
  • the output current from the avalanche photodiode APD is detected by a signal processing unit SP described later.
  • Each avalanche photodiode APD has a P-type (second conductivity type) first semiconductor region 1PA and a P-type second semiconductor region 1PB.
  • the first semiconductor region 1PA is formed on the main surface 1Na side of the semiconductor substrate 1N.
  • the second semiconductor region 1PB is formed in the first semiconductor region 1PA and has an impurity concentration higher than that of the first semiconductor region 1PA.
  • the planar shape of the second semiconductor region 1PB is, for example, a polygon (in this embodiment, a quadrangle).
  • the depth of the first semiconductor region 1PA is larger than the depth of the second semiconductor region 1PB.
  • the semiconductor substrate 1N has an N-type semiconductor region 1PC.
  • the semiconductor region 1PC is formed on the main surface 1Na side of the semiconductor substrate 1N.
  • the semiconductor region 1PC prevents a PN junction formed between the N-type semiconductor substrate 1N and the P-type first semiconductor region 1PA from being exposed at the end of the semiconductor substrate 1N.
  • the semiconductor region 1PC is formed at a position corresponding to the end of the semiconductor substrate 1N.
  • the avalanche photodiode APD has an electrode E1 arranged on the main surface 1Na side of the semiconductor substrate 1N.
  • the electrode E1 is electrically connected to the second semiconductor region 1PB.
  • the avalanche photodiode APD has an electrode E2 disposed on the main surface 1Nb side of the semiconductor substrate 1N.
  • the electrode E2 is electrically connected to the semiconductor substrate 1N.
  • the first semiconductor region 1PA is electrically connected to the electrode E1 through the second semiconductor region 1PB.
  • the photodiode array PDA includes a signal line TL and an electrode E3 as shown in FIG.
  • the signal line TL and the electrode E3 are formed on the semiconductor substrate 1N outside the second semiconductor region 1PB via the insulating layer L1.
  • the signal line TL and the electrode E3 are disposed on the main surface 1Na side of the semiconductor substrate 1N.
  • the electrode E3 is located in the second region RS2.
  • the signal line TL is connected to the electrode E3.
  • the signal line TL includes a plurality of signal lines TL1 and a plurality of signal lines TL2.
  • Each signal line TL1 is disposed along the Y-axis direction between the avalanche photodiodes APD adjacent in the X-axis direction in plan view.
  • Each signal line TL2 is disposed between the avalanche photodiodes APD adjacent in the Y-axis direction along the X-axis direction.
  • Each signal line TL2 electrically connects a plurality of signal lines TL1.
  • the signal line TL1 and the signal line TL2 are connected to the electrode E3. Either one of the signal line TL1 and the signal line TL2 may be connected to the electrode E3.
  • the photodiode array PDA has a quenching resistor R1 for each avalanche photodiode APD.
  • the quenching resistor R1 is formed on the semiconductor substrate 1N via the insulating layer L1.
  • Quenching resistor R1 is arranged on the main surface 1Na side of semiconductor substrate 1N.
  • One end of the quenching resistor R1 is connected to the electrode E1.
  • the other end of the quenching resistor R1 is connected to the signal line TL1.
  • the quenching resistor R1 is located on the semiconductor substrate 1N outside the second semiconductor region 1PB.
  • FIG. 5 the description of the insulating layers L1 and L3 shown in FIG. 3 is omitted for clarity of the structure.
  • Each avalanche photodiode APD (region immediately below the first semiconductor region 1PA) is connected to the signal line TL1 through the electrode E1 and the quenching resistor R1.
  • a plurality of avalanche photodiodes APD are connected to one signal line TL1 through an electrode E1 and a quenching resistor R1, respectively.
  • the quenching resistor R1 is electrically connected to the electrode E3 via the signal line TL. That is, each avalanche photodiode APD (each pixel) is electrically connected to the electrode E3.
  • An insulating layer L3 is disposed on the main surface 1Na side of the semiconductor substrate 1N.
  • the insulating layer L3 is formed so as to cover the electrodes E1 and E3, the quenching resistor R1, and the signal line TL.
  • the quenching resistor R1 has a higher resistivity than the electrode E1 to which the quenching resistor R1 is connected.
  • Quenching resistor R1 is made of polysilicon, for example.
  • a CVD (Chemical Vapor Deposition) method can be used as a method for forming the quenching resistor R1.
  • the electrodes E1, E2, E3 and the signal line TL are made of metal (for example, Al).
  • metal for example, Al
  • AuGe / Ni is also used as the electrode material in addition to Al.
  • a sputtering method can be used as a method of forming the electrodes E1, E2, E3 and the signal line TL.
  • a Group 3 element for example, B
  • a Group 5 element for example, N, P, or As
  • the element functions as a semiconductor photodetector element.
  • a diffusion method or an ion implantation method can be used as a method for adding these impurities.
  • the insulating layers L1 and L3 As a material of the insulating layers L1 and L3, SiO 2 or SiN can be used. If the insulating layer L1, L3 consists of SiO 2, the method for forming the insulating layer L1, L3, it is possible to use a thermal oxidation method or a sputtering method.
  • an avalanche photodiode APD is formed by forming a PN junction between the N-type semiconductor substrate 1N and the P-type first semiconductor region 1PA.
  • the semiconductor substrate 1N is electrically connected to an electrode E2 formed on the main surface 1Nb of the semiconductor substrate 1N.
  • the first semiconductor region 1PA is connected to the electrode E1 through the second semiconductor region 1PB.
  • the quenching resistor R1 is connected in series with the avalanche photodiode APD (see FIG. 6).
  • each avalanche photodiode APD operates in Geiger mode.
  • a reverse voltage (reverse bias voltage) larger than the breakdown voltage of the avalanche photodiode APD is applied between the anode and the cathode of the avalanche photodiode APD. That is, the ( ⁇ ) potential V1 is applied to the anode, and the (+) potential V2 is applied to the cathode.
  • the polarities of these potentials are relative, and one potential may be a ground potential.
  • the anode is a P-type first semiconductor region 1PA
  • the cathode is an N-type semiconductor substrate 1N.
  • photoelectric conversion is performed inside the substrate to generate photoelectrons.
  • Avalanche multiplication is performed in a region near the PN junction interface of the first semiconductor region 1PA, and the multiplied electron group flows toward the electrode E2. That is, when light (photon) is incident on any pixel (avalanche photodiode APD) of the photodiode array PDA, it is multiplied and extracted from the electrode E3 as a signal.
  • each avalanche photodiode APD operates in the Geiger mode and is connected to a common signal line TL. For this reason, when photons simultaneously enter a plurality of avalanche photodiodes APD, the outputs of the plurality of avalanche photodiodes APD are all input to a common signal line TL. Therefore, the photodiode array PDA measures a high-intensity signal corresponding to the number of incident photons. In each semiconductor photodetector 10 (each photodiode array PDA), a signal is output through the electrode E3.
  • the mounting substrate 20 has a main surface 20a and a main surface 20b facing each other as shown in FIG.
  • the mounting substrate 20 has a rectangular shape in plan view.
  • Main surface 20a is opposed to main surface 1Nb of semiconductor substrate 1N.
  • Each semiconductor photodetecting element 10 is arranged on the mounting substrate 20 so that the main surface 1Nb and the main surface 20a of the semiconductor substrate 1N face each other.
  • Each semiconductor photodetecting element 10 is two-dimensionally arranged on the mounting substrate 20.
  • the mounting substrate 20 includes a plurality of electrodes E5 and a plurality of electrodes E7.
  • the electrode E5 and the electrode E7 are disposed at positions corresponding to the respective semiconductor light detection elements 10 (each photodiode array PDA).
  • the electrode E5 and the electrode E7 are disposed on the main surface 20a side.
  • the electrode E5 is disposed outside the semiconductor substrate 1N and in the vicinity of the third side 1N3 when viewed from the facing direction. That is, the electrode E5 is formed on a region located in the vicinity of the third side 1N3 on the main surface 20a. The electrode E5 is exposed from the semiconductor substrate 1N when viewed from the facing direction.
  • the facing direction coincides with the direction in which the main surface 20a and the main surface 20b face each other.
  • the electrode E7 is arrange
  • the mounting substrate 20 includes a plurality of electrodes E6 and a plurality of electrodes E8.
  • the electrode E6 and the electrode E8 are disposed on the main surface 20b side.
  • the electrode E6 is electrically connected to the corresponding electrode E5.
  • the electrode E8 is electrically connected to the corresponding electrode E7.
  • the electrodes E5, E6, E7, and E8 are also made of metal (for example, Al).
  • AuGe / Ni may be used in addition to Al.
  • the electrode E3 and the electrode E5 are connected by a bonding wire W1. That is, the bonding wire W1 has one end connected to the electrode E3 and the other end connected to the electrode E5. Thereby, the electrode E3 is electrically connected to the electrode E5 via the bonding wire W1.
  • the bonding wire W1 extends so as to straddle the third side 1N3 when viewed from the facing direction. That is, the bonding wire W1 is disposed so as to intersect with the third side 1N3 when viewed from the facing direction.
  • the bonding wire W1 is made of, for example, Al, Cu, or Au.
  • the quenching resistor R1 is electrically connected to the electrode E5 via the signal line TL, the electrode E3, and the bonding wire W1.
  • the electrode E2 and the electrode E7 are connected by a conductive resin 21, for example. Thereby, the electrode E2 is electrically connected to the electrode E7 through the conductive resin 21.
  • the conductive resin 21 includes a conductive filler and a resin. For example, Ag powder is used as the conductive filler.
  • the signal processing unit SP is disposed on the main surface 20b side of the mounting substrate 20, for example.
  • the signal processing unit SP constitutes an ASIC (Application Specific Integrated Circuit).
  • Each electrode E6 is electrically connected to the signal processing unit SP via a wiring formed on the mounting substrate 20, a bonding wire (both not shown), and the like.
  • An output signal from each semiconductor photodetector 10 (each photodiode array PDA) is input to the signal processing unit SP, and the signal processor SP processes an output signal from each semiconductor photodetector 10.
  • the signal processing unit SP includes a CMOS circuit that converts an output signal from each semiconductor photodetecting element 10 into a digital pulse.
  • the signal processing unit SP may be disposed on a substrate different from the mounting substrate 20.
  • Each scintillator 30 is optically connected to the resin 11 by an optical adhesive 31.
  • the scintillator 30 is disposed at a position corresponding to each semiconductor light detection element 10 (each photodiode array PDA).
  • the scintillation light from the scintillator passes through the optical adhesive 31 and the resin 11 and enters the semiconductor light detection element 10.
  • the number of scintillators 30 is the same as the number of semiconductor photodetecting elements 10, and the scintillator 30 and the semiconductor photodetecting elements 10 are in a one-to-one correspondence.
  • the bonding wire W1 connecting the electrode E3 and the electrode E5 extends so as to straddle the third side 1N3 when viewed from the facing direction. That is, the bonding wire W1 is disposed so as to intersect with the third side 1N3 when viewed from the facing direction. Thereby, the signal of the photodiode array PDA is extracted from the main surface 1Na side of the semiconductor substrate 1N and sent to the main surface 20a side of the mounting substrate 20.
  • the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W1.
  • the third side 1N3 is connected to one end of one first side 1N1 and one end of one second side 1N2. That is, the third side 1N3 extends in one direction intersecting one first side 1N1 and one second side 1N2. Therefore, the semiconductor substrate 1N is not formed with a notch that is formed in the semiconductor substrate in the photodetector described in Patent Document 1. For this reason, in the photodetection device 1, a decrease in the mechanical strength of the semiconductor substrate 1N is suppressed.
  • the length of the third side 1N3 is shorter than the lengths of the first side 1N1 and the second side 1N2. Thereby, the fall of the area of 1st area
  • region RS1 is suppressed.
  • the first region RS1 is a region (effective region) where a plurality of pixels (a plurality of avalanche photodiodes APD) are located.
  • the light detection device 1 includes a plurality of semiconductor light detection elements 10.
  • Each semiconductor photodetecting element 10 is arranged on the mounting substrate 20 so that the main surface 1Nb of the semiconductor substrate 1N and the main surface 20a of the mounting substrate 20 face each other.
  • an electrode E3 and an electrode E5 are connected via a bonding wire W1. Since the light detection device 1 includes the plurality of semiconductor light detection elements 10, the area of the light receiving region of the light detection device 1 can be increased.
  • each photodiode array PDA when the avalanche photodiode APD constituting the pixel detects photons and performs Geiger discharge, a pulsed signal is obtained by the action of the quenching resistor R1 connected to the avalanche photodiode APD.
  • Each avalanche photodiode APD counts photons. Therefore, even when a plurality of photons are incident at the same timing, the number of incident photons is determined according to the output charge amount or the signal intensity of the total output pulse.
  • the semiconductor photodetecting element 10 and the scintillator 30 are tiled on the mounting substrate 20 in such a manner that the semiconductor photodetecting element 10 and the scintillator 30 are coupled on a one-to-one basis.
  • the semiconductor photodetecting elements 10 adjacent in the X-axis direction are tiled so that the first sides 1N1 face each other.
  • the semiconductor photodetecting elements 10 adjacent in the Y-axis direction are tiled so that the second side 1N2 faces each other.
  • FIG. 7 is a schematic perspective view of the semiconductor photodetector element around the third side.
  • the semiconductor photodetecting element 10 semiconductor substrate 1N
  • the semiconductor photodetecting element 10 semiconductor substrate 1N
  • the depressions 3 and 5 are formed on the main surface 1Na side of the semiconductor substrate 1N.
  • the recess 3 is formed at a corner formed by the first side 1N1 and the third side 1N3.
  • the recess 5 is formed at a corner formed by the second side 1N2 and the third side 1N3.
  • a step is formed by a recess 3 at a corner formed by the first side 1N1 and the third side 1N3.
  • a step is formed by a recess 5 at a corner formed by the second side 1N2 and the third side 1N3.
  • the depressions 3 and 5 are constituted by slits 45 described later.
  • the depression 3 is formed along a corner formed by the first side 1N1 and the third side 1N3 when viewed from the facing direction. That is, the recess 3 has a region along the first side 1N1 and a region along the third side 1N3 when viewed from the facing direction.
  • the depression 5 is formed along a corner formed by the second side 1N2 and the third side 1N3 when viewed from the facing direction. That is, the recess 5 has a region along the second side 1N2 and a region along the third side 1N3 when viewed from the facing direction.
  • the depression 3 is formed at the corner formed by the first side 1N1 and the third side 1N3, it is possible to suppress chipping from occurring at the corner. Since the recess 5 is formed at the corner formed by the second side 1N2 and the third side 1N3, it is possible to suppress chipping from occurring at the corner.
  • FIG. 8 is a schematic perspective view of the semiconductor photodetector element around the third side.
  • the semiconductor photodetecting element 10 semiconductor substrate 1N is schematically shown.
  • metal films 7 and 9 are disposed on the main surface 1Na side of the semiconductor substrate 1N.
  • the metal film 7 is disposed at a corner formed by the first side 1N1 and the third side 1N3.
  • the metal film 9 is disposed at a corner formed by the second side 1N2 and the third side 1N3.
  • the metal film 7 has a side along a direction parallel to the first side 1N1 and a side along a direction parallel to the third side 1N3 when viewed from the facing direction.
  • the metal film 9 has a side along a direction parallel to the second side 1N2 and a side along a direction parallel to the third side 1N3 when viewed from the facing direction.
  • each of the metal films 7 and 9 has a pentagonal shape in plan view.
  • the metal films 7 and 9 are made of, for example, Al, Au, or Cu.
  • the metal films 7 and 9 are constituted by a metal film 47 described later.
  • the metal film 7 is disposed at the corner formed by the first side 1N1 and the third side 1N3, the mechanical strength of the corner is improved. Thereby, it can suppress that a chipping arises in the corner
  • the metal film 9 is disposed at the corner formed by the second side 1N2 and the third side 1N3, the mechanical strength of the corner is improved. Thereby, it can suppress that a chipping arises in the corner
  • FIG. 9 is a diagram for explaining the arrangement of the semiconductor photodetecting elements according to this modification.
  • FIG. 10 is a diagram for explaining a cross-sectional configuration of the light detection device according to the present modification.
  • FIG. 11 is a schematic plan view of the semiconductor photodetecting element.
  • FIG. 12 is a schematic diagram showing the configuration of the semiconductor photodetector element around the third side.
  • the semiconductor photodetecting element 10 has an electrode E9 disposed on the main surface 1Na side of the semiconductor substrate 1N, as shown in FIG.
  • the electrode E9 is connected to the N-type semiconductor region 1PC through a via formed in the insulating layer L1.
  • the electrode E9 is electrically connected to the semiconductor substrate 1N through the semiconductor region 1PC.
  • the electrode E9 is located in the second region RS2.
  • the electrode E9 and the electrode E3 are arranged along the third side 1N3 when viewed from the facing direction.
  • the cross-sectional configuration including the electrode E3 is the same as that of the above-described embodiment (see FIG. 3), and the illustration is omitted.
  • the electrode E7 has a pad portion E7p. As shown in FIGS. 11 and 12, the pad portion E7p is disposed outside the semiconductor substrate 1N and in the vicinity of the third side 1N3 when viewed from the facing direction. That is, the pad portion E7p is formed on a region located in the vicinity of the third side 1N3 on the main surface 20a. The pad portion E7p is exposed from the semiconductor substrate 1N when viewed from the facing direction. The pad portion E7p and the electrode E5 are arranged along the third side 1N3 when viewed from the facing direction.
  • the electrode E9 and the pad portion E7p are connected by a bonding wire W2. That is, the bonding wire W2 has one end connected to the electrode E9 and the other end connected to the pad portion E7p. Thereby, the electrode E9 is electrically connected to the electrode E7 via the bonding wire W2.
  • the semiconductor substrate 1N is electrically connected to the electrode E7 via the semiconductor region 1PC, the electrode E9, and the bonding wire W2. Similar to the bonding wire W1, the bonding wire W2 extends so as to straddle the third side 1N3 when viewed from the facing direction. That is, the bonding wire W2 is also arranged so as to intersect with the third side 1N3 when viewed from the opposing direction.
  • the bonding wire W1 and the bonding wire W2 are arranged in a direction intersecting the third side 1N3 when viewed from the facing direction.
  • the bonding wire W2 is made of, for example, Al, Cu, Au, or the like, similar to the bonding wire W1.
  • the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W1. A decrease in mechanical strength of the semiconductor substrate 1N is suppressed.
  • the electrode E9 and the electrode E7 are connected via a bonding wire W2.
  • the cathode potential can be appropriately applied to the semiconductor substrate 1N through the bonding wire W2 and the electrode E9. That is, in this modification, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W2.
  • the electrode E2 may not be disposed on the main surface 1Nb side of the semiconductor substrate 1N. That is, the main surface 1Nb of the semiconductor substrate 1N may be directly connected to the electrode E7 by the conductive resin 21. In this case, an electrode for applying a cathode potential to the semiconductor substrate 1N does not need to be disposed on the main surface 1Nb side of the semiconductor substrate 1N, and the manufacturing cost of the semiconductor photodetector 10 is reduced.
  • the semiconductor substrate 1N is electrically connected to the electrode E7 through the conductive resin 21.
  • FIG. 13 is a diagram for explaining the arrangement of the semiconductor photodetecting elements according to the present modification.
  • FIG. 14 is a diagram for explaining a cross-sectional configuration of the light detection device according to the present modification.
  • FIG. 15 is a schematic plan view of the semiconductor photodetector element.
  • FIG. 16 is a schematic diagram showing the configuration of the semiconductor photodetector element around the fourth side. Also in this modification, the cross-sectional configuration including the electrode E3 is the same as that of the above-described embodiment (see FIG. 3), and the illustration is omitted.
  • the semiconductor substrate 1N has a hexagonal shape when viewed from the facing direction. That is, the semiconductor substrate 1N has a pair of first sides 1N1, a pair of second sides 1N2, a third side 1N3, and a fourth side 1N4 as outer edges when viewed from the opposite direction. is doing.
  • the pair of first sides 1N1 face each other and are parallel to each other.
  • the pair of second sides 1N2 face each other and are parallel to each other.
  • the third side 1N3 and the fourth side 1N4 face each other and are parallel to each other.
  • the fourth side 1N4 is connected to the other first side 1N1 and the other second side 1N2.
  • the fourth side 1N4 extends in one direction intersecting the other first side 1N1 and the other second side 1N2. That is, the fourth side 1N4 is located between the other first side 1N1 and the other second side 1N2.
  • the other end of the other first side 1N1 and one end of the fourth side 1N4 are connected.
  • the angle formed by the first side 1N1 and the fourth side 1N4 is, for example, 135 °.
  • the other end of the other second side 1N2 and the other end of the fourth side 1N4 are connected.
  • the angle formed by the second side 1N2 and the fourth side 1N4 is, for example, 135 °.
  • the length of the third side 1N3 but also the length of the fourth side 1N4 is shorter than the lengths of the first side 1N1 and the second side 1N2.
  • the length of the third side 1N3 and the length of the fourth side 1N4 are equivalent.
  • the length of the third side 1N3 and the length of the fourth side 1N4 may not be the same or may be different.
  • the semiconductor substrate 1N has a first region RS1, a second region RS2, and a third region RS3 as shown in FIG.
  • the third region RS3 is located outside the first region RS1 and in the vicinity of the fourth side 1N4 when viewed from the facing direction. That is, the third region RS3 is located so as to face the second region RS2 across the first region RS1 when viewed from the facing direction.
  • the third region RS3 has, for example, a triangular shape in plan view. In FIG. 15, the facing direction coincides with the Z-axis direction.
  • the electrode E9 is located in the third region RS3.
  • the pad portion E7p of the electrode E7 is disposed outside the semiconductor substrate 1N and in the vicinity of the fourth side 1N4 when viewed from the facing direction. That is, the pad portion E7p is formed on a region located in the vicinity of the fourth side 1N4 on the main surface 20a.
  • the bonding wire W2 extends so as to straddle the fourth side 1N4 when viewed from the facing direction. That is, the bonding wire W2 is disposed so as to intersect the fourth side 1N4 when viewed from the facing direction.
  • the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wires W1 and W2.
  • a decrease in mechanical strength of the semiconductor substrate 1N is suppressed.
  • the electrode E2 may not be disposed on the main surface 1Nb side of the semiconductor substrate 1N. In this case, the manufacturing cost of the semiconductor photodetector 10 is reduced.
  • the length of the fourth side 1N4 is shorter than the lengths of the first side 1N1 and the second side 1N2. Thereby, the fall of the area of 1st area
  • region RS1 is suppressed.
  • FIG. 17 is a schematic perspective view of the semiconductor photodetector element around the fourth side.
  • the semiconductor photodetecting element 10 semiconductor substrate 1N is schematically shown.
  • depressions 13 and 15 are formed on the main surface 1Na side of the semiconductor substrate 1N.
  • the recess 13 is formed at a corner formed by the first side 1N1 and the fourth side 1N4.
  • the recess 15 is formed at a corner formed by the second side 1N2 and the fourth side 1N4.
  • a step is formed by a recess 13 at a corner formed by the first side 1N1 and the fourth side 1N4.
  • a step is formed by a recess 15 at a corner formed by the second side 1N2 and the fourth side 1N4.
  • the above-described recesses 3 and 5 may be formed in the semiconductor substrate 1N.
  • the depression 13 is formed along a corner formed by the first side 1N1 and the fourth side 1N4 when viewed from the facing direction. That is, the depression 13 has a region along the first side 1N1 and a region along the fourth side 1N4 when viewed from the facing direction.
  • the recess 15 is formed along a corner formed by the second side 1N2 and the fourth side 1N4 when viewed from the facing direction. That is, the recess 15 has a region along the second side 1N2 and a region along the fourth side 1N4 when viewed from the facing direction.
  • the depression 13 is formed at the corner formed by the first side 1N1 and the fourth side 1N4, it is possible to suppress chipping from occurring at the corner.
  • the depression 15 is formed at the corner formed by the second side 1N2 and the fourth side 1N4, it is possible to suppress chipping from occurring at the corner.
  • FIG. 18 is a schematic perspective view of the semiconductor photodetector element around the fourth side.
  • the semiconductor photodetecting element 10 semiconductor substrate 1N
  • the semiconductor photodetecting element 10 semiconductor substrate 1N
  • metal films 17 and 19 are arranged on the main surface 1Na side of the semiconductor substrate 1N.
  • the metal film 17 is disposed at a corner formed by the first side 1N1 and the fourth side 1N4.
  • the metal film 19 is disposed at a corner formed by the second side 1N2 and the fourth side 1N4.
  • illustration is omitted, the metal films 7 and 9 described above may be formed on the semiconductor substrate 1N.
  • the metal film 17 has a side along the first side 1N1 and a side along the fourth side 1N4 when viewed from the facing direction.
  • the metal film 19 has a side along the second side 1N2 and a side along the fourth side 1N4 when viewed from the facing direction. In this modification, the metal films 17 and 19 have a pentagonal shape in plan view.
  • the metal films 17 and 19 are made of, for example, Al, Au, or Cu, as with the metal films 7 and 9.
  • the metal film 17 is disposed at the corner formed by the first side 1N1 and the fourth side 1N4, the mechanical strength of the corner is improved. Thereby, it can suppress that a chipping arises in the corner
  • FIG. 19 is a schematic perspective view showing a light detection device according to a modification of the present embodiment.
  • 20 to 22 are schematic plan views of the semiconductor photodetector element.
  • the photodetection device 1 includes one semiconductor photodetection element 10, one mounting substrate 20, and one scintillator 30. Also in this modification, as in the above-described embodiment, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W1. A decrease in mechanical strength of the semiconductor substrate 1N is suppressed.
  • the light detection device 1 includes one semiconductor light detection element 10, one mounting substrate 20, and one scintillator 30. Also in this modification, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wires W1 and W2. A decrease in mechanical strength of the semiconductor substrate 1N is suppressed.
  • 23 to 29 are views for explaining a manufacturing process of the semiconductor photodetector element according to the present embodiment.
  • a semiconductor substrate (semiconductor wafer) 40 is prepared (see FIG. 23).
  • the semiconductor substrate 40 includes a plurality of element formation regions 42.
  • the plurality of element formation regions 42 are located adjacent to each other in the first direction D1 and the second direction D2 intersecting the first direction D1.
  • the first direction D1 and the second direction D2 are orthogonal to each other.
  • the element formation region 42 has a pentagonal shape in plan view. In FIG. 23, for the sake of explanation, the position that becomes the boundary between the adjacent element formation regions 42 is indicated by a solid line.
  • the element formation region 42 has a configuration corresponding to the semiconductor photodetecting element 10 shown in FIG. That is, in the element formation region 42, although not shown in FIG. 23, a plurality of avalanche photodiodes APD (first semiconductor region 1PA and second semiconductor region 1PB), quenching resistor R1, semiconductor region 1PC, signal line TL, electrodes E2 and E3, and insulating layers L1 and L3 are formed at corresponding positions.
  • the semiconductor substrate 40 is divided into individual pieces to constitute the semiconductor substrate 1N.
  • the formation processes of the avalanche photodiode APD, the quenching resistor R1, the semiconductor region 1PC, the signal line TL, the electrodes E2 and E3, and the insulating layers L1 and L3 are known in the art, and detailed description thereof is omitted.
  • the semiconductor substrate 40 is singulated for each of the plurality of element formation regions 42 (see FIG. 30). Thereby, the semiconductor photodetection element 10 is obtained.
  • the semiconductor substrate 40 is separated into pieces by using the stealth dicing technique.
  • the stealth dicing technique is a dicing technique in which a modified region is formed at an arbitrary position by irradiating a semiconductor substrate (semiconductor wafer) with a laser beam, and the semiconductor substrate is cut from the modified region as a starting point (for example, (See JP 2009-135342 A).
  • a laser processing apparatus used for the stealth dicing technique is called a so-called SDE (stealth dicing engine: registered trademark).
  • This SDE is, for example, a laser light source that oscillates laser light, a dichroic mirror that is arranged so as to change the direction of the optical axis (optical path) of the laser light, and a condensing lens for condensing the laser light ( A condensing optical system).
  • the laser beam L is irradiated from the main surface 40a side, and a condensing point P is formed inside the semiconductor substrate 40 (see FIG. 24).
  • the laser light L is relatively moved along a planned cutting line (a line along the solid line in FIG. 24) located at the boundary of the adjacent element forming regions 42 among the plurality of element forming regions 42.
  • the modified region MR is formed inside the semiconductor substrate 40 along the planned cutting line (see FIGS. 25 and 26).
  • the modified region MR is a starting point for cutting.
  • the semiconductor substrate 40 is cut, and the semiconductor substrate 40 is singulated.
  • a semiconductor substrate 40 semiconductor wafer
  • an avalanche photodiode APD avalanche photodiode
  • R1 quenching resistor
  • R1 semiconductor region 1PC
  • signal line TL signal line
  • electrodes E2 and E3 electrodes E2 and E3, and insulating layers L1 and L3 are illustrated. Such illustrations are omitted.
  • the condensing point P is a part where the laser light L is condensed.
  • the modified region MR may be formed continuously or may be formed intermittently.
  • the modified region MR may be in a line shape or a dot shape.
  • the modified region MR may be formed at least inside the semiconductor substrate 40.
  • a crack may be formed starting from the modified region MR.
  • the crack and modified region MR may be exposed on the outer surface (front surface, back surface, or outer peripheral surface) of the semiconductor substrate 40.
  • the laser beam L is transmitted through the semiconductor substrate 40 and is particularly absorbed near the condensing point inside the semiconductor substrate 40, whereby a modified region MR is formed in the semiconductor substrate 40 (that is, an internal absorption laser). processing). Therefore, since the laser beam L is hardly absorbed by the main surface 40a of the semiconductor substrate 40, the main surface 40a of the semiconductor substrate 40 does not melt.
  • the modified region formed in the present embodiment is a region where the density, refractive index, mechanical strength, or other physical characteristics are different from the surroundings.
  • Examples of the modified region include a melt processing region, a crack region, a dielectric breakdown region, or a refractive index change region, and there are also regions where these are mixed.
  • As the modified region there are a region where the density of the modified region in the semiconductor substrate 40 is changed as compared with the density of the non-modified region, and a region where lattice defects are formed (collectively, these are collectively referred to as a high-density transition region). Say).
  • a pair of scheduled cutting lines 51 parallel to the second direction D2, a pair of scheduled cutting lines 52 parallel to the first direction D1, and a planned cutting line 53 are set on the five sides of each element forming region 42. Yes.
  • One cutting planned line 51 and the planned cutting line 53 are connected.
  • One cutting planned line 52 and the cutting planned line 53 are connected.
  • the length of the planned cutting line 53 is shorter than the length of each of the planned cutting line 51 and the planned cutting line 52.
  • the semiconductor substrate 40 includes a plurality of the above arrangement units.
  • the plurality of arrangement units are arranged adjacent to each other in the first direction D1 and the second direction D2.
  • the planned cutting line 51 and the planned cutting line 52 do not intersect. Except for the region surrounded by the planned cutting line 53, the planned cutting line 51 and the planned cutting line 52 intersect.
  • the planned cutting line 51 is separated in the first direction D1. That is, in the two element formation regions 42 adjacent in the first direction D1, the one scheduled cutting line 51 connected to the scheduled cutting line 53 is separated in the first direction D1.
  • the planned cutting line 52 is separated in the second direction D2. That is, in the two element formation regions 42 adjacent in the second direction D2, the one scheduled cutting line 52 connected to the scheduled cutting line 53 is separated in the second direction D2.
  • the semiconductor substrate 40 is affixed to an expanded tape (dicing tape) (not shown). In this state, the semiconductor substrate 40 is irradiated with the laser light L along the planned cutting line 51 as described above. As a result, a modified region 61 is formed in the semiconductor substrate 40 along the planned cutting line 51 (see FIG. 28). In the region surrounded by the planned cutting line 53, the modified regions 61 are separated in the first direction D1.
  • the semiconductor substrate 40 is irradiated with the laser light L along the scheduled cutting line 52 as described above.
  • the modified region 62 is formed in the semiconductor substrate 40 along the planned cutting line 52 (see FIG. 28).
  • the modified regions 62 are separated in the second direction D2. Except for the region surrounded by the planned cutting line 53, the modified region 61 and the modified region 62 intersect each other.
  • the semiconductor substrate 40 is irradiated with the laser light L along the scheduled cutting line 53 as described above.
  • a modified region 63 is formed in the semiconductor substrate 40 along the planned cutting line 53 (see FIG. 28).
  • the reforming region 63 is not connected to the reforming regions 61 and 62, and the reforming region 63 is separated from the reforming regions 61 and 62. That is, the modified region 63 is formed in the intermediate portion 53 b excluding both end portions 53 a of the planned cutting line 53.
  • the length of each end portion 53a is set to a distance at which the crack generated from the modified region 63 extends toward the scheduled cutting lines 51 and 52.
  • the length of each end portion 53a is set to 10 ⁇ m, for example.
  • the expanded tape is expanded.
  • cracks generated from the modified regions 61, 62, 63 reach the main surfaces 40 a, 40 b of the semiconductor substrate 40, and the semiconductor substrate 40 is cut along the scheduled cutting lines 51, 52, 53.
  • the crack generated from the modified region 63 reaches the modified regions 61 and 62. Therefore, a plurality of element formation regions 42 are cut out from the semiconductor substrate 40, and as shown in FIG. 29, a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. 3 are obtained.
  • the side surface constituting the first side 1N1 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • a side surface constituting the second side 1N2 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • a side surface constituting the third side 1N3 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • the scheduled cutting lines 51 and 52 extend in an ineffective area that is not used as an element. For this reason, when the modified regions 61 and 62 are formed along the scheduled cutting lines 51 and 52, the position where the irradiation of the laser light L is turned on / off is located in the ineffective region. Even when the positions of the modified regions 61 and 62 are shifted in accordance with the ON / OFF accuracy of the irradiation with the laser beam L, the semiconductor substrate 40 is appropriately cut.
  • the length of the portion of the scheduled cutting lines 51 and 52 located in the ineffective area is set in consideration of the ON / OFF accuracy of the laser light L irradiation.
  • the length of the part located in the ineffective area of the scheduled cutting lines 51 and 52 is set to 10 ⁇ m, for example.
  • the modified region 63 formed along the planned cutting line 53 is separated from the modified regions 61 and 62. Even when the position of the modified region 63 is shifted in accordance with the ON / OFF accuracy of the irradiation with the laser beam L, the modified region 63 is not formed in the element forming region 42. Therefore, the length of each end portion 53a needs to be set in consideration of the ON / OFF accuracy of the irradiation with the laser light L. Even in this case, the length of each end portion 53a is set to 10 ⁇ m, for example.
  • the plurality of element formation regions 42 are located adjacent to each other in the first direction D1 and the second direction D2, and the scheduled cutting lines 51 and 52 are not complicated. Therefore, the process time for cutting the semiconductor substrate 40 by the stealth dicing technique is short.
  • FIG. 30 is a diagram for explaining a modification of the manufacturing process of the semiconductor photodetecting element 10.
  • a slit 45 is formed in the semiconductor substrate 40 as shown in FIG.
  • the slit 45 extends from a connection point (intersection) between the planned cutting lines 51 and 52 and the planned cutting line 53 along the planned cutting lines 51 and 52 and the planned cutting line 53, respectively.
  • No scheduled cutting lines 51 and 52 are set in the non-effective area that is not used as an element.
  • the scheduled cutting lines 51 and 52 may be set in the ineffective area.
  • Each length from the connection point along the scheduled cutting lines 51, 52, 53 of the slit 45 is set in consideration of the ON / OFF accuracy of the laser light L irradiation.
  • the length of the slit 45 from the connection point is set to 10 ⁇ m, for example.
  • the reformed regions 61, 62, 63 are formed so as to reach the slit 45 as shown in (b) of FIG.
  • the expanded tape is expanded, cracks generated from the modified regions 61, 62, 63 extend along the slit 45. Therefore, the semiconductor substrate 40 is appropriately cut even at a position where three of the scheduled cutting lines 51, 52, 53 intersect.
  • the slits 45 formed in the semiconductor substrate 40 remain as the depressions 3 and 5 in the separated semiconductor photodetector 10.
  • FIG. 31 is a diagram for explaining a modification of the manufacturing process of the semiconductor photodetector 10.
  • a plurality of metal films 47 are formed.
  • the plurality of metal films 47 are disposed in the vicinity of connection points between the planned cutting lines 51 and 52 and the planned cutting line 53.
  • Each metal film 47 has a polygonal shape in plan view.
  • the metal film 47 has a pentagonal shape.
  • the metal film 47 has sides along the planned cutting lines 51, 52, 53 in plan view.
  • the plurality of metal films 47 are arranged such that the sides along the scheduled cutting lines 51, 52, and 53 are opposed to each other with the scheduled cutting lines 51, 52, and 53 in plan view.
  • the metal film 47 is made of, for example, Al, Au, or Cu.
  • the reformed regions 61, 62, 63 are formed so as to intersect at connection points between the planned cutting lines 51, 52 and the planned cutting line 53, as shown in FIG. 31 (b). Even when the irradiation position of the laser beam L enters the element formation region 42 according to the ON / OFF accuracy of the irradiation of the laser beam L, the metal film 47 prevents the laser beam L from being irradiated into the semiconductor substrate 40. be able to. Thereby, the modified region 63 is not formed in the element forming region 42. Therefore, the semiconductor substrate 40 is appropriately cut even at a position where three of the scheduled cutting lines 51, 52, 53 intersect. The metal film 47 formed on the semiconductor substrate 40 remains as the metal films 7 and 9 in the separated semiconductor photodetector 10.
  • 32 to 35 are views for explaining the manufacturing process of the semiconductor photodetector element according to the modification of the present embodiment.
  • the plurality of element formation regions 42 included in the prepared semiconductor substrate 40 have a configuration corresponding to the semiconductor photodetector 10 shown in FIG.
  • the element formation region 42 has a hexagonal shape in plan view.
  • the position (scheduled cutting line 51, 52, 53) that becomes the boundary between the adjacent element formation regions 42 is indicated by a solid line for the sake of explanation.
  • a pair of planned cutting lines 51 parallel in the second direction D2 on the six sides of the element formation region 42, a pair of planned cutting lines 51 parallel in the second direction D2, a pair of planned cutting lines 52 parallel in the first direction D1, A pair of scheduled cutting lines 53 that are parallel in the direction intersecting the first and second directions D1 and D2 are set.
  • four element formation regions 42 are handled as one arrangement unit. The four element formation regions 42 are arranged such that a rectangle is formed by the planned cutting line 53 of each element formation region 42.
  • the semiconductor substrate 40 includes a plurality of the above arrangement units. The plurality of arrangement units are arranged adjacent to each other in the first direction D1 and the second direction D2.
  • a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. 14 are obtained.
  • the process of dividing the semiconductor substrate 40 is the same as the above-described process of dividing the semiconductor substrate 40 to obtain a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. That is, the semiconductor substrate 40 is cut along the scheduled cutting line 51, whereby the side surface constituting the first side 1N1 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • a side surface constituting the second side 1N2 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • By cutting the semiconductor substrate 40 along the planned cutting line 53 a side surface constituting the third side 1N3 or a side surface constituting the fourth side 1N4 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • the slit 45 may be formed in the semiconductor substrate 40.
  • the slits 45 formed in the semiconductor substrate 40 remain as the depressions 3, 5, 13, and 15 in the separated semiconductor photodetector 10.
  • a plurality of metal films 47 may be formed.
  • the metal film 47 formed on the semiconductor substrate 40 remains as the metal films 7, 9, 17, and 19 in the separated semiconductor photodetector 10.
  • the six sides of the element forming region 42 are paired with a pair of scheduled cutting lines 51 parallel to the first and second directions D1 and D2, and the first and second directions.
  • a pair of scheduled cutting lines 52 parallel to the direction intersecting D1 and D2 and a pair of scheduled cutting lines 53 parallel to the second direction D2 are set.
  • the element formation regions 42 are arranged in the above direction intersecting the first and second directions D1 and D2. That is, in this modification, the plurality of element formation regions 42 are arranged in a honeycomb shape.
  • Each of the scheduled cutting lines 51, 52, 53 is set such that a plurality of element forming regions 42 are arranged in a honeycomb shape.
  • a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. 14 are obtained.
  • the process of dividing the semiconductor substrate 40 is the same as the above-described process of dividing the semiconductor substrate 40 to obtain a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. Therefore, also in this modified example, when the semiconductor substrate 40 is cut along the scheduled cutting line 51, a side surface constituting the first side 1N1 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • a side surface constituting the second side 1N2 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • a side surface constituting the third side 1N3 or a side surface constituting the fourth side 1N4 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
  • the slit 45 may be formed in the semiconductor substrate 40.
  • the slits 45 formed in the semiconductor substrate 40 remain as the depressions 3, 5, 13, and 15 in the separated semiconductor photodetector 10.
  • a depression is also formed at the corner formed by the first side 1N1 and the second side 1N2.
  • a plurality of metal films 47 may be formed.
  • the metal film 47 formed on the semiconductor substrate 40 remains as the metal films 7, 9, 17, and 19 in the separated semiconductor photodetector 10.
  • a metal film is also formed at the corner portion formed by the first side 1N1 and the second side 1N2.
  • the shapes of the first and second semiconductor regions 1PA and 1PB are not limited to the shapes described above, but may be other shapes (for example, circular shapes).
  • the number (number of rows and columns) and arrangement of the avalanche photodiodes APD (second semiconductor regions 1PB) are not limited to the numbers and arrangement shown in the figure.
  • the number and arrangement of the photodiode arrays PDA (channels) are not limited to the illustrated number and arrangement.
  • the present invention can be used for a light detection device that detects weak light.
  • SYMBOLS 1 Photodetection device, 1N ... Semiconductor substrate, 1N1 ... First side, 1N2 ... Second side, 1N3 ... Third side, 1N4 ... Fourth side, 1Na, 1Nb ... Main surface of semiconductor substrate, 1PA ... First semiconductor Region, 1PB ... second semiconductor region, 3, 5, 13, 15 ... depression, 7, 9, 17, 19 ... metal film, 10 ... semiconductor photodetector, 20 ... mounting substrate, 20a, 20b ... main mounting substrate APD, avalanche photodiode, E1 to E3, E5 to E9, electrode, PDA, photodiode array, R1, quenching resistor, TL, signal line, W1, W2, bonding wire.
  • APD avalanche photodiode
  • E1 to E3, E5 to E9 electrode
  • PDA photodiode array
  • R1 quenching resistor TL
  • signal line W1, W2, bonding wire.

Abstract

In the present invention, when viewed in a direction in which a main surface 1Na of a semiconductor substrate 1N and a main surface 1Nb thereof oppose each other, the semiconductor substrate has a pair of opposing first edges 1N1, a pair of opposing second edges 1N2 and a third edge 1N3 that is connected to one end of one of the first edges 1N1 and one end of one of the second edges 1N2. An electrode E3 is disposed on the semiconductor substrate 1N and is electrically connected to a plurality of pixels (avalanche photodiodes APD). An electrode E5 is disposed on a mounting substrate 20. A bonding wire W1 has one end that is connected to the electrode E3 and one end that is connected to the electrode E5. The bonding wire W1 is disposed so as to cross the third edge 1N3 when viewed in the direction in which the main surface 1Na and the main surface 1Nb oppose each other.

Description

光検出装置Photodetector
 本発明は、光検出装置に関する。 The present invention relates to a photodetection device.
 半導体光検出素子と、半導体光検出素子が配置されている搭載基板と、を備える光検出装置が知られている(たとえば、特許文献1参照)。半導体光検出素子は、複数の画素を有するフォトダイオードアレイが形成されている半導体基板を有している。半導体光検出素子と搭載基板とは、対向している。半導体基板は、平面視で、互いに対向する一対の第一辺と、互いに対向する一対の第二辺とを有している。 2. Description of the Related Art A photodetection device including a semiconductor photodetection element and a mounting substrate on which the semiconductor photodetection element is arranged is known (for example, see Patent Document 1). The semiconductor photodetecting element has a semiconductor substrate on which a photodiode array having a plurality of pixels is formed. The semiconductor photodetecting element and the mounting substrate are opposed to each other. The semiconductor substrate has a pair of first sides facing each other and a pair of second sides facing each other in plan view.
米国特許第8420433号明細書U.S. Pat. No. 8,420,433
 特許文献1に記載された光検出装置では、半導体基板の角部、すなわち第一辺と第二辺とがなす角部に切り欠きが形成されている。この切り欠きの位置に、半導体基板に配置されている第一電極と搭載基板に配置されている第二電極とを接続するワイヤが配置されている。切り欠きは、半導体基板の一つの角部に、平面視で半導体基板の内側に切れ込むように形成されている。 In the light detection device described in Patent Document 1, a notch is formed in a corner of a semiconductor substrate, that is, a corner formed by a first side and a second side. A wire connecting the first electrode disposed on the semiconductor substrate and the second electrode disposed on the mounting substrate is disposed at the position of the notch. The cutout is formed at one corner of the semiconductor substrate so as to cut into the inside of the semiconductor substrate in plan view.
 切り欠きが形成されることにより、半導体基板の外縁は、上述したそれぞれ一対の第一辺及び第二辺だけでなく、互いに交差する方向に延びる一対の第三辺を有する。特許文献1に記載された光検出装置では、一対の第三辺は直交している。切り欠きの頂、すなわち一対の第三辺がなす角では、半導体基板の機械的強度が低下し易い。このため、一対の第三辺がなす角から半導体基板の内部に向けて亀裂が生じるおそれがある。 By forming the notches, the outer edge of the semiconductor substrate has not only the pair of first and second sides described above but also a pair of third sides extending in a direction intersecting each other. In the photodetection device described in Patent Literature 1, the pair of third sides are orthogonal to each other. At the top of the notch, that is, at the angle formed by the pair of third sides, the mechanical strength of the semiconductor substrate tends to decrease. For this reason, there exists a possibility that a crack may arise toward the inside of a semiconductor substrate from the angle | corner which a pair of 3rd side makes.
 本発明の一態様の目的は、半導体基板の機械的強度の低下が抑制されつつ、半導体基板と搭載基板との電気的な接続がワイヤにより実現されている光検出装置を提供することである。 An object of one embodiment of the present invention is to provide a photodetector in which electrical connection between a semiconductor substrate and a mounting substrate is realized by a wire while suppressing a decrease in mechanical strength of the semiconductor substrate.
 本発明の一態様に係る光検出装置は、半導体基板を有している半導体光検出素子と、半導体光検出素子が配置されている搭載基板と、半導体光検出素子と搭載基板とを電気的に接続している第一ワイヤと、を備えている。半導体基板は、複数の画素を有するフォトダイオードアレイが形成されていると共に、互いに対向する第一主面と第二主面とを含んでいる。搭載基板は、半導体基板の第二主面と対向する第三主面と、第三主面と対向する第四主面とを含んでいる。半導体基板は、第一主面と第二主面とが対向している方向から見て、互いに対向する一対の第一辺と、互いに対向する一対の第二辺と、一方の第一辺の一端と一方の第二辺の一端とに接続されている第三辺とを有している。半導体光検出素子は、半導体基板の第一主面側に配置されている第一電極を有している。第一電極は、複数の画素と電気的に接続されている。搭載基板は、第三主面側に配置されている第二電極を有している。第一ワイヤは、第一電極に接続されている一端と、第二電極に接続されている他端とを有している。第一ワイヤは、第一主面と第二主面とが対向している方向から見て第三辺と交差するように配置されている。 A light detection device according to one embodiment of the present invention electrically includes a semiconductor light detection element having a semiconductor substrate, a mounting substrate on which the semiconductor light detection element is disposed, and the semiconductor light detection element and the mounting substrate. A first wire connected thereto. The semiconductor substrate is formed with a photodiode array having a plurality of pixels, and includes a first main surface and a second main surface facing each other. The mounting substrate includes a third main surface facing the second main surface of the semiconductor substrate and a fourth main surface facing the third main surface. The semiconductor substrate includes a pair of first sides facing each other, a pair of second sides facing each other, and a first side of the first side when viewed from the direction in which the first main surface and the second main surface are facing each other. A third side connected to one end and one end of the second side; The semiconductor photodetecting element has a first electrode arranged on the first main surface side of the semiconductor substrate. The first electrode is electrically connected to the plurality of pixels. The mounting board has a second electrode arranged on the third main surface side. The first wire has one end connected to the first electrode and the other end connected to the second electrode. The first wire is disposed so as to intersect with the third side when viewed from the direction in which the first main surface and the second main surface are opposed to each other.
 本一態様に係る光検出装置では、第一電極と第二電極とを接続している第一ワイヤは、第一主面と第二主面とが対向している方向から見て第三辺と交差するように配置されている。フォトダイオードアレイの信号は、半導体基板の第一主面側から取り出され、搭載基板の第三主面側に送られる。すなわち、半導体基板と搭載基板との電気的な接続が、第一ワイヤにより実現されている。 In the photodetecting device according to this aspect, the first wire connecting the first electrode and the second electrode has a third side as viewed from the direction in which the first main surface and the second main surface face each other. It is arranged to intersect. The signal of the photodiode array is taken out from the first main surface side of the semiconductor substrate and sent to the third main surface side of the mounting substrate. That is, the electrical connection between the semiconductor substrate and the mounting substrate is realized by the first wire.
 第三辺は、一方の第一辺の一端と一方の第二辺の一端とに接続されている。すなわち、第三辺は、一方の第一辺と一方の第二辺とに交差する一方向に延びている。本一態様に係る光検出装置では、特許文献1に記載された光検出装置において半導体基板に形成されているような切り欠きが半導体基板に形成されていないので、半導体基板の機械的強度の低下が抑制されている。 The third side is connected to one end of one first side and one end of one second side. That is, the third side extends in one direction intersecting one first side and one second side. In the photodetecting device according to this aspect, since the notch formed in the semiconductor substrate in the photodetecting device described in Patent Document 1 is not formed in the semiconductor substrate, the mechanical strength of the semiconductor substrate is reduced. Is suppressed.
 半導体基板における第一辺と第三辺とがなす角部と第二辺と第三辺とがなす角部とには、第一主面と第二主面とが対向している方向から見てそれぞれの角部に沿って、窪みが形成されていてもよい。この場合、それぞれの上記角部にチッピングが生じるのを抑制することができる。 The corner formed by the first side and the third side and the corner formed by the second side and the third side in the semiconductor substrate are viewed from the direction in which the first main surface and the second main surface face each other. A recess may be formed along each corner. In this case, it is possible to suppress the occurrence of chipping at each corner.
 半導体基板における第一辺と第三辺とがなす角部と第二辺と第三辺とがなす角部とには、金属膜が配置されていてもよい。この場合、それぞれの上記角部の機械的強度が向上するため、各角部にチッピングが生じるのを抑制することができる。 A metal film may be disposed at a corner portion formed by the first side and the third side and a corner portion formed by the second side and the third side in the semiconductor substrate. In this case, since the mechanical strength of each corner is improved, the occurrence of chipping at each corner can be suppressed.
 第三辺の長さは、第一辺及び第二辺の各長さよりも短くてもよい。この場合、複数の画素が位置する領域(有効領域)の面積の低下が抑制される。 The length of the third side may be shorter than the lengths of the first side and the second side. In this case, a decrease in the area of the region (effective region) where a plurality of pixels are located is suppressed.
 本一態様に係る光検出装置は、半導体光検出素子と搭載基板とを電気的に接続している第二ワイヤを備えていてもよい。この場合、半導体光検出素子は、半導体基板の第一主面側に配置されている第三電極を有し、搭載基板は、第三主面側に配置されている第四電極を有している。第三電極は、半導体基板と電気的に接続されている。第二ワイヤは、第三電極に接続されている一端と、第四電極に接続されている他端とを有している。第二ワイヤは、第一主面と第二主面とが対向している方向から見て第三辺と交差するように配置されていてもよい。本形態では、第二ワイヤ及び第三電極を通して、半導体基板に所定の電位(たとえば、カソード電位)を適切に与えることが可能となる。すなわち、半導体基板と搭載基板との電気的な接続が、第二ワイヤにより実現されている。 The photodetecting device according to this aspect may include a second wire that electrically connects the semiconductor photodetecting element and the mounting substrate. In this case, the semiconductor photodetecting element has a third electrode arranged on the first main surface side of the semiconductor substrate, and the mounting substrate has a fourth electrode arranged on the third main surface side. Yes. The third electrode is electrically connected to the semiconductor substrate. The second wire has one end connected to the third electrode and the other end connected to the fourth electrode. The second wire may be arranged so as to intersect the third side when viewed from the direction in which the first main surface and the second main surface are opposed to each other. In this embodiment, a predetermined potential (for example, a cathode potential) can be appropriately applied to the semiconductor substrate through the second wire and the third electrode. That is, the electrical connection between the semiconductor substrate and the mounting substrate is realized by the second wire.
 半導体基板は、第一主面と第二主面とが対向している方向から見て、他方の第一辺の一端と他方の第二辺の一端とに接続されている第四辺を有していてもよい。この場合、第二ワイヤは、第一主面と第二主面とが対向している方向から見て第四辺と交差するように配置されていてもよい。本形態でも、第二ワイヤ及び第三電極を通して、半導体基板に所定の電位(たとえば、カソード電位)を適切に与えることが可能となる。すなわち、半導体基板と搭載基板との電気的な接続が、第二ワイヤにより実現されている。 The semiconductor substrate has a fourth side connected to one end of the other first side and one end of the other second side when viewed from the direction in which the first main surface and the second main surface face each other. You may do it. In this case, the second wire may be arranged so as to intersect the fourth side when viewed from the direction in which the first main surface and the second main surface are opposed to each other. Also in this embodiment, a predetermined potential (for example, a cathode potential) can be appropriately applied to the semiconductor substrate through the second wire and the third electrode. That is, the electrical connection between the semiconductor substrate and the mounting substrate is realized by the second wire.
 第四辺は、一辺の一端と他方の第二辺の一端とに接続されている。すなわち、第四辺は、他方の第一辺と他方の第二辺とに交差する一方向に延びている。したがって、本形態では、特許文献1に記載された光検出装置において半導体基板に形成されているような切り欠きが半導体基板に形成されていないので、半導体基板の機械的強度の低下が抑制されている。 The fourth side is connected to one end of one side and one end of the other second side. That is, the fourth side extends in one direction intersecting the other first side and the other second side. Therefore, in this embodiment, since the notch formed in the semiconductor substrate is not formed in the semiconductor substrate in the photodetector described in Patent Document 1, a decrease in the mechanical strength of the semiconductor substrate is suppressed. Yes.
 半導体基板における第一辺と第四辺とがなす角部と第二辺と第四辺とがなす角部とには、第一主面と第二主面とが対向している方向から見てそれぞれの角部に沿って、窪みが形成されていてもよい。この場合、それぞれの上記角部にチッピングが生じるのを抑制することができる。 The corner formed by the first side and the fourth side of the semiconductor substrate and the corner formed by the second side and the fourth side are viewed from the direction in which the first main surface and the second main surface are opposed to each other. A recess may be formed along each corner. In this case, it is possible to suppress the occurrence of chipping at each corner.
 半導体基板における第一辺と第四辺とがなす角部と第二辺と第四辺とがなす角部とには、金属膜が配置されていてもよい。この場合、それぞれの上記角部の機械的強度が向上するため、各角部にチッピングが生じるのを抑制することができる。 A metal film may be disposed at a corner portion formed by the first side and the fourth side and a corner portion formed by the second side and the fourth side in the semiconductor substrate. In this case, since the mechanical strength of each corner is improved, the occurrence of chipping at each corner can be suppressed.
 第四辺の長さは、第一辺及び第二辺の各長さよりも短くてもよい。この場合、複数の画素が位置する領域(有効領域)の面積の低下が抑制される。 The length of the fourth side may be shorter than the lengths of the first side and the second side. In this case, a decrease in the area of the region (effective region) where a plurality of pixels are located is suppressed.
 本一態様に係る光検出装置は、複数の半導体光検出素子を備えていてもよい。この場合、複数の半導体光検出素子は、第二主面と第三主面とが対向するように、搭載基板に配置されており、半導体光検出素子ごとに、第一電極と第二電極とが第一ワイヤを介して接続されていてもよい。本形態では、光検出装置が複数の半導体光検出素子を備えているので、光検出装置の受光領域の大面積化が図られる。 The light detection device according to this aspect may include a plurality of semiconductor light detection elements. In this case, the plurality of semiconductor photodetecting elements are arranged on the mounting substrate so that the second main surface and the third main surface face each other, and for each semiconductor photodetecting element, the first electrode and the second electrode May be connected via the first wire. In this embodiment, since the photodetecting device includes a plurality of semiconductor photodetecting elements, the area of the light receiving region of the photodetecting device can be increased.
 フォトダイオードアレイは、ガイガーモードで動作すると共に半導体基板内に形成された複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されると共に半導体基板の第一主面側に配置されたクエンチング抵抗と、クエンチング抵抗が並列に接続されると共に半導体基板の第一主面側に配置された信号線と、を含み、信号線は、第一電極に接続されていてもよい。この場合、フォトダイオードアレイでは、画素を構成するアバランシェフォトダイオードがフォトンを検出してガイガー放電したとき、アバランシェフォトダイオードに接続されたクエンチング抵抗の働きにより、パルス状の信号が得られる。それぞれのアバランシェフォトダイオードが、各々フォトンをカウントする。このため、同じタイミングで複数個のフォトンが入射した時においても、総出力パルスの出力電荷量あるいは信号強度に応じて、入射したフォトン数が判明する。 The photodiode array operates in Geiger mode and is connected to a plurality of avalanche photodiodes formed in the semiconductor substrate in series with each avalanche photodiode and arranged on the first main surface side of the semiconductor substrate. The quenching resistor and the signal line connected to the quenching resistor in parallel and disposed on the first main surface side of the semiconductor substrate may be connected to the first electrode. In this case, in the photodiode array, when the avalanche photodiode constituting the pixel detects a photon and performs Geiger discharge, a pulse-like signal is obtained by the action of the quenching resistor connected to the avalanche photodiode. Each avalanche photodiode counts photons. Therefore, even when a plurality of photons are incident at the same timing, the number of incident photons is determined according to the output charge amount or the signal intensity of the total output pulse.
 本発明の上記一態様によれば、半導体基板の機械的強度の低下が抑制されつつ、半導体基板と搭載基板との電気的な接続がワイヤにより実現されている光検出装置が提供される。 According to the above-described aspect of the present invention, there is provided a photodetecting device in which the electrical connection between the semiconductor substrate and the mounting substrate is realized by the wire while suppressing the decrease in the mechanical strength of the semiconductor substrate.
一実施形態に係る光検出装置を示す概略斜視図である。It is a schematic perspective view which shows the photon detection apparatus which concerns on one Embodiment. 半導体光検出素子の配列を説明するための図である。It is a figure for demonstrating the arrangement | sequence of a semiconductor photon detection element. 本実施形態に係る光検出装置の断面構成を説明するための図である。It is a figure for demonstrating the cross-sectional structure of the photon detection apparatus which concerns on this embodiment. 半導体光検出素子の概略平面図である。It is a schematic plan view of a semiconductor photodetection element. 第三辺周辺における半導体光検出素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the semiconductor photodetection element around the third side. 光検出装置の回路図である。It is a circuit diagram of a photon detection device. 第三辺周辺における半導体光検出素子の概略斜視図である。It is a schematic perspective view of the semiconductor photodetector element around the third side. 第三辺周辺における半導体光検出素子の概略斜視図である。It is a schematic perspective view of the semiconductor photodetector element around the third side. 本実施形態の変形例に係る半導体光検出素子の配列を説明するための図である。It is a figure for demonstrating the arrangement | sequence of the semiconductor photodetection element which concerns on the modification of this embodiment. 本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。It is a figure for demonstrating the cross-sectional structure of the photon detection apparatus which concerns on the modification of this embodiment. 半導体光検出素子の概略平面図である。It is a schematic plan view of a semiconductor photodetection element. 第三辺周辺における半導体光検出素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the semiconductor photodetection element around the third side. 本実施形態の変形例に係る半導体光検出素子の配列を説明するための図である。It is a figure for demonstrating the arrangement | sequence of the semiconductor photodetection element which concerns on the modification of this embodiment. 本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。It is a figure for demonstrating the cross-sectional structure of the photon detection apparatus which concerns on the modification of this embodiment. 半導体光検出素子の概略平面図である。It is a schematic plan view of a semiconductor photodetection element. 第四辺周辺における半導体光検出素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the semiconductor photodetection element around the fourth side. 第四辺周辺における半導体光検出素子の概略斜視図である。It is a schematic perspective view of the semiconductor photodetector element around the fourth side. 第四辺周辺における半導体光検出素子の概略斜視図である。It is a schematic perspective view of the semiconductor photodetector element around the fourth side. 本実施形態の変形例に係る光検出装置を示す概略斜視図である。It is a schematic perspective view which shows the photon detection apparatus which concerns on the modification of this embodiment. 半導体光検出素子の概略平面図である。It is a schematic plan view of a semiconductor photodetection element. 半導体光検出素子の概略平面図である。It is a schematic plan view of a semiconductor photodetection element. 半導体光検出素子の概略平面図である。It is a schematic plan view of a semiconductor photodetection element. 本実施形態に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetector element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetector element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetector element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetector element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetector element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetector element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetector element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程の変形例を説明するための図である。It is a figure for demonstrating the modification of the manufacturing process of the semiconductor photodetection element which concerns on this embodiment. 本実施形態に係る半導体光検出素子の製造過程の変形例を説明するための図である。It is a figure for demonstrating the modification of the manufacturing process of the semiconductor photodetection element which concerns on this embodiment. 本実施形態の変形例に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetection element which concerns on the modification of this embodiment. 本実施形態の変形例に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetection element which concerns on the modification of this embodiment. 本実施形態の変形例に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetection element which concerns on the modification of this embodiment. 本実施形態の変形例に係る半導体光検出素子の製造過程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor photodetection element which concerns on the modification of this embodiment.
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 図1~図6を参照して、本実施形態に係る光検出装置1の構成を説明する。図1は、本実施形態に係る光検出装置を示す概略斜視図である。図2は、半導体光検出素子の配列を説明するための図である。図3は、本実施形態に係る光検出装置の断面構成を説明するための図である。図4は、半導体光検出素子の概略平面図である。図5は、第三辺周辺における半導体光検出素子の構成を示す図である。図6は、光検出装置の回路図である。 The configuration of the photodetecting device 1 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a schematic perspective view showing a photodetecting device according to the present embodiment. FIG. 2 is a diagram for explaining the arrangement of the semiconductor photodetector elements. FIG. 3 is a diagram for explaining a cross-sectional configuration of the photodetecting device according to the present embodiment. FIG. 4 is a schematic plan view of the semiconductor photodetecting element. FIG. 5 is a diagram showing the configuration of the semiconductor photodetecting element around the third side. FIG. 6 is a circuit diagram of the photodetector.
 光検出装置1は、図1~図3に示されるように、複数の半導体光検出素子10、搭載基板20、及び複数のシンチレータ30を備えている。複数の半導体光検出素子10は、搭載基板20に配置されており、搭載基板20と対向している。複数の半導体光検出素子10は、樹脂(たとえば、エポキシ樹脂)11によりモールドされている。本実施形態では、半導体光検出素子10の数は「16」であり、シンチレータ30の数は「16」である。 As shown in FIGS. 1 to 3, the photodetecting device 1 includes a plurality of semiconductor photodetecting elements 10, a mounting substrate 20, and a plurality of scintillators 30. The plurality of semiconductor photodetecting elements 10 are disposed on the mounting substrate 20 and face the mounting substrate 20. The plurality of semiconductor photodetecting elements 10 are molded with resin (for example, epoxy resin) 11. In the present embodiment, the number of semiconductor photodetector elements 10 is “16”, and the number of scintillators 30 is “16”.
 各半導体光検出素子10は、一つのフォトダイオードアレイPDAを有している。半導体光検出素子10は、半導体基板1Nを有している。半導体基板1Nは、平面視で矩形状を呈している。半導体基板1Nは、互いに対向する主面1Naと主面1Nbとを含んでいる。半導体基板1Nは、Siからなる、N型(第一導電型)の半導体基板である。 Each semiconductor light detecting element 10 has one photodiode array PDA. The semiconductor photodetector 10 has a semiconductor substrate 1N. The semiconductor substrate 1N has a rectangular shape in plan view. The semiconductor substrate 1N includes a main surface 1Na and a main surface 1Nb facing each other. The semiconductor substrate 1N is an N-type (first conductivity type) semiconductor substrate made of Si.
 半導体基板1Nは、対向方向から見て、多角形状を呈している。本実施形態では、半導体基板1Nは、対向方向から見て、五角形状を呈している。すなわち、半導体基板1Nは、対向方向から見たときの外縁として、図4に示されるように、一対の第一辺1N1と、一対の第二辺1N2と、一つの第三辺1N3とを有している。 The semiconductor substrate 1N has a polygonal shape when viewed from the facing direction. In the present embodiment, the semiconductor substrate 1N has a pentagonal shape when viewed from the facing direction. That is, the semiconductor substrate 1N has a pair of first sides 1N1, a pair of second sides 1N2, and a third side 1N3 as outer edges when viewed from the opposite direction, as shown in FIG. is doing.
 一対の第一辺1N1は、互いに対向しており、平行である。一対の第二辺1N2は、互いに対向しており、平行である。第三辺1N3は、一方の第一辺1N1と一方の第二辺1N2とに接続されている。第三辺1N3は、一方の第一辺1N1と一方の第二辺1N2とに交差する一方向に延びている。すなわち、第三辺1N3は、一方の第一辺1N1と一方の第二辺1N2との間に位置している。 The pair of first sides 1N1 face each other and are parallel to each other. The pair of second sides 1N2 face each other and are parallel to each other. The third side 1N3 is connected to one first side 1N1 and one second side 1N2. The third side 1N3 extends in one direction intersecting one first side 1N1 and one second side 1N2. That is, the third side 1N3 is located between one first side 1N1 and one second side 1N2.
 一方の第一辺1N1の一端と第三辺1N3の一端とが接続されている。第一辺1N1と第三辺1N3とがなす角は、たとえば135°である。一方の第二辺1N2の一端と第三辺1N3の他端とが接続されている。第二辺1N2と第三辺1N3とがなす角は、たとえば135°である。一方の第一辺1N1の他端と他方の第二辺1N2の一端とが接続されている。一方の第二辺1N2の他端と他方の第一辺1N1の一端とが接続されている。他方の第一辺1N1の他端と他方の第二辺1N2の他端とが接続されている。本実施形態では、第一辺1N1と第二辺1N2とは、直交している。 One end of one first side 1N1 and one end of the third side 1N3 are connected. The angle formed by the first side 1N1 and the third side 1N3 is, for example, 135 °. One end of one second side 1N2 and the other end of third side 1N3 are connected. The angle formed by the second side 1N2 and the third side 1N3 is, for example, 135 °. The other end of one first side 1N1 and one end of the other second side 1N2 are connected. The other end of one second side 1N2 and one end of the other first side 1N1 are connected. The other end of the other first side 1N1 and the other end of the other second side 1N2 are connected. In the present embodiment, the first side 1N1 and the second side 1N2 are orthogonal to each other.
 第三辺1N3の長さは、第一辺1N1及び第二辺1N2の各長さよりも短い。一方の第一辺1N1の長さは、他方の第一辺1N1の長さよりも短い。一方の第二辺1N2の長さは、他方の第二辺1N2の長さよりも短い。本実施形態では、一方の第一辺1N1の長さと一方の第二辺1N2の長さとは同等であり、他方の第一辺1N1の長さと他方の第二辺1N2の長さとは同等である。 The length of the third side 1N3 is shorter than the lengths of the first side 1N1 and the second side 1N2. The length of one first side 1N1 is shorter than the length of the other first side 1N1. The length of one second side 1N2 is shorter than the length of the other second side 1N2. In the present embodiment, the length of one first side 1N1 is equal to the length of one second side 1N2, and the length of the other first side 1N1 is equal to the length of the other second side 1N2. .
 フォトダイオードアレイPDAは、複数のアバランシェフォトダイオードAPDを含んでいる。複数のアバランシェフォトダイオードAPDは、半導体基板1Nに形成されている。一つのアバランシェフォトダイオードAPDは、フォトダイオードアレイPDAにおける一つの画素を構成している。複数のアバランシェフォトダイオードAPDは、主面1Naと主面1Nbとが対向している方向(以下、単に「対向方向」と称する)から見て、二次元状に配列されている。 The photodiode array PDA includes a plurality of avalanche photodiodes APD. The plurality of avalanche photodiodes APD are formed on the semiconductor substrate 1N. One avalanche photodiode APD constitutes one pixel in the photodiode array PDA. The plurality of avalanche photodiodes APD are arranged two-dimensionally when viewed from the direction in which the main surface 1Na and the main surface 1Nb face each other (hereinafter simply referred to as “opposing direction”).
 半導体基板1Nは、図4にも示されるように、第一領域RS1と第二領域RS2とを有している。第一領域RS1には、複数のアバランシェフォトダイオードAPDが配置されている。第二領域RS2は、対向方向から見て、第一領域RS1の外側で、かつ、第三辺1N3の近傍に位置している。第二領域RS2は、たとえば、平面視で三角形状を呈している。図4では、対向方向がZ軸方向と一致している。 The semiconductor substrate 1N has a first region RS1 and a second region RS2 as shown in FIG. A plurality of avalanche photodiodes APD are arranged in the first region RS1. The second region RS2 is located outside the first region RS1 and in the vicinity of the third side 1N3 when viewed from the facing direction. The second region RS2 has, for example, a triangular shape in plan view. In FIG. 4, the facing direction coincides with the Z-axis direction.
 各アバランシェフォトダイオードAPDには、図5にも示されるように、クエンチング抵抗R1が直列に接続されている。各アバランシェフォトダイオードAPDは、それぞれクエンチング抵抗R1と直列に接続された態様で、全て並列に接続されている。各アバランシェフォトダイオードAPDには、電源から逆バイアス電圧が印加される。アバランシェフォトダイオードAPDからの出力電流は、後述する信号処理部SPによって検出される。 As shown in FIG. 5, a quenching resistor R1 is connected in series to each avalanche photodiode APD. All the avalanche photodiodes APD are all connected in parallel in such a manner that each avalanche photodiode APD is connected in series with the quenching resistor R1. A reverse bias voltage is applied from each power source to each avalanche photodiode APD. The output current from the avalanche photodiode APD is detected by a signal processing unit SP described later.
 各アバランシェフォトダイオードAPDは、P型(第二導電型)の第一半導体領域1PAと、P型の第二半導体領域1PBと、を有している。第一半導体領域1PAは、半導体基板1Nの主面1Na側に形成されている。第二半導体領域1PBは、第一半導体領域1PA内に形成され、かつ、第一半導体領域1PAよりも不純物濃度が高い。第二半導体領域1PBの平面形状は、たとえば多角形(本実施形態では、四角形)である。第一半導体領域1PAの深さは、第二半導体領域1PBの深さよりも大きい。 Each avalanche photodiode APD has a P-type (second conductivity type) first semiconductor region 1PA and a P-type second semiconductor region 1PB. The first semiconductor region 1PA is formed on the main surface 1Na side of the semiconductor substrate 1N. The second semiconductor region 1PB is formed in the first semiconductor region 1PA and has an impurity concentration higher than that of the first semiconductor region 1PA. The planar shape of the second semiconductor region 1PB is, for example, a polygon (in this embodiment, a quadrangle). The depth of the first semiconductor region 1PA is larger than the depth of the second semiconductor region 1PB.
 半導体基板1Nは、N型の半導体領域1PCを有している。半導体領域1PCは、半導体基板1Nの主面1Na側に形成されている。半導体領域1PCは、N型の半導体基板1NとP型の第一半導体領域1PAとの間に形成されるPN接合が半導体基板1Nの端に露出するのを防ぐ。半導体領域1PCは、半導体基板1Nの端に対応する位置に形成されている。 The semiconductor substrate 1N has an N-type semiconductor region 1PC. The semiconductor region 1PC is formed on the main surface 1Na side of the semiconductor substrate 1N. The semiconductor region 1PC prevents a PN junction formed between the N-type semiconductor substrate 1N and the P-type first semiconductor region 1PA from being exposed at the end of the semiconductor substrate 1N. The semiconductor region 1PC is formed at a position corresponding to the end of the semiconductor substrate 1N.
 アバランシェフォトダイオードAPDは、図5に示されるように、半導体基板1Nの主面1Na側に配置された電極E1を有している。電極E1は、第二半導体領域1PBに電気的に接続されている。アバランシェフォトダイオードAPDは、図3に示されるように、半導体基板1Nの主面1Nb側に配置された電極E2を有している。電極E2は、半導体基板1Nに電気的に接続されている。第一半導体領域1PAは、第二半導体領域1PBを介して電極E1に電気的に接続されている。 As shown in FIG. 5, the avalanche photodiode APD has an electrode E1 arranged on the main surface 1Na side of the semiconductor substrate 1N. The electrode E1 is electrically connected to the second semiconductor region 1PB. As shown in FIG. 3, the avalanche photodiode APD has an electrode E2 disposed on the main surface 1Nb side of the semiconductor substrate 1N. The electrode E2 is electrically connected to the semiconductor substrate 1N. The first semiconductor region 1PA is electrically connected to the electrode E1 through the second semiconductor region 1PB.
 フォトダイオードアレイPDAは、図5に示されるように、信号線TLと電極E3とを有している。信号線TLと電極E3とは、第二半導体領域1PBの外側の半導体基板1N上に、絶縁層L1を介して形成されている。信号線TLと電極E3とは、半導体基板1Nの主面1Na側に配置されている。電極E3は、第二領域RS2に位置している。信号線TLは、電極E3に接続されている。 The photodiode array PDA includes a signal line TL and an electrode E3 as shown in FIG. The signal line TL and the electrode E3 are formed on the semiconductor substrate 1N outside the second semiconductor region 1PB via the insulating layer L1. The signal line TL and the electrode E3 are disposed on the main surface 1Na side of the semiconductor substrate 1N. The electrode E3 is located in the second region RS2. The signal line TL is connected to the electrode E3.
 信号線TLは、複数の信号線TL1と複数の信号線TL2とを含んでいる。各信号線TL1は、平面視で、X軸方向で隣り合うアバランシェフォトダイオードAPD間をY軸方向に沿って配置されている。各信号線TL2は、Y軸方向で隣り合うアバランシェフォトダイオードAPD間をX軸方向に沿って配置されている。各信号線TL2は、複数の信号線TL1同士を電気的に接続している。本実施形態では、信号線TL1と信号線TL2とが、電極E3に接続されている。信号線TL1と信号線TL2とのうちいずれか一方が、電極E3に接続されていてもよい。 The signal line TL includes a plurality of signal lines TL1 and a plurality of signal lines TL2. Each signal line TL1 is disposed along the Y-axis direction between the avalanche photodiodes APD adjacent in the X-axis direction in plan view. Each signal line TL2 is disposed between the avalanche photodiodes APD adjacent in the Y-axis direction along the X-axis direction. Each signal line TL2 electrically connects a plurality of signal lines TL1. In the present embodiment, the signal line TL1 and the signal line TL2 are connected to the electrode E3. Either one of the signal line TL1 and the signal line TL2 may be connected to the electrode E3.
 フォトダイオードアレイPDAは、アバランシェフォトダイオードAPDごとに、クエンチング抵抗R1を有している。クエンチング抵抗R1は、絶縁層L1を介して、半導体基板1Nに形成されている。クエンチング抵抗R1は、半導体基板1Nの主面1Na側に配置されている。クエンチング抵抗R1の一方端は、電極E1に接続されている。クエンチング抵抗R1の他方端は、信号線TL1に接続されている。クエンチング抵抗R1は、たとえば、第二半導体領域1PBの外側の半導体基板1N上に位置している。図5では、構造の明確化のため、図3に示されている絶縁層L1,L3の記載を省略している。 The photodiode array PDA has a quenching resistor R1 for each avalanche photodiode APD. The quenching resistor R1 is formed on the semiconductor substrate 1N via the insulating layer L1. Quenching resistor R1 is arranged on the main surface 1Na side of semiconductor substrate 1N. One end of the quenching resistor R1 is connected to the electrode E1. The other end of the quenching resistor R1 is connected to the signal line TL1. For example, the quenching resistor R1 is located on the semiconductor substrate 1N outside the second semiconductor region 1PB. In FIG. 5, the description of the insulating layers L1 and L3 shown in FIG. 3 is omitted for clarity of the structure.
 各アバランシェフォトダイオードAPD(第一半導体領域1PAの直下の領域)は、電極E1とクエンチング抵抗R1とを介して、信号線TL1に接続されている。1つの信号線TL1には、複数のアバランシェフォトダイオードAPDが、それぞれ電極E1とクエンチング抵抗R1とを介して接続されている。クエンチング抵抗R1は、信号線TLを介して、電極E3に電気的に接続されている。すなわち、各アバランシェフォトダイオードAPD(各画素)は、電極E3に電気的に接続されている。 Each avalanche photodiode APD (region immediately below the first semiconductor region 1PA) is connected to the signal line TL1 through the electrode E1 and the quenching resistor R1. A plurality of avalanche photodiodes APD are connected to one signal line TL1 through an electrode E1 and a quenching resistor R1, respectively. The quenching resistor R1 is electrically connected to the electrode E3 via the signal line TL. That is, each avalanche photodiode APD (each pixel) is electrically connected to the electrode E3.
 半導体基板1Nの主面1Na側には、絶縁層L3が配置されている。絶縁層L3は、電極E1,E3、クエンチング抵抗R1、及び信号線TLを覆うように形成されている。 An insulating layer L3 is disposed on the main surface 1Na side of the semiconductor substrate 1N. The insulating layer L3 is formed so as to cover the electrodes E1 and E3, the quenching resistor R1, and the signal line TL.
 クエンチング抵抗R1は、クエンチング抵抗R1が接続される電極E1よりも抵抗率が高い。クエンチング抵抗R1は、たとえばポリシリコンからなる。クエンチング抵抗R1の形成方法には、CVD(Chemical Vapor Deposition)法を用いることができる。 The quenching resistor R1 has a higher resistivity than the electrode E1 to which the quenching resistor R1 is connected. Quenching resistor R1 is made of polysilicon, for example. As a method for forming the quenching resistor R1, a CVD (Chemical Vapor Deposition) method can be used.
 電極E1,E2,E3及び信号線TLは、金属(たとえば、Al)からなる。半導体基板がSiからなる場合には、電極材料としては、Alの他に、AuGe/Niも用いられる。電極E1,E2,E3及び信号線TLの形成方法には、スパッタ法を用いることができる。 The electrodes E1, E2, E3 and the signal line TL are made of metal (for example, Al). When the semiconductor substrate is made of Si, AuGe / Ni is also used as the electrode material in addition to Al. A sputtering method can be used as a method of forming the electrodes E1, E2, E3 and the signal line TL.
 半導体基板1Nの材料にSiが用いられる場合、P型不純物には3族元素(たとえば、B)が用いられ、N型不純物には5族元素(たとえば、N、P、又はAs)が用いられる。半導体の導電型であるN型とP型とが互いに置換されて素子が構成されている場合でも、当該素子は半導体光検出素子として機能する。これらの不純物の添加方法には、拡散法やイオン注入法を用いることができる。 When Si is used as the material of the semiconductor substrate 1N, a Group 3 element (for example, B) is used for the P-type impurity, and a Group 5 element (for example, N, P, or As) is used for the N-type impurity. . Even when the semiconductor conductivity type N-type and P-type are replaced with each other to form an element, the element functions as a semiconductor photodetector element. As a method for adding these impurities, a diffusion method or an ion implantation method can be used.
 絶縁層L1,L3の材料には、SiO又はSiNを用いることができる。絶縁層L1,L3がSiOからなる場合、絶縁層L1,L3の形成方法には、熱酸化法又はスパッタ法を用いることができる。 As a material of the insulating layers L1 and L3, SiO 2 or SiN can be used. If the insulating layer L1, L3 consists of SiO 2, the method for forming the insulating layer L1, L3, it is possible to use a thermal oxidation method or a sputtering method.
 フォトダイオードアレイPDAでは、PN接合がN型の半導体基板1NとP型の第一半導体領域1PAとの間に構成されることにより、アバランシェフォトダイオードAPDが形成される。半導体基板1Nは、半導体基板1Nの主面1Nbに形成された電極E2に電気的に接続されている。第一半導体領域1PAは、第二半導体領域1PBを介して、電極E1に接続されている。クエンチング抵抗R1は、アバランシェフォトダイオードAPDに直列に接続されている(図6参照)。 In the photodiode array PDA, an avalanche photodiode APD is formed by forming a PN junction between the N-type semiconductor substrate 1N and the P-type first semiconductor region 1PA. The semiconductor substrate 1N is electrically connected to an electrode E2 formed on the main surface 1Nb of the semiconductor substrate 1N. The first semiconductor region 1PA is connected to the electrode E1 through the second semiconductor region 1PB. The quenching resistor R1 is connected in series with the avalanche photodiode APD (see FIG. 6).
 フォトダイオードアレイPDAでは、個々のアバランシェフォトダイオードAPDがガイガーモードで動作する。ガイガーモードでは、アバランシェフォトダイオードAPDのブレークダウン電圧よりも大きな逆方向電圧(逆バイアス電圧)が、アバランシェフォトダイオードAPDのアノードとカソードとの間に印加される。すなわち、アノードには(-)電位V1が印加され、カソードには(+)電位V2が印加される。これらの電位の極性は相対的なものであり、一方の電位がグラウンド電位であってもよい。 In the photodiode array PDA, each avalanche photodiode APD operates in Geiger mode. In the Geiger mode, a reverse voltage (reverse bias voltage) larger than the breakdown voltage of the avalanche photodiode APD is applied between the anode and the cathode of the avalanche photodiode APD. That is, the (−) potential V1 is applied to the anode, and the (+) potential V2 is applied to the cathode. The polarities of these potentials are relative, and one potential may be a ground potential.
 アノードはP型の第一半導体領域1PAであり、カソードはN型の半導体基板1Nである。アバランシェフォトダイオードAPDに光(フォトン)が入射すると、基板内部で光電変換が行われて光電子が発生する。第一半導体領域1PAのPN接合界面の近傍領域において、アバランシェ増倍が行われ、増倍された電子群は電極E2に向けて流れる。すなわち、フォトダイオードアレイPDAのいずれかの画素(アバランシェフォトダイオードAPD)に光(フォトン)が入射すると、増倍されて、信号として電極E3から取り出される。 The anode is a P-type first semiconductor region 1PA, and the cathode is an N-type semiconductor substrate 1N. When light (photons) enters the avalanche photodiode APD, photoelectric conversion is performed inside the substrate to generate photoelectrons. Avalanche multiplication is performed in a region near the PN junction interface of the first semiconductor region 1PA, and the multiplied electron group flows toward the electrode E2. That is, when light (photon) is incident on any pixel (avalanche photodiode APD) of the photodiode array PDA, it is multiplied and extracted from the electrode E3 as a signal.
 各アバランシェフォトダイオードAPDに接続されたクエンチング抵抗R1の他方端は、半導体基板1Nの主面1Naに沿って共通の信号線TLに電気的に接続されている。各アバランシェフォトダイオードAPDは、ガイガーモードで動作しており、共通の信号線TLに接続されている。このため、複数のアバランシェフォトダイオードAPDに同時にフォトンが入射した場合、複数のアバランシェフォトダイオードAPDの出力は全て共通の信号線TLに入力される。したがって、フォトダイオードアレイPDAでは、入射フォトン数に応じた高強度の信号が計測される。各半導体光検出素子10(各フォトダイオードアレイPDA)では、電極E3を通して信号が出力される。 The other end of the quenching resistor R1 connected to each avalanche photodiode APD is electrically connected to a common signal line TL along the main surface 1Na of the semiconductor substrate 1N. Each avalanche photodiode APD operates in the Geiger mode and is connected to a common signal line TL. For this reason, when photons simultaneously enter a plurality of avalanche photodiodes APD, the outputs of the plurality of avalanche photodiodes APD are all input to a common signal line TL. Therefore, the photodiode array PDA measures a high-intensity signal corresponding to the number of incident photons. In each semiconductor photodetector 10 (each photodiode array PDA), a signal is output through the electrode E3.
 搭載基板20は、図3にも示されるように、互いに対向する主面20aと主面20bとを有している。搭載基板20は、平面視で矩形形状を呈している。主面20aは、半導体基板1Nの主面1Nbと対向している。各半導体光検出素子10は、半導体基板1Nの主面1Nbと主面20aとが対向するように、搭載基板20に配置されている。各半導体光検出素子10は、搭載基板20上で、二次元状に配置されている。 The mounting substrate 20 has a main surface 20a and a main surface 20b facing each other as shown in FIG. The mounting substrate 20 has a rectangular shape in plan view. Main surface 20a is opposed to main surface 1Nb of semiconductor substrate 1N. Each semiconductor photodetecting element 10 is arranged on the mounting substrate 20 so that the main surface 1Nb and the main surface 20a of the semiconductor substrate 1N face each other. Each semiconductor photodetecting element 10 is two-dimensionally arranged on the mounting substrate 20.
 搭載基板20は、複数の電極E5と複数の電極E7とを含んでいる。電極E5と電極E7とは、各半導体光検出素子10(各フォトダイオードアレイPDA)に対応する位置に配置されている。電極E5と電極E7とは、主面20a側に配置されている。 The mounting substrate 20 includes a plurality of electrodes E5 and a plurality of electrodes E7. The electrode E5 and the electrode E7 are disposed at positions corresponding to the respective semiconductor light detection elements 10 (each photodiode array PDA). The electrode E5 and the electrode E7 are disposed on the main surface 20a side.
 電極E5は、図3に示されるように、対向方向から見て、半導体基板1Nの外側で、かつ、第三辺1N3の近傍に配置されている。すなわち、電極E5は、主面20aにおける、第三辺1N3の近傍に位置する領域上に形成されている。電極E5は、対向方向から見て、半導体基板1Nから露出している。上記対向方向は、主面20aと主面20bとが対向している方向と一致している。 As shown in FIG. 3, the electrode E5 is disposed outside the semiconductor substrate 1N and in the vicinity of the third side 1N3 when viewed from the facing direction. That is, the electrode E5 is formed on a region located in the vicinity of the third side 1N3 on the main surface 20a. The electrode E5 is exposed from the semiconductor substrate 1N when viewed from the facing direction. The facing direction coincides with the direction in which the main surface 20a and the main surface 20b face each other.
 電極E7は、図3に示されるように、電極E2に対応する位置に配置されている。すなわち、電極E7は、主面20aにおける、電極E2に対向する各領域上に形成されている。 The electrode E7 is arrange | positioned in the position corresponding to the electrode E2, as FIG. 3 shows. That is, the electrode E7 is formed on each region facing the electrode E2 on the main surface 20a.
 搭載基板20は、複数の電極E6と複数の電極E8とを含んでいる。電極E6と電極E8とは、主面20b側に配置されている。電極E6は、対応する電極E5と電気的に接続されている。電極E8は、対応する電極E7と電気的に接続されている。電極E5,E6,E7,E8も、電極E1,E2,E3と同じく、金属(たとえば、Al)からなる。電極材料としては、Alの他に、AuGe/Niを用いてもよい。 The mounting substrate 20 includes a plurality of electrodes E6 and a plurality of electrodes E8. The electrode E6 and the electrode E8 are disposed on the main surface 20b side. The electrode E6 is electrically connected to the corresponding electrode E5. The electrode E8 is electrically connected to the corresponding electrode E7. Similarly to the electrodes E1, E2, and E3, the electrodes E5, E6, E7, and E8 are also made of metal (for example, Al). As an electrode material, AuGe / Ni may be used in addition to Al.
 電極E3と電極E5とは、ボンディングワイヤW1により接続されている。すなわち、ボンディングワイヤW1は、電極E3に接続されている一端と、電極E5に接続されている他端とを有している。これにより、電極E3は、ボンディングワイヤW1を介して、電極E5に電気的に接続されている。ボンディングワイヤW1は、対向方向から見て第三辺1N3を跨るように延びている。すなわち、ボンディングワイヤW1は、対向方向から見て第三辺1N3と交差するように配置されている。ボンディングワイヤW1は、たとえば、Al、Cu、又はAuなどからなる。クエンチング抵抗R1は、信号線TL、電極E3、及びボンディングワイヤW1を介して、電極E5に電気的に接続されている。 The electrode E3 and the electrode E5 are connected by a bonding wire W1. That is, the bonding wire W1 has one end connected to the electrode E3 and the other end connected to the electrode E5. Thereby, the electrode E3 is electrically connected to the electrode E5 via the bonding wire W1. The bonding wire W1 extends so as to straddle the third side 1N3 when viewed from the facing direction. That is, the bonding wire W1 is disposed so as to intersect with the third side 1N3 when viewed from the facing direction. The bonding wire W1 is made of, for example, Al, Cu, or Au. The quenching resistor R1 is electrically connected to the electrode E5 via the signal line TL, the electrode E3, and the bonding wire W1.
 電極E2と電極E7とは、たとえば、導電性樹脂21により接続されている。これにより、電極E2は、導電性樹脂21を介して、電極E7に電気的に接続されている。導電性樹脂21は、導電性フィラーと樹脂とを含んでいる。導電性フィラーには、たとえばAg粉が用いられる。 The electrode E2 and the electrode E7 are connected by a conductive resin 21, for example. Thereby, the electrode E2 is electrically connected to the electrode E7 through the conductive resin 21. The conductive resin 21 includes a conductive filler and a resin. For example, Ag powder is used as the conductive filler.
 信号処理部SPは、たとえば、搭載基板20の主面20b側に配置される。信号処理部SPは、ASIC(Application Specific Integrated Circuit)を構成している。各電極E6は、搭載基板20に形成されている配線及びボンデングワイヤ(いずれも図示省略)などを介して信号処理部SPと電気的に接続されている。信号処理部SPには、各半導体光検出素子10(各フォトダイオードアレイPDA)からの出力信号が入力され、信号処理部SPは、各半導体光検出素子10からの出力信号を処理する。信号処理部SPは、各半導体光検出素子10からの出力信号をデジタルパルスに変換するCMOS回路を含んでいる。信号処理部SPは、搭載基板20とは異なる基板に配置されていてもよい。 The signal processing unit SP is disposed on the main surface 20b side of the mounting substrate 20, for example. The signal processing unit SP constitutes an ASIC (Application Specific Integrated Circuit). Each electrode E6 is electrically connected to the signal processing unit SP via a wiring formed on the mounting substrate 20, a bonding wire (both not shown), and the like. An output signal from each semiconductor photodetector 10 (each photodiode array PDA) is input to the signal processing unit SP, and the signal processor SP processes an output signal from each semiconductor photodetector 10. The signal processing unit SP includes a CMOS circuit that converts an output signal from each semiconductor photodetecting element 10 into a digital pulse. The signal processing unit SP may be disposed on a substrate different from the mounting substrate 20.
 各シンチレータ30は、光学接着剤31により、樹脂11に光学的に接続される。シンチレータ30は、各半導体光検出素子10(各フォトダイオードアレイPDA)に対応する位置に配置されている。シンチレータからのシンチレーション光は、光学接着剤31及び樹脂11を通り、半導体光検出素子10に入射する。シンチレータ30の数は、半導体光検出素子10の数と同じであり、シンチレータ30と半導体光検出素子10とが一対一で対応している。 Each scintillator 30 is optically connected to the resin 11 by an optical adhesive 31. The scintillator 30 is disposed at a position corresponding to each semiconductor light detection element 10 (each photodiode array PDA). The scintillation light from the scintillator passes through the optical adhesive 31 and the resin 11 and enters the semiconductor light detection element 10. The number of scintillators 30 is the same as the number of semiconductor photodetecting elements 10, and the scintillator 30 and the semiconductor photodetecting elements 10 are in a one-to-one correspondence.
 以上のように、本実施形態では、電極E3と電極E5とを接続しているボンディングワイヤW1は、対向方向から見て第三辺1N3を跨るように延びている。すなわち、ボンディングワイヤW1は、対向方向から見て第三辺1N3と交差するように配置されている。これにより、フォトダイオードアレイPDAの信号は、半導体基板1Nの主面1Na側から取り出され、搭載基板20の主面20a側に送られる。本実施形態では、半導体基板1Nと搭載基板20との電気的な接続が、ボンディングワイヤW1により実現されている。 As described above, in the present embodiment, the bonding wire W1 connecting the electrode E3 and the electrode E5 extends so as to straddle the third side 1N3 when viewed from the facing direction. That is, the bonding wire W1 is disposed so as to intersect with the third side 1N3 when viewed from the facing direction. Thereby, the signal of the photodiode array PDA is extracted from the main surface 1Na side of the semiconductor substrate 1N and sent to the main surface 20a side of the mounting substrate 20. In the present embodiment, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W1.
 第三辺1N3は、一方の第一辺1N1の一端と一方の第二辺1N2一端とに接続されている。すなわち、第三辺1N3は、一方の第一辺1N1と一方の第二辺1N2とに交差する一方向に延びている。したがって、半導体基板1Nには、特許文献1に記載された光検出装置において半導体基板に形成されているような切り欠きは形成されていない。このため、光検出装置1では、半導体基板1Nの機械的強度の低下が抑制されている。 The third side 1N3 is connected to one end of one first side 1N1 and one end of one second side 1N2. That is, the third side 1N3 extends in one direction intersecting one first side 1N1 and one second side 1N2. Therefore, the semiconductor substrate 1N is not formed with a notch that is formed in the semiconductor substrate in the photodetector described in Patent Document 1. For this reason, in the photodetection device 1, a decrease in the mechanical strength of the semiconductor substrate 1N is suppressed.
 第三辺1N3の長さは、第一辺1N1及び第二辺1N2の各長さよりも短い。これにより、第一領域RS1の面積の低下が抑制される。第一領域RS1は、上述したように、複数の画素(複数のアバランシェフォトダイオードAPD)が位置する領域(有効領域)である。 The length of the third side 1N3 is shorter than the lengths of the first side 1N1 and the second side 1N2. Thereby, the fall of the area of 1st area | region RS1 is suppressed. As described above, the first region RS1 is a region (effective region) where a plurality of pixels (a plurality of avalanche photodiodes APD) are located.
 本実施形態では、光検出装置1は、複数の半導体光検出素子10を備えている。各半導体光検出素子10は、半導体基板1Nの主面1Nbと搭載基板20の主面20aとが対向するように、搭載基板20に配置されている。半導体光検出素子10ごとに、電極E3と電極E5とがボンディングワイヤW1を介して接続されている。光検出装置1が複数の半導体光検出素子10を備えているので、光検出装置1の受光領域の大面積化が図られる。 In the present embodiment, the light detection device 1 includes a plurality of semiconductor light detection elements 10. Each semiconductor photodetecting element 10 is arranged on the mounting substrate 20 so that the main surface 1Nb of the semiconductor substrate 1N and the main surface 20a of the mounting substrate 20 face each other. For each semiconductor photodetecting element 10, an electrode E3 and an electrode E5 are connected via a bonding wire W1. Since the light detection device 1 includes the plurality of semiconductor light detection elements 10, the area of the light receiving region of the light detection device 1 can be increased.
 各フォトダイオードアレイPDAでは、画素を構成するアバランシェフォトダイオードAPDがフォトンを検出してガイガー放電したとき、アバランシェフォトダイオードAPDに接続されたクエンチング抵抗R1の働きにより、パルス状の信号が得られる。それぞれのアバランシェフォトダイオードAPDが、各々フォトンをカウントする。このため、同じタイミングで複数個のフォトンが入射した時においても、総出力パルスの出力電荷量あるいは信号強度に応じて、入射したフォトン数が判明する。 In each photodiode array PDA, when the avalanche photodiode APD constituting the pixel detects photons and performs Geiger discharge, a pulsed signal is obtained by the action of the quenching resistor R1 connected to the avalanche photodiode APD. Each avalanche photodiode APD counts photons. Therefore, even when a plurality of photons are incident at the same timing, the number of incident photons is determined according to the output charge amount or the signal intensity of the total output pulse.
 本実施形態では、半導体光検出素子10とシンチレータ30とが一対一で結合されている態様で、半導体光検出素子10とシンチレータ30とが、搭載基板20にタイリングされている。X軸方向で隣り合う半導体光検出素子10同士は、第一辺1N1が対向するようにタイリングされている。Y軸方向で隣り合う半導体光検出素子10同士は、第二辺1N2が対向するようにタイリングされている。 In the present embodiment, the semiconductor photodetecting element 10 and the scintillator 30 are tiled on the mounting substrate 20 in such a manner that the semiconductor photodetecting element 10 and the scintillator 30 are coupled on a one-to-one basis. The semiconductor photodetecting elements 10 adjacent in the X-axis direction are tiled so that the first sides 1N1 face each other. The semiconductor photodetecting elements 10 adjacent in the Y-axis direction are tiled so that the second side 1N2 faces each other.
 次に、図7を参照して、本実施形態の変形例に係る光検出装置1の構成を説明する。図7は、第三辺周辺における半導体光検出素子の概略斜視図である。図7では、半導体光検出素子10(半導体基板1N)が概略的に図示されている。 Next, with reference to FIG. 7, the structure of the photodetection device 1 according to a modification of the present embodiment will be described. FIG. 7 is a schematic perspective view of the semiconductor photodetector element around the third side. In FIG. 7, the semiconductor photodetecting element 10 (semiconductor substrate 1N) is schematically shown.
 図7に示された変形例では、半導体基板1Nの主面1Na側に、窪み3,5が形成されている。窪み3は、第一辺1N1と第三辺1N3とがなす角部に形成されている。窪み5は、第二辺1N2と第三辺1N3とがなす角部に形成されている。第一辺1N1と第三辺1N3とがなす角部には、窪み3により段差が形成されている。第二辺1N2と第三辺1N3とがなす角部には、窪み5により段差が形成されている。窪み3,5は、後述するスリット45により構成される。 In the modification shown in FIG. 7, the depressions 3 and 5 are formed on the main surface 1Na side of the semiconductor substrate 1N. The recess 3 is formed at a corner formed by the first side 1N1 and the third side 1N3. The recess 5 is formed at a corner formed by the second side 1N2 and the third side 1N3. A step is formed by a recess 3 at a corner formed by the first side 1N1 and the third side 1N3. A step is formed by a recess 5 at a corner formed by the second side 1N2 and the third side 1N3. The depressions 3 and 5 are constituted by slits 45 described later.
 窪み3は、対向方向から見て第一辺1N1と第三辺1N3とがなす角部に沿って形成されている。すなわち、窪み3は、対向方向から見て、第一辺1N1に沿っている領域と、第三辺1N3に沿っている領域とを有している。窪み5は、対向方向から見て第二辺1N2と第三辺1N3とがなす角部に沿って形成されている。すなわち、窪み5は、対向方向から見て、第二辺1N2に沿っている領域と、第三辺1N3に沿っている領域とを有している。 The depression 3 is formed along a corner formed by the first side 1N1 and the third side 1N3 when viewed from the facing direction. That is, the recess 3 has a region along the first side 1N1 and a region along the third side 1N3 when viewed from the facing direction. The depression 5 is formed along a corner formed by the second side 1N2 and the third side 1N3 when viewed from the facing direction. That is, the recess 5 has a region along the second side 1N2 and a region along the third side 1N3 when viewed from the facing direction.
 本変形例では、第一辺1N1と第三辺1N3とがなす角部に窪み3が形成されているので、当該角部にチッピングが生じるのを抑制することができる。第二辺1N2と第三辺1N3とがなす角部に窪み5が形成されているので、当該角部にチッピングが生じるのを抑制することができる。 In this modification, since the depression 3 is formed at the corner formed by the first side 1N1 and the third side 1N3, it is possible to suppress chipping from occurring at the corner. Since the recess 5 is formed at the corner formed by the second side 1N2 and the third side 1N3, it is possible to suppress chipping from occurring at the corner.
 次に、図8を参照して、本実施形態の変形例に係る光検出装置1の構成を説明する。図8は、第三辺周辺における半導体光検出素子の概略斜視図である。図8では、半導体光検出素子10(半導体基板1N)が概略的に図示されている。 Next, with reference to FIG. 8, the structure of the photodetection device 1 according to a modification of the present embodiment will be described. FIG. 8 is a schematic perspective view of the semiconductor photodetector element around the third side. In FIG. 8, the semiconductor photodetecting element 10 (semiconductor substrate 1N) is schematically shown.
 図8に示された変形例では、半導体基板1Nの主面1Na側に、金属膜7,9が配置されている。金属膜7は、第一辺1N1と第三辺1N3とがなす角部に配置されている。金属膜9は、第二辺1N2と第三辺1N3とがなす角部に配置されている。金属膜7は、対向方向から見て、第一辺1N1と平行な方向に沿っている辺と、第三辺1N3に平行な方向に沿っている辺とを有している。金属膜9は、対向方向から見て、第二辺1N2に平行な方向に沿っている辺と、第三辺1N3に平行な方向に沿っている辺とを有している。本実施形態では、各金属膜7,9は、平面視で、五角形状を呈している。金属膜7,9は、たとえば、Al、Au、又はCuなどからなる。金属膜7,9は、後述する金属膜47により構成される。 In the modification shown in FIG. 8, metal films 7 and 9 are disposed on the main surface 1Na side of the semiconductor substrate 1N. The metal film 7 is disposed at a corner formed by the first side 1N1 and the third side 1N3. The metal film 9 is disposed at a corner formed by the second side 1N2 and the third side 1N3. The metal film 7 has a side along a direction parallel to the first side 1N1 and a side along a direction parallel to the third side 1N3 when viewed from the facing direction. The metal film 9 has a side along a direction parallel to the second side 1N2 and a side along a direction parallel to the third side 1N3 when viewed from the facing direction. In the present embodiment, each of the metal films 7 and 9 has a pentagonal shape in plan view. The metal films 7 and 9 are made of, for example, Al, Au, or Cu. The metal films 7 and 9 are constituted by a metal film 47 described later.
 本変形例では、第一辺1N1と第三辺1N3とがなす角部に金属膜7が配置されているので、当該角部の機械的強度が向上する。これにより、第一辺1N1と第三辺1N3とがなす角部にチッピングが生じるのを抑制することができる。第二辺1N2と第三辺1N3とがなす角部に金属膜9が配置されているので、当該角部の機械的強度が向上する。これにより、第二辺1N2と第三辺1N3とがなす角部にチッピングが生じるのを抑制することができる。 In the present modification, since the metal film 7 is disposed at the corner formed by the first side 1N1 and the third side 1N3, the mechanical strength of the corner is improved. Thereby, it can suppress that a chipping arises in the corner | angular part which 1st edge | side 1N1 and 3rd edge | side 1N3 make. Since the metal film 9 is disposed at the corner formed by the second side 1N2 and the third side 1N3, the mechanical strength of the corner is improved. Thereby, it can suppress that a chipping arises in the corner | angular part which 2nd edge | side 1N2 and 3rd edge | side 1N3 make.
 次に、図9~図12を参照して、本実施形態の変形例に係る光検出装置1の構成を説明する。図9は、本変形例に係る半導体光検出素子の配列を説明するための図である。図10は、本変形例に係る光検出装置の断面構成を説明するための図である。図11は、半導体光検出素子の概略平面図である。図12は、第三辺周辺における半導体光検出素子の構成を示す模式図である。 Next, the configuration of the photodetecting device 1 according to a modification of the present embodiment will be described with reference to FIGS. FIG. 9 is a diagram for explaining the arrangement of the semiconductor photodetecting elements according to this modification. FIG. 10 is a diagram for explaining a cross-sectional configuration of the light detection device according to the present modification. FIG. 11 is a schematic plan view of the semiconductor photodetecting element. FIG. 12 is a schematic diagram showing the configuration of the semiconductor photodetector element around the third side.
 半導体光検出素子10は、図10に示されるように、半導体基板1Nの主面1Na側に配置されている電極E9を有している。電極E9は、絶縁層L1に形成されているビアを通して、N型の半導体領域1PCに接続されている。電極E9は、半導体領域1PCを介して半導体基板1Nに電気的に接続されている。電極E9は、第二領域RS2に位置している。電極E9と電極E3とは、対向方向から見て、第三辺1N3に沿って並んでいる。電極E3を含む断面構成は、上述した実施形態と同様であり(図3参照)、図示を省略する。 The semiconductor photodetecting element 10 has an electrode E9 disposed on the main surface 1Na side of the semiconductor substrate 1N, as shown in FIG. The electrode E9 is connected to the N-type semiconductor region 1PC through a via formed in the insulating layer L1. The electrode E9 is electrically connected to the semiconductor substrate 1N through the semiconductor region 1PC. The electrode E9 is located in the second region RS2. The electrode E9 and the electrode E3 are arranged along the third side 1N3 when viewed from the facing direction. The cross-sectional configuration including the electrode E3 is the same as that of the above-described embodiment (see FIG. 3), and the illustration is omitted.
 電極E7は、パッド部E7pを有している。パッド部E7pは、図11及び図12に示されるように、対向方向から見て、半導体基板1Nの外側で、かつ、第三辺1N3の近傍に配置されている。すなわち、パッド部E7pは、主面20aにおける、第三辺1N3の近傍に位置する領域上に形成されている。パッド部E7pは、対向方向から見て、半導体基板1Nから露出している。パッド部E7pと電極E5とは、対向方向から見て、第三辺1N3に沿って並んでいる。 The electrode E7 has a pad portion E7p. As shown in FIGS. 11 and 12, the pad portion E7p is disposed outside the semiconductor substrate 1N and in the vicinity of the third side 1N3 when viewed from the facing direction. That is, the pad portion E7p is formed on a region located in the vicinity of the third side 1N3 on the main surface 20a. The pad portion E7p is exposed from the semiconductor substrate 1N when viewed from the facing direction. The pad portion E7p and the electrode E5 are arranged along the third side 1N3 when viewed from the facing direction.
 電極E9とパッド部E7p(電極E7)とは、ボンディングワイヤW2により接続されている。すなわち、ボンディングワイヤW2は、電極E9に接続されている一端と、パッド部E7pに接続されている他端とを有している。これにより、電極E9は、ボンディングワイヤW2を介して、電極E7に電気的に接続されている。半導体基板1Nは、半導体領域1PC、電極E9、及びボンディングワイヤW2を介して、電極E7に電気的に接続されている。ボンディングワイヤW2は、ボンディングワイヤW1と同様に、対向方向から見て第三辺1N3を跨るように延びている。すなわち、ボンディングワイヤW2も、対向方向から見て第三辺1N3と交差するように配置されている。ボンディングワイヤW1とボンディングワイヤW2とは、対向方向から見て、第三辺1N3に交差する方向で並んでいる。ボンディングワイヤW2は、ボンディングワイヤW1と同じく、たとえば、Al、Cu、又はAuなどからなる。 The electrode E9 and the pad portion E7p (electrode E7) are connected by a bonding wire W2. That is, the bonding wire W2 has one end connected to the electrode E9 and the other end connected to the pad portion E7p. Thereby, the electrode E9 is electrically connected to the electrode E7 via the bonding wire W2. The semiconductor substrate 1N is electrically connected to the electrode E7 via the semiconductor region 1PC, the electrode E9, and the bonding wire W2. Similar to the bonding wire W1, the bonding wire W2 extends so as to straddle the third side 1N3 when viewed from the facing direction. That is, the bonding wire W2 is also arranged so as to intersect with the third side 1N3 when viewed from the opposing direction. The bonding wire W1 and the bonding wire W2 are arranged in a direction intersecting the third side 1N3 when viewed from the facing direction. The bonding wire W2 is made of, for example, Al, Cu, Au, or the like, similar to the bonding wire W1.
 本変形例においても、上述した実施形態と同様に、半導体基板1Nと搭載基板20との電気的な接続がボンディングワイヤW1により実現されている。半導体基板1Nの機械的強度の低下が抑制されている。 Also in this modified example, as in the above-described embodiment, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W1. A decrease in mechanical strength of the semiconductor substrate 1N is suppressed.
 本変形例では、電極E9と電極E7とが、ボンディングワイヤW2を介して接続されている。この場合、ボンディングワイヤW2及び電極E9を通して、半導体基板1Nにカソード電位を適切に与えることが可能となる。すなわち、本変形例では、半導体基板1Nと搭載基板20との電気的な接続が、ボンディングワイヤW2により実現されている。 In this modification, the electrode E9 and the electrode E7 are connected via a bonding wire W2. In this case, the cathode potential can be appropriately applied to the semiconductor substrate 1N through the bonding wire W2 and the electrode E9. That is, in this modification, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W2.
 半導体基板1Nの主面1Nb側には、電極E2が配置されていなくてもよい。すなわち、半導体基板1Nの主面1Nbが、導電性樹脂21により電極E7に直接接続されていてもよい。この場合、半導体基板1Nにカソード電位を与えるための電極が半導体基板1Nの主面1Nb側に配置されている必要がなく、半導体光検出素子10の製造コストが低減される。半導体基板1Nは、導電性樹脂21を介して、電極E7に電気的に接続される。 The electrode E2 may not be disposed on the main surface 1Nb side of the semiconductor substrate 1N. That is, the main surface 1Nb of the semiconductor substrate 1N may be directly connected to the electrode E7 by the conductive resin 21. In this case, an electrode for applying a cathode potential to the semiconductor substrate 1N does not need to be disposed on the main surface 1Nb side of the semiconductor substrate 1N, and the manufacturing cost of the semiconductor photodetector 10 is reduced. The semiconductor substrate 1N is electrically connected to the electrode E7 through the conductive resin 21.
 次に、図13~図16を参照して、本実施形態の変形例に係る光検出装置1の構成を説明する。図13は、本変形例に係る半導体光検出素子の配列を説明するための図である。図14は、本変形例に係る光検出装置の断面構成を説明するための図である。図15は、半導体光検出素子の概略平面図である。図16は、第四辺周辺における半導体光検出素子の構成を示す模式図である。本変形例においても、電極E3を含む断面構成は、上述した実施形態と同様であり(図3参照)、図示を省略する。 Next, the configuration of the photodetection device 1 according to a modification of the present embodiment will be described with reference to FIGS. FIG. 13 is a diagram for explaining the arrangement of the semiconductor photodetecting elements according to the present modification. FIG. 14 is a diagram for explaining a cross-sectional configuration of the light detection device according to the present modification. FIG. 15 is a schematic plan view of the semiconductor photodetector element. FIG. 16 is a schematic diagram showing the configuration of the semiconductor photodetector element around the fourth side. Also in this modification, the cross-sectional configuration including the electrode E3 is the same as that of the above-described embodiment (see FIG. 3), and the illustration is omitted.
 本変形例では、半導体基板1Nは、対向方向から見て、六角形状を呈している。すなわち、半導体基板1Nは、対向方向から見たときの外縁として、一対の第一辺1N1と、一対の第二辺1N2と、一つの第三辺1N3と、一つの第四辺1N4とを有している。一対の第一辺1N1は、互いに対向しており、平行である。一対の第二辺1N2は、互いに対向しており、平行である。 In this modification, the semiconductor substrate 1N has a hexagonal shape when viewed from the facing direction. That is, the semiconductor substrate 1N has a pair of first sides 1N1, a pair of second sides 1N2, a third side 1N3, and a fourth side 1N4 as outer edges when viewed from the opposite direction. is doing. The pair of first sides 1N1 face each other and are parallel to each other. The pair of second sides 1N2 face each other and are parallel to each other.
 第三辺1N3と第四辺1N4とは、互いに対向しており、平行である。第四辺1N4は、他方の第一辺1N1と他方の第二辺1N2とに接続されている。第四辺1N4は、他方の第一辺1N1と他方の第二辺1N2とに交差する一方向に延びている。すなわち、第四辺1N4は、他方の第一辺1N1と他方の第二辺1N2との間に位置している。他方の第一辺1N1の他端と第四辺1N4の一端とが接続されている。第一辺1N1と第四辺1N4とがなす角は、たとえば135°である。他方の第二辺1N2の他端と第四辺1N4の他端とが接続されている。第二辺1N2と第四辺1N4とがなす角は、たとえば135°である。 The third side 1N3 and the fourth side 1N4 face each other and are parallel to each other. The fourth side 1N4 is connected to the other first side 1N1 and the other second side 1N2. The fourth side 1N4 extends in one direction intersecting the other first side 1N1 and the other second side 1N2. That is, the fourth side 1N4 is located between the other first side 1N1 and the other second side 1N2. The other end of the other first side 1N1 and one end of the fourth side 1N4 are connected. The angle formed by the first side 1N1 and the fourth side 1N4 is, for example, 135 °. The other end of the other second side 1N2 and the other end of the fourth side 1N4 are connected. The angle formed by the second side 1N2 and the fourth side 1N4 is, for example, 135 °.
 第三辺1N3の長さだけでなく、第四辺1N4の長さも、第一辺1N1及び第二辺1N2の各長さよりも短い。本変形例では、第三辺1N3の長さと第四辺1N4の長さとは、同等である。第三辺1N3の長さと第四辺1N4の長さとは、同等でなくてもよく、異なっていてもよい。 Not only the length of the third side 1N3 but also the length of the fourth side 1N4 is shorter than the lengths of the first side 1N1 and the second side 1N2. In the present modification, the length of the third side 1N3 and the length of the fourth side 1N4 are equivalent. The length of the third side 1N3 and the length of the fourth side 1N4 may not be the same or may be different.
 半導体基板1Nは、図15にも示されるように、第一領域RS1と第二領域RS2と第三領域RS3を有している。第三領域RS3は、対向方向から見て、第一領域RS1の外側で、かつ、第四辺1N4の近傍に位置している。すなわち、第三領域RS3は、対向方向から見て、第一領域RS1を挟んで第二領域RS2と対向するように位置している。第三領域RS3は、たとえば、平面視で三角形状を呈している。図15では、対向方向がZ軸方向と一致している。 The semiconductor substrate 1N has a first region RS1, a second region RS2, and a third region RS3 as shown in FIG. The third region RS3 is located outside the first region RS1 and in the vicinity of the fourth side 1N4 when viewed from the facing direction. That is, the third region RS3 is located so as to face the second region RS2 across the first region RS1 when viewed from the facing direction. The third region RS3 has, for example, a triangular shape in plan view. In FIG. 15, the facing direction coincides with the Z-axis direction.
 本変形例では、電極E9は、第三領域RS3に位置している。電極E7のパッド部E7pは、図15に示されるように、対向方向から見て、半導体基板1Nの外側で、かつ、第四辺1N4の近傍に配置されている。すなわち、パッド部E7pは、主面20aにおける、第四辺1N4の近傍に位置する領域上に形成されている。ボンディングワイヤW2は、対向方向から見て第四辺1N4を跨るように延びている。すなわち、ボンディングワイヤW2は、対向方向から見て第四辺1N4と交差するように配置されている。 In this modification, the electrode E9 is located in the third region RS3. As shown in FIG. 15, the pad portion E7p of the electrode E7 is disposed outside the semiconductor substrate 1N and in the vicinity of the fourth side 1N4 when viewed from the facing direction. That is, the pad portion E7p is formed on a region located in the vicinity of the fourth side 1N4 on the main surface 20a. The bonding wire W2 extends so as to straddle the fourth side 1N4 when viewed from the facing direction. That is, the bonding wire W2 is disposed so as to intersect the fourth side 1N4 when viewed from the facing direction.
 本変形例においても、図9~図12に示された変形例と同様に、半導体基板1Nと搭載基板20との電気的な接続がボンディングワイヤW1,W2により実現されている。半導体基板1Nの機械的強度の低下が抑制されている。図9~図12に示された変形例と同様に、半導体基板1Nの主面1Nb側には、電極E2が配置されていなくてもよい。この場合、半導体光検出素子10の製造コストが低減される。 Also in this modification, as in the modification shown in FIGS. 9 to 12, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wires W1 and W2. A decrease in mechanical strength of the semiconductor substrate 1N is suppressed. Similarly to the modification shown in FIGS. 9 to 12, the electrode E2 may not be disposed on the main surface 1Nb side of the semiconductor substrate 1N. In this case, the manufacturing cost of the semiconductor photodetector 10 is reduced.
 第四辺1N4の長さは、第一辺1N1及び第二辺1N2の各長さよりも短い。これにより、第一領域RS1の面積の低下が抑制される。 The length of the fourth side 1N4 is shorter than the lengths of the first side 1N1 and the second side 1N2. Thereby, the fall of the area of 1st area | region RS1 is suppressed.
 次に、図17を参照して、図13~図16に示された光検出装置1の変形例の構成を説明する。図17は、第四辺周辺における半導体光検出素子の概略斜視図である。図17では、半導体光検出素子10(半導体基板1N)が概略的に図示されている。 Next, with reference to FIG. 17, a configuration of a modified example of the photodetecting device 1 shown in FIGS. 13 to 16 will be described. FIG. 17 is a schematic perspective view of the semiconductor photodetector element around the fourth side. In FIG. 17, the semiconductor photodetecting element 10 (semiconductor substrate 1N) is schematically shown.
 図17に示された変形例では、半導体基板1Nの主面1Na側に、窪み13,15が形成されている。窪み13は、第一辺1N1と第四辺1N4とがなす角部に形成されている。窪み15は、第二辺1N2と第四辺1N4とがなす角部に形成されている。第一辺1N1と第四辺1N4とがなす角部には、窪み13により段差が形成されている。第二辺1N2と第四辺1N4とがなす角部には、窪み15により段差が形成されている。図示は省略するが、半導体基板1Nには、上述した窪み3,5が形成されていてもよい。 In the modification shown in FIG. 17, depressions 13 and 15 are formed on the main surface 1Na side of the semiconductor substrate 1N. The recess 13 is formed at a corner formed by the first side 1N1 and the fourth side 1N4. The recess 15 is formed at a corner formed by the second side 1N2 and the fourth side 1N4. A step is formed by a recess 13 at a corner formed by the first side 1N1 and the fourth side 1N4. A step is formed by a recess 15 at a corner formed by the second side 1N2 and the fourth side 1N4. Although not shown, the above-described recesses 3 and 5 may be formed in the semiconductor substrate 1N.
 窪み13は、対向方向から見て第一辺1N1と第四辺1N4とがなす角部に沿って形成されている。すなわち、窪み13は、対向方向から見て、第一辺1N1に沿っている領域と、第四辺1N4に沿っている領域とを有している。窪み15は、対向方向から見て第二辺1N2と第四辺1N4とがなす角部に沿って形成されている。すなわち、窪み15は、対向方向から見て、第二辺1N2に沿っている領域と、第四辺1N4に沿っている領域とを有している。 The depression 13 is formed along a corner formed by the first side 1N1 and the fourth side 1N4 when viewed from the facing direction. That is, the depression 13 has a region along the first side 1N1 and a region along the fourth side 1N4 when viewed from the facing direction. The recess 15 is formed along a corner formed by the second side 1N2 and the fourth side 1N4 when viewed from the facing direction. That is, the recess 15 has a region along the second side 1N2 and a region along the fourth side 1N4 when viewed from the facing direction.
 本変形例では、第一辺1N1と第四辺1N4とがなす角部に窪み13が形成されているので、当該角部にチッピングが生じるのを抑制することができる。第二辺1N2と第四辺1N4とがなす角部に窪み15が形成されているので、当該角部にチッピングが生じるのを抑制することができる。 In this modification, since the depression 13 is formed at the corner formed by the first side 1N1 and the fourth side 1N4, it is possible to suppress chipping from occurring at the corner. Since the depression 15 is formed at the corner formed by the second side 1N2 and the fourth side 1N4, it is possible to suppress chipping from occurring at the corner.
 次に、図18を参照して、図13~図16に示された光検出装置1の変形例の構成を説明する。図18は、第四辺周辺における半導体光検出素子の概略斜視図である。図18では、半導体光検出素子10(半導体基板1N)が概略的に図示されている。 Next, with reference to FIG. 18, a configuration of a modified example of the photodetecting device 1 shown in FIGS. 13 to 16 will be described. FIG. 18 is a schematic perspective view of the semiconductor photodetector element around the fourth side. In FIG. 18, the semiconductor photodetecting element 10 (semiconductor substrate 1N) is schematically shown.
 図8に示された変形例では、半導体基板1Nの主面1Na側に、金属膜17,19が配置されている。金属膜17は、第一辺1N1と第四辺1N4とがなす角部に配置されている。金属膜19は、第二辺1N2と第四辺1N4とがなす角部に配置されている。図示は省略するが、半導体基板1Nには、上述した金属膜7,9が形成されていてもよい。 In the modification shown in FIG. 8, metal films 17 and 19 are arranged on the main surface 1Na side of the semiconductor substrate 1N. The metal film 17 is disposed at a corner formed by the first side 1N1 and the fourth side 1N4. The metal film 19 is disposed at a corner formed by the second side 1N2 and the fourth side 1N4. Although illustration is omitted, the metal films 7 and 9 described above may be formed on the semiconductor substrate 1N.
 金属膜17は、対向方向から見て、第一辺1N1に沿っている辺と、第四辺1N4に沿っている辺とを有している。金属膜19は、対向方向から見て、第二辺1N2に沿っている辺と、第四辺1N4に沿っている辺とを有している。本変形例では、各金属膜17,19は、平面視で、五角形状を呈している。金属膜17,19は、金属膜7,9と同様に、たとえば、Al、Au、又はCuなどからなる。 The metal film 17 has a side along the first side 1N1 and a side along the fourth side 1N4 when viewed from the facing direction. The metal film 19 has a side along the second side 1N2 and a side along the fourth side 1N4 when viewed from the facing direction. In this modification, the metal films 17 and 19 have a pentagonal shape in plan view. The metal films 17 and 19 are made of, for example, Al, Au, or Cu, as with the metal films 7 and 9.
 本変形例では、第一辺1N1と第四辺1N4とがなす角部に金属膜17が配置されているので、当該角部の機械的強度が向上する。これにより、第一辺1N1と第四辺1N4とがなす角部にチッピングが生じるのを抑制することができる。第二辺1N2と第四辺1N4とがなす角部に金属膜19が配置されているので、当該角部の機械的強度が向上する。これにより、第二辺1N2と第四辺1N4とがなす角部にチッピングが生じるのを抑制することができる。 In this modification, since the metal film 17 is disposed at the corner formed by the first side 1N1 and the fourth side 1N4, the mechanical strength of the corner is improved. Thereby, it can suppress that a chipping arises in the corner | angular part which the 1st edge | side 1N1 and the 4th edge | side 1N4 make. Since the metal film 19 is disposed at the corner formed by the second side 1N2 and the fourth side 1N4, the mechanical strength of the corner is improved. Thereby, it can suppress that a chipping arises in the corner | angular part which 2nd edge | side 1N2 and 4th edge | side 1N4 make.
 次に、図19~図22を参照して、本実施形態の変形例に係る光検出装置1の構成を説明する。図19は、本実施形態の変形例に係る光検出装置を示す概略斜視図である。図20~図22は、半導体光検出素子の概略平面図である。 Next, the configuration of the photodetecting device 1 according to a modification of the present embodiment will be described with reference to FIGS. FIG. 19 is a schematic perspective view showing a light detection device according to a modification of the present embodiment. 20 to 22 are schematic plan views of the semiconductor photodetector element.
 図19及び図20に示された変形例では、光検出装置1は、一つの半導体光検出素子10、一つの搭載基板20、及び一つのシンチレータ30を備えている。本変形例においても、上述した実施形態と同様に、半導体基板1Nと搭載基板20との電気的な接続がボンディングワイヤW1により実現されている。半導体基板1Nの機械的強度の低下が抑制されている。 19 and 20, the photodetection device 1 includes one semiconductor photodetection element 10, one mounting substrate 20, and one scintillator 30. Also in this modification, as in the above-described embodiment, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wire W1. A decrease in mechanical strength of the semiconductor substrate 1N is suppressed.
 図21及び図22に示された変形例でも、光検出装置1は、一つの半導体光検出素子10、一つの搭載基板20、及び一つのシンチレータ30を備えている。本変形例においても、半導体基板1Nと搭載基板20との電気的な接続がボンディングワイヤW1,W2により実現されている。半導体基板1Nの機械的強度の低下が抑制されている。 21 and 22 also, the light detection device 1 includes one semiconductor light detection element 10, one mounting substrate 20, and one scintillator 30. Also in this modification, the electrical connection between the semiconductor substrate 1N and the mounting substrate 20 is realized by the bonding wires W1 and W2. A decrease in mechanical strength of the semiconductor substrate 1N is suppressed.
 次に、図23~図29を参照して、本実施形態に係る半導体光検出素子10の製造過程について説明する。図23~図29は、本実施形態に係る半導体光検出素子の製造過程を説明するための図である。 Next, with reference to FIGS. 23 to 29, a manufacturing process of the semiconductor photodetector 10 according to the present embodiment will be described. 23 to 29 are views for explaining a manufacturing process of the semiconductor photodetector element according to the present embodiment.
 まず、半導体基板(半導体ウェハ)40が準備される(図23参照)。半導体基板40は、複数の素子形成領域42を含んでいる。複数の素子形成領域42は、第一方向D1と、第一方向D1と交差する第二方向D2と、に隣り合うように位置している。本実施形態では、第一方向D1と第二方向D2とは直交している。素子形成領域42は、平面視で、五角形状を呈している。図23では、説明のため、隣り合う素子形成領域42の境界となる位置が実線で示されている。 First, a semiconductor substrate (semiconductor wafer) 40 is prepared (see FIG. 23). The semiconductor substrate 40 includes a plurality of element formation regions 42. The plurality of element formation regions 42 are located adjacent to each other in the first direction D1 and the second direction D2 intersecting the first direction D1. In the present embodiment, the first direction D1 and the second direction D2 are orthogonal to each other. The element formation region 42 has a pentagonal shape in plan view. In FIG. 23, for the sake of explanation, the position that becomes the boundary between the adjacent element formation regions 42 is indicated by a solid line.
 素子形成領域42は、図3に示された半導体光検出素子10に対応する構成を備えている。すなわち、素子形成領域42には、図23での図示は省略するが、複数のアバランシェフォトダイオードAPD(第一半導体領域1PA及び第二半導体領域1PB)、クエンチング抵抗R1、半導体領域1PC、信号線TL、電極E2,E3、及び絶縁層L1,L3が、それぞれ対応する位置に形成されている。半導体基板40は、個片化されることにより、半導体基板1Nを構成する。アバランシェフォトダイオードAPD、クエンチング抵抗R1、半導体領域1PC、信号線TL、電極E2,E3、及び絶縁層L1,L3などの形成過程は、当該技術分野では既知であり、詳細な説明を省略する。 The element formation region 42 has a configuration corresponding to the semiconductor photodetecting element 10 shown in FIG. That is, in the element formation region 42, although not shown in FIG. 23, a plurality of avalanche photodiodes APD (first semiconductor region 1PA and second semiconductor region 1PB), quenching resistor R1, semiconductor region 1PC, signal line TL, electrodes E2 and E3, and insulating layers L1 and L3 are formed at corresponding positions. The semiconductor substrate 40 is divided into individual pieces to constitute the semiconductor substrate 1N. The formation processes of the avalanche photodiode APD, the quenching resistor R1, the semiconductor region 1PC, the signal line TL, the electrodes E2 and E3, and the insulating layers L1 and L3 are known in the art, and detailed description thereof is omitted.
 次に、半導体基板40が複数の素子形成領域42毎に個片化される(図30参照)。これにより、半導体光検出素子10が得られる。 Next, the semiconductor substrate 40 is singulated for each of the plurality of element formation regions 42 (see FIG. 30). Thereby, the semiconductor photodetection element 10 is obtained.
 本実施形態では、ステルスダイシング技術を用いることにより、半導体基板40が個片化される。ステルスダイシング技術は、半導体基板(半導体ウエハ)の内部にレーザ光を照射して任意の位置に改質領域を形成し、この改質領域を起点として半導体基板を切断するダイシング技術である(たとえば、特開2009-135342号公報を参照)。ステルスダイシング技術に用いられるレーザ加工装置は、いわゆるSDE(ステルスダイシングエンジン:登録商標)と称される。このSDEは、たとえば、レーザ光をパルス発振するレーザ光源と、レーザ光の光軸(光路)の向きを変えるように配置されたダイクロイックミラーと、レーザ光を集光するための集光用レンズ(集光光学系)と、を備えている。 In this embodiment, the semiconductor substrate 40 is separated into pieces by using the stealth dicing technique. The stealth dicing technique is a dicing technique in which a modified region is formed at an arbitrary position by irradiating a semiconductor substrate (semiconductor wafer) with a laser beam, and the semiconductor substrate is cut from the modified region as a starting point (for example, (See JP 2009-135342 A). A laser processing apparatus used for the stealth dicing technique is called a so-called SDE (stealth dicing engine: registered trademark). This SDE is, for example, a laser light source that oscillates laser light, a dichroic mirror that is arranged so as to change the direction of the optical axis (optical path) of the laser light, and a condensing lens for condensing the laser light ( A condensing optical system).
 本過程では、レーザ光Lが主面40a側から照射され、半導体基板40の内部に集光点Pが形成される(図24参照)。この状態で、レーザ光Lが、複数の素子形成領域42のうち隣り合う素子形成領域42の境界に位置する切断予定ライン(図24において、実線に沿ったライン)に沿って相対的に移動される。これにより、切断予定ラインに沿って、改質領域MRが半導体基板40の内部に形成される(図25及び図26参照)。改質領域MRは、切断の起点となる。次に、形成された改質領域MRを起点として、半導体基板40が切断され、半導体基板40が個片化される。図24~図26では、半導体基板40(半導体ウエハ)を概略的に図示し、アバランシェフォトダイオードAPD、クエンチング抵抗R1、半導体領域1PC、信号線TL、電極E2,E3、及び絶縁層L1,L3などの図示を省略している。 In this process, the laser beam L is irradiated from the main surface 40a side, and a condensing point P is formed inside the semiconductor substrate 40 (see FIG. 24). In this state, the laser light L is relatively moved along a planned cutting line (a line along the solid line in FIG. 24) located at the boundary of the adjacent element forming regions 42 among the plurality of element forming regions 42. The Thereby, the modified region MR is formed inside the semiconductor substrate 40 along the planned cutting line (see FIGS. 25 and 26). The modified region MR is a starting point for cutting. Next, starting from the formed modified region MR, the semiconductor substrate 40 is cut, and the semiconductor substrate 40 is singulated. 24 to 26, a semiconductor substrate 40 (semiconductor wafer) is schematically illustrated, and an avalanche photodiode APD, a quenching resistor R1, a semiconductor region 1PC, a signal line TL, electrodes E2 and E3, and insulating layers L1 and L3 are illustrated. Such illustrations are omitted.
 集光点Pとは、レーザ光Lが集光する箇所である。改質領域MRは、連続的に形成される場合もあり、また、断続的に形成される場合もある。改質領域MRは列状でも点状でもよい。改質領域MRは、少なくとも半導体基板40の内部に形成されていればよい。改質領域MRを起点に、亀裂が形成される場合がある。亀裂及び改質領域MRは、半導体基板40の外表面(表面、裏面、又は外周面)に露出していてもよい。 The condensing point P is a part where the laser light L is condensed. The modified region MR may be formed continuously or may be formed intermittently. The modified region MR may be in a line shape or a dot shape. The modified region MR may be formed at least inside the semiconductor substrate 40. A crack may be formed starting from the modified region MR. The crack and modified region MR may be exposed on the outer surface (front surface, back surface, or outer peripheral surface) of the semiconductor substrate 40.
 レーザ光Lが、半導体基板40を透過すると共に半導体基板40の内部の集光点近傍にて特に吸収されることにより、半導体基板40に改質領域MRが形成される(すなわち、内部吸収型レーザ加工)。したがって、半導体基板40の主面40aではレーザ光Lが殆ど吸収されないので、半導体基板40の主面40aが溶融することはない。 The laser beam L is transmitted through the semiconductor substrate 40 and is particularly absorbed near the condensing point inside the semiconductor substrate 40, whereby a modified region MR is formed in the semiconductor substrate 40 (that is, an internal absorption laser). processing). Therefore, since the laser beam L is hardly absorbed by the main surface 40a of the semiconductor substrate 40, the main surface 40a of the semiconductor substrate 40 does not melt.
 本実施形態において形成される改質領域は、密度、屈折率、機械的強度、または、その他の物理的特性が周囲とは異なる状態になった領域である。改質領域としては、たとえば、溶融処理領域、クラック領域、絶縁破壊領域、又は屈折率変化領域などがあり、これらが混在した領域もある。改質領域としては、半導体基板40において改質領域の密度が非改質領域の密度と比較して変化した領域、及び、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。 The modified region formed in the present embodiment is a region where the density, refractive index, mechanical strength, or other physical characteristics are different from the surroundings. Examples of the modified region include a melt processing region, a crack region, a dielectric breakdown region, or a refractive index change region, and there are also regions where these are mixed. As the modified region, there are a region where the density of the modified region in the semiconductor substrate 40 is changed as compared with the density of the non-modified region, and a region where lattice defects are formed (collectively, these are collectively referred to as a high-density transition region). Say).
 ここで、図27を参照して、切断予定ラインについて詳しく説明する。 Here, the scheduled cutting line will be described in detail with reference to FIG.
 各素子形成領域42の五辺には、第二方向D2で平行な一対の切断予定ライン51と、第一方向D1で平行な一対の切断予定ライン52と、切断予定ライン53とが設定されている。一方の切断予定ライン51と切断予定ライン53とが接続されている。一方の切断予定ライン52と切断予定ライン53とが接続されている。各素子形成領域42において、切断予定ライン53の長さは、切断予定ライン51及び切断予定ライン52の各長さよりも短い。 A pair of scheduled cutting lines 51 parallel to the second direction D2, a pair of scheduled cutting lines 52 parallel to the first direction D1, and a planned cutting line 53 are set on the five sides of each element forming region 42. Yes. One cutting planned line 51 and the planned cutting line 53 are connected. One cutting planned line 52 and the cutting planned line 53 are connected. In each element formation region 42, the length of the planned cutting line 53 is shorter than the length of each of the planned cutting line 51 and the planned cutting line 52.
 本実施形態では、四つの素子形成領域42が一つの配置単位として扱われている。四つの素子形成領域42は、各素子形成領域42の切断予定ライン53により矩形が形成されるように配置されている。切断予定ライン53によって囲まれる矩形状の領域は、素子として使用しない非有効領域である。半導体基板40は、複数の上記配置単位を含んでいる。複数の配置単位は、第一方向D1と、第二方向D2と、に隣り合って並んでいる。 In the present embodiment, four element formation regions 42 are handled as one arrangement unit. The four element formation regions 42 are arranged such that a rectangle is formed by the planned cutting line 53 of each element formation region 42. A rectangular area surrounded by the planned cutting line 53 is an ineffective area that is not used as an element. The semiconductor substrate 40 includes a plurality of the above arrangement units. The plurality of arrangement units are arranged adjacent to each other in the first direction D1 and the second direction D2.
 切断予定ライン53によって囲まれる上記領域内では、切断予定ライン51と切断予定ライン52とは交差していない。切断予定ライン53によって囲まれる上記領域以外では、切断予定ライン51と切断予定ライン52とが交差している。 In the region surrounded by the planned cutting line 53, the planned cutting line 51 and the planned cutting line 52 do not intersect. Except for the region surrounded by the planned cutting line 53, the planned cutting line 51 and the planned cutting line 52 intersect.
 切断予定ライン53によって囲まれる上記領域内では、切断予定ライン51は、第一方向D1で離間している。すなわち、第一方向D1で隣り合う二つの素子形成領域42において、切断予定ライン53に接続される上記一方の切断予定ライン51は、第一方向D1で離間している。切断予定ライン53によって囲まれる上記領域内では、切断予定ライン52は、第二方向D2で離間している。すなわち、第二方向D2で隣り合う二つの素子形成領域42において、切断予定ライン53に接続される上記一方の切断予定ライン52は、第二方向D2で離間している。 In the region surrounded by the planned cutting line 53, the planned cutting line 51 is separated in the first direction D1. That is, in the two element formation regions 42 adjacent in the first direction D1, the one scheduled cutting line 51 connected to the scheduled cutting line 53 is separated in the first direction D1. Within the region surrounded by the planned cutting line 53, the planned cutting line 52 is separated in the second direction D2. That is, in the two element formation regions 42 adjacent in the second direction D2, the one scheduled cutting line 52 connected to the scheduled cutting line 53 is separated in the second direction D2.
 半導体基板40は、不図示のエキスパンドテープ(ダイシングテープ)に貼り付けられている。この状態で、半導体基板40には、切断予定ライン51に沿ってレーザ光Lが上述したように照射される。これにより、半導体基板40には、切断予定ライン51に沿って、改質領域61が形成される(図28参照)。切断予定ライン53によって囲まれる上記領域内では、改質領域61は、第一方向D1で離間している。 The semiconductor substrate 40 is affixed to an expanded tape (dicing tape) (not shown). In this state, the semiconductor substrate 40 is irradiated with the laser light L along the planned cutting line 51 as described above. As a result, a modified region 61 is formed in the semiconductor substrate 40 along the planned cutting line 51 (see FIG. 28). In the region surrounded by the planned cutting line 53, the modified regions 61 are separated in the first direction D1.
 半導体基板40には、切断予定ライン52に沿ってレーザ光Lが上述したように照射される。これにより、半導体基板40には、切断予定ライン52に沿って、改質領域62が形成される(図28参照)。切断予定ライン53によって囲まれる上記領域内では、改質領域62は、第二方向D2で離間している。切断予定ライン53によって囲まれる上記領域以外では、改質領域61と改質領域62とが交差している。 The semiconductor substrate 40 is irradiated with the laser light L along the scheduled cutting line 52 as described above. Thereby, the modified region 62 is formed in the semiconductor substrate 40 along the planned cutting line 52 (see FIG. 28). Within the region surrounded by the planned cutting line 53, the modified regions 62 are separated in the second direction D2. Except for the region surrounded by the planned cutting line 53, the modified region 61 and the modified region 62 intersect each other.
 半導体基板40には、切断予定ライン53に沿ってレーザ光Lが上述したように照射される。これにより、半導体基板40には、切断予定ライン53に沿って、改質領域63が形成される(図28参照)。改質領域63は、改質領域61,62に接続されておらず、改質領域63は、改質領域61,62から離間している。すなわち、改質領域63は、切断予定ライン53の両端部分53aを除く、中間部分53bに形成されている。各端部分53aの長さは、改質領域63から発生した亀裂が切断予定ライン51,52に向かって伸展する距離に設定される。各端部分53aの長さは、たとえば10μmに設定される。 The semiconductor substrate 40 is irradiated with the laser light L along the scheduled cutting line 53 as described above. As a result, a modified region 63 is formed in the semiconductor substrate 40 along the planned cutting line 53 (see FIG. 28). The reforming region 63 is not connected to the reforming regions 61 and 62, and the reforming region 63 is separated from the reforming regions 61 and 62. That is, the modified region 63 is formed in the intermediate portion 53 b excluding both end portions 53 a of the planned cutting line 53. The length of each end portion 53a is set to a distance at which the crack generated from the modified region 63 extends toward the scheduled cutting lines 51 and 52. The length of each end portion 53a is set to 10 μm, for example.
 半導体基板40に、改質領域61,62,63が形成された後、エキスパンドテープが拡張される。これにより、改質領域61,62,63から発生した亀裂が半導体基板40の主面40a,40bに到達し、切断予定ライン51,52,53に沿って半導体基板40が切断される。このとき、改質領域63から発生した亀裂は改質領域61,62に到達する。したがって、半導体基板40から複数の素子形成領域42が切り出されて、図29に示されるように、図3に示された構成を備えている複数の半導体光検出素子10が得られる。 After the modified regions 61, 62, 63 are formed on the semiconductor substrate 40, the expanded tape is expanded. As a result, cracks generated from the modified regions 61, 62, 63 reach the main surfaces 40 a, 40 b of the semiconductor substrate 40, and the semiconductor substrate 40 is cut along the scheduled cutting lines 51, 52, 53. At this time, the crack generated from the modified region 63 reaches the modified regions 61 and 62. Therefore, a plurality of element formation regions 42 are cut out from the semiconductor substrate 40, and as shown in FIG. 29, a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. 3 are obtained.
 半導体基板40が切断予定ライン51で切断されることにより、半導体光検出素子10を対向方向から見たときに第一辺1N1を構成する側面が形成される。半導体基板40が切断予定ライン52で切断されることにより、半導体光検出素子10を対向方向から見たときに第二辺1N2を構成する側面が形成される。半導体基板40が切断予定ライン53で切断されることにより、半導体光検出素子10を対向方向から見たときに第三辺1N3を構成する側面が形成される。 When the semiconductor substrate 40 is cut along the planned cutting line 51, the side surface constituting the first side 1N1 is formed when the semiconductor photodetector 10 is viewed from the facing direction. By cutting the semiconductor substrate 40 along the planned cutting line 52, a side surface constituting the second side 1N2 is formed when the semiconductor photodetector 10 is viewed from the facing direction. By cutting the semiconductor substrate 40 along the planned cutting line 53, a side surface constituting the third side 1N3 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
 上述した製造過程では、素子として使用しない非有効領域内に、切断予定ライン51,52が延びている。このため、切断予定ライン51,52に沿って改質領域61,62を形成する際に、レーザ光Lの照射がON/OFFされる位置が、上記非有効領域内に位置する。レーザ光Lの照射のON/OFF精度に応じて改質領域61,62の位置がずれた場合でも、半導体基板40が適切に切断される。切断予定ライン51,52の非有効領域内に位置する部分の長さは、レーザ光Lの照射のON/OFF精度を考慮して設定される。切断予定ライン51,52の非有効領域内に位置する部分の長さは、たとえば10μmに設定される。 In the manufacturing process described above, the scheduled cutting lines 51 and 52 extend in an ineffective area that is not used as an element. For this reason, when the modified regions 61 and 62 are formed along the scheduled cutting lines 51 and 52, the position where the irradiation of the laser light L is turned on / off is located in the ineffective region. Even when the positions of the modified regions 61 and 62 are shifted in accordance with the ON / OFF accuracy of the irradiation with the laser beam L, the semiconductor substrate 40 is appropriately cut. The length of the portion of the scheduled cutting lines 51 and 52 located in the ineffective area is set in consideration of the ON / OFF accuracy of the laser light L irradiation. The length of the part located in the ineffective area of the scheduled cutting lines 51 and 52 is set to 10 μm, for example.
 切断予定ライン53に沿って形成される改質領域63は、改質領域61,62から離間している。レーザ光Lの照射のON/OFF精度に応じて改質領域63の位置がずれた場合でも、素子形成領域42内に改質領域63が形成されることはない。したがって、各端部分53aの長さは、レーザ光Lの照射のON/OFF精度も考慮して設定される必要がある。この場合でも、各端部分53aの長さは、たとえば10μmに設定される。 The modified region 63 formed along the planned cutting line 53 is separated from the modified regions 61 and 62. Even when the position of the modified region 63 is shifted in accordance with the ON / OFF accuracy of the irradiation with the laser beam L, the modified region 63 is not formed in the element forming region 42. Therefore, the length of each end portion 53a needs to be set in consideration of the ON / OFF accuracy of the irradiation with the laser light L. Even in this case, the length of each end portion 53a is set to 10 μm, for example.
 複数の素子形成領域42が、第一方向D1と第二方向D2とで隣り合うように位置しており、切断予定ライン51,52が複雑化しない。したがって、半導体基板40をステルスダイシング技術により切断する際の工程時間が短い。 The plurality of element formation regions 42 are located adjacent to each other in the first direction D1 and the second direction D2, and the scheduled cutting lines 51 and 52 are not complicated. Therefore, the process time for cutting the semiconductor substrate 40 by the stealth dicing technique is short.
 次に、図30を参照して、本実施形態に係る半導体光検出素子10の製造過程の変形例を説明する。図30は、半導体光検出素子10の製造過程の変形例を説明するための図である。 Next, with reference to FIG. 30, a modified example of the manufacturing process of the semiconductor photodetector 10 according to the present embodiment will be described. FIG. 30 is a diagram for explaining a modification of the manufacturing process of the semiconductor photodetecting element 10.
 本変形例では、図30中の(a)に示されるように、半導体基板40に、スリット45が形成されている。スリット45は、切断予定ライン51,52と切断予定ライン53との接続点(交差点)から、切断予定ライン51,52と切断予定ライン53とにそれぞれ沿って延びている。素子として使用しない非有効領域内には、切断予定ライン51,52が設定されていない。もちろん、図27に示されるように、上記非有効領域内に、切断予定ライン51,52が設定されていてもよい。スリット45の切断予定ライン51,52,53に沿った上記接続点からの各長さは、レーザ光Lの照射のON/OFF精度も考慮して設定される。スリット45の上記接続点からの長さは、たとえば10μmに設定される。 In this modification, a slit 45 is formed in the semiconductor substrate 40 as shown in FIG. The slit 45 extends from a connection point (intersection) between the planned cutting lines 51 and 52 and the planned cutting line 53 along the planned cutting lines 51 and 52 and the planned cutting line 53, respectively. No scheduled cutting lines 51 and 52 are set in the non-effective area that is not used as an element. Of course, as shown in FIG. 27, the scheduled cutting lines 51 and 52 may be set in the ineffective area. Each length from the connection point along the scheduled cutting lines 51, 52, 53 of the slit 45 is set in consideration of the ON / OFF accuracy of the laser light L irradiation. The length of the slit 45 from the connection point is set to 10 μm, for example.
 改質領域61,62,63は、図30中の(b)に示されるように、スリット45に至るように形成される。この場合、エキスパンドテープが拡張される際に、スリット45に沿って、改質領域61,62,63から発生した亀裂が伸展する。したがって、切断予定ライン51,52,53のうち3つの切断予定ラインが交差する位置においても、半導体基板40が適切に切断される。半導体基板40に形成されたスリット45は、個片化された半導体光検出素子10には、窪み3,5として残る。 The reformed regions 61, 62, 63 are formed so as to reach the slit 45 as shown in (b) of FIG. In this case, when the expanded tape is expanded, cracks generated from the modified regions 61, 62, 63 extend along the slit 45. Therefore, the semiconductor substrate 40 is appropriately cut even at a position where three of the scheduled cutting lines 51, 52, 53 intersect. The slits 45 formed in the semiconductor substrate 40 remain as the depressions 3 and 5 in the separated semiconductor photodetector 10.
 次に、図31を参照して、本実施形態に係る半導体光検出素子10の製造過程の変形例を説明する。図31は、半導体光検出素子10の製造過程の変形例を説明するための図である。 Next, with reference to FIG. 31, a modification of the manufacturing process of the semiconductor photodetector 10 according to the present embodiment will be described. FIG. 31 is a diagram for explaining a modification of the manufacturing process of the semiconductor photodetector 10.
 本変形例では、図31中の(a)に示されるように、複数の金属膜47が形成されている。複数の金属膜47は、切断予定ライン51,52と切断予定ライン53との接続点近傍に配置されている。各金属膜47は、平面視で多角形状を呈している。本変形例では、金属膜47は、五角形状を呈している。金属膜47は、平面視で、切断予定ライン51,52,53に沿う辺を有している。複数の金属膜47は、切断予定ライン51,52,53に沿う各辺が、平面視で、切断予定ライン51,52,53を挟んで対向するように配置されている。金属膜47は、たとえば、Al、Au、又はCuからなる。 In this modified example, as shown in FIG. 31A, a plurality of metal films 47 are formed. The plurality of metal films 47 are disposed in the vicinity of connection points between the planned cutting lines 51 and 52 and the planned cutting line 53. Each metal film 47 has a polygonal shape in plan view. In this modification, the metal film 47 has a pentagonal shape. The metal film 47 has sides along the planned cutting lines 51, 52, 53 in plan view. The plurality of metal films 47 are arranged such that the sides along the scheduled cutting lines 51, 52, and 53 are opposed to each other with the scheduled cutting lines 51, 52, and 53 in plan view. The metal film 47 is made of, for example, Al, Au, or Cu.
 改質領域61,62,63は、図31中の(b)に示されるように、切断予定ライン51,52と切断予定ライン53との接続点で交差するように形成される。レーザ光Lの照射のON/OFF精度に応じてレーザ光Lの照射位置が素子形成領域42内に入る場合でも、金属膜47によって、レーザ光Lが半導体基板40内に照射されるのを防ぐことができる。これにより、素子形成領域42内に改質領域63が形成されることはない。したがって、切断予定ライン51,52,53のうち3つの切断予定ラインが交差する位置においても、半導体基板40が適切に切断される。半導体基板40に形成された金属膜47は、個片化された半導体光検出素子10には、金属膜7,9として残る。 The reformed regions 61, 62, 63 are formed so as to intersect at connection points between the planned cutting lines 51, 52 and the planned cutting line 53, as shown in FIG. 31 (b). Even when the irradiation position of the laser beam L enters the element formation region 42 according to the ON / OFF accuracy of the irradiation of the laser beam L, the metal film 47 prevents the laser beam L from being irradiated into the semiconductor substrate 40. be able to. Thereby, the modified region 63 is not formed in the element forming region 42. Therefore, the semiconductor substrate 40 is appropriately cut even at a position where three of the scheduled cutting lines 51, 52, 53 intersect. The metal film 47 formed on the semiconductor substrate 40 remains as the metal films 7 and 9 in the separated semiconductor photodetector 10.
 次に、図32~図35を参照して、本実施形態の変形例に係る半導体光検出素子10の製造過程について説明する。図32~図35は、本実施形態の変形例に係る半導体光検出素子の製造過程を説明するための図である。 Next, with reference to FIGS. 32 to 35, a manufacturing process of the semiconductor photodetector 10 according to the modification of the present embodiment will be described. 32 to 35 are views for explaining the manufacturing process of the semiconductor photodetector element according to the modification of the present embodiment.
 本変形例では、準備された半導体基板40に含まれる複数の素子形成領域42は、図14に示された半導体光検出素子10に対応する構成を備えている。素子形成領域42は、平面視で、六角形状を呈している。図32及び図34では、説明のため、隣り合う素子形成領域42の境界となる位置(切断予定ライン51,52,53)が実線で示されている。 In the present modification, the plurality of element formation regions 42 included in the prepared semiconductor substrate 40 have a configuration corresponding to the semiconductor photodetector 10 shown in FIG. The element formation region 42 has a hexagonal shape in plan view. In FIG. 32 and FIG. 34, the position (scheduled cutting line 51, 52, 53) that becomes the boundary between the adjacent element formation regions 42 is indicated by a solid line for the sake of explanation.
 図32に示された変形例では、素子形成領域42の六辺には、第二方向D2で平行な一対の切断予定ライン51と、第一方向D1で平行な一対の切断予定ライン52と、第一及び第二方向D1,D2と交差する方向で平行な一対の切断予定ライン53が設定されている。本変形例でも、四つの素子形成領域42が一つの配置単位として扱われている。四つの素子形成領域42は、各素子形成領域42の切断予定ライン53により矩形が形成されるように配置されている。半導体基板40は、複数の上記配置単位を含んでいる。複数の配置単位は、第一方向D1と、第二方向D2と、に隣り合って並んでいる。 In the modification shown in FIG. 32, on the six sides of the element formation region 42, a pair of planned cutting lines 51 parallel in the second direction D2, a pair of planned cutting lines 52 parallel in the first direction D1, A pair of scheduled cutting lines 53 that are parallel in the direction intersecting the first and second directions D1 and D2 are set. Also in this modification, four element formation regions 42 are handled as one arrangement unit. The four element formation regions 42 are arranged such that a rectangle is formed by the planned cutting line 53 of each element formation region 42. The semiconductor substrate 40 includes a plurality of the above arrangement units. The plurality of arrangement units are arranged adjacent to each other in the first direction D1 and the second direction D2.
 半導体基板40が複数の素子形成領域42毎に個片化されることにより、図33に示されるように、図14に示された構成を備えている複数の半導体光検出素子10が得られる。半導体基板40を個片化する過程は、図3に示された構成を備えている複数の半導体光検出素子10を得るための上述した個片化の過程と同様である。すなわち、半導体基板40が切断予定ライン51で切断されることにより、半導体光検出素子10を対向方向から見たときに第一辺1N1を構成する側面が形成される。半導体基板40が切断予定ライン52で切断されることにより、半導体光検出素子10を対向方向から見たときに第二辺1N2を構成する側面が形成される。半導体基板40が切断予定ライン53で切断されることにより、半導体光検出素子10を対向方向から見たときに第三辺1N3を構成する側面又は第四辺1N4を構成する側面が形成される。 By dividing the semiconductor substrate 40 into pieces for each of the plurality of element formation regions 42, as shown in FIG. 33, a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. 14 are obtained. The process of dividing the semiconductor substrate 40 is the same as the above-described process of dividing the semiconductor substrate 40 to obtain a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. That is, the semiconductor substrate 40 is cut along the scheduled cutting line 51, whereby the side surface constituting the first side 1N1 is formed when the semiconductor photodetector 10 is viewed from the facing direction. By cutting the semiconductor substrate 40 along the planned cutting line 52, a side surface constituting the second side 1N2 is formed when the semiconductor photodetector 10 is viewed from the facing direction. By cutting the semiconductor substrate 40 along the planned cutting line 53, a side surface constituting the third side 1N3 or a side surface constituting the fourth side 1N4 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
 本変形例でも、図30中の(a)に示されるように、半導体基板40に、スリット45が形成されていてもよい。この場合、半導体基板40に形成されたスリット45は、個片化された半導体光検出素子10には、窪み3,5,13,15として残る。図31中の(a)に示されるように、複数の金属膜47が形成されていてもよい。この場合、半導体基板40に形成された金属膜47は、個片化された半導体光検出素子10には、金属膜7,9,17,19として残る。 Also in this modified example, as shown in (a) of FIG. 30, the slit 45 may be formed in the semiconductor substrate 40. In this case, the slits 45 formed in the semiconductor substrate 40 remain as the depressions 3, 5, 13, and 15 in the separated semiconductor photodetector 10. As shown in FIG. 31A, a plurality of metal films 47 may be formed. In this case, the metal film 47 formed on the semiconductor substrate 40 remains as the metal films 7, 9, 17, and 19 in the separated semiconductor photodetector 10.
 図34に示された変形例では、素子形成領域42の六辺には、第一及び第二方向D1,D2と交差する方向で平行な一対の切断予定ライン51と、第一及び第二方向D1,D2と交差する方向で平行な一対の切断予定ライン52と、第二方向D2で平行な一対の切断予定ライン53が設定されている。素子形成領域42は、第一及び第二方向D1,D2と交差する上記方向で並んでいる。すなわち、本変形例では、複数の素子形成領域42がハニカム状に配置されている。各切断予定ライン51,52,53は、複数の素子形成領域42がハニカム状に配置されるように設定されている。 In the modification shown in FIG. 34, the six sides of the element forming region 42 are paired with a pair of scheduled cutting lines 51 parallel to the first and second directions D1 and D2, and the first and second directions. A pair of scheduled cutting lines 52 parallel to the direction intersecting D1 and D2 and a pair of scheduled cutting lines 53 parallel to the second direction D2 are set. The element formation regions 42 are arranged in the above direction intersecting the first and second directions D1 and D2. That is, in this modification, the plurality of element formation regions 42 are arranged in a honeycomb shape. Each of the scheduled cutting lines 51, 52, 53 is set such that a plurality of element forming regions 42 are arranged in a honeycomb shape.
 半導体基板40が複数の素子形成領域42毎に個片化されることにより、図35に示されるように、図14に示された構成を備えている複数の半導体光検出素子10が得られる。半導体基板40を個片化する過程は、図3に示された構成を備えている複数の半導体光検出素子10を得るための上述した個片化の過程と同様である。したがって、本変形例でも、半導体基板40が切断予定ライン51で切断されることにより、半導体光検出素子10を対向方向から見たときに第一辺1N1を構成する側面が形成される。半導体基板40が切断予定ライン52で切断されることにより、半導体光検出素子10を対向方向から見たときに第二辺1N2を構成する側面が形成される。半導体基板40が切断予定ライン53で切断されることにより、半導体光検出素子10を対向方向から見たときに第三辺1N3を構成する側面又は第四辺1N4を構成する側面が形成される。 By dividing the semiconductor substrate 40 into pieces for each of the plurality of element formation regions 42, as shown in FIG. 35, a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. 14 are obtained. The process of dividing the semiconductor substrate 40 is the same as the above-described process of dividing the semiconductor substrate 40 to obtain a plurality of semiconductor photodetector elements 10 having the configuration shown in FIG. Therefore, also in this modified example, when the semiconductor substrate 40 is cut along the scheduled cutting line 51, a side surface constituting the first side 1N1 is formed when the semiconductor photodetector 10 is viewed from the facing direction. By cutting the semiconductor substrate 40 along the planned cutting line 52, a side surface constituting the second side 1N2 is formed when the semiconductor photodetector 10 is viewed from the facing direction. By cutting the semiconductor substrate 40 along the planned cutting line 53, a side surface constituting the third side 1N3 or a side surface constituting the fourth side 1N4 is formed when the semiconductor photodetector 10 is viewed from the facing direction.
 図34及び図35に示された変形例では、半導体基板40を切断する際に、素子として使用しない非有効領域が生じ難い。したがって、半導体基板40が適切に切断されると共に、半導体基板40が有効活用される。 34 and FIG. 35, when the semiconductor substrate 40 is cut, an ineffective region that is not used as an element is hardly generated. Therefore, the semiconductor substrate 40 is appropriately cut and the semiconductor substrate 40 is effectively utilized.
 本変形例でも、図30中の(a)に示されるように、半導体基板40に、スリット45が形成されていてもよい。この場合、半導体基板40に形成されたスリット45は、個片化された半導体光検出素子10には、窪み3,5,13,15として残る。この場合、本変形例では、第一辺1N1と第二辺1N2とがなす角部にも窪みが形成される。図31中の(a)に示されるように、複数の金属膜47が形成されていてもよい。この場合、半導体基板40に形成された金属膜47は、個片化された半導体光検出素子10には、金属膜7,9,17,19として残る。この場合、本変形例では、第一辺1N1と第二辺1N2とがなす角部にも、金属膜が形成される。 Also in this modified example, as shown in (a) of FIG. 30, the slit 45 may be formed in the semiconductor substrate 40. In this case, the slits 45 formed in the semiconductor substrate 40 remain as the depressions 3, 5, 13, and 15 in the separated semiconductor photodetector 10. In this case, in this modification, a depression is also formed at the corner formed by the first side 1N1 and the second side 1N2. As shown in FIG. 31A, a plurality of metal films 47 may be formed. In this case, the metal film 47 formed on the semiconductor substrate 40 remains as the metal films 7, 9, 17, and 19 in the separated semiconductor photodetector 10. In this case, in this modification, a metal film is also formed at the corner portion formed by the first side 1N1 and the second side 1N2.
 以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 As mentioned above, although embodiment of this invention has been described, this invention is not necessarily limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the summary.
 第一及び第二半導体領域1PA,1PBの形状は、上述した形状に限られることなく、他の形状(たとえば、円形状)であってもよい。アバランシェフォトダイオードAPD(第二半導体領域1PB)の数(行数及び列数)及び配列は、図示された数及び配列に限られない。フォトダイオードアレイPDA(チャンネル)の数及び配列も、図示された数及び配列に限られない。 The shapes of the first and second semiconductor regions 1PA and 1PB are not limited to the shapes described above, but may be other shapes (for example, circular shapes). The number (number of rows and columns) and arrangement of the avalanche photodiodes APD (second semiconductor regions 1PB) are not limited to the numbers and arrangement shown in the figure. The number and arrangement of the photodiode arrays PDA (channels) are not limited to the illustrated number and arrangement.
 本発明は、微弱光を検出する光検出装置に利用することができる。 The present invention can be used for a light detection device that detects weak light.
 1…光検出装置、1N…半導体基板、1N1…第一辺、1N2…第二辺、1N3…第三辺、1N4…第四辺、1Na,1Nb…半導体基板の主面、1PA…第一半導体領域、1PB…第二半導体領域、3,5,13,15…窪み、7,9,17,19…金属膜、10…半導体光検出素子、20…搭載基板、20a,20b…搭載基板の主面、APD…アバランシェフォトダイオード、E1~E3,E5~E9…電極、PDA…フォトダイオードアレイ、R1…クエンチング抵抗、TL…信号線、W1,W2…ボンディングワイヤ。 DESCRIPTION OF SYMBOLS 1 ... Photodetection device, 1N ... Semiconductor substrate, 1N1 ... First side, 1N2 ... Second side, 1N3 ... Third side, 1N4 ... Fourth side, 1Na, 1Nb ... Main surface of semiconductor substrate, 1PA ... First semiconductor Region, 1PB ... second semiconductor region, 3, 5, 13, 15 ... depression, 7, 9, 17, 19 ... metal film, 10 ... semiconductor photodetector, 20 ... mounting substrate, 20a, 20b ... main mounting substrate APD, avalanche photodiode, E1 to E3, E5 to E9, electrode, PDA, photodiode array, R1, quenching resistor, TL, signal line, W1, W2, bonding wire.

Claims (11)

  1.  光検出装置であって、
     複数の画素を有するフォトダイオードアレイが形成されていると共に互いに対向する第一主面と第二主面とを含んでいる半導体基板を有している半導体光検出素子と、
     前記半導体光検出素子が配置されていると共に、前記半導体基板の前記第二主面と対向する第三主面と該第三主面と対向する第四主面とを含んでいる搭載基板と、
     前記半導体光検出素子と搭載基板とを電気的に接続している第一ワイヤと、を備え、
     前記半導体基板は、前記第一主面と前記第二主面とが対向している方向から見て、互いに対向する一対の第一辺と、互いに対向する一対の第二辺と、一方の前記第一辺の一端と一方の前記第二辺の一端とに接続されている第三辺とを有し、
     前記半導体光検出素子は、前記半導体基板の前記第一主面側に配置されていると共に前記複数の画素と電気的に接続されている第一電極を有し、
     前記搭載基板は、前記第三主面側に配置されている第二電極を有し、
     前記第一ワイヤは、前記第一電極に接続されている一端と、前記第二電極に接続されている他端とを有すると共に、前記第一主面と前記第二主面とが対向している前記方向から見て前記第三辺と交差するように配置されている。
    A light detection device comprising:
    A semiconductor photodetector having a semiconductor substrate on which a photodiode array having a plurality of pixels is formed and including a first main surface and a second main surface facing each other;
    A mounting substrate including the semiconductor photodetecting element and a third main surface facing the second main surface of the semiconductor substrate and a fourth main surface facing the third main surface;
    A first wire that electrically connects the semiconductor photodetecting element and the mounting substrate,
    The semiconductor substrate includes a pair of first sides opposed to each other, a pair of second sides opposed to each other, and Having a third side connected to one end of the first side and one end of the second side;
    The semiconductor photodetecting element has a first electrode disposed on the first main surface side of the semiconductor substrate and electrically connected to the plurality of pixels,
    The mounting substrate has a second electrode disposed on the third main surface side,
    The first wire has one end connected to the first electrode and the other end connected to the second electrode, and the first main surface and the second main surface are opposed to each other. It is arrange | positioned so that it may cross | intersect the said 3rd side seeing from the said direction.
  2.  請求項1に記載の光検出装置であって、
     前記半導体基板における前記第一辺と前記第三辺とがなす角部と前記第二辺と前記第三辺とがなす角部とには、前記第一主面と前記第二主面とが対向している前記方向から見てそれぞれの前記角部に沿って、窪みが形成されている。
    The photodetection device according to claim 1,
    In the corner portion formed by the first side and the third side, and the corner portion formed by the second side and the third side in the semiconductor substrate, the first main surface and the second main surface are A depression is formed along each of the corners when viewed from the facing direction.
  3.  請求項1に記載の光検出装置であって、
     前記半導体基板における前記第一辺と前記第三辺とがなす角部と前記第二辺と前記第三辺とがなす角部とには、金属膜が配置されている。
    The photodetection device according to claim 1,
    In the semiconductor substrate, metal films are disposed at corners formed by the first side and the third side, and corners formed by the second side and the third side.
  4.  請求項1~3のいずれか一項に記載の光検出装置であって、
     前記第三辺の長さは、前記第一辺及び前記第二辺の各長さよりも短い。
    The photodetection device according to any one of claims 1 to 3,
    The length of the third side is shorter than the lengths of the first side and the second side.
  5.  請求項1~4のいずれか一項に記載の光検出装置であって、
     前記半導体光検出素子と搭載基板とを電気的に接続している第二ワイヤを更に備え、
     前記半導体光検出素子は、前記半導体基板の前記第一主面側に配置されていると共に前記半導体基板と電気的に接続されている第三電極を有し、
     前記搭載基板は、前記第三主面側に配置されている第四電極を有し、
     前記第二ワイヤは、前記第三電極に接続されている一端と、前記第四電極に接続されている他端とを有すると共に、前記第一主面と前記第二主面とが対向している前記方向から見て前記第三辺と交差するように配置されている。
    The photodetection device according to any one of claims 1 to 4,
    A second wire that electrically connects the semiconductor photodetecting element and the mounting substrate;
    The semiconductor photodetecting element has a third electrode disposed on the first main surface side of the semiconductor substrate and electrically connected to the semiconductor substrate,
    The mounting substrate has a fourth electrode disposed on the third main surface side,
    The second wire has one end connected to the third electrode and the other end connected to the fourth electrode, and the first main surface and the second main surface are opposed to each other. It is arrange | positioned so that it may cross | intersect the said 3rd side seeing from the said direction.
  6.  請求項1~4のいずれか一項に記載の光検出装置であって、
     前記半導体光検出素子と搭載基板とを電気的に接続している第二ワイヤを更に備え、
     前記半導体基板は、前記第一主面と前記第二主面とが対向している方向から見て、他方の前記第一辺の一端と他方の前記第二辺の一端とに接続されている第四辺を有し、
     前記半導体光検出素子は、前記半導体基板の前記第一主面側に配置されていると共に前記半導体基板と電気的に接続されている第三電極を有し、
     前記搭載基板は、前記第三主面側に配置されている第四電極を有し、
     前記第二ワイヤは、前記第三電極に接続されている一端と、前記第四電極に接続されている他端とを有すると共に、前記第一主面と前記第二主面とが対向している前記方向から見て前記第四辺と交差するように配置されている。
    The photodetection device according to any one of claims 1 to 4,
    A second wire that electrically connects the semiconductor photodetecting element and the mounting substrate;
    The semiconductor substrate is connected to one end of the other first side and the other end of the second side as seen from the direction in which the first main surface and the second main surface are opposed to each other. Has a fourth side,
    The semiconductor photodetecting element has a third electrode disposed on the first main surface side of the semiconductor substrate and electrically connected to the semiconductor substrate,
    The mounting substrate has a fourth electrode disposed on the third main surface side,
    The second wire has one end connected to the third electrode and the other end connected to the fourth electrode, and the first main surface and the second main surface are opposed to each other. It is arrange | positioned so that it may cross | intersect the said 4th side seeing from the said direction.
  7.  請求項6に記載の光検出装置であって、
     前記半導体基板における前記第一辺と前記第四辺とがなす角部と前記第二辺と前記第四辺とがなす角部とには、前記第一主面と前記第二主面とが対向している前記方向から見てそれぞれの前記角部に沿って、窪みが形成されている。
    The light detection device according to claim 6,
    In the corner formed by the first side and the fourth side and the corner formed by the second side and the fourth side in the semiconductor substrate, the first main surface and the second main surface are A depression is formed along each of the corners when viewed from the facing direction.
  8.  請求項6に記載の光検出装置であって、
     前記半導体基板における前記第一辺と前記第四辺とがなす角部と前記第二辺と前記第四辺とがなす角部とには、金属膜が配置されている。
    The light detection device according to claim 6,
    A metal film is disposed on a corner formed by the first side and the fourth side and a corner formed by the second side and the fourth side in the semiconductor substrate.
  9.  請求項6~8のいずれか一項に記載の光検出装置であって、
     前記第四辺の長さは、前記第一辺及び前記第二辺の各長さよりも短い。
    The photodetection device according to any one of claims 6 to 8,
    The length of the fourth side is shorter than the lengths of the first side and the second side.
  10.  請求項1~9のいずれか一項に記載の光検出装置であって、
     複数の前記半導体光検出素子を備え、
     前記複数の半導体光検出素子は、前記第二主面と前記第三主面とが対向するように、前記搭載基板に配置されており、
     前記半導体光検出素子ごとに、前記第一電極と前記第二電極とが前記第一ワイヤを介して接続されている。
    The photodetection device according to any one of claims 1 to 9,
    A plurality of the semiconductor photodetecting elements,
    The plurality of semiconductor photodetecting elements are disposed on the mounting substrate such that the second main surface and the third main surface are opposed to each other.
    For each of the semiconductor photodetector elements, the first electrode and the second electrode are connected via the first wire.
  11.  請求項1~10のいずれか一項に記載の光検出装置であって、
     前記フォトダイオードアレイは、
      ガイガーモードで動作すると共に前記半導体基板内に形成された複数のアバランシェフォトダイオードと、
      それぞれの前記アバランシェフォトダイオードに対して直列に接続されると共に前記半導体基板の第一主面側に配置されたクエンチング抵抗と、
      前記クエンチング抵抗が並列に接続されると共に前記半導体基板の前記第一主面側に配置された信号線と、を含み、
     前記信号線は、前記第一電極に接続されている。
    The photodetection device according to any one of claims 1 to 10,
    The photodiode array is
    A plurality of avalanche photodiodes operating in the Geiger mode and formed in the semiconductor substrate;
    A quenching resistor connected in series to each of the avalanche photodiodes and disposed on the first main surface side of the semiconductor substrate;
    The quenching resistor is connected in parallel and disposed on the first main surface side of the semiconductor substrate, and
    The signal line is connected to the first electrode.
PCT/JP2016/052641 2015-04-13 2016-01-29 Light detecting device WO2016167005A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081940A JP6381477B2 (en) 2015-04-13 2015-04-13 Photodetector
JP2015-081940 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016167005A1 true WO2016167005A1 (en) 2016-10-20

Family

ID=57125898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052641 WO2016167005A1 (en) 2015-04-13 2016-01-29 Light detecting device

Country Status (3)

Country Link
JP (1) JP6381477B2 (en)
TW (1) TW201637188A (en)
WO (1) WO2016167005A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957187B2 (en) 2017-04-18 2021-11-02 浜松ホトニクス株式会社 Chip manufacturing method and silicon chip
JP7178819B2 (en) * 2018-07-18 2022-11-28 浜松ホトニクス株式会社 Semiconductor photodetector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330432A (en) * 1995-06-05 1996-12-13 Yamaha Corp Semiconductor integrated circuit
JP2006100312A (en) * 2004-09-28 2006-04-13 Fuji Electric Device Technology Co Ltd Optical semiconductor device and range finding module
JP2010535409A (en) * 2007-07-30 2010-11-18 センスル・テクノロジーズ・リミテッド Method for forming photosensitive structure, photosensitive element, unit cell and wafer
JP2015185846A (en) * 2014-03-20 2015-10-22 エクセリタス カナダ,インコーポレイテッド Reduced thickness and reduced footprint semiconductor packaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6441025B2 (en) * 2013-11-13 2018-12-19 株式会社東芝 Manufacturing method of semiconductor chip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330432A (en) * 1995-06-05 1996-12-13 Yamaha Corp Semiconductor integrated circuit
JP2006100312A (en) * 2004-09-28 2006-04-13 Fuji Electric Device Technology Co Ltd Optical semiconductor device and range finding module
JP2010535409A (en) * 2007-07-30 2010-11-18 センスル・テクノロジーズ・リミテッド Method for forming photosensitive structure, photosensitive element, unit cell and wafer
JP2015185846A (en) * 2014-03-20 2015-10-22 エクセリタス カナダ,インコーポレイテッド Reduced thickness and reduced footprint semiconductor packaging

Also Published As

Publication number Publication date
JP6381477B2 (en) 2018-08-29
TW201637188A (en) 2016-10-16
JP2016201496A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5791461B2 (en) Photodetector
TWI573255B (en) Light detection device
CN109478578B (en) Optical detection device
JP6663167B2 (en) Photodetector
US20220231071A1 (en) Light detection device
JP2017219443A (en) Optical detection unit, optical detection device, and optical detection unit manufacturing method
JP6381477B2 (en) Photodetector
JP5911629B2 (en) Photodetector
JP6282307B2 (en) Semiconductor photo detector
JP5989872B2 (en) Photodetector connection structure
JP6116728B2 (en) Semiconductor photo detector
JP6244403B2 (en) Semiconductor photo detector
EP3680940A1 (en) Semiconductor wafer manufacturing method, method of manufacturing semiconductor energy beam detecting element, and semiconductor wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779797

Country of ref document: EP

Kind code of ref document: A1