WO2016166473A1 - Heat exchanger comprising microstructure elements and separation unit comprising such a heat exchanger - Google Patents

Heat exchanger comprising microstructure elements and separation unit comprising such a heat exchanger Download PDF

Info

Publication number
WO2016166473A1
WO2016166473A1 PCT/FR2016/050851 FR2016050851W WO2016166473A1 WO 2016166473 A1 WO2016166473 A1 WO 2016166473A1 FR 2016050851 W FR2016050851 W FR 2016050851W WO 2016166473 A1 WO2016166473 A1 WO 2016166473A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
rough
primary
primary channel
microstructure elements
Prior art date
Application number
PCT/FR2016/050851
Other languages
French (fr)
Inventor
Erwan LE GULUDEC
Clement Lix
David Quere
Quentin SANIEZ
Bernard Saulnier
Evan SPRUIJT
Marc Wagner
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude, Centre National De La Recherche Scientifique filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US15/566,913 priority Critical patent/US20180106534A1/en
Priority to JP2017553396A priority patent/JP2018511773A/en
Priority to CN201680031504.7A priority patent/CN107660265A/en
Priority to EP16729306.7A priority patent/EP3283835B1/en
Publication of WO2016166473A1 publication Critical patent/WO2016166473A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/20Particular dimensions; Small scale or microdevices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures

Definitions

  • the present invention relates to a heat exchange between a primary liquid, for example containing oxygen, and a secondary fluid, for example containing nitrogen.
  • a cryogenic gas separation unit comprising such a heat exchange.
  • the present invention applies to the field of heat exchangers configured to perform heat exchanges between a primary liquid and a secondary fluid.
  • the present invention can be applied to the field of gas separation by cryogenics, including the separation of gases from air, acid gases and natural gas.
  • EP0130122A1 discloses a heat exchanger which generally comprises parallel plates, parallel spacers, which define i) primary channels and ii) secondary channels, as well as an input connected to a primary liquid bath via a distributor.
  • each primary channel generally has a rectangular-based prism shape, the primary liquid flowing along the prism and perpendicular to the rectangular base.
  • the primary liquid flowing through the primary channels exchanges heat with the secondary fluid flowing in the secondary channels.
  • the primary liquid contains a large proportion of oxygen and the secondary fluid contains a large proportion of nitrogen gas.
  • the primary liquid flow rate is relatively low in a primary channel.
  • the primary channels of EP0130122A1 have small transverse dimensions, in this case millimetric, so that the primary liquid is not homogeneously distributed over the entire rectangular perimeter 51 of each primary smooth channel 50.
  • the primary liquid forms meniscuses 52 and concentrates in the corners 53 of the rectangular perimeter 51 of each smooth primary channel 50, which induces the appearance of dry zones on the long sides 54 of the rectangular perimeter 51 of each smooth primary channel 50.
  • the number and area of the dry areas increases as the primary liquid flowing to the primary smooth channel outlets expands. These dry zones are therefore unused during heat exchange, which reduces the performance of the heat exchanger. In addition, these dry areas may cause deposition of impurities, which may eventually lead to a failure in the safety of personnel and equipment.
  • the present invention is intended in particular to solve, in whole or in part, the problems mentioned above, by providing a heat exchanger for retaining primary and secondary channels with conventional geometry, without generating additional pressure losses, while by increasing the heat transfer and the safety of the heat exchanger.
  • the subject of the invention is a heat exchanger, for exchanging heat between a primary liquid and a secondary fluid, the heat exchanger comprising at least:
  • spacers extending between the plates and arranged parallel to each other so as to define i) primary channels shaped for the flow of the primary liquid and ii) secondary channels shaped for the flow of the secondary fluid, each primary channel being arranged so as to be able to exchange heat with at least one respective secondary channel,
  • a primary liquid inlet intended to be fluidly connected to a primary liquid distributor
  • each primary channel generally has a shape of polygonal section prism, the prism being composed of several generally planar faces, and
  • the primary channels comprise rough primary channels, each rough primary channel having microstructure elements having dimensions of between 1 ⁇ and 300 ⁇ , preferably between 1 ⁇ and 100 ⁇ , and
  • microstructure elements are configured so that for each rough primary channel:
  • r is the ratio of the actual area of a respective rough primary channel, as numerator, to the geometric area of a respective rough primary channel, as the denominator,
  • R a (in m) is the mean arithmetic deviation from the mean line
  • is the void ratio of the actual surface of a respective rough primary channel.
  • the ratio r is sometimes referred to as “roughness ratio” or “roughness”.
  • the arithmetical average deviation R a (in m) represents the roughness of the rough primary channel.
  • the term "average line” designates a line situated at the average altitude of the real surface. In practice, the average line can be calculated from the topographic survey of the sectional profile of the surface by applying the least squares method.
  • void ratio of a surface corresponds to a rate calculated as follows: A slice whose thickness is equal to the height of the highest peak (relative to the point the lower) of this surface. On this slice, the void ratio ⁇ corresponds to the ratio of the volume not occupied by microstructure elements to the total volume of the slice. This report is expressed as follows:
  • V tot (in m 3 ) is the volume between the highest point and the lowest point of the real surface
  • Vsurf (in m 3 ) is the volume between the actual surface and the lowest point of the actual surface.
  • R z is the height of the highest peak relative to the lowest point of the surface
  • z (in m) is the height of a respective point with respect to the lowest point of the real surface, the height z being measured point by point
  • z (in m) is the arithmetic mean of the height z measured point by point.
  • such a heat exchanger makes it possible to preserve primary and secondary channels with a conventional geometry, thus simple to manufacture and to implement, without generating additional pressure drops, while increasing the heat transfer and the safety when the heat exchanger is in use.
  • the microstructure elements make it possible to increase the heat transfer, because the exchange surface area and the wet surface area are larger.
  • the safety of the heat exchanger is improved, because of the high wettability of the primary channels, which avoids dry vaporization of oxygen.
  • the measurements have shown that the polygonal-based prismatic geometry has higher heat transfer coefficients than a tubular geometry with a circular base for example.
  • the surface treatment with the microstructure elements, makes it possible to wet the entire perimeter of the primary channel and thus to increase the exchange surface.
  • the primary liquid and the secondary fluid are cryogenic fluids.
  • the primary liquid and the secondary fluid introduced into the heat exchanger may be monophasic, that is to say completely liquid or completely gaseous, or two-phase, that is to say composed of liquid and gas. During their flow through the heat exchanger, the proportions of the phases of the primary liquid and the secondary fluid may vary.
  • each polygonal section has dimensions of between 1 mm and 10 mm, preferably between 3 mm and 7 mm, a rectangular polygonal section having for example a length of about 5 mm and a width approximately equal to 1.5 mm.
  • microstructure elements are distributed substantially over the entire inner periphery of each rough primary channel.
  • a distribution ensures the wetting of the entire polygonal section of each rough primary channel.
  • the microstructure elements are distributed over at least 80% of the rough primary channel surface.
  • each rough primary channel is substantially covered with microstructure elements that increase the exchange area.
  • the microstructure elements have similar dimensions to each other and similar shapes to each other, and wherein the microstructure elements are configured so that for each rough primary channel:
  • h (in m) is the average height of the microstructure elements.
  • similar dimensions of the microstructure elements may have a 20% gap from one microstructure element to another.
  • Two microstructure elements having similar shapes have all their similar dimensions.
  • the term "real surface” designates in particular the surface obtained after manufacture and the term “geometric surface” designates in particular a perfect surface, therefore smooth, apart from any microstructure elements that may be present; a geometric surface can be integrally defined geometrically by nominal dimensions.
  • the geometric surface is sometimes referred to as the "projected surface” when viewed in a plane.
  • the term "surface” can designate either a topological entity or the area of this topological entity.
  • the microstructure elements are distributed homogeneously.
  • the microstructure elements can be similar and homogeneously distributed.
  • a homogeneous distribution makes it possible to guarantee greater wettability of each rough primary channel and to control the minimum thickness of the primary liquid film.
  • microstructure elements may be similar and distributed in a heterogeneous manner, for example in a random manner.
  • the microstructure elements are configured so that for each rough primary channel: or :
  • d (in m) is the average distance between the centers of the adjacent microstructure elements, the centers being situated on the geometrical surface of the rough primary channel,
  • P (in m) is the average perimeter of the section of the microstructure elements.
  • the microstructure elements are configured so that for each rough primary channel:
  • microstructure elements (30) are further configured such that for each rough primary channel (21): where: S (in m 2 ) is the average surface area of the microstructure section.
  • Microstructure elements thus configured make it possible to have a propagation speed of the liquid adapted to the heat exchange process.
  • the microstructure elements have irregular shapes, for example with irregular dimensions, the microstructure elements being able to be distributed in a heterogeneous manner, for example in a random manner.
  • the intervals between two neighboring microstructure elements are variable, and therefore not constant, over the entire real surface of the rough primary channel considered.
  • each microstructure element may have a regular shape or geometry, for example globally in the form of a cylinder, a prism, a cone or the like.
  • the microstructure elements of regular shapes are configured so that for each rough primary channel:
  • microstructure elements are configured so that:
  • the microstructure elements are configured so that for each rough primary channel:
  • microstructure elements form a roughness that particularly increases the wettability of the surface of each rough primary channel, which allows the liquid to wet the entire surface of the rough primary channel even in the presence of a nook.
  • each rough primary channel of at least a portion of the rough primary channels generally has a shape of rectangular prism.
  • the prism can have an approximately rectangular base.
  • the edges of the rectangle defining the base of the prism may be rounded, for example by solder.
  • the microstructure elements are distributed only on the long sides of the rectangular base.
  • the short sides of the rectangular perimeter are devoid of microstructure elements. Indeed, the short sides can be wet due to the natural formation of the menisci at the corners of the rectangular perimeter.
  • the microstructure elements are distributed so as to define between them passages for the flow of the primary liquid.
  • microstructure elements extend generally above the level of the geometrical surface.
  • the microstructure elements are distributed so as to define a surface state with an open roughness, that is to say a roughness defined by peaks or masses but without narrow cavities.
  • a cavity is considered narrow when the surrounding peaks are too close to allow circulation of the liquid.
  • each rough primary channel has an arithmetic roughness R a of between 1 ⁇ and 60 ⁇ .
  • each rough primary channel has nanostructure elements distributed over at least 80% of its length, each nanostructure element having dimensions of between 1 nm and 500 nm.
  • nanostructure elements make it possible to maximize the wettability of each rough primary channel.
  • the nanostructure elements are distributed on the surface of each rough primary channel.
  • the nanostructure elements can be distributed on the surfaces of the microstructure elements.
  • the coating is composed of a metallic material and / or an inorganic material, for example a ceramic material.
  • the coating can be obtained by spray deposition (sometimes referred to as English term "spray") of particles and / or fibers on the surface of each rough primary channel.
  • the microstructure elements are formed by a treatment of the surface of each primary element, for example by anodizing, by sanding, by shot blasting or by chemical etching or by powder sintering, by spraying. of molten metal, by laser, by photolithography or by mechanical engraving such as rolling, brushing or printing.
  • microstructure elements may be formed by a coating obtained by impregnation, by plasma deposition spraying, by an additive manufacturing process, for example by three-dimensional printing.
  • the plates and / or the spacers are composed of materials selected from the group consisting of aluminum, copper, nickel, chromium, iron and aluminum alloys, a alloy of copper, nickel, chromium, iron, for example a nickel-chromium alloy or a nickel-chromium-iron alloy.
  • such plates and / or spacers make it possible to treat the primary liquids and the secondary fluids customary in the field of cryogenics, for example an oxygen-containing liquid and a gas containing nitrogen to separate the gases from the air, acid gases and natural gas.
  • the heat exchanger is configured to form a vaporizer-condenser, the lengths of the rough primary channels and the lengths of the secondary channels being determined so that the heat exchanges make it possible to totally vaporize or partially the primary liquid and totally or partially condense the secondary fluid introduced as a secondary gas.
  • a vaporizer-condenser makes it possible to treat the primary liquids and the secondary fluids customary in the field of cryogenics, for example an oxygen-containing liquid and a nitrogen-containing gas to separate the components of the air. .
  • said primary liquid inlet is placed at an altitude higher than the rough primary channels when the heat exchanger is in service so that the liquid dispenser primary introduces the primary liquid as a gravity flowing film through said at least one primary liquid inlet into the rough primary channels.
  • the secondary channels comprise rough secondary channels, each rough secondary channel being formed similarly to the rough primary channels.
  • a rough secondary channel may have microstructure elements which have dimensions of between 1 ⁇ and 300 ⁇ , preferably between 1 ⁇ and 100 m, and which satisfy the equations applicable to the rough primary channels.
  • each of the features mentioned above for rough primary channels can be applied to rough secondary channels. However, these features are not repeated here in order to facilitate the reading of the present patent application.
  • the subject of the present invention is a separation unit, for separating gas by cryogenics, the separation unit comprising at least one heat exchanger forming a vaporizer-condenser according to the invention, the vaporizer-condenser being configured to allow a heat exchange between a liquid containing oxygen and a gas containing nitrogen.
  • cryogenic gas separation unit makes it possible to treat the primary liquids and the secondary fluids customary in the field of cryogenics, for example an oxygen-containing liquid and a nitrogen-containing gas for separating the components. air.
  • Figure 1 is a cross section of a smooth primary channel of the state of the art
  • FIG. 2 is a schematic perspective view of a separation unit according to the invention and comprising a heat exchanger according to the invention
  • Figure 3 is a cross section of a rough primary channel according to a first embodiment of the invention
  • Figure 4 is a perspective view illustrating microstructure elements disposed on the rough primary channel of Figure 1;
  • Figure 5 is a perspective view illustrating microstructure elements disposed on a rough primary channel according to a second embodiment of the invention.
  • Figure 6 is a schematic sectional view of a pattern forming microstructure elements for the rough primary channel of Figure 4.
  • Figure 7 is a schematic sectional view of a pattern forming microstructure elements for a rough primary channel according to a third embodiment of the invention.
  • FIGS. 2, 3 and 4 illustrate a heat exchanger 1 for exchanging heat between a primary liquid and a secondary fluid.
  • the heat exchanger 1 belongs to a separation unit 2 for separating the components of the air by cryogenics.
  • the heat exchanger 1 is configured to form a vaporizer-condenser configured to allow heat exchange between an oxygen-containing liquid and a gas containing nitrogen.
  • the plate heat exchanger 1 can thus be used to vaporize an oxygen-rich liquid by heat exchange with a nitrogen-rich gas which is concomitantly condensed.
  • the heat exchanger 1 comprises several plates 1 1, which are arranged parallel to each other, and spacers 12, which extend between the plates 1 1 and which are also arranged parallel to each other.
  • the plates 1 1 and the spacers 12 are composed of an aluminum alloy.
  • the plates 1 1 are brazed together in a manner known per se.
  • the spacers 12 are arranged so as to define:
  • primary channels configured for the flow of the primary liquid, in this case containing liquid oxygen (O2L), the primary channels comprising rough primary channels 21;
  • Each rough primary channel 21 is arranged to be able to exchange heat with two respective secondary channels 22.
  • the channels rough primaries 21 and the secondary channels 22 alternate alternately in a stacking direction D plates 1 1.
  • the rough primary channels 21 and the secondary channels 22 are here mounted in a countercurrent configuration.
  • the rough primary channels 21 and the secondary channels 22 may be mounted in a co-current configuration.
  • the heat exchanger 1 further comprises a primary liquid inlet 14 which is fluidly connected to a primary liquid distributor 6 belonging to the separation unit 2.
  • the primary liquid O2L forms a bath above the primary liquid distributor 6.
  • the inlet 14 is placed at an altitude higher than the rough primary channels 21 when the heat exchanger 1 is in use.
  • the altitude is measured in the usual way by reference to a vertical direction in the ascending direction.
  • the primary liquid distributor 6 introduces the primary liquid in the form of a film flowing by gravity through the inlet 14 into the rough primary channels.
  • each rough primary channel 21 generally has a shape of polygonal section prism and extending along a longitudinal direction X.
  • This prism is composed of several generally planar faces. The edges of the rectangle defining the base of the prism are here a little rounded by the solder.
  • Each polygonal section - or polygonal perimeter - of the prism here has dimensions of between 1 mm and 5 mm.
  • each rough primary channel 21 here generally has a prism shape with a rectangular base and extending along the longitudinal direction X.
  • the rectangular section has a height H21 approximately equal to 4 , 5 mm and a width W21 approximately equal to 1, 5 mm.
  • each rough primary channel 21 has microstructure elements 30.
  • the microstructure elements 30 are distributed or distributed over at least 80% of the length L21 of the rough primary channel 21 considered.
  • the lengths L 21 of the rough primary channels 21 and the lengths of the secondary channels 22 are determined so that the heat exchanges make it possible to vaporize all or part of the primary liquid and to condense all or part of the secondary fluid introduced as a secondary gas.
  • Each microstructure element 30 has dimensions of between 1 ⁇ and 300 ⁇ .
  • Each microstructure element 30 here has the overall shape of a narrow cylinder. As shown in FIG. 4, the microstructure elements 30 have similar dimensions and shapes to each other.
  • the microstructure elements 30 are configured so that for each rough primary channel 21:
  • r is the ratio of the actual area of a respective rough primary channel 21, as a numerator, to the geometric area of a respective rough primary channel 21, as the denominator,
  • R a (in m) is the mean arithmetic deviation from the mean line
  • is the void ratio of the actual surface of a respective rough primary channel 21.
  • the microstructure elements 30 are regular and uniformly distributed, and they are configured so that, for each rough primary channel 21:
  • h (in m) is the average height of the microstructure elements 30, the average height being calculated from the heights H30 of each microstructure element 30.
  • the microstructure elements 30 are not distributed over the entire rectangular section of each rough primary channel 21.
  • the microstructure elements 30 are distributed only on the long sides 44 of the rectangular section of each rough primary channel 21, but not on the short sides 45.
  • the short sides 45 are devoid of elements.
  • the short sides 45 are wet because of the natural formation of the menisci at the corners of the rectangular section.
  • the microstructure elements 30 are distributed so as to define between them passages for the flow of the primary liquid O2L, which defines a state surface with an open roughness.
  • the microstructure elements 30 are homogeneously distributed. In other words, the interval between two successive microstructure elements is substantially constant along any direction.
  • the microstructure elements 30 are therefore arranged in a uniform and ordered matrix.
  • microstructure elements 30 are here configured so that for each rough primary channel 21:
  • microstructure elements 30 are here configured so that for each rough primary channel
  • d (in m) is the average distance between the centers of the adjacent microstructure elements 30, the centers being located on the geometrical surface of the rough primary channel 21, the average distance being calculated from each distance d30 separating, two by two, the centers of the adjacent microstructure elements 30,
  • P (in m) is the average perimeter of the section of the microstructure elements 30, and
  • microstructure elements 30 are here configured so that for each rough primary channel 21:
  • microstructure elements 30 are configured so that for each rough primary channel
  • each rough primary channel 21 has an arithmetic roughness Ra of between 1 ⁇ and 60 ⁇ .
  • the arithmetic roughness Ra is a statistical parameter representing the arithmetic average deviation from the average line of the surface of a rough primary channel 21 considered.
  • each rough primary channel 21 may have nanostructure elements (not shown) distributed over at least 80% of its length L21.
  • Each nanostructure element has dimensions of between 1 nm and 100 nm.
  • the nanostructure elements may be distributed on the surface of each rough primary channel 21 and on the surfaces of the microstructure elements 30.
  • microstructure elements 30 form a coating obtained here by projection deposition (sometimes referred to as "spray") of particles on the surface of each rough primary channel 21.
  • the particles forming this coating are here composed of a metallic material.
  • Figures 5 and 6 illustrate a portion of a rough primary channel 121 belonging to a heat exchanger according to a second embodiment of the invention.
  • the rough primary channel 121 is similar to the rough primary channel 21, the description of the heat exchanger and the rough primary channel 21 given above in relation to FIGS. 1 to 4 can be transposed to the rough primary channel. 121 and its heat exchanger, with the notable differences noted below.
  • the rough primary channel 121 differs from the rough primary channel 21, essentially because the microstructure elements 130 have a relatively large and tall cylinder shape and because the gap between two microstructure elements 130 is larger than the gap between two microstructure elements 130. microstructure 30.
  • Figure 7 illustrates, in section in a plane xz, a portion of a rough primary channel 221 belonging to a heat exchanger according to a third embodiment of the invention.
  • the rough primary channel 221 is similar to the rough primary channel 21, the description of the heat exchanger and the rough primary channel 21 given above in relation to FIGS. 1 to 4 can be transposed to the rough primary channel. 221 and its heat exchanger, with the notable differences noted below.
  • the rough primary channel 221 differs from the rough primary channel 21, in particular because the microstructure elements 230 have irregular shapes and dimensions, and therefore dissimilar to each other.
  • the rough primary channel 221 differs from the rough primary channel 21, especially since the microstructure elements 230 are distributed heterogeneously, in this case randomly. In other words, the intervals between two adjacent microstructure elements 230 are variable, and therefore not constant, over the entire real surface of the rough primary channel 221.
  • microstructure elements 230 are configured so that for each rough primary channel 21:
  • an average line z represents the arithmetical average of the measured height z measured point by point, including, for example, heights z1, z2, z3, z4 and z5.
  • R z is the height of the highest peak relative to the lowest point of the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a heat exchanger comprising parallel plates and spacers arranged in parallel and defining i) rough primary channels (21) and ii) secondary channels arranged so as to exchange heat. Said heat exchanger comprises a primary liquid inlet to be fluidically connected to a primary liquid dispenser. Each rough primary channel (21) has the shape of a prism having a polygonal cross-section and consisting of a plurality of essentially flat faces. The primary channels comprise rough primary channels. Each rough primary channel (21) has microstructure elements (30) which are distributed along the entire length of the channel and have dimensions of between 1 μm and 300 μm.

Description

ÉCHANGEUR DE CHALEUR PRESENTANT DES ELEMENTS DE MICROSTRUCTURE ET UNITE DE SEPARATION COMPRENANT UN TEL HEAT EXCHANGER HAVING MICROSTRUCTURE ELEMENTS AND SEPARATION UNIT COMPRISING SUCH
ÉCHANGEUR DE CHALEUR La présente invention concerne un échange de chaleur entre un liquide primaire, par exemple contenant de l'oxygène, et un fluide secondaire, par exemple contenant de l'azote. De plus, la présente invention concerne une unité de séparation de gaz par cryogénie comprenant un tel échange de chaleur. The present invention relates to a heat exchange between a primary liquid, for example containing oxygen, and a secondary fluid, for example containing nitrogen. In addition, the present invention relates to a cryogenic gas separation unit comprising such a heat exchange.
La présente invention s'applique au domaine des échangeurs de chaleurs configurés pour réaliser des échanges de chaleur entre un liquide primaire et un fluide secondaire. En particulier, la présente invention peut s'appliquer au domaine de la séparation de gaz par cryogénie, notamment de la séparation des gaz de l'air, des gaz acides et du gaz naturel.  The present invention applies to the field of heat exchangers configured to perform heat exchanges between a primary liquid and a secondary fluid. In particular, the present invention can be applied to the field of gas separation by cryogenics, including the separation of gases from air, acid gases and natural gas.
EP0130122A1 décrit un échangeur de chaleur qui comprend généralement des plaques parallèles, des entretoises parallèles, qui définissent i) des canaux primaires et ii) des canaux secondaires, ainsi qu'une entrée reliée à un bain de liquide primaire via un distributeur. En général, chaque canal primaire a globalement une forme de prisme à base rectangulaire, le liquide primaire circulant le long du prisme et perpendiculairement à la base rectangulaire.  EP0130122A1 discloses a heat exchanger which generally comprises parallel plates, parallel spacers, which define i) primary channels and ii) secondary channels, as well as an input connected to a primary liquid bath via a distributor. In general, each primary channel generally has a rectangular-based prism shape, the primary liquid flowing along the prism and perpendicular to the rectangular base.
Lorsque l'échangeur de chaleur de EP0130122A1 est en service, le liquide primaire qui circule dans les canaux primaires échange de la chaleur avec le fluide secondaire qui s'écoule dans les canaux secondaires. Dans le cas d'une unité de séparation d'air par cryogénie, le liquide primaire contient une grande proportion d'oxygène et le fluide secondaire contient une grande proportion d'azote gazeux. Le débit de liquide primaire est relativement faible dans un canal primaire.  When the heat exchanger of EP0130122A1 is in use, the primary liquid flowing through the primary channels exchanges heat with the secondary fluid flowing in the secondary channels. In the case of a cryogenic air separation unit, the primary liquid contains a large proportion of oxygen and the secondary fluid contains a large proportion of nitrogen gas. The primary liquid flow rate is relatively low in a primary channel.
Cependant, comme le montre la figure 1 de la présente demande, les canaux primaires de EP0130122A1 ont des petites dimensions transversales, en l'occurrence millimétriques, de sorte que liquide primaire n'est pas réparti de manière homogène sur tout le périmètre rectangulaire 51 de chaque canal primaire lisse 50. Donc le liquide primaire forme des ménisques 52 et se concentre dans les coins 53 du périmètre rectangulaire 51 de chaque canal primaire lisse 50, ce qui induit l'apparition de zones sèches sur les côtés longs 54 du périmètre rectangulaire 51 de chaque canal primaire lisse 50. Le nombre et la superficie des zones sèches augmentent au fur et à mesure de la vaporisation du liquide primaire s'écoulant vers les sorties des canaux primaires lisse. Ces zones sèches sont donc inutilisées lors des échanges de chaleur, ce qui réduit les performances de l'échangeur de chaleur. En outre, ces zones sèches risquent de causer des dépôts d'impuretés, ce qui peut peut à terme induire une défaillance dans la sécurité du personnel et du matériel. However, as shown in FIG. 1 of the present application, the primary channels of EP0130122A1 have small transverse dimensions, in this case millimetric, so that the primary liquid is not homogeneously distributed over the entire rectangular perimeter 51 of each primary smooth channel 50. Thus the primary liquid forms meniscuses 52 and concentrates in the corners 53 of the rectangular perimeter 51 of each smooth primary channel 50, which induces the appearance of dry zones on the long sides 54 of the rectangular perimeter 51 of each smooth primary channel 50. The number and area of the dry areas increases as the primary liquid flowing to the primary smooth channel outlets expands. These dry zones are therefore unused during heat exchange, which reduces the performance of the heat exchanger. In addition, these dry areas may cause deposition of impurities, which may eventually lead to a failure in the safety of personnel and equipment.
La présente invention a notamment pour but de résoudre, en tout ou partie, les problèmes mentionnés ci-avant, en fournissant un échangeur de chaleur permettant de conserver des canaux primaires et secondaires avec une géométrie classique, sans générer de pertes de charge additionnelles, tout en augmentant le transfert thermique et la sécurité de l'échangeur de chaleur.  The present invention is intended in particular to solve, in whole or in part, the problems mentioned above, by providing a heat exchanger for retaining primary and secondary channels with conventional geometry, without generating additional pressure losses, while by increasing the heat transfer and the safety of the heat exchanger.
Dans ce but, l'invention a pour objet un échangeur de chaleur, pour réaliser des échanges de chaleur entre un liquide primaire et un fluide secondaire, l'échangeur de chaleur comprenant au moins :  For this purpose, the subject of the invention is a heat exchanger, for exchanging heat between a primary liquid and a secondary fluid, the heat exchanger comprising at least:
- plusieurs plaques disposées parallèlement entre elles,  - several plates arranged parallel to each other,
des entretoises s'étendant entre les plaques et disposées parallèlement entre elles de façon à définir i) des canaux primaires conformés pour l'écoulement du liquide primaire et ii) des canaux secondaires conformés pour l'écoulement du fluide secondaire, chaque canal primaire étant agencé de façon à pouvoir échanger de la chaleur avec au moins un canal secondaire respectif,  spacers extending between the plates and arranged parallel to each other so as to define i) primary channels shaped for the flow of the primary liquid and ii) secondary channels shaped for the flow of the secondary fluid, each primary channel being arranged so as to be able to exchange heat with at least one respective secondary channel,
une entrée de liquide primaire, destinée à être reliée fluidiquement à un distributeur de liquide primaire,  a primary liquid inlet, intended to be fluidly connected to a primary liquid distributor,
l'échangeur de chaleur étant caractérisé en ce que chaque canal primaire a globalement une forme de prisme à section polygonale, le prisme étant composé de plusieurs faces globalement planes, et  the heat exchanger being characterized in that each primary channel generally has a shape of polygonal section prism, the prism being composed of several generally planar faces, and
en ce que les canaux primaires comprennent des canaux primaires rugueux, chaque canal primaire rugueux présentant des éléments de microstructure ayant des dimensions comprises entre 1 μιτι et 300 μιτι, de préférence comprises entre 1 μιτι et 100 μιτι, et  in that the primary channels comprise rough primary channels, each rough primary channel having microstructure elements having dimensions of between 1 μιτι and 300 μιτι, preferably between 1 μιτι and 100 μιτι, and
en ce que les éléments de microstructure sont configurés de sorte que, pour chaque canal primaire rugueux :  in that the microstructure elements are configured so that for each rough primary channel:
r > 1 + 1.3 103 - Ra - ε où : r> 1 + 1.3 10 3 - R a - ε or :
r est le rapport de la surface réelle d'un canal primaire rugueux respectif, en tant que numérateur, sur la surface géométrique d'un canal primaire rugueux respectif, en tant que dénominateur,  r is the ratio of the actual area of a respective rough primary channel, as numerator, to the geometric area of a respective rough primary channel, as the denominator,
Ra (en m) est l'écart moyen arithmétique par rapport à la ligne moyenne, et R a (in m) is the mean arithmetic deviation from the mean line, and
ε est le taux de vide de la surface réelle d'un canal primaire rugueux respectif.  ε is the void ratio of the actual surface of a respective rough primary channel.
Le rapport r est parfois dénommé « taux de rugosité » ou « rugosité ». L'écart moyen arithmétique Ra (en m) représente la rugosité du canal primaire rugueux. Dans la présente demande, le terme « ligne moyenne » désigne une ligne située à l'altitude moyenne de la surface réelle. En pratique, la ligne moyenne peut être calculée à partir du relevé topographique du profil de coupe de la surface en appliquant la méthode des moindres carrés. The ratio r is sometimes referred to as "roughness ratio" or "roughness". The arithmetical average deviation R a (in m) represents the roughness of the rough primary channel. In the present application, the term "average line" designates a line situated at the average altitude of the real surface. In practice, the average line can be calculated from the topographic survey of the sectional profile of the surface by applying the least squares method.
Dans la présente demande, le terme « taux de vide d'une surface » correspond à un taux calculé de la manière suivante : On considère une tranche dont l'épaisseur est égale à la hauteur du pic le plus élevé (par rapport au point le plus bas) de cette surface. Sur cette tranche, le taux de vide ε correspond au rapport du volume non occupé par des éléments de microstructure sur le volume total de la tranche. Ce rapport s'exprime comme suit :  In the present application, the term "void ratio of a surface" corresponds to a rate calculated as follows: A slice whose thickness is equal to the height of the highest peak (relative to the point the lower) of this surface. On this slice, the void ratio ε corresponds to the ratio of the volume not occupied by microstructure elements to the total volume of the slice. This report is expressed as follows:
^tot ^surf ^ tot - ^ surf
ε =  ε =
Vtot V tot
ou :  or :
Vtot (en m3) est le volume compris entre le point le plus élevé et le point le plus bas de la surface réelle, et V tot (in m 3 ) is the volume between the highest point and the lowest point of the real surface, and
Vsurf (en m3) est le volume compris entre la surface réelle et le point le plus bas de la surface réelle. Vsurf (in m 3 ) is the volume between the actual surface and the lowest point of the actual surface.
Par conséquent :  Therefore :
ε = 1 - z/Rz ε = 1 - z / R z
où : Rz est la hauteur du pic le plus élevé par rapport au point le plus bas de la surface, z (en m) est la hauteur d'un point respectif par rapport au point le plus bas de la surface réelle, la hauteur z étant mesurée point par point, z (en m) est la moyenne arithmétique de la hauteur z mesurée point par point. where: R z is the height of the highest peak relative to the lowest point of the surface, z (in m) is the height of a respective point with respect to the lowest point of the real surface, the height z being measured point by point, z (in m) is the arithmetic mean of the height z measured point by point.
Ainsi, un tel échangeur de chaleur permet de conserver des canaux primaires et secondaires avec une géométrie classique, donc simple à fabriquer et à mettre en œuvre, sans générer de pertes de charge additionnelles, tout en augmentant le transfert thermique et la sécurité lorsque l'échangeur de chaleur est en service. En effet, les éléments de microstructure permettent d'augmenter le transfert thermique, car la superficie d'échange et la surface mouillée sont plus importantes. D'autre part, la sécurité de l'échangeur de chaleur est améliorée, en raison de la grande mouillabilité des canaux primaires, laquelle permet d'éviter toute vaporisation à sec d'oxygène. Par ailleurs, les mesures ont montré que la géométrie prismatique à base polygonale présentait des coefficients de transfert de chaleur plus élevés qu'une géométrie tubulaire à base circulaire par exemple.  Thus, such a heat exchanger makes it possible to preserve primary and secondary channels with a conventional geometry, thus simple to manufacture and to implement, without generating additional pressure drops, while increasing the heat transfer and the safety when the heat exchanger is in use. In fact, the microstructure elements make it possible to increase the heat transfer, because the exchange surface area and the wet surface area are larger. On the other hand, the safety of the heat exchanger is improved, because of the high wettability of the primary channels, which avoids dry vaporization of oxygen. Furthermore, the measurements have shown that the polygonal-based prismatic geometry has higher heat transfer coefficients than a tubular geometry with a circular base for example.
Le traitement de surface, avec les éléments de microstructure, permet de mouiller tout le périmètre du canal primaire et donc d'augmenter la surface d'échange.  The surface treatment, with the microstructure elements, makes it possible to wet the entire perimeter of the primary channel and thus to increase the exchange surface.
Dans la majorité des applications, le liquide primaire et le fluide secondaire sont des fluides cryogéniques. Le liquide primaire et le fluide secondaire introduits dans l'échangeur de chaleur peuvent être monophasiques, c'est-à-dire intégralement liquide ou intégralement gazeux, ou diphasiques, c'est-à-dire composés de liquide et de gaz. Au cours de leur écoulement dans l'échangeur de chaleur, les proportions des phases du liquide primaire et du fluide secondaire peuvent varier.  In most applications, the primary liquid and the secondary fluid are cryogenic fluids. The primary liquid and the secondary fluid introduced into the heat exchanger may be monophasic, that is to say completely liquid or completely gaseous, or two-phase, that is to say composed of liquid and gas. During their flow through the heat exchanger, the proportions of the phases of the primary liquid and the secondary fluid may vary.
Selon un mode de réalisation de l'invention, chaque section polygonale a des dimensions comprises entre 1 mm et 10 mm, de préférence entre 3 mm et 7 mm, une section polygonale rectangulaire ayant par exemple une longueur environ égale à 5 mm et une largeur environ égale à 1 ,5 mm.  According to one embodiment of the invention, each polygonal section has dimensions of between 1 mm and 10 mm, preferably between 3 mm and 7 mm, a rectangular polygonal section having for example a length of about 5 mm and a width approximately equal to 1.5 mm.
Ainsi, de telles dimensions transversales permettent d'adapter l'échangeur de chaleur aux débits de liquide primaire et de fluide secondaire à traiter.  Thus, such transverse dimensions make it possible to adapt the heat exchanger to the flows of primary liquid and secondary fluid to be treated.
Selon un mode de réalisation de l'invention, des éléments de microstructure sont distribués sensiblement sur toute la périphérie interne de chaque canal primaire rugueux. Ainsi, une telle distribution garantit le mouillage de toute la section polygonale de chaque canal primaire rugueux. According to one embodiment of the invention, microstructure elements are distributed substantially over the entire inner periphery of each rough primary channel. Thus, such a distribution ensures the wetting of the entire polygonal section of each rough primary channel.
Selon un mode de réalisation de l'invention, pour chaque canal primaire rugueux respectif, les éléments de microstructure sont distribués sur au moins 80% de la surface du canal primaire rugueux.  According to one embodiment of the invention, for each respective rough primary channel, the microstructure elements are distributed over at least 80% of the rough primary channel surface.
Ainsi, chaque canal primaire rugueux est substantiellement couvert d'éléments de microstructure qui augmentent la superficie d'échange.  Thus, each rough primary channel is substantially covered with microstructure elements that increase the exchange area.
Selon un mode de réalisation de l'invention, les éléments de microstructure ont des dimensions semblables entre eux et des formes semblables entre eux, et dans lequel les éléments de microstructure sont configurés de sorte que, pour chaque canal primaire rugueux :  According to one embodiment of the invention, the microstructure elements have similar dimensions to each other and similar shapes to each other, and wherein the microstructure elements are configured so that for each rough primary channel:
r > 1 + 1.3 103 - h - ε r> 1 + 1.3 10 3 - h - ε
où : h (en m) est la hauteur moyenne des éléments de microstructure.  where: h (in m) is the average height of the microstructure elements.
Ainsi, de tels éléments de microstructure semblables permettent d'obtenir une plus grande mouillabilité de chaque canal primaire rugueux et de contrôler l'épaisseur minimale du film de liquide primaire.  Thus, such similar microstructure elements make it possible to obtain greater wettability of each rough primary channel and to control the minimum thickness of the primary liquid film.
Par exemple, des dimensions semblables des éléments de microstructure peuvent présenter un écart de 20% d'un élément de microstructure à l'autre. Deux éléments de microstructure ayant des formes semblables ont toutes leurs dimensions semblables.  For example, similar dimensions of the microstructure elements may have a 20% gap from one microstructure element to another. Two microstructure elements having similar shapes have all their similar dimensions.
Dans la présente demande, le terme « surface réelle » désigne notamment la surface obtenue après fabrication et le terme « surface géométrique » désigne notamment une surface parfaite, donc lisse, abstraction faite des éléments de microstructure éventuellement présents ; une surface géométrique peut être intégralement définie géométriquement par des cotes nominales. La surface géométrique est parfois dénommée « surface projetée » lorsqu'elle est considérée dans un plan.  In the present application, the term "real surface" designates in particular the surface obtained after manufacture and the term "geometric surface" designates in particular a perfect surface, therefore smooth, apart from any microstructure elements that may be present; a geometric surface can be integrally defined geometrically by nominal dimensions. The geometric surface is sometimes referred to as the "projected surface" when viewed in a plane.
Dans la présente demande, le terme « surface » peut désigner soit une entité topologique soit la superficie de cette entité topologique.  In the present application, the term "surface" can designate either a topological entity or the area of this topological entity.
Selon un mode de réalisation de l'invention, les éléments de microstructure sont distribués de manière homogène. En particulier, les éléments de microstructure peuvent être semblables et distribués de manière homogène. Ainsi, une telle distribution homogène permet de garantir une plus grande mouillabilité de chaque canal primaire rugueux et de contrôler l'épaisseur minimale du film de liquide primaire. According to one embodiment of the invention, the microstructure elements are distributed homogeneously. In particular, the microstructure elements can be similar and homogeneously distributed. Thus, such a homogeneous distribution makes it possible to guarantee greater wettability of each rough primary channel and to control the minimum thickness of the primary liquid film.
Alternativement au mode de réalisation précédent, les éléments de microstructure peuvent être semblables et distribués de manière hétérogène, par exemple de manière aléatoire.  As an alternative to the previous embodiment, the microstructure elements may be similar and distributed in a heterogeneous manner, for example in a random manner.
Selon un mode de réalisation de l'invention, les éléments de microstructure sont configurés de sorte que, pour chaque canal primaire rugueux :
Figure imgf000008_0001
où :
According to one embodiment of the invention, the microstructure elements are configured so that for each rough primary channel:
Figure imgf000008_0001
or :
- d (en m) est la distance moyenne entre les centres des éléments de microstructure adjacents, les centres étant situés sur la surface géométrique du canal primaire rugueux,  d (in m) is the average distance between the centers of the adjacent microstructure elements, the centers being situated on the geometrical surface of the rough primary channel,
P (en m) est le périmètre moyen de la section des éléments de microstructure.  P (in m) is the average perimeter of the section of the microstructure elements.
Selon un mode de réalisation de l'invention, les éléments de microstructure sont configurés de sorte que, pour chaque canal primaire rugueux :  According to one embodiment of the invention, the microstructure elements are configured so that for each rough primary channel:
r - 1 - 1.3 103■ h ε r - 1 - 1.3 10 3 ■ h ε
> 4.2. 10~8 > 4.2. 10 ~ 8
e/h + 6.7 10-6/d2 et dans lequel les éléments de microstructure (30) sont en outre configurés de sorte que, pour chaque canal primaire rugueux (21 ) :
Figure imgf000008_0002
où : S (en m2) est la surface moyenne de la section des microstructures.
e / h + 6.7 10- 6 / d 2 and wherein the microstructure elements (30) are further configured such that for each rough primary channel (21):
Figure imgf000008_0002
where: S (in m 2 ) is the average surface area of the microstructure section.
Des éléments de microstructure ainsi configurés permettent d'avoir une vitesse de propagation du liquide adaptée au procédé d'échange de chaleur. Microstructure elements thus configured make it possible to have a propagation speed of the liquid adapted to the heat exchange process.
Selon un mode de réalisation de l'invention, les éléments de microstructure ont des formes irrégulières, par exemple avec des dimensions irrégulières, les éléments de microstructure pouvant en outre être distribués de manière hétérogène, par exemple de manière aléatoire. En d'autres termes, les intervalles entre deux éléments de microstructure voisins sont variables, donc non constants, sur toute la surface réelle du canal primaire rugueux considéré. According to one embodiment of the invention, the microstructure elements have irregular shapes, for example with irregular dimensions, the microstructure elements being able to be distributed in a heterogeneous manner, for example in a random manner. In other words, the intervals between two neighboring microstructure elements are variable, and therefore not constant, over the entire real surface of the rough primary channel considered.
Ainsi, une telle distribution hétérogène permet d'obtenir une mouillabilité constante tout le long de chaque canal primaire rugueux, en limitant la superficie de chaque zone dépourvue d'éléments de microstructure.  Thus, such a heterogeneous distribution makes it possible to obtain constant wettability all along each rough primary channel, by limiting the area of each zone devoid of microstructure elements.
Alternativement à cette variante, chaque élément de microstructure peut avoir une forme ou une géométrie régulière, par exemple globalement en forme de cylindre, prisme, cône ou autre. Dans cette variante, les éléments de microstructure de formes régulières sont configurés de sorte que, pour chaque canal primaire rugueux :  Alternatively to this variant, each microstructure element may have a regular shape or geometry, for example globally in the form of a cylinder, a prism, a cone or the like. In this variant, the microstructure elements of regular shapes are configured so that for each rough primary channel:
r > 1 + 1.3 103■ h ε. r> 1 + 1.3 10 3 ■ h ε.
Mais dans une variante où les éléments de microstructure ont des formes irrégulières, les éléments de microstructure sont configurés de sorte que :  But in a variant where the microstructure elements have irregular shapes, the microstructure elements are configured so that:
r > 1 + 1.3 103■ Rae. r> 1 + 1.3 10 3 ■ R a e.
Selon un mode de réalisation de l'invention, les éléments de microstructure sont configurés de sorte que, pour chaque canal primaire rugueux :  According to one embodiment of the invention, the microstructure elements are configured so that for each rough primary channel:
r - 1 - 1.3 103 - Ra - ε r - 1 - 1.3 10 3 - R a - ε
— > 4 2 10~8 -> 4 2 10 ~ 8
e/Ra + 1.2 105 ■ e / R a + 1.2 10 5 ■
De tels éléments de microstructure forment une rugosité qui augmente particulièrement la mouillabilité de la surface de chaque canal primaire rugueux, ce qui permet au liquide de mouiller toute la surface du canal primaire rugueux même en présence d'un recoin. Such microstructure elements form a roughness that particularly increases the wettability of the surface of each rough primary channel, which allows the liquid to wet the entire surface of the rough primary channel even in the presence of a nook.
Selon un mode de réalisation de l'invention, chaque canal primaire rugueux parmi au moins une partie des canaux primaires rugueux a globalement une forme de prisme à base rectangulaire.  According to one embodiment of the invention, each rough primary channel of at least a portion of the rough primary channels generally has a shape of rectangular prism.
Comme l'indique l'adverbe « globalement », le prisme peut avoir une base approximativement rectangulaire. Par exemple, les arêtes du rectangle définissant la base du prisme peuvent être arrondies, par exemple par de la brasure.  As the adverb "globally" indicates, the prism can have an approximately rectangular base. For example, the edges of the rectangle defining the base of the prism may be rounded, for example by solder.
Ainsi, une telle forme de canal primaire rugueux, à base rectangulaire, permet de conserver des canaux primaires rugueux et secondaires avec une géométrie classique, donc simple à fabriquer et à mettre en œuvre lors de l'assemblage de l'échangeur de chaleur. Selon un mode de réalisation de l'invention, les éléments de microstructure sont distribués seulement sur les côtés longs de la base rectangulaire. Thus, such a rough primary channel shape, with a rectangular base, makes it possible to preserve rough and secondary primary channels with a conventional geometry, which is therefore simple to manufacture and to use when assembling the heat exchanger. According to one embodiment of the invention, the microstructure elements are distributed only on the long sides of the rectangular base.
En d'autres termes, les côtés courts du périmètre rectangulaire sont dépourvus d'éléments de microstructure. En effet, les côtés courts peuvent être mouillés en raison de la formation naturelle des ménisques au niveau des coins du périmètre rectangulaire.  In other words, the short sides of the rectangular perimeter are devoid of microstructure elements. Indeed, the short sides can be wet due to the natural formation of the menisci at the corners of the rectangular perimeter.
Selon un mode de réalisation de l'invention, les éléments de microstructure sont distribués de façon à définir entre eux des passages pour l'écoulement du liquide primaire.  According to one embodiment of the invention, the microstructure elements are distributed so as to define between them passages for the flow of the primary liquid.
En d'autres termes, les éléments de microstructure s'étendent globalement au-dessus du niveau de la surface géométrique.  In other words, the microstructure elements extend generally above the level of the geometrical surface.
Ainsi, les éléments de microstructure sont distribués de façon à définir un état de surface avec une rugosité ouverte, c'est-à-dire une rugosité définie par des pics ou des massifs mais sans cavités étroites. Une cavité est considéré comme étroite lorsque les pics qui l'entourent sont trop proches pour permettre une circulation du liquide.  Thus, the microstructure elements are distributed so as to define a surface state with an open roughness, that is to say a roughness defined by peaks or masses but without narrow cavities. A cavity is considered narrow when the surrounding peaks are too close to allow circulation of the liquid.
Selon un mode de réalisation de l'invention, chaque canal primaire rugueux a une rugosité arithmétique Ra comprise entre 1 μιτι et 60 μιτι. According to one embodiment of the invention, each rough primary channel has an arithmetic roughness R a of between 1 μιτι and 60 μιτι.
Ainsi, une telle rugosité arithmétique permet d'obtenir une grande mouillabilité des canaux primaires rugueux.  Thus, such arithmetic roughness makes it possible to obtain high wettability of the rough primary channels.
Selon un mode de réalisation de l'invention, chaque canal primaire rugueux présente des éléments de nanostructure distribués sur au moins 80% de sa longueur, chaque élément de nanostructure ayant des dimensions comprises entre 1 nm et 500 nm.  According to one embodiment of the invention, each rough primary channel has nanostructure elements distributed over at least 80% of its length, each nanostructure element having dimensions of between 1 nm and 500 nm.
Ainsi, de tels éléments de nanostructure permettent de maximiser la mouillabilité de chaque canal primaire rugueux.  Thus, such nanostructure elements make it possible to maximize the wettability of each rough primary channel.
Selon une variante de l'invention, les éléments de nanostructure sont distribués sur la surface de chaque canal primaire rugueux. Alternativement ou complémentairement à cette variante de l'invention, les éléments de nanostructure peuvent être distribués sur les surfaces des éléments de microstructure.  According to a variant of the invention, the nanostructure elements are distributed on the surface of each rough primary channel. Alternatively or additionally to this variant of the invention, the nanostructure elements can be distributed on the surfaces of the microstructure elements.
Selon une variante de l'invention, le revêtement est composé d'un matériau métallique et/ou d'un matériau inorganique, par exemple d'un matériau céramique. Le revêtement peut être obtenu par dépôt par projection (parfois désigné par le terme anglais « spray ») de particules et/ou de fibres sur la surface de chaque canal primaire rugueux. According to a variant of the invention, the coating is composed of a metallic material and / or an inorganic material, for example a ceramic material. The coating can be obtained by spray deposition (sometimes referred to as English term "spray") of particles and / or fibers on the surface of each rough primary channel.
Selon un mode de réalisation de l'invention, les éléments de microstructure sont formés par un traitement de la surface de chaque élément primaire, par exemple par anodisation, par sablage, par grenaillage ou par gravure chimique ou encore par frittage de poudre, par projection de métal fondu, par laser, par photolithographie ou par gravure mécanique de type laminage, brossage ou impression.  According to one embodiment of the invention, the microstructure elements are formed by a treatment of the surface of each primary element, for example by anodizing, by sanding, by shot blasting or by chemical etching or by powder sintering, by spraying. of molten metal, by laser, by photolithography or by mechanical engraving such as rolling, brushing or printing.
De plus, les éléments de microstructure peuvent être formés par un revêtement obtenu par imprégnation, par dépôt de projection par dépôt au plasma, par un procédé de fabrication additive, par exemple par impression tridimensionnelle  In addition, the microstructure elements may be formed by a coating obtained by impregnation, by plasma deposition spraying, by an additive manufacturing process, for example by three-dimensional printing.
Selon une variante de l'invention, les plaques et/ou les entretoises sont composées de matériaux sélectionnés dans le groupe constitué de l'aluminium, du cuivre, du nickel, du chrome, du fer et des alliages d'aluminium, d'un alliage de cuivre, de nickel, de chrome, de fer, par exemple d'un alliage nickel-chrome ou d'un alliage nickel-chrome-fer.  According to a variant of the invention, the plates and / or the spacers are composed of materials selected from the group consisting of aluminum, copper, nickel, chromium, iron and aluminum alloys, a alloy of copper, nickel, chromium, iron, for example a nickel-chromium alloy or a nickel-chromium-iron alloy.
Ainsi, de telles plaques et/ou entretoises permettent de traiter les liquides primaires et les fluides secondaires usuels dans le domaine de la cryogénie, par exemple un liquide contenant de l'oxygène et un gaz contenant de l'azote pour séparer les gaz de l'air, les gaz acides et le gaz naturel.  Thus, such plates and / or spacers make it possible to treat the primary liquids and the secondary fluids customary in the field of cryogenics, for example an oxygen-containing liquid and a gas containing nitrogen to separate the gases from the air, acid gases and natural gas.
Selon un mode de réalisation de l'invention, l'échangeur de chaleur est configuré pour former un vaporiseur-condenseur, les longueurs des canaux primaires rugueux et les longueurs des canaux secondaires étant déterminées de sorte que les échanges de chaleur permettent de vaporiser totalement ou partiellement le liquide primaire et de condenser totalement ou partiellement du fluide secondaire introduit sous forme de gaz secondaire.  According to one embodiment of the invention, the heat exchanger is configured to form a vaporizer-condenser, the lengths of the rough primary channels and the lengths of the secondary channels being determined so that the heat exchanges make it possible to totally vaporize or partially the primary liquid and totally or partially condense the secondary fluid introduced as a secondary gas.
Ainsi, un tel vaporiseur-condenseur permet de traiter les liquides primaires et les fluides secondaires usuels dans le domaine de la cryogénie, par exemple un liquide contenant de l'oxygène et un gaz contenant de l'azote pour séparer les composants de l'air.  Thus, such a vaporizer-condenser makes it possible to treat the primary liquids and the secondary fluids customary in the field of cryogenics, for example an oxygen-containing liquid and a nitrogen-containing gas to separate the components of the air. .
Selon un mode de réalisation de l'invention, ladite entrée de liquide primaire est placée à une altitude supérieure aux canaux primaires rugueux lorsque l'échangeur de chaleur est en service de sorte que le distributeur de liquide primaire introduit le liquide primaire sous forme de film s'écoulant par gravité à travers ladite au moins une entrée de liquide primaire dans les canaux primaires rugueux. According to one embodiment of the invention, said primary liquid inlet is placed at an altitude higher than the rough primary channels when the heat exchanger is in service so that the liquid dispenser primary introduces the primary liquid as a gravity flowing film through said at least one primary liquid inlet into the rough primary channels.
Selon une variante de l'invention, les canaux secondaires comprennent des canaux secondaires rugueux, chaque canal secondaire rugueux étant formé de manière semblable aux canaux primaires rugueux. En particulier, un canal secondaire rugueux peut présenter des éléments de microstructure qui ont des dimensions comprises entre 1 μιτι et 300 μιτι, de préférence comprises entre 1 μιτι et 100 m, et qui satisfont les équations applicables aux canaux primaires rugueux. Plus généralement, chacune des caractéristiques mentionnées ci-avant pour les canaux primaires rugueux peut s'appliquer aux canaux secondaires rugueux. Cependant, ces caractéristiques ne sont pas répétées ici, afin de faciliter la lecture de la présente demande de brevet.  According to a variant of the invention, the secondary channels comprise rough secondary channels, each rough secondary channel being formed similarly to the rough primary channels. In particular, a rough secondary channel may have microstructure elements which have dimensions of between 1 μιτι and 300 μιτι, preferably between 1 μιτι and 100 m, and which satisfy the equations applicable to the rough primary channels. More generally, each of the features mentioned above for rough primary channels can be applied to rough secondary channels. However, these features are not repeated here in order to facilitate the reading of the present patent application.
Par ailleurs, la présente invention a pour objet une unité de séparation, pour séparer du gaz par cryogénie, l'unité de séparation comprenant au moins un échangeur de chaleur formant vaporiseur-condenseur selon l'invention, le vaporiseur-condenseur étant configuré pour permettre un échange de chaleur entre un liquide contenant de l'oxygène et un gaz contenant de l'azote.  Moreover, the subject of the present invention is a separation unit, for separating gas by cryogenics, the separation unit comprising at least one heat exchanger forming a vaporizer-condenser according to the invention, the vaporizer-condenser being configured to allow a heat exchange between a liquid containing oxygen and a gas containing nitrogen.
Ainsi, une telle unité de séparation de gaz par cryogénie permet de traiter les liquides primaires et les fluides secondaires usuels dans le domaine de la cryogénie, par exemple un liquide contenant de l'oxygène et un gaz contenant de l'azote pour séparer les composants de l'air.  Thus, such a cryogenic gas separation unit makes it possible to treat the primary liquids and the secondary fluids customary in the field of cryogenics, for example an oxygen-containing liquid and a nitrogen-containing gas for separating the components. air.
Les modes de réalisation et les variantes mentionnés ci-avant peuvent être pris isolément ou selon toute combinaison techniquement admissible.  The embodiments and variants mentioned above may be taken individually or in any technically permissible combination.
La présente invention sera bien comprise et ses avantages ressortiront aussi à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés, dans lesquels :  The present invention will be well understood and its advantages will also emerge in the light of the description which follows, given solely by way of nonlimiting example and with reference to the appended drawings, in which:
la figure 1 est une section transversale d'un canal primaire lisse de l'état de l'art ;  Figure 1 is a cross section of a smooth primary channel of the state of the art;
- la figure 2 est une vue schématique en perspective d'une une unité de séparation conforme à l'invention et comprenant un échangeur de chaleur conforme à l'invention ;  - Figure 2 is a schematic perspective view of a separation unit according to the invention and comprising a heat exchanger according to the invention;
la figure 3 est une section transversale d'un canal primaire rugueux conforme à un premier mode de réalisation de l'invention ; la figure 4 est une vue en perspective illustrant des éléments de microstructure disposée sur le canal primaire rugueux de la figure 1 ; Figure 3 is a cross section of a rough primary channel according to a first embodiment of the invention; Figure 4 is a perspective view illustrating microstructure elements disposed on the rough primary channel of Figure 1;
la figure 5 est une vue en perspective illustrant des éléments de microstructure disposée sur un canal primaire rugueux conforme à un deuxième mode de réalisation de l'invention ;  Figure 5 is a perspective view illustrating microstructure elements disposed on a rough primary channel according to a second embodiment of the invention;
la figure 6 est une vue schématique en coupe d'un motif formant des éléments de microstructure pour le canal primaire rugueux de la figure 4 ; et  Figure 6 is a schematic sectional view of a pattern forming microstructure elements for the rough primary channel of Figure 4; and
la figure 7 est une vue schématique en coupe d'un motif formant des éléments de microstructure pour un canal primaire rugueux conforme à un troisième mode de réalisation de l'invention.  Figure 7 is a schematic sectional view of a pattern forming microstructure elements for a rough primary channel according to a third embodiment of the invention.
Les figures 2, 3 et 4 illustrent un échangeur de chaleur 1 pour réaliser des échanges de chaleur entre un liquide primaire et un fluide secondaire. L'échangeur de chaleur 1 appartient à une unité de séparation 2 pour séparer les composants de l'air par cryogénie.  FIGS. 2, 3 and 4 illustrate a heat exchanger 1 for exchanging heat between a primary liquid and a secondary fluid. The heat exchanger 1 belongs to a separation unit 2 for separating the components of the air by cryogenics.
Dans l'exemple des figures 2 à 4, l'échangeur de chaleur 1 est configuré pour former un vaporiseur-condenseur configuré pour permettre un échange de chaleur entre un liquide contenant de l'oxygène et un gaz contenant de l'azote. L'échangeur à plaque 1 peut ainsi être utilisé pour vaporiser un liquide riche en oxygène par échange de chaleur avec un gaz riche en azote qui est concomitamment condensé.  In the example of Figures 2 to 4, the heat exchanger 1 is configured to form a vaporizer-condenser configured to allow heat exchange between an oxygen-containing liquid and a gas containing nitrogen. The plate heat exchanger 1 can thus be used to vaporize an oxygen-rich liquid by heat exchange with a nitrogen-rich gas which is concomitantly condensed.
L'échangeur de chaleur 1 comprend plusieurs plaques 1 1 , qui sont disposées parallèlement entre elles, et des entretoises 12, qui s'étendent entre les plaques 1 1 et qui sont aussi disposées parallèlement entre elles. Dans l'exemple des figures 2 à 4, les plaques 1 1 et les entretoises 12 sont composées d'un alliage d'aluminium. Les plaques 1 1 sont brasées entre elles de manière connue en soi.  The heat exchanger 1 comprises several plates 1 1, which are arranged parallel to each other, and spacers 12, which extend between the plates 1 1 and which are also arranged parallel to each other. In the example of Figures 2 to 4, the plates 1 1 and the spacers 12 are composed of an aluminum alloy. The plates 1 1 are brazed together in a manner known per se.
Les entretoises 12 sont disposées de façon à définir :  The spacers 12 are arranged so as to define:
i) des canaux primaires conformés pour l'écoulement du liquide primaire, en l'occurrence contenant du dioxygène liquide (O2L), les canaux primaires comprenant des canaux primaires rugueux 21 ; et  i) primary channels configured for the flow of the primary liquid, in this case containing liquid oxygen (O2L), the primary channels comprising rough primary channels 21; and
ii) des canaux secondaires 22 conformés pour l'écoulement du fluide secondaire, en l'occurrence contenant du diazote gazeux (N2G).  ii) secondary channels 22 shaped for the flow of the secondary fluid, in this case containing nitrogen gas (N2G).
Chaque canal primaire rugueux 21 est agencé de façon à pouvoir échanger de la chaleur avec deux canaux secondaires respectifs 22. À cet effet, les canaux primaires rugueux 21 et les canaux secondaires 22 se succèdent en alternance suivant une direction d'empilement D des plaques 1 1 . Les canaux primaires rugueux 21 et les canaux secondaires 22 sont ici montés dans une configuration à contre-courant. Alternativement, les canaux primaires rugueux 21 et les canaux secondaires 22 peuvent être montés dans une configuration à co-courant. Each rough primary channel 21 is arranged to be able to exchange heat with two respective secondary channels 22. For this purpose, the channels rough primaries 21 and the secondary channels 22 alternate alternately in a stacking direction D plates 1 1. The rough primary channels 21 and the secondary channels 22 are here mounted in a countercurrent configuration. Alternatively, the rough primary channels 21 and the secondary channels 22 may be mounted in a co-current configuration.
L'échangeur de chaleur 1 comprend en outre une entrée 14 de liquide primaire qui est reliée fluidiquement à un distributeur de liquide primaire 6 appartenant à l'unité de séparation 2. Le liquide primaire O2L forme un bain au- dessus du distributeur de liquide primaire 6.  The heat exchanger 1 further comprises a primary liquid inlet 14 which is fluidly connected to a primary liquid distributor 6 belonging to the separation unit 2. The primary liquid O2L forms a bath above the primary liquid distributor 6.
L'entrée 14 est placée à une altitude supérieure aux canaux primaires rugueux 21 lorsque l'échangeur de chaleur 1 est en service. L'altitude est mesurée de manière usuelle par référence à une direction verticale dans le sens ascendant. Ainsi, le distributeur de liquide primaire 6 introduit le liquide primaire sous forme de film s'écoulant par gravité à travers l'entrée 14 dans les canaux primaires rugueux.  The inlet 14 is placed at an altitude higher than the rough primary channels 21 when the heat exchanger 1 is in use. The altitude is measured in the usual way by reference to a vertical direction in the ascending direction. Thus, the primary liquid distributor 6 introduces the primary liquid in the form of a film flowing by gravity through the inlet 14 into the rough primary channels.
Par ailleurs, chaque canal primaire rugueux 21 a globalement une forme de prisme à section polygonale et s'étendant le long d'une direction longitudinale X. Ce prisme est composé de plusieurs faces globalement planes. Les arêtes du rectangle définissant la base du prisme sont ici un peu arrondies par la brasure. Chaque section polygonale -ou périmètre polygonal- du prisme a ici des dimensions comprises entre 1 mm et 5 mm.  Furthermore, each rough primary channel 21 generally has a shape of polygonal section prism and extending along a longitudinal direction X. This prism is composed of several generally planar faces. The edges of the rectangle defining the base of the prism are here a little rounded by the solder. Each polygonal section - or polygonal perimeter - of the prism here has dimensions of between 1 mm and 5 mm.
Comme le montre la figure 3, chaque canal primaire rugueux 21 a ici globalement une forme de prisme à base rectangulaire et s'étendant le long de la direction longitudinale X. En l'occurrence, la section rectangulaire a une hauteur H21 environ égale à 4,5 mm et une largeur W21 environ égale à 1 ,5 mm. Lorsque l'échangeur de chaleur 1 est en service, le liquide primaire s'écoule le long du prisme et perpendiculairement à la base rectangulaire.  As shown in FIG. 3, each rough primary channel 21 here generally has a prism shape with a rectangular base and extending along the longitudinal direction X. In this case, the rectangular section has a height H21 approximately equal to 4 , 5 mm and a width W21 approximately equal to 1, 5 mm. When the heat exchanger 1 is in use, the primary liquid flows along the prism and perpendicular to the rectangular base.
De plus, comme le montre la figure 3, chaque canal primaire rugueux 21 présente des éléments de microstructure 30. Les éléments de microstructure 30 sont distribués ou répartis sur au moins 80% de la longueur L21 du canal primaire rugueux 21 considéré. Pour dimensionner l'unité de séparation 2, les longueurs L21 des canaux primaires rugueux 21 et les longueurs des canaux secondaires 22 sont déterminées de sorte que les échanges de chaleur permettent de vaporiser tout ou partie du liquide primaire et de condenser tout ou partie du fluide secondaire introduit sous forme de gaz secondaire. Moreover, as shown in FIG. 3, each rough primary channel 21 has microstructure elements 30. The microstructure elements 30 are distributed or distributed over at least 80% of the length L21 of the rough primary channel 21 considered. In order to size the separation unit 2, the lengths L 21 of the rough primary channels 21 and the lengths of the secondary channels 22 are determined so that the heat exchanges make it possible to vaporize all or part of the primary liquid and to condense all or part of the secondary fluid introduced as a secondary gas.
Chaque élément de microstructure 30 a des dimensions comprises entre 1 μιτι et 300 μιτι. Chaque élément de microstructure 30 a ici globalement la forme d'un cylindre étroit. Comme le montre la figure 4, les éléments de microstructure 30 ont des dimensions et des formes semblables entre eux. Les éléments de microstructure 30 sont configurés de sorte que, pour chaque canal primaire rugueux 21 :  Each microstructure element 30 has dimensions of between 1 μιτι and 300 μιτι. Each microstructure element 30 here has the overall shape of a narrow cylinder. As shown in FIG. 4, the microstructure elements 30 have similar dimensions and shapes to each other. The microstructure elements 30 are configured so that for each rough primary channel 21:
r > 1 + 1.3 103 - Ra - e. r> 1 + 1.3 10 3 - R a - e.
où :  or :
r est le rapport de la surface réelle d'un canal primaire rugueux respectif 21 , en tant que numérateur, sur la surface géométrique d'un canal primaire rugueux respectif 21 , en tant que dénominateur,  r is the ratio of the actual area of a respective rough primary channel 21, as a numerator, to the geometric area of a respective rough primary channel 21, as the denominator,
Ra (en m) est l'écart moyen arithmétique par rapport à la ligne moyenne, et R a (in m) is the mean arithmetic deviation from the mean line, and
ε est le taux de vide de la surface réelle d'un canal primaire rugueux respectif 21 .  ε is the void ratio of the actual surface of a respective rough primary channel 21.
Dans l'exemple des figures 1 à 4, les éléments de microstructure 30 sont réguliers et répartis uniformément, et ils sont configurés de sorte que, pour chaque canal primaire rugueux 21 :  In the example of FIGS. 1 to 4, the microstructure elements 30 are regular and uniformly distributed, and they are configured so that, for each rough primary channel 21:
r > 1 + 1.3 103 - h - ε r> 1 + 1.3 10 3 - h - ε
où : h (en m) est la hauteur moyenne des éléments de microstructure 30, la hauteur moyenne étant calculée à partir des hauteurs H30 de chaque élément de microstructure 30.  where: h (in m) is the average height of the microstructure elements 30, the average height being calculated from the heights H30 of each microstructure element 30.
Dans l'exemple de la figure 4, les éléments de microstructure 30 ne sont pas distribués sur toute la section rectangulaire de chaque canal primaire rugueux 21 . Au contraire, les éléments de microstructure 30 sont distribués seulement sur les côtés longs 44 de la section rectangulaire de chaque canal primaire rugueux 21 , mais pas sur les côtés courts 45. En d'autres termes, les côtés courts 45 sont dépourvus d'éléments de microstructure 30. En effet, les côtés courts 45 sont mouillés en raison de la formation naturelle des ménisques au niveau des coins de la section rectangulaire.  In the example of FIG. 4, the microstructure elements 30 are not distributed over the entire rectangular section of each rough primary channel 21. In contrast, the microstructure elements 30 are distributed only on the long sides 44 of the rectangular section of each rough primary channel 21, but not on the short sides 45. In other words, the short sides 45 are devoid of elements. As a matter of fact, the short sides 45 are wet because of the natural formation of the menisci at the corners of the rectangular section.
Les éléments de microstructure 30 sont distribués de façon à définir entre eux des passages pour l'écoulement du liquide primaire O2L, ce qui définit un état de surface avec une rugosité ouverte. De plus, les éléments de microstructure 30 sont distribués de manière homogène. En d'autres termes, l'intervalle entre deux éléments de microstructure 30 successifs est sensiblement constant le long d'une direction quelconque. Les éléments de microstructure 30 sont donc agencés suivant une matrice uniforme et ordonnée. The microstructure elements 30 are distributed so as to define between them passages for the flow of the primary liquid O2L, which defines a state surface with an open roughness. In addition, the microstructure elements 30 are homogeneously distributed. In other words, the interval between two successive microstructure elements is substantially constant along any direction. The microstructure elements 30 are therefore arranged in a uniform and ordered matrix.
Les éléments de microstructure 30 sont ici configurés de sorte que, pour chaque canal primaire rugueux 21 :  The microstructure elements 30 are here configured so that for each rough primary channel 21:
r > 1 + 1.3 103 - h - ε r> 1 + 1.3 10 3 - h - ε
où : Les éléments de microstructure 30 sont ici configurés de sorte que, pour chaque canal primaire rugueux
Figure imgf000016_0001
where: The microstructure elements 30 are here configured so that for each rough primary channel
Figure imgf000016_0001
où :  or :
d (en m) est la distance moyenne entre les centres des éléments de microstructure 30 adjacents, les centres étant situés sur la surface géométrique du canal primaire rugueux 21 , la distance moyenne étant calculée à partir de chaque distance d30 séparant, deux à deux, les centres des éléments de microstructure 30 adjacents,  d (in m) is the average distance between the centers of the adjacent microstructure elements 30, the centers being located on the geometrical surface of the rough primary channel 21, the average distance being calculated from each distance d30 separating, two by two, the centers of the adjacent microstructure elements 30,
P (en m) est le périmètre moyen de la section des éléments de microstructure 30, et  P (in m) is the average perimeter of the section of the microstructure elements 30, and
De plus, les éléments de microstructure 30 sont ici configurés de sorte que, pour chaque canal primaire rugueux 21 :  In addition, the microstructure elements 30 are here configured so that for each rough primary channel 21:
r - 1 - 1.3 103 ■ h ε r - 1 - 1.3 10 3 ■ h ε
> 4.2. 10~8 > 4.2. 10 ~ 8
e/h + 6.7 10-6/d2 e / h + 6.7 10- 6 / d 2
En outre, les éléments de microstructure 30 sont configurés de sorte que, pour chaque canal primaire rugueux
Figure imgf000016_0002
In addition, the microstructure elements 30 are configured so that for each rough primary channel
Figure imgf000016_0002
où : S (en m2) est la surface moyenne de la section des microstructures. En raison de la présence des éléments de microstructure 30, chaque canal primaire rugueux 21 a une rugosité arithmétique Ra comprise entre 1 μιτι et 60 μηη. La rugosité arithmétique Ra est un paramètre statistique représentant l'écart moyen arithmétique par rapport à la ligne moyenne de la surface d'un canal primaire rugueux 21 considéré. where: S (in m 2 ) is the average surface area of the microstructure section. Due to the presence of the microstructure elements 30, each rough primary channel 21 has an arithmetic roughness Ra of between 1 μιτι and 60 μηη. The arithmetic roughness Ra is a statistical parameter representing the arithmetic average deviation from the average line of the surface of a rough primary channel 21 considered.
En outre, chaque canal primaire rugueux 21 peut présenter des éléments de nanostructure (non représentés) distribués sur au moins 80% de sa longueur L21 . Chaque élément de nanostructure a des dimensions comprises entre 1 nm et 100 nm. Les éléments de nanostructure peuvent être distribués sur la surface de chaque canal primaire rugueux 21 et sur les surfaces des éléments de microstructure 30.  In addition, each rough primary channel 21 may have nanostructure elements (not shown) distributed over at least 80% of its length L21. Each nanostructure element has dimensions of between 1 nm and 100 nm. The nanostructure elements may be distributed on the surface of each rough primary channel 21 and on the surfaces of the microstructure elements 30.
Par ailleurs, les éléments de microstructure 30 forment un revêtement obtenu ici par dépôt de projection (parfois désigné par le terme anglais « spray ») de particules sur la surface de chaque canal primaire rugueux 21 . Les particules formant ce revêtement sont ici composées d'un matériau métallique.  Furthermore, the microstructure elements 30 form a coating obtained here by projection deposition (sometimes referred to as "spray") of particles on the surface of each rough primary channel 21. The particles forming this coating are here composed of a metallic material.
Les figures 5 et 6 illustrent une partie d'un canal primaire rugueux 121 appartenant à un échangeur de chaleur conforme à un deuxième mode de réalisation de l'invention . Dans la mesure où le canal primaire rugueux 121 est similaire au canal primaire rugueux 21 , la description de l'échangeur de chaleur et du canal primaire rugueux 21 donnée ci-avant en relation avec les figures 1 à 4 peut être transposée au canal primaire rugueux 121 et à son échangeur de chaleur, à l'exception des différences notables énoncées ci-après.  Figures 5 and 6 illustrate a portion of a rough primary channel 121 belonging to a heat exchanger according to a second embodiment of the invention. Insofar as the rough primary channel 121 is similar to the rough primary channel 21, the description of the heat exchanger and the rough primary channel 21 given above in relation to FIGS. 1 to 4 can be transposed to the rough primary channel. 121 and its heat exchanger, with the notable differences noted below.
Le canal primaire rugueux 121 diffère du canal primaire rugueux 21 , essentiellement car les éléments de microstructure 130 ont une forme de cylindre relativement large et haute et car l'intervalle entre deux éléments de microstructure 130 est plus grand que l'intervalle entre deux éléments de microstructure 30.  The rough primary channel 121 differs from the rough primary channel 21, essentially because the microstructure elements 130 have a relatively large and tall cylinder shape and because the gap between two microstructure elements 130 is larger than the gap between two microstructure elements 130. microstructure 30.
La figure 7 illustre, en section dans un plan x-z, une partie d'un canal primaire rugueux 221 appartenant à un échangeur de chaleur conforme à un troisième mode de réalisation de l'invention . Dans la mesure où le canal primaire rugueux 221 est similaire au canal primaire rugueux 21 , la description de l'échangeur de chaleur et du canal primaire rugueux 21 donnée ci-avant en relation avec les figures 1 à 4 peut être transposée au canal primaire rugueux 221 et à son échangeur de chaleur, à l'exception des différences notables énoncées ci- après. Le canal primaire rugueux 221 diffère du canal primaire rugueux 21 , notamment car les éléments de microstructure 230 ont des formes et des dimensions irrégulières, donc dissemblables entre elles. De plus, le canal primaire rugueux 221 diffère du canal primaire rugueux 21 , notamment car les éléments de microstructure 230 sont distribués de manière hétérogène, en l'occurrence de manière aléatoire. En d'autres termes, les intervalles entre deux éléments de microstructure 230 voisins sont variables, donc non constants, sur toute la surface réelle du canal primaire rugueux 221 . Figure 7 illustrates, in section in a plane xz, a portion of a rough primary channel 221 belonging to a heat exchanger according to a third embodiment of the invention. Insofar as the rough primary channel 221 is similar to the rough primary channel 21, the description of the heat exchanger and the rough primary channel 21 given above in relation to FIGS. 1 to 4 can be transposed to the rough primary channel. 221 and its heat exchanger, with the notable differences noted below. The rough primary channel 221 differs from the rough primary channel 21, in particular because the microstructure elements 230 have irregular shapes and dimensions, and therefore dissimilar to each other. In addition, the rough primary channel 221 differs from the rough primary channel 21, especially since the microstructure elements 230 are distributed heterogeneously, in this case randomly. In other words, the intervals between two adjacent microstructure elements 230 are variable, and therefore not constant, over the entire real surface of the rough primary channel 221.
Les éléments de microstructure 230 sont configurés de sorte que, pour chaque canal primaire rugueux 21 :  The microstructure elements 230 are configured so that for each rough primary channel 21:
r > 1 + 1.3 103 - Ra - ε. r> 1 + 1.3 10 3 - R a - ε.
À la figure 7, une ligne moyenne z représente la moyenne arithmétique de la hauteur z mesurée point par point, incluant par exemple des hauteurs z1 , z2, z3, z4 et z5. Rz est la hauteur du pic le plus élevé par rapport au point le plus bas de la surface. In FIG. 7, an average line z represents the arithmetical average of the measured height z measured point by point, including, for example, heights z1, z2, z3, z4 and z5. R z is the height of the highest peak relative to the lowest point of the surface.
Bien entendu, la présente invention n'est pas limitée aux modes de réalisation particuliers décrits dans la présente demande de brevet, ni à des modes de réalisation à la portée de l'homme du métier. D'autres modes de réalisation peuvent être envisagés sans sortir du cadre de l'invention, à partir de tout élément équivalent à un élément indiqué dans la présente demande de brevet.  Of course, the present invention is not limited to the particular embodiments described in the present patent application, nor to embodiments within the scope of those skilled in the art. Other embodiments may be envisaged without departing from the scope of the invention, from any element equivalent to an element indicated in the present patent application.

Claims

REVENDICATIONS
1 . Échangeur de chaleur (1 ), pour réaliser des échanges de chaleur entre un liquide primaire (O2L) et un fluide secondaire (N2G), l'échangeur de chaleur (1 ) comprenant au moins : 1. Heat exchanger (1) for exchanging heat between a primary liquid (O2L) and a secondary fluid (N2G), the heat exchanger (1) comprising at least:
plusieurs plaques (1 1 ) disposées parallèlement entre elles, des entretoises (12) s'étendant entre les plaques (1 1 ) et disposées parallèlement entre elles de façon à définir i) des canaux primaires (21 ; 121 ; 221 ; 321 ) conformés pour l'écoulement du liquide primaire (O2L) et ii) des canaux secondaires (22) conformés pour l'écoulement du fluide secondaire (N2G), chaque canal primaire (21 ) étant agencé de façon à pouvoir échanger de la chaleur avec au moins un canal secondaire (22) respectif, et  a plurality of plates (1 1) arranged parallel to each other, spacers (12) extending between the plates (1 1) and arranged parallel to each other so as to define i) shaped primary channels (21; 121; 221; 321); for the flow of the primary liquid (O2L) and ii) secondary channels (22) shaped for the flow of the secondary fluid (N2G), each primary channel (21) being arranged to be able to exchange heat with at least a respective secondary channel (22), and
- une entrée de liquide primaire (14), destinée à être reliée fluidiquement à un distributeur de liquide primaire (O2L),  a primary liquid inlet (14) intended to be fluidly connected to a primary liquid distributor (O2L),
l'échangeur de chaleur (1 ) étant caractérisé en ce que chaque canal primaire (21 ) a globalement une forme de prisme à section polygonale, le prisme étant composé de plusieurs faces globalement planes, et  the heat exchanger (1) being characterized in that each primary channel (21) has a generally polygonal section prism shape, the prism being composed of several generally planar faces, and
en ce que les canaux primaires comprennent des canaux primaires rugueux, chaque canal primaire rugueux (21 ) présentant des éléments de microstructure (30 ; 130 ; 230 ; 330) ayant des dimensions comprises entre 1 μιτι et 300 μιτι, de préférence comprises entre 1 μιτι et 100 μιτι, et  in that the primary channels comprise rough primary channels, each rough primary channel (21) having microstructure elements (30; 130; 230; 330) having dimensions of between 1 μιτι and 300 μιτι, preferably between 1 μιτι and 100 μιτι, and
en ce que les éléments de microstructure (30) sont configurés de sorte que, pour chaque canal primaire rugueux (21 ) :  in that the microstructure elements (30) are configured so that for each rough primary channel (21):
r > 1 + 1.3 103 - Ra - ε r> 1 + 1.3 10 3 - R a - ε
où :  or :
r est le rapport de la surface réelle d'un canal primaire rugueux respectif (21 ), en tant que numérateur, sur la surface géométrique d'un canal primaire rugueux respectif (21 ), en tant que dénominateur,  r is the ratio of the actual area of a respective rough primary channel (21), as a numerator, to the geometric area of a respective rough primary channel (21), as the denominator,
- Ra (en m) est l'écart moyen arithmétique par rapport à la ligne moyenne, et R a (in m) is the mean arithmetic deviation from the mean line, and
ε est le taux de vide de la surface réelle d'un canal primaire rugueux respectif (21 ). ε is the void ratio of the actual surface of a respective rough primary channel (21).
2. Échangeur de chaleur (1 ) selon la revendication 1 , dans lequel chaque section polygonale a des dimensions (H21 , W21 ) comprises entre 1 mm et 10 mm, de préférence entre 3 mm et 7 mm, une section polygonale rectangulaire ayant par exemple une longueur environ égale à 5 mm et une largeur environ égale à 1 ,5 mm. 2. Heat exchanger (1) according to claim 1, wherein each polygonal section has dimensions (H21, W21) of between 1 mm and 10 mm, preferably between 3 mm and 7 mm, a rectangular polygonal section having, for example a length of about 5 mm and a width of about 1.5 mm.
3. Échangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel des éléments de microstructure sont distribués sensiblement sur toute la périphérie interne de chaque canal primaire rugueux. A heat exchanger according to any one of the preceding claims, wherein microstructure elements are distributed substantially over the entire inner periphery of each rough primary channel.
4. Échangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel, pour chaque canal primaire rugueux respectif (21 ), les éléments de microstructure (30) sont distribués sur au moins 80% de la surface du canal primaire rugueux (21 ). A heat exchanger according to any one of the preceding claims, wherein, for each respective rough primary channel (21), the microstructure elements (30) are distributed over at least 80% of the rough primary channel surface (21). ).
5. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel les éléments de microstructure (30) ont des dimensions semblables entre eux et des formes semblables entre eux, et dans lequel les éléments de microstructure (30) sont configurés de sorte que, pour chaque canal primaire rugueux (21 ) : A heat exchanger (1) according to any one of the preceding claims, wherein the microstructure elements (30) have similar dimensions to each other and similar shapes to each other, and wherein the microstructure elements (30) are configured so that for each rough primary channel (21):
r > 1 + 1.3 103 - h - ε r> 1 + 1.3 10 3 - h - ε
où : h (en m) est la hauteur moyenne des éléments de microstructure (30).  where: h (in m) is the average height of the microstructure elements (30).
6. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel les éléments de microstructure (30) sont distribués de manière homogène. 6. Heat exchanger (1) according to any one of the preceding claims, wherein the microstructure elements (30) are homogeneously distributed.
7. Échangeur de chaleur selon la revendication 6, dans lequel les éléments de microstructure (30) sont configurés de sorte que, pour chaque canal primaire rugueux (21 ) : d <
Figure imgf000020_0001
où :
7. Heat exchanger according to claim 6, wherein the microstructure elements (30) are configured such that for each rough primary channel (21): d <
Figure imgf000020_0001
or :
d (en m) est la distance moyenne entre les centres des éléments de microstructure (30) adjacents, les centres étant situés sur la surface géométrique du canal primaire rugueux (21 ),  d (in m) is the average distance between the centers of the adjacent microstructure elements (30), the centers being located on the geometrical surface of the rough primary channel (21),
P (en m) est le périmètre moyen de la section des éléments de microstructure (30).  P (in m) is the average perimeter of the section of the microstructure elements (30).
8. Échangeur de chaleur selon la revendication 7, dans lequel les éléments de microstructure (30) sont configurés de sorte que, pour chaque canal primaire rugueux (21 ) : The heat exchanger of claim 7, wherein the microstructure members (30) are configured such that for each rough primary channel (21):
et dans lequel les éléments de microstructure (30) sont en outre configurés de sorte que, pour chaque canal primaire rugueux (21 ) :
Figure imgf000021_0001
and wherein the microstructure elements (30) are further configured such that for each rough primary channel (21):
Figure imgf000021_0001
où : S (en m2) est la surface moyenne de la section des microstructures. where: S (in m 2 ) is the average surface area of the microstructure section.
9. Échangeur de chaleur selon l'une quelconque des revendications9. Heat exchanger according to any one of the claims
1 à 5, dans lequel les éléments de microstructure ont des formes irrégulières, les éléments de microstructure (30) pouvant en outre être distribués de manière hétérogène, par exemple de manière aléatoire. 1 to 5, wherein the microstructure elements have irregular shapes, the microstructure elements (30) being furthermore able to be distributed in a heterogeneous manner, for example in a random manner.
10. Échangeur de chaleur selon la revendication 9, dans lequel les éléments de microstructure (30) sont configurés de sorte que, pour chaque canal primaire rugueux (21 ) : The heat exchanger of claim 9, wherein the microstructure members (30) are configured such that for each rough primary channel (21):
1 1 . Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel chaque canal primaire rugueux (21 ) parmi au moins une partie des canaux primaires rugueux (21 ) a globalement une forme de prisme à base rectangulaire. 1 1. A heat exchanger (1) as claimed in any one of the preceding claims, wherein each rough primary channel (21) among at least a portion of the rough primary channels (21) is generally rectangular in shape.
12. Échangeur de chaleur (1 ) selon la revendication 6, dans lequel les éléments de microstructure (30) sont distribués seulement sur les côtés longs (44) de la base rectangulaire. 12. Heat exchanger (1) according to claim 6, wherein the microstructure elements (30) are distributed only on the long sides (44) of the rectangular base.
13. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel les éléments de microstructure (30) sont distribués de façon à définir entre eux des passages pour l'écoulement du liquide primaire. 13. Heat exchanger (1) according to any one of the preceding claims, wherein the microstructure elements (30) are distributed so as to define between them passages for the flow of the primary liquid.
14. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel chaque canal primaire rugueux (21 ) a une rugosité arithmétique Ra comprise entre 1 μιτι et 60 μιτι. 14. Heat exchanger (1) according to any one of the preceding claims, wherein each rough primary channel (21) has an arithmetic roughness Ra between 1 μιτι and 60 μιτι.
15. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel chaque canal primaire rugueux (21 ) présente des éléments de nanostructure distribués sur au moins 80% de sa longueur, chaque élément de nanostructure ayant des dimensions comprises entre 1 nm et 500 nm. 15. Heat exchanger (1) according to any one of the preceding claims, wherein each rough primary channel (21) has nanostructure elements distributed over at least 80% of its length, each nanostructure element having dimensions between 1 nm and 500 nm.
16. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel les éléments de microstructure (30) sont formés par un traitement de la surface de chaque élément primaire, par exemple par anodisation, par sablage, par grenaillage ou par gravure chimique ou encore par frittage de poudre, par projection de métal fondu, par laser, par photolithographie ou par gravure mécanique de type laminage, brossage ou impression. 16. Heat exchanger (1) according to any one of the preceding claims, wherein the microstructure elements (30) are formed by a treatment of the surface of each primary element, for example by anodizing, sandblasting, shot blasting or by chemical etching or by sintering of powder, by projection of molten metal, by laser, by photolithography or by mechanical etching of the type of rolling, brushing or printing.
17. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel l'échangeur de chaleur (1 ) est configuré pour former un vaporiseur-condenseur, les longueurs (L21 ) des canaux primaires rugueux (21 ) et les longueurs des canaux secondaires (22) étant déterminées de sorte que les échanges de chaleur permettent de vaporiser totalement ou partiellement le liquide primaire (O2L) et de condenser totalement ou partiellement du fluide secondaire (N2G) introduit sous forme de gaz secondaire. 17. Heat exchanger (1) according to any one of the preceding claims, wherein the heat exchanger (1) is configured to form a vaporizer-condenser, the lengths (L21) rough primary channels (21) and the the lengths of the secondary channels (22) being determined so that the heat exchanges make it possible to totally or partially vaporize the primary liquid (O2L) and to totally or partially condense the secondary fluid (N2G) introduced in the form of a secondary gas.
18. Échangeur de chaleur (1 ) selon l'une quelconque des revendications précédentes, dans lequel ladite entrée de liquide primaire (14) est placée à une altitude supérieure aux canaux primaires rugueux (21 ) lorsque l'échangeur de chaleur (1 ) est en service de sorte que le distributeur de liquide primaire (O2L) introduit le liquide primaire (O2L) sous forme de film s'écoulant par gravité à travers ladite au moins une entrée de liquide primaire (14) dans les canaux primaires rugueux (21 ). The heat exchanger (1) according to any one of the preceding claims, wherein said primary liquid inlet (14) is placed at an altitude higher than the rough primary channels (21) when the heat exchanger (1) is in use so that the primary liquid distributor (O2L) introduces the primary liquid (O2L) as a gravity flowing film through said at least one primary liquid inlet (14) into the rough primary channels (21) .
19. Unité de séparation (2), pour séparer du gaz par cryogénie, l'unité de séparation comprenant au moins un échangeur de chaleur formant vaporiseur-condenseur selon la revendication 13, le vaporiseur-condenseur étant configuré pour permettre un échange de chaleur entre un liquide contenant de l'oxygène et un gaz contenant de l'azote. 19. Separation unit (2), for separating gas by cryogenics, the separation unit comprising at least one vaporizer-condenser heat exchanger according to claim 13, the vaporizer-condenser being configured to allow a heat exchange between a liquid containing oxygen and a gas containing nitrogen.
PCT/FR2016/050851 2015-04-16 2016-04-13 Heat exchanger comprising microstructure elements and separation unit comprising such a heat exchanger WO2016166473A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/566,913 US20180106534A1 (en) 2015-04-16 2016-04-13 Heat exchanger comprising microstructure elements and separation unit comprising such a heat exchanger
JP2017553396A JP2018511773A (en) 2015-04-16 2016-04-13 Heat exchanger comprising a microstructural element and separation device comprising such a heat exchanger
CN201680031504.7A CN107660265A (en) 2015-04-16 2016-04-13 Heat exchanger including micro-structured component and the separative element for including this heat exchanger
EP16729306.7A EP3283835B1 (en) 2015-04-16 2016-04-13 Heat exchanger comprising microstructure elements and separation unit comprising such a heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553397 2015-04-16
FR1553397A FR3035202B1 (en) 2015-04-16 2015-04-16 HEAT EXCHANGER HAVING MICROSTRUCTURE ELEMENTS AND A SEPARATION UNIT COMPRISING SUCH A HEAT EXCHANGER

Publications (1)

Publication Number Publication Date
WO2016166473A1 true WO2016166473A1 (en) 2016-10-20

Family

ID=53366158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050851 WO2016166473A1 (en) 2015-04-16 2016-04-13 Heat exchanger comprising microstructure elements and separation unit comprising such a heat exchanger

Country Status (6)

Country Link
US (1) US20180106534A1 (en)
EP (1) EP3283835B1 (en)
JP (1) JP2018511773A (en)
CN (1) CN107660265A (en)
FR (1) FR3035202B1 (en)
WO (1) WO2016166473A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382315A1 (en) * 2017-03-31 2018-10-03 BSH Hausgeräte GmbH Household appliance comprising at least one metal component
CN108691178A (en) * 2017-03-31 2018-10-23 Bsh家用电器有限公司 The household appliance of component including at least one metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384154A (en) * 1956-08-30 1968-05-21 Union Carbide Corp Heat exchange system
EP0130122A1 (en) 1983-06-24 1985-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for evaporating a liquid by heat exchange with a second fluid and air distillation unit comprising such a device
US4715433A (en) * 1986-06-09 1987-12-29 Air Products And Chemicals, Inc. Reboiler-condenser with doubly-enhanced plates
WO2003060413A1 (en) * 2002-01-17 2003-07-24 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchange fin and the production method thereof
FR2865027A1 (en) * 2004-01-12 2005-07-15 Air Liquide Corrugated fin for heat exchanger e.g. vaporizer-condenser, has pores, and corrugations, each including vertical legs alternatively connected by top and base of corrugation, where top, base and legs are made of sintered aluminum particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8356658B2 (en) * 2006-07-27 2013-01-22 General Electric Company Heat transfer enhancing system and method for fabricating heat transfer device
CN101424495A (en) * 2007-10-30 2009-05-06 通用电气公司 Heat transmission strengthening system and method for manufacturing heat transfer equipment
CN203024496U (en) * 2012-11-27 2013-06-26 冯益安 Air conditioner or heat pump formed by flat-board type heat exchanger and supported by nanospheres inside

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384154A (en) * 1956-08-30 1968-05-21 Union Carbide Corp Heat exchange system
EP0130122A1 (en) 1983-06-24 1985-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for evaporating a liquid by heat exchange with a second fluid and air distillation unit comprising such a device
US4715433A (en) * 1986-06-09 1987-12-29 Air Products And Chemicals, Inc. Reboiler-condenser with doubly-enhanced plates
WO2003060413A1 (en) * 2002-01-17 2003-07-24 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchange fin and the production method thereof
FR2865027A1 (en) * 2004-01-12 2005-07-15 Air Liquide Corrugated fin for heat exchanger e.g. vaporizer-condenser, has pores, and corrugations, each including vertical legs alternatively connected by top and base of corrugation, where top, base and legs are made of sintered aluminum particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382315A1 (en) * 2017-03-31 2018-10-03 BSH Hausgeräte GmbH Household appliance comprising at least one metal component
CN108691178A (en) * 2017-03-31 2018-10-23 Bsh家用电器有限公司 The household appliance of component including at least one metal
CN108691178B (en) * 2017-03-31 2022-04-08 Bsh家用电器有限公司 Household appliance comprising at least one metal component

Also Published As

Publication number Publication date
FR3035202A1 (en) 2016-10-21
CN107660265A (en) 2018-02-02
US20180106534A1 (en) 2018-04-19
JP2018511773A (en) 2018-04-26
FR3035202B1 (en) 2017-04-07
EP3283835A1 (en) 2018-02-21
EP3283835B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP5993144B2 (en) Cooling channel system and associated method for high temperature components covered by a coating
EP3283835B1 (en) Heat exchanger comprising microstructure elements and separation unit comprising such a heat exchanger
WO2019122651A1 (en) Spacer element with surface texturing, and associated heat exchanger and production method
EP3615877B1 (en) Heat exchanger with improved connection of wave shaped packing elements, associated air separation installation and manufacturing process of the heat exchanger
FR2821651A1 (en) LUBRICANT SUBSTANCE RESERVE CAGE
FR3069918A1 (en) HEAT EXCHANGER COMPRISING A MULTI-CHANNEL DISTRIBUTION ELEMENT
FR2865027A1 (en) Corrugated fin for heat exchanger e.g. vaporizer-condenser, has pores, and corrugations, each including vertical legs alternatively connected by top and base of corrugation, where top, base and legs are made of sintered aluminum particles
EP3728977B1 (en) Heat exchanger comprising elements and plates with surface texturing
US10526996B2 (en) Adhesion of thermal spray using compression technique
EP3254045A1 (en) Heat exchanger comprising a liquid-refrigerant distribution device
WO2019122663A1 (en) Spacer element with surface texturing, heat exchanger comprising such an element
FR3075335B1 (en) HEAT EXCHANGER WITH SUPERIOR INTERCONNECTED ELEMENTS
FR3075341A1 (en) HEAT EXCHANGER WITH INTERCALAR ELEMENTS WITH SURFACE TEXTURING
FR3115866A1 (en) Device for thermal regulation, in particular for cooling, for a motor vehicle
FR3133077A3 (en) Heat exchanger with improved heat exchange structure
FR2995073A1 (en) EXCHANGER ELEMENT FOR HEAT EXCHANGER, HEAT EXCHANGER COMPRISING SUCH AN EXCHANGER MEMBER, AND METHOD FOR MANUFACTURING SUCH EXCHANGER MEMBER
FR3105387A1 (en) HEAT EXCHANGER WITH OPTIMIZED FLUID PASSAGES
FR3105388A1 (en) Mixing device promoting a homogeneous distribution of a two-phase mixture and heat exchanger comprising such a device
FR3140420A1 (en) Heat exchanger with improved heat exchange structure
FR3075080A1 (en) METHOD OF BRAZING SURFACE TEXTURING PARTS, METHOD OF MANUFACTURING A HEAT EXCHANGER INCORPORATING SAID PARTS
FR3101409A3 (en) Spacer element for heat exchanger
WO2018104124A1 (en) Method for producing a structured packing using an additive manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16729306

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016729306

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017553396

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15566913

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE